

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	cfme_tests documentation

Welcome to cfme_tests’s documentation!

Contents:

	Getting Started

	Running Tests

	Guides
	Abbreviations and Naming Conventions

	Browser Configuration

	Designing Models

	Appliances in containers

	Style Guide

	Documenting cfme_tests

	Setting up editors

	Gotchas

	flake8

	Page Development

	Development Tips and Tricks

	Marking your tests with associated product requirements

	Selenium over VNC

	Modules
	cfme package

	fixtures package

	markers package

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

Getting Started

Before you start

Welcome to the Getting Started Guide. The CFME QE team is glad that you have decided to read this
page that will help you understand how cfme_tests interacts with the appliances. There are some
important information contained within this text, so we would like you to spend some time to
carefully read this page from beginning to the end. That will make you familiarize with the process
and will minimize the chance of doing it wrong. Then you can proceed the shortest way using the
setup and execution scripts.

Obtaining what you need (Project Setup)

	create a dedicated folder for working with the integration tests,
our automated quickstart has expectations that best work out
when it has its own place

	obtain the cfme_tests repository
(fork and clone [https://github.com/ManageIQ/integration_tests/fork])

	if you have access, obtain the cfme-qe-yamls repository (internal url, please ask the team) and
put the .yaml_key file into the root of the cfme_tests repository.

	enter the cfme_tests repository with your shell and execute python -m cfme.scripting.quickstart
which will in turn configure your system, the development environment and the default configuration files

	activate the development environment by . ../cfme_venv/bin/activate

	Set up a local selenium server that opens browser windows somewhere other than your
desktop. There is a Docker based solution for the browser, look at the script
scripts/dockerbot/sel_container.py. That ensures you have the proper versions of browsers. You
can also set everything up in your system using Xvnc - Selenium over VNC .

Appliances in containers

If the target appliance you will be testing is a container, you might like to consult
Appliances in containers for the details specific to testing containers.

Running Tests

	Test! Run miq-runtest. (This takes a long time, Ctrl-C will stop it)

	When miq-runtest ends or you Ctrl-C it, it will look stuck in the phase “collecting artifacts”. You
can either wait about 30 seconds, or you can Ctrl-C it again.

	In either case, check your processes sometimes, the artifactor process likes to hang when forced
to quit, but it can also happen when it ends normally, though it is not too common.

Testing Framework

The testing framework being used is py.test [http://pytest.org/latest]

Execution script

An execution script (cfme_test.sh) is provided. This script handles orchestration of
docker, virtualenv, and cfme_test.

Configure path to your virtualenv and your cfme_test repository in the cfme_tests/conf/env.local.yaml.

tmux:
 PYTHON_ENV_PATH: 'path/to/virtualenv/bin'
 CFME_TEST_PATH: 'path/to/cfme_tests_repo'

The script requires shyaml (pip install shyaml) and tmux (yum install tmux) commands.

#Bash example:
cd /path/to/cfme_test
./cfme_test.sh

Navigating within the console:

	Command mode: ctrl+shift+b
	up/down to change pane

	‘[‘ to scroll within a pane
	press the ‘Esc’ key to exit scrolling

More tmux commands can be found here: https://tmuxcheatsheet.com/

Using the testing framework (for newbies or non-CFMEQE core people)

Our team relies on a lot of internal tools that simplify life to the QEs. If eg. a developer would
like to run cfme_tests on his/her system, here are some tools and tips that should get you
started as quickly as possible:

	cfme_tests expects an appliance, with an IP visible to the machine that runs cfme_tests

	If this is not the case (eg. CFME behind NAT, a container, whatever), you MUST specify the
base_url in configuration with a port, which is quite obvious, but people tend to forget
cfme_tests also uses SSH and Postgres extensively, therefore you MUST have those services
accessible and ideally on the expected ports. If you don’t have them running on the expected
ports, you MUST specify them manually using --port-ssh and --port-db command-line
parameters. If you run your code outside of miq-runtest run, you MUST use utils.ports
to override the ports (that is what the command-line parameters do anyway). The approach using
utils.ports will be most likely discontinued in the future in favour of merging that
functionality inside utils.appliance.IPAppliance class. Everything in the repository
touching this functionality will get converted with the merging of the functionality when that
happens.

	cfme_tests also expects that the appliance it is running against is configured. Without it it
won’t work at all! By configured, we mean the database is set up and seeded (therefore UI
running), database permissions loosened so cfme_tests can access it and a couple of other
fixes. Check out utils.appliance.IPAppliance.configure(), and subsequent method calls.
The most common error is that a person tries to execute cfme_tests code against an appliance
that does not have the DB permissions loosened. The second place is SSH unavailable, meaning that
the appliance is NAT-ed

	Framework contains code that can be used to configure the appliance exactly as cfme_tests
desires. There are two ways of using it:

	Instantiate utils.appliance.Appliance or utils.appliance.IPAppliance,
depending on whether you want to use IP or provider name with VM name. Then simply run the
utils.appliance.Appliance.configure() or utils.appliance.IPAppliance.configure()
depending on which class you use. Then just wait and watch logs.

	You can run exactly the same code from shell. Simply run:

scripts/ipappliance.py configure ipaddr1 ipaddr2 ipaddr3...

Which enables you to configure multiple appliances in parallel.

	Unfortunately, these scripts do not work with non-default ports as of now, so you have to do
the steps manually if setting up such appliance.

	Previous bullet mentioned the scripts/ipappliance.py script. This script can call any method
or read any property located in the utils.appliance.IPAppliance. Check the script’s
header for more info. The call to that method is threaded per-appliance, so it saves time.
Despite the parallelization, the stdout (one line per appliance - return value of the method)
prints in the same order as the appliances were specified on the command line, so it is suitable
for further shell processing if needed.

	Similarly, you can use scripts/appliance.py script for interacting with the
utils.appliance.Appliance methods. It is a bit older and has slightly different usage.
And lacks threading.

	Using utils.appliance.Appliance only makes sense for appliances on providers that
are specified in cfme_data.yaml.

	If you want to test a single appliance, set the base_url in the conf/env.yaml

	If you want to test against multiple appliances, use the --appliance w.x.y.z parameter. Eg. if
you have appliances 1.2.3.4 and 2.3.4.5, then append --appliance 1.2.3.4 --appliance 2.3.4.5
to the miq-runtest command. Due to a glitch that has not been resolved yet, you should set the
base_url to the first appliance.

	If you have access to Sprout, you can request a fresh appliance to run your tests, you can use
command like this one:

SPROUT_USER=username SPROUT_PASSWORD=verysecret miq-runtest <your pytest params> --use-sprout --sprout-group "<stream name>" --sprout-appliances N

If you specify N greater than 1, the parallelized run is set up automatically. More help
about the sprout parameters are in fixtures.parallelizer. If you don’t know what
the sprout group is, check the dropdown Select stream in Sprout itself.

Browser Support

We support any browser that selenium supports, but tend to run Firefox or Chrome.

For detailed instructions on setting up different browsers, see Browser Configuration.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

Guides

	Abbreviations and Naming Conventions
	Abbreviations
	Common Terms

	Locator Terms

	Browser Configuration
	Local vs. Remote

	Standalone Selenium Server

	WebDriver Wharf
	Remote desired_capabilities

	base_url

	Firefox
	Local

	Remote

	WebDriver Wharf

	Chrome
	Local

	Remote

	WebDriver Wharf

	Safari
	Local

	Remote

	Internet Explorer
	Local

	Remote

	Sauce Labs
	Internet Explorer Sauce

	Troubleshooting

	Designing Models
	General Guidelines

	Arguments

	Collection Methods

	Entity Methods

	Example

	Appliances in containers

	Style Guide
	General Guidelines
	Contributing

	Reviewers

	Code Style
	General Notes

	cfme_tests
	Layout

	Writing Tests

	Fixtures

	This Document

	Documenting cfme_tests
	Overview

	docstrings

	Documenting Tests

	Linking new modules

	Building the Docs

	Setting up editors
	Sublime
	Getting Started
	Get sublime

	Configure sublime for Python

	Package Control

	SublimeCodeIntel

	Flake8 Lint

	Trailing Spaces

	Sublime Text 3
	Recommended Extensions and Settings
	SublimePythonIDE

	GitGutter

	BracketHighlighter

	Neon color scheme

	Python Improved

	emacs
	Installing iPython and its Emacs client
	iPython

	ein

	Starting iPython from within Emacs

	Autosave Notebooks

	Flake8 Lint

	Recommended

	Gotchas
	Selenium is not clicking on the element it says it is

	Selenium is not sending the keys I tell it to, or is filling the box with junk

	When getting the text of the element, Selenium returns an empty string

	flake8
	Manual Invocation

	IDE Integration
	Sublime Text 2 & 3

	Emacs

	Others

	Page Development
	Introduction

	Example
	Imports

	Locators

	Forms

	Toolbar

	Navigation Menu

	Development Tips and Tricks
	Introduction

	Version Picking

	Defining blockers

	Using blockers in tests

	Uncollecting tests

	Running commands on another appliance

	Logging in as another user

	Invalidating cached data

	pytest store

	Test generation (testgen)

	Working with file paths

	Expecting Errors

	Appliance object SSH gremlins

	Marking your tests with associated product requirements

	Selenium over VNC
	Purpose

	Install requirements

	Configure the VNC server
	Set a password

	Configure the startup script

	View your new desktop

	Configuring the selenium client

	Security

	Recording

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Guides

Abbreviations and Naming Conventions

Abbreviations

In order to save line space and aid in quick pass reading, we have defined some abbreviations
which we propose to be used throughout the code base.

Common Terms

	Abbreviation
	Meaning

	cfg, config
	Configuration

	prov
	Provider

	pg
	Page

	db
	Database

	img
	Image

	vm
	Virtual Machine

	creds
	Credentials

Locator Terms

	Abbreviation
	Meaning

	btn
	button

	sel
	select

	txt
	text

	pwd
	password

	chk
	checkbox

	tarea
	textarea

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Guides

Browser Configuration

All browser configuration is done by editing conf/env.yaml, or creating a local override in
conf/env.local.yaml. Local overrides are preferred. For more information about configuration
yamls, see utils.conf.

All yaml examples in this document are snippets from env.yaml.

Local vs. Remote

Most WebDrivers can operate in two modes, as a local WebDriver or through a Remote
WebDriver. The local WebDriver will launch a browser in the calling environment (such as
your desktop), while the Remote WebDriver will connect to a remote selenium server (hence the name)
and attempt to run the browser there.

Examples for each mode will be provided, where appropriate. Note that capitalization is extremely
important when specifying either webdriver or browserName, as indicated in the examples
below.

Some help for setting up the remote selenium server can be found in the Selenium over VNC document.

Standalone Selenium Server

A Selenium Server is needed in order to run Remote Selenium WebDriver. You can install and run
the Standalone Selenium Server which is a very common method. Although you may run this locally, it is still setup as a Remote webdriver as described above.

For more information, view the Selenium over VNC document.

WebDriver Wharf

A variant of the Remote webdriver, WebDriver Wharf will spawn docker containers running the selenium
standalone server on request.

Remote desired_capabilities

All Remote drivers take a “desired_capabilities” dictionary. Details on what keys and expected
value types can be used in this dictionary can be found in the selenium documentation:

https://code.google.com/p/selenium/wiki/DesiredCapabilities

Selenium, by default, looks for the selenium server on localhost port 4444. If the selenium server
is running on a different machine, you’ll need to add a command_executor option to
webdriver_options in the examples below to the machine running the selenium server.

command_exector must be a URL to a selenium server hub, which by default is at the /wd/hub
path on the selenium server.

For example:

browser:
 webdriver: Remote
 webdriver_options:
 command_executor: http://selenium-server-hostname:port/wd/hub
 desired_capabilities:
 browserName: browser

Note

	Each browser has its own set of capabilities, and those capabilities will usually not
apply from one browser to another.

	While most selenium identifiers have been translated from JavaIdentifiers to
python_identifiers, the keys of desired_capabilities are not altered in any way.
No name translation should have to be done for desired_capabilities keys
(e.g. browserName does not become browser_name).

base_url

Regardless of which Webdriver you use, base_url must be set. It is assumed that the website
at the base_url will be a working CFME UI.

Note

base_url is not solely used by the browser. Other functionality, such as the SSH and SOAP
clients, derive their destination addresses from the base_url.

Firefox

Firefox has built-in support for selenium (and vice-versa). No additional configuration should be
required to use the Firefox browser.

Local

browser:
 webdriver: Firefox

Remote

browser:
 webdriver: Remote
 webdriver_options:
 desired_capabilities:
 browserName: firefox

WebDriver Wharf

browser:
 webdriver: Remote
 webdriver_options:
 desired_capabilities:
 browserName: firefox
 webdriver_wharf: http://wharf.host:4899/

Chrome

In order to use Chrome with selenium, you must first install the chromedriver executable. This
executable should be somewhere on your PATH.

	Download chromedriver [http://chromedriver.storage.googleapis.com/]. Use the latest available
release for your architecture.

	chromedriver documentation: https://sites.google.com/a/chromium.org/chromedriver/getting-started

Local

browser:
 webdriver: Chrome

Remote

browser:
 webdriver: Remote
 webdriver_options:
 desired_capabilities:
 browserName: chrome

WebDriver Wharf

browser:
 webdriver: Remote
 webdriver_options:
 desired_capabilities:
 browserName: chrome
 webdriver_wharf: http://wharf.host:4899/

Safari

Like Firefox, Safari is natively supported by selenium. Usage is equally simple, with the exception
that you’ll probably need to be running selenium on OS X.

Local

browser:
 webdriver: Safari

Remote

browser:
 webdriver: Remote
 webdriver_options:
 # If selenium is running remotely, remember to update command_executor
 #command_executor: http://safari_host/wd/hub
 desired_capabilities:
 browserName: safari

Internet Explorer

Like Chrome & chromedriver, Internet Explorer needs a separate executable to work with selenium,
InternetExplorerDriver. InternetExplorerDriver is a server that only runs in Windows, and
should be running before starting selenium in either Local or Remote mode.

	For more information, visit https://code.google.com/p/selenium/wiki/InternetExplorerDriver

Local

browser:
 webdriver: Ie

Remote

browser:
 webdriver: Remote
 webdriver_options:
 # If selenium is running remotely, remember to update command_executor
 #command_executor: http://windows_host/wd/hub
 desired_capabilities:
 browserName: internet explorer
 # platform must be WINDOWS for IE
 platform: WINDOWS

Sauce Labs

By providing selenium servers on a multitude of platforms, Sauce Labs is able to help us test in
“exotic” environments. In order to test against appliances behind firewalls, sauce-connect must be
used:

https://saucelabs.com/docs/connect

sauce-connect tunnels are used by default if they’re running, so the same command_executor can
be used to use the sauce labs service whether sauce-connect is running or not:

command_executor: http://username:apikey@ondemand.saucelabs.com:80/wd/hub

Internet Explorer Sauce

The following example is our “worst-case scenario”, which is running a very
recent release of Internet Explorer in a very recent release of Windows:

browser:
 webdriver: Remote
 webdriver_options:
 command_executor: http://username:apikey@ondemand.saucelabs.com:80/wd/hub
 desired_capabilities:
 browserName: internet explorer
 platform: Windows 8.1
 version: 11
 screen-resolution: 1280x1024

The above configuration, at the time of this writing, ran our test suite with no issues.

More information on sauce-specific options allowed in desired_capabilities can be found in
the sauce labs documentation:

	https://saucelabs.com/platforms

	https://saucelabs.com/docs/additional-config#desired-capabilities

Note

Python values for the browser constants used in the sauce labs “platform” page can be found here:
https://code.google.com/p/selenium/source/browse/py/selenium/webdriver/common/desired_capabilities.py

Troubleshooting

If errors are encountered while launching a selenium browser, check the selenium website to
make sure that your version of selenium matches the latest version. If not, upgrade.

https://code.google.com/p/selenium/downloads/list

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Guides

Designing Models

General Guidelines

In general, any object that is represented in the MiQ Appliance is going to be only relevant
along with the context of a particular appliance. The objects in the codebase are designed
to function similarly to REST API based objects where you have a Collection object that
handles the creation/searching/non-instance functions, and then an Entity object that handles
the particular instance usage.

Arguments

A collection object must take an appliance as its first argument. This is to ensure
that

	any objects created with the collection will have the correct context and

	that there is a consistent API for collection objects.

An entity object must take a collection as its first argument. This is to ensure that

	the entity can access an appliance through its collecion and

	that there is a consistent API for collection objects

Warning

Objects should never be instantiated directly. They should always come from a
collection.

Collection Methods

	__init__() - The collection object must take an appliance argument as its first argument
and assign this to the self.appliance attribute.

	instantiate() - The collection object should provide an instantiate() method which
will simply return an entity instance with the supplied arguments. It must pass self
as the first argument so that the user doesn’t have to.

	create() - The collection object should provider a create() method where appropriate.
This method will attempt to create the object on the appliance and must then call
self.instantiate and return the object.

Note

The __init__() method could in the future become part automatic in the BaseCollection class
but this is a future feature and is not yet planned.

Warning

Failure to comply with the above guidelines in the future may result in an Exception
being raised

Entity Methods

	__init__() - The entity object must take a collection argument as its first argument
and assign this to the self.collection attribute. It must then assign self.appliance to
be equal to self.collection.appliance

Note

The __init__() method could in the future become part automatic in the BaseEntity class
but this is a future feature and is not yet planned.

Warning

Failure to comply with the above guidelines in the future may result in an Exception
being raised

Example

Below is an example of a generic object using the collection and entity relationships

from cfme.utils.appliance import BaseCollection, BaseEntity

class ObjectCollection(BaseCollection):
 """An object collection"""

 def __init__(self, appliance):
 self.appliance = appliance

 def instantiate(self, name, label):
 return Object(self, name, label)

 def create(self, name, label):
 run_create(name, label)
 return self.instantiate(name, label)

class Object(BaseEntity):
 """An object entity"""

 def __init__(self, collection, name, label):
 self.collection = collection
 self.appliance = self.collection.appliance

 def update(self, *updates):
 some_update_mechanism(*updates)

An example of the models usage in testing is described below

from some.model import ObjectCollection

def test_something_good(appliance):
 """A test for something good"""

 oc = ObjectCollection(appliance)
 ob = oc.create('ObName', 'ObLabel')
 ob.update({'label': 'Edited'})

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Guides

Appliances in containers

This original testing suite was designed around appliances so testing of the docker container of
ManageIQ is naturally trying to mimic the original environment as much as possible in order to keep
the differences minimal. So for testing the container there are a couple of prerequisities:

	A VM with docker (Preferably Fedora, RHEL/Centos, ...)

	Docker image pulled into the VM

	A script called cfme-start which will ensure these things:
	Runs the docker container with CFME (with the right version)

	Maps ports 80, 443, 5432 directly to the VM’s ports so HTTP(S) and PostgreSQL are publicly
accessible

	Maps the /share folder in the VM as /share folder in the container.

The script must be accessible as a general command, so it should preferably live eg. in
/usr/local/bin/ and be chmod +x.

You then just templatize the VM and you can reuse it. There is a Sprout support coming.

Finally, you have to put container in the env.yaml so it looks something like this:

base_url: https://1.2.3.4/
container: cfme
whatever: else_is_required

The container key’s values is the name of the container deployed by cfme-start.

When you are done with all these steps, you are good to go with running the tests against it! And
do not forget that because of lack of the SSH daemon in the container, you are not able to use
the SCP directly like the utils.ssh.SSHTail does, but only through the wrapper methods
utils.ssh.SSHClient.put_file() and utils.ssh.SSHClient.get_file(). It would work,
but it would only get you to the host VM, not into the container. The aforementioned wrapper
methods work by copying the file through shared directory.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Guides

Style Guide

General Guidelines

Contributing

	Own your pull requests; you are their advocate.
	If a request goes unreviewed for two or three days, ping a reviewer to see
what’s holding things up.

	Follow up on open pull requests and respond to any comments or questions a
reviewer might have.

	Keep the contents of the pull request focused on one idea. Smaller pull
requests are easier to review, and thus will be merged in more quickly.

	After submitting a request, be ready to work closely with a reviewer to get it
tested and integrated into the overall test suite.

	Follow the Code Style guidelines to make your pull request as easy to review
as possible.

	If your request requires the use of private information that can’t be
represented in the data file templates (probably cfme_data.yaml), please
state that in the test module docstring or the individual test docstring,
along with information on where that data can be found.

	Similar to the last point, any data files used by a test module should be
clearly documented in that module’s docstring.

	Any data required in a sensitive data file should be reflected in the
template for that file.

	Standards may change over time, so copying older code with similar
functionality may not be the most productive action. If in doubt, refer back
to this document and update the copied code according to the current
guidelines.

	Please keep large lint changes separate from new features, though this point
should become less relevant over time.

	All pull requests should be squashed down to logical blocks of distinctive
functionality that work by themselves and do not result in brokenness of master
	As an example, if you were working on a test which required new pages,
utilities and tests, it would be OK to split the page, utility and test
changes into separate requests or commits, providing they were in the correct
order of dependency.

Reviewers

Reviewers will be looking to make sure that the Contributing guidelines are
being met. Some of the things that go into the review process:

	Assign the PR to the reviewer

	Pull request branches will be rebased against current master before testing.

	Newly added tests will be run against a clean appliance.

	Adherence to code style guidelines will be checked.

If tests fail, reviewers WILL:

	...give you a complete traceback of the error.

	...give you useful information about the appliance against which tests were run,
such as the appliance version.

	...give you insight into any related data files used.

If tests fail, reviewers WILL NOT:

	...thoroughly debug the failing test(s).

All requests require 2 approvals from two reviewers, after which time, the contributor
may, permissions allowing, merge the commit him/herself.

Reviewers must never approve their own pull requests.

Code Style

We adhere to Python’s PEP 8 style guide [http://www.python.org/dev/peps/pep-0008/]
, occasionally allowing exceptions for the sake of readability. This is covered in the
Foolish Consistency [http://www.python.org/dev/peps/pep-0008/#a-foolish-consistency-is-the-hobgoblin-of-little-minds] section of PEP 8. Information on using linting tools to
help with this can be found on the flake8 page.

We also do a few things that aren’t explicitly called out in PEP 8:

	The github pull request pane is our primary code review medium, and has a minimum
width of 100 characters. As a result, our maximum line length is 100 characters,
rather than 80.

	Use parentheses () for line continuation:

in imports
import (module1, module2, module3, module4,
 module5)

 or

import (
 module1, module2, module3,
 module4)

 or

import (
 module1,
 module2,
 module3
)

in long strings without multiple lines
very_long_string = (
 "Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt "
 "ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation "
 "ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in "
 "reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur "
 "sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id "
 "est laborum."
)

	Docstrings can be used in strings with multiple lines:

string_with_multiple_lines = """Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation"""

	When wrapping blocks of long lines, indent the trailing lines once, instead of
indenting to the opening bracket. This helps when there are large blocks of long
lines, to preserve some readability:

_really_really_long_locator_name = (True, ('div > tr > td > a[title="this '
 'is just a little too long"]'))
_another_really_super_long_locator_name = (True, ('div > tr > td > '
 'a[title="this is getting silly now"]'))

	When wrapping long conditionals, indent trailing lines twice, just like with
function names and any other block statement (they usually end with colons):

if (this_extremely_long_variable_name_takes_up_the_whole_line and
 you_need_to_wrap_your_conditional_to_the_next_line):
 # Two indents help clearly separate the wrapped conditional
 # from the following code.

	When indenting a wrapping sequence, one indent will do. Don’t try to align
all of the sequence items at an arbitrary column:

a_good_list = [
 'item1',
 'item2',
 'item3'
]

a_less_good_list = ['item1',
 'item2',
 'item3'
]

	According to PEP 8, triple-quoted docstrings use double quotes. To help
differentiate docstrings from normal multi-line strings, consider using
single-quotes in the latter case:

"""This is a docstring.

It follows PEP 8's docstring guidelines.

"""

paragraph = '''This is a triple-quoted string, with newlines captured.
PEP 8 and PEP 257 guidelines don't apply to this. Using single quotes here
makes it simple for a reviewer to know that docstring style doesn't apply
to this text block.'''

	On the subject of docstrings (as well as comments) +++use them+++. Python is
somewhat self-documenting, so use docstrings and comments as a way to
explain not just what code is doing, but why it’s doing what it is, and what
it’s intended to achieve.

We have decided to use the following docstring format and use the Cartouche [https://github.com/rob-smallshire/cartouche]
Sphinx plugin to generate nice docs. Details on the format can be found above,
but an example is described below:

def my_function(self, locator):
 """Runs the super cool function on a locator

 Seriously, you have to try this

 Note: You don't actually have to try it

 Args:
 locator: The name of a locator that can be described by using
 multiple lines.

 Returns:
 Nothing at all.

 Raises:
 CertainQuestionsError: Raises certain questions about the authors sanity.
 """

	In addition to being broken up into the three sections of standard library,
third-party, and the local application, imports should be sorted
alphabetically. ‘import’ lines within those sections still come before
‘from ... import’ lines:

import sys
from os import environ
from random import choice

	We require print statements be written in Python 3.0 compatible format, that is
encased in parentheses:

print("Hello")

	We also use the newer .format style for string formatting and will no longer be accepting
the older %s format. The new format offers many more enhancements:

a = "new"
b = 2

"a {} string for {}".format(a, b)

"{name} is {emotion}".format(name="john", emotion="happy")

"{0} and another {0}".format("something")

	There is a one exception for string formatting. According
https://docs.python.org/3/howto/logging.html#optimization use old style %s,
but without the actual % formatting operation:

from cfme.utils.log import logger

logger.info("Some message %s", some_string)

General Notes

	Avoid using time.sleep() [http://docs.python.org/2.7/library/time.html#time.sleep] as much as possible to workaround quirks in the UI.
There is a cfme.utils.wait.wait_for() utility that can be used to wait for
arbitrary conditions. In most cases there is some DOM visible change on the page
which can be waited for.

	Avoid using time.sleep() [http://docs.python.org/2.7/library/time.html#time.sleep] for waiting for changes to happen outside of the UI.
Consider using tools like mgmt_system to probe the external systems for
conditions for example and tie it in with a cfme.utils.wait.wait_for() as discussed above.

	If you feel icky about something you’ve written but don’t know how to make
it better, ask someone. It’s better to have it fixed before submitting it as
a pull request ;)

	Use six library to write Python 3 compatible code.

Other useful code style guidelines:

	PEP 20 - The Zen of Python [http://www.python.org/dev/peps/pep-0020]

	PEP 257 - Docstring Conventions [http://www.python.org/dev/peps/pep-0257]

cfme_tests

For page development, please refer to Page Development.

Layout

cfme_tests/

	cfme/ Page modeling and tests

	web_ui/ The new web framework

	fixtures/ The new fixtures

	tests/ Tests container

	utils/ Utility functions that can be called inside our outside the
test context. Generally, util functions benefit from having a related test
fixture that exposes the utility to the tests. Modules in this directory
will be auto loaded.

	tests/ Unit tests for utils

	conf/ Place for configuration files

	data/ Test data. The structure of this directory should match the
structure under cfme/tests/, with data files for tests in the same relative
location as the test itself.

	For example, data files for cfme/tests/dashboard/test_widgets.py could go into
data/dashboard/test_widgets/.

	fixtures/ py.test fixtures that can be used by any test. Modules in
this directory will be auto loaded.

	markers/ py.test markers that can be used by any test. Modules in this
directory will be auto loaded.

	cfme/metaplugins/ Plugins loaded by @pytest.mark.meta. Further informations in
markers.meta

	scripts/ Useful scripts for QE developers that aren’t used during
a test run

	sprout/ Here lives the Sprout appliance tool.

Writing Tests

Tests in cfme_tests have the following properties:

	They pass on a freshly deployed appliance with no configuration beyond the
defaults (i.e. tests do their own setup and teardown).

	Where possible, they strive to be idempotent to facilitate repeated testing
and debugging of failing tests. (Repeatable is Reportable)

	Where possible, they try to clean up behind themselves. This not only helps
with idempotency, but testing all of the
CRUD [http://en.wikipedia.org/wiki/CRUD] interactions helps to make a
thorough test.

	Tests should be thoroughly distrustful of the appliance, and measure an
action’s success in as many ways as possible. A practical example:
	Do not trust flash messages, as they sometimes tell lies (or at least
appear to). If you can go beyond a flash message to verify a test
action, do so.

Some points when writing tests:

	When naming a test, do not use a common part of multiple test names as a test
name itself. In the example below, trying to run a single test called
test_provider_add, not only runs that test, but also test_provider_add_new
and test_provider_add_delete, as pytest uses string matching for test names.
test_provider_add should have a suffix making it unique. In this way a tester
can choose the run just the single test on its own, or the group of tests, whose
names all begin the same way.
	test_provider_add - Adds a provider (Bad naming)

	test_provider_add_new - Adds a new provider type

	test_provider_add_delete - Adds a provider and then deletes it

	Where a clean-up is required, it should be carried out in a Finalizer. In this
way we prevent leaving an appliance dirty if the test fails as the clean up will
happen regardless.

	Keep all properties, fixtures and functions together

Fixtures

Fixtures are not only responsible for setting up tests, but also cleaning up
after a test run, whether that test run succeeded or failed.
addfinalizer [http://pytest.org/latest/funcargs.html#_pytest.python.FuncargRequest.addfinalizer] is very powerful. finalizer functions
are called even if tests fail.

When writing fixtures, consider how useful they might be for the overall
project, and place them accordingly. Putting fixtures into a test module
is rarely the best solution. Instead, try to put them in the nearest
conftest.py. If they’re generic/useful enough consider putting them into
one of the fixtures/ directory for use in cfme_tests or the plugin/
directory for use in both projects.

This Document

This page is subject to change as our needs and policies evolve. Suggestions
are always welcome.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Guides

Documenting cfme_tests

Overview

In addition to PEP 257 [http://www.python.org/dev/peps/pep-0257/], inline documentation of the cfme_tests code adheres to the
Google Python Style Guide [http://google-styleguide.googlecode.com/svn/trunk/pyguide.html#Comments]. The Google-recommended docstring format is very easy to both
read and write, and thanks to the cartouche [http://cartouche.readthedocs.org/] library, it’s parseable by sphinx [http://sphinx-doc.org/], which
we use to generate our documentation.

The documentation is built and hosted by the excellent readthedocs [https://readthedocs.org/] service, but
should be built locally before making a pull request.

docstrings

The napoleon library parses our docstrings and turns them into nicely rendered API docs
in the sphinx output. As such, we should follow napoleon’s usage guidelines when writing
docstrings:

https://pypi.python.org/pypi/sphinxcontrib-napoleon

According to PEP 257, docstrings should use triple double-quotes, not triple single-quotes
(“”” vs. ‘’‘).

Example:

"""This is a docstring."""

'''This is not a docstring.'''

Documenting Tests

Tests are documented slightly differently to modules, in that they require certain extra
information that isn’t required for a module/class/function. If a test uses the testgen library
it must also specify a test_flag in the metadata section. An example of this is shown below.

"""Tests provisioning via PXE

Metadata:
 test_flag: pxe, provision
"""

These flags are also defined in the cfme_data.yaml file, under the test_flags: key. A
provider in the cfme_data.yaml can opt out of collection for a particular test_flag by
including the flag in the list of excluded_test_flags: key in the providers stanza.
All of the flags listings are listed in comma separated format. This was chosen to cut down on
syntax characters and all values are whitespace stripped.

	For a test to be collected for a provider:

	
	the test_flag must be listed in the cfme_data.yaml file test_flags: key

	the test_flag must be listed in the metadata section of the test’s docstring

	the test_flag must NOT appear in the list of excluded_test_flags: for a particular
provider

It is beneficial that the documented test also has its description in it in Google-style format.
When the automated tests get imported in our test case management system, the comment is imported
as a description, so you don’t have to write it twice!

"""Tests provisioning via PXE

This test verifies that foo causes bar to crash.

Prerequisities:
 * bar is set up
 * baz

Steps:
 1) Ook.
 2) Ook?
 3) Ook!

Metadata:
 test_flag: pxe, provision
"""

Linking new modules

As new modules are created, they’ll need to be added to the documentation tree. This starts in the
toctree directive in docs/index.rst. Each entry in that tree references other .rst files
in the docs/ directory, which can in turn reference documentation sources in their own toctree
directives (ad infinitum).

Once the rst file has been inserted into the toctree (assuming one had to be created), sphinx
needs to be told to generate documentation from the new code. We use sphinx’s autodoc feature
to do this, and it looks like this:

.. automodule:: packagename.modulename

The paramater passed to the automodule should be the importable name of the module to be
documented, cfme.login for example.

There is no hard and fast rule for where things should go in the toctree, but do try to keep the
docs well-organized.

Building the Docs

Prior to pushing up new code, preview any new documentation by building to docs locally.
You can do this using the sphinx-build command. From the cfme_tests directory:

sphinx-build -b html docs/ docs/build/

This will build html documentation based on the sources in the docs/ directory, and put them
in the docs/build/ directory, which can then be opened in a browser:

google-chrome docs/build/index.html
or...
firefox docs/build/index.html

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Guides

Setting up editors

Sublime

The “supported” editor of choice for working on this project is
Sublime Text 2 [http://www.sublimetext.com] (sublime), though these instructions will likely
also work for Sublime Text 3. Of course you’re free to use whichever
editor helps you be the most productive, but the preponderance of Sublime users on the team
make it the most useful target for our development environment setup documentation.

Getting Started

Get sublime

To begin, sublime must be installed. It is distributed via a tarball from the
sublime download page [http://www.sublimetext.com/2]. This tarball can be extracted anywhere.
A likely place is in your home folder. Once extracted, run the sublime_text executable in the
new directory to start the editor.

Configure sublime for Python

By default, sublime will attempt to autodetect indentation. When this autodetection fails,
it will fall back to using 4-space tab stops, but using tabs instead of spaces. To easily
address this, open any .py in the editor, and then select Preferences > Settings - More >
Syntax Specific - User from the menu. This should open up Python.sublime-settings.
In this file, enter the following options and save:

{
 "detect_indentation": false,
 "rulers": [100],
 "tab_size": 4,
 "translate_tabs_to_spaces": true,
 "use_tab_stops": true
}

This will force python files to match our code style guidelines, which use spaces instead of
tabs with an indentation of 4 spaces.

The rulers option will also draw a vertical line at 100 characters as a visual aid to keep
lines from getting too long. Additional integer values can be added to the rulers list; it
might be useful to also have a rule at 80 columns as a “soft limit”, for example.

Package Control

Once sublime is up and running, we’ll need to install some package management, which we’ll be
using hereafter to bring in sublime extensions. Follow the installation instructions
here [https://sublime.wbond.net/installation#st2]. Be sure to follow the instructions for
Sublime Text 2, unless you’re beta testing Sublime Text 3.

Note

When installing packages, it is sometimes necessary to restart sublime for the
installed packages to initialize. For simplicity, it is probably easiest to restart sublime
after installing any package. Restarting sublime after changing configuration files should
not be necessary.

SublimeCodeIntel

Install the SublimeCodeIntel package. Select Preferences > Package Control from the program
menu, then choose “Install Package”. Enter “SublimeCodeIntel”. Once installed, SublimeCodeIntel
will provide autocompletion for imports and function/method calls.

SublimeCodeIntel will autodetect python names from project directories (visible in the sidebar)
for autocompletion, but it won’t detect builtins or installed libraries. To enable this,
SublimeCodeIntel needs to be given a hint. It looks for config files in .codeintel directories
inside of project directories, so we’ll be putting the hint there. The cfme_tests directory
is the perfect place for the .codeintel directory, so ensure that the cfme_tests directory
has been added to your current project. If not, Project > Add Folder to Project..., and select
your cfme_tests directory.

Using your tool of choice (for example, a shell or sublime itself), make the .codeintel directory
under cfme_tests. Inside that directory, create and edit the file
config (cfme_tests/.codeintel/config). Like most sublime configuration files, the content of
this file is a python dictionary. It looks very similar to JSON, which is used in most
sublime configuration files, so be mindful of the different syntax.

Insert the following:

{
 "Python":
 {
 "codeintel_scan_files_in_project": True,
 "python": "/path/to/virtualenv/bin/python",
 "pythonExtraPaths":
 [
 "/path/to/virtualenv/lib/python2.7/site-packages"
]
 }
}

Remember to change the /path/to/virtualenv strings to be the actual path to your virtualenv.
python should point to the virtualenv’s python interpreter.

Relative paths can be used here, and will be relative to the project folder (in this case,
cfme_tests), not the location of this config file. So, if cfme_tests is in the same
directory as the virtualenv’s bin and lib directory, The paths for python and
pythonExtraPaths could start with ../bin and ../lib, respectively.

Flake8 Lint

Using Package Control, install the “Python Flake8 Lint” package. To apply our specific style
exceptions to this package, edit the configuration. Via the menu, choose Preferences >
Package Settings > Python Flake8 Lint > Settings - User. In the settings file that opens,
enter our exceptions:

{
 "pep8_max_line_length": 100,
 "ignore": ["E128"]
}

Flake8 lint will pop up every time you save a file, and does an excellent job of keeping you
linted while you code.

Trailing Spaces

Using Package Control, install the “Trailing Spaces” plugin. This highlights trailing spaces
so you can clean them up before flake8 sees them.

Sublime Text 3

Sublime Text 3 is currently in beta, but it is perfectly usable for python development. I will show
you my setup here (mfalesni). Prerequisities are the same as for ST2 (Package Control).

Recommended Extensions and Settings

SublimePythonIDE

It is a rewrite of SublimeRope for ST3. It is both Python Autocompletion and PEP8 checker.
Install it from package manager the same way is described in chapter about ST2.

After installation, go to Preferences -> Package Settings -> SublimePythonIDE -> User and insert
this code:

{
 "open_pydoc_in_view": true,
 "create_view_in_same_group": false,

 "python_linting": true,
 "python_linter_mark_style": "outline",
 "python_linter_gutter_marks": true,
 "python_linter_gutter_marks_theme": "alpha",
 "pep8": true,
 "pep8_ignore": ["E128"],
 "pep8_max_line_length": 100,
 "pyflakes_ignore": []
}

For the project file (Project -> Edit Project), use this code:

{
 "folders":
 [
 {
 "follow_symlinks": true,
 "path": "/home/mfalesni/sublime-workspace/cfme_tests",
 },

 {
 "follow_symlinks": true,
 "path": "/home/mfalesni/sublime-workspace/whatever_else_directory_you_need",
 },
],

 "settings":
 {
 "python_interpreter": "/home/mfalesni/sublime-workspace/.cfme_tests_ve/bin/python",
 "tab_size": 4,
 },
}

Of course, replace the paths according to your setup. python_interpreter is the path for your
virtualenv python.

From now, Sublime will know about all modules that are in virtualenv/cfme_tests namespace.

When you right-click a symbol, you can view a documentation, or jump to the symbol definition.

GitGutter

Very good plugin, showing you lines that are added/modified/removed in your git repository in form
of marks on left side of the editor window. (first suggested by jkrocil)

BracketHighlighter

Simple plugin that shows you location of brackets, parenthesis and others that you are in on left
side of editor window.

Neon color scheme

You might find default colour theme a bit humdrum. I use Neon color scheme, which uses more colours
and the colouring depends on the context so one has better view on the situation.

To install, simply install Neon Color Scheme package. Then open Preferences -> Settings - User
and add this entry "color_scheme": "Packages/Neon Color Scheme/Neon.tmTheme" to the conf dict.

Python Improved

Together with Neon, this package makes python source code better readable. Install with package
manager C-P -> Install Package -> Python Improved. Then after installation, open whatever
python source file you like, click View -> Syntax -> Open all with current extension as ... and
select PythonImproved.

emacs

So far the best emacs setup I’ve (jweiss) found is iPython notebook, combined with the ein [http://tkf.github.io/emacs-ipython-notebook/] emacs package (emacs iPython notebook).

Installing iPython and its Emacs client

iPython

See the install docs [http://ipython.org/install.html].

ein

Emacs iPython Notebook [http://tkf.github.io/emacs-ipython-notebook/] is the emacs client for
iPython.

The official ein package does not work with the latest ipython. I built a package from the fork [https://github.com/millejoh/emacs-ipython-notebook] of ein that does work. You can get the
package from the internal repository listed below. You should also add the Melpa [http://melpa.milkbox.net/#/] repository.

(add-to-list 'package-archives
 '("melpa" . "http://melpa.milkbox.net/packages/") t)
(add-to-list 'package-archives
 '("jweiss" . "http://qeblade5.rhq.lab.eng.bos/isos/emacs-package-archive/") t)

You can then run M-x package-install, ein in emacs to install ein.

Then in a shell somewhere, you can start up iPython notebook process. This is the python process
that will intepret all the code you will be sending it.

$ source ~/my-virtual-env/bin/activate
$ cd ~/my-project
$ ipython notebook

Then in emacs, run M-x ein:notebooklist-open. It will prompt you for a port (default 8888).
This will bring up the EIN environment, where you can evaluate python snippets (and edit them and
evaluate them again). You can also save the notebook to use your snippets again later. The outputs
are also saved.

Starting iPython from within Emacs

I wrote a little bit of elisp to start a iPython notebook process for you from within emacs. It’s
easier than having to type shell commands every time. It requires the magit package, which I
highly recommend (it is a git client for emacs).

(autoload 'magit-get-top-dir "magit" nil t)

(defun magit-project-dir ()
 (magit-get-top-dir (file-name-directory (or (buffer-file-name) default-directory))))

(defun start-ipython-current-project (virtualenv-dir)
 (interactive
 (let ((d (read-directory-name "VirtualEnv dir: " "~/.virtualenvs/" nil t)))
 (list d)))
 (save-excursion
 (let ((buf (get-buffer-create
 (generate-new-buffer-name (file-name-nondirectory
 (directory-file-name (file-name-directory (magit-project-dir))))))))
 (shell buf)
 (process-send-string buf (format ". %s/bin/activate\n" virtualenv-dir))
 (process-send-string buf (format "cd %s;ipython notebook\n" (magit-project-dir))))))

To use the above snippet,

	Go to any buffer that’s visiting any file in your project (or any buffer whose pwd is in your project)

	M-x start-ipython-current-project

	At the prompt, input the directory where your virtualenv lives

It will start ipython in emacs’ shell buffer.

Autosave Notebooks

Unlike the iPython web interface, ein does not autosave notebooks by default. Here is a snippet
that will enable autosave (notebooks are saved every time you execute a cell)

;; ein save worksheet after running cell
(eval-after-load 'ein-multilang
 '(defadvice ein:cell-execute (after ein:save-worksheet-after-execute activate)
 (ein:notebook-save-notebook-command)))

Flake8 Lint

Flycheck is recommended because it highlights the column where the problem occurs instead of just the line.

Run M-x package-install, flycheck, and see the Flycheck homepage [https://github.com/flycheck/flycheck].

You can use the global mode as described on the homepage, or to just enable flymake for python files

(autoload 'flycheck "flycheck-mode")
(eval-after-load 'python
 '(add-hook 'python-mode-hook 'flycheck-mode))

Recommended

	Magit:	Emacs client for git and a huge time saver. All git commands are a single keypress, pretty views
of diffs, branches, remotes, etc. Package is magit.

	Ido and Smex:	ido package (now built into emacs) for filename and buffer name completion, smex for
M-x command completion.

	Smartparens:	Inserts parens, brackets, quotes, etc in pairs. Keeps parens balanced, allows you to edit
paren-delimited structures logically instead of as plain text (designed for lisp but also works
on html, xml, json, etc). Replaces paredit, an older and more well-known tool that does the same
thing. Package smartparens.

	Autocomplete:	Code completion for emacs. Package is called autocomplete, see ein docs for how to enable in
python buffers.

	Undo Tree:	Edit with confidence! Keeps track of all your buffer changes, even stuff you undid and re-did on
top of. Package is called undo-tree.

	yagist:	Create a github gist (paste) from a region or buffer with a single keypress, and the link to the
gist is automatically inserted into the clipboard so you can easily paste it into IRC.

	Multiple cursors:

		Extremely powerful editing tool, best described with this
video. [http://emacsrocks.com/e13.html] Package is multiple-cursors.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Guides

Gotchas

Selenium has a few quirks which have caused us immense amounts of debugging time. If you
are facing strange issues with Selenium that you can’t explain and this usually boils down
to “Selenium is lying to me”, please check this page first before spending vast amounts of
time debugging .

Selenium is not clicking on the element it says it is

Sometimes, under certain circumstances, Selenium doesn’t click on the element you tell it to.
The symptoms of this include having a WebElement that gives a certain value when queried with
.text() and then Selenium actually clicking on the wrong element. This has been observed
happening when there is a frame or some other element where horizontal scrolling has been
introduced. A typical example would be in the left hand tree items in the System Image Type
under the Infrastructure > PXE menu. If one system image name is 256 characters, this causes
the problem to manifest.

Selenium is not sending the keys I tell it to, or is filling the box with junk

This should not be happening now since framework is configured to be more intelligent than Selenium
and it detects whether the element filled is a file input or not. Because Selenium can be running
remotely, if you want to upload a file, Selenium first needs to upload the file to the remote
executor and then it changes the string accordingly. This happens in default Selenium configuration,
as the selenium.webdriver.remote.file_detector.LocalFileDetector is used by default for
all keyboard input. Framework now sets it up so the
selenium.webdriver.remote.file_detector.UselessFileDetector is used by default and if
the element filled is an input with type file, then the file detector is actually used.

When getting the text of the element, Selenium returns an empty string

Stop using the .text property of the WebElement and use
cfme.fixtures.pytest_selenium.text(), which solves this issue. The thing is, when an
element is eg. obscured, Selenium can’t read it. So the text function first tries to scroll the
page so the element is visible, and if that does not help, it uses a bit of JavaScript to pull the
text out.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Guides

flake8

There are many handy tools that can be used to check your code against established python style. A
tool called flake8 exists to combine these tools into one easy-to-use package. flake8 is used
by reviewers on pull requests for style compliance, so it’s a good idea to run flake8 before
submitting code for review.

Note

All new content in pull requests is expected to pass flake8 linting.

Manual Invocation

To use flake8 in our project, first install it: pip install flake8 or easy_install flake8.

Some flags are required to deal with our specific alterations to python style:

	We allow lines up to 100 characters in length; add --max-line-length=100

	We indent block statement line continuations twice, even in function defs; add --ignore=E128

Then, aim it at the python file (or files) being edited:

flake8 --max-line-length=100 --ignore=E128 path/to/python_module.py
flake8 --max-line-length=100 --ignore=E128 path/to/python/package/`

These settings can be stored as defaults in a config file. By default, flake8 looks in
~/.config/flake8. Here is an example file that adheres to our style guidelines:

[flake8]
ignore = E128
max-line-length = 100

IDE Integration

Sublime Text 2 & 3

The excellent Flake8 Lint [https://sublime.wbond.net/packages/Python%20Flake8%20Lint] for the
sublime text editor will do automatic linting using the flake8 tool.
To configure it to follow our guidelines, Add the following options to your
Flake8Lint.sublime-settings file:

"pep8_max_line_length": 100
"ignore": ["E128"]

Emacs

See flymake-python-pyflakes.el [https://github.com/purcell/flymake-python-pyflakes].

If you have Melpa or Marmalade package repos already set up, you can install the package by
M-x package-install, flymake-python-pyflakes.

To activate on all Python files, add this to your emacs configuration:

(autoload 'flymake-python-pyflakes-load "flymake-python-pyflakes" nil t)
(eval-after-load 'python
 '(add-hook 'python-mode-hook 'flymake-python-pyflakes-load))

To use flake8 and our particular rules:

	M-x customize-group, flymake-python-pyflakes

	Set Flymake Python Pyflakes Executable to flake8

	Add to Flymake Python Pyflakes Extra Arguments:
* --max-line-length=100
* --ignore=E128

Others

If your IDE isn’t listed here, feel free to add instructions above!

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Guides

Page Development

Introduction

This file is intended to explain how pages should be developed and specify what functionality
should exist in them. Refering to the image below, a page model should contain the following:

	Locators to elements which appear only on that page or set of pages related to the object in
question.

	Menu items to graft onto the main menu for use inside the pages and operations.

	Classes that are related to objects in the database which are acted upon with CRUD operations
on that page or set of pages.

	Methods which are used to CRUD operations, with an aim that any of these can use a different
backend where possible.

Anything else should be added as part of a web_ui component, a fixture or a utility.

[image: ../_images/framework.png]
Pages are read-only python modeling of the CFME UI, allowing the functional tests of the UI to
be ignorant of the underlying page structure. As such, UI elements (pages, regions, forms, etc.)
modeled in cfme_pages must provide helper methods and properties to expose a usable
interface to cfme_tests. This is explained in more detail in the section on
Writing Tests in Style Guide.

Pages should be modeled as a part of writing tests. Code in cfme_pages must never depend on
code in cfme_tests.

When writing pages, a few points should be noted:

	Follow the standard naming convention for locators
	Name of element, followed by type from the type list

	Type list: button, select, text, textbox, radio, option

	Ensure that your element is presented in an expected way. As an example,
presenting a div containing and unordered list in one place and simply
the unordered list in another, causes an unpredictable inconsistency as
to how to handle the locator.

	Try to avoid using localized text as part of a locator where possible

Example

Since the majority of development happens in tests and page models, we will deconstruct a page
to see how it is composedW.e will now look at a specific example using the cloud/provider.py
file. Note that there may be subtle differences between the file and this documentation as the
content evolves. It is expected that this document will be updated with any significant changes.

Imports

To begin with we have the imports, we have added comments after each to specify their use:

from functools import partial # Standard library
from selenium.webdriver.common.by import By # Convenience functions for locators, ID etc.
import cfme # Core cfme module
import cfme.web_ui.menu # Standard menu for grafting additional menus onto
from cfme.web_ui import Region, Quadicon, Form # Loads the Region, Quadicon and Form UI elements
import cfme.web_ui.flash as flash # Flash message handler
import cfme.fixtures.pytest_selenium as sel # The selenium zero-level functions
from cfme.utils import conf # Loads all configuration from the yamls
from cfme.utils.update import Updateable # Updatable class to give update capabilities
import cfme.web_ui.toolbar as tb # Toolbar UI element for clicking Center Toolbar

Locators

Now that we have the tools we need to begin crafting a page, we can start to define the locators.
Locators are used to point to elements on a page. They can reference any html element and will
typically be used:

	to pull out text for comparision, e.g. making sure a flash message matches what is expected.

	to send text to, e.g. for inputting data into forms.

	to click, e.g. a button.

Below is an excerpt from the set of locators on the page:

page = Region(
 locators={
 'add_submit': "//img[@alt='Add this Cloud Provider']",
 'creds_validate_btn': "//div[@id='default_validate_buttons_on']"
 "/ul[@id='form_buttons']/li/a/img",
 'creds_verify_disabled_btn': "//div[@id='default_validate_buttons_off']"
 "/ul[@id='form_buttons']/li/a/img",
 'cancel_button': "//img[@title='Cancel']",
 'save_button': "//img[@title='Save Changes']",
 },
 title='CloudForms Management Engine: Cloud Providers')

Locators are usually supplied as a Python dict. The key is a name which should conform to the
Abbreviations and Naming Conventions guidelines. The value is one of three:

	an XPATH string, as depicted above

	a tuple, containing a CSS selector, e.g. (By.CSS_SELECTOR, "div.dhtmlxInfoBarLabel-2 > ul")

	a tuple, containing an ID selector, e.g. (By.ID, "text_button")

These elements can then be used to perform actions as shown later in the file by:

if cancel:
 sel.click(page.cancel_button)

Forms

A recent edition to the codebase has been the introduction of Forms using the
cfme.web_ui.Form web_ui component. Forms allow the defining of a set of locators
which correspond to fields. Data can then be sent to the form object to fill in the fields
automatically, without worrying about field type. We begin by defining a Form:

form = Form(
 fields=[
 ('type_select', "//*[@id='server_emstype']"),
 ('name_text', "//*[@id='name']"),
 ('hostname_text', "//*[@id='hostname']"),
 ('ipaddress_text', "//*[@id='ipaddress']"),
 ('amazon_region_select', "//*[@id='hostname']"),
 ('api_port', "//*[@id='port']"),
])

Notice that a Form is very similar to a Region. In fact, a Form inherits a Region so as above
when we clicked on the cancel button by referencing it as an attribute of the page object. We
can do the same here. sel.set_text(form.api_port, "6000"), for example, would set the text
of the locator described by key value api_port to 6000.

The details to fill in the form are loaded into a variable inside the management object
called OpenStackDetails in this case:

def __init__(self, hostname=None, ip_address=None, api_port=None):
 self.details = {'hostname_text': hostname,
 'ipaddress_text': ip_address,
 'api_port': api_port,
 'type_select': 'OpenStack'}

These details are then passed to the Forms fill_fields function:

details.details.update({'name_text': self.name})
form.fill_fields(details.details)

Notice that there has been an amendment to the details dictionary when it has been passed into
the _fill_details function, and a new key/value called name_text has been added.

The cfme.web_ui.Form.fill_fields() Form method then takes these values, does an inspection
of the element types to find out how to handle them (you couldn’t set text on a select box for
example), and then sets the values in the most appropriate way.

Toolbar

A Toolbar button can be accessed by simple using it in the following way:

tb.select('Configuration', 'Add a New Cloud Provider')

but in cases where we may have several Configuration buttons, we can make things a little
simpler to type by making use of partial. Which takes a function and some arguments to create
a shortened form of the function call. In the example below, we define this:

cfg_btn = partial(tb.select, 'Configuration')

We can now use the toolbars by doing something like the following:

cfg_btn('Add a New Cloud Provider')

Navigation Menu

In our provider page we are going to hook in the toolbar button presses to the navigation tree.
This means we are able to do something the code below and have the page execute the toolbar button
clicks to navigate to the page in question. We could simply use the
cfme.web_ui.toolbar.select() function, but to make it clearer that we expect to navigate
away from the current page, using the navigate_to function is better:

navigate_to(Provider, 'New')

We need to add a few buttons to the center menu to handle “Add a New Cloud Provider”, “Discover
Cloud Providers” and a special case.

The navigation is tree-esque but you cannot determine all tree
nodes and destinations like before. This is because navmazing as a library is far more dynamic
and allows for very powerful navigation. So to add new navigation points onto the tree, we need to
give them a prerequisite step. This can be something to actually perform, or it can be achieved by
linking it to a previous navigation.:

@navigator.register(CloudProvider, 'Add')
class New(CFMENavigateStep):
 prerequisite = NavigateToSibling('All')

 def step(self):
 cfg_btn('Add a New Cloud Provider')

@navigator.register(CloudProvider, 'Discover')
class Discover(CFMENavigateStep):
 prerequisite = NavigateToSibling('All')

 def step(self):
 cfg_btn('Discover Cloud Providers')

@navigator.register(CloudProvider, 'Details')
class Details(CFMENavigateStep):
 prerequisite = NavigateToSibling('All')

 def step(self):
 sel.click(Quadicon(self.obj.name, self.obj.quad_name))

@navigator.register(CloudProvider, 'Edit')
class Edit(CFMENavigateStep):
 prerequisite = NavigateToSibling('All')

 def step(self):
 sel.check(Quadicon(self.obj.name, self.obj.quad_name).checkbox())
 cfg_btn('Edit Selected Cloud Provider')

As you can see all these steps rely on the All step, which already exists. Simliar to the old method
these new steps are grafted on to the navigation tree in a way, but the prerequisite step has no
knowledge of the subsequent steps. This is because prerequisite can be dynamic in nature. The product
may be of a certain version/state which requires either the prerequisite or the step to be performed
in a different way.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Guides

Development Tips and Tricks

Introduction

This document is intended to explain some of the extra bits of the framework that are there to
make your life easier. Not everything is included here and we encourage people to add new tricks
as they are developed and rediscovered.

Version Picking

Dealing with multiple releases, it’s obvious that some things change from version to version. A lot
of the time, these changes are simple, such as a string change. So that we can continue using the same
codebase for any version, we define the idea of version picking. Version picking essentially returns
an object depending on the version of an appliance. It’s particularly useful for things like locator
changes because most of the element handling routines are version picking away. This means if they
receive a dict as an argument, they will automatically try to resolve it using the version picking tool.
To use version picking is easy:

from cfme.utils import version

version.pick({'5.4': "Houses",
 '5.3': "House",
 version.LOWEST: "Boat"})

In this example, if the version is below 5.3, the Boat will be returned. Anything between 5.3 and 5.4
will return House and anything over 5.4 will return Houses. There is also a version.LATEST
which points to upstream appliances. Another important point to remember is that one shouldn’t verspick at import time. The best practise is to use it inside locators without using verpick excpliticly. The syntax is pretty simple:

locators={
 'properties_form': {
 version.LOWEST: Input('House'),
 '5.6': Input('Houses'),
 }
 }

Defining blockers

Sometimes we know a test fails due to a bug in the codebase. In order to make sure the test isn’t run
and attributing an extra fail that doesn’t need to be investigated, we mark it with a meta marker.
The meta marker is incredibly useful and integrates with our Bugzilla implementation to ensure that
if a bug is still on DEV, or hasn’t even been assigned yet, that the test won’t run. The syntax is
really easy:

@pytest.mark.meta(blockers=[12345, 12346])
def test_my_feature():
 # Test the new feature
 pass

Note the two bug numbers 12345 and 12346. More information can be found in the fixtures.blockers
fixture.

Using blockers in tests

On the odd occasion, you don’t want to disable an entire test, but just a part of it, until a bug
is fixed. To do this, we can specify a bug object and ask the framework to skip if a certain bug
exists and is not closed. The syntax is pretty simple:

def my_test(provider, bug):
 ui_bug = bug(12234)
 if not ui_bug:
 # Do something unless the bug is still present in which case, it will be skipped

Uncollecting tests

There are times when conditions dictate that we don’t need to run a test if a certain condition
is true. Imagine you don’t want to run a test if the appliance version is below a certain value.
In these instances, you can use uncollectif which is a pytest marker:

@pytest.mark.uncollectif(lambda: version.current_version() < '5.3')
def test_my_feature():
 # Test the new feature
 pass

Now if the version of the appliance is less than 5.3. Then the test will not be skipped, it will
never even try to be run. This is ONLY to be used when a certain test is not valid for a certain
reason. it is NOT to be used if there is a bug in the code. See the Defining blockers section above for
skipping because of a bug.

Running commands on another appliance

We implement a small appliance stack in the framework. When a test first starts it loads up the
base_url appliance as the first appliance in the stack. From then on, all the browsing operations,
database operations and ssh commands are run on the top appliance in the stack. From time to time
it becomes necessary to run commands on another appliance. Let’s say you were trying to get two
appliances to talk to each other, in this case, you would use the context manager for appliances.

By default, even if you add a new appliance onto the stack, the browser operations will keep
happening on the last appliance that was used, however, there is a simple way to steal the browsers
focus, and this is detailed in the example below:

appl1.ipapp.browser_steal = True
with appl1.ipapp:
 provider_crud.create()

In the example we have already created a new utils.appliance.Appliance object and
called it appl1. Then we have set it to steal the browser focus. After this, we enter the
context manager appl1.ipapp and are able to run operations like provider creates.

This is also why you should use ssh_client and db access from the store.current_appliance
and not from the modules directly. If someone else uses your code and is inside an appliance
context manager, the commands could be run against the wrong appliance.

Logging in as another user

In a similar way to the Running commands on another appliance section above, we implement a context manager for user
operations. This allows the test developer to execute a section of code as a different user and then
return to the original user once complete.

A major advantage of this, is that the User object used for the CM operations is the same as the
cfme.configure.access_control object. This means that you can create a new user using the
cfme.configure.access_control.User object and straight after use it as the context manager
object:

cred = Credential(principal='uid', secret='redhat')
user = User(name='user' + fauxfactory.gen_alphanumeric(),
 credential=cred)
with user:
 navigate_to(current_appliance.server, 'Dashboard')

The User object stores the previous User object in a cache inside itself and on exiting the
context, returns this to the pytest store as the current user so that future operations are
performed with the original user.

Invalidating cached data

In order to speed things up, we cache certain items of data, such as the appliances version and
configuration details. When these get changed, the cache becomes invalid and we must invalidate
the cache somehow. It used to be handled with the utils.signals module which is now gone. You
need to call an appropriate method on the appliance object like
utils.appliance.IPAppliance.server_details_changed() which invalidates the data.

pytest store

The pytest store provides access to common pytest data structures and instances that may not be readily available elsewhere. It can be found in fixtures.pytest_store, and during a test run is exposed on the pytest module in the store namespace as pytest.store.

Test generation (testgen)

We try to consolidate common test generation functions in the utils.testgen module. When parametrizing tests with the pytest_generate_tests hook, check the testgen module to see if there are functions available that already parametrize on the axis you want (usually by provider, but there are some other helpers in there).

Working with file paths

For any path in the project root, there are several helper functions that can be used. Look at the utils.path module for the complete list of pre-configured directories and available functions.

Expecting Errors

When working with the UI, we can actually run a process and expect to have a certain flash error message. This is built into a context manager so that all you need to do is supply the operation you want to try, and the emssage you expect to get. This means as a test developer, you don’t need to worrk about how to get the flash message, or how to handle the resulting error from the operation failing:

provider.credentials['default'] = get_credentials_from_config('bad_credentials')
with error.expected('Login failed due to a bad username or password.'):
 provider.create(validate_credentials=True)

Appliance object SSH gremlins

If you get seemingly random SSH errors coming from utils.appliance, you might be facing the problem that some of the methods inside of the class does some version picking, or database connection outside of the object scope or whatever that is supposed to touch the target appliance but does not go through the object that you are in, but the utils.appliance.IPAppliance object itself is not pushed to the appliance stack in fixtures.pytest_store. So instead of using the IP address of the appliance the object is pointed to, it uses whatever was set before, either the base_url one or something that was pushed before. The solution is to wrap that in a with block, like this (presuming we call this code inside utils.appliance.Appliance):

with self.ipapp as ipapp:
 ipapp.wait_for_ssh()

 self._i_do_verpicking("and fail randomly when not in with block")

 success("!")

Until we come with a better solution, this will bite us from time to time when we forget about it.

Marking your tests with associated product requirements

Test requirements mapping

This module contains predefined pytest markers for CFME product requirements.

Please import the module instead of elements:

from cfme import test_requirements

pytestmark = [test_requirements.alert]

@test_requirments.quota
def test_quota_alert():
 pass

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Guides

Selenium over VNC

Purpose

The goal of this page is to explain how to set up a remote display that can run selenium
tests, and manage/contain test-related web browser windows.

Note

This document assumes that you’re running a recent Fedora release, and already
have a working selenium setup for cfme_pages as explained in the cfme_pages README.

While these instructions are specific to tigervnc, available in Fedora 11 onward, they can
be easily adapted to use other VNC packages.

Install requirements

We will need a VNC server (tigervnc-server), a lightweight window manager to run inside that
VNC server (fluxbox), and a terminal emulator that can run inside the lightweight window
manager (xterm):

yum install tigervnc-server fluxbox xterm

We will also need the Standalone Selenium Server, which will run inside the VNC server. You can install and run it in any directory, but it is preferred to be installed in your virtualenv in a directory outside of or at the same level as your cfme_tests directory. You may be using this a lot so make sure the location is something you can easily remember. The Standalone Selenium Server jar files for 2.x versions (2.53 has been recently tested) can be downloaded from:

	Standalone Selenium Server Ver 2 Downloads [http://selenium-release.storage.googleapis.com/index.html]

To run it, open a dedicated terminal window and type the line similar to this example:

java -jar ../selenium/selenium-server-standalone-2.53.1.jar

For complete documentation, please go to:

	Standalone Selenium Server Documentation [http://docs.seleniumhq.org/docs/03_webdriver.jsp#running-standalone-selenium-server-for-use-with-remotedrivers]

Configure the VNC server

If it isn’t already there, create a .vnc directory in your home directory:

$ mkdir ~/.vnc

Set a password

Using the vncpasswd utility, enter your desired vnc password and save it to a file:

$ vncpasswd ~/.vnc/passwd

The ~/.vnc/passwd file stores an obfuscated version of the password entered, so you’ll
either want to use a memorable password or write the password down. Also, passwords longer
than 8 characters will be truncated. More on this Security).

Configure the startup script

Create or modify ~/.vnc/xstartup. This script is run inside the VNC server, and
bootstraps the environment. It must be executable, and needs to do the following things:

	If using chrome/chromdriver, configure the $PATH environment variable so that the
selenium server can find the google-chrome and chromedriver binaries

	Start the window manager (fluxbox)

	Start the selenium server in a terminal window (xterm, selenium-server-standalone-VERSION.jar)

Here’s an example script that does those things:

#!/bin/sh

Set up the environment so selenium can find everything it might want
(namely chrome and chromedriver)
export PATH="/path/to/google/chrome/directory/:/path/to/chromdriver/directory:$PATH"

Start the window manager
fluxbox &

Start the selenium server
xterm -maximized -e java -jar /path/to/selenium-server-standalone-VERSION.jar -ensureCleanSession -trustAllSSLCertificates &

Important things:
* The script MUST start with #!/bin/sh (or your shell shebang of choice).
* The script MUST be executable (chmod +x ~/.vnc/xstartup)
* The “-ensureCleanSession -trustAllSSLCertificates” won’t work with the selenium-server which is 3.x.x onward.
Start the server
^^^^^^^^^^^^^^^^

$ vncserver :99

This will start a local VNC server, listening on display 99 and port 5999. The string
‘:99’ is all you should need to enter into connection prompts to connect to VNC display
99. This example uses :99, but any other reasonable display number can be used throughout
this guide. This server will use the password stored in ~/.vnc/passwd.

View your new desktop

To connect to the server, there are a few tools that you can use. GNOME has a built-in
VNC viewer called vinagre, and tigervnc also provides one. Make sure at least one of
these is installed (package names are vinagre and tigervnc), and then connect to
the VNC server. Both tools have graphical and command-line interfaces.

To connect using either command-line tool, pass the display number as the first argument:

$ vncviewer :99
-or-
$ vinagre :99

Enter the VNC password that you set [above](Selenium-over-VNC#set-a-password). Once
connected, you should see your selenium server running in a maximized xterm window.

Help for the graphical interfaces to these tools is provided by the tools themselves,
but they’re pretty straightforward.

Configuring the selenium client

In your existing test environment, have a env.yaml file, with a
webdriver key in the browser root key. This should be set to Remote, which is the
default from the env.yaml.template it informs the test suite to use the remote
selenium server now running inside your VNC server.

We also need to set the Remote options, by setting the desired_capabilities key
to have the platform and browsername For Fedora, the platform would be LINUX,
but selenium recognizes any of the following (possibly more).

	WINDOWS

	XP

	VISTA

	MAC

	LINUX

	UNIX

An example of the yaml is below:

base_url: https://10.11.12.13
browser:
 webdriver: Remote
 webdriver_options:
 desired_capabilities:
 platform: LINUX
 browserName: 'chrome'
 # for the selenium-server version 3.x.x onward you will need to use
 # following capabilities instead of using CLI arguments (uncomment next 2 lines)
 # and do not use '-ensureCleanSession -trustAllSSLCertificates' in java -jar command
 # which is used to launch selenium-server in xstartup script as shown
 # in 'Configure the startup script' section
 # acceptInsecureCerts: true
 # ensureCleanSession: true

Note:
If you are using selenium server 3.4.0 then you might see issue related ‘mouseMoveTo’ which is open on GitHub:
* https://github.com/SeleniumHQ/selenium/issues/4008
* https://github.com/SeleniumHQ/selenium/issues/3808

Security

Simply put, VNC isn’t very secure. Its connections aren’t encrypted, and its passwords
can only be a max of 8 characters long. For this reason, I recommend having the VNC
server bind to the loopback interface. Fortunately, this is easily done by passing the
-localhost flag to vncserver, like this:

$ vncserver :99 -localhost

No changes need to be made in the way clients are told to connect to support this change,
but it prevents other users from connecting to and interacting with this VNC session remotely.

Recording

The recordmydesktop utility can be used to record test interactions for demonstration
or review. Continuing with display :99 for this example, recordmydesktop can be
invoked like this:

$ recordmydesktop --display :99 --fps 60 -o outfile.ogv

In addition to specifying --display :99, --fps 60 is passed to ensure no steps
are missed in the recording. rescordmydesktop’s default framerate has shown to be a
little too low to accurately capture all of the actions taken in a test run. Finally,
-o is passed to specify the output file.

To record test runs in one shot, the following pattern can be followed (changing the
py.test invocation as needed, of course):

$ recordmydesktop --display :99 --fps 60 -o test_label.ogv & py.test -k test_label --highlight; pkill recordmydesktop

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

Modules

	cfme package
	Subpackages
	cfme.ansible package
	Submodules
	cfme.ansible.credentials module

	cfme.ansible.playbooks module

	cfme.ansible.repositories module

	Module contents

	cfme.automate package
	Subpackages
	cfme.automate.explorer package
	Submodules
	cfme.automate.explorer.common module

	cfme.automate.explorer.domain module

	cfme.automate.explorer.instance module

	cfme.automate.explorer.klass module

	cfme.automate.explorer.method module

	cfme.automate.explorer.namespace module

	Module contents

	Submodules
	cfme.automate.buttons module

	cfme.automate.dialog_box module

	cfme.automate.dialog_element module

	cfme.automate.dialog_tab module

	cfme.automate.import_export module

	cfme.automate.provisioning_dialogs module

	cfme.automate.service_dialogs module

	cfme.automate.simulation module

	Module contents

	cfme.base package
	Submodules
	cfme.base.credential module

	cfme.base.login module

	cfme.base.ssui module

	cfme.base.ui module

	Module contents

	cfme.cloud package
	Subpackages
	cfme.cloud.instance package
	Submodules
	cfme.cloud.instance.azure module

	cfme.cloud.instance.ec2 module

	cfme.cloud.instance.gce module

	cfme.cloud.instance.image module

	cfme.cloud.instance.openstack module

	Module contents

	cfme.cloud.provider package
	Submodules
	cfme.cloud.provider.azure module

	cfme.cloud.provider.ec2 module

	cfme.cloud.provider.gce module

	cfme.cloud.provider.openstack module

	Module contents

	Submodules
	cfme.cloud.availability_zone module

	cfme.cloud.flavor module

	cfme.cloud.keypairs module

	cfme.cloud.security_group module

	cfme.cloud.stack module

	cfme.cloud.tenant module

	Module contents

	cfme.common package
	Submodules
	cfme.common.host_views module

	cfme.common.provider module

	cfme.common.provider_views module

	cfme.common.vm module

	cfme.common.vm_console module

	cfme.common.vm_views module

	Module contents

	cfme.configure package
	Subpackages
	cfme.configure.configuration package
	Submodules
	cfme.configure.configuration.analysis_profile module

	cfme.configure.configuration.region_settings module

	Module contents

	Submodules
	cfme.configure.about module

	cfme.configure.access_control module

	cfme.configure.documentation module

	cfme.configure.settings module

	cfme.configure.tasks module

	Module contents

	cfme.containers package
	Subpackages
	cfme.containers.provider package
	Submodules
	cfme.containers.provider.kubernetes module

	cfme.containers.provider.openshift module

	Module contents

	Submodules
	cfme.containers.container module

	cfme.containers.image module

	cfme.containers.image_registry module

	cfme.containers.node module

	cfme.containers.overview module

	cfme.containers.pod module

	cfme.containers.project module

	cfme.containers.replicator module

	cfme.containers.route module

	cfme.containers.service module

	cfme.containers.template module

	cfme.containers.topology module

	cfme.containers.volume module

	Module contents

	cfme.control package
	Subpackages
	cfme.control.explorer package
	Submodules
	cfme.control.explorer.actions module

	cfme.control.explorer.alert_profiles module

	cfme.control.explorer.alerts module

	cfme.control.explorer.conditions module

	cfme.control.explorer.policies module

	cfme.control.explorer.policy_profiles module

	Module contents

	Submodules
	cfme.control.import_export module

	cfme.control.log module

	cfme.control.simulation module

	cfme.control.snmp_form module

	Module contents

	cfme.fixtures package
	Submodules
	cfme.fixtures.base module

	cfme.fixtures.cli module

	cfme.fixtures.configure_auth_mode module

	cfme.fixtures.model_collections module

	cfme.fixtures.pytest_selenium module

	cfme.fixtures.rdb module

	cfme.fixtures.service_fixtures module

	cfme.fixtures.smtp module

	cfme.fixtures.tag module

	cfme.fixtures.vm_name module

	cfme.fixtures.vporizer module

	Module contents

	cfme.infrastructure package
	Subpackages
	cfme.infrastructure.provider package
	Submodules
	cfme.infrastructure.provider.openstack_infra module

	cfme.infrastructure.provider.rhevm module

	cfme.infrastructure.provider.scvmm module

	cfme.infrastructure.provider.virtualcenter module

	Module contents

	Submodules
	cfme.infrastructure.cluster module

	cfme.infrastructure.config_management module

	cfme.infrastructure.datastore module

	cfme.infrastructure.deployment_roles module

	cfme.infrastructure.host module

	cfme.infrastructure.networking module

	cfme.infrastructure.openstack_node module

	cfme.infrastructure.pxe module

	cfme.infrastructure.resource_pool module

	cfme.infrastructure.virtual_machines module

	Module contents

	cfme.intelligence package
	Subpackages
	cfme.intelligence.chargeback package
	Submodules
	cfme.intelligence.chargeback.assignments module

	cfme.intelligence.chargeback.rates module

	Module contents

	cfme.intelligence.reports package
	Subpackages
	cfme.intelligence.reports.widgets package
	Submodules
	cfme.intelligence.reports.widgets.chart_widgets module

	cfme.intelligence.reports.widgets.menu_widgets module

	cfme.intelligence.reports.widgets.report_widgets module

	cfme.intelligence.reports.widgets.rss_widgets module

	Module contents

	Submodules
	cfme.intelligence.reports.dashboards module

	cfme.intelligence.reports.import_export module

	cfme.intelligence.reports.menus module

	cfme.intelligence.reports.reports module

	cfme.intelligence.reports.saved module

	cfme.intelligence.reports.schedules module

	Module contents

	Submodules
	cfme.intelligence.rss module

	Module contents

	cfme.metaplugins package
	Submodules
	cfme.metaplugins.blockers module

	cfme.metaplugins.server_roles module

	cfme.metaplugins.skip module

	Module contents

	cfme.middleware package
	Subpackages
	cfme.middleware.provider package
	Submodules
	cfme.middleware.provider.hawkular module

	cfme.middleware.provider.middleware_views module

	Module contents

	Submodules
	cfme.middleware.datasource module

	cfme.middleware.deployment module

	cfme.middleware.domain module

	cfme.middleware.messaging module

	cfme.middleware.server module

	cfme.middleware.server_group module

	cfme.middleware.topology module

	Module contents

	cfme.networks package
	Subpackages
	cfme.networks.provider package
	Module contents

	Submodules
	cfme.networks.balancer module

	cfme.networks.cloud_network module

	cfme.networks.network_port module

	cfme.networks.network_router module

	cfme.networks.security_group module

	cfme.networks.subnet module

	cfme.networks.views module

	Module contents

	cfme.optimize package
	Submodules
	cfme.optimize.bottlenecks module

	cfme.optimize.utilization module

	Module contents

	cfme.rest package
	Submodules
	cfme.rest.gen_data module

	Module contents

	cfme.scripting package
	Subpackages
	cfme.scripting.tests package
	Submodules
	cfme.scripting.tests.test_quickstart module

	Module contents

	Submodules
	cfme.scripting.appliance module

	cfme.scripting.conf module

	cfme.scripting.disable_bytecode module

	cfme.scripting.ipyshell module

	cfme.scripting.miq module

	cfme.scripting.quickstart module

	cfme.scripting.runtest module

	cfme.scripting.setup_ansible module

	cfme.scripting.setup_env module

	cfme.scripting.sprout module

	Module contents

	cfme.services package
	Subpackages
	cfme.services.catalogs package
	Submodules
	cfme.services.catalogs.ansible_catalog_item module

	cfme.services.catalogs.catalog module

	cfme.services.catalogs.catalog_item module

	cfme.services.catalogs.orchestration_template module

	cfme.services.catalogs.service_catalogs module

	Module contents

	cfme.services.dashboard package
	Submodules
	cfme.services.dashboard.ssui module

	Module contents

	cfme.services.myservice package
	Submodules
	cfme.services.myservice.ssui module

	cfme.services.myservice.ui module

	Module contents

	Submodules
	cfme.services.requests module

	cfme.services.workloads module

	Module contents

	cfme.storage package
	Submodules
	cfme.storage.object_store module

	cfme.storage.volume module

	Module contents

	cfme.test_framework package
	Subpackages
	cfme.test_framework.sprout package
	Submodules
	cfme.test_framework.sprout.client module

	cfme.test_framework.sprout.plugin module

	Module contents

	Submodules
	cfme.test_framework.appliance_police module

	cfme.test_framework.config module

	cfme.test_framework.pytest_plugin module

	Module contents

	cfme.utils package
	Subpackages
	cfme.utils.appliance package
	Subpackages
	cfme.utils.appliance.implementations package
	Submodules
	cfme.utils.appliance.implementations.ssui module

	cfme.utils.appliance.implementations.ui module

	Module contents

	Submodules
	cfme.utils.appliance.db module

	cfme.utils.appliance.plugin module

	cfme.utils.appliance.services module

	Module contents

	cfme.utils.mgmt_system package
	Module contents

	Submodules
	cfme.utils.ansible module

	cfme.utils.apidoc module

	cfme.utils.blockers module

	cfme.utils.browser module

	cfme.utils.bz module

	cfme.utils.category module

	cfme.utils.conf module

	cfme.utils.datafile module

	cfme.utils.db module

	cfme.utils.deprecation module

	cfme.utils.error module

	cfme.utils.events module

	cfme.utils.ext_auth module

	cfme.utils.ftp module

	cfme.utils.generators module

	cfme.utils.grafana module

	cfme.utils.hosts module
	utils.hosts

	cfme.utils.ipmi module

	cfme.utils.log module
	Example Usage

	Log Message Source

	Configuration

	Message Format

	Members

	cfme.utils.log_validator module

	cfme.utils.net module

	cfme.utils.ocp_cli module

	cfme.utils.path module

	cfme.utils.perf module

	cfme.utils.perf_message_stats module

	cfme.utils.ports module

	cfme.utils.pretty module

	cfme.utils.providers module

	cfme.utils.pytest_shortcuts module

	cfme.utils.quote module

	cfme.utils.rest module

	cfme.utils.smem_memory_monitor module

	cfme.utils.smtp_collector_client module

	cfme.utils.soft_get module

	cfme.utils.ssh module

	cfme.utils.stats module

	cfme.utils.testgen module

	cfme.utils.timeutil module

	cfme.utils.tracer module

	cfme.utils.trackerbot module

	cfme.utils.units module

	cfme.utils.update module

	cfme.utils.varmeth module

	cfme.utils.version module

	cfme.utils.video module

	cfme.utils.virtual_machines module

	cfme.utils.wait module

	cfme.utils.workloads module

	Module contents

	cfme.web_ui package
	Submodules
	cfme.web_ui.accordion module

	cfme.web_ui.cfme_exception module

	cfme.web_ui.expression_editor module

	cfme.web_ui.expression_editor_widgetastic module

	cfme.web_ui.flash module

	cfme.web_ui.form_buttons module

	cfme.web_ui.history module

	cfme.web_ui.jstimelines module

	cfme.web_ui.listaccordion module

	cfme.web_ui.mixins module

	cfme.web_ui.multibox module

	cfme.web_ui.paginator module

	cfme.web_ui.search module

	cfme.web_ui.splitter module

	cfme.web_ui.tabstrip module

	cfme.web_ui.timelines module

	cfme.web_ui.toolbar module

	cfme.web_ui.topology module

	cfme.web_ui.utilization module

	Module contents

	Submodules
	cfme.dashboard module

	cfme.exceptions module

	cfme.js module

	cfme.provisioning module

	cfme.roles module

	cfme.test_requirements module

	Module contents

	fixtures package
	Subpackages
	fixtures.parallelizer package
	Submodules
	fixtures.parallelizer.hooks module

	fixtures.parallelizer.parallelizer_tester module

	fixtures.parallelizer.remote module

	Module contents
	The Workflow

	Submodules
	fixtures.appliance module

	fixtures.appliance_update module

	fixtures.artifactor_plugin module

	fixtures.blockers module

	fixtures.browser module

	fixtures.cfme_data module

	fixtures.datafile module

	fixtures.dev_branch module

	fixtures.disable_forgery_protection module

	fixtures.events module

	fixtures.fixtureconf module

	fixtures.log module

	fixtures.maximized module

	fixtures.merkyl module

	fixtures.middleware_log module

	fixtures.nelson module

	fixtures.node_annotate module

	fixtures.page_screenshots module

	fixtures.perf module

	fixtures.portset module

	fixtures.prov_filter module

	fixtures.provider module

	fixtures.pytest_store module

	fixtures.qa_contact module

	fixtures.randomness module

	fixtures.rbac module

	fixtures.screenshots module

	fixtures.soft_assert module
	Functionality Overview

	fixtures.ssh_client module

	fixtures.templateloader module

	fixtures.terminalreporter module

	fixtures.ui_coverage module
	Usage

	General Notes

	Workflow Overview

	fixtures.version_file module

	fixtures.version_info module

	fixtures.video module

	fixtures.virtual_machine module

	fixtures.widgets module

	fixtures.xunit_tools module

	Module contents

	markers package
	Subpackages
	markers.env_markers package
	Submodules
	markers.env_markers.provider module

	Module contents

	Submodules
	markers.composite module

	markers.crud module

	markers.env module

	markers.fixtureconf module

	markers.manual module

	markers.meta module

	markers.polarion module

	markers.requires module

	markers.sauce module

	markers.skipper module

	markers.smoke module

	markers.stream_excluder module

	markers.uncollect module
	uncollect

	uncollectif

	markers.uses module

	Module contents

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

cfme package

Subpackages

	cfme.ansible package
	Submodules
	cfme.ansible.credentials module

	cfme.ansible.playbooks module

	cfme.ansible.repositories module

	Module contents

	cfme.automate package
	Subpackages
	cfme.automate.explorer package
	Submodules
	cfme.automate.explorer.common module

	cfme.automate.explorer.domain module

	cfme.automate.explorer.instance module

	cfme.automate.explorer.klass module

	cfme.automate.explorer.method module

	cfme.automate.explorer.namespace module

	Module contents

	Submodules
	cfme.automate.buttons module

	cfme.automate.dialog_box module

	cfme.automate.dialog_element module

	cfme.automate.dialog_tab module

	cfme.automate.import_export module

	cfme.automate.provisioning_dialogs module

	cfme.automate.service_dialogs module

	cfme.automate.simulation module

	Module contents

	cfme.base package
	Submodules
	cfme.base.credential module

	cfme.base.login module

	cfme.base.ssui module

	cfme.base.ui module

	Module contents

	cfme.cloud package
	Subpackages
	cfme.cloud.instance package
	Submodules
	cfme.cloud.instance.azure module

	cfme.cloud.instance.ec2 module

	cfme.cloud.instance.gce module

	cfme.cloud.instance.image module

	cfme.cloud.instance.openstack module

	Module contents

	cfme.cloud.provider package
	Submodules
	cfme.cloud.provider.azure module

	cfme.cloud.provider.ec2 module

	cfme.cloud.provider.gce module

	cfme.cloud.provider.openstack module

	Module contents

	Submodules
	cfme.cloud.availability_zone module

	cfme.cloud.flavor module

	cfme.cloud.keypairs module

	cfme.cloud.security_group module

	cfme.cloud.stack module

	cfme.cloud.tenant module

	Module contents

	cfme.common package
	Submodules
	cfme.common.host_views module

	cfme.common.provider module

	cfme.common.provider_views module

	cfme.common.vm module

	cfme.common.vm_console module

	cfme.common.vm_views module

	Module contents

	cfme.configure package
	Subpackages
	cfme.configure.configuration package
	Submodules
	cfme.configure.configuration.analysis_profile module

	cfme.configure.configuration.region_settings module

	Module contents

	Submodules
	cfme.configure.about module

	cfme.configure.access_control module

	cfme.configure.documentation module

	cfme.configure.settings module

	cfme.configure.tasks module

	Module contents

	cfme.containers package
	Subpackages
	cfme.containers.provider package
	Submodules
	cfme.containers.provider.kubernetes module

	cfme.containers.provider.openshift module

	Module contents

	Submodules
	cfme.containers.container module

	cfme.containers.image module

	cfme.containers.image_registry module

	cfme.containers.node module

	cfme.containers.overview module

	cfme.containers.pod module

	cfme.containers.project module

	cfme.containers.replicator module

	cfme.containers.route module

	cfme.containers.service module

	cfme.containers.template module

	cfme.containers.topology module

	cfme.containers.volume module

	Module contents

	cfme.control package
	Subpackages
	cfme.control.explorer package
	Submodules
	cfme.control.explorer.actions module

	cfme.control.explorer.alert_profiles module

	cfme.control.explorer.alerts module

	cfme.control.explorer.conditions module

	cfme.control.explorer.policies module

	cfme.control.explorer.policy_profiles module

	Module contents

	Submodules
	cfme.control.import_export module

	cfme.control.log module

	cfme.control.simulation module

	cfme.control.snmp_form module

	Module contents

	cfme.fixtures package
	Submodules
	cfme.fixtures.base module

	cfme.fixtures.cli module

	cfme.fixtures.configure_auth_mode module

	cfme.fixtures.model_collections module

	cfme.fixtures.pytest_selenium module

	cfme.fixtures.rdb module

	cfme.fixtures.service_fixtures module

	cfme.fixtures.smtp module

	cfme.fixtures.tag module

	cfme.fixtures.vm_name module

	cfme.fixtures.vporizer module

	Module contents

	cfme.infrastructure package
	Subpackages
	cfme.infrastructure.provider package
	Submodules
	cfme.infrastructure.provider.openstack_infra module

	cfme.infrastructure.provider.rhevm module

	cfme.infrastructure.provider.scvmm module

	cfme.infrastructure.provider.virtualcenter module

	Module contents

	Submodules
	cfme.infrastructure.cluster module

	cfme.infrastructure.config_management module

	cfme.infrastructure.datastore module

	cfme.infrastructure.deployment_roles module

	cfme.infrastructure.host module

	cfme.infrastructure.networking module

	cfme.infrastructure.openstack_node module

	cfme.infrastructure.pxe module

	cfme.infrastructure.resource_pool module

	cfme.infrastructure.virtual_machines module

	Module contents

	cfme.intelligence package
	Subpackages
	cfme.intelligence.chargeback package
	Submodules
	cfme.intelligence.chargeback.assignments module

	cfme.intelligence.chargeback.rates module

	Module contents

	cfme.intelligence.reports package
	Subpackages
	cfme.intelligence.reports.widgets package
	Submodules
	cfme.intelligence.reports.widgets.chart_widgets module

	cfme.intelligence.reports.widgets.menu_widgets module

	cfme.intelligence.reports.widgets.report_widgets module

	cfme.intelligence.reports.widgets.rss_widgets module

	Module contents

	Submodules
	cfme.intelligence.reports.dashboards module

	cfme.intelligence.reports.import_export module

	cfme.intelligence.reports.menus module

	cfme.intelligence.reports.reports module

	cfme.intelligence.reports.saved module

	cfme.intelligence.reports.schedules module

	Module contents

	Submodules
	cfme.intelligence.rss module

	Module contents

	cfme.metaplugins package
	Submodules
	cfme.metaplugins.blockers module

	cfme.metaplugins.server_roles module

	cfme.metaplugins.skip module

	Module contents

	cfme.middleware package
	Subpackages
	cfme.middleware.provider package
	Submodules
	cfme.middleware.provider.hawkular module

	cfme.middleware.provider.middleware_views module

	Module contents

	Submodules
	cfme.middleware.datasource module

	cfme.middleware.deployment module

	cfme.middleware.domain module

	cfme.middleware.messaging module

	cfme.middleware.server module

	cfme.middleware.server_group module

	cfme.middleware.topology module

	Module contents

	cfme.networks package
	Subpackages
	cfme.networks.provider package
	Module contents

	Submodules
	cfme.networks.balancer module

	cfme.networks.cloud_network module

	cfme.networks.network_port module

	cfme.networks.network_router module

	cfme.networks.security_group module

	cfme.networks.subnet module

	cfme.networks.views module

	Module contents

	cfme.optimize package
	Submodules
	cfme.optimize.bottlenecks module

	cfme.optimize.utilization module

	Module contents

	cfme.rest package
	Submodules
	cfme.rest.gen_data module

	Module contents

	cfme.scripting package
	Subpackages
	cfme.scripting.tests package
	Submodules
	cfme.scripting.tests.test_quickstart module

	Module contents

	Submodules
	cfme.scripting.appliance module

	cfme.scripting.conf module

	cfme.scripting.disable_bytecode module

	cfme.scripting.ipyshell module

	cfme.scripting.miq module

	cfme.scripting.quickstart module

	cfme.scripting.runtest module

	cfme.scripting.setup_ansible module

	cfme.scripting.setup_env module

	cfme.scripting.sprout module

	Module contents

	cfme.services package
	Subpackages
	cfme.services.catalogs package
	Submodules
	cfme.services.catalogs.ansible_catalog_item module

	cfme.services.catalogs.catalog module

	cfme.services.catalogs.catalog_item module

	cfme.services.catalogs.orchestration_template module

	cfme.services.catalogs.service_catalogs module

	Module contents

	cfme.services.dashboard package
	Submodules
	cfme.services.dashboard.ssui module

	Module contents

	cfme.services.myservice package
	Submodules
	cfme.services.myservice.ssui module

	cfme.services.myservice.ui module

	Module contents

	Submodules
	cfme.services.requests module

	cfme.services.workloads module

	Module contents

	cfme.storage package
	Submodules
	cfme.storage.object_store module

	cfme.storage.volume module

	Module contents

	cfme.test_framework package
	Subpackages
	cfme.test_framework.sprout package
	Submodules
	cfme.test_framework.sprout.client module

	cfme.test_framework.sprout.plugin module

	Module contents

	Submodules
	cfme.test_framework.appliance_police module

	cfme.test_framework.config module

	cfme.test_framework.pytest_plugin module

	Module contents

	cfme.utils package
	Subpackages
	cfme.utils.appliance package
	Subpackages
	cfme.utils.appliance.implementations package
	Submodules
	cfme.utils.appliance.implementations.ssui module

	cfme.utils.appliance.implementations.ui module

	Module contents

	Submodules
	cfme.utils.appliance.db module

	cfme.utils.appliance.plugin module

	cfme.utils.appliance.services module

	Module contents

	cfme.utils.mgmt_system package
	Module contents

	Submodules
	cfme.utils.ansible module

	cfme.utils.apidoc module

	cfme.utils.blockers module

	cfme.utils.browser module

	cfme.utils.bz module

	cfme.utils.category module

	cfme.utils.conf module

	cfme.utils.datafile module

	cfme.utils.db module

	cfme.utils.deprecation module

	cfme.utils.error module

	cfme.utils.events module

	cfme.utils.ext_auth module

	cfme.utils.ftp module

	cfme.utils.generators module

	cfme.utils.grafana module

	cfme.utils.hosts module
	utils.hosts

	cfme.utils.ipmi module

	cfme.utils.log module
	Example Usage

	Log Message Source

	Configuration

	Message Format

	Members

	cfme.utils.log_validator module

	cfme.utils.net module

	cfme.utils.ocp_cli module

	cfme.utils.path module

	cfme.utils.perf module

	cfme.utils.perf_message_stats module

	cfme.utils.ports module

	cfme.utils.pretty module

	cfme.utils.providers module

	cfme.utils.pytest_shortcuts module

	cfme.utils.quote module

	cfme.utils.rest module

	cfme.utils.smem_memory_monitor module

	cfme.utils.smtp_collector_client module

	cfme.utils.soft_get module

	cfme.utils.ssh module

	cfme.utils.stats module

	cfme.utils.testgen module

	cfme.utils.timeutil module

	cfme.utils.tracer module

	cfme.utils.trackerbot module

	cfme.utils.units module

	cfme.utils.update module

	cfme.utils.varmeth module

	cfme.utils.version module

	cfme.utils.video module

	cfme.utils.virtual_machines module

	cfme.utils.wait module

	cfme.utils.workloads module

	Module contents

	cfme.web_ui package
	Submodules
	cfme.web_ui.accordion module

	cfme.web_ui.cfme_exception module

	cfme.web_ui.expression_editor module

	cfme.web_ui.expression_editor_widgetastic module

	cfme.web_ui.flash module

	cfme.web_ui.form_buttons module

	cfme.web_ui.history module

	cfme.web_ui.jstimelines module

	cfme.web_ui.listaccordion module

	cfme.web_ui.mixins module

	cfme.web_ui.multibox module

	cfme.web_ui.paginator module

	cfme.web_ui.search module

	cfme.web_ui.splitter module

	cfme.web_ui.tabstrip module

	cfme.web_ui.timelines module

	cfme.web_ui.toolbar module

	cfme.web_ui.topology module

	cfme.web_ui.utilization module

	Module contents

Submodules

	cfme.dashboard module

	cfme.exceptions module

	cfme.js module

	cfme.provisioning module

	cfme.roles module

	cfme.test_requirements module

Module contents

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

cfme.ansible package

Submodules

	cfme.ansible.credentials module

	cfme.ansible.playbooks module

	cfme.ansible.repositories module

Module contents

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.ansible package

cfme.ansible.credentials module

Page model for Automation/Anisble/Credentials

	
class cfme.ansible.credentials.Add(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of CredentialAddView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.ansible.credentials.AnsibleCredentials(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of CredentialsListView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.ansible.credentials.Credential(collection, name, credential_type, **credentials)[source]

	Bases: cfme.utils.appliance.BaseEntity

A class representing one Embedded Ansible credential in the UI.

	
delete()[source]

	

	
exists

	

	
update(updates)[source]

	

	
class cfme.ansible.credentials.CredentialAddView(parent, logger=None, **kwargs)[source]

	Bases: cfme.ansible.credentials.CredentialFormView

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
credential_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.ansible.credentials.CredentialDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.ansible.credentials.CredentialsBaseView

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
credential_options

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.ansible.credentials.CredentialEditView(parent, logger=None, **kwargs)[source]

	Bases: cfme.ansible.credentials.CredentialFormView

	
before_fill(values)[source]

	

	
credential_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
input

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.ansible.credentials.CredentialFormView(parent, logger=None, **kwargs)[source]

	Bases: cfme.ansible.credentials.CredentialsBaseView

	
CredentialFormAmazonView = None

	

	
CredentialFormDefaultView = None

	

	
CredentialFormMachineView = None

	

	
CredentialFormScmView = None

	

	
CredentialFormVMwareView = None

	

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
credential_form

	Conditional switchable view implementation.

This widget proxy is useful when you have a form whose parts displayed depend on certain
conditions. Eg. when you select certain value from a dropdown, one form is displayed next,
when other value is selected, a different form is displayed next. This widget proxy is designed
to register those multiple views and then upon accessing decide which view to use based on the
registration conditions.

The resulting widget proxy acts similarly like a nested view (if you use view of course).

Example

class SomeForm(View):
 foo = Input('...')
 action_type = Select(name='action_type')

 action_form = ConditionalSwitchableView(reference='action_type')

 # Simple value matching. If Action type 1 is selected in the select, use this view.
 # And if the action_type value does not get matched, use this view as default
 @action_form.register('Action type 1', default=True)
 class ActionType1Form(View):
 widget = Widget()

 # You can use a callable to declare the widget values to compare
 @action_form.register(lambda action_type: action_type == 'Action type 2')
 class ActionType2Form(View):
 widget = Widget()

 # With callable, you can use values from multiple widgets
 @action_form.register(
 lambda action_type, foo: action_type == 'Action type 2' and foo == 2)
 class ActionType2Form(View):
 widget = Widget()

You can see it gives you the flexibility of decision based on the values in the view.

	Parameters:	
	reference – For using non-callable conditions, this must be specified. Specifies the name of
the widget whose value will be used for comparing non-callable conditions. Supports
going across objects using ..

	ignore_bad_reference – If this is enabled, then when the widget representing the reference
is not displayed or otherwise broken, it will then use the default view.

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.ansible.credentials.CredentialsBaseView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
in_ansible_credentials

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.ansible.credentials.CredentialsCollection(appliance)[source]

	Bases: cfme.utils.appliance.BaseCollection

Collection object for the Credential.

	
create(name, credential_type, **credentials)[source]

	

	
instantiate(name, credential_type, **credentials)[source]

	

	
class cfme.ansible.credentials.CredentialsListView(parent, logger=None, **kwargs)[source]

	Bases: cfme.ansible.credentials.CredentialsBaseView

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
credentials

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.ansible.credentials.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of CredentialDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.ansible.credentials.Edit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of CredentialEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.ansible package

cfme.ansible.playbooks module

Page model for Automation/Anisble/Playbooks

	
class cfme.ansible.playbooks.AnsiblePlaybooks(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PlaybooksView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.ansible.playbooks.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PlaybookDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.ansible.playbooks.Playbook(collection, name, repository)[source]

	Bases: cfme.utils.appliance.BaseEntity

A class representing one Embedded Ansible playbook in the UI.

	
exists

	

	
class cfme.ansible.playbooks.PlaybookBaseView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
in_ansible_playbooks

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.ansible.playbooks.PlaybookDetailsEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
smart_management

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.ansible.playbooks.PlaybookDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.ansible.playbooks.PlaybookBaseView

	
breadcrumb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.ansible.playbooks.PlaybookEntitiesView(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.BaseEntitiesView

Represents the view with different items like hosts.

	
entity_class

	

	
class cfme.ansible.playbooks.PlaybookEntity(parent, name, logger=None)[source]

	Bases: widgetastic_manageiq.NonJSBaseEntity

	
grid_entity

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
list_entity

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
tile_entity

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.ansible.playbooks.PlaybookGridIconEntity(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.BaseQuadIconEntity

	
class cfme.ansible.playbooks.PlaybookListEntity(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.BaseListEntity

	
class cfme.ansible.playbooks.PlaybookTileIconEntity(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.BaseTileIconEntity

	
class cfme.ansible.playbooks.PlaybooksCollection(appliance, parent_repository)[source]

	Bases: cfme.utils.appliance.BaseCollection

Collection object for the Playbook.

	
all()[source]

	

	
instantiate(name, repository)[source]

	

	
class cfme.ansible.playbooks.PlaybooksToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
view_selector

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.ansible.playbooks.PlaybooksView(parent, logger=None, **kwargs)[source]

	Bases: cfme.ansible.playbooks.PlaybookBaseView

	
entities

	

	
is_displayed

	

	
paginator

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.ansible package

cfme.ansible.repositories module

Page model for Automation/Ansible/Repositories

	
class cfme.ansible.repositories.Add(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RepositoryAddView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.ansible.repositories.AnsibleRepositories(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RepositoryAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.ansible.repositories.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RepositoryDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.ansible.repositories.Edit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RepositoryEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.ansible.repositories.Repository(collection, name, url, description=None, scm_credentials=None, scm_branch=None, clean=None, delete_on_update=None, update_on_launch=None)[source]

	Bases: cfme.utils.appliance.BaseEntity

A class representing one Embedded Ansible repository in the UI.

	
db_object

	

	
delete()[source]

	Delete the repository in the UI.

	
exists

	

	
playbooks

	

	
refresh()[source]

	Perform a refresh to update the repository.

	
update(updates)[source]

	Update the repository in the UI.

	Parameters:	updates (dict [http://docs.python.org/2.7/library/stdtypes.html#dict]) – dict [http://docs.python.org/2.7/library/stdtypes.html#dict] of the updates.

	
class cfme.ansible.repositories.RepositoryAddView(parent, logger=None, **kwargs)[source]

	Bases: cfme.ansible.repositories.RepositoryFormView

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.ansible.repositories.RepositoryAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.ansible.repositories.RepositoryBaseView

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
paginator

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters:	version_dict – Dictionary of version_introduced: item

	
class cfme.ansible.repositories.RepositoryBaseView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
in_ansible_repositories

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.ansible.repositories.RepositoryCollection(appliance)[source]

	Bases: cfme.utils.appliance.BaseCollection

Collection object for the cfme.ansible.repositories.Repository.

	
all()[source]

	Return all repositories of the appliance.

Returns: a list of cfme.ansible.repositories.Repository instances

	
create(name, url, description=None, scm_credentials=None, scm_branch=None, clean=None, delete_on_update=None, update_on_launch=None)[source]

	Add an ansible repository in the UI and return a Repository object.

	Parameters:	
	name (str [http://docs.python.org/2.7/library/functions.html#str]) – name of the repository

	url (str [http://docs.python.org/2.7/library/functions.html#str]) – url of the repository

	description (str [http://docs.python.org/2.7/library/functions.html#str]) – description of the repository

	scm_credentials (str [http://docs.python.org/2.7/library/functions.html#str]) – credentials of the repository

	scm_branch (str [http://docs.python.org/2.7/library/functions.html#str]) – branch name

	clean (bool [http://docs.python.org/2.7/library/functions.html#bool]) – clean

	delete_on_update (bool [http://docs.python.org/2.7/library/functions.html#bool]) – delete the repo at each update

	update_on_launch (bool [http://docs.python.org/2.7/library/functions.html#bool]) – update the repo at each launch

Returns: an instance of cfme.ansible.repositories.Repository

	
delete(*repositories)[source]

	Delete one or more ansible repositories in the UI.

	Parameters:	repositories – a list of cfme.ansible.repositories.Repository
instances to delete

	Raises:	ValueError –
if some of the repositories were not found in the UI

	
instantiate(name, url, description=None, scm_credentials=None, scm_branch=None, clean=None, delete_on_update=None, update_on_launch=None)[source]

	

	
class cfme.ansible.repositories.RepositoryDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.ansible.repositories.RepositoryBaseView

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.ansible.repositories.RepositoryEditView(parent, logger=None, **kwargs)[source]

	Bases: cfme.ansible.repositories.RepositoryFormView

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.ansible.repositories.RepositoryFormView(parent, logger=None, **kwargs)[source]

	Bases: cfme.ansible.repositories.RepositoryBaseView

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
clean

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
delete_on_update

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
scm_branch

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
scm_credentials

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
update_on_launch

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
url

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

cfme.automate package

Subpackages

	cfme.automate.explorer package
	Submodules
	cfme.automate.explorer.common module

	cfme.automate.explorer.domain module

	cfme.automate.explorer.instance module

	cfme.automate.explorer.klass module

	cfme.automate.explorer.method module

	cfme.automate.explorer.namespace module

	Module contents

Submodules

	cfme.automate.buttons module

	cfme.automate.dialog_box module

	cfme.automate.dialog_element module

	cfme.automate.dialog_tab module

	cfme.automate.import_export module

	cfme.automate.provisioning_dialogs module

	cfme.automate.service_dialogs module

	cfme.automate.simulation module

Module contents

	
class cfme.automate.AutomateCustomization(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AutomateCustomizationView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.AutomateCustomizationView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

	
buttons

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
import_export

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
in_customization

	

	
is_displayed

	

	
provisioning_dialogs

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
service_dialogs

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.automate package

cfme.automate.explorer package

Submodules

	cfme.automate.explorer.common module

	cfme.automate.explorer.domain module

	cfme.automate.explorer.instance module

	cfme.automate.explorer.klass module

	cfme.automate.explorer.method module

	cfme.automate.explorer.namespace module

Module contents

	
class cfme.automate.explorer.AutomateExplorer(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AutomateExplorerView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.explorer.AutomateExplorerView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
datastore

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
in_explorer

	

	
is_displayed

	

	
cfme.automate.explorer.check_tree_path(actual, desired)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.automate package

 	cfme.automate.explorer package

cfme.automate.explorer.common module

	
class cfme.automate.explorer.common.Copiable[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
copy_to(domain, new_name=None, replace=None, cancel=False)[source]

	

	
class cfme.automate.explorer.common.CopyViewBase(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
copy_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
namespace

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
new_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
override_existing

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
override_source

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
to_domain_select

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
to_domain_text

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.automate package

 	cfme.automate.explorer package

cfme.automate.explorer.domain module

	
class cfme.automate.explorer.domain.Add(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DomainAddView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.explorer.domain.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DomainListView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.explorer.domain.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DomainDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.explorer.domain.Domain(collection, name, description, enabled=None, locked=None, git_repository=None, git_checkout_type=None, git_checkout_value=None, db_id=None)[source]

	Bases: cfme.utils.appliance.BaseEntity, widgetastic.utils.Fillable

A class representing one Domain in the UI.

	
as_fill_value()[source]

	

	
db_id

	

	
db_object

	

	
delete(cancel=False)[source]

	

	
delete_if_exists()[source]

	

	
domain

	

	
enabled

	

	
exists

	

	
git_checkout_type

	

	
git_checkout_value

	

	
git_repository

	Returns an associated git repository object. None if no git repo associated.

	
lock()[source]

	

	
locked

	

	
namespaces

	

	
parent

	

	
table_display_name

	

	
tree_display_name

	

	
tree_path

	

	
unlock()[source]

	

	
update(updates)[source]

	

	
class cfme.automate.explorer.domain.DomainAddView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.explorer.domain.DomainForm

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.automate.explorer.domain.DomainCollection(appliance)[source]

	Bases: cfme.utils.appliance.BaseCollection

Collection object for the Domain.

	
all()[source]

	

	
create(name=None, description=None, enabled=None, cancel=False)[source]

	

	
delete(*domains)[source]

	

	
instantiate(name, description=None, enabled=None, git_repository=None, git_checkout_type=None, git_checkout_value=None, db_id=None, locked=None)[source]

	

	
set_order(items)[source]

	

	
tree_path = ['Datastore']

	

	
class cfme.automate.explorer.domain.DomainDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.explorer.AutomateExplorerView

	
is_displayed

	

	
namespaces

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.explorer.domain.DomainEditView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.explorer.domain.DomainForm

	
is_displayed

	

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.explorer.domain.DomainForm(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.explorer.AutomateExplorerView

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
enabled

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.explorer.domain.DomainListView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.explorer.AutomateExplorerView

	
domains

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.explorer.domain.DomainPriorityView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.explorer.AutomateExplorerView

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
domains

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.explorer.domain.Edit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DomainEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.explorer.domain.Priority(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DomainPriorityView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
cfme.automate.explorer.domain.generate_updown(title)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.automate package

 	cfme.automate.explorer package

cfme.automate.explorer.instance module

	
class cfme.automate.explorer.instance.Add(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of InstanceAddView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.explorer.instance.Copy(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of InstanceCopyView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.explorer.instance.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of InstanceDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.explorer.instance.Edit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of InstanceEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.explorer.instance.Instance(collection, name, display_name, description, fields)[source]

	Bases: cfme.utils.appliance.BaseEntity, cfme.automate.explorer.common.Copiable

	
db_id

	

	
db_object

	

	
delete(cancel=False)[source]

	

	
delete_if_exists()[source]

	

	
description

	

	
display_name

	

	
domain

	

	
exists

	

	
klass

	

	
namespace

	

	
parent

	

	
tree_path

	

	
tree_path_name_only

	

	
update(updates)[source]

	

	
class cfme.automate.explorer.instance.InstanceAddView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.explorer.AutomateExplorerView

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
display_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
fields

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.explorer.instance.InstanceCollection(appliance, parent_class)[source]

	Bases: cfme.utils.appliance.BaseCollection

	
create(name=None, display_name=None, description=None, fields=None, cancel=False)[source]

	

	
delete(*instances)[source]

	

	
instantiate(name=None, display_name=None, description=None, fields=None)[source]

	

	
tree_path

	

	
class cfme.automate.explorer.instance.InstanceCopyView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.explorer.AutomateExplorerView, cfme.automate.explorer.common.CopyViewBase

	
is_displayed

	

	
class cfme.automate.explorer.instance.InstanceDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.explorer.AutomateExplorerView

	
is_displayed

	

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.explorer.instance.InstanceEditView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.explorer.AutomateExplorerView

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
display_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
fields

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.automate package

 	cfme.automate.explorer package

cfme.automate.explorer.klass module

	
class cfme.automate.explorer.klass.Add(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ClassAddView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.explorer.klass.Class(collection, name, display_name, description)[source]

	Bases: cfme.utils.appliance.BaseEntity, cfme.automate.explorer.common.Copiable

	
db_id

	

	
db_object

	

	
delete(cancel=False)[source]

	

	
delete_if_exists()[source]

	

	
description

	

	
display_name

	

	
domain

	

	
exists

	

	
fqdn

	

	
instances

	

	
methods

	

	
namespace

	

	
parent

	

	
pure_tree_path

	

	
schema

	

	
tree_path

	

	
tree_path_name_only

	

	
update(updates)[source]

	

	
class cfme.automate.explorer.klass.ClassAddView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.explorer.klass.ClassForm

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.automate.explorer.klass.ClassCollection(appliance, parent_namespace)[source]

	Bases: cfme.utils.appliance.BaseCollection

	
create(name=None, display_name=None, description=None, cancel=False)[source]

	

	
delete(*classes)[source]

	

	
instantiate(name=None, display_name=None, description=None)[source]

	

	
tree_path

	

	
class cfme.automate.explorer.klass.ClassCopyView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.explorer.AutomateExplorerView, cfme.automate.explorer.common.CopyViewBase

	
is_displayed

	

	
class cfme.automate.explorer.klass.ClassDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.explorer.AutomateExplorerView

	
instances

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
methods

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
schema

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.explorer.klass.ClassEditView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.explorer.klass.ClassForm

	
is_displayed

	

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.explorer.klass.ClassForm(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.explorer.AutomateExplorerView

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
display_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.explorer.klass.ClassSchema(klass)[source]

	Bases: cfme.utils.appliance.Navigatable

	
FIELD_NAMES = ['name', 'type', 'data_type', 'default_value', 'display_name', 'description', 'substitute', 'collect', 'message', 'on_entry', 'on_exit', 'on_error', 'max_retries', 'max_time']

	

	
add_field(**kwargs)[source]

	

	
add_fields(*fields)[source]

	

	
delete_field(field)[source]

	

	
delete_fields(*fields)[source]

	

	
schema_field_names

	

	
class cfme.automate.explorer.klass.ClassSchemaEditView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.explorer.klass.ClassDetailsView

	
is_displayed

	

	
schema

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.explorer.klass.Copy(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ClassCopyView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.explorer.klass.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ClassDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.explorer.klass.Edit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ClassEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.explorer.klass.EditSchema(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ClassSchemaEditView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.automate package

 	cfme.automate.explorer package

cfme.automate.explorer.method module

	
class cfme.automate.explorer.method.Add(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of MethodAddView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.explorer.method.Copy(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of MethodCopyView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.explorer.method.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of MethodDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.explorer.method.Edit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of MethodEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.explorer.method.Method(collection, name, display_name, location, script, data)[source]

	Bases: cfme.utils.appliance.BaseEntity, cfme.automate.explorer.common.Copiable

	
db_id

	

	
db_object

	

	
delete(cancel=False)[source]

	

	
delete_if_exists()[source]

	

	
display_name

	

	
domain

	

	
exists

	

	
klass

	

	
namespace

	

	
parent

	

	
tree_path

	

	
tree_path_name_only

	

	
update(updates)[source]

	

	
class cfme.automate.explorer.method.MethodAddView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.explorer.AutomateExplorerView

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
data

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
display_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
location

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
script

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
validate_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.explorer.method.MethodCollection(appliance, parent_class)[source]

	Bases: cfme.utils.appliance.BaseCollection

	
create(name=None, display_name=None, location='inline', script=None, data=None, cancel=False, validate=True)[source]

	

	
delete(*methods)[source]

	

	
instantiate(name=None, display_name=None, location=None, script=None, data=None)[source]

	

	
tree_path

	

	
class cfme.automate.explorer.method.MethodCopyView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.explorer.AutomateExplorerView, cfme.automate.explorer.common.CopyViewBase

	
is_displayed

	

	
class cfme.automate.explorer.method.MethodDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.explorer.AutomateExplorerView

	
created_on

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
display_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
fqdn

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
location

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.explorer.method.MethodEditView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.explorer.AutomateExplorerView

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
data

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
display_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
location

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
script

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
validate_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.automate package

 	cfme.automate.explorer package

cfme.automate.explorer.namespace module

	
class cfme.automate.explorer.namespace.Add(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NamespaceAddView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.explorer.namespace.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NamespaceDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.explorer.namespace.Edit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NamespaceEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.explorer.namespace.Namespace(collection, name, description)[source]

	Bases: cfme.utils.appliance.BaseEntity

	
classes

	

	
db_id

	

	
db_object

	

	
delete(cancel=False)[source]

	

	
delete_if_exists()[source]

	

	
description

	

	
domain

	

	
exists

	

	
namespaces

	

	
parent

	

	
tree_path

	

	
update(updates)[source]

	

	
class cfme.automate.explorer.namespace.NamespaceAddView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.explorer.namespace.NamespaceForm

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.automate.explorer.namespace.NamespaceCollection(appliance, parent)[source]

	Bases: cfme.utils.appliance.BaseCollection

	
create(name=None, description=None, cancel=False)[source]

	

	
delete(*namespaces)[source]

	

	
instantiate(name=None, description=None)[source]

	

	
tree_path

	

	
class cfme.automate.explorer.namespace.NamespaceDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.explorer.AutomateExplorerView

	
is_displayed

	

	
namespaces

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.explorer.namespace.NamespaceEditView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.explorer.namespace.NamespaceForm

	
is_displayed

	

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.explorer.namespace.NamespaceForm(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.explorer.AutomateExplorerView

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.automate package

cfme.automate.buttons module

	
class cfme.automate.buttons.Button(group=None, text=None, hover=None, dialog=None, system=None, request=None, appliance=None)[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.appliance.Navigatable

Create,Edit and Delete buttons under a Button

	Parameters:	
	group – Group where this button belongs.

	text – The button name.

	hover – The button hover text.

	dialog – The dialog to be selected for a button.

	system – System or Processes , DropDown to choose Automation/Request.

	
create()[source]

	

	
delete(cancel=False)[source]

	

	
delete_if_exists()[source]

	

	
exists

	

	
update(updates)[source]

	

	
class cfme.automate.buttons.ButtonAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ButtonsAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.buttons.ButtonDetailView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.AutomateCustomizationView

	
dialog

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
hover

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
message

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
request

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
show

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
system

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
text

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.buttons.ButtonDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ButtonDetailView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.buttons.ButtonEdit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditButtonView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.buttons.ButtonFormCommon(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.AutomateCustomizationView

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
dialog

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
display

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
hover

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
image

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
message

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
request

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
system

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
text

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.buttons.ButtonGroup(text=None, hover=None, type=None, appliance=None)[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.appliance.Navigatable

Create,Edit and Delete Button Groups

	Parameters:	
	text – The button Group name.

	hover – The button group hover text.

	type – The object type.

	
CLUSTER = 'Cluster'

	

	
DATASTORE = 'Datastore'

	

	
HOST = 'Host / Node'

	

	
PROVIDER = 'Provider'

	

	
SERVICE = 'Service'

	

	
TEMPLATE = 'VM Template and Image'

	

	
VM_INSTANCE = 'VM and Instance'

	

	
create()[source]

	

	
delete(cancel=False)[source]

	

	
delete_if_exists()[source]

	

	
exists

	

	
update(updates)[source]

	

	
class cfme.automate.buttons.ButtonGroupAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ButtonsAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.buttons.ButtonGroupDetailView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.AutomateCustomizationView

	
hover

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
text

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.buttons.ButtonGroupDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ButtonGroupDetailView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.buttons.ButtonGroupEdit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditButtonGroupView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.buttons.ButtonGroupFormCommon(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.AutomateCustomizationView

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
display

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
hover

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
image

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
text

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.buttons.ButtonGroupNew(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NewButtonGroupView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.buttons.ButtonGroupObjectType(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ButtonGroupObjectTypeView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.buttons.ButtonGroupObjectTypeView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.AutomateCustomizationView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.buttons.ButtonNew(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NewButtonView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.buttons.ButtonsAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.AutomateCustomizationView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.buttons.EditButtonGroupView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.buttons.ButtonGroupFormCommon

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.buttons.EditButtonView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.buttons.ButtonFormCommon

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.buttons.NewButtonGroupView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.buttons.ButtonGroupFormCommon

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.buttons.NewButtonView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.buttons.ButtonFormCommon

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.automate package

cfme.automate.dialog_box module

	
class cfme.automate.dialog_box.Add(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AddBoxView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.dialog_box.AddBoxView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.dialog_box.BoxForm

AddBox View.

	
is_displayed

	

	
plus_btn

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.dialog_box.Box(collection, box_label, box_desc)[source]

	Bases: cfme.utils.appliance.BaseEntity

A class representing one Box of dialog.

	
elements

	

	
parent

	returns the parent object - Tab

	
tab

	

	
tree_path

	

	
class cfme.automate.dialog_box.BoxCollection(appliance, parent)[source]

	Bases: cfme.utils.appliance.BaseCollection

	
create(box_label=None, box_desc=None)[source]

	Create box method.
:param box_label and box_description.:

	
instantiate(box_label=None, box_desc=None)[source]

	

	
tree_path

	

	
class cfme.automate.dialog_box.BoxForm(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.dialog_tab.AddTabView

	
box_desc

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
box_label

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.dialog_box.EditBoxView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.dialog_box.BoxForm

EditBox View.

	
is_displayed

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.automate package

cfme.automate.dialog_element module

	
class cfme.automate.dialog_element.Add(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AddElementView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.dialog_element.AddElementView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.dialog_element.ElementForm

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.automate.dialog_element.DetailsDialogView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.AutomateCustomizationView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.dialog_element.Edit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditElementView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
class cfme.automate.dialog_element.EditElementView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.dialog_element.ElementForm

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.dialog_element.Element(collection, element_data)[source]

	Bases: cfme.utils.appliance.BaseEntity

A class representing one Element of a dialog.

	
add_another_element(element)[source]

	Method to add element.

	
dialog

	

	
element_loc(element_data)[source]

	

	
parent

	

	
reorder_elements(add_element, second_element, element_data)[source]

	
	Method to add element and interchange element positions.

	This method updates a dialog and adds a second element.The position
of two elements are then interchanged to test for error.

	Parameters:	
	- flag if second element needs to be added. (add_element) –

	- The second element to be added to the dialog. (second_element) –

	- Already existing first element's data. (element_data) –

	
tree_path

	

	
class cfme.automate.dialog_element.ElementCollection(appliance, parent)[source]

	Bases: cfme.utils.appliance.BaseCollection

	
create(element_data=None)[source]

	

	
instantiate(element_data=None)[source]

	

	
set_element_type(view, element)[source]

	Method to add element type.Depending on their type the subfields varies.

	Parameters:	each_element – subfields depending on element type.

	
tree_path

	

	
class cfme.automate.dialog_element.ElementForm(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.dialog_box.AddBoxView

	
add_entry_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
apply_btn

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
bt_tree

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters:	version_dict – Dictionary of version_introduced: item

	
choose_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
default_text_box

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
default_value

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
dynamic_chkbox

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
dynamic_tree

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters:	version_dict – Dictionary of version_introduced: item

	
ele_desc

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
ele_label

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
ele_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
element_tree

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters:	version_dict – Dictionary of version_introduced: item

	
entry_description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
entry_table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
entry_value

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
field_category

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
field_entry_point

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
field_past_dates

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
field_required

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
field_show_refresh_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
text_area

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.automate package

cfme.automate.dialog_tab module

	
class cfme.automate.dialog_tab.Add(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AddTabView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.dialog_tab.AddTabView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.dialog_tab.TabForm

	
is_displayed

	

	
plus_btn

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.dialog_tab.DetailsTabView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.dialog_tab.TabForm

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.dialog_tab.EditTabView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.dialog_tab.TabForm

	
is_displayed

	

	
class cfme.automate.dialog_tab.Tab(collection, tab_label, tab_desc)[source]

	Bases: cfme.utils.appliance.BaseEntity

A class representing one Tab in the UI.

	
boxes

	

	
dialog

	Returns parent object - Dialog

	
parent

	Returns parent object - Dialog

	
tree_path

	

	
class cfme.automate.dialog_tab.TabCollection(appliance, parent)[source]

	Bases: cfme.utils.appliance.BaseCollection

	
add_tab()[source]

	

	
create(tab_label=None, tab_desc=None)[source]

	Create tab method

	
instantiate(tab_label=None, tab_desc=None)[source]

	

	
tree_path

	

	
class cfme.automate.dialog_tab.TabForm(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.service_dialogs.AddDialogView

	
tab_desc

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
tab_label

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.automate package

cfme.automate.import_export module

	
class cfme.automate.import_export.AutomateGitRepository(url=None, username=None, password=None, verify_ssl=None, appliance=None)[source]

	Bases: cfme.utils.appliance.Navigatable

Represents an Automate git repository. This entity is not represented in UI as it is, but
only in database. But by representing it it makes the code changes for domain much simpler.

	
fill_values_branch_select(branch, tag)[source]

	Processes the args into a dictionary to be filled in the selection dialog.

	
fill_values_repo_add

	

	
classmethod from_db(db_id, appliance=None)[source]

	

	
import_domain_from(branch=None, tag=None)[source]

	Import the domain from git using the Import/Export UI.

	Parameters:	
	branch – If you import from a branch, specify the origin/branchname

	tag – If you import from a tag, specify its name.

	Returns:	Instance of cfme.automate.explorer.domain.Domain

Important! branch and tag are mutually exclusive.

	
class cfme.automate.import_export.GitImportSelectorView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ui.AutomateImportExportBaseView

	
branch

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
submit

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
tag

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.automate package

cfme.automate.provisioning_dialogs module

	
class cfme.automate.provisioning_dialogs.Add(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ProvDiagAddView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.provisioning_dialogs.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ProvDiagAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.provisioning_dialogs.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ProvDiagDetailsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.provisioning_dialogs.Edit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ProvDiagEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.provisioning_dialogs.ProvDiagAddView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.provisioning_dialogs.ProvDiagView

	
form

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.provisioning_dialogs.ProvDiagAllEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

All entities view - no view selector, not using BaseEntitiesView

	
paginator

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters:	version_dict – Dictionary of version_introduced: item

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.provisioning_dialogs.ProvDiagAllToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Toolbar with singular configuration dropdown

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.provisioning_dialogs.ProvDiagAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.provisioning_dialogs.ProvDiagView

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.provisioning_dialogs.ProvDiagDetailsEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Entities for details page

	
basic_info

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
content

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.provisioning_dialogs.ProvDiagDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.provisioning_dialogs.ProvDiagView

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.provisioning_dialogs.ProvDiagEditView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.provisioning_dialogs.ProvDiagView

	
form

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.provisioning_dialogs.ProvDiagForm(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Base form with common widgets for add and edit

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
content

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
diag_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.provisioning_dialogs.ProvDiagView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

	
in_customization

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.provisioning_dialogs.ProvisioningDialog(diag_type, name=None, description=None, content=None, appliance=None)[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable

	
ALLOWED_TYPES = set(['VM Migrate', 'Configured System Provision', 'VM Provision', 'Host Provision'])

	

	
HOST_PROVISION = 'Host Provision'

	

	
SYSTEM_PROVISION = 'Configured System Provision'

	

	
VM_MIGRATE = 'VM Migrate'

	

	
VM_PROVISION = 'VM Provision'

	

	
create(cancel=False)[source]

	

	
delete(cancel=False)[source]

	

	
exists

	

	
pretty_attrs = ['name', 'description', 'diag_type', 'content']

	

	
update(updates, cancel=False, reset=False)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.automate package

cfme.automate.service_dialogs module

	
class cfme.automate.service_dialogs.Add(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AddDialogView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.service_dialogs.AddDialogView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.service_dialogs.DialogForm

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
plus_btn

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.service_dialogs.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DialogsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.service_dialogs.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DetailsDialogView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.service_dialogs.DetailsDialogView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.AutomateCustomizationView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.service_dialogs.Dialog(collection, label, description=None, submit=False, cancel=False)[source]

	Bases: cfme.utils.appliance.BaseEntity, widgetastic.utils.Fillable

A class representing one Domain in the UI.

	
as_fill_value()[source]

	

	
delete()[source]

	Delete dialog method

	
delete_if_exists()[source]

	

	
dialog

	

	
exists

	Returns True if dialog exists

	
parent

	

	
tabs

	

	
tree_path

	

	
update(updates)[source]

	Update dialog method

	
class cfme.automate.service_dialogs.DialogCollection(appliance)[source]

	Bases: cfme.utils.appliance.BaseCollection

Collection object for the Dialog.

	
create(label=None, description=None, submit=False, cancel=False)[source]

	Create dialog label method

	
instantiate(label, description=None, submit=False, cancel=False)[source]

	

	
tree_path = ['All Dialogs']

	

	
class cfme.automate.service_dialogs.DialogForm(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.AutomateCustomizationView

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
label

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
plus_btn

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
submit_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.service_dialogs.DialogsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.AutomateCustomizationView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.service_dialogs.Edit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditDialogView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.automate.service_dialogs.EditDialogView(parent, logger=None, **kwargs)[source]

	Bases: cfme.automate.service_dialogs.DialogForm

	
element_tree

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters:	version_dict – Dictionary of version_introduced: item

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.automate package

cfme.automate.simulation module

	
cfme.automate.simulation.simulate(instance=None, message=None, request=None, target_type=None, target_object=None, execute_methods=None, attributes_values=None, pre_clear=True, appliance=None)[source]

	Runs the simulation of specified Automate object.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

cfme.base package

Submodules

	cfme.base.credential module

	cfme.base.login module

	cfme.base.ssui module

	cfme.base.ui module

Module contents

	
class cfme.base.Region(appliance, number=0)[source]

	Bases: cfme.utils.appliance.Navigatable, sentaku.modeling.ElementMixin

	
settings_string

	

	
class cfme.base.Server(appliance, zone=None, name='EVM', sid=1)[source]

	Bases: cfme.utils.appliance.Navigatable, sentaku.modeling.ElementMixin

	
address

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
current_full_name

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
current_username

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
logged_in

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
login

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
login_admin

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
logout

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
update_password

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
class cfme.base.Zone(appliance, region=None, name=None, description=None, smartproxy_ip=None, ntp_servers=None, max_scans=None, user=None)[source]

	Bases: cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable, sentaku.modeling.ElementMixin

Configure/Configuration/Region/Zones functionality

Create/Read/Update/Delete functionality.

	
delete

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
exists

	

	
pretty_attrs = ['name', 'description', 'smartproxy_ip', 'ntp_servers', 'max_scans', 'user']

	

	
update

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
class cfme.base.ZoneCollection(appliance, region=None)[source]

	Bases: cfme.utils.appliance.Navigatable, sentaku.modeling.ElementMixin

	
create

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.base package

cfme.base.credential module

	
class cfme.base.credential.AzureCredential(principal, secret, verify_secret=None, domain=None, **ignore)[source]

	Bases: cfme.base.credential.Credential

	
class cfme.base.credential.CANDUCredential(principal, secret, verify_secret=None, domain=None, **ignore)[source]

	Bases: cfme.base.credential.Credential

	
class cfme.base.credential.Credential(principal, secret, verify_secret=None, domain=None, **ignore)[source]

	Bases: cfme.utils.pretty.Pretty, cfme.utils.update.Updateable, cfme.base.credential.FromConfigMixin

A class to fill in credentials

	Parameters:	
	principal – user name

	secret – password

	verify_secret – password

	domain – concatenated with principal if defined

	
form

	

	
pretty_attrs = ['principal', 'secret']

	

	
view_value_mapping

	used for filling forms like add/edit provider form
Returns: dict

	
class cfme.base.credential.EventsCredential(principal, secret, verify_secret=None, domain=None, **ignore)[source]

	Bases: cfme.base.credential.Credential

	
class cfme.base.credential.FromConfigMixin[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
classmethod from_config(key)[source]

	helper function which allows to construct credential object from credentials.eyaml

	Parameters:	key – credential key

Returns: credential object

	
classmethod from_plaintext(creds)[source]

	helper function which allows to construct credential class from plaintext dict

	Parameters:	creds – dict

Returns: credential object

	
static rename_properties(creds)[source]

	helper function to make properties have same names in credential objects.
:param creds: dict

Returns: updated dict

	
class cfme.base.credential.SSHCredential(principal, secret, verify_secret=None, domain=None, **ignore)[source]

	Bases: cfme.base.credential.Credential

	
view_value_mapping

	used for filling forms like add/edit provider form
Returns: dict

	
class cfme.base.credential.ServiceAccountCredential(service_account)[source]

	Bases: cfme.utils.pretty.Pretty, cfme.utils.update.Updateable

A class to fill in credentials

	Parameters:	service_account – service account string

	
form

	

	
classmethod from_config(key)[source]

	

	
pretty_attrs = ['service_account']

	

	
view_value_mapping

	used for filling forms like add/edit provider form
Returns: dict

	
class cfme.base.credential.TokenCredential(token, verify_token=None, **kwargs)[source]

	Bases: cfme.utils.pretty.Pretty, cfme.utils.update.Updateable, cfme.base.credential.FromConfigMixin

A class to fill in credentials

	Parameters:	
	token – identification token

	verify_token – token once more

	
form

	

	
pretty_attrs = ['token']

	

	
view_value_mapping

	used for filling forms like add/edit provider form
Returns: dict

	
cfme.base.credential.provider_credential_form()[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.base package

cfme.base.login module

	
class cfme.base.login.BaseLoggedInPage(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

This page should be subclassed by any page that models any other page that is available as
logged in.

	
CSRF_TOKEN = '//meta[@name="csrf-token"]'

	

	
csrf_token

	

	
current_fullname

	

	
current_username

	

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
help

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
logged_in

	

	
logged_in_as_current_user

	

	
logged_in_as_user(user)[source]

	

	
logged_out

	

	
logout()[source]

	

	
navigation

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
settings

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.base package

cfme.base.ssui module

	
class cfme.base.ssui.LoggedIn(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ssui.SSUINavigateStep

	
VIEW

	alias of SSUIBaseLoggedInPage

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ssui.LoginPage(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
login

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
password

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
username

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.base.ssui.LoginScreen(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ssui.SSUINavigateStep

	
VIEW

	alias of LoginPage

	
prerequisite()[source]

	

	
step()[source]

	

	
class cfme.base.ssui.SSUIBaseLoggedInPage(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

This page should be subclassed by any page that models any other page that is available as
logged in.

	
current_fullname

	

	
current_username

	

	
domain_switcher

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
help

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
logged_in

	

	
logged_in_as_current_user

	

	
logged_in_as_user(user)[source]

	

	
logged_out

	

	
logout()[source]

	

	
navigation

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
settings

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cfme.base.ssui.address(self)[source]

	

	
cfme.base.ssui.login(self, user=None, **kwargs)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.base package

cfme.base.ui module

	
class cfme.base.ui.About(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AboutView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.Advanced(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerView

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.AuditLog(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerDiagnosticsView

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.Authentication(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerView

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.AutomateImportExport(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AutomateImportExportView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.AutomateImportExportBaseView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
in_import_export

	

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.base.ui.AutomateImportExportView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ui.AutomateImportExportBaseView

	
export_all

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
import_file

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
import_git

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
reset_all

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.base.ui.AutomateSimulation(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AutomateSimulationView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.AutomateSimulationView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

	
avp

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
execute_methods

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
instance

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
message

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
request

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
result_tree

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters:	version_dict – Dictionary of version_introduced: item

	
submit_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
target_object

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
target_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.base.ui.CFMELog(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerDiagnosticsView

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.Chargeback(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ChargebackView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.base.ui.Configuration(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ConfigurationView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.ConfigurationView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

	
accordions

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
in_configuration

	

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.base.ui.CustomLogos(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerView

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.Dashboard(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DashboardView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.Diagnostics(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerDiagnosticsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.DiagnosticsCollectLogs(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DiagnosticsCollectLogsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.DiagnosticsCollectLogsEdit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DiagnosticsCollectLogsEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.DiagnosticsCollectLogsEditSlave(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DiagnosticsCollectLogsEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.DiagnosticsCollectLogsEditView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ui.DiagnosticsCollectLogsView

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
confirm_password

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
depot_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
depot_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
password

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reset

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
uri

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
username

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
validate

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.base.ui.DiagnosticsCollectLogsSlave(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DiagnosticsCollectLogsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.DiagnosticsCollectLogsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ui.ServerDiagnosticsView

	
collect

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
edit

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
last_log_collection

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
last_log_message

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
log_depot_uri

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.base.ui.DiagnosticsDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerDiagnosticsView

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.DiagnosticsWorkers(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerDiagnosticsView

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.Documentation(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DocView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.Import(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RegionView

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.ImportTags(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RegionView

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.LoggedIn(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of BaseLoggedInPage

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.LoginPage(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
back

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
change_password

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
current_fullname

	

	
current_username

	

	
details

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
hide_update_password()[source]

	

	
is_displayed

	

	
log_in(user, method='click_on_login')[source]

	

	
logged_in

	

	
logged_in_as_current_user

	

	
logged_in_as_user(user)[source]

	

	
logged_out

	

	
login

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
login_admin(**kwargs)[source]

	

	
new_password

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
password

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
show_update_password()[source]

	

	
submit_login(method='click_on_login')[source]

	

	
update_password(username, password, new_password, verify_password=None, method='click_on_login')[source]

	

	
username

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
verify_password

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.base.ui.LoginScreen(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of LoginPage

	
prerequisite()[source]

	

	
step()[source]

	

	
class cfme.base.ui.MySettings(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.MySettingsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

	
is_displayed

	

	
tabs

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.base.ui.ProductionLog(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerDiagnosticsView

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.RSS(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RSSView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.RegionDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RegionView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.RegionDiagnostics(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RegionDiagnosticsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.RegionDiagnosticsDatabase(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RegionDiagnosticsView

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.RegionDiagnosticsOrphanedData(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RegionDiagnosticsView

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.RegionDiagnosticsReplication(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RegionDiagnosticsView

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.RegionDiagnosticsRolesByServers(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RegionDiagnosticsView

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.RegionDiagnosticsServers(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RegionDiagnosticsView

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.RegionDiagnosticsServersByRoles(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RegionDiagnosticsView

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.RegionDiagnosticsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ui.ConfigurationView

	
database

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
orphaneddata

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
replication

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
rolesbyservers

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
servers

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
serversbyroles

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
zones

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.base.ui.RegionDiagnosticsZones(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RegionDiagnosticsView

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.RegionView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ui.ConfigurationView

	
canducollection

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
companycategories

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
companytags

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
details

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
imports

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
importtags

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
maptags

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
redhatupdates

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.base.ui.RegionZones(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ZoneListView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.ServerDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerView

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.ServerDiagnosticsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ui.ConfigurationView

	
auditlog

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cfmelog

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
collectlogs

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
productionlog

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
summary

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
timelines

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
utilization

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
workers

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.base.ui.ServerView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ui.ConfigurationView

	
advanced

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
authentication

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
customlogos

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
server

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
workers

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.base.ui.Tasks(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TasksView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.Timelines(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerDiagnosticsView

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.Utilization(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerDiagnosticsView

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.Workers(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerView

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.ZoneAdd(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ZoneAddView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.ZoneAddView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ui.ZoneForm

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.base.ui.ZoneCANDUGapCollection(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ZoneDiagnosticsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.ZoneDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ZoneDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.ZoneDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ui.ConfigurationView

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.base.ui.ZoneDiagnostics(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ZoneDiagnosticsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.ZoneDiagnosticsCollectLogs(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ZoneDiagnosticsCollectLogsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.ZoneDiagnosticsCollectLogsEdit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DiagnosticsCollectLogsEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.ZoneDiagnosticsCollectLogsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ui.DiagnosticsCollectLogsView

	
edit

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.base.ui.ZoneDiagnosticsRolesByServers(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ZoneDiagnosticsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.ZoneDiagnosticsServers(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ZoneDiagnosticsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.ZoneDiagnosticsServersByRoles(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ZoneDiagnosticsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.ZoneDiagnosticsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ui.ConfigurationView

	
candugapcollection

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
collectlogs

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
rolesbyservers

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
servers

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
serversbyroles

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.base.ui.ZoneEdit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ZoneEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.base.ui.ZoneEditView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ui.ZoneForm

	
is_displayed

	

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.base.ui.ZoneForm(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ui.ConfigurationView

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
max_scans

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
ntp_server_1

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
ntp_server_2

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
ntp_server_3

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
password

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
smartproxy_ip

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
username

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
verify

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.base.ui.ZoneListView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ui.ConfigurationView

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cfme.base.ui.address(self)[source]

	

	
cfme.base.ui.automate_menu_name(appliance)[source]

	

	
cfme.base.ui.create(self, name=None, description=None, smartproxy_ip=None, ntp_servers=None, max_scans=None, user=None, cancel=False)[source]

	

	
cfme.base.ui.current_full_name(self)[source]

	Returns the current username.
Returns: the current username.

	
cfme.base.ui.delete(self, cancel=False)[source]

	Delete the Zone represented by this object.

	Parameters:	cancel – Whether to click on the cancel button in the pop-up.

	
cfme.base.ui.exists(self)[source]

	

	
cfme.base.ui.logged_in(self)[source]

	

	
cfme.base.ui.login(self, user=None, submit_method='_js_auth_fn')[source]

	Login to CFME with the given username and password.
Optionally, submit_method can be press_enter_after_password
to use the enter key to login, rather than clicking the button.
:param user: The username to fill in the username field.
:param password: The password to fill in the password field.
:param submit_method: A function to call after the username and password have been input.

	Raises:	RuntimeError –
If the login fails, ie. if a flash message appears

	
cfme.base.ui.login_admin(self, **kwargs)[source]

	Convenience function to log into CFME using the admin credentials from the yamls.
:param kwargs: A dict of keyword arguments to supply to the login() method.

	
cfme.base.ui.logout(self)[source]

	Logs out of CFME.

	
cfme.base.ui.update(self, updates)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

cfme.cloud package

Subpackages

	cfme.cloud.instance package
	Submodules
	cfme.cloud.instance.azure module

	cfme.cloud.instance.ec2 module

	cfme.cloud.instance.gce module

	cfme.cloud.instance.image module

	cfme.cloud.instance.openstack module

	Module contents

	cfme.cloud.provider package
	Submodules
	cfme.cloud.provider.azure module

	cfme.cloud.provider.ec2 module

	cfme.cloud.provider.gce module

	cfme.cloud.provider.openstack module

	Module contents

Submodules

	cfme.cloud.availability_zone module

	cfme.cloud.flavor module

	cfme.cloud.keypairs module

	cfme.cloud.security_group module

	cfme.cloud.stack module

	cfme.cloud.tenant module

Module contents

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.cloud package

cfme.cloud.instance package

Submodules

	cfme.cloud.instance.azure module

	cfme.cloud.instance.ec2 module

	cfme.cloud.instance.gce module

	cfme.cloud.instance.image module

	cfme.cloud.instance.openstack module

Module contents

	
class cfme.cloud.instance.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of InstanceAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
resetter(*args, **kwargs)[source]

	

	
step()[source]

	

	
class cfme.cloud.instance.AllForProvider(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of InstanceProviderAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
resetter(*args, **kwargs)[source]

	

	
step(*args, **kwargs)[source]

	

	
class cfme.cloud.instance.CloudInstanceView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Base view for header/nav check, inherit for navigatable views

	
in_cloud_instance

	

	
class cfme.cloud.instance.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of InstanceDetailsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
resetter(*args, **kwargs)[source]

	

	
step()[source]

	

	
class cfme.cloud.instance.Edit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.cloud.instance.EditManagementEngineRelationship(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ManagementEngineView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.cloud.instance.EditTags(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TagPageView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.cloud.instance.Instance(name, provider, template_name=None, appliance=None)[source]

	Bases: cfme.common.vm.VM, cfme.utils.appliance.Navigatable

Represents a generic instance in CFME. This class is used if none of the inherited classes
will match.

	Parameters:	
	name – Name of the instance

	provider – cfme.cloud.provider.Provider object

	template_name – Name of the template to use for provisioning

	appliance – :py:class: utils.appliance.IPAppliance object

Note

This class cannot be instantiated. Use instance_factory() instead.

	
ALL_LIST_LOCATION = 'clouds_instances'

	

	
PROVISION_CANCEL = 'Add of new VM Provision Request was cancelled by the user'

	

	
PROVISION_START = 'VM Provision Request was Submitted, you will be notified when your VMs are ready'

	

	
QUADICON_TYPE = 'instance'

	

	
REMOVE_SINGLE = 'Remove Instance'

	

	
TO_OPEN_EDIT = 'Edit this Instance'

	

	
TO_RETIRE = 'Retire this Instance'

	

	
VM_TYPE = 'Instance'

	

	
create(form_values, cancel=False)[source]

	Provisions an instance with the given properties through CFME

	Parameters:	form_values – dictionary of form values for provisioning, structured into tabs

Note

Calling create on a sub-class of instance will generate the properly formatted
dictionary when the correct fields are supplied.

	
exists

	

	
find_quadicon(**kwargs)[source]

	Find and return a quadicon belonging to a specific instance

TODO: remove this method and refactor callers to use view entities instead

Args:
Returns: entity of appropriate type

	
get_collection_via_rest()[source]

	

	
get_vm_via_rest()[source]

	

	
on_details(force=False)[source]

	A function to determine if the browser is already on the proper instance details page.

	An instance may not be assigned to a provider if archived or orphaned

	If no provider is listed, default to False since we may be on the details page
for an instance on the wrong provider.

	
power_control_from_cfme(*args, **kwargs)[source]

	Power controls a VM from within CFME using details or collection

	Raises:	
	InstanceNotFound –
the instance wasn’t found when navigating

	OptionNotAvailable –
option param is not visible or enabled

	
set_ownership(user=None, group=None, click_cancel=False, click_reset=False)[source]

	Set instance ownership

TODO: collapse this back to common.vm after both subclasses converted to widgetastic
:param user: username for ownership
:type user: str
:param group: groupname for ownership
:type group: str
:param click_cancel: Whether to cancel form submission
:type click_cancel: bool
:param click_reset: Whether to reset form after filling

	
unset_ownership()[source]

	Remove user ownership and return group to EvmGroup-Administrator

	
update(values, cancel=False, reset=False)[source]

	Update cloud instance

	Parameters:	
	values – Dictionary of form key/value pairs

	cancel – Boolean, cancel the form submission

	reset – Boolean, reset form after fill - returns immediately after reset

Note

The edit form contains a ‘Reset’ button - if this is c

	
wait_for_instance_state_change(desired_state, timeout=900)[source]

	Wait for an instance to come to desired state.

This function waits just the needed amount of time thanks to wait_for.

	Parameters:	
	desired_state – A string or list of strings indicating desired state

	timeout – Specify amount of time (in seconds) to wait until TimedOutError is raised

	
class cfme.cloud.instance.InstanceAccordion(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The accordion on the instances page

	
images

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
images_by_provider

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
instances

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
instances_by_provider

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.instance.InstanceAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.cloud.instance.CloudInstanceView

The collection page for instances

	
adv_search_clear

	

	
entities

	

	
is_displayed

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.instance.InstanceDetailsToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The toolbar on the details screen for an instance

	
access

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
lifecycle

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
monitoring

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
power

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reload

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.instance.InstanceDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.cloud.instance.CloudInstanceView

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.instance.InstanceProviderAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.cloud.instance.CloudInstanceView

	
adv_search_clear

	

	
entities

	

	
instances_by_provider

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.instance.InstanceTimelinesView(parent, logger=None, **kwargs)[source]

	Bases: cfme.cloud.instance.CloudInstanceView, widgetastic_manageiq.TimelinesView

	
is_displayed

	

	
class cfme.cloud.instance.ManagePolicies(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ManagePoliciesView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.cloud.instance.PolicySimulation(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PolicySimulationView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.cloud.instance.Provision(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ProvisionView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.cloud.instance.SetOwnership(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of SetOwnershipView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.cloud.instance.SetRetirement(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RetirementView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.cloud.instance.Timelines(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of InstanceTimelinesView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.cloud package

 	cfme.cloud.instance package

cfme.cloud.instance.azure module

	
class cfme.cloud.instance.azure.AzureInstance(name, provider, template_name=None, appliance=None)[source]

	Bases: cfme.cloud.instance.Instance

	
DELETE = 'Delete'

	

	
POWER_ON = 'Start'

	

	
RESTART = 'Restart'

	

	
SOFT_REBOOT = 'Soft Reboot'

	

	
START = 'Start'

	

	
STATE_ARCHIVED = 'archived'

	

	
STATE_OFF = 'off'

	

	
STATE_ON = 'on'

	

	
STATE_SUSPENDED = 'suspended'

	

	
STATE_TERMINATED = 'terminated'

	

	
STATE_UNKNOWN = 'unknown'

	

	
STOP = 'Stop'

	

	
SUSPEND = 'Suspend'

	

	
TERMINATE = 'Delete'

	

	
create(cancel=False, **prov_fill_kwargs)[source]

	Provisions an Azure instance with the given properties through CFME

	Parameters:	
	cancel – Clicks the cancel button if True, otherwise clicks the submit button
(Defaults to False)

	prov_fill_kwargs – dictionary of provisioning field/value pairs

Note

For more optional keyword arguments, see
cfme.cloud.provisioning.ProvisioningForm

	
power_control_from_provider(option)[source]

	Power control the instance from the provider

	Parameters:	option – power control action to take against instance

	Raises:	OptionNotAvailable –
option param must have proper value

	
ui_powerstates_available

	

	
ui_powerstates_unavailable

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.cloud package

 	cfme.cloud.instance package

cfme.cloud.instance.ec2 module

	
class cfme.cloud.instance.ec2.EC2Instance(name, provider, template_name=None, appliance=None)[source]

	Bases: cfme.cloud.instance.Instance

	
DELETE = 'Delete'

	

	
POWER_ON = 'Start'

	

	
RESTART = 'Restart'

	

	
SOFT_REBOOT = 'Soft Reboot'

	

	
START = 'Start'

	

	
STATE_ARCHIVED = 'archived'

	

	
STATE_OFF = 'off'

	

	
STATE_ON = 'on'

	

	
STATE_SUSPENDED = 'suspended'

	

	
STATE_TERMINATED = 'terminated'

	

	
STATE_UNKNOWN = 'unknown'

	

	
STOP = 'Stop'

	

	
TERMINATE = 'Delete'

	

	
create(cancel=False, **prov_fill_kwargs)[source]

	Provisions an EC2 instance with the given properties through CFME

	Parameters:	
	cancel – Clicks the cancel button if True, otherwise clicks the submit button
(Defaults to False)

	prov_fill_kwargs – dictionary of provisioning field/value pairs

Note

For more optional keyword arguments, see
cfme.cloud.provisioning.ProvisioningForm

	
power_control_from_provider(option)[source]

	Power control the instance from the provider

	Parameters:	option – power control action to take against instance

	Raises:	OptionNotAvailable –
option param must have proper value

	
ui_powerstates_available

	

	
ui_powerstates_unavailable

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.cloud package

 	cfme.cloud.instance package

cfme.cloud.instance.gce module

	
class cfme.cloud.instance.gce.GCEInstance(name, provider, template_name=None, appliance=None)[source]

	Bases: cfme.cloud.instance.Instance

	
DELETE = 'Delete'

	

	
POWER_ON = 'Start'

	

	
RESTART = 'Restart'

	

	
SOFT_REBOOT = 'Soft Reboot'

	

	
START = 'Start'

	

	
STATE_ARCHIVED = 'archived'

	

	
STATE_OFF = 'off'

	

	
STATE_ON = 'on'

	

	
STATE_SUSPENDED = 'suspended'

	

	
STATE_TERMINATED = 'terminated'

	

	
STATE_UNKNOWN = 'unknown'

	

	
STOP = 'Stop'

	

	
TERMINATE = 'Delete'

	

	
create(cancel=False, **prov_fill_kwargs)[source]

	Provisions an GCE instance with the given properties through CFME

	Parameters:	
	cancel – Clicks the cancel button if True, otherwise clicks the submit button
(Defaults to False)

	prov_fill_kwargs – dictionary of provisioning field/value pairs

Note

For more optional keyword arguments, see
cfme.cloud.provisioning.ProvisioningForm

	
power_control_from_provider(option)[source]

	Power control the instance from the provider

	Parameters:	option – power control action to take against instance

	Raises:	OptionNotAvailable –
option param must have proper value

	
ui_powerstates_available

	

	
ui_powerstates_unavailable

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.cloud package

 	cfme.cloud.instance package

cfme.cloud.instance.image module

	
class cfme.cloud.instance.image.Image(name, provider, template_name=None, appliance=None)[source]

	Bases: cfme.common.vm.Template, cfme.utils.appliance.Navigatable, cfme.common.WidgetasticTaggable

	
ALL_LIST_LOCATION = 'clouds_images'

	

	
QUADICON_TYPE = 'image'

	

	
TO_OPEN_EDIT = 'Edit this Image'

	

	
exists

	Whether the image exists in CFME

	
class cfme.cloud.instance.image.ImageAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ImageAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.cloud.instance.image.ImageAllForProvider(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ImageProviderAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.cloud.instance.image.ImageAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.cloud.instance.CloudInstanceView

View for the Image collection

	
entities

	

	
is_displayed

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.instance.image.ImageDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ImageDetailsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.cloud.instance.image.ImageDetailsEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
compliance

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
lifecycle

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
power_management

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
security

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
smart_management

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.instance.image.ImageDetailsToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Toolbar view for image collection

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
lifecycle

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reload

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.instance.image.ImageDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.cloud.instance.CloudInstanceView

View for an Image

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
tag

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.instance.image.ImageEdit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.cloud.instance.image.ImageEditTags(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TagPageView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.cloud.instance.image.ImageManagePolicies(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ManagePoliciesView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.cloud.instance.image.ImagePolicySimulation(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PolicySimulationView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.cloud.instance.image.ImageProviderAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.cloud.instance.CloudInstanceView

View for the Image collection

	
entities

	

	
is_displayed

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.instance.image.ImageProvisionImage(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ImageProvisionView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.cloud.instance.image.ImageProvisionView(parent, logger=None, **kwargs)[source]

	Bases: cfme.cloud.instance.CloudInstanceView

View for provisioning image, built from common provisioning form.
No before_fill, image already selected

	
form

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.cloud.instance.image.ImageSetOwnership(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of SetOwnershipView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.cloud.instance.image.ImageToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Toolbar view for image collection

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
lifecycle

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reload

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
view_selector

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.cloud package

 	cfme.cloud.instance package

cfme.cloud.instance.openstack module

	
class cfme.cloud.instance.openstack.AddFloatingIP(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AddFloatingIPView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.cloud.instance.openstack.AddFloatingIPView(parent, logger=None, **kwargs)[source]

	Bases: cfme.cloud.instance.CloudInstanceView

	
form

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.cloud.instance.openstack.AttachVolume(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AttachVolumeView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.cloud.instance.openstack.AttachVolumeView(parent, logger=None, **kwargs)[source]

	Bases: cfme.cloud.instance.CloudInstanceView

	
form

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.cloud.instance.openstack.DetachVolume(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DetachVolumeView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.cloud.instance.openstack.DetachVolumeView(parent, logger=None, **kwargs)[source]

	Bases: cfme.cloud.instance.CloudInstanceView

	
form

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.cloud.instance.openstack.Evacuate(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EvacuateView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.cloud.instance.openstack.EvacuateView(parent, logger=None, **kwargs)[source]

	Bases: cfme.cloud.instance.CloudInstanceView

	
form

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.cloud.instance.openstack.Migrate(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of MigrateView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.cloud.instance.openstack.MigrateView(parent, logger=None, **kwargs)[source]

	Bases: cfme.cloud.instance.CloudInstanceView

	
form

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.cloud.instance.openstack.OpenStackInstance(name, provider, template_name=None, appliance=None)[source]

	Bases: cfme.cloud.instance.Instance

	
DELETE = 'Delete'

	

	
HARD_REBOOT = 'Hard Reboot'

	

	
PAUSE = 'Pause'

	

	
POWER_ON = 'Start'

	

	
RESTART = 'Restart'

	

	
SHELVE = 'Shelve'

	

	
SHELVE_OFFLOAD = 'Shelve Offload'

	

	
SOFT_REBOOT = 'Soft Reboot'

	

	
START = 'Start'

	

	
STATE_ARCHIVED = 'archived'

	

	
STATE_ERROR = 'non-operational'

	

	
STATE_OFF = 'off'

	

	
STATE_ON = 'on'

	

	
STATE_PAUSED = 'paused'

	

	
STATE_REBOOTING = 'reboot_in_progress'

	

	
STATE_SHELVED = 'shelved'

	

	
STATE_SHELVED_OFFLOAD = 'shelved_offloaded'

	

	
STATE_SUSPENDED = 'suspended'

	

	
STATE_TERMINATED = 'terminated'

	

	
STATE_UNKNOWN = 'unknown'

	

	
STOP = 'Stop'

	

	
SUSPEND = 'Suspend'

	

	
TERMINATE = 'Delete'

	

	
create(cancel=False, **prov_fill_kwargs)[source]

	Provisions an OpenStack instance with the given properties through CFME

	Parameters:	
	cancel – Clicks the cancel button if True, otherwise clicks the submit button
(Defaults to False)

	prov_fill_kwargs – dictionary of provisioning field/value pairs

Note

For more optional keyword arguments, see
cfme.cloud.provisioning.ProvisioningForm

	
power_control_from_provider(option)[source]

	Power control the instance from the provider

	Parameters:	option – power control action to take against instance

	Raises:	OptionNotAvailable –
option param must have proper value

	
ui_powerstates_available

	

	
ui_powerstates_unavailable

	

	
class cfme.cloud.instance.openstack.Reconfigure(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ReconfigureView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.cloud.instance.openstack.ReconfigureView(parent, logger=None, **kwargs)[source]

	Bases: cfme.cloud.instance.CloudInstanceView

	
form

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.cloud.instance.openstack.RemoveFloatingIP(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RemoveFloatingIPView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.cloud.instance.openstack.RemoveFloatingIPView(parent, logger=None, **kwargs)[source]

	Bases: cfme.cloud.instance.CloudInstanceView

	
form

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.cloud.instance.openstack.RightSize(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RightSizeView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.cloud package

cfme.cloud.provider package

Submodules

	cfme.cloud.provider.azure module

	cfme.cloud.provider.ec2 module

	cfme.cloud.provider.gce module

	cfme.cloud.provider.openstack module

Module contents

A model of a Cloud Provider in CFME

	
class cfme.cloud.provider.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of CloudProvidersView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
resetter()[source]

	

	
step()[source]

	

	
class cfme.cloud.provider.CloudProvider(name=None, endpoints=None, zone=None, key=None, appliance=None)[source]

	Bases: cfme.utils.pretty.Pretty, cfme.common.provider.CloudInfraProvider

Abstract model of a cloud provider in cfme. See EC2Provider or OpenStackProvider.

	Parameters:	
	name – Name of the provider.

	endpoints – one or several provider endpoints like DefaultEndpoint. it should be either dict

	format dict{endpoint.name, endpoint, endpoint_n.name, endpoint_n}, list of endpoints or (in) –

	one endpoint (mere) –

	key – The CFME key of the provider in the yaml.

Usage:

credentials = Credential(principal='bad', secret='reallybad')
endpoint = DefaultEndpoint(hostname='some_host', region='us-west', credentials=credentials)
myprov = VMwareProvider(name='foo',
 endpoints=endpoint)
myprov.create()

	
STATS_TO_MATCH = ['num_template', 'num_vm']

	

	
as_fill_value()[source]

	

	
category = 'cloud'

	

	
db_types = ['CloudManager']

	

	
static discover_dict(credential)[source]

	Returns the discovery credentials dictionary, needs overiding

	
page_name = 'clouds'

	

	
pretty_attrs = ['name', 'credentials', 'zone', 'key']

	

	
provider_types = {}

	

	
string_name = 'Cloud'

	

	
template_name = 'Images'

	

	
templates_destination_name = 'Images'

	

	
view_value_mapping

	Maps values to view attrs

	
vm_name = 'Instances'

	

	
class cfme.cloud.provider.CloudProviderTimelinesView(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.TimelinesView, cfme.base.login.BaseLoggedInPage

	
is_displayed

	

	
class cfme.cloud.provider.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of CloudProviderDetailsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.cloud.provider.Discover(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of CloudProvidersDiscoverView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.cloud.provider.Edit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of CloudProviderEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.cloud.provider.EditFromDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of CloudProviderEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.cloud.provider.EditTags(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TagPageView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.cloud.provider.EditTagsFromDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TagPageView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.cloud.provider.Images(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.cloud.provider.Instances(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.cloud.provider.ManagePolicies(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ProvidersManagePoliciesView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.cloud.provider.ManagePoliciesFromDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ProvidersManagePoliciesView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.cloud.provider.New(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of CloudProviderAddView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.cloud.provider.Timelines(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of CloudProviderTimelinesView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
cfme.cloud.provider.discover(credential, discover_cls, cancel=False)[source]

	Discover cloud providers. Note: only starts discovery, doesn’t
wait for it to finish.

	Parameters:	
	credential (cfme.base.credential.Credential) – Discovery credentials.

	cancel (boolean) – Whether to cancel out of the discover UI.

	discover_cls – class of the discovery item

	
cfme.cloud.provider.get_all_providers()[source]

	Returns list of all providers

	
cfme.cloud.provider.wait_for_a_provider()[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.cloud package

 	cfme.cloud.provider package

cfme.cloud.provider.azure module

	
class cfme.cloud.provider.azure.AzureEndpoint(**kwargs)[source]

	Bases: cfme.common.provider.DefaultEndpoint

represents default Azure endpoint (Add/Edit dialogs)

	
view_value_mapping

	

	
class cfme.cloud.provider.azure.AzureEndpointForm(parent, logger=None, **kwargs)[source]

	Bases: cfme.common.provider.DefaultEndpointForm

represents default Azure endpoint form in UI (Add/Edit dialogs)

	
class cfme.cloud.provider.azure.AzureProvider(name=None, endpoints=None, zone=None, key=None, region=None, tenant_id=None, subscription_id=None, appliance=None)[source]

	Bases: cfme.cloud.provider.CloudProvider

BaseProvider->CloudProvider->AzureProvider class.
represents CFME provider and operations available in UI

	
db_types = ['Azure::CloudManager']

	

	
deployment_helper(deploy_args)[source]

	Used in utils.virtual_machines

	
static discover_dict(credential)[source]

	Returns the discovery credentials dictionary

	
discover_name = 'Azure'

	

	
endpoints_form

	alias of AzureEndpointForm

	
classmethod from_config(prov_config, prov_key, appliance=None)[source]

	

	
mgmt_class = <Mock name='mock.AzureSystem' id='140544552891984'>

	

	
type_name = 'azure'

	

	
view_value_mapping

	Maps values to view attrs

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.cloud package

 	cfme.cloud.provider package

cfme.cloud.provider.ec2 module

	
class cfme.cloud.provider.ec2.EC2Endpoint(**kwargs)[source]

	Bases: cfme.common.provider.DefaultEndpoint

represents default Amazon endpoint (Add/Edit dialogs)

	
view_value_mapping

	

	
class cfme.cloud.provider.ec2.EC2EndpointForm(parent, logger=None, **kwargs)[source]

	Bases: cfme.common.provider.DefaultEndpointForm

represents default Amazon endpoint form in UI (Add/Edit dialogs)

	
class cfme.cloud.provider.ec2.EC2Provider(name=None, endpoints=None, zone=None, key=None, region=None, region_name=None, appliance=None)[source]

	Bases: cfme.cloud.provider.CloudProvider

BaseProvider->CloudProvider->EC2Provider class.
represents CFME provider and operations available in UI

	
db_types = ['Amazon::CloudManager']

	

	
static discover_dict(credential)[source]

	Returns the discovery credentials dictionary

	
discover_name = 'Amazon EC2'

	

	
endpoints_form

	alias of EC2EndpointForm

	
classmethod from_config(prov_config, prov_key, appliance=None)[source]

	Returns the EC” object from configuration

	
mgmt_class = <Mock name='mock.EC2System' id='140544586199248'>

	

	
type_name = 'ec2'

	

	
view_value_mapping

	Maps values to view attrs

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.cloud package

 	cfme.cloud.provider package

cfme.cloud.provider.gce module

	
class cfme.cloud.provider.gce.GCEEndpoint(**kwargs)[source]

	Bases: cfme.common.provider.DefaultEndpoint

represents default GCE endpoint (Add/Edit dialogs)

	
credential_class

	alias of ServiceAccountCredential

	
view_value_mapping

	

	
class cfme.cloud.provider.gce.GCEEndpointForm(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

represents default GCE endpoint form in UI (Add/Edit dialogs)

	
service_account

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
validate

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.provider.gce.GCEProvider(name=None, project=None, zone=None, region=None, region_name=None, endpoints=None, key=None, appliance=None)[source]

	Bases: cfme.cloud.provider.CloudProvider

BaseProvider->CloudProvider->GCEProvider class.
represents CFME provider and operations available in UI

	
db_types = ['Google::CloudManager']

	

	
endpoints_form

	alias of GCEEndpointForm

	
classmethod from_config(prov_config, prov_key, appliance=None)[source]

	

	
classmethod get_credentials(credential_dict, cred_type=None)[source]

	Processes a credential dictionary into a credential object.

	Parameters:	
	credential_dict – A credential dictionary.

	cred_type – Type of credential (None, token, ssh, amqp, ...)

	Returns:	A cfme.base.credential.ServiceAccountCredential instance.

	
mgmt_class = <Mock name='mock.GoogleCloudSystem' id='140544586489616'>

	

	
type_name = 'gce'

	

	
view_value_mapping

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.cloud package

 	cfme.cloud.provider package

cfme.cloud.provider.openstack module

	
class cfme.cloud.provider.openstack.OpenStackProvider(name=None, endpoints=None, zone=None, key=None, hostname=None, ip_address=None, api_port=None, sec_protocol=None, amqp_sec_protocol=None, tenant_mapping=None, infra_provider=None, appliance=None)[source]

	Bases: cfme.cloud.provider.CloudProvider

BaseProvider->CloudProvider->OpenStackProvider class.
represents CFME provider and operations available in UI

	
create(*args, **kwargs)[source]

	

	
db_types = ['Openstack::CloudManager']

	

	
deployment_helper(deploy_args)[source]

	Used in utils.virtual_machines

	
endpoints_form

	alias of OpenStackInfraEndpointForm

	
classmethod from_config(prov_config, prov_key, appliance=None)[source]

	

	
get_console_connection_status()[source]

	

	
get_console_ctrl_alt_del_btn()[source]

	

	
get_remote_console_canvas()[source]

	

	
mgmt_class = <Mock name='mock.OpenstackSystem' id='140544545701200'>

	

	
type_name = 'openstack'

	

	
view_value_mapping

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.cloud package

cfme.cloud.availability_zone module

A page functions for Availability Zone

	
class cfme.cloud.availability_zone.AvailabilityZone(name, provider, appliance=None)[source]

	Bases: cfme.common.WidgetasticTaggable, cfme.utils.appliance.Navigatable

	
class cfme.cloud.availability_zone.AvailabilityZoneAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AvailabilityZoneAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.cloud.availability_zone.AvailabilityZoneAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.cloud.availability_zone.AvailabilityZoneView

Collect the view components into a single view

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
paginator

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters:	version_dict – Dictionary of version_introduced: item

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.availability_zone.AvailabilityZoneDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AvailabilityZoneDetailsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.cloud.availability_zone.AvailabilityZoneDetailsAccordion(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

View containing the accordion widgets for the left side pane on details view

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.availability_zone.AvailabilityZoneDetailsEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

View containing the widgets for the main content pane on the details page

	
breadcrumb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
smart_management

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.availability_zone.AvailabilityZoneDetailsToolBar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

View containing the toolbar widgets

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
monitoring

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
view_selector

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.availability_zone.AvailabilityZoneDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.cloud.availability_zone.AvailabilityZoneView

Collect the view components into a single view

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.availability_zone.AvailabilityZoneEditTags(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TagPageView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.cloud.availability_zone.AvailabilityZoneEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

View containing the widgets for the main content pane

	
search

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.availability_zone.AvailabilityZoneTimelines(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of CloudAvailabilityZoneTimelinesView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.cloud.availability_zone.AvailabilityZoneToolBar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

View containing the toolbar widgets

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
view_selector

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.availability_zone.AvailabilityZoneView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Bare bones base view for page header matching

	
in_availability_zones

	

	
class cfme.cloud.availability_zone.CloudAvailabilityZoneTimelinesView(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.TimelinesView, cfme.cloud.availability_zone.AvailabilityZoneView

	
is_displayed

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.cloud package

cfme.cloud.flavor module

Page functions for Flavor pages

	
class cfme.cloud.flavor.Flavor(name, provider, appliance=None)[source]

	Bases: cfme.common.WidgetasticTaggable, cfme.utils.appliance.Navigatable

Flavor class to support navigation

	
class cfme.cloud.flavor.FlavorAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of FlavorAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.cloud.flavor.FlavorAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.cloud.flavor.FlavorView

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
paginator

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters:	version_dict – Dictionary of version_introduced: item

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.flavor.FlavorDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of FlavorDetailsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.cloud.flavor.FlavorDetailsAccordion(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.flavor.FlavorDetailsEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
breadcrumb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
smart_management

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.flavor.FlavorDetailsToolBar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.flavor.FlavorDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.cloud.flavor.FlavorView

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.flavor.FlavorEditTags(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TagPageView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.cloud.flavor.FlavorEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
search

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.flavor.FlavorToolBar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
view_selector

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.flavor.FlavorView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

	
in_availability_zones

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.cloud package

cfme.cloud.keypairs module

	
class cfme.cloud.keypairs.Add(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of KeyPairAddView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	Raises DropdownItemDisabled from widgetastic_patternfly if no RHOS provider present

	
class cfme.cloud.keypairs.CloudKeyPairs(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of KeyPairAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.cloud.keypairs.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of KeyPairDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.cloud.keypairs.EditTagsFromDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TagPageView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.cloud.keypairs.KeyPair(collection, name, provider, public_key=None)[source]

	Bases: cfme.utils.appliance.BaseEntity, cfme.common.WidgetasticTaggable

Automate Model page of KeyPairs

	Parameters:	name – Name of Keypairs.

	
delete(cancel=False, wait=False)[source]

	

	
exists

	

	
class cfme.cloud.keypairs.KeyPairAddEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
breadcrumb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.keypairs.KeyPairAddForm(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
add

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
provider

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
public_key

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.keypairs.KeyPairAddView(parent, logger=None, **kwargs)[source]

	Bases: cfme.cloud.keypairs.KeyPairView

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
form

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.cloud.keypairs.KeyPairAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.cloud.keypairs.KeyPairView

	
entities

	

	
is_displayed

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.keypairs.KeyPairCollection(appliance)[source]

	Bases: cfme.utils.appliance.BaseCollection

Collection object for the :py:class: cfme.cloud.KeyPair.

	
create(name, provider, public_key=None, cancel=False)[source]

	Create new keyPair.

	Parameters:	
	name (str [http://docs.python.org/2.7/library/functions.html#str]) – name of the KeyPair

	public_key (str [http://docs.python.org/2.7/library/functions.html#str]) – RSA Key if present

	provider (str [http://docs.python.org/2.7/library/functions.html#str]) – Cloud Provider

	cancel (boolean) – Cancel Keypair creation

	
instantiate(name, provider, public_key=None)[source]

	

	
class cfme.cloud.keypairs.KeyPairDetailsAccordion(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.keypairs.KeyPairDetailsEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
breadcrumb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
smart_management

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.keypairs.KeyPairDetailsToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.keypairs.KeyPairDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.cloud.keypairs.KeyPairView

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.keypairs.KeyPairToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
view_selector

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.keypairs.KeyPairView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Base view for header and nav checking, navigatable views should inherit this

	
in_keypair

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.cloud package

cfme.cloud.security_group module

Page functions for Security Group page

	var list_page:	A cfme.web_ui.Region object describing elements on the list page.

	var details_page:

		A cfme.web_ui.Region object describing elements on the detail page.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.cloud package

cfme.cloud.stack module

	
class cfme.cloud.stack.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of StackAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
resetter()[source]

	Reset the view

	
step(*args, **kwargs)[source]

	Go to the all page

	
class cfme.cloud.stack.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of StackDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step(*args, **kwargs)[source]

	Go to the details page

	
class cfme.cloud.stack.EditTags(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TagPageView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	Go to the edit tags screen

	
class cfme.cloud.stack.RelationshipOutputs(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of StackOutputsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.cloud.stack.RelationshipParameters(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of StackParametersView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.cloud.stack.RelationshipResources(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of StackResourcesView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.cloud.stack.RelationshipsSecurityGroups(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of StackSecurityGroupsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.cloud.stack.Stack(collection, name, provider, quad_name=None)[source]

	Bases: cfme.utils.pretty.Pretty, cfme.utils.appliance.BaseEntity, cfme.common.WidgetasticTaggable

	
delete()[source]

	Delete the stack from detail view

	
exists

	

	
pretty_attrs = ['name']

	

	
retire_stack(wait=True)[source]

	

	
wait_for_exists()[source]

	Wait for the row to show up

	
class cfme.cloud.stack.StackAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.cloud.stack.StackView

The main list page

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	Is this page currently being displayed

	
paginator

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters:	version_dict – Dictionary of version_introduced: item

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.stack.StackCollection(appliance)[source]

	Bases: cfme.utils.appliance.BaseCollection

Collection class for cfme.cloud.stack.Stack

	
delete(*stacks)[source]

	

	
instantiate(name, provider, quad_name=None)[source]

	

	
class cfme.cloud.stack.StackDetailsAccordion(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The accordion on the details page

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.stack.StackDetailsEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The entties on the detail page

	
breadcrumb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
lifecycle

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
smart_management

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.stack.StackDetailsToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The toolbar on the stacks detail page

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
lifecycle

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.stack.StackDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.cloud.stack.StackView

The detail page

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	Is this page currently being displayed

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.stack.StackEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The entties on the main list page

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
search

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.stack.StackOutputsEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The entities of the resources page

	
breadcrumb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
outputs

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.stack.StackOutputsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.cloud.stack.StackView

The resources page

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	Is this page currently being displayed

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.stack.StackParametersEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The entities of the resources page

	
breadcrumb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
parameters

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.stack.StackParametersView(parent, logger=None, **kwargs)[source]

	Bases: cfme.cloud.stack.StackView

The resources page

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	Is this page currently being displayed

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.stack.StackResourcesEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The entities of the resources page

	
breadcrumb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
resources

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.stack.StackResourcesView(parent, logger=None, **kwargs)[source]

	Bases: cfme.cloud.stack.StackView

The resources page

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	Is this page currently being displayed

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.stack.StackSecurityGroupsEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The entities of the resources page

	
breadcrumb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
security_groups

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.stack.StackSecurityGroupsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.cloud.stack.StackView

The resources page

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	Is this page currently being displayed

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.stack.StackSubpageToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The toolbar on the sub pages, like resources and security groups

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
lifecycle

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
show_summary

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.stack.StackToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The toolbar on the stacks page

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
lifecycle

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
view_selector

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.stack.StackView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

The base view for header and nav checking

	
in_stacks

	Determine if the Stacks page is currently open

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.cloud package

cfme.cloud.tenant module

Page functions for Tenant pages

	var list_page:	A cfme.web_ui.Region object describing elements on the list page.

	var details_page:

		A cfme.web_ui.Region object describing elements on the detail page.

	
class cfme.cloud.tenant.Tenant(collection, name, provider)[source]

	Bases: cfme.utils.appliance.BaseEntity, cfme.common.WidgetasticTaggable

Tenant Class

	
delete(wait=True)[source]

	Delete the tenant

	
exists

	

	
update(updates)[source]

	

	
wait_for_appear(timeout=600)[source]

	

	
wait_for_disappear(timeout=300)[source]

	

	
class cfme.cloud.tenant.TenantAdd(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TenantAddView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	Navigate to the Add page

	
class cfme.cloud.tenant.TenantAddForm(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The form on the Add page

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cloud_provider

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters:	version_dict – Dictionary of version_introduced: item

	
class cfme.cloud.tenant.TenantAddView(parent, logger=None, **kwargs)[source]

	Bases: cfme.cloud.tenant.TenantView

The add page for tenants

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
form

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	Is this page currently being displayed

	
class cfme.cloud.tenant.TenantAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TenantAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
resetter()[source]

	Reset the view

	
step(*args, **kwargs)[source]

	Go to the All page

	
class cfme.cloud.tenant.TenantAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.cloud.tenant.TenantView

The all tenants page

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	This is page currently being displayed

	
paginator

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters:	version_dict – Dictionary of version_introduced: item

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.tenant.TenantCollection(appliance)[source]

	Bases: cfme.utils.appliance.BaseCollection

Collection object for the cfme.cloud.tenant.Tenant.

	
create(name, provider, wait=True)[source]

	Add a cloud Tenant from the UI and return the Tenant object

	
delete(*tenants)[source]

	Delete one or more Tenants from the list of the Tenants

	Parameters:	of the cfme.cloud.tenant.Tenant objects (list) –

	
instantiate(name, provider)[source]

	

	
class cfme.cloud.tenant.TenantDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TenantDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
resetter()[source]

	Reset the view

	
step(*args, **kwargs)[source]

	Navigate to the details page

	
class cfme.cloud.tenant.TenantDetailsAccordion(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The accordion on the details page

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.tenant.TenantDetailsEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The entities on the details page

	
breadcrumb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
quotas

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
smart_management

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.tenant.TenantDetailsToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The toolbar on the tenant details page

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.tenant.TenantDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.cloud.tenant.TenantView

The details page for a tenant

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	Is this page currently being displayed

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.tenant.TenantEdit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TenantEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	Navigate to the edit page

	
class cfme.cloud.tenant.TenantEditEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The entities on the add/edit page

	
breadcrumb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.tenant.TenantEditForm(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The form on the Edit page

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.tenant.TenantEditTagEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The entities on the edit tags page

	
breadcrumb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.tenant.TenantEditTags(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TagPageView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	Navigate to the edit tags page

	
class cfme.cloud.tenant.TenantEditView(parent, logger=None, **kwargs)[source]

	Bases: cfme.cloud.tenant.TenantView

The edit page for tenants

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
form

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	Is this page currently being displayed

	
class cfme.cloud.tenant.TenantEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The entities on the main list page

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
search

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.tenant.TenantToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The toolbar on the tenants page

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
view_selector

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.tenant.TenantView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

A base view for all the Tenant pages

	
in_tenants

	Determine if the Tenants page is currently open

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

cfme.common package

Submodules

	cfme.common.host_views module

	cfme.common.provider module

	cfme.common.provider_views module

	cfme.common.vm module

	cfme.common.vm_console module

	cfme.common.vm_views module

Module contents

	
class cfme.common.PolicyProfileAssignable[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

This class can be inherited by anything that provider load_details method.

It provides functionality to assign and unassign Policy Profiles

	
assign_policy_profiles(*policy_profile_names)[source]

	Assign Policy Profiles to this object.

	Parameters:	policy_profile_names – str [http://docs.python.org/2.7/library/functions.html#str] with Policy Profile names. After Control/Explorer
coverage goes in, PolicyProfile objects will be also passable.

	
assigned_policy_profiles

	

	
manage_policies_tree = <cfme.web_ui.BootstrapTreeview object>

	

	
unassign_policy_profiles(*policy_profile_names)[source]

	Unssign Policy Profiles to this object.

	Parameters:	policy_profile_names – str [http://docs.python.org/2.7/library/functions.html#str] with Policy Profile names. After Control/Explorer
coverage goes in, PolicyProfile objects will be also passable.

	
class cfme.common.Summary(o)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

Summary container class. An entry point to the summary listing

	
HEADERS = '//th[@align="left"]'

	

	
__iter__()[source]

	This enables you to iterate through like it was a dictionary, just without .iteritems

	
group_names

	Returns names of the tables.

	
groups()[source]

	Returns a dictionary of keys (table titles) and table objects.

	
reload()[source]

	

	
class cfme.common.SummaryMixin[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

Use this mixin to have simple access to the Summary informations of an object.

Requires that the class has load_details(refresh) method defined.

All the names from the UI are “attributized”.

Sample usage:

You can retrieve the text value as it is in the UI
provider.summary.properties.host_name.text_value # => 'hostname'
Or let it guess if it is a number and return float or int
provider.summary.properties.aggregate_host_cpus.value # => 12
You can get the image address
provider.summary.foo.bar.img # => value parsed by urlparse()
Or the onclick link
provider.summary.foo.bar.link # => 'http://foo/bar'
Check if it is clickable
assert provider.summary.xyz.qwer.clickable

You can iterate like it was a dictionary
for table_name, table in provider.summary:
 # table_name contains title of the table
 for key, value in table:
 # key contains the left cell text, value contains the value holder
 print('{}: {}'.format(key, value.text_value))

	
summary

	

	
class cfme.common.SummaryTable(o, text, entry, skip_load=False)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
MULTIKEY_LOC = '../../../tbody/tr[1]/td/strong'

	

	
ROWS = '../../../tbody/tr'

	

	
items()[source]

	

	
keys

	

	
load()[source]

	

	
raw_keys

	

	
reload()[source]

	

	
class cfme.common.SummaryValue(el)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
click()[source]

	A convenience function to click the summary item.

	
clickable

	

	
img

	

	
link

	

	
text_value

	

	
value

	

	
class cfme.common.TagPageView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Class represents common tag page in CFME UI

	
form

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
table_title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.common.Taggable[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

This class can be inherited by anything that provider load_details method.

It provides functionality to assign and unassign tags.

	
add_tag(tag, single_value=False)[source]

	

	
add_tags(tags)[source]

	Add list of tags

	Parameters:	tags – List of Tag

	
get_tags(*args, **kwargs)

	

	
get_tags_db = None

	

	
remove_tag(tag)[source]

	

	
remove_tags(tags)[source]

	Remove list of tags

	Parameters:	tags – List of Tag

	
class cfme.common.TimelinesMixin[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

Use this mixin to have simple access to the Timelines page.
To use this TimelinesMixin you have to implement load_timelines_page
function, which should take to timelines page

Sample usage:

Change Timelines showing interval Select
timelines.change_interval('Hourly')
Change Timelines showing event group Select
timelines.select_event_category('Application')
Change Level of showed Timelines
timelines.change_level('Detail')
Check whether timelines contain particular event
which is generated after provided datetime
timelines.contains_event('hawkular_deployment.ok', before_test_date)

	
timelines

	

	
class cfme.common.TopologyMixin[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

Use this mixin to have simple access to the Topology page.
To use this TopologyMixin you have to implement load_topology_page
function, which should take to topology page

Sample usage:

You can retrieve the elements details as it is in the UI
topology.elements # => 'hostname'
You can do actions on topology page
topology.display_names.enable()
topology.display_names.disable()
topology.display_names.is_enabled
You can do actions on topology search box
topology.search_box.text(text='hello')
topology.search_box.text(text='hello', submit=False)
topology.search_box.submit()
topology.search_box.clear()
You can get legends and can perform actions
topology.legends
topology.pod.name
topology.pod.is_active
topology.pod.set_active()
You can get elements, element parents and children
topology.elements
topology.elements[0].parents
topology.elements[0].children
topology.elements[0].double_click()
topology.elements[0].is_displayed()

	
topology

	

	
class cfme.common.UtilizationMixin[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

Use this mixin to have simple access to the Utilization information of an object.

Requires that the class(page) has load_details(refresh) method
and taggable_type should be defined.

All the chart names from the UI are “attributized”.

Sample usage:
.. code-block:: python

You can list available charts
page.utilization.charts # => ‘[‘jvm_heap_usage_bytes’,’web_sessions’,’transactions’]’
You can get the data from chart
page.utilization.jvm_heap_usage_bytes.list_data_chart() # => returns data as list
You can get the data from table
provider.utilization.jvm_heap_usage_bytes.list_data_table() # => returns data as list
You can get the data from wrapanapi
page.utilization.jvm_heap_usage_bytes.list_data_mgmt() # => returns data as list
You can change chart option
page.utilization.jvm_non_heap_usage_bytes.option.set_by_visible_text(op_interval=’Daily’)
You can list available ledgends
page.utilization.jvm_non_heap_usage_bytes.legends
You can enable/disable legends
page.utilization.jvm_non_heap_usage_bytes.committed.set_active(active=False) # => Disables
page.utilization.jvm_non_heap_usage_bytes.committed.set_active(active=True) # => Enables

	
utilization

	

	
class cfme.common.Validatable[source]

	Bases: cfme.common.SummaryMixin

Mixin for various validations. Requires the class to be also Taggable.

	:var property_tuples: Tuples which first value is the provider class’s attribute

	name, the second value is provider’s UI summary page field key. Should have values in
child classes.

	
property_tuples = []

	

	
validate_properties()[source]

	Validation method which checks whether class attributes, which were used during creation
of provider, are correctly displayed in Properties section of provider UI.

The maps between class attribute and UI property is done via ‘property_tuples’ variable.

Fails if some property does not match.

	
validate_tags(tag='My Company Tags', reference_tags=None)[source]

	Validation method which check tagging between UI and database.

To use this method, self/caller should be extended with Taggable class

	Parameters:	
	tag – tag name, default is My Company Tags

	reference_tags – If you want to compare user input with database, pass user input
as reference_tags

	
class cfme.common.WidgetasticTaggable[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

This class can be inherited by any class that honors tagging.
Class should have following

	‘Details’ navigation

	‘Details’ view should have entities.smart_management SummaryTable widget

	‘EditTags’ navigation

	‘EditTags’ view should have nested ‘form’ view with ‘tags’ table widget

	Suggest using class cfme.common.TagPageView as view for ‘EditTags’ nav

This class provides functionality to assign and unassigned tags for page models with
standardized widgetastic views

	
add_tag(category=None, tag=None, cancel=False, reset=False)[source]

	Add tag to tested item

	Parameters:	
	category – category(str)

	tag – tag(str) or Tag object

	cancel – set True to cancel tag assigment

	reset – set True to reset already set up tag

	
add_tags(tags)[source]

	Add multiple tags

	Parameters:	tags – pass dict with category name as key, and tag as value,
or pass list with tag objects

	
get_tags(tenant='My Company Tags')[source]

	Get list of tags assigned to item

	Parameters:	tenant – string, tags tenant, default is “My Company Tags”

	Returns:	Tag_name”

	Return type:	List of tags in format “Tag_category

	
remove_tag(category=None, tag=None, cancel=False, reset=False)[source]

	Remove tag of tested item

	Parameters:	
	category – category(str)

	tag – tag(str) or Tag object

	cancel – set True to cancel tag deletion

	reset – set True to reset tag changes

	
remove_tags(tags)[source]

	Remove multiple of tags

	Parameters:	tags – pass dict with category name as key, and tag as value,
or pass list with tag objects

	
cfme.common.process_field(values)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.common package

cfme.common.host_views module

	
class cfme.common.host_views.ComputeInfrastructureHostsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Common parts for host views.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
in_compute_infrastructure_hosts

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.common.host_views.HostAddView(parent, logger=None, **kwargs)[source]

	Bases: cfme.common.host_views.HostFormView

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
host_platform

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.common.host_views.HostDetailsEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Represents Details page.

	
authentication_status

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
compliance

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
openstack_hardware

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
security

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
smart_management

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.common.host_views.HostDetailsToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Represents host toolbar and its controls.

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
custom_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
monitoring

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
power

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.common.host_views.HostDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.common.host_views.ComputeInfrastructureHostsView

Main Host details page.

	
breadcrumb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.common.host_views.HostDiscoverView(parent, logger=None, **kwargs)[source]

	Bases: cfme.common.host_views.ComputeInfrastructureHostsView

Discover View from Compute/Infrastructure/Hosts page.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
esx

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
from_ip1

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
from_ip2

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
from_ip3

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
from_ip4

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
ipmi

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
start_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
to_ip4

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.common.host_views.HostDriftAnalysis(parent, logger=None, **kwargs)[source]

	Bases: cfme.common.host_views.ComputeInfrastructureHostsView

	
apply_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
drift_analysis

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
drift_sections

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.common.host_views.HostDriftHistory(parent, logger=None, **kwargs)[source]

	Bases: cfme.common.host_views.ComputeInfrastructureHostsView

	
analyze_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
breadcrumb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
history_table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.common.host_views.HostEditView(parent, logger=None, **kwargs)[source]

	Bases: cfme.common.host_views.HostFormView

View for editing a single host

	
change_stored_password

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.common.host_views.HostEntitiesView(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.BaseEntitiesView

Represents the view with different items like hosts.

	
entity_class

	

	
cfme.common.host_views.HostEntity()[source]

	Temporary wrapper for Host Entity during transition to JS based Entity

	
class cfme.common.host_views.HostFormView(parent, logger=None, **kwargs)[source]

	Bases: cfme.common.host_views.ComputeInfrastructureHostsView

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
custom_ident

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
endpoints

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
hostname

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
ipmi_address

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
mac_address

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.common.host_views.HostListEntity(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.BaseListEntity

	
class cfme.common.host_views.HostManagePoliciesView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Host’s Manage Policies view.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
policies

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.common.host_views.HostQuadIconEntity(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.BaseQuadIconEntity

	
data

	

	
class cfme.common.host_views.HostSideBar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Represents left side bar. It usually contains navigation, filters, etc.

	
class cfme.common.host_views.HostTileIconEntity(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.BaseTileIconEntity

	
quad_icon

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.common.host_views.HostTimelinesView(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.TimelinesView, cfme.common.host_views.ComputeInfrastructureHostsView

Represents a Host Timelines page.

	
is_displayed

	

	
class cfme.common.host_views.HostsEditView(parent, logger=None, **kwargs)[source]

	Bases: cfme.common.host_views.HostEditView

View when editing multiple hosts
Restricted to endpoints section of the form
Title changes
Must select host before validation

	
is_displayed

	

	
validation_host

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.common.host_views.HostsToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Represents hosts toolbar and its controls.

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
lifecycle

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
monitoring

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
power

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
view_selector

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.common.host_views.HostsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.common.host_views.ComputeInfrastructureHostsView

	
entities

	

	
is_displayed

	

	
paginator

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters:	version_dict – Dictionary of version_introduced: item

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.common.host_views.NonJSHostEntity(parent, name, logger=None)[source]

	Bases: widgetastic_manageiq.NonJSBaseEntity

	
list_entity

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
quad_entity

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
tile_entity

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.common package

cfme.common.provider module

	
class cfme.common.provider.BaseProvider(*args, **kwargs)[source]

	Bases: cfme.common.Taggable, cfme.utils.update.Updateable, cfme.common.SummaryMixin, cfme.utils.appliance.Navigatable

	
STATS_TO_MATCH = []

	

	
classmethod clear_providers()[source]

	Clear all providers of given class on the appliance

	
create(cancel=False, validate_credentials=True, check_existing=False, validate_inventory=False)[source]

	Creates a provider in the UI

	Parameters:	
	cancel (boolean) – Whether to cancel out of the creation. The cancel is done
after all the information present in the Provider has been filled in the UI.

	validate_credentials (boolean) – Whether to validate credentials - if True and the
credentials are invalid, an error will be raised.

	check_existing (boolean) – Check if this provider already exists, skip if it does

	validate_inventory (boolean) – Whether or not to block until the provider stats in CFME
match the stats gleaned from the backend management system
(default: True)

	Returns:	True if it was created, False if it already existed

	
create_rest()[source]

	

	
data

	

	
db_types = ['Providers']

	

	
default_endpoint

	

	
delete(cancel=True)[source]

	Deletes a provider from CFME

	Parameters:	cancel – Whether to cancel the deletion, defaults to True

	
delete_if_exists(*args, **kwargs)[source]

	Combines .exists and .delete() as a shortcut for request.addfinalizer

Returns: True if provider existed and delete was initiated, False otherwise

	
deployment_helper(deploy_args)[source]

	Used in utils.virtual_machines and usually overidden

	
exists

	Returns True if a provider of the same name exists on the appliance

	
get_all_host_ids()[source]

	Returns an integer list of host ID’s via the Rest API

	
get_all_provider_ids()[source]

	Returns an integer list of provider ID’s via the REST API

	
get_all_template_details()[source]

	Returns a dictionary mapping template ids to their name, type, and guid

	
get_all_template_ids()[source]

	Returns an integer list of template ID’s via the Rest API

	
get_all_vm_ids()[source]

	Returns an integer list of vm ID’s via the REST API

	
get_console_connection_status()[source]

	

	
get_console_ctrl_alt_del_btn()[source]

	

	
get_console_fullscreen_btn()[source]

	

	
classmethod get_credentials(credential_dict, cred_type=None)[source]

	Processes a credential dictionary into a credential object.

	Parameters:	
	credential_dict – A credential dictionary.

	cred_type – Type of credential (None, token, ssh, amqp, ...)

	Returns:	A cfme.base.credential.Credential instance.

	
classmethod get_credentials_from_config(credential_config_name, cred_type=None)[source]

	Retrieves the credential by its name from the credentials yaml.

	Parameters:	
	credential_config_name – The name of the credential in the credentials yaml.

	cred_type – Type of credential (None, token, ssh, amqp, ...)

	Returns:	A cfme.base.credential.Credential instance.

	
get_detail(*ident)[source]

	Gets details from the details infoblock

The function first ensures that we are on the detail page for the specific provider.

	Parameters:	*ident – An SummaryTable title, followed by the Key name, e.g. “Relationships”, “Images”

Returns: A string representing the contents of passed field value.

	
get_mgmt_system()[source]

	Returns the mgmt_system using the utils.providers.get_mgmt() method.

	
get_provider_details(provider_id)[source]

	Returns the name, and type associated with the provider_id

	
get_remote_console_canvas()[source]

	

	
get_template_details(template_id)[source]

	Returns the name, type, and guid associated with the template_id

	
get_template_guids(template_dict)[source]

	Returns a list of tuples. The inner tuples are formated so that each guid
is in index 0, and its provider’s name is in index 1. Expects a dictionary
mapping a provider to its templates

	
get_vm_details(vm_id)[source]

	Returns the name, type, vendor, host_id, and power_state associated with
the vm_id.

	
get_vm_id(vm_name)[source]

	Return the ID associated with the specified VM name

	
get_vm_ids(vm_names)[source]

	Returns a dictionary mapping each VM name to it’s id

	
get_yaml_data()[source]

	Returns yaml data for this provider.

	
id

	”
Return the ID associated with the specified provider name

	
is_refreshed(*args, **kwargs)

	

	
last_refresh_date(*args, **kwargs)

	

	
load_details(refresh=False)[source]

	To be compatible with the Taggable and PolicyProfileAssignable mixins.

Returns: ProviderDetails view

	
mgmt

	

	
one_of(*classes)[source]

	Returns true if provider is an instance of any of the classes or sublasses there of

	
classmethod process_credential_yaml_key(cred_yaml_key, cred_type=None)[source]

	Function that detects if it needs to look up credentials in the credential yaml and acts
as expected.

If you pass a dictionary, it assumes it does not need to look up in the credentials yaml
file.
If anything else is passed, it continues with looking up the credentials in the yaml file.

	Parameters:	cred_yaml_key – Either a string pointing to the credentials.yaml or a dictionary which is
considered as the credentials.

	Returns:	cfme.base.credential.Credential instance

	
refresh_provider_relationships(*args, **kwargs)

	

	
refresh_provider_relationships_ui = None

	

	
setup(rest=False)[source]

	Sets up the provider robustly

	
type

	

	
update(updates, cancel=False, validate_credentials=True)[source]

	Updates a provider in the UI. Better to use utils.update.update context
manager than call this directly.

	Parameters:	
	updates (dict [http://docs.python.org/2.7/library/stdtypes.html#dict]) – fields that are changing.

	cancel (boolean) – whether to cancel out of the update.

	validate_credentials (boolean) – whether credentials have to be validated

	
validate()[source]

	

	
validate_stats(ui=False)[source]

	Validates that the detail page matches the Providers information.

This method logs into the provider using the mgmt_system interface and collects
a set of statistics to be matched against the UI. The details page is then refreshed
continuously until the matching of all items is complete. A error will be raised
if the match is not complete within a certain defined time period.

	
version

	

	
wait_for_delete()[source]

	

	
class cfme.common.provider.CANDUEndpoint(**kwargs)[source]

	Bases: cfme.common.provider.DefaultEndpoint

	
credential_class

	alias of CANDUCredential

	
name = 'candu'

	

	
view_value_mapping

	

	
class cfme.common.provider.CloudInfraProvider(*args, **kwargs)[source]

	Bases: cfme.common.provider.BaseProvider, cfme.common.PolicyProfileAssignable, cfme.common.WidgetasticTaggable

	
db_types = ['CloudManager', 'InfraManager']

	

	
detail_page_suffix = 'provider'

	

	
edit_page_suffix = 'provider_edit'

	

	
hostname

	

	
ip_address

	

	
load_all_provider_images()[source]

	

	
load_all_provider_instances()[source]

	

	
load_all_provider_templates()[source]

	Loads the list of images that are available under the provider.

	
load_all_provider_vms()[source]

	Loads the list of instances that are running under the provider.

	
num_template(*args, **kwargs)

	

	
num_template_ui = None

	

	
num_vm(*args, **kwargs)

	

	
num_vm_ui = None

	

	
refresh_text = 'Refresh Relationships and Power States'

	

	
template_name = ''

	

	
vm_name = ''

	

	
class cfme.common.provider.DefaultEndpoint(**kwargs)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
credential_class

	alias of Credential

	
name = 'default'

	

	
view_value_mapping

	

	
class cfme.common.provider.DefaultEndpointForm(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
change_password

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
confirm_password

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
hostname

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
password

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
username

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
validate

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.common.provider.EventsEndpoint(**kwargs)[source]

	Bases: cfme.common.provider.DefaultEndpoint

	
credential_class

	alias of EventsCredential

	
name = 'events'

	

	
view_value_mapping

	

	
class cfme.common.provider.SSHEndpoint(**kwargs)[source]

	Bases: cfme.common.provider.DefaultEndpoint

	
credential_class

	alias of SSHCredential

	
name = 'rsa_keypair'

	

	
view_value_mapping

	

	
cfme.common.provider.all_types()[source]

	

	
cfme.common.provider.base_types()[source]

	

	
cfme.common.provider.cleanup_vm(vm_name, provider)[source]

	

	
cfme.common.provider.provider_types(category)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.common package

cfme.common.provider_views module

	
class cfme.common.provider_views.BeforeFillMixin[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

this mixin is used to activate appropriate tab before filling this tab

	
before_fill()[source]

	

	
class cfme.common.provider_views.CloudProviderAddView(parent, logger=None, **kwargs)[source]

	Bases: cfme.common.provider_views.ProviderAddView

represents Cloud Provider Add View

	
api_version

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
infra_provider

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
project_id

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
prov_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
region

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
subscription

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
tenant_id

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
tenant_mapping

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.common.provider_views.CloudProviderDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.common.provider_views.ProviderDetailsView

Cloud Details page

	
is_displayed

	

	
class cfme.common.provider_views.CloudProviderEditView(parent, logger=None, **kwargs)[source]

	Bases: cfme.common.provider_views.ProviderEditView

represents Cloud Provider Edit View

	
is_displayed

	

	
class cfme.common.provider_views.CloudProvidersDiscoverView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Discover View from Infrastructure Providers page

	
Amazon = None

	

	
Azure = None

	

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
discover_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
fields

	Conditional switchable view implementation.

This widget proxy is useful when you have a form whose parts displayed depend on certain
conditions. Eg. when you select certain value from a dropdown, one form is displayed next,
when other value is selected, a different form is displayed next. This widget proxy is designed
to register those multiple views and then upon accessing decide which view to use based on the
registration conditions.

The resulting widget proxy acts similarly like a nested view (if you use view of course).

Example

class SomeForm(View):
 foo = Input('...')
 action_type = Select(name='action_type')

 action_form = ConditionalSwitchableView(reference='action_type')

 # Simple value matching. If Action type 1 is selected in the select, use this view.
 # And if the action_type value does not get matched, use this view as default
 @action_form.register('Action type 1', default=True)
 class ActionType1Form(View):
 widget = Widget()

 # You can use a callable to declare the widget values to compare
 @action_form.register(lambda action_type: action_type == 'Action type 2')
 class ActionType2Form(View):
 widget = Widget()

 # With callable, you can use values from multiple widgets
 @action_form.register(
 lambda action_type, foo: action_type == 'Action type 2' and foo == 2)
 class ActionType2Form(View):
 widget = Widget()

You can see it gives you the flexibility of decision based on the values in the view.

	Parameters:	
	reference – For using non-callable conditions, this must be specified. Specifies the name of
the widget whose value will be used for comparing non-callable conditions. Supports
going across objects using ..

	ignore_bad_reference – If this is enabled, then when the widget representing the reference
is not displayed or otherwise broken, it will then use the default view.

	
is_displayed

	

	
start

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.common.provider_views.CloudProvidersView(parent, logger=None, **kwargs)[source]

	Bases: cfme.common.provider_views.ProvidersView

represents Main view displaying all Cloud providers

	
entities

	

	
is_displayed

	

	
class cfme.common.provider_views.ContainersProviderAddView(parent, logger=None, **kwargs)[source]

	Bases: cfme.common.provider_views.ProviderAddView

represents Containers Provider Add View

	
is_displayed

	

	
prov_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.common.provider_views.ContainersProviderEditView(parent, logger=None, **kwargs)[source]

	Bases: cfme.common.provider_views.ProviderEditView

represents Containers Provider Edit View

	
is_displayed

	

	
class cfme.common.provider_views.ContainersProvidersView(parent, logger=None, **kwargs)[source]

	Bases: cfme.common.provider_views.ProvidersView

represents Main view displaying all Containers providers

	
entities

	

	
is_displayed

	

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.common.provider_views.InfraProviderAddView(parent, logger=None, **kwargs)[source]

	Bases: cfme.common.provider_views.ProviderAddView

	
api_version

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.common.provider_views.InfraProviderDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.common.provider_views.ProviderDetailsView

Infra Details page

	
is_displayed

	

	
class cfme.common.provider_views.InfraProviderEditView(parent, logger=None, **kwargs)[source]

	Bases: cfme.common.provider_views.ProviderEditView

represents Infra Provider Edit View

	
is_displayed

	

	
class cfme.common.provider_views.InfraProvidersDiscoverView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Discover View from Infrastructure Providers page

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
from_ip1

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
from_ip2

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
from_ip3

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
from_ip4

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
rhevm

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
scvmm

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
start

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
to_ip4

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
vmware

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.common.provider_views.InfraProvidersView(parent, logger=None, **kwargs)[source]

	Bases: cfme.common.provider_views.ProvidersView

represents Main view displaying all Infra providers

	
entities

	

	
is_displayed

	

	
class cfme.common.provider_views.MiddlewareProviderAddView(parent, logger=None, **kwargs)[source]

	Bases: cfme.common.provider_views.ProviderAddView

represents Middleware Provider Add View

	
is_displayed

	

	
class cfme.common.provider_views.MiddlewareProviderDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.common.provider_views.ProviderDetailsView

Middleware Details page

	
is_displayed

	

	
class cfme.common.provider_views.MiddlewareProviderEditView(parent, logger=None, **kwargs)[source]

	Bases: cfme.common.provider_views.ProviderEditView

represents Middleware Provider Edit View

	
is_displayed

	

	
class cfme.common.provider_views.MiddlewareProvidersView(parent, logger=None, **kwargs)[source]

	Bases: cfme.common.provider_views.ProvidersView

represents Main view displaying all Middleware providers

	
entities

	

	
is_displayed

	

	
class cfme.common.provider_views.NodesToolBar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

represents nodes toolbar and its controls (exists for Infra OpenStack provider)

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
power

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
view_selector

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.common.provider_views.ProviderAddView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

represents Provider Add View

	
add

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
endpoints

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
keystone_v3_domain_id

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
prov_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
zone

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.common.provider_views.ProviderDetailsToolBar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

represents provider toolbar and its controls

	
authentication

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
monitoring

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reload

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
view_selector

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.common.provider_views.ProviderDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

main Details page

	
ProviderDetailsDashboardView = None

	

	
ProviderDetailsSummaryView = None

	

	
breadcrumb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
contents

	Conditional switchable view implementation.

This widget proxy is useful when you have a form whose parts displayed depend on certain
conditions. Eg. when you select certain value from a dropdown, one form is displayed next,
when other value is selected, a different form is displayed next. This widget proxy is designed
to register those multiple views and then upon accessing decide which view to use based on the
registration conditions.

The resulting widget proxy acts similarly like a nested view (if you use view of course).

Example

class SomeForm(View):
 foo = Input('...')
 action_type = Select(name='action_type')

 action_form = ConditionalSwitchableView(reference='action_type')

 # Simple value matching. If Action type 1 is selected in the select, use this view.
 # And if the action_type value does not get matched, use this view as default
 @action_form.register('Action type 1', default=True)
 class ActionType1Form(View):
 widget = Widget()

 # You can use a callable to declare the widget values to compare
 @action_form.register(lambda action_type: action_type == 'Action type 2')
 class ActionType2Form(View):
 widget = Widget()

 # With callable, you can use values from multiple widgets
 @action_form.register(
 lambda action_type, foo: action_type == 'Action type 2' and foo == 2)
 class ActionType2Form(View):
 widget = Widget()

You can see it gives you the flexibility of decision based on the values in the view.

	Parameters:	
	reference – For using non-callable conditions, this must be specified. Specifies the name of
the widget whose value will be used for comparing non-callable conditions. Supports
going across objects using ..

	ignore_bad_reference – If this is enabled, then when the widget representing the reference
is not displayed or otherwise broken, it will then use the default view.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.common.provider_views.ProviderEditView(parent, logger=None, **kwargs)[source]

	Bases: cfme.common.provider_views.ProviderAddView

represents Provider Edit View

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
prov_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reset

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
vnc_end_port

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
vnc_start_port

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.common.provider_views.ProviderEntitiesView(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.BaseEntitiesView

represents child class of Entities view for Provider entities

	
entity_class

	

	
class cfme.common.provider_views.ProviderNodesView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

represents main Nodes view (exists for Infra OpenStack provider)

	
entities

	

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.common.provider_views.ProviderSideBar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

represents left side bar. it usually contains navigation, filters, etc

	
class cfme.common.provider_views.ProviderTimelinesView(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.TimelinesView, cfme.base.login.BaseLoggedInPage

represents Timelines page

	
is_displayed

	

	
class cfme.common.provider_views.ProviderToolBar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

represents provider toolbar and its controls

	
authentication

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
view_selector

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.common.provider_views.ProvidersManagePoliciesView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Provider’s Manage Policies view

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
policies

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters:	version_dict – Dictionary of version_introduced: item

	
reset

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.common.provider_views.ProvidersView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

represents Main view displaying all providers

	
entities

	

	
is_displayed

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.common package

cfme.common.vm module

Module containing classes with common behaviour for both VMs and Instances of all types.

	
class cfme.common.vm.BaseVM(name, provider, template_name=None, appliance=None)[source]

	Bases: cfme.utils.pretty.Pretty, cfme.utils.update.Updateable, cfme.common.PolicyProfileAssignable, cfme.common.Taggable, cfme.common.SummaryMixin, cfme.utils.appliance.Navigatable

Base VM and Template class that holds the largest common functionality between VMs,
instances, templates and images.

In order to inherit these, you have to implement the on_details method.

	
ALL_LIST_LOCATION = None

	

	
QUADICON_TYPE = 'vm'

	

	
REMOVE_SELECTED = {'5.6.2.2': 'Remove selected items from the VMDB', '5.6': 'Remove selected items', '5.7': 'Remove selected items'}

	

	
REMOVE_SINGLE = {'5.6.2.2': 'Remove from the VMDB', '5.6': 'Remove Virtual Machine', '5.7': 'Remove Virtual Machine'}

	

	
RETIRE_DATE_FMT = {Version('lowest'): '%m/%d/%y', '5.7': '%m/%d/%y %H:%M UTC'}

	

	
TO_OPEN_EDIT = None

	

	
check_compliance(timeout=240)[source]

	Initiates compliance check and waits for it to finish.

TODO This should be refactored as it’s done Host.check_compliance. It shouldn’t return
anything. compliant property should use compliance_status.

	
compliance_status

	Returns the title of the compliance infoblock. The title contains datetime so it can be
compared.

	Returns:	NoneType if no title is present (no compliance checks before), otherwise str

	
compliant

	Check if the VM is compliant

	Returns:	NoneType if the VM was never verified, otherwise bool [http://docs.python.org/2.7/library/functions.html#bool]

	
console_handle

	The basic algorithm for getting the consoles window handle is to get the
appliances window handle and then iterate through the window_handles till we find
one that is not the appliances window handle. Once we find this check that it has
a canvas widget with a specific ID

	
delete(cancel=False, from_details=False)[source]

	Deletes the VM/Instance from the VMDB.

	Parameters:	
	cancel – Whether to cancel the action in the alert.

	from_details – Whether to use the details view or list view.

	
edit_form = <cfme.web_ui.Form fields=[('custom_ident', <cfme.web_ui.Input _names=('custom_1',), _use_id=False>), ('description_tarea', "//textarea[@id='description']"), ('parent_sel', {Version('lowest'): Select("//select[@name='chosen_parent']", multi=False), '5.5': <cfme.web_ui.AngularSelect _loc="//button[@data-id='chosen_parent']", none=None, multi=False, exact=False>}), ('child_sel', Select("//select[@id='kids_chosen']", multi=True)), ('vm_sel', Select("//select[@id='choices_chosen']", multi=True)), ('add_btn', "//img[@alt='Move selected VMs to left']"), ('remove_btn', "//img[@alt='Move selected VMs to right']"), ('remove_all_btn', "//img[@alt='Move all VMs to right']")]>

	

	
exists

	Checks presence of the quadicon in the CFME.

	
classmethod factory(vm_name, provider, template_name=None, template=False)[source]

	Factory class method that determines the correct subclass for given provider.

For reference how does that work, refer to the entrypoints in the setup.py

	Parameters:	
	vm_name – Name of the VM/Instance as it appears in the UI

	provider – The provider object (not the string!)

	template_name – Source template name. Useful when the VM/Instance does not exist and you
want to create it.

	template – Whether the generated object class should be VM/Instance or a template class.

	
find_quadicon(from_any_provider=False, use_search=True)[source]

	Find and return a quadicon belonging to a specific vm

	Parameters:	from_any_provider – Whether to look for it anywhere (root of the tree). Useful when
looking up archived or orphaned VMs

Returns: entity of appropriate type
Raises: VmOrInstanceNotFound

	
get_detail(properties=None, icon_href=False)[source]

	Gets details from the details infoblock

The function first ensures that we are on the detail page for the specific VM/Instance.

	Parameters:	properties – An InfoBlock title, followed by the Key name, e.g. “Relationships”, “Images”

	Returns:	A string representing the contents of the InfoBlock’s value.

	
classmethod get_first_vm_title(do_not_navigate=False, provider=None)[source]

	Get the title of first VM/Instance.

	
ip_address

	Fetches IP Address of VM

	
is_retired

	“Check retirement status of vm

	
is_vm

	

	
last_analysed

	Returns the contents of the Last Analysed field in summary

	
load_details(refresh=False)[source]

	Navigates to an VM’s details page.

	Parameters:	refresh – Refreshes the VM page if already there

	Raises:	VmOrInstanceNotFound

When unable to find the VM passed

	
open_console(console='VM Console', invokes_alert=False, cancel=False)[source]

	Initiates the opening of one of the console types supported by the Access
button. Presently we only support VM Console, which is the HTML5 Console.
In case of VMware provider it could be VMRC, VNC/HTML5, WebMKS, but we only
support VNC/HTML5.
Possible values for ‘console’ could be ‘VM Console’ and ‘Web Console’, but Web
Console is not supported as well.

	Parameters:	
	console – one of the supported console types given by the Access button.

	invokes_alert – If the particular console will invoke a CFME popup/alert
setting this to true will handle this.

	cancel – Allows one to cancel the operation if the popup/alert occurs.

	
open_details(properties=None)[source]

	Clicks on details infoblock

	
open_edit()[source]

	Loads up the edit page of the object.

	
open_timelines()[source]

	Navigates to an VM’s timeline page.

	Returns:	TimelinesView object

	
paged_table

	

	
pretty_attrs = ['name', 'provider', 'template_name']

	

	
quadicon_type

	

	
rediscover()[source]

	Deletes the VM from the provider and lets it discover again

	
rediscover_if_analysis_data_present()[source]

	Rediscovers the object if it has some analysis data present.

	Returns:	Boolean if the rediscovery happened.

	
refresh_relationships(from_details=False, cancel=False, from_any_provider=False)[source]

	Executes a refresh of relationships.

	Parameters:	
	from_details – Whether or not to perform action from instance details page

	cancel – Whether or not to cancel the refresh relationships action

	
retirement_date

	Returns the retirement date of the selected machine, or ‘Never’

	Returns:	str [http://docs.python.org/2.7/library/functions.html#str] object

	
set_ownership(user=None, group=None, click_cancel=False, click_reset=False)[source]

	Set ownership of the VM/Instance or Template/Image

	
smartstate_scan(cancel=False, from_details=False)[source]

	Initiates fleecing from the UI.

	Parameters:	
	cancel – Whether or not to cancel the refresh relationships action

	from_details – Whether or not to perform action from instance details page

	
unset_ownership()[source]

	Unset ownership of the VM/Instance or Template/Image

	
wait_for_delete(timeout=600, load_details=True)

	Wait for a VM to disappear within CFME

	Parameters:	timeout – time (in seconds) to wait for it to appear

	
wait_to_appear(timeout=600, load_details=True)[source]

	Wait for a VM to appear within CFME

	Parameters:	
	timeout – time (in seconds) to wait for it to appear

	load_details – when found, should it load the vm details

	
wait_to_disappear(timeout=600, load_details=True)[source]

	Wait for a VM to disappear within CFME

	Parameters:	timeout – time (in seconds) to wait for it to appear

	
class cfme.common.vm.Template(name, provider, template_name=None)[source]

	Bases: cfme.common.vm.BaseVM, cfme.common.vm._TemplateMixin

A base class for all templates. The constructor is a bit different, it scraps template_name.

	
does_template_exist_on_provider()

	Check if template exists on provider itself

	
does_vm_exist_on_provider()[source]

	Check if template exists on provider itself

	
class cfme.common.vm.VM(name, provider, template_name=None, appliance=None)[source]

	Bases: cfme.common.vm.BaseVM

	
TO_RETIRE = None

	

	
create_on_provider(timeout=900, find_in_cfme=False, **kwargs)[source]

	Create the VM on the provider

	Parameters:	timeout – Number of seconds to wait for the VM to appear in CFME
Will not wait at all, if set to 0 (Defaults to 900)

	
delete_from_provider()[source]

	

	
does_vm_exist_on_provider()[source]

	Check if VM exists on provider itself

	
equal_drift_results(row_text, section, *indexes)[source]

	Compares drift analysis results of a row specified by it’s title text

	Parameters:	
	row_text – Title text of the row to compare

	section – Accordion section where the change happened; this section will be activated

	indexes – Indexes of results to compare starting with 0 for first row (latest result).
Compares all available drifts, if left empty (default).

Note

There have to be at least 2 drift results available for this to work.

	Returns:	True if equal, False otherwise.

	
is_pwr_option_available_in_cfme(option, from_details=False)[source]

	Checks to see if a power option is available on the VM

	Parameters:	
	option – corresponds to option values under the power button,
see EC2Instance and OpenStackInstance

	from_details – Whether or not to perform action from instance details page

	
power_control_from_cfme(option, cancel=True, from_details=False)[source]

	Power controls a VM from within CFME

	Parameters:	
	option – corresponds to option values under the power button

	cancel – Whether or not to cancel the power operation on confirmation

	from_details – Whether or not to perform action from instance details page

	Raises:	OptionNotAvailable –
option param is not visible or enabled

	
power_control_from_provider()[source]

	

	
retire()[source]

	

	
retire_form = <cfme.web_ui.Form fields=[('date_retire', <cfme.web_ui.AngularCalendarInput input_name='retirement_date', click_away_element="//label[contains(normalize-space(.), 'Retirement Date')]">), ('warn', <cfme.web_ui.AngularSelect _loc="//button[@data-id='retirementWarning']", none=None, multi=False, exact=False>)]>

	

	
set_retirement_date(when, warn=None)[source]

	Sets the retirement date for this Vm object.

It incorporates some magic to make it work reliably since the retirement form is not very
pretty and it can’t be just “done”.

	Parameters:	
	when – When to retire. str [http://docs.python.org/2.7/library/functions.html#str] in format mm/dd/yyyy of
datetime.datetime [http://docs.python.org/2.7/library/datetime.html#datetime.datetime] or utils.timeutil.parsetime.

	warn – When to warn, fills the select in the form in case the when is specified.

	
wait_candu_data_available(timeout=600)[source]

	Waits until C&U data are available for this VM/Instance

	Parameters:	timeout – Timeout passed to utils.wait.wait_for()

	
wait_for_vm_state_change(desired_state=None, timeout=300, from_details=False, with_relationship_refresh=True, from_any_provider=False)[source]

	Wait for M to come to desired state.

This function waits just the needed amount of time thanks to wait_for.

	Parameters:	
	desired_state – on, off, suspended... for available states, see
EC2Instance and OpenStackInstance

	timeout – Specify amount of time (in seconds) to wait

	from_any_provider – Archived/Orphaned vms need this

	Raises:	
	TimedOutError

When instance does not come up to desired state in specified period of time.

	InstanceNotFound

When unable to find the instance passed

	
cfme.common.vm.all_types(template=False)[source]

	

	
cfme.common.vm.base_types(template=False)[source]

	

	
cfme.common.vm.date_retire_element(fill_data)[source]

	We need to call this function that will mimic clicking the calendar, picking the date and
the subsequent callbacks from the server

	
cfme.common.vm.instance_types(category, template=False)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.common package

cfme.common.vm_console module

Module containing classes with common behaviour for consoles of both VMs and Instances of all types.

	
class cfme.common.vm_console.VMConsole(vm, console_handle, appliance_handle)[source]

	Bases: cfme.utils.pretty.Pretty

Class to manage the VM Console. Presently, only support HTML5 Console.

	
close_console_window()[source]

	Attempt to close Console window at the end of test.

	
find_text_on_screen(text_to_find, current_line=False)[source]

	Find particular text is present on Screen.

This function uses get_screen_text function to get string containing
the text on the screen and then tries to match it against the ‘text_to_find’.

	Parameters:	text_to_find – This is what re.search will try to search for on screen.

	Returns:	If the match is found returns True else False.

	
get_banner()[source]

	Get the text of the banner above the console screen.

	
get_screen(timeout=15)[source]

	Retrieve the bit map from the canvas widget that represents the console screen.

Returns it as a binary string.

Implementation:
The canvas tag has a method toDataURL() which one can use in javascript to
obtain the canvas image base64 encoded. Examples of how to do this can be
seen here:

https://qxf2.com/blog/selenium-html5-canvas-verify-what-was-drawn/
https://stackoverflow.com/questions/38316402/how-to-save-a-canvas-as-png-in-selenium

	
get_screen_text()[source]

	Return the text from a text console.

Uses OCR to scrape the text from the console image taken at the time of the call.

	
is_connected()[source]

	Wait for the banner on the console to say the console is connected.

	
pretty_attrs = ['appliance_handle', 'browser', 'console_handle', 'name']

	

	
send_ctrl_alt_delete()[source]

	Press the ctrl-alt-delete button in the console tab.

	
send_fullscreen()[source]

	Press the fullscreen button in the console tab.

	
send_keys(text)[source]

	Send text to the console.

	
switch_to_appliance()[source]

	Switch focus to appliance tab/window.

	
switch_to_console()[source]

	Switch focus to console tab/window.

	
wait_for_connect(timeout=30)[source]

	Wait for as long as the specified/default timeout for the console to be connected.

	
wait_for_text(timeout=45, text_to_find='', to_disappear=False)[source]

	Wait for as long as the specified/default timeout for the ‘text’ to show up on screen.

	Parameters:	
	timeout – Wait Time before wait_for function times out.

	text_to_find – value passed to find_text_on_screen function

	to_disappear – if set to True, function will wait for text_to_find to disappear
from screen.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.common package

cfme.common.vm_views module

	
class cfme.common.vm_views.BasicProvisionFormView(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
catalog

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
customize

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
environment

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
hardware

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
network

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
purpose

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
request

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
schedule

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.common.vm_views.EditView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Edit vms/instance page
The title actually as Instance|VM.VM_TYPE string in it, otherwise the same

	
form

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cfme.common.vm_views.InstanceEntity()[source]

	Temporary wrapper for Instance Entity during transition to JS based Entity

	
class cfme.common.vm_views.InstanceListEntity(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.BaseListEntity

Provider child of List entity

	
class cfme.common.vm_views.InstanceQuadIconEntity(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.BaseQuadIconEntity

Provider child of Quad Icon entity

	
data

	

	
class cfme.common.vm_views.InstanceTileIconEntity(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.BaseTileIconEntity

Provider child of Tile Icon entity

	
quad_icon

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.common.vm_views.ManagePoliciesView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Manage policies page

	
form

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.common.vm_views.ManagementEngineView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Edit management engine relationship page
The title actually as Instance|VM.VM_TYPE string in it, otherwise the same

	
form

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.common.vm_views.NonJSInstanceEntity(parent, name, logger=None)[source]

	Bases: widgetastic_manageiq.NonJSBaseEntity

Provider child of Proxy entity

	
list_entity

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
quad_entity

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
tile_entity

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.common.vm_views.PolicySimulationView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Policy Simulation page for vms/instances

	
form

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.common.vm_views.ProvisionView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

The provisioning view, with nested ProvisioningForm as form attribute.
Handles template selection before Provisioning form with before_fill method

	
breadcrumb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
form

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.common.vm_views.RetirementView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Set Retirement date view for vms/instances
The title actually as Instance|VM.VM_TYPE string in it, otherwise the same

	
form

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.common.vm_views.RightSizeView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Right Size recommendations page for vms/instances

	
is_displayed

	

	
class cfme.common.vm_views.SelectTable(parent, locator, column_widgets=None, assoc_column=None, rows_ignore_top=None, rows_ignore_bottom=None, top_ignore_fill=False, bottom_ignore_fill=False, logger=None)[source]

	Bases: widgetastic_manageiq.Table

Wigdet for non-editable table. used for selecting value

	
currently_selected

	Return Name of the selected row

	
fill(*args, **kwargs)[source]

	Clicks on item - fill by selecting required value

	
read(*args, **kwargs)[source]

	

	
read_content()[source]

	This is a default Table.read() method for those who will need table content

	
class cfme.common.vm_views.SetOwnershipView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Set vms/instance ownership page
The title actually as Instance|VM.VM_TYPE string in it, otherwise the same

	
form

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.common.vm_views.VMDetailsEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Details entities view for vms/instances details destinations

VM’s have 3-4 more tables, should inherit and add them there.

	
attributes

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
compliance

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
diagnostics

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
lifecycle

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
power_management

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
security

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
smart_management

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
vmsafe

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.common.vm_views.VMEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.BaseEntitiesView

Entities view for vms/instances collection destinations

	
adv_search_clear

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
entity_class

	

	
class cfme.common.vm_views.VMToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Toolbar view for vms/instances collection destinations

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
lifecycle

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
power

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reload

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
view_selector

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

cfme.configure package

Subpackages

	cfme.configure.configuration package
	Submodules
	cfme.configure.configuration.analysis_profile module

	cfme.configure.configuration.region_settings module

	Module contents

Submodules

	cfme.configure.about module

	cfme.configure.access_control module

	cfme.configure.documentation module

	cfme.configure.settings module

	cfme.configure.tasks module

Module contents

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.configure package

cfme.configure.configuration package

Submodules

	cfme.configure.configuration.analysis_profile module

	cfme.configure.configuration.region_settings module

Module contents

	
class cfme.configure.configuration.AmazonAuthSetting(access_key, secret_key, get_groups=False, timeout_h=None, timeout_m=None)[source]

	Bases: cfme.configure.configuration.AuthSetting

Authentication settings via Amazon.

	Parameters:	
	access_key – Amazon access key

	secret_key – Amazon secret key

	get_groups – Whether to get groups from the auth provider (default False)

	timeout_h – Timeout in hours

	timeout_m – Timeout in minutes

Usage:

amiauth = AmazonAuthSetting("AJSHDGVJAG", "IUBDIUWQBQW")
amiauth.update()

	
form = <cfme.web_ui.Form fields=[('timeout_h', {Version('lowest'): Select('select#session_timeout_hours', multi=False), '5.5': <cfme.web_ui.AngularSelect _loc="//button[@data-id='session_timeout_hours']", none=None, multi=False, exact=False>}), ('timeout_m', {Version('lowest'): Select('select#session_timeout_mins', multi=False), '5.5': <cfme.web_ui.AngularSelect _loc="//button[@data-id='session_timeout_mins']", none=None, multi=False, exact=False>}), ('auth_mode', {Version('lowest'): Select('select#authentication_mode', multi=False), '5.5': <cfme.web_ui.AngularSelect _loc="//button[@data-id='authentication_mode']", none=None, multi=False, exact=False>}), ('access_key', <cfme.web_ui.Input _names=('authentication_amazon_key',), _use_id=False>), ('secret_key', <cfme.web_ui.Input _names=('authentication_amazon_secret',), _use_id=False>), ('get_groups', <cfme.web_ui.Input _names=('amazon_role',), _use_id=False>)]>

	

	
pretty_attrs = ['access_key', 'secret_key', 'get_groups', 'timeout_h', 'timeout_m']

	

	
update(updates=None)[source]

	

	
class cfme.configure.configuration.AuthSetting[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.pretty.Pretty

	
form = <cfme.web_ui.Form fields=[('timeout_h', {Version('lowest'): Select('select#session_timeout_hours', multi=False), '5.5': <cfme.web_ui.AngularSelect _loc="//button[@data-id='session_timeout_hours']", none=None, multi=False, exact=False>}), ('timeout_m', {Version('lowest'): Select('select#session_timeout_mins', multi=False), '5.5': <cfme.web_ui.AngularSelect _loc="//button[@data-id='session_timeout_mins']", none=None, multi=False, exact=False>})]>

	

	
classmethod set_session_timeout(hours=None, minutes=None)[source]

	Sets the session timeout of the appliance.

	
class cfme.configure.configuration.BasicInformation(company_name=None, appliance_name=None, appliance_zone=None, time_zone=None, appliance=None)[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable

This class represents the “Basic Info” section of the Configuration page.

	Parameters:	
	company_name – Company name.

	appliance_name – Appliance name.

	appliance_zone – Appliance Zone.

	time_zone – Time Zone.

Usage:

basic_info = BasicInformation(company_name="ACME Inc.")
basic_info.update()

	
basic_information = <cfme.web_ui.Form fields=[('company_name', <cfme.web_ui.Input _names=('server_company',), _use_id=False>), ('appliance_name', <cfme.web_ui.Input _names=('server_name',), _use_id=False>), ('appliance_zone', Select('select#server_zone', multi=False)), ('time_zone', Select('select#server_timezone', multi=False))]>

	

	
pretty_attrs = ['company_name', 'appliance_name', 'appliance_zone', 'time_zone', 'appliance']

	

	
update()[source]

	Navigate to a correct page, change details and save.

	
class cfme.configure.configuration.Category(name=None, display_name=None, description=None, show_in_console=True, single_value=True, capture_candu=False, appliance=None)[source]

	Bases: cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable

	
create(cancel=False)[source]

	

	
delete(cancel=True)[source]

	

	
pretty_attrs = ['name', 'display_name', 'description', 'show_in_console', 'single_value', 'capture_candu']

	

	
update(updates, cancel=False)[source]

	

	
class cfme.configure.configuration.CategoryAdd(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

Unlike most other Add operations, this one requires an instance

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.configuration.CategoryAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.configuration.CategoryEdit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.configuration.DatabaseAuthSetting(timeout_h=None, timeout_m=None)[source]

	Bases: cfme.configure.configuration.AuthSetting

Authentication settings for DB internal database.

	Parameters:	
	timeout_h – Timeout in hours

	timeout_m – Timeout in minutes

Usage:

dbauth = DatabaseAuthSetting()
dbauth.update()

	
form = <cfme.web_ui.Form fields=[('timeout_h', {Version('lowest'): Select('select#session_timeout_hours', multi=False), '5.5': <cfme.web_ui.AngularSelect _loc="//button[@data-id='session_timeout_hours']", none=None, multi=False, exact=False>}), ('timeout_m', {Version('lowest'): Select('select#session_timeout_mins', multi=False), '5.5': <cfme.web_ui.AngularSelect _loc="//button[@data-id='session_timeout_mins']", none=None, multi=False, exact=False>}), ('auth_mode', {Version('lowest'): Select('select#authentication_mode', multi=False), '5.5': <cfme.web_ui.AngularSelect _loc="//button[@data-id='authentication_mode']", none=None, multi=False, exact=False>})]>

	

	
pretty_attrs = ['timeout_h', 'timeout_m']

	

	
update(updates=None)[source]

	

	
class cfme.configure.configuration.DatabaseBackupSchedule(name, description, active=True, protocol=None, depot_name=None, uri=None, username=None, password=None, password_verify=None, run_type='Once', run_every=None, time_zone=None, start_date=None, start_hour=None, start_min=None)[source]

	Bases: cfme.configure.configuration.Schedule

Configure/Configuration/Region/Schedules - Database Backup type

	Parameters:	
	name – Schedule name

	description – Schedule description

	active – Whether the schedule should be active (default True)

	protocol – One of {'Samba', 'Network File System'}

	run_type – Once, Hourly, Daily, ...

	run_every – If run_type is not Once, then you can specify how often it should be run

	time_zone – Time zone selection

	start_date – Specify start date (mm/dd/yyyy or datetime.datetime())

	start_hour – Starting hour

	start_min – Starting minute

Usage:

smb_schedule = DatabaseBackupSchedule(
 name="Bi-hourly Samba Database Backup",
 description="Everybody's favorite backup schedule",
 protocol="Samba",
 uri="samba.example.com/share_name",
 username="samba_user",
 password="secret",
 password_verify="secret",
 time_zone="UTC",
 start_date=datetime.datetime.utcnow(),
 run_type="Hourly",
 run_every="2 Hours"
)
smb_schedule.create()
smb_schedule.delete()

... or ...

nfs_schedule = DatabaseBackupSchedule(
 name="One-time NFS Database Backup",
 description="The other backup schedule",
 protocol="Network File System",
 uri="nfs.example.com/path/to/share",
 time_zone="Chihuahua",
 start_date="21/6/2014",
 start_hour="7",
 start_min="45"
)
nfs_schedule.create()
nfs_schedule.delete()

	
create(cancel=False, samba_validate=False)[source]

	Create a new schedule from the informations stored in the object.

	Parameters:	
	cancel – Whether to click on the cancel button to interrupt the creation.

	samba_validate – Samba-only option to click the Validate button to check
if entered samba credentials are valid or not

	
form = <cfme.web_ui.Form fields=[('name', <cfme.web_ui.Input _names=('name',), _use_id=False>), ('description', <cfme.web_ui.Input _names=('description',), _use_id=False>), ('active', <cfme.web_ui.Input _names=('enabled',), _use_id=False>), ('action', {Version('lowest'): Select('select#action_typ', multi=False), '5.5': <cfme.web_ui.AngularSelect _loc="//button[@data-id='action_typ']", none=None, multi=False, exact=False>}), ('log_protocol', {Version('lowest'): Select('select#log_protocol', multi=False), '5.5': <cfme.web_ui.AngularSelect _loc="//button[@data-id='log_protocol']", none=None, multi=False, exact=False>}), ('depot_name', <cfme.web_ui.Input _names=('depot_name',), _use_id=False>), ('uri', <cfme.web_ui.Input _names=('uri',), _use_id=False>), ('log_userid', <cfme.web_ui.Input _names=('log_userid',), _use_id=False>), ('log_password', <cfme.web_ui.Input _names=('log_password',), _use_id=False>), ('log_verify', <cfme.web_ui.Input _names=('log_verify',), _use_id=False>), ('timer_type', {Version('lowest'): Select('select#timer_typ', multi=False), '5.5': <cfme.web_ui.AngularSelect _loc="//button[@data-id='timer_typ']", none=None, multi=False, exact=False>}), ('timer_hours', Select('select#timer_hours', multi=False)), ('timer_days', Select('select#timer_days', multi=False)), ('timer_weeks', Select('select#timer_weekss', multi=False)), ('timer_months', Select('select#timer_months', multi=False)), ('timer_value', <cfme.web_ui.AngularSelect _loc="//button[@data-id='timer_value']", none=None, multi=False, exact=False>, {'appeared_in': '5.5'}), ('time_zone', <cfme.web_ui.AngularSelect _loc="//button[@data-id='time_zone']", none=None, multi=False, exact=False>), ('start_date', <cfme.web_ui.Calendar >), ('start_hour', <cfme.web_ui.AngularSelect _loc="//button[@data-id='start_hour']", none=None, multi=False, exact=False>), ('start_min', <cfme.web_ui.AngularSelect _loc="//button[@data-id='start_min']", none=None, multi=False, exact=False>)]>

	

	
last_date

	

	
update(updates, cancel=False, samba_validate=False)[source]

	Modify an existing schedule with informations from this instance.

	Parameters:	
	updates – Dict with fields to be updated

	cancel – Whether to click on the cancel button to interrupt the editation.

	samba_validate – Samba-only option to click the Validate button to check
if entered samba credentials are valid or not

	
class cfme.configure.configuration.ExternalAuthSetting(get_groups=False, timeout_h='1', timeout_m='0')[source]

	Bases: cfme.configure.configuration.AuthSetting

Authentication settings for authentication via httpd.

	Parameters:	
	timeout_h – Timeout in hours

	timeout_m – Timeout in minutes

	get_groups – Get user groups from external auth source.

Usage:

dbauth = ExternalAuthSetting(get_groups=True)
dbauth.update()

	
form = <cfme.web_ui.Form fields=[('timeout_h', {Version('lowest'): Select('select#session_timeout_hours', multi=False), '5.5': <cfme.web_ui.AngularSelect _loc="//button[@data-id='session_timeout_hours']", none=None, multi=False, exact=False>}), ('timeout_m', {Version('lowest'): Select('select#session_timeout_mins', multi=False), '5.5': <cfme.web_ui.AngularSelect _loc="//button[@data-id='session_timeout_mins']", none=None, multi=False, exact=False>}), ('auth_mode', {Version('lowest'): Select('select#authentication_mode', multi=False), '5.5': <cfme.web_ui.AngularSelect _loc="//button[@data-id='authentication_mode']", none=None, multi=False, exact=False>}), ('get_groups', <cfme.web_ui.Input _names=('httpd_role',), _use_id=False>)]>

	

	
pretty_attrs = ['timeout_h', 'timeout_m', 'get_groups']

	

	
setup()[source]

	

	
update(updates=None)[source]

	

	
class cfme.configure.configuration.LDAPAuthSetting(hosts, user_type, user_suffix, base_dn=None, bind_dn=None, bind_password=None, get_groups=False, get_roles=False, follow_referrals=False, port=None, timeout_h=None, timeout_m=None)[source]

	Bases: cfme.configure.configuration.AuthSetting

Authentication via LDAP

	Parameters:	
	hosts – List of LDAP servers (max 3).

	user_type – “userprincipalname”, “mail”, ...

	user_suffix – User suffix.

	base_dn – Base DN.

	bind_dn – Bind DN.

	bind_password – Bind Password.

	get_groups – Get user groups from LDAP.

	get_roles – Get roles from home forest.

	follow_referrals – Follow Referrals.

	port – LDAP connection port.

	timeout_h – Timeout in hours

	timeout_m – Timeout in minutes

Usage:

ldapauth = LDAPAuthSetting(
 ["host1", "host2"],
 "mail",
 "user.acme.com"
)
ldapauth.update()

	
AUTH_MODE = 'LDAP'

	

	
form = <cfme.web_ui.Form fields=[('timeout_h', {Version('lowest'): Select('select#session_timeout_hours', multi=False), '5.5': <cfme.web_ui.AngularSelect _loc="//button[@data-id='session_timeout_hours']", none=None, multi=False, exact=False>}), ('timeout_m', {Version('lowest'): Select('select#session_timeout_mins', multi=False), '5.5': <cfme.web_ui.AngularSelect _loc="//button[@data-id='session_timeout_mins']", none=None, multi=False, exact=False>}), ('auth_mode', {Version('lowest'): Select('select#authentication_mode', multi=False), '5.5': <cfme.web_ui.AngularSelect _loc="//button[@data-id='authentication_mode']", none=None, multi=False, exact=False>}), ('ldaphost_1', <cfme.web_ui.Input _names=('authentication_ldaphost_1',), _use_id=False>), ('ldaphost_2', <cfme.web_ui.Input _names=('authentication_ldaphost_2',), _use_id=False>), ('ldaphost_3', <cfme.web_ui.Input _names=('authentication_ldaphost_3',), _use_id=False>), ('port', <cfme.web_ui.Input _names=('authentication_ldapport',), _use_id=False>), ('user_type', {Version('lowest'): Select('select#authentication_user_type', multi=False), '5.5': <cfme.web_ui.AngularSelect _loc="//button[@data-id='authentication_user_type']", none=None, multi=False, exact=False>}), ('user_suffix', <cfme.web_ui.Input _names=('authentication_user_suffix',), _use_id=False>), ('get_groups', <cfme.web_ui.Input _names=('ldap_role',), _use_id=False>), ('get_roles', <cfme.web_ui.Input _names=('get_direct_groups',), _use_id=False>), ('default_groups', {Version('lowest'): Select('select#authentication_default_group_for_users', multi=False), '5.5': <cfme.web_ui.AngularSelect _loc="//button[@data-id='authentication_default_group_for_users']", none=None, multi=False, exact=False>}), ('get_direct_groups', <cfme.web_ui.Input _names=('get_direct_groups',), _use_id=False>), ('follow_referrals', <cfme.web_ui.Input _names=('follow_referrals',), _use_id=False>), ('base_dn', <cfme.web_ui.Input _names=('authentication_basedn',), _use_id=False>), ('bind_dn', <cfme.web_ui.Input _names=('authentication_bind_dn',), _use_id=False>), ('bind_password', <cfme.web_ui.Input _names=('authentication_bind_pwd',), _use_id=False>)]>

	

	
pretty_attrs = ['hosts', 'user_type', 'user_suffix', 'base_dn', 'bind_dn', 'bind_password']

	

	
update(updates=None)[source]

	

	
class cfme.configure.configuration.LDAPSAuthSetting(hosts, user_type, user_suffix, base_dn=None, bind_dn=None, bind_password=None, get_groups=False, get_roles=False, follow_referrals=False, port=None, timeout_h=None, timeout_m=None)[source]

	Bases: cfme.configure.configuration.LDAPAuthSetting

Authentication via LDAPS

	Parameters:	
	hosts – List of LDAPS servers (max 3).

	user_type – “userprincipalname”, “mail”, ...

	user_suffix – User suffix.

	base_dn – Base DN.

	bind_dn – Bind DN.

	bind_password – Bind Password.

	get_groups – Get user groups from LDAP.

	get_roles – Get roles from home forest.

	follow_referrals – Follow Referrals.

	port – LDAPS connection port.

	timeout_h – Timeout in hours

	timeout_m – Timeout in minutes

Usage:

ldapauth = LDAPSAuthSetting(
 ["host1", "host2"],
 "mail",
 "user.acme.com"
)
ldapauth.update()

	
AUTH_MODE = 'LDAPS'

	

	
class cfme.configure.configuration.SMTPSettings(host=None, port=None, domain=None, start_tls=None, ssl_verify=None, auth=None, username=None, password=None, from_email=None, test_email=None)[source]

	Bases: cfme.utils.update.Updateable

SMTP settings on the main page.

	Parameters:	
	host – SMTP Server host name

	port – SMTP Server port

	domain – E-mail domain

	start_tls – Whether use StartTLS

	ssl_verify – SSL Verification

	auth – Authentication type

	username – User name

	password – User password

	from_email – E-mail address to be used as the “From:”

	test_email – Destination of the test-email.

Usage:

smtp = SMTPSettings(
 host="smtp.acme.com",
 start_tls=True,
 auth="login",
 username="mailer",
 password="secret"
)
smtp.update()

Note: TODO: send a test-email, if that will be needed.

	
buttons = <cfme.web_ui.Region title=None>

	

	
classmethod send_test_email(to_address)[source]

	Send a testing e-mail on specified address. Needs configured SMTP.

	Parameters:	to_address – Destination address.

	
smtp_settings = <cfme.web_ui.Form fields=[('host', <cfme.web_ui.Input _names=('smtp_host',), _use_id=False>), ('port', <cfme.web_ui.Input _names=('smtp_port',), _use_id=False>), ('domain', <cfme.web_ui.Input _names=('smtp_domain',), _use_id=False>), ('start_tls', <cfme.web_ui.Input _names=('smtp_enable_starttls_auto',), _use_id=False>), ('ssl_verify', <cfme.web_ui.AngularSelect _loc="//button[@data-id='smtp_openssl_verify_mode']", none=None, multi=False, exact=False>), ('auth', <cfme.web_ui.AngularSelect _loc="//button[@data-id='smtp_authentication']", none=None, multi=False, exact=False>), ('username', <cfme.web_ui.Input _names=('smtp_user_name',), _use_id=False>), ('password', <cfme.web_ui.Input _names=('smtp_password',), _use_id=False>), ('from_email', <cfme.web_ui.Input _names=('smtp_from',), _use_id=False>), ('to_email', <cfme.web_ui.Input _names=('smtp_test_to',), _use_id=False>)]>

	

	
update()[source]

	

	
class cfme.configure.configuration.Schedule(name, description, active=True, action=None, filter_type=None, filter_value=None, run_type='Once', run_every=None, time_zone=None, start_date=None, start_hour=None, start_min=None, appliance=None)[source]

	Bases: cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable

Configure/Configuration/Region/Schedules functionality

Create, Update, Delete functionality.

	Parameters:	
	name – Schedule’s name.

	description – Schedule description.

	active – Whether the schedule should be active (default True)

	action – Action type

	filter_type – Filtering type

	filter_value – If a more specific filter_type is selected, here is the place to choose
hostnames, machines and so ...

	run_type – Once, Hourly, Daily, ...

	run_every – If run_type is not Once, then you can specify how often it should be run.

	time_zone – Time zone selection.

	start_date – Specify start date (mm/dd/yyyy or datetime.datetime()).

	start_hour – Starting hour

	start_min – Starting minute.

Usage:

schedule = Schedule(
 "My very schedule",
 "Some description here.",
 action="Datastore Analysis",
 filter_type="All Datastores for Host",
 filter_value="datastore.intra.acme.com",
 run_type="Hourly",
 run_every="2 Hours"
)
schedule.create()
schedule.disable()
schedule.enable()
schedule.delete()
Or
Schedule.enable_by_names("One schedule", "Other schedule")
And so.

Note: TODO: Maybe the row handling might go into Table class?

	
create(cancel=False)[source]

	Create a new schedule from the informations stored in the object.

	Parameters:	cancel – Whether to click on the cancel button to interrupt the creation.

	
delete(cancel=False)[source]

	Delete the schedule represented by this object.

Calls the class method with the name of the schedule taken out from the object.

	Parameters:	cancel – Whether to click on the cancel button in the pop-up.

	
disable()[source]

	Enable the schedule via table checkbox and Configuration menu.

	
enable()[source]

	Enable the schedule via table checkbox and Configuration menu.

	
form = <cfme.web_ui.Form fields=[('name', <cfme.web_ui.Input _names=('name',), _use_id=False>), ('description', <cfme.web_ui.Input _names=('description',), _use_id=False>), ('active', <cfme.web_ui.Input _names=('enabled',), _use_id=False>), ('action', {Version('lowest'): Select('select#action_typ', multi=False), '5.5': <cfme.web_ui.AngularSelect _loc="//button[@data-id='action_typ']", none=None, multi=False, exact=False>}), ('filter_type', {Version('lowest'): Select('select#filter_typ', multi=False), '5.5': <cfme.web_ui.AngularSelect _loc="//button[@data-id='filter_typ']", none=None, multi=False, exact=False>}), ('filter_value', {Version('lowest'): Select('select#filter_value', multi=False), '5.5': <cfme.web_ui.AngularSelect _loc="//button[@data-id='filter_value']", none=None, multi=False, exact=False>}), ('timer_type', {Version('lowest'): Select('select#timer_typ', multi=False), '5.5': <cfme.web_ui.AngularSelect _loc="//button[@data-id='timer_typ']", none=None, multi=False, exact=False>}), ('timer_hours', Select('select#timer_hours', multi=False)), ('timer_days', Select('select#timer_days', multi=False)), ('timer_weeks', Select('select#timer_weekss', multi=False)), ('timer_months', Select('select#timer_months', multi=False)), ('timer_value', <cfme.web_ui.AngularSelect _loc="//button[@data-id='timer_value']", none=None, multi=False, exact=False>, {'appeared_in': '5.5'}), ('time_zone', {Version('lowest'): Select('select#time_zone', multi=False), '5.5': <cfme.web_ui.AngularSelect _loc="//button[@data-id='time_zone']", none=None, multi=False, exact=False>}), ('start_date', <cfme.web_ui.Calendar >), ('start_hour', {Version('lowest'): Select('select#start_hour', multi=False), '5.5': <cfme.web_ui.AngularSelect _loc="//button[@data-id='start_hour']", none=None, multi=False, exact=False>}), ('start_min', {Version('lowest'): Select('select#start_min', multi=False), '5.5': <cfme.web_ui.AngularSelect _loc="//button[@data-id='start_min']", none=None, multi=False, exact=False>})]>

	

	
pretty_attrs = ['name', 'description', 'run_type', 'run_every', 'start_date', 'start_hour', 'start_min']

	

	
select()[source]

	Select the checkbox for current schedule

	
tab = {'Monthly': 'timer_months', 'Hourly': 'timer_hours', 'Daily': 'timer_days', 'Weekly': 'timer_weeks'}

	

	
update(updates, cancel=False)[source]

	Modify an existing schedule with informations from this instance.

	Parameters:	
	updates – Dict with fields to be updated

	cancel – Whether to click on the cancel button to interrupt the editation.

	
class cfme.configure.configuration.ScheduleAdd(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.configuration.ScheduleAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
prerequisite

	This is a helper descriptor for navigation destinations which are on another class/object.

For instance, imagine you have a different object that has a ‘ViewAll’, destination that
needs to be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToObject as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step on the other object.

	
step()[source]

	

	
class cfme.configure.configuration.ScheduleDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.configuration.ScheduleEdit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.configuration.ServerLogDepot(depot_type, depot_name=None, uri=None, username=None, password=None, zone_collect=False, second_server_collect=False, appliance=None)[source]

	Bases: cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable

This class represents the ‘Collect logs’ for the server.

Usage:

log_credentials = configure.ServerLogDepot("anon_ftp",
 depot_name=fauxfactory.gen_alphanumeric(),
 uri=fauxfactory.gen_alphanumeric())
log_credentials.create()
log_credentials.clear()

	
clear()[source]

	Set depot type to “No Depot”

	
collect_all()[source]

	Initiate and wait for collection of all logs to finish.

	
collect_current()[source]

	Initiate and wait for collection of the current log to finish.

	
create(cancel=False)[source]

	

	
is_cleared

	

	
last_collection

	

	
last_message

	

	
class cfme.configure.configuration.Tag(name=None, display_name=None, category=None, appliance=None)[source]

	Bases: cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable

	
create()[source]

	

	
delete(cancel=True)[source]

	

	
pretty_attrs = ['name', 'display_name', 'category']

	

	
update(updates)[source]

	

	
class cfme.configure.configuration.TagsAdd(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

Unlike most other Add operations, this one requires an instance

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.configuration.TagsAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.configuration.TagsEdit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.configuration.VMwareConsoleSupport(console_type, appliance=None)[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable

This class represents the “VMware Console Support” section of the Configuration page.
Note this is to support CFME 5.8 and beyond functionality.

	Parameters:	console_type – One of the following strings ‘VMware VMRC Plugin’, ‘VNC’ or ‘VMware WebMKS’

Usage:

vmware_console_support = VMwareConsoleSupport(console_type="VNC")
vmware_console_support.update()

	
CONSOLE_TYPES = ['VNC', 'VMware VMRC Plugin', 'VMware WebMKS']

	

	
pretty_attrs = ['console_type']

	

	
update()[source]

	Navigate to a correct page, change details and save.

	
vmware_console_form = <cfme.web_ui.Form fields=[('console_type', <cfme.web_ui.AngularSelect _loc="//button[@data-id='console_type']", none=None, multi=False, exact=False>)]>

	

	
cfme.configure.configuration.get_ntp_servers()[source]

	

	
cfme.configure.configuration.get_replication_backlog(navigate=True)[source]

	Gets replication backlog from Configure / Configuration pages.

Returns: int representing the remaining items in the replication backlog.

	
cfme.configure.configuration.get_replication_status(navigate=True)[source]

	Gets replication status from Configure / Configuration pages.

Returns: bool of whether replication is Active or Inactive.

	
cfme.configure.configuration.get_server_roles(navigate=True, db=True)[source]

	Get server roles from Configure / Configuration

	Returns: dict [http://docs.python.org/2.7/library/stdtypes.html#dict] with the roles in the same format as set_server_roles()

	accepts as kwargs.

	
cfme.configure.configuration.get_workers_list(do_not_navigate=False, refresh=True)[source]

	Retrieves all workers.

Returns a dictionary where keys are names of the workers and values are lists (because worker
can have multiple instances) which contain dictionaries with some columns.

	
cfme.configure.configuration.restart_workers(name, wait_time_min=1)[source]

	Restarts workers by their name.

	Parameters:	name – Name of the worker. Multiple workers can have the same name. Name is matched with in

Returns: bool whether the restart succeeded.

	
cfme.configure.configuration.server_roles_disabled(*roles)[source]

	

	
cfme.configure.configuration.server_roles_enabled(*roles)[source]

	

	
cfme.configure.configuration.set_auth_mode(mode, **kwargs)[source]

	Set up authentication mode

	Parameters:	
	mode – Authentication mode to set up.

	kwargs – A dict of keyword arguments used to initialize one of
the *AuthSetting classes - class type is mode-dependent.

	Raises:	AuthModeUnknown –
when the given mode is not valid

	
cfme.configure.configuration.set_ntp_servers(*servers)[source]

	Set NTP servers on Configure / Configuration pages.

	Parameters:	*servers – Maximum of 3 hostnames.

	
cfme.configure.configuration.set_replication_worker_host(host, port='5432')[source]

	Set replication worker host on Configure / Configuration pages.

	Parameters:	host – Address of the hostname to replicate to.

	
cfme.configure.configuration.set_server_roles(db=True, **roles)[source]

	Set server roles on Configure / Configuration pages.

	Parameters:	**roles – Roles specified as in server_roles Form in this module. Set to True or False

	
cfme.configure.configuration.setup_authmode_database()[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.configure package

 	cfme.configure.configuration package

cfme.configure.configuration.analysis_profile module

	
class cfme.configure.configuration.analysis_profile.AnalysisProfile(name, description, profile_type, files=None, events=None, categories=None, registry=None, appliance=None)[source]

	Bases: cfme.utils.pretty.Pretty, cfme.utils.update.Updateable, widgetastic.utils.Fillable, cfme.utils.appliance.Navigatable

Analysis profiles, Vm and Host type

Example: Note the keys for files, events, registry should match UI columns

p = AnalysisProfile(name, description, profile_type='VM')
p.files = [
 {"Name": "/some/anotherfile", "Collect Contents?": True},
]
p.events = [
 {"Name": name, "Filter Message": msg, "Level": lvl, "Source": src, "# of Days": 1},
]
p.registry = [
 {"Registry Key": key, "Registry Value": value},
]
p.categories = ["System", "Software"] # Use the checkbox text name
p.create()
p2 = p.copy(new_name="updated AP")
with update(p):
 p.files = [{"Name": "/changed". "Collect Contents?": False}]
p.delete()

	
CREATE_LOC = None

	

	
HOST_TYPE = 'Host'

	

	
VM_TYPE = 'Vm'

	

	
as_fill_value()[source]

	String representation of an Analysis Profile in CFME UI

	
copy(new_name=None, cancel=False)[source]

	Copy the Analysis Profile

	
create(cancel=False)[source]

	Add Analysis Profile to appliance

	
delete(cancel=False)[source]

	Delete self via details page

	
exists

	

	
form_fill_args(updates=None)[source]

	Build a dictionary of nested tab_forms for assoc_fill from a flat object dictionary
If updates dictionary is passed, it is used instead of self
This should work for create or update form fill args

	
pretty_attrs = ('name', 'description', 'files', 'events')

	

	
update(updates, cancel=False)[source]

	Update the existing Analysis Profile with given updates dict
Make use of Updateable and use with to update object as well
Note the updates dict should take the structure below if called directly

updates = {
 'name': self.name,
 'description': self.description,
 'files': {
 'tab_form': ['/example/file']},
 'events': {
 'tab_form': ['example_event']},
 'categories': {
 'tab_form': ['Example']},
 'registry': {
 'tab_form': ['example_registry']}
}

	Args:

	updates (dict): Dictionary of values to change in the object.
cancel (boolean): whether to cancel the update

	
class cfme.configure.configuration.analysis_profile.AnalysisProfileAdd(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AnalysisProfileAddView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.configuration.analysis_profile.AnalysisProfileAddView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

View for the add form, switches between host/vm based on object type
Uses a switchable view based on the profile type widget

	
AnalysisProfileAddHost = None

	

	
AnalysisProfileAddVm = None

	

	
add

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
form

	Conditional switchable view implementation.

This widget proxy is useful when you have a form whose parts displayed depend on certain
conditions. Eg. when you select certain value from a dropdown, one form is displayed next,
when other value is selected, a different form is displayed next. This widget proxy is designed
to register those multiple views and then upon accessing decide which view to use based on the
registration conditions.

The resulting widget proxy acts similarly like a nested view (if you use view of course).

Example

class SomeForm(View):
 foo = Input('...')
 action_type = Select(name='action_type')

 action_form = ConditionalSwitchableView(reference='action_type')

 # Simple value matching. If Action type 1 is selected in the select, use this view.
 # And if the action_type value does not get matched, use this view as default
 @action_form.register('Action type 1', default=True)
 class ActionType1Form(View):
 widget = Widget()

 # You can use a callable to declare the widget values to compare
 @action_form.register(lambda action_type: action_type == 'Action type 2')
 class ActionType2Form(View):
 widget = Widget()

 # With callable, you can use values from multiple widgets
 @action_form.register(
 lambda action_type, foo: action_type == 'Action type 2' and foo == 2)
 class ActionType2Form(View):
 widget = Widget()

You can see it gives you the flexibility of decision based on the values in the view.

	Parameters:	
	reference – For using non-callable conditions, this must be specified. Specifies the name of
the widget whose value will be used for comparing non-callable conditions. Supports
going across objects using ..

	ignore_bad_reference – If this is enabled, then when the widget representing the reference
is not displayed or otherwise broken, it will then use the default view.

	
is_displayed

	

	
profile_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.analysis_profile.AnalysisProfileAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AnalysisProfileAllView

	
prerequisite

	This is a helper descriptor for navigation destinations which are on another class/object.

For instance, imagine you have a different object that has a ‘ViewAll’, destination that
needs to be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToObject as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step on the other object.

	
step()[source]

	

	
class cfme.configure.configuration.analysis_profile.AnalysisProfileAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

View for the Analysis Profile collection page

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
paginator

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.analysis_profile.AnalysisProfileBaseAddForm(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

View for the common elements of the two AP forms

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
events

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
files

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.analysis_profile.AnalysisProfileCopy(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AnalysisProfileCopyView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.configuration.analysis_profile.AnalysisProfileCopyView(parent, logger=None, **kwargs)[source]

	Bases: cfme.configure.configuration.analysis_profile.AnalysisProfileAddView

View for the copy form is the same as an add

The name field is by default set with ‘Copy of [profile name of copy source]
Don’t want to assert against this field to separately verify the view is displayed
If is_displayed is called after the form is changed it will be false negative

	
class cfme.configure.configuration.analysis_profile.AnalysisProfileDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AnalysisProfileDetailsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.configuration.analysis_profile.AnalysisProfileDetailsEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Main content on an analysis profile details page

	
info_description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
info_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
info_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.analysis_profile.AnalysisProfileDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

View for an analysis profile details page

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.analysis_profile.AnalysisProfileEdit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AnalysisProfileEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.configuration.analysis_profile.AnalysisProfileEditView(parent, logger=None, **kwargs)[source]

	Bases: cfme.configure.configuration.analysis_profile.AnalysisProfileAddView

View for the edit form, extends add view since all fields are the same and editable

	
is_displayed

	

	
reset

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.analysis_profile.AnalysisProfileEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Main content on the analysis profiles configuration page, title and table

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.analysis_profile.AnalysisProfileToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Toolbar on the analysis profiles configuration page
Works for both all page and details page

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.configure package

 	cfme.configure.configuration package

cfme.configure.configuration.region_settings module

	
class cfme.configure.configuration.region_settings.CANDUCollection(appliance)[source]

	Bases: cfme.utils.appliance.BaseCollection

Class represents a C and U in CFME UI

	
disable_all(reset=False)[source]

	Disable C and U

	Parameters:	reset – Reset changes, default is ‘False’ - changes will not be reset

	
enable_all(reset=False)[source]

	Enable C and U

	Parameters:	reset – Reset changes, default is ‘False’ - changes will not be reset

	
class cfme.configure.configuration.region_settings.CANDUCollectionDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of CANDUCollectionView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.configuration.region_settings.CANDUCollectionView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ui.RegionView

C and U View

	
all_clusters_cb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
all_datastores_cb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.region_settings.Category(name=None, display_name=None, description=None, show_in_console=True, single_value=True, capture_candu=False, appliance=None)[source]

	Bases: cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable, cfme.utils.update.Updateable

Class represents a category in CFME UI

	Parameters:	
	name – Name of the category

	display_name – Category display name

	description – Category description

	show_in_console – Option to show category in console (True/False)

	single_value – Option if category is single value (True/False)

	capture_candu – True/False, capture c&u data by tag

	
create(cancel=False)[source]

	Create category method

	Parameters:	cancel – To cancel creation pass True, cancellation message will be verified
By defaul user will be created

	
delete(cancel=True)[source]

	Delete existing category

	Parameters:	cancel – Default value ‘True’, category will be deleted
‘False’ - deletion of category will be canceled

	
pretty_attrs = ['name', 'display_name', 'description', 'show_in_console', 'single_value', 'capture_candu']

	

	
update(updates, cancel=False)[source]

	Update category method

	Parameters:	updates – category data that should be changed

	
class cfme.configure.configuration.region_settings.CategoryAdd(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of CompanyCategoriesAddView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.configuration.region_settings.CategoryAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of CompanyCategoriesAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.configuration.region_settings.CategoryEdit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of CompanyCategoriesEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.configuration.region_settings.CompanyCategoriesAddView(parent, logger=None, **kwargs)[source]

	Bases: cfme.configure.configuration.region_settings.CompanyCategoriesAllView

Add Company Categories View

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
capture_candu

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
display_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
long_description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
show_in_console

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
single_value

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.region_settings.CompanyCategoriesAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ui.RegionView

Company Categories List View

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.region_settings.CompanyCategoriesEditView(parent, logger=None, **kwargs)[source]

	Bases: cfme.configure.configuration.region_settings.CompanyCategoriesAddView

Edit Company Categories View

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.region_settings.CompanyTagsAddView(parent, logger=None, **kwargs)[source]

	Bases: cfme.configure.configuration.region_settings.CompanyTagsAllView

Add Company Tags view

	
is_displayed

	

	
tag_description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
tag_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.region_settings.CompanyTagsAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ui.RegionView

Company Tags list view

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
category_dropdown

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.region_settings.CompanyTagsEditView(parent, logger=None, **kwargs)[source]

	Bases: cfme.configure.configuration.region_settings.CompanyTagsAddView

Edit Company Tags view

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.region_settings.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RedHatUpdatesView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.configuration.region_settings.Edit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RedHatUpdatesEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.configuration.region_settings.MapTags(entity=None, label=None, category=None, appliance=None)[source]

	Bases: cfme.utils.appliance.Navigatable, cfme.utils.pretty.Pretty, cfme.utils.update.Updateable

Class represents a category in CFME UI

	Parameters:	
	entity – Name of the tag

	label – Tag display name

	category – Tags Category

	
create(cancel=False)[source]

	Map tags creation method

	Parameters:	cancel – True - if you want to cancel map creation,
by defaul map will be created

	
delete(cancel=False)[source]

	Delete existing user

	Parameters:	cancel – Default value ‘False’, map will be deleted
‘True’ - map will not be deleted

	
pretty_attrs = ['entity', 'label', 'category']

	

	
update(updates, cancel=False)[source]

	Update tag map method

	Parameters:	
	updates – tag map data that should be changed

	cancel – True - if you want to cancel map edition,
by defaul map will be updated

	
class cfme.configure.configuration.region_settings.MapTagsAdd(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of MapTagsAddView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.configuration.region_settings.MapTagsAddView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ui.RegionView

Add Map Tags view

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
category

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
resource_entity

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
resource_label

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.region_settings.MapTagsAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of MapTagsAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.configuration.region_settings.MapTagsAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ui.RegionView

Map Tags list view

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.region_settings.MapTagsEdit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of MapTagsEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.configuration.region_settings.MapTagsEditView(parent, logger=None, **kwargs)[source]

	Bases: cfme.configure.configuration.region_settings.MapTagsAddView

Edit Map Tags view

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.region_settings.RedHatUpdates(service, url, username, password, password_verify=None, repo_name=None, organization=None, use_proxy=False, proxy_url=None, proxy_username=None, proxy_password=None, proxy_password_verify=None, set_default_rhsm_address=False, set_default_repository=False, appliance=None)[source]

	Bases: cfme.utils.appliance.Navigatable, cfme.utils.pretty.Pretty

Class represents a Red Hat updates tab in CFME UI

	Parameters:	
	service – Service type (registration method).

	url – Service server URL address.

	username – Username to use for registration.

	password – Password to use for registration.

	password_verify – 2nd entry of password for verification. Same as ‘password’ if None.

	repo_name – Repository/channel to enable.

	organization – Organization (sat6 only).

	use_proxy – True if proxy should be used, False otherwise (default False).

	proxy_url – Address of the proxy server.

	proxy_username – Username for the proxy server.

	proxy_password – Password for the proxy server.

	proxy_password_verify – 2nd entry of proxy server password for verification.
Same as ‘proxy_password’ if None.

	set_default_rhsm_address – Click the Default button connected to
the RHSM (only) address if True

	set_default_repository – Click the Default button connected to the repo/channel if True

	Note – With satellite 6, it is necessary to validate credentials to obtain
available organizations from the server.
With satellite 5, ‘validate’ parameter is ignored because there is
no validation button available.

	
check_updates(*appliance_names)[source]

	Run update check on appliances by names

	Parameters:	appliance_names – Names of appliances to check; will check all if empty

	
checked_updates(*appliance_names)[source]

	Check if appliances checked if there is an update available

	Parameters:	appliance_names – Names of appliances to check; will check all if empty

	
get_appliance_rows(*appliance_names)[source]

	Get appliances as table rows

	Parameters:	appliance_names – Names of appliances to get; will get all if empty

	
get_available_version()[source]

	Get available version printed on the page

	Returns:	None if not available; string with version otherwise
e.g. 1.2.2.3

	
get_repository_names()[source]

	Get available repositories names

	Returns:	summary info for repositories names

	Return type:	string [http://docs.python.org/2.7/library/string.html#module-string]

	
is_registered(*appliance_names)[source]

	Check if each appliance is registered

	Parameters:	appliance_names – Names of appliances to check; will check all if empty

	
is_registering(*appliance_names)[source]

	Check if at least one appliance is registering

	
is_subscribed(*appliance_names)[source]

	Check if appliances are subscribed

	Parameters:	appliance_names – Names of appliances to check; will check all if empty

	
platform_updates_available(*appliance_names)[source]

	Check if appliances have a platform update available

	Parameters:	appliance_names – Names of appliances to check; will check all if empty

	
pretty_attrs = ['service', 'url', 'username', 'password']

	

	
refresh()[source]

	Click refresh button to update statuses of appliances

	
register_appliances(*appliance_names)[source]

	Register appliances by names

	Parameters:	appliance_names – Names of appliances to register; will register all if empty

	
select_appliances(*appliance_names)[source]

	Select appliances by names

	Parameters:	appliance_names – Names of appliances to select; will select all if empty

	
service_types = {'rhsm': 'Red Hat Subscription Management', 'sat6': 'Red Hat Satellite 6'}

	

	
update_appliances(*appliance_names)[source]

	Update appliances by names

	Parameters:	appliance_names – Names of appliances to update; will update all if empty

	
update_registration(validate=True, cancel=False)[source]

	Fill in the registration form, validate and save/cancel

	Parameters:	
	validate – Click the Validate button and check the
flash message for errors if True (default True)

	cancel – Click the Cancel button if True or the Save button
if False (default False)

	
versions_match(version, *appliance_names)[source]

	Check if versions of appliances match version

	Parameters:	
	version – Version to match against

	appliance_names – Names of appliances to check; will check all if empty

	
class cfme.configure.configuration.region_settings.RedHatUpdatesEditView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ui.RegionView

Red Hat Updates edit view

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
password

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
password_verify

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
proxy_password

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
proxy_password_verify

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
proxy_url

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
proxy_username

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
register_to

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
repo_default_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
repo_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
rhn_default_url

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
url

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
use_proxy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
username

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
validate_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.region_settings.RedHatUpdatesView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ui.RegionView

Red Hat Updates details view

	
apply_cfme_update

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
available_update_version

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
check_for_updates

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
edit_registration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
refresh

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
register

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
repository_names_info

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
updates_table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.region_settings.Tag(name=None, display_name=None, category=None, appliance=None)[source]

	Bases: cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable, cfme.utils.update.Updateable

Class represents a category in CFME UI
:param name: Name of the tag
:param display_name: Tag display name
:param category: Tags Category

	
create()[source]

	Create category method

	
delete(cancel=True)[source]

	Delete category method

	
pretty_attrs = ['name', 'display_name', 'category']

	

	
update(updates)[source]

	Update category method

	
class cfme.configure.configuration.region_settings.TagsAdd(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of CompanyTagsAddView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.configuration.region_settings.TagsAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of CompanyTagsAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.configuration.region_settings.TagsEdit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of CompanyTagsEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.configure package

cfme.configure.about module

	
class cfme.configure.about.AboutView(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The view for the about modal

	
is_displayed

	

	
modal

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cfme.configure.about.get_detail(field)[source]

	Open the about modal and fetch the value for one of the fields
‘title’ and ‘trademark’ fields are allowed and get the header/footer values
Raises ElementOrBlockNotFound if the field isn’t in the about modal
:param field: string label for the detail field
:return: string value from the requested field

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.configure package

cfme.configure.access_control module

	
class cfme.configure.access_control.AccessControlToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Toolbar on the Access Control page

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.access_control.AddGroupView(parent, logger=None, **kwargs)[source]

	Bases: cfme.configure.access_control.GroupForm

Add Group View in CFME UI

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.configure.access_control.AddRoleView(parent, logger=None, **kwargs)[source]

	Bases: cfme.configure.access_control.RoleForm

Add Role View

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.configure.access_control.AddTenantView(parent, logger=None, **kwargs)[source]

	Bases: cfme.configure.access_control.TenantForm

Add Tenant View

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.configure.access_control.AddUserView(parent, logger=None, **kwargs)[source]

	Bases: cfme.configure.access_control.UserForm

Add User View.

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.configure.access_control.AllGroupView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ui.ConfigurationView

All Groups View in CFME UI

	
is_displayed

	

	
paginator

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters:	version_dict – Dictionary of version_introduced: item

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.access_control.AllRolesView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ui.ConfigurationView

All Roles View

	
is_displayed

	

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.access_control.AllTenantView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ui.ConfigurationView

All Tenants View

	
is_displayed

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.access_control.AllUserView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ui.ConfigurationView

All Users View.

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.access_control.DetailsGroupView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ui.ConfigurationView

Details Group View in CFME UI

	
is_displayed

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.access_control.DetailsRoleView(parent, logger=None, **kwargs)[source]

	Bases: cfme.configure.access_control.RoleForm

Details Role View

	
is_displayed

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.access_control.DetailsTenantView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ui.ConfigurationView

Details Tenant View

	
is_displayed

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.access_control.DetailsUserView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ui.ConfigurationView

User Details view.

	
is_displayed

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.access_control.EditGroupSequence(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditGroupSequenceView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.access_control.EditGroupSequenceView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ui.ConfigurationView

Edit Groups Sequence View in CFME UI

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
group_order_selector

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.access_control.EditGroupView(parent, logger=None, **kwargs)[source]

	Bases: cfme.configure.access_control.GroupForm

Edit Group View in CFME UI

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.access_control.EditRoleView(parent, logger=None, **kwargs)[source]

	Bases: cfme.configure.access_control.RoleForm

Edit Role View

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.access_control.EditTagsUserView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ui.ConfigurationView

Tags edit for Users view.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
select_tag

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
select_value

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
tag_table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.access_control.EditTenantView(parent, logger=None, **kwargs)[source]

	Bases: cfme.configure.access_control.TenantForm

Edit Tenant View

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.access_control.EditUserView(parent, logger=None, **kwargs)[source]

	Bases: cfme.configure.access_control.UserForm

User Edit View.

	
cancel_password_change

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
change_stored_password

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.access_control.Group(description=None, role=None, tenant='My Company', user_to_lookup=None, ldap_credentials=None, tag=None, host_cluster=None, vm_template=None, appliance=None)[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable

Represents a group in CFME UI

	Parameters:	
	description – group description

	role – group role

	tenant – group tenant

	user_to_lookup – ldap user to lookup

	ldap_credentials – ldap user credentials

	tag – tag for group restriction

	host_cluster – host/cluster for group restriction

	vm_template – vm/template for group restriction

	appliance – appliance under test

	
add_group_from_ext_auth_lookup()[source]

	Adds a group from external authorization lookup

	
add_group_from_ldap_lookup()[source]

	Adds a group from ldap lookup

	
create(cancel=False)[source]

	Create group method
:param cancel: True - if you want to cancel group creation,

by default group will be created

	Throws:

	
	RBACOperationBlocked: If operation is blocked due to current user

	not having appropriate permissions OR delete is not allowed
for currently selected user

	
delete(cancel=True)[source]

	Delete existing group

	Parameters:	cancel – Default value ‘True’, group will be deleted
‘False’ - deletion of group will be canceled

	Throws:

	
	RBACOperationBlocked: If operation is blocked due to current user

	not having appropriate permissions OR delete is not allowed
for currently selected group

	
edit_tags(tag, value)[source]

	Edits tag for existing group

	Parameters:	
	tag – Tag category

	value – Tag name

	
exists

	

	
group_order

	

	
pretty_attrs = ['description', 'role']

	

	
remove_tag(tag, value)[source]

	Delete tag for existing group

	Parameters:	
	tag – Tag category

	value – Tag name

	
set_group_order(updated_order)[source]

	Sets group order for group lookup

	Parameters:	updated_order – group order list

	
update(updates)[source]

	Update group method

	Parameters:	updates – group data that should be changed

Note: In case updates is the same as original group data, update will be canceled,
as ‘Save’ button will not be active

	
class cfme.configure.access_control.GroupAdd(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AddGroupView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.access_control.GroupAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AllGroupView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.access_control.GroupDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DetailsGroupView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.access_control.GroupEdit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditGroupView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.access_control.GroupEditTagsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ui.ConfigurationView

Edit Groups Tags View in CFME UI

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
select_tag

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
select_value

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
tag_table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.access_control.GroupForm(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ui.ConfigurationView

Group Form in CFME UI.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description_txt

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
group_tenant

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
hosts_and_clusters

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
ldap_groups_for_user

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
lookup_ldap_groups_chk

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
my_company_tags

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
password

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
retrieve_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
role_select

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
tag

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
user_to_look_up

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
username

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
vms_and_templates

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.access_control.GroupTagsEdit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of GroupEditTagsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.access_control.ParentDetailsTenantView(parent, logger=None, **kwargs)[source]

	Bases: cfme.configure.access_control.DetailsTenantView

Parent Tenant Details View

	
is_displayed

	

	
class cfme.configure.access_control.Project(name=None, description=None, parent_tenant=None, _default=False, appliance=None)[source]

	Bases: cfme.configure.access_control.Tenant

Class representing CFME projects in the UI.

Project cannot create more child tenants/projects.

	Parameters:	
	name – Name of the project

	description – Description of the project

	parent_tenant – Parent project, can be None, can be passed as string or object

	
class cfme.configure.access_control.Role(name=None, vm_restriction=None, product_features=None, appliance=None)[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable

Represents a role in CFME UI

	Parameters:	
	name – role name

	vm_restriction – restriction used for role

	product_features – product feature to select

	appliance – appliance unter test

	
copy(name=None)[source]

	Creates copy of existing role

Returns: Role object of copied role

	
create(cancel=False)[source]

	
	Create role method

	
	Args:

	
	cancel: True - if you want to cancel role creation,

	by default, role will be created

	Throws:

	
	RBACOperationBlocked: If operation is blocked due to current user

	not having appropriate permissions OR update is not allowed
for currently selected role

	
delete(cancel=True)[source]

	Delete existing role
:param cancel: Default value ‘True’, role will be deleted

‘False’ - deletion of role will be canceled

	Throws:

	
	RBACOperationBlocked: If operation is blocked due to current user

	not having appropriate permissions OR delete is not allowed
for currently selected role

	
pretty_attrs = ['name', 'product_features']

	

	
set_role_product_features(view, product_features)[source]

	Sets product features for role restriction

	Parameters:	
	view – AddRoleView or EditRoleView

	product_features – list of product features with options to select

	
update(updates)[source]

	Update role method

	Parameters:	updates – role data that should be changed

	Note: In case updates is the same as original role data, update will be canceled,

	as ‘Save’ button will not be active

	
class cfme.configure.access_control.RoleAdd(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AddRoleView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.access_control.RoleAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AllRolesView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.access_control.RoleDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DetailsRoleView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.access_control.RoleEdit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditRoleView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.access_control.RoleForm(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ui.ConfigurationView

Role Form for CFME UI

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
name_txt

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
product_features_tree

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
vm_restriction_select

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.access_control.Tenant(name=None, description=None, parent_tenant=None, _default=False, appliance=None)[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable

Class representing CFME tenants in the UI.
* Kudos to mfalesni *

The behaviour is shared with Project, which is the same except it cannot create more nested
tenants/projects.

	Parameters:	
	name – Name of the tenant

	description – Description of the tenant

	parent_tenant – Parent tenant, can be None, can be passed as string or object

	
create(cancel=False)[source]

	Create role method

	Parameters:	cancel – True - if you want to cancel role creation,
by defaul(False), role will be created

	
delete(cancel=True)[source]

	Delete existing role

	Parameters:	cancel – Default value ‘True’, role will be deleted
‘False’ - deletion of role will be canceled

	
exists

	

	
classmethod get_root_tenant()[source]

	

	
parent_path

	

	
parent_tenant

	

	
pretty_attrs = ['name', 'description']

	

	
set_quota(**kwargs)[source]

	Sets tenant quotas

	
tree_path

	

	
update(updates)[source]

	Update tenant/project method

	Parameters:	updates – tenant/project data that should be changed

	Note: In case updates is the same as original tenant/project data, update will be canceled,

	as ‘Save’ button will not be active

	
class cfme.configure.access_control.TenantAdd(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AddTenantView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.access_control.TenantAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AllTenantView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.access_control.TenantDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DetailsTenantView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.access_control.TenantEdit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditTenantView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.access_control.TenantForm(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ui.ConfigurationView

Tenant Form

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.access_control.TenantManageQuotas(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TenantQuotaView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.access_control.TenantQuotaForm(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
cpu_cb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cpu_txt

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
memory_cb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
memory_txt

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
storage_cb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
storage_txt

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
template_cb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
template_txt

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
vm_cb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
vm_txt

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.access_control.TenantQuotaView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ui.ConfigurationView

Tenant Quota View

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
form

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.access_control.User(name=None, credential=None, email=None, group=None, cost_center=None, value_assign=None, appliance=None)[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable

Class represents an user in CFME UI

	Parameters:	
	name – Name of the user

	credential – User’s credentials

	email – User’s email

	group – User’s group for assigment

	cost_center – User’s cost center

	value_assign – user’s value to assign

	appliance – appliance under test

	
change_stored_password(changes=None, cancel=False)[source]

	Changes user password

	Parameters:	
	changes – dict with fields to be changes,
if None, passwords fields only be anabled

	cancel – True, if you want to disable password change

	
copy()[source]

	Creates copy of existing user
return: User object of copied user

	
create(cancel=False)[source]

	User creation method

	Parameters:	cancel – True - if you want to cancel user creation,
by defaul user will be created

	Throws:

	
	RBACOperationBlocked: If operation is blocked due to current user

	not having appropriate permissions OR update is not allowed
for currently selected role

	
delete(cancel=True)[source]

	Delete existing user
:param cancel: Default value ‘True’, user will be deleted

‘False’ - deletion of user will be canceled

	Throws:

	
	RBACOperationBlocked: If operation is blocked due to current user

	not having appropriate permissions OR delete is not allowed
for currently selected user

	
description

	

	
edit_tags(tag, value)[source]

	Edits tag for existing user

	Parameters:	
	tag – Tag category

	value – Tag name

	
exists

	

	
pretty_attrs = ['name', 'group']

	

	
remove_tag(tag, value)[source]

	Remove tag from existing user

	Parameters:	
	tag – Tag category

	value – Tag name

	
update(updates)[source]

	Update user method

	Parameters:	updates – user data that should be changed

Note: In case updates is the same as original user data, update will be canceled,
as ‘Save’ button will not be active

	
class cfme.configure.access_control.UserAdd(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AddUserView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.access_control.UserAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AllUserView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.access_control.UserDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DetailsUserView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.access_control.UserEdit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditUserView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.access_control.UserForm(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ui.ConfigurationView

User Form View.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
email_txt

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
name_txt

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
password_txt

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
password_verify_txt

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
user_group_select

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
userid_txt

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.access_control.UserTagsEdit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditTagsUserView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.access_control.UsersEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cfme.configure.access_control.simple_user(userid, password)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.configure package

cfme.configure.documentation module

	
class cfme.configure.documentation.DocView(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

View for the documentation page, a title and a bunch of pdf of links

	
is_displayed

	

	
links

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.documentation.LinksView(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Widgets for all of the links on the documentation page
Each doc link is an anchor with a child image element, then an anchor with text
Both the image and the text anchor should link to the same PDF

	
automation

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
customer_portal

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
general

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
inventory

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
monitoring

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policies

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
providers

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
rest

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
scripting

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
vm_hosts

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.configure package

cfme.configure.settings module

	
class cfme.configure.settings.DefaultFilter(name=None, filters=None, appliance=None)[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable

	
pretty_attrs = ['name', 'filters']

	

	
update(updates)[source]

	

	
class cfme.configure.settings.DefaultFilterAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DefaultFilterForm

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.settings.DefaultFilterForm(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ui.MySettingsView

	
save

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
tree

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.settings.DefaultView(appliance=None)[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.appliance.Navigatable

	
classmethod get_default_view(button_group_name, fieldset=None)[source]

	

	
look_up = {'Flavors': 'flavors', 'Stacks': 'cloud_stacks', 'Catalog Items': 'catalog_items', 'Nodes': 'container_nodes', 'Containers': 'container_containers', 'VMs & Instances': 'vms_instances', 'Templates': 'container_templates', 'Containers Providers': 'containers_providers', 'Image Registries': 'container_image_registries', 'VMs': 'vms', 'Availability Zones': 'availability_zones', 'Cloud Providers': 'cloud_providers', 'Services': 'container_services', 'Projects': 'container_projects', 'Builds': 'container_builds', 'Container Images': 'container_images', 'Templates & Images': 'templates', 'Volumes': 'container_volumes', 'Routes': 'container_routes', 'Pods': 'container_pods', 'Replicators': 'container_replicators', 'Compare': 'compare', 'Infrastructure Providers': 'infrastructure_providers', 'My Services': 'my_services', 'Instances': 'instances', 'Compare Mode': 'compare_mode', 'Configuration Management Providers': 'configuration_management_providers', 'Images': 'images'}

	

	
classmethod set_default_view(button_group_names, defaults, fieldset=None)[source]

	This function sets default views for the objects.

	Parameters:	
	button_group_names – either the name of the button_group_name
or list of the button groups to set the
default view for.

	default – the default view to set. in case that button_group_names
is a list, you can either set 1 view and it’ll be set
for all the button_group_names or you can use a list
(default view per button_group_name).

	
class cfme.configure.settings.DefaultViewAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DefaultViewForm

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.settings.DefaultViewForm(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ui.MySettingsView

	
availability_zones

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
catalog_items

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cloud_providers

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cloud_stacks

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
compare

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
compare_mode

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
configuration_management_providers

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
container_builds

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
container_containers

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
container_image_registries

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
container_images

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
container_nodes

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
container_pods

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
container_projects

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
container_replicators

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
container_routes

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
container_services

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
container_templates

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
container_volumes

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
containers_providers

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flavors

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
images

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
infrastructure_providers

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
instances

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
my_services

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
templates

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
vms

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
vms_instances

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.settings.SaveButton(parent, *text, **kwargs)[source]

	Bases: widgetastic_patternfly.Button

	
disabled

	

	
class cfme.configure.settings.TimeProfileAddForm(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
days

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
help_block

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
hours

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_edit_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
scope

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
timezone

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.settings.TimeProfileAddFormView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
mysetting

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
timeprofile_form

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.settings.Timeprofile(description=None, scope=None, days=None, hours=None, timezone=None, appliance=None)[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.appliance.Navigatable

	
copy(name=None)[source]

	

	
create(cancel=False)[source]

	

	
delete()[source]

	

	
update(updates)[source]

	

	
class cfme.configure.settings.TimeprofileAddEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
breadcrumb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.settings.TimeprofileAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TimeProfileAddFormView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.settings.Visual(*args, **kwargs)[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.appliance.Navigatable

	
cloud_provider_quad

	

	
datastore_quad

	

	
grid_view_limit

	

	
host_quad

	

	
infra_provider_quad

	

	
list_view_limit

	

	
login_page

	

	
report_view_limit

	

	
template_quad

	

	
tile_view_limit

	

	
timezone

	

	
vm_quad

	

	
class cfme.configure.settings.VisualAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of VisualTabForm

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.configure.settings.VisualTabForm(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ui.MySettingsView

	
reset

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
visualdisplay

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
visualitem

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
visualquadicons

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
visualstartpage

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.configure package

cfme.configure.tasks module

Module dealing with Configure/Tasks section.

	
class cfme.configure.tasks.AllOtherTasks(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TasksView

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.configure.tasks.AllTasks(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TasksView

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.configure.tasks.MyOtherTasks(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TasksView

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.configure.tasks.MyTasks(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TasksView

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.configure.tasks.Tasks(*args, **kwargs)[source]

	Bases: cfme.utils.appliance.Navigatable

	
class cfme.configure.tasks.TasksView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

	
delete

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
reload

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
tabs

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cfme.configure.tasks.delete_all_tasks(destination)[source]

	

	
cfme.configure.tasks.is_analysis_finished(name, task_type='vm', clear_tasks_after_success=True)[source]

	Check if analysis is finished - if not, reload page

	
cfme.configure.tasks.is_cluster_analysis_finished(name, **kwargs)[source]

	

	
cfme.configure.tasks.is_datastore_analysis_finished(name, **kwargs)[source]

	

	
cfme.configure.tasks.is_host_analysis_finished(name, **kwargs)[source]

	

	
cfme.configure.tasks.is_task_finished(destination, task_name, expected_status, clear_tasks_after_success=True)[source]

	

	
cfme.configure.tasks.is_vm_analysis_finished(name, **kwargs)[source]

	

	
cfme.configure.tasks.wait_analysis_finished(task_name, task_type, delay=5, timeout='5M')[source]

	Wait until analysis is finished (or timeout exceeded)

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

cfme.containers package

Subpackages

	cfme.containers.provider package
	Submodules
	cfme.containers.provider.kubernetes module

	cfme.containers.provider.openshift module

	Module contents

Submodules

	cfme.containers.container module

	cfme.containers.image module

	cfme.containers.image_registry module

	cfme.containers.node module

	cfme.containers.overview module

	cfme.containers.pod module

	cfme.containers.project module

	cfme.containers.replicator module

	cfme.containers.route module

	cfme.containers.service module

	cfme.containers.template module

	cfme.containers.topology module

	cfme.containers.volume module

Module contents

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.containers package

cfme.containers.provider package

Submodules

	cfme.containers.provider.kubernetes module

	cfme.containers.provider.openshift module

Module contents

	
class cfme.containers.provider.AdHocMain(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AdHocMetricsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.containers.provider.AdHocMetricsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

	
apply_btn

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
apply_filter()[source]

	

	
filter_dropdown

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
filter_result_header

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
get_random_filter()[source]

	

	
get_total_results_count()[source]

	

	
is_displayed

	

	
selected_filter = None

	

	
set_filter(desired_filter)[source]

	

	
wait_for_filter_option_to_load()[source]

	

	
wait_for_results_to_load()[source]

	

	
class cfme.containers.provider.Add(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ContainersProviderAddView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.containers.provider.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ContainersProvidersView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
resetter()[source]

	

	
step()[source]

	

	
class cfme.containers.provider.ContainerObjectAllBaseView(parent, logger=None, **kwargs)[source]

	Bases: cfme.common.provider_views.ProvidersView

Base class for container object All view.
TITLE_TEXT should be defined in child.

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
entities

	

	
is_displayed

	

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
summary

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
table

	

	
class cfme.containers.provider.ContainersProvider(name=None, key=None, zone=None, endpoints=None, provider_data=None, appliance=None)[source]

	Bases: cfme.common.provider.BaseProvider, cfme.utils.pretty.Pretty

	
PLURAL = 'Providers'

	

	
STATS_TO_MATCH = ['num_project', 'num_service', 'num_replication_controller', 'num_pod', 'num_node', 'num_image_registry', 'num_container']

	

	
category = 'container'

	

	
db_types = ['ContainerManager']

	

	
detail_page_suffix = 'provider_detail'

	

	
edit_page_suffix = 'provider_edit_detail'

	

	
endpoints_form

	alias of ContainersProviderEndpointsForm

	
get_detail(*ident)[source]

	Gets details from the details infoblock

	Parameters:	*ident – An InfoBlock title, followed by the Key name, e.g. “Relationships”, “Images”

Returns: A string representing the contents of the InfoBlock’s value.

	
in_version = ('5.5', Version('master'))

	

	
load_details(refresh=False)[source]

	

	
num_container(*args, **kwargs)

	

	
num_container_group(*args, **kwargs)

	

	
num_container_group_ui = None

	

	
num_container_ui = None

	

	
num_image(*args, **kwargs)

	

	
num_image_registry(*args, **kwargs)

	

	
num_image_registry_ui = None

	

	
num_image_ui = None

	

	
num_node(*args, **kwargs)

	

	
num_node_ui = None

	

	
num_pod(*args, **kwargs)

	

	
num_pod_ui = None

	

	
num_project(*args, **kwargs)

	

	
num_project_ui = None

	

	
num_replication_controller(*args, **kwargs)

	

	
num_replication_controller_ui = None

	

	
num_service(*args, **kwargs)

	

	
num_service_ui = None

	

	
page_name = 'containers'

	

	
pods_per_ready_status()[source]

	Grabing the Container Statuses Summary of the pods from API

	
pretty_attrs = ['name', 'key', 'zone']

	

	
provider_types = {}

	

	
quad_name = None

	

	
string_name = 'Containers'

	

	
view_value_mapping

	

	
class cfme.containers.provider.ContainersProviderDefaultEndpoint(**kwargs)[source]

	Bases: cfme.common.provider.DefaultEndpoint

Represents Containers Provider default endpoint

	
credential_class

	alias of TokenCredential

	
view_value_mapping

	

	
class cfme.containers.provider.ContainersProviderEndpointsForm(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

represents default Containers Provider endpoint form in UI (Add/Edit dialogs)

	
default

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
hawkular

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.containers.provider.ContainersTestItem(obj, polarion_id, **additional_attrs)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

This is a generic test item. Especially used for parametrized functions

	
classmethod get_pretty_id(obj)[source]

	Since sometimes the test object is wrapped within markers,
it’s difficult to find get it inside the args tree.
hence we use this to get the object and all pretty_id function.

	Parameters:	obj (*) – Either a ContainersTestItem or a marker that include it

	Returns:	str pretty id

	
pretty_id()[source]

	

	
class cfme.containers.provider.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ProviderDetailsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
resetter()[source]

	

	
step()[source]

	

	
class cfme.containers.provider.Edit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ContainersProviderEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.containers.provider.EditFromDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.containers.provider.EditTags(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.containers.provider.EditTagsFromDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.containers.provider.Labelable[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

Provide the functionality to set labels

	
get_labels()[source]

	List labels

	
remove_label(name, silent_failure=False)[source]

	Remove label by name.
:param name: name of label
:param silent_failure: whether to raise an error or not in case of failure.

Returns: bool pass or fail

	Raises:	LabelNotFoundException.

	
set_label(name, value)[source]

	Sets a label to the object instance

:param : var name: the name of the label
:param : var value: the value of the label

	Returns:	self.mgmt.set_label return value.

	
class cfme.containers.provider.LoggingableView(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
get_logging_url()[source]

	

	
monitor

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.containers.provider.ProviderDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage, cfme.containers.provider.LoggingableView

	
is_displayed

	

	
class cfme.containers.provider.TimelinesFromDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.containers.provider.TopologyFromDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
cfme.containers.provider.navigate_and_get_rows(provider, obj, count, silent_failure=False)[source]

	Get <count> random rows from the obj list table,
if <count> is greater that the number of rows, return number of rows.

	Parameters:	
	provider – containers provider

	obj – the containers object

	table – the object’s Table object

	count – number of random rows to return

	silent_failure – If True and no records found for obj, it’ll
return None instead of raise exception

return: list of rows

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.containers package

 	cfme.containers.provider package

cfme.containers.provider.kubernetes module

	
class cfme.containers.provider.kubernetes.KubernetesProvider(name=None, credentials=None, key=None, zone=None, hostname=None, port=None, sec_protocol=None, hawkular_sec_protocol=None, provider_data=None, appliance=None)[source]

	Bases: cfme.containers.provider.ContainersProvider

	
db_types = ['Kubernetes::ContainerManager']

	

	
static from_config(prov_config, prov_key, appliance=None)[source]

	

	
mgmt_class = <Mock name='mock.Kubernetes' id='140544517513808'>

	

	
type_name = 'kubernetes'

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.containers package

 	cfme.containers.provider package

cfme.containers.provider.openshift module

	
class cfme.containers.provider.openshift.CustomAttribute(name, value, field_type=None, href=None)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
class cfme.containers.provider.openshift.HawkularEndpoint(**kwargs)[source]

	Bases: cfme.common.provider.DefaultEndpoint

Represents Hawkular Endpoint

	
name = 'hawkular'

	

	
view_value_mapping

	

	
class cfme.containers.provider.openshift.OpenshiftDefaultEndpoint(**kwargs)[source]

	Bases: cfme.containers.provider.ContainersProviderDefaultEndpoint

Represents Openshift default endpoint

	
static get_ca_cert()[source]

	Getting OpenShift’s certificate from the master machine.
:param No args.:

	Returns:	certificate’s content.

	
class cfme.containers.provider.openshift.OpenshiftProvider(name=None, key=None, zone=None, provider_data=None, endpoints=None, appliance=None)[source]

	Bases: cfme.containers.provider.ContainersProvider

	
STATS_TO_MATCH = ['num_project', 'num_service', 'num_replication_controller', 'num_pod', 'num_node', 'num_image_registry', 'num_container', 'num_route']

	

	
add_custom_attributes(*custom_attributes)[source]

	Adding static custom attributes to provider.
:param custom_attributes: The custom attributes to add.

returns: response.

	
cli

	

	
custom_attributes()[source]

	returns custom attributes

	
db_types = ['Openshift::ContainerManager']

	

	
delete_custom_attributes(*custom_attributes)[source]

	Deleting static custom attributes from provider.

	Parameters:	custom_attributes – The custom attributes to delete.
(Could be also names (str))

Returns: response.

	
edit_custom_attributes(*custom_attributes)[source]

	Editing static custom attributes in provider.
:param custom_attributes: The custom attributes to edit.

returns: response.

	
endpoints_form

	alias of ContainersProviderEndpointsForm

	
classmethod from_config(prov_config, prov_key, appliance=None)[source]

	

	
href()[source]

	

	
mgmt_class = <Mock name='mock.Openshift' id='140544510367056'>

	

	
num_route(*args, **kwargs)

	

	
num_route_ui = None

	

	
num_template(*args, **kwargs)

	

	
num_template_ui = None

	

	
type_name = 'openshift'

	

	
view_value_mapping

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.containers package

cfme.containers.container module

	
class cfme.containers.container.Container(name, pod, appliance=None)[source]

	Bases: cfme.common.Taggable, cfme.common.SummaryMixin, cfme.utils.appliance.Navigatable

	
PLURAL = 'Containers'

	

	
click_element(*ident)[source]

	

	
get_detail(*ident)[source]

	Gets details from the details infoblock
:param *ident: An InfoBlock title, followed by the Key name, e.g. “Relationships”, “Images”

Returns: A string representing the contents of the InfoBlock’s value.

	
classmethod get_random_instances(provider, count=1, appliance=None)[source]

	Generating random instances.

	
load_details(refresh=False)[source]

	

	
project_name

	

	
class cfme.containers.container.ContainerAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ContainerAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
resetter()[source]

	

	
step()[source]

	

	
class cfme.containers.container.ContainerAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.containers.provider.ContainerObjectAllBaseView

Containers All view

	
Filters

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
containers

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
entities

	

	
is_displayed

	

	
summary

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.containers.container.ContainerDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.containers.container.ContainerEditTags(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.containers.container.ContainerTimeLines(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.containers.container.ContainerUtilization(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.containers package

cfme.containers.image module

	
class cfme.containers.image.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ImageAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
resetter()[source]

	

	
step()[source]

	

	
class cfme.containers.image.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.containers.image.Image(name, image_id, provider, appliance=None)[source]

	Bases: cfme.common.Taggable, cfme.containers.provider.Labelable, cfme.common.SummaryMixin, cfme.utils.appliance.Navigatable, cfme.common.PolicyProfileAssignable

	
PLURAL = 'Container Images'

	

	
check_compliance(wait_for_finish=True, timeout=240)[source]

	Initiates compliance check and waits for it to finish.

	
compliance_status

	

	
compliant

	Check if the image is compliant

	Returns:	NoneType if the image was never verified, otherwise bool [http://docs.python.org/2.7/library/functions.html#bool]

	
get_detail(*ident)[source]

	Gets details from the details infoblock
:param *ident: Table name and Key name, e.g. “Relationships”, “Images”

Returns: A string representing the contents of the summary’s value.

	
classmethod get_random_instances(provider, count=1, appliance=None, docker_only=False)[source]

	Generating random instances. (docker_only: means for docker images only)

	
load_details(refresh=False)[source]

	

	
mgmt

	

	
perform_smartstate_analysis(wait_for_finish=False, timeout='7M')[source]

	Performing SmartState Analysis on this Image

	
sha256

	

	
class cfme.containers.image.ImageAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.containers.provider.ContainerObjectAllBaseView

	
TITLE_TEXT = 'Container Images'

	

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
entities

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.containers package

cfme.containers.image_registry module

	
class cfme.containers.image_registry.ImageRegistry(host, provider, appliance=None)[source]

	Bases: cfme.common.Taggable, cfme.common.SummaryMixin, cfme.utils.appliance.Navigatable

	
PLURAL = 'Image Registries'

	

	
classmethod get_random_instances(provider, count=1, appliance=None)[source]

	Generating random instances.

	
load_details(refresh=False)[source]

	

	
mgmt

	

	
name

	

	
class cfme.containers.image_registry.ImageRegistryAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ImageRegistryAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
resetter()[source]

	

	
step()[source]

	

	
class cfme.containers.image_registry.ImageRegistryAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.containers.provider.ContainerObjectAllBaseView

	
TITLE_TEXT = 'Image Registries'

	

	
entities

	

	
class cfme.containers.image_registry.ImageRegistryDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.containers.image_registry.ImageRegistryEditTags(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.containers package

cfme.containers.node module

	
class cfme.containers.node.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NodeAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
resetter()[source]

	

	
step(*args, **kwargs)[source]

	

	
class cfme.containers.node.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NodeDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.containers.node.EditTags(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NodeEditTagsForm

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.containers.node.ManagePolicies(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NodeManagePoliciesForm

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.containers.node.Node(name, provider, collection)[source]

	Bases: cfme.common.Taggable, cfme.containers.provider.Labelable, cfme.common.SummaryMixin, cfme.utils.appliance.BaseEntity

	
PLURAL = 'Nodes'

	

	
get_detail(*ident)[source]

	Gets details from the details infoblock
:param *ident: Table name and Key name, e.g. “Relationships”, “Images”

Returns: A string representing the contents of the summary’s value.

	
classmethod get_random_instances(provider, count=1, appliance=None)[source]

	Generating random instances.

	
load_details(refresh=False)[source]

	

	
mgmt

	

	
class cfme.containers.node.NodeAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.containers.node.NodeView

	
entities

	

	
is_displayed

	

	
paginator

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters:	version_dict – Dictionary of version_introduced: item

	
class cfme.containers.node.NodeCollection(appliance)[source]

	Bases: cfme.utils.appliance.BaseCollection

Collection object for Node.

	
all()[source]

	

	
instantiate(name, provider)[source]

	

	
class cfme.containers.node.NodeDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.containers.node.NodeView

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
entities

	

	
is_displayed

	

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.containers.node.NodeEditTagsForm(parent, logger=None, **kwargs)[source]

	Bases: cfme.containers.node.NodeView

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
tag

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
tag_category

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.containers.node.NodeManagePoliciesForm(parent, logger=None, **kwargs)[source]

	Bases: cfme.containers.node.NodeView

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
policy_profiles

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.containers.node.NodeTimelinesForm(parent, logger=None, **kwargs)[source]

	Bases: cfme.containers.node.NodeView

	
entities

	

	
is_displayed

	

	
class cfme.containers.node.NodeUtilizationView(parent, logger=None, **kwargs)[source]

	Bases: cfme.containers.node.NodeView

	
entities

	

	
is_displayed

	

	
class cfme.containers.node.NodeView(parent, logger=None, **kwargs)[source]

	Bases: cfme.containers.provider.ContainerObjectAllBaseView, cfme.containers.provider.LoggingableView

	
TITLE_TEXT = 'Nodes'

	

	
entities

	

	
in_cloud_instance

	

	
nodes

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
table

	

	
class cfme.containers.node.Timelines(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NodeTimelinesForm

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.containers.node.Utilization(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NodeUtilizationView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.containers package

cfme.containers.overview module

	
class cfme.containers.overview.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
resetter()[source]

	

	
step()[source]

	

	
class cfme.containers.overview.ContainersOverview(*args, **kwargs)[source]

	Bases: cfme.utils.appliance.Navigatable

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.containers package

cfme.containers.pod module

	
class cfme.containers.pod.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PodAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
resetter()[source]

	

	
step()[source]

	

	
class cfme.containers.pod.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.containers.pod.Pod(name, project_name, provider, appliance=None)[source]

	Bases: cfme.common.Taggable, cfme.containers.provider.Labelable, cfme.common.SummaryMixin, cfme.utils.appliance.Navigatable

	
PLURAL = 'Pods'

	

	
click_element(*ident)[source]

	

	
get_detail(*ident)[source]

	Gets details from the details infoblock

	Parameters:	*ident – An InfoBlock title, followed by the Key name, e.g. “Relationships”, “Images”

Returns: A string representing the contents of the InfoBlock’s value.

	
classmethod get_random_instances(provider, count=1, appliance=None)[source]

	Generating random instances.

	
load_details(refresh=False)[source]

	

	
mgmt

	

	
class cfme.containers.pod.PodAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.containers.provider.ContainerObjectAllBaseView

	
TITLE_TEXT = 'Pods'

	

	
entities

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.containers package

cfme.containers.project module

	
class cfme.containers.project.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ProjectAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
resetter()[source]

	

	
step()[source]

	

	
class cfme.containers.project.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.containers.project.Project(name, provider, appliance=None)[source]

	Bases: cfme.common.Taggable, cfme.containers.provider.Labelable, cfme.common.SummaryMixin, cfme.utils.appliance.Navigatable

	
PLURAL = 'Projects'

	

	
click_element(*ident)[source]

	

	
get_detail(*ident)[source]

	Gets details from the details infoblock
:param *ident: An InfoBlock title, followed by the Key name, e.g. “Relationships”, “Images”

Returns: A string representing the contents of the InfoBlock’s value.

	
classmethod get_random_instances(provider, count=1, appliance=None)[source]

	Generating random instances.

	
load_details(refresh=False)[source]

	

	
mgmt

	

	
class cfme.containers.project.ProjectAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.containers.provider.ContainerObjectAllBaseView

	
TITLE_TEXT = 'Projects'

	

	
entities

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.containers package

cfme.containers.replicator module

	
class cfme.containers.replicator.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ReplicatorAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
resetter()[source]

	

	
step()[source]

	

	
class cfme.containers.replicator.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.containers.replicator.Replicator(name, project_name, provider, appliance=None)[source]

	Bases: cfme.common.Taggable, cfme.containers.provider.Labelable, cfme.common.SummaryMixin, cfme.utils.appliance.Navigatable

	
PLURAL = 'Replicators'

	

	
click_element(*ident)[source]

	

	
get_detail(*ident)[source]

	Gets details from the details infoblock

	Parameters:	*ident – An InfoBlock title, followed by the Key name, e.g. “Relationships”, “Images”

Returns: A string representing the contents of the InfoBlock’s value.

	
classmethod get_random_instances(provider, count=1, appliance=None)[source]

	Generating random instances.

	
load_details(refresh=False)[source]

	

	
mgmt

	

	
class cfme.containers.replicator.ReplicatorAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.containers.provider.ContainerObjectAllBaseView

	
TITLE_TEXT = 'Replicators'

	

	
entities

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.containers package

cfme.containers.route module

	
class cfme.containers.route.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RouteAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
resetter()[source]

	

	
step()[source]

	

	
class cfme.containers.route.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.containers.route.Route(name, project_name, provider, appliance=None)[source]

	Bases: cfme.common.Taggable, cfme.containers.provider.Labelable, cfme.common.SummaryMixin, cfme.utils.appliance.Navigatable

	
PLURAL = 'Routes'

	

	
click_element(*ident)[source]

	

	
get_detail(*ident)[source]

	Gets details from the details infoblock
:param *ident: An InfoBlock title, followed by the Key name, e.g. “Relationships”, “Images”

Returns: A string representing the contents of the InfoBlock’s value.

	
classmethod get_random_instances(provider, count=1, appliance=None)[source]

	Generating random instances.

	
load_details(refresh=False)[source]

	

	
mgmt

	

	
class cfme.containers.route.RouteAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.containers.provider.ContainerObjectAllBaseView

	
TITLE_TEXT = 'Routes'

	

	
entities

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.containers package

cfme.containers.service module

	
class cfme.containers.service.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServiceAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
resetter()[source]

	

	
step()[source]

	

	
class cfme.containers.service.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.containers.service.Service(name, project_name, provider, appliance=None)[source]

	Bases: cfme.common.Taggable, cfme.containers.provider.Labelable, cfme.common.SummaryMixin, cfme.utils.appliance.Navigatable

	
PLURAL = 'Container Services'

	

	
click_element(*ident)[source]

	

	
get_detail(*ident)[source]

	Gets details from the details infoblock
:param *ident: An InfoBlock title, followed by the Key name, e.g. “Relationships”, “Images”

Returns: A string representing the contents of the InfoBlock’s value.

	
classmethod get_random_instances(provider, count=1, appliance=None)[source]

	Generating random instances.

	
load_details(refresh=False)[source]

	

	
mgmt

	

	
class cfme.containers.service.ServiceAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.containers.provider.ContainerObjectAllBaseView

	
TITLE_TEXT = 'Container Services'

	

	
entities

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.containers package

cfme.containers.template module

	
class cfme.containers.template.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TemplateAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
resetter()[source]

	

	
step()[source]

	

	
class cfme.containers.template.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.containers.template.Template(name, project_name, provider, appliance=None)[source]

	Bases: cfme.common.Taggable, cfme.containers.provider.Labelable, cfme.common.SummaryMixin, cfme.utils.appliance.Navigatable

	
PLURAL = 'Templates'

	

	
click_element(*ident)[source]

	

	
get_detail(*ident)[source]

	Gets details from the details infoblock

	Parameters:	*ident – An InfoBlock title, followed by the Key name, e.g. “Relationships”, “Images”

Returns: A string representing the contents of the InfoBlock’s value.

	
classmethod get_random_instances(provider, count=1, appliance=None)[source]

	Generating random instances.

	
load_details(refresh=False)[source]

	

	
mgmt

	

	
class cfme.containers.template.TemplateAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.containers.provider.ContainerObjectAllBaseView

	
TITLE_TEXT = 'Container Templates'

	

	
entities

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.containers package

cfme.containers.topology module

	
class cfme.containers.topology.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.containers.topology.Topology(appliance=None)[source]

	Bases: cfme.common.TopologyMixin, cfme.utils.appliance.Navigatable

	
classmethod load_topology_page()[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.containers package

cfme.containers.volume module

	
class cfme.containers.volume.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of VolumeAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
resetter()[source]

	

	
step()[source]

	

	
class cfme.containers.volume.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.containers.volume.Volume(name, provider, appliance=None)[source]

	Bases: cfme.common.Taggable, cfme.common.SummaryMixin, cfme.utils.appliance.Navigatable

	
PLURAL = 'Volumes'

	

	
get_detail(*ident)[source]

	Gets details from the details infoblock
:param *ident: Table name and Key name, e.g. “Relationships”, “Volumes”

Returns: A string representing the contents of the summary’s value.

	
classmethod get_random_instances(provider, count=1, appliance=None)[source]

	Generating random instances.

	
load_details(refresh=False)[source]

	

	
mgmt

	

	
class cfme.containers.volume.VolumeAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.containers.provider.ContainerObjectAllBaseView

	
TITLE_TEXT = 'Persistent Volumes'

	

	
entities

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

cfme.control package

Subpackages

	cfme.control.explorer package
	Submodules
	cfme.control.explorer.actions module

	cfme.control.explorer.alert_profiles module

	cfme.control.explorer.alerts module

	cfme.control.explorer.conditions module

	cfme.control.explorer.policies module

	cfme.control.explorer.policy_profiles module

	Module contents

Submodules

	cfme.control.import_export module

	cfme.control.log module

	cfme.control.simulation module

	cfme.control.snmp_form module

Module contents

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.control package

cfme.control.explorer package

Submodules

	cfme.control.explorer.actions module

	cfme.control.explorer.alert_profiles module

	cfme.control.explorer.alerts module

	cfme.control.explorer.conditions module

	cfme.control.explorer.policies module

	cfme.control.explorer.policy_profiles module

Module contents

	
class cfme.control.explorer.ControlExplorer(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ControlExplorerView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.control.explorer.ControlExplorerView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

	
actions

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
alert_profiles

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
alerts

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
conditions

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
events

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
in_control_explorer

	

	
is_displayed

	

	
policies

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy_profiles

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.control package

 	cfme.control.explorer package

cfme.control.explorer.actions module

Page model for Control / Explorer

	
class cfme.control.explorer.actions.Action(description, action_type, action_values=None, appliance=None)[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.appliance.Navigatable, cfme.utils.pretty.Pretty

This class represents one Action.

Example

>>> from cfme.control.explorer import Action
>>> action = Action("some_action",
... action_type="Tag",
... action_values={"tag": ("My Company Tags", "Service Level", "Gold")}
>>> action.create()
>>> action.delete()

	Parameters:	
	description – Action name.

	action_type – Type of the action, value from the dropdown select.

	
alerts_to_evaluate

	

	
create()[source]

	Create this Action in UI.

	
delete(cancel=False)[source]

	Delete this Action in UI.

	Parameters:	cancel – Whether to cancel the deletion (default False).

	
delete_if_exists()[source]

	

	
exists

	Check existence of this Action.

Returns: bool [http://docs.python.org/2.7/library/functions.html#bool] signalizing the presence of the Action in the database.

	
update(updates)[source]

	Update this Action in UI.

	Parameters:	
	updates – Provided by update() context manager.

	cancel – Whether to cancel the update (default False).

	
class cfme.control.explorer.actions.ActionDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ActionDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.control.explorer.actions.ActionDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.control.explorer.ControlExplorerView

	
analysis_profile

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.actions.ActionEdit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditActionView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.control.explorer.actions.ActionFormCommon(parent, logger=None, **kwargs)[source]

	Bases: cfme.control.explorer.ControlExplorerView

	
action_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
alerts_to_evaluate

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
analysis_profile

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cpu_number

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
email_recipient

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
email_sender

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
memory_amount

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
parent_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
remove_tag

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
run_ansible_playbook

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
snapshot_age

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
snapshot_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
tag

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters:	version_dict – Dictionary of version_introduced: item

	
vcenter_attr_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
vcenter_attr_value

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.actions.ActionNew(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NewActionView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.control.explorer.actions.ActionsAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.control.explorer.ControlExplorerView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.actions.EditActionView(parent, logger=None, **kwargs)[source]

	Bases: cfme.control.explorer.actions.ActionFormCommon

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.actions.NewActionView(parent, logger=None, **kwargs)[source]

	Bases: cfme.control.explorer.actions.ActionFormCommon

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.actions.RunAnsiblePlaybookFromView(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
inventory

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
playbook_catalog_item

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.control package

 	cfme.control.explorer package

cfme.control.explorer.alert_profiles module

	
class cfme.control.explorer.alert_profiles.AlertProfileDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AlertProfileDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.control.explorer.alert_profiles.AlertProfileDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.control.explorer.ControlExplorerView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.alert_profiles.AlertProfileEdit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditAlertProfileView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.control.explorer.alert_profiles.AlertProfileEditAssignments(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AlertProfilesEditAssignmentsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.control.explorer.alert_profiles.AlertProfileFormCommon(parent, logger=None, **kwargs)[source]

	Bases: cfme.control.explorer.ControlExplorerView

	
alerts

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
notes

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.alert_profiles.AlertProfileNew(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NewAlertProfileView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.control.explorer.alert_profiles.AlertProfilesAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.control.explorer.ControlExplorerView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.alert_profiles.AlertProfilesEditAssignmentsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.control.explorer.ControlExplorerView

	
assign_to

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
based_on

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
header

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
selections

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters:	version_dict – Dictionary of version_introduced: item

	
tag_category

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.alert_profiles.BaseAlertProfile(description, alerts=None, notes=None, appliance=None)[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.appliance.Navigatable, cfme.utils.pretty.Pretty

	
TYPE = None

	

	
assign_to(assign, selections=None, tag_category=None)[source]

	Assigns this Alert Profile to specified objects.

	Parameters:	
	assign – Where to assign (The Enterprise, ...).

	selections – What items to check in the tree. N/A for The Enteprise.

	tag_category – Only for choices starting with Tagged. N/A for The Enterprise.

	
create()[source]

	

	
delete(cancel=False)[source]

	Delete this Alert Profile in UI.

	Parameters:	cancel – Whether to cancel the deletion (default False).

	
exists

	Check existence of this Alert Profile.

Returns: bool [http://docs.python.org/2.7/library/functions.html#bool] signalizing the presence of the Alert Profile in database.

	
pretty_attrs = ['description', 'alerts']

	

	
update(updates)[source]

	Update this Alert Profile in UI.

	Parameters:	
	updates – Provided by update() context manager.

	cancel – Whether to cancel the update (default False).

	
class cfme.control.explorer.alert_profiles.ClusterAlertProfile(description, alerts=None, notes=None, appliance=None)[source]

	Bases: cfme.control.explorer.alert_profiles.BaseAlertProfile

	
TYPE = 'Cluster / Deployment Role'

	

	
class cfme.control.explorer.alert_profiles.DatastoreAlertProfile(description, alerts=None, notes=None, appliance=None)[source]

	Bases: cfme.control.explorer.alert_profiles.BaseAlertProfile

	
TYPE = 'Datastore'

	

	
class cfme.control.explorer.alert_profiles.EditAlertProfileView(parent, logger=None, **kwargs)[source]

	Bases: cfme.control.explorer.alert_profiles.AlertProfileFormCommon

	
is_displayed

	

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.alert_profiles.HostAlertProfile(description, alerts=None, notes=None, appliance=None)[source]

	Bases: cfme.control.explorer.alert_profiles.BaseAlertProfile

	
TYPE = 'Host / Node'

	

	
class cfme.control.explorer.alert_profiles.MiddlewareServerAlertProfile(description, alerts=None, notes=None, appliance=None)[source]

	Bases: cfme.control.explorer.alert_profiles.BaseAlertProfile

	
TYPE = 'Middleware Server'

	

	
class cfme.control.explorer.alert_profiles.NewAlertProfileView(parent, logger=None, **kwargs)[source]

	Bases: cfme.control.explorer.alert_profiles.AlertProfileFormCommon

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.control.explorer.alert_profiles.ProviderAlertProfile(description, alerts=None, notes=None, appliance=None)[source]

	Bases: cfme.control.explorer.alert_profiles.BaseAlertProfile

	
TYPE = 'Provider'

	

	
class cfme.control.explorer.alert_profiles.ServerAlertProfile(description, alerts=None, notes=None, appliance=None)[source]

	Bases: cfme.control.explorer.alert_profiles.BaseAlertProfile

	
TYPE = 'Server'

	

	
class cfme.control.explorer.alert_profiles.VMInstanceAlertProfile(description, alerts=None, notes=None, appliance=None)[source]

	Bases: cfme.control.explorer.alert_profiles.BaseAlertProfile

	
TYPE = 'VM and Instance'

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.control package

 	cfme.control.explorer package

cfme.control.explorer.alerts module

Page model for Control / Explorer

	
class cfme.control.explorer.alerts.Alert(description, active=None, based_on=None, evaluate=None, driving_event=None, notification_frequency=None, snmp_trap=None, emails=None, timeline_event=None, mgmt_event=None, appliance=None)[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.appliance.Navigatable, cfme.utils.pretty.Pretty

Alert representation object.
.. rubric:: Example

>>> alert = Alert("my_alert", timeline_event=True, driving_event="Hourly Timer")
>>> alert.create()
>>> alert.delete()

	Parameters:	
	description – Name of the Alert.

	based_on – Cluster, Datastore, Host, Provider, ...

	evaluate – Use it as follows:
("What to Evaluate selection", dict(values="for form")).
If you want to select Nothing, you will therefore pass ("Nothing", {}).
Other example:

("Hardware Reconfigured",
 dict(hw_attribute="Number of CPUs", hw_attribute_operator="Increased")
)

	driving_event – This Alert’s driving event (Hourly Timer, ...).

	notification_frequency – 1 Minute, 2 Minutes, ...

	snmp_trap – Whether to send snmp traps.

	emails – Whether to send e-mails. False disables, string or list of strings
with emails enables.

	timeline_event – Whether generate a timeline event.

	mgmt_event – If specified as string, it will reveal the form and types it into the text box.
If False, then it will be disabled. None - don’t care.

	
__str__()[source]

	Conversion to string used when assigning in multibox selector.

	
copy(**updates)[source]

	Copy this Alert in UI.

	Parameters:	updates – updates for the alert.

	
create()[source]

	Create this Alert in UI.

	
delete(cancel=False)[source]

	Delete this Alert in UI.

	Parameters:	cancel – Whether to cancel the deletion (default False).

	
exists

	Check existence of this Alert.

Returns: bool [http://docs.python.org/2.7/library/functions.html#bool] signalizing the presence of the Alert in the database.

	
pretty_attrs = ['description', 'evaluate']

	

	
update(updates, cancel=False)[source]

	Update this Alert in UI.

	Parameters:	
	updates – Provided by update() context manager.

	cancel – Whether to cancel the update (default False).

	
class cfme.control.explorer.alerts.AlertCopy(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NewAlertView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.control.explorer.alerts.AlertDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AlertDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.control.explorer.alerts.AlertDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.control.explorer.ControlExplorerView

	
hardware_reconfigured_parameters

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
info

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.alerts.AlertEdit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditAlertView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.control.explorer.alerts.AlertFormCommon(parent, logger=None, **kwargs)[source]

	Bases: cfme.control.explorer.ControlExplorerView

	
active

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
based_on

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
driving_event

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
emails

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
emails_send

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
evaluate

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
mgmt_event

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
mgmt_event_send

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
notification_frequency

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
snmp_trap

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
snmp_trap_send

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
timeline_event

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.alerts.AlertNew(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NewAlertView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.control.explorer.alerts.AlertsAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.control.explorer.ControlExplorerView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.alerts.EditAlertView(parent, logger=None, **kwargs)[source]

	Bases: cfme.control.explorer.alerts.AlertFormCommon

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.alerts.NewAlertView(parent, logger=None, **kwargs)[source]

	Bases: cfme.control.explorer.alerts.AlertFormCommon

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.control package

 	cfme.control.explorer package

cfme.control.explorer.conditions module

	
class cfme.control.explorer.conditions.BaseCondition(description, expression=None, scope=None, notes=None, appliance=None)[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.appliance.Navigatable, cfme.utils.pretty.Pretty

	
FIELD_VALUE = None

	

	
PRETTY = None

	

	
TREE_NODE = None

	

	
create()[source]

	

	
delete(cancel=False)[source]

	Delete this Condition in UI.

	Parameters:	cancel – Whether to cancel the deletion (default False).

	
exists

	Check existence of this Condition.

Returns: bool [http://docs.python.org/2.7/library/functions.html#bool] signalizing the presence of the Condition in the database.

	
read_expression()[source]

	

	
read_scope()[source]

	

	
update(updates)[source]

	Update this Condition in UI.

	Parameters:	
	updates – Provided by update() context manager.

	cancel – Whether to cancel the update (default False).

	
class cfme.control.explorer.conditions.ConditionDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ConditionDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.control.explorer.conditions.ConditionDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.control.explorer.ControlExplorerView

	
expression

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
scope

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.conditions.ConditionEdit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditConditionView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.control.explorer.conditions.ConditionFormCommon(parent, logger=None, **kwargs)[source]

	Bases: cfme.control.explorer.ControlExplorerView

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
expression

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
notes

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
scope

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.conditions.ConditionNew(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NewConditionView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.control.explorer.conditions.ConditionsAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.control.explorer.ControlExplorerView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.conditions.ContainerImageCondition(description, expression=None, scope=None, notes=None, appliance=None)[source]

	Bases: cfme.control.explorer.conditions.BaseCondition

	
FIELD_VALUE = 'Container Image'

	

	
PRETTY = 'Container Image'

	

	
TREE_NODE = 'Container Image'

	

	
class cfme.control.explorer.conditions.ContainerNodeCondition(description, expression=None, scope=None, notes=None, appliance=None)[source]

	Bases: cfme.control.explorer.conditions.BaseCondition

	
FIELD_VALUE = 'Node'

	

	
PRETTY = 'Node'

	

	
TREE_NODE = 'Container Node'

	

	
class cfme.control.explorer.conditions.EditConditionView(parent, logger=None, **kwargs)[source]

	Bases: cfme.control.explorer.conditions.ConditionFormCommon

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.conditions.Expression(parent, type_, logger=None)[source]

	Bases: widgetastic.widget.Widget

	
ROOT = 'div#condition_info_div'

	

	
read(*args, **kwargs)[source]

	In Condition details view Scope and Expression don’t have any locator. So we
have to scrape whole text in the parent div and split it by “n”. After that in text_list
we receive something like that:

[u'Scope',
 u'COUNT OF VM and Instance.Files > 150',
 u'Expression',
 u'VM and Instance : Boot Time BEFORE "03/04/2014 00:00"',
 u'Notes',
 u'No notes have been entered.',
 u'Assigned to Policies',
 u'This Condition is not assigned to any Policies.']

To get value of Scope or Expression firstly we find its index in the list and then just
seek next member.

	
text_list

	

	
class cfme.control.explorer.conditions.HostCondition(description, expression=None, scope=None, notes=None, appliance=None)[source]

	Bases: cfme.control.explorer.conditions.BaseCondition

	
FIELD_VALUE = 'Host / Node'

	

	
PRETTY = 'Host / Node'

	

	
TREE_NODE = 'Host'

	

	
class cfme.control.explorer.conditions.NewConditionView(parent, logger=None, **kwargs)[source]

	Bases: cfme.control.explorer.conditions.ConditionFormCommon

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.control.explorer.conditions.PodCondition(description, expression=None, scope=None, notes=None, appliance=None)[source]

	Bases: cfme.control.explorer.conditions.BaseCondition

	
FIELD_VALUE = 'Pod'

	

	
PRETTY = 'Pod'

	

	
TREE_NODE = 'Pod'

	

	
class cfme.control.explorer.conditions.ProviderCondition(description, expression=None, scope=None, notes=None, appliance=None)[source]

	Bases: cfme.control.explorer.conditions.BaseCondition

	
FIELD_VALUE = 'Provider'

	

	
PRETTY = 'Provider'

	

	
TREE_NODE = 'Provider'

	

	
class cfme.control.explorer.conditions.ReplicatorCondition(description, expression=None, scope=None, notes=None, appliance=None)[source]

	Bases: cfme.control.explorer.conditions.BaseCondition

	
FIELD_VALUE = 'Replicator'

	

	
PRETTY = 'Replicator'

	

	
TREE_NODE = 'Replicator'

	

	
class cfme.control.explorer.conditions.VMCondition(description, expression=None, scope=None, notes=None, appliance=None)[source]

	Bases: cfme.control.explorer.conditions.BaseCondition

	
FIELD_VALUE = 'VM and Instance'

	

	
PRETTY = 'VM'

	

	
TREE_NODE = 'VM and Instance'

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.control package

 	cfme.control.explorer package

cfme.control.explorer.policies module

Page model for Control / Explorer

	
class cfme.control.explorer.policies.BasePolicy(description, active=True, scope=None, notes=None, appliance=None)[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.appliance.Navigatable, cfme.utils.pretty.Pretty

This class represents a Policy.

Example

>>> from cfme.control.explorer.policy import VMCompliancePolicy
>>> policy = VMCompliancePolicy("policy_description")
>>> policy.create()
>>> policy.delete()

	Parameters:	
	description – Policy name.

	active – Whether the policy active or not.

	scope – Policy scope.

	notes – Policy notes.

	
PRETTY = None

	

	
TREE_NODE = None

	

	
TYPE = None

	

	
assign_actions_to_event(event, actions)[source]

	This method takes a list or dict of actions, goes into the policy event and assigns them.
Actions can be passed both as the objects, but they can be passed also as a string.
Actions, passed as an object but not created yet, will be created.
If the specified event is not assigned to the policy, it will be assigned.

	Parameters:	
	event – Name of the event under which the actions will be assigned.

	actions – If list (or similar), all of these actions will be set under
TRUE section. If dict [http://docs.python.org/2.7/library/stdtypes.html#dict], the action is key and value specifies its
placement. If it’s True, then it will be put in the TRUE section and so on.

	
assign_conditions(*conditions)[source]

	Assign conditions to this Policy.

	Parameters:	conditions – Conditions which need to be assigned.

	
assign_events(*events, **kwargs)[source]

	Assign events to this Policy.

	Parameters:	
	events – Events which need to be assigned.

	extend – Do not uncheck existing events.

	
assigned_events

	

	
copy(cancel=False)[source]

	Copy this Policy in UI.

	Parameters:	cancel – Whether to cancel the copying (default False).

	
create()[source]

	Create this Policy in UI.

	
delete(cancel=False)[source]

	Delete this Policy in UI.

	Parameters:	cancel – Whether to cancel the deletion (default False).

	
exists

	

	
is_condition_assigned(condition)[source]

	

	
is_event_assigned(event)[source]

	

	
update(updates)[source]

	Update this Policy in UI.

	Parameters:	
	updates – Provided by update() context manager.

	cancel – Whether to cancel the update (default False).

	
class cfme.control.explorer.policies.ConditionDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.control.explorer.ControlExplorerView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.policies.ContainerImageCompliancePolicy(description, active=True, scope=None, notes=None, appliance=None)[source]

	Bases: cfme.control.explorer.policies.BasePolicy

	
PRETTY = 'Container Image'

	

	
TREE_NODE = 'Container Image'

	

	
TYPE = 'Compliance'

	

	
class cfme.control.explorer.policies.ContainerImageControlPolicy(description, active=True, scope=None, notes=None, appliance=None)[source]

	Bases: cfme.control.explorer.policies.BasePolicy

	
PRETTY = 'Container Image'

	

	
TREE_NODE = 'Container Image'

	

	
TYPE = 'Control'

	

	
class cfme.control.explorer.policies.ContainerNodeCompliancePolicy(description, active=True, scope=None, notes=None, appliance=None)[source]

	Bases: cfme.control.explorer.policies.BasePolicy

	
PRETTY = 'Node'

	

	
TREE_NODE = 'Container Node'

	

	
TYPE = 'Compliance'

	

	
class cfme.control.explorer.policies.ContainerNodeControlPolicy(description, active=True, scope=None, notes=None, appliance=None)[source]

	Bases: cfme.control.explorer.policies.BasePolicy

	
PRETTY = 'Node'

	

	
TREE_NODE = 'Container Node'

	

	
TYPE = 'Control'

	

	
class cfme.control.explorer.policies.EditEventView(parent, logger=None, **kwargs)[source]

	Bases: cfme.control.explorer.ControlExplorerView

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
false_actions

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
true_actions

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.policies.EditPolicyConditionAssignments(parent, logger=None, **kwargs)[source]

	Bases: cfme.control.explorer.ControlExplorerView

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
conditions

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.policies.EditPolicyEventAssignments(parent, logger=None, **kwargs)[source]

	Bases: cfme.control.explorer.ControlExplorerView

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
events

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters:	version_dict – Dictionary of version_introduced: item

	
is_displayed

	

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.policies.EditPolicyView(parent, logger=None, **kwargs)[source]

	Bases: cfme.control.explorer.policies.PolicyFormCommon

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.policies.EventDetailsToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Toolbar widets on the event details page

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.policies.EventDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.control.explorer.ControlExplorerView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.policies.HostCompliancePolicy(description, active=True, scope=None, notes=None, appliance=None)[source]

	Bases: cfme.control.explorer.policies.BasePolicy

	
PRETTY = 'Host / Node'

	

	
TREE_NODE = 'Host'

	

	
TYPE = 'Compliance'

	

	
class cfme.control.explorer.policies.HostControlPolicy(description, active=True, scope=None, notes=None, appliance=None)[source]

	Bases: cfme.control.explorer.policies.BasePolicy

	
PRETTY = 'Host / Node'

	

	
TREE_NODE = 'Host'

	

	
TYPE = 'Control'

	

	
class cfme.control.explorer.policies.NewPolicyView(parent, logger=None, **kwargs)[source]

	Bases: cfme.control.explorer.policies.PolicyFormCommon

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.policies.PodCompliancePolicy(description, active=True, scope=None, notes=None, appliance=None)[source]

	Bases: cfme.control.explorer.policies.BasePolicy

	
PRETTY = 'Pod'

	

	
TREE_NODE = 'Pod'

	

	
TYPE = 'Compliance'

	

	
class cfme.control.explorer.policies.PodControlPolicy(description, active=True, scope=None, notes=None, appliance=None)[source]

	Bases: cfme.control.explorer.policies.BasePolicy

	
PRETTY = 'Pod'

	

	
TREE_NODE = 'Pod'

	

	
TYPE = 'Control'

	

	
class cfme.control.explorer.policies.PoliciesAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.control.explorer.ControlExplorerView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.policies.PolicyConditionDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ConditionDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.control.explorer.policies.PolicyDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PolicyDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.control.explorer.policies.PolicyDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.control.explorer.ControlExplorerView

	
analysis_profile

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.policies.PolicyEdit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditPolicyView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.control.explorer.policies.PolicyEventDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EventDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.control.explorer.policies.PolicyFormCommon(parent, logger=None, **kwargs)[source]

	Bases: cfme.control.explorer.ControlExplorerView

	
active

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
notes

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
scope

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.policies.PolicyNew(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NewPolicyView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.control.explorer.policies.ReplicatorCompliancePolicy(description, active=True, scope=None, notes=None, appliance=None)[source]

	Bases: cfme.control.explorer.policies.BasePolicy

	
PRETTY = 'Replicator'

	

	
TREE_NODE = 'Replicator'

	

	
TYPE = 'Compliance'

	

	
class cfme.control.explorer.policies.ReplicatorControlPolicy(description, active=True, scope=None, notes=None, appliance=None)[source]

	Bases: cfme.control.explorer.policies.BasePolicy

	
PRETTY = 'Replicator'

	

	
TREE_NODE = 'Replicator'

	

	
TYPE = 'Control'

	

	
class cfme.control.explorer.policies.VMCompliancePolicy(description, active=True, scope=None, notes=None, appliance=None)[source]

	Bases: cfme.control.explorer.policies.BasePolicy

	
PRETTY = 'VM and Instance'

	

	
TREE_NODE = 'Vm'

	

	
TYPE = 'Compliance'

	

	
class cfme.control.explorer.policies.VMControlPolicy(description, active=True, scope=None, notes=None, appliance=None)[source]

	Bases: cfme.control.explorer.policies.BasePolicy

	
PRETTY = 'VM and Instance'

	

	
TREE_NODE = 'Vm'

	

	
TYPE = 'Control'

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.control package

 	cfme.control.explorer package

cfme.control.explorer.policy_profiles module

	
class cfme.control.explorer.policy_profiles.EditPolicyProfileView(parent, logger=None, **kwargs)[source]

	Bases: cfme.control.explorer.policy_profiles.PolicyProfileFormCommon

	
is_displayed

	

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.policy_profiles.NewPolicyProfileView(parent, logger=None, **kwargs)[source]

	Bases: cfme.control.explorer.policy_profiles.PolicyProfileFormCommon

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.control.explorer.policy_profiles.PolicyProfile(description, policies=None, notes=None, appliance=None)[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.appliance.Navigatable, cfme.utils.pretty.Pretty

	
create()[source]

	

	
delete(cancel=False)[source]

	Delete this Policy Profile in UI.

	Parameters:	cancel – Whether to cancel the deletion (default False).

	
exists

	Check existence of this Policy Profile.

Returns: bool [http://docs.python.org/2.7/library/functions.html#bool] signalizing the presence of the Policy Profile in database.

	
prepared_policies

	

	
update(updates)[source]

	Update this Policy Profile in UI.

	Parameters:	
	updates – Provided by update() context manager.

	cancel – Whether to cancel the update (default False).

	
class cfme.control.explorer.policy_profiles.PolicyProfileDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PolicyProfileDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.control.explorer.policy_profiles.PolicyProfileDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.control.explorer.ControlExplorerView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.policy_profiles.PolicyProfileEdit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditPolicyProfileView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.control.explorer.policy_profiles.PolicyProfileFormCommon(parent, logger=None, **kwargs)[source]

	Bases: cfme.control.explorer.ControlExplorerView

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
notes

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policies

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.policy_profiles.PolicyProfileNew(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NewPolicyProfileView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.control.explorer.policy_profiles.PolicyProfilesAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.control.explorer.ControlExplorerView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.control package

cfme.control.import_export module

	
class cfme.control.import_export.ControlImportExport(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ControlImportExportView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.control.import_export.ControlImportExportView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

	
commit_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
export

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
export_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
policy_profiles

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
upload_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
upload_file

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.import_export.InputButton(parent, name=None, id=None, locator=None, logger=None)[source]

	Bases: widgetastic_patternfly.Input, widgetastic.widget.ClickableMixin

	
cfme.control.import_export.import_file(filename, cancel=False)[source]

	Go to Control / Import Export and import given file.

	Parameters:	
	filename – Full path to file to import.

	cancel – Whether to click Cancel instead of commit.

	
cfme.control.import_export.is_imported(policy_profile)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.control package

cfme.control.log module

	
class cfme.control.log.ControlLog(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ControlLogView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.control.log.ControlLogView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Basic view for Control/Log tab.

	
download_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
refresh_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
subtitle

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.control package

cfme.control.simulation module

	
class cfme.control.simulation.ControlSimulation(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ControlSimulationView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.control.simulation.ControlSimulationView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Basic view for Control/Simulation tab.

	
event_selection

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
submit_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
vm_selection

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.control package

cfme.control.snmp_form module

This file contains useful classes for working with SNMP filling.

	
class cfme.control.snmp_form.SNMPForm[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

Class encapsulating the most common (and hopefully single) configuration of SNMP form

Usage:

form = SNMPForm()
fill(form, dict(
 hosts=["host1", "host2"],
 traps=[
 ("aaa", "Counter32", 125), # Takes 3-tuples
 ("bbb", "Null"), # 2-tuples with no value specified
 SNMPTrap("ccc", "Gauge32", 256), # objects dtto
 SNMPTrap("ddd", "Null"), # value can be unspecified too
 {"oid": "eee", "type": "Integer", "value": 42} # omg dict too! Yay.
],
 version="v2",
 id="aabcd",
))

	
fields = <cfme.web_ui.Form fields=[('hosts', <cfme.control.snmp_form.SNMPHostsField object at 0x7fd3110d3f90>), ('version', Select("//select[@id='snmp_version']", multi=False)), ('id', <cfme.web_ui.Input _names=('trap_id',), _use_id=False>), ('traps', <cfme.control.snmp_form.SNMPTrapsField num_fields=None>)]>

	

	
class cfme.control.snmp_form.SNMPHostsField[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

Class designed for handling the two-type snmp hosts field.

They can be 3 or just single.

	
host_fields

	Returns list of locators to all host fields

	
class cfme.control.snmp_form.SNMPTrap(oid, type, value=None)[source]

	Bases: cfme.utils.pretty.Pretty

Nicer representation of the single SNMP trap

	Parameters:	
	oid – SNMP OID

	type – SNMP type

	value – Value (default: None)

	
as_tuple

	Return the contents as a tuple used for filling

	
pretty_attrs = ['oid', 'type', 'value']

	

	
class cfme.control.snmp_form.SNMPTrapField(seq_id)[source]

	Bases: cfme.utils.pretty.Pretty

Class representing SNMP trap field consisting of 3 elements - oid, type and value

	Parameters:	seq_id – Sequential id of the field. Usually in range 1-10

	
oid

	

	
oid_loc

	

	
pretty_attrs = ['seq_id']

	

	
type

	

	
type_loc

	

	
value

	

	
value_loc

	

	
class cfme.control.snmp_form.SNMPTrapsField(num_fields)[source]

	Bases: cfme.utils.pretty.Pretty

Encapsulates all trap fields to simplify form filling

	Parameters:	num_fields – How many SNMPTrapField to generate

	
pretty_attrs = ['num_fields']

	

	
cfme.control.snmp_form.fill_snmp_form(form, values, *rest, **kwrest)[source]

	I wanted to use dict but that is overrided in web_ui that it disassembles dict to list
of tuples :(

	
cfme.control.snmp_form.fill_snmp_hosts_field_basestr(field, value)[source]

	

	
cfme.control.snmp_form.fill_snmp_hosts_field_list(field, values)[source]

	

	
cfme.control.snmp_form.fill_snmp_trap_field_dict(field, val)[source]

	

	
cfme.control.snmp_form.fill_snmp_trap_field_trap(field, val)[source]

	

	
cfme.control.snmp_form.fill_snmp_trap_field_tuple(field, val)[source]

	

	
cfme.control.snmp_form.fill_snmp_traps_field_list(field, values)[source]

	

	
cfme.control.snmp_form.fill_snmp_traps_field_single_trap(field, value)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

cfme.fixtures package

Submodules

	cfme.fixtures.base module

	cfme.fixtures.cli module

	cfme.fixtures.configure_auth_mode module

	cfme.fixtures.model_collections module

	cfme.fixtures.pytest_selenium module

	cfme.fixtures.rdb module

	cfme.fixtures.service_fixtures module

	cfme.fixtures.smtp module

	cfme.fixtures.tag module

	cfme.fixtures.vm_name module

	cfme.fixtures.vporizer module

Module contents

A variety of modules intended to make life easier for QE developers.

	cfme.fixtures.login - A module providing a login generator

	cfme.fixtures.pytest_selenium - A module offering a large number
of CFME optimized selenium wrappers and other auxilliary functions.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.fixtures package

cfme.fixtures.base module

	
cfme.fixtures.base.appliance()[source]

	

	
cfme.fixtures.base.ensure_websocket_role_disabled()[source]

	

	
cfme.fixtures.base.fix_merkyl_workaround(request, appliance)[source]

	Workaround around merkyl not opening an iptables port for communication

	
cfme.fixtures.base.fix_missing_hostname(appliance)[source]

	Fix for hostname missing from the /etc/hosts file

	Note: Affects RHOS-based appliances but can’t hurt the others so

	it’s applied on all.

	
cfme.fixtures.base.set_session_timeout(appliance)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.fixtures package

cfme.fixtures.cli module

	
class cfme.fixtures.cli.TimedCommand(command, timeout)

	Bases: tuple

	
__getnewargs__()

	Return self as a plain tuple. Used by copy and pickle.

	
__getstate__()

	Exclude the OrderedDict from pickling

	
__repr__()

	Return a nicely formatted representation string

	
command

	Alias for field number 0

	
timeout

	Alias for field number 1

	
cfme.fixtures.cli.app_creds()[source]

	

	
cfme.fixtures.cli.app_creds_modscope()[source]

	

	
cfme.fixtures.cli.dedicated_db_appliance(app_creds, appliance)[source]

	‘ap’ launch appliance_console, ‘’ clear info screen, ‘5/8’ setup db, ‘1’ Creates v2_key,
‘1’ selects internal db, ‘y’ continue, ‘1’ use partition, ‘y’ create dedicated db, ‘pwd’
db password, ‘pwd’ confirm db password + wait 360 secs and ‘’ finish.

	
cfme.fixtures.cli.fqdn_appliance(appliance)[source]

	

	
cfme.fixtures.cli.ipa_creds()[source]

	

	
cfme.fixtures.cli.ipa_crud(fqdn_appliance, app_creds, ipa_creds)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.fixtures package

cfme.fixtures.configure_auth_mode module

	
cfme.fixtures.configure_auth_mode.available_auth_modes()[source]

	

	
cfme.fixtures.configure_auth_mode.configure_auth(request, auth_mode)[source]

	

	
cfme.fixtures.configure_auth_mode.configure_aws_iam_auth_mode(browser, available_auth_modes)[source]

	Configure AWS IAM authentication mode

	
cfme.fixtures.configure_auth_mode.configure_ldap_auth_mode(browser, available_auth_modes)[source]

	Configure LDAP authentication mode

	
cfme.fixtures.configure_auth_mode.configure_openldap_auth_mode(browser, available_auth_modes)[source]

	Configure LDAP authentication mode

	
cfme.fixtures.configure_auth_mode.configure_openldap_auth_mode_default_groups(browser, available_auth_modes)[source]

	Configure LDAP authentication mode

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.fixtures package

cfme.fixtures.model_collections module

	
cfme.fixtures.model_collections.dashboards(appliance)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.fixtures package

cfme.fixtures.pytest_selenium module

Provides a number of useful functions for integrating with selenium.

The aim is that no direct calls to selenium be made at all.
One reason for this it to ensure that all function calls to selenium wait for the ajax
response which is needed in CFME.

Members of this module are available in the the pytest.sel namespace, e.g.:

pytest.sel.click(locator)

	var ajax_wait_js:

		A Javascript function for ajax wait checking

	var class_selector:

		Regular expression to detect simple CSS locators

	
class cfme.fixtures.pytest_selenium.ByText(text)[source]

	Bases: cfme.utils.pretty.Pretty

	
pretty_attrs = ['text']

	

	
class cfme.fixtures.pytest_selenium.ByValue(value)[source]

	Bases: cfme.utils.pretty.Pretty

	
pretty_attrs = ['value']

	

	
class cfme.fixtures.pytest_selenium.ContextWrapper[source]

	Bases: dict [http://docs.python.org/2.7/library/stdtypes.html#dict]

Dict that provides .attribute access + dumps all keys when not found.

	
cfme.fixtures.pytest_selenium.ScreenShot

	alias of screenshot

	
class cfme.fixtures.pytest_selenium.Select(loc, multi=False, none=None)[source]

	Bases: selenium.webdriver.support.select.Select [http://selenium-python.readthedocs.org/api.html#selenium.webdriver.support.select.Select], cfme.utils.pretty.Pretty

A proxy class for the real selenium Select() object.

We differ in one important point, that we can instantiate the object
without it being present on the page. The object is located at the beginning
of each function call.

Can hadle patternfly selectpicker kind of select. It alters the behaviour slightly, it does
not use move_to_element() and uses JavaScript more extensively.

	Parameters:	loc – A locator.

Returns: A cfme.web_ui.Select object.

	
class Option(text, value)

	Bases: tuple

	
__getnewargs__()

	Return self as a plain tuple. Used by copy and pickle.

	
__getstate__()

	Exclude the OrderedDict from pickling

	
__repr__()

	Return a nicely formatted representation string

	
text

	Alias for field number 0

	
value

	Alias for field number 1

	
Select.all_options

	Returns a list of tuples of all the options in the Select

	
Select.all_selected_options

	Fast variant of the original all_selected_options.

Selenium’s all_selected_options iterates over ALL of the options, this directly returns
only those that are selected.

	
Select.classes

	

	
Select.deselect_all()[source]

	Fast variant of the original deselect_all.

Uses all_selected_options, mimics selenium’s exception behaviour.

	
Select.first_selected_option

	Fast variant of the original first_selected_option.

Uses all_selected_options, mimics selenium’s exception behaviour.

	
Select.first_selected_option_text

	

	
Select.get_value_by_text(text)[source]

	

	
Select.is_broken = False

	

	
Select.is_patternfly

	

	
Select.locate()[source]

	Guards against passing wrong locator (not resolving to a select).

	
Select.none

	

	
Select.observer_wait()[source]

	

	
Select.pretty_attrs = ['_loc', 'is_multiple']

	

	
Select.select_by_value(value)[source]

	

	
Select.select_by_visible_text(text)[source]

	Dump all of the options if the required option is not present.

	
cfme.fixtures.pytest_selenium.ajax_timeout(*args, **kwds)[source]

	Change the AJAX timeout in this context. Useful when something takes a long time.

	Parameters:	seconds – Numebr of seconnds to wait.

	
cfme.fixtures.pytest_selenium.base_url()[source]

	Returns the base url.

Returns: base_url from env config yaml

	
cfme.fixtures.pytest_selenium.check(loc)[source]

	Convenience function to check a checkbox

	Parameters:	loc – The locator of the element

	
cfme.fixtures.pytest_selenium.checkbox(loc, set_to=False)[source]

	Checks or unchecks a given checkbox

Finds an element given by loc and checks it

	Parameters:	
	loc – The locator of the element

	value – The value the checkbox should represent as a bool (or None to do nothing)

Returns: Previous state of the checkbox

	
cfme.fixtures.pytest_selenium.classes(loc)[source]

	Return a list of classes attached to the element.

	
cfme.fixtures.pytest_selenium.click(loc, wait_ajax=True, no_custom_handler=False)[source]

	Clicks on an element.

If the element implements _custom_click_handler the control will be given to it. Then the
handler decides what to do (eg. do not click under some circumstances).

	Parameters:	
	loc – A locator, expects either a string, WebElement, tuple or an object implementing
_custom_click_handler method.

	wait_ajax – Whether to wait for ajax call to finish. Default True but sometimes it’s
handy to not do that. (some toolbar clicks)

	no_custom_handler – To prevent recursion, the custom handler sets this to True.

	
cfme.fixtures.pytest_selenium.current_url()[source]

	Returns the current_url of the page

Returns: A url.

	
cfme.fixtures.pytest_selenium.deselect_by_text(select_element, txt)[source]

	Works on a select element and deselects an option by the visible text.

	Parameters:	
	loc – A locator, expects either a string, WebElement, tuple.

	text – The select element option’s visible text.

	
cfme.fixtures.pytest_selenium.deselect_by_value(select_element, val)[source]

	Works on a select element and deselects an option by the value attribute.

	Parameters:	
	loc – A locator, expects either a string, WebElement, tuple.

	value – The select element’s option value.

	
cfme.fixtures.pytest_selenium.detect_observed_field(loc)[source]

	Detect observed fields; sleep if needed

Used after filling most form fields, this function will inspect the filled field for
one of the known CFME observed field attribues, and if found, sleep long enough for the observed
field’s AJAX request to go out, and then block until no AJAX requests are in flight.

Observed fields occasionally declare their own wait interval before firing their AJAX request.
If found, that interval will be used instead of the default.

	
cfme.fixtures.pytest_selenium.dismiss_any_alerts()[source]

	Loops until there are no further alerts present to dismiss.

Useful for handling the cases where the alert pops up multiple times.

	
cfme.fixtures.pytest_selenium.double_click(loc, wait_ajax=True)[source]

	Double-clicks on an element.

	Parameters:	
	loc – A locator, expects either a string, WebElement, tuple.

	wait_ajax – Whether to wait for ajax call to finish. Default True but sometimes it’s
handy to not do that. (some toolbar clicks)

	
cfme.fixtures.pytest_selenium.drag_and_drop(source_element, dest_element)[source]

	Drag and Drop element.

	Parameters:	
	source_element – A locator, expects either a string, WebElement, tuple.

	dest_element – A locator, expects either a string, WebElement, tuple.

	wait_ajax – Whether to wait for ajax call to finish. Default True but sometimes it’s
handy to not do that. (some toolbar clicks)

	
cfme.fixtures.pytest_selenium.drag_and_drop_by_offset(source_element, x=0, y=0)[source]

	Drag and Drop element by offset

	Parameters:	
	source_element – A locator, expects either a string, WebElement, tuple.

	x – Distance in pixels on X axis to move it.

	y – Distance in pixels on Y axis to move it.

	
cfme.fixtures.pytest_selenium.element(o, **kwargs)[source]

	Convert o to a single matching WebElement.

	Parameters:	o – An object to be converted to a matching web element, expected string, WebElement, tuple.

	Keywords:

	
	_no_deeper: Whether this call of the function can call for something that can retrieve

	elements too. Recursion protection.

Returns: A WebElement object

	Raises:	NoSuchElementException –
When element is not found on page

	
cfme.fixtures.pytest_selenium.elements[source]

	Convert object o to list of matching WebElements. Can be extended by registering the type of o
to this function.

	Parameters:	o – An object to be converted to a matching web element, eg str, WebElement, tuple.

Returns: A list of WebElement objects

	
cfme.fixtures.pytest_selenium.execute_script(script, *args, **kwargs)[source]

	Wrapper for execute_script() to not have to pull browser() from somewhere.

It also provides our library which is stored in data/lib.js file.

	
cfme.fixtures.pytest_selenium.get(url)[source]

	Changes page to the specified URL

	Parameters:	url – URL to navigate to.

	
cfme.fixtures.pytest_selenium.get_alert()[source]

	

	
cfme.fixtures.pytest_selenium.get_attribute(loc, attr)[source]

	Returns the value of the HTML attribute of the given locator.

	Parameters:	
	loc – A locator, expects eithera string, WebElement, tuple.

	attr – An attribute name.

Returns: Text describing the attribute of the element.

	
cfme.fixtures.pytest_selenium.get_rails_error()[source]

	Get displayed rails error. If not present, return None

	
cfme.fixtures.pytest_selenium.handle_alert(cancel=False, wait=30.0, squash=False, prompt=None, check_present=False)[source]

	Handles an alert popup.

	Parameters:	
	cancel – Whether or not to cancel the alert.
Accepts the Alert (False) by default.

	wait – Time to wait for an alert to appear.
Default 30 seconds, can be set to 0 to disable waiting.

	squash – Whether or not to squash errors during alert handling.
Default False

	prompt – If the alert is a prompt, specify the keys to type in here

	check_present – Does not squash
selenium.common.exceptions.NoAlertPresentException [http://selenium-python.readthedocs.org/api.html#selenium.common.exceptions.NoAlertPresentException]

	Returns:	True if the alert was handled, False if exceptions were
squashed, None if there was no alert.

No exceptions will be raised if squash is True and check_present is False.

	Raises:	
	utils.wait.TimedOutError –
If the alert popup does not appear

	selenium.common.exceptions.NoAlertPresentException [http://selenium-python.readthedocs.org/api.html#selenium.common.exceptions.NoAlertPresentException] –
If no alert is present when accepting
or dismissing the alert.

	
cfme.fixtures.pytest_selenium.in_flight(script)[source]

	Check remaining (running) ajax requests

The element visibility check is complex because lightbox_div invokes visibility
of spinner_div although it is not visible.

	Parameters:	script – Script (string) to execute

	Returns:	Dictionary of js-related keys and booleans as its values, depending on status.
The keys are: jquery, prototype, miq, spinner and document.
The values are: True if running, False otherwise.

	
cfme.fixtures.pytest_selenium.is_alert_present()[source]

	

	
cfme.fixtures.pytest_selenium.is_displayed(loc, _deep=0, **kwargs)[source]

	Checks if a particular locator is displayed

	Parameters:	loc – A locator, expects either a string, WebElement, tuple.

	Keywords:

	move_to: Uses move_to_element() instead of element()

Returns: True if element is displayed, False if not

	Raises:	
	NoSuchElementException –
If element is not found on page

	CFMEExceptionOccured –
When there is a CFME rails exception on the page.

	
cfme.fixtures.pytest_selenium.is_displayed_text(text)[source]

	Checks if a particular text is displayed

	Parameters:	text – A string.

Returns: A string containing the text

	
cfme.fixtures.pytest_selenium.move_to_element(loc, **kwargs)[source]

	Moves to an element.

	Parameters:	loc – A locator, expects either a string, WebElement, tuple.

Returns: Returns the element it was moved to to enable chaining.

	
cfme.fixtures.pytest_selenium.raw_click(loc, wait_ajax=True)[source]

	Does raw selenium’s .click() call on element. Circumvents mouse move.

	Parameters:	
	loc – Locator to click on.

	wait_ajax – Whether to wait for ajax.

	
cfme.fixtures.pytest_selenium.refresh()[source]

	Refreshes the current browser window.

	
cfme.fixtures.pytest_selenium.select_by_text(select_element, txt)[source]

	Works on a select element and selects an option by the visible text.

	Parameters:	
	loc – A locator, expects either a string, WebElement, tuple.

	text – The select element option’s visible text.

Returns: previously selected text

	
cfme.fixtures.pytest_selenium.select_by_value(select_element, val)[source]

	Works on a select element and selects an option by the value attribute.

	Parameters:	
	loc – A locator, expects either a string, WebElement, tuple.

	value – The select element’s option value.

	
cfme.fixtures.pytest_selenium.send_keys(loc, text)[source]

	Sends the supplied keys to an element. Handles the file upload fields on background.

If it detects the element is and input of type file, it uses the LocalFileDetector so
the file gets transferred properly. Otherwise it takes care of having UselessFileDetector.

	Parameters:	
	loc – A locator, expects either a string, WebElement, tuple.

	text – The text to inject into the element.

	
cfme.fixtures.pytest_selenium.set_angularjs_value(loc, value)[source]

	Sets value of an element managed by angularjs

	Parameters:	
	loc – A locator, expects either a string, WebElement, tuple.

	value – Value to set.

	
cfme.fixtures.pytest_selenium.set_attribute(loc, attr, value)[source]

	Sets the attribute of an element.

This is usually not done, that’s why it is not implemented in selenium. But sometimes ...

	Parameters:	
	loc – A locator, expects either a string, WebElement, tuple.

	attr – Attribute name.

	value – Value to set.

	
cfme.fixtures.pytest_selenium.set_text(loc, text)[source]

	Clears the element and then sends the supplied keys.

	Parameters:	
	loc – A locator, expects either a string, WebElement, tuple.

	text – The text to inject into the element.

	Returns:	Any text that might have been in the textbox element already

	
cfme.fixtures.pytest_selenium.tag(loc)[source]

	Returns the tag name of an element

	Parameters:	loc – A locator, expects either a string, WebElement, tuple.

Returns: A string containing the tag element’s name.

	
cfme.fixtures.pytest_selenium.take_screenshot()[source]

	

	
cfme.fixtures.pytest_selenium.text(loc, **kwargs)[source]

	Returns the text of an element. Always.

If the element is not visible and the text cannot be retrieved by usual means, JS is used.

	Parameters:	loc – A locator, expects eithera string, WebElement, tuple.

Returns: A string containing the text of the element.

	
cfme.fixtures.pytest_selenium.text_content(loc, **kwargs)[source]

	Retrieves the text content of the element using JavaScript.

Use if the element is not visible

	Parameters:	loc – A locator, expects either a string, WebElement or tuple

Returns: A string containing the text of the element.

	
cfme.fixtures.pytest_selenium.text_sane(loc, **kwargs)[source]

	Returns text decoded from UTF-8 and stripped

	Parameters:	loc – A locator, expects eithera string, WebElement, tuple.

Returns: A string containing the text of the element, decoded and stripped.

	
cfme.fixtures.pytest_selenium.title()[source]

	

	
cfme.fixtures.pytest_selenium.uncheck(loc)[source]

	Convenience function to uncheck a checkbox

	Parameters:	loc – The locator of the element

	
cfme.fixtures.pytest_selenium.unset_attribute(loc, attr)[source]

	Removes an attribute of an element.

This is usually not done, that’s why it is not implemented in selenium. But sometimes ...

	Parameters:	
	loc – A locator, expects either a string, WebElement, tuple.

	attr – Attribute name.

	
cfme.fixtures.pytest_selenium.value(loc)[source]

	Returns the value of an input element.

	Parameters:	loc – A locator, expects eithera string, WebElement, tuple.

Returns: A string containing the value of the input element.

	
cfme.fixtures.pytest_selenium.wait_for_ajax()[source]

	Waits until all ajax timers are complete, in other words, waits until there are no
more pending ajax requests, page load should be finished completely.

	Raises:	TimedOutError –
when ajax did not load in time

	
cfme.fixtures.pytest_selenium.wait_for_element(*locs, **kwargs)[source]

	Wrapper around wait_until, specific to an element.

	Parameters:	loc – A locator, expects either a string, WebElement, tuple.

	Keywords:

	all_elements: Whether to wait not for one, but all elements (Default False)
timeout: How much time to wait

	
cfme.fixtures.pytest_selenium.wait_until(f, msg='Webdriver wait timed out', timeout=120.0)[source]

	This used to be a wrapper around WebDriverWait from selenium.

Now it is just compatibility layer using utils.wait.wait_for()

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.fixtures package

cfme.fixtures.rdb module

Rdb: Remote debugger

Given the following configuration in conf/rdb.yaml:

breakpoints:
 - subject: Brief explanation of a problem
 exceptions:
 - cfme.exceptions.ImportableExampleException
 - BuiltinException (e.g. ValueError)
 recipients:
 - user@example.com

Any time an exception listed in a breakpoint’s “exceptions” list is raised in rdb_catch()
context in the course of a test run, a remote debugger will be started on a random port, and the
users listed in “recipients” will be emailed instructions to access the remote debugger via telnet.

The exceptions will be imported, so their fully-qualified importable path is required.
Exceptions without a module path are assumed to be builtins.

An Rdb instance can be used just like a Pdb instance.

Additionally, a signal handler has been set up to allow for triggering Rdb during a test run. To
invoke it, kill -USR1 a test-running process and Rdb will start up. No emails are sent when
operating in this mode, so check the py.test console for the endpoint address.

By default, Rdb assumes that there is a working MTA available on localhost, but this can
be configured in conf['env']['smtp']['server'].

Note

This is very insecure, and should be used as a last resort for debugging elusive failures.

	
class cfme.fixtures.rdb.Rdb(prompt_msg='')[source]

	Bases: pdb.Pdb [http://docs.python.org/2.7/library/pdb.html#pdb.Pdb]

Remote Debugger

When set_trace is called, it will open a socket on a random unprivileged port connected to a
Pdb debugging session. This session can be accessed via telnet, and will end when “continue”
is called in the Pdb session.

	
do_c(arg)

	

	
do_cont(arg)

	

	
do_continue(arg)[source]

	

	
interaction(*args, **kwargs)[source]

	

	
set_trace(*args, **kwargs)[source]

	Start a pdb debugger available via telnet, and optionally email people the endpoint

The endpoint will always be seen in the py.test runner output.

	Keyword Arguments:

		
	recipients –
A list where, if set, an email will be sent to email addresses
in this list.

	subject –
If set, an optional custom email subject

	
cfme.fixtures.rdb.pytest_internalerror(excrepr, excinfo)[source]

	

	
cfme.fixtures.rdb.rdb_catch(*args, **kwds)[source]

	Context Manager used to wrap mysterious failures for remote debugging.

	
cfme.fixtures.rdb.rdb_handle_signal(signal, frame)[source]

	

	
cfme.fixtures.rdb.send_breakpoint_email(exctype, msg='')[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.fixtures package

cfme.fixtures.service_fixtures module

	
cfme.fixtures.service_fixtures.catalog()[source]

	

	
cfme.fixtures.service_fixtures.catalog_item(provider, provisioning, vm_name, dialog, catalog)[source]

	

	
cfme.fixtures.service_fixtures.dialog(appliance)[source]

	

	
cfme.fixtures.service_fixtures.order_catalog_item_in_ops_ui(appliance, provider, catalog_item, request)[source]

	Fixture for SSUI tests.
Orders catalog item in OPS UI.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.fixtures package

cfme.fixtures.smtp module

This module provides a fixture useful for checking the e-mails arrived.

Main use is of fixture smtp_test(), which is function scoped. There is also
a smtp_test_module() fixture for which the smtp_test is just a function-scoped wrapper
to speed things up. The base of all this is the session-scoped _smtp_test_session that keeps care
about the collector.

	
cfme.fixtures.smtp.pytest_runtest_call(item)[source]

	

	
cfme.fixtures.smtp.smtp_test(request)[source]

	Fixture, which prepares the appliance for e-mail capturing tests

Returns: util.smtp_collector_client.SMTPCollectorClient instance.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.fixtures package

cfme.fixtures.tag module

	
cfme.fixtures.tag.category()[source]

	Returns random created category object
Object can be used in all test run session

	
cfme.fixtures.tag.check_item_visibility(tag, user_restricted)[source]

	

	
cfme.fixtures.tag.group_with_tag(role, category, tag)[source]

	Returns group object with set up tag filter used in test module

	
cfme.fixtures.tag.new_credential()[source]

	Returns credentials object used for new user in test module

	
cfme.fixtures.tag.role()[source]

	Returns role object used in test module

	
cfme.fixtures.tag.tag(category)[source]

	Returns random created tag object
Object can be used in all test run session

	
cfme.fixtures.tag.user_restricted(group_with_tag, new_credential)[source]

	Returns restricted user object assigned
to group with tag filter used in test module

	
cfme.fixtures.tag.widgetastic_check_tag_visibility(tag, user_restricted)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.fixtures package

cfme.fixtures.vm_name module

	
cfme.fixtures.vm_name.vm_name(provider)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.fixtures package

cfme.fixtures.vporizer module

	
cfme.fixtures.vporizer.gen_vpor_values()[source]

	

	
cfme.fixtures.vporizer.random() x in the interval [0, 1).

	

	
class cfme.fixtures.vporizer.vpor_data_instance(resource_type, resource_id, resource_name, cpu_usagemhz_rate_average, derived_memory_used, max_cpu_usage_rate_average, max_mem_usage_absolute_average)

	Bases: tuple

	
__getnewargs__()

	Return self as a plain tuple. Used by copy and pickle.

	
__getstate__()

	Exclude the OrderedDict from pickling

	
__repr__()

	Return a nicely formatted representation string

	
cpu_usagemhz_rate_average

	Alias for field number 3

	
derived_memory_used

	Alias for field number 4

	
max_cpu_usage_rate_average

	Alias for field number 5

	
max_mem_usage_absolute_average

	Alias for field number 6

	
resource_id

	Alias for field number 1

	
resource_name

	Alias for field number 2

	
resource_type

	Alias for field number 0

	
cfme.fixtures.vporizer.vporizer(appliance)[source]

	Grabbing vim_performance_operating_ranges table data for nodes and projects.
In case that no such data exists, inserting fake rows

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

cfme.infrastructure package

Subpackages

	cfme.infrastructure.provider package
	Submodules
	cfme.infrastructure.provider.openstack_infra module

	cfme.infrastructure.provider.rhevm module

	cfme.infrastructure.provider.scvmm module

	cfme.infrastructure.provider.virtualcenter module

	Module contents

Submodules

	cfme.infrastructure.cluster module

	cfme.infrastructure.config_management module

	cfme.infrastructure.datastore module

	cfme.infrastructure.deployment_roles module

	cfme.infrastructure.host module

	cfme.infrastructure.networking module

	cfme.infrastructure.openstack_node module

	cfme.infrastructure.pxe module

	cfme.infrastructure.resource_pool module

	cfme.infrastructure.virtual_machines module

Module contents

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.infrastructure package

cfme.infrastructure.provider package

Submodules

	cfme.infrastructure.provider.openstack_infra module

	cfme.infrastructure.provider.rhevm module

	cfme.infrastructure.provider.scvmm module

	cfme.infrastructure.provider.virtualcenter module

Module contents

A model of an Infrastructure Provider in CFME

	
class cfme.infrastructure.provider.Add(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of InfraProviderAddView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.provider.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of InfraProvidersView

	
prerequisite

	This is a helper descriptor for navigation destinations which are on another class/object.

For instance, imagine you have a different object that has a ‘ViewAll’, destination that
needs to be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToObject as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step on the other object.

	
resetter()[source]

	

	
step()[source]

	

	
class cfme.infrastructure.provider.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of InfraProviderDetailsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
resetter()[source]

	

	
step()[source]

	

	
class cfme.infrastructure.provider.DetailsFromProvider(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ProviderClustersView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	Navigate to the correct view

	
class cfme.infrastructure.provider.Discover(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of InfraProvidersDiscoverView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.provider.Edit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of InfraProviderEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.provider.EditTags(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TagPageView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.provider.EditTagsFromDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TagPageView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.provider.InfraProvider(name=None, endpoints=None, key=None, zone=None, provider_data=None, appliance=None)[source]

	Bases: cfme.utils.pretty.Pretty, cfme.common.provider.CloudInfraProvider, widgetastic.utils.Fillable

Abstract model of an infrastructure provider in cfme. See VMwareProvider or RHEVMProvider.

	Parameters:	
	name – Name of the provider.

	details – a details record (see VMwareDetails, RHEVMDetails inner class).

	key – The CFME key of the provider in the yaml.

	endpoints – one or several provider endpoints like DefaultEndpoint. it should be either dict

	format dict{endpoint.name, endpoint, endpoint_n.name, endpoint_n}, list of endpoints or (in) –

	one endpoint (mere) –

Usage:

credentials = Credential(principal='bad', secret='reallybad')
endpoint = DefaultEndpoint(hostname='some_host', api_port=65536, credentials=credentials)
myprov = VMwareProvider(name='foo',
 region='us-west-1'
 endpoints=endpoint)
myprov.create()

	
STATS_TO_MATCH = ['num_template', 'num_vm', 'num_datastore', 'num_host', 'num_cluster']

	

	
as_fill_value()[source]

	

	
category = 'infra'

	

	
db_types = ['InfraManager']

	

	
discover()[source]

	Begins provider discovery from a provider instance

Usage:

discover_from_config(utils.providers.get_crud('rhevm'))

	
get_clusters()[source]

	returns the list of clusters belonging to the provider

	
hosts

	Returns list of cfme.infrastructure.host.Host that should belong to this
provider according to the YAML

	
num_cluster(*args, **kwargs)

	

	
num_cluster_db = None

	

	
num_cluster_ui = None

	

	
num_datastore(*args, **kwargs)

	

	
num_datastore_ui = None

	

	
num_host(*args, **kwargs)

	

	
num_host_db = None

	

	
num_host_ui = None

	

	
page_name = 'infrastructure'

	

	
pretty_attrs = ['name', 'key', 'zone']

	

	
provider_types = {}

	

	
string_name = 'Infrastructure'

	

	
templates_destination_name = 'Templates'

	

	
view_value_mapping

	

	
vm_name

	

	
class cfme.infrastructure.provider.ManagePolicies(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ProvidersManagePoliciesView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.provider.ManagePoliciesFromDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ProvidersManagePoliciesView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.provider.ProviderClustersView(parent, logger=None, **kwargs)[source]

	Bases: cfme.infrastructure.cluster.ClusterView

The all view page for clusters open from provider detail page

	
breadcrumb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
entities

	

	
is_displayed

	Determine if this page is currently being displayed

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.provider.Timelines(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ProviderTimelinesView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
cfme.infrastructure.provider.discover(discover_cls, cancel=False, start_ip=None, end_ip=None)[source]

	Discover infrastructure providers. Note: only starts discovery, doesn’t
wait for it to finish.

	Parameters:	
	discover_cls – Instance of provider class

	cancel – Whether to cancel out of the discover UI.

	start_ip – String start of the IP range for discovery

	end_ip – String end of the IP range for discovery

	
cfme.infrastructure.provider.get_all_providers()[source]

	Returns list of all providers

	
cfme.infrastructure.provider.wait_for_a_provider()[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.infrastructure package

 	cfme.infrastructure.provider package

cfme.infrastructure.provider.openstack_infra module

	
class cfme.infrastructure.provider.openstack_infra.OpenStackInfraEndpointForm(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
default

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
events

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
rsa_keypair

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.provider.openstack_infra.OpenstackInfraProvider(name=None, endpoints=None, key=None, hostname=None, ip_address=None, start_ip=None, end_ip=None, provider_data=None, appliance=None)[source]

	Bases: cfme.infrastructure.provider.InfraProvider

	
STATS_TO_MATCH = ['num_template', 'num_host']

	

	
bad_credentials_error_msg = ('Credential validation was not successful: ', 'Login failed due to a bad username or password.')

	

	
db_types = ['Openstack::InfraManager']

	

	
endpoints_form

	alias of OpenStackInfraEndpointForm

	
classmethod from_config(prov_config, prov_key, appliance=None)[source]

	

	
has_nodes()[source]

	

	
mgmt_class = <Mock name='mock.OpenstackInfraSystem' id='140544542947216'>

	

	
node_exist(name='my_node')[source]

	” registered imported host exist
This function is valid only for RHOS10 and above

	Parameters:	name – by default name is my_name Input self, name of the new node,
looking for the host in Ironic clients, compare the record found with
hosts list in CFME DB

Returns: boolean value if host found

	
register(file_path)[source]

	Register new nodes (Openstack)
Fill a form for new host with json file format
This function is valid only for RHOS10 and above

	Parameters:	file_path – file path of json file with new node details, navigation
MUST be from a specific self

	
scale_down()[source]

	Scales down provider

	
scale_out(increase_by=1)[source]

	Scale out Openstack Infra provider
:param increase_by - count of nodes to be added to infra provider:

	
type_name = 'openstack_infra'

	

	
view_value_mapping

	

	
class cfme.infrastructure.provider.openstack_infra.ProviderNodes(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ProviderNodesView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.provider.openstack_infra.ProviderRegisterNodes(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ProviderRegisterNodesView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.provider.openstack_infra.ProviderRegisterNodesView(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

represents Register Nodes view

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
file

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
register

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.provider.openstack_infra.ProviderScaleDown(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ProviderScaleDownView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.provider.openstack_infra.ProviderScaleDownView(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

represents Scale down view

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
checkbox

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
scale_down

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.provider.openstack_infra.ProviderScaleOut(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ProviderScaleOutView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.provider.openstack_infra.ProviderScaleOutView(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

represents Scale view

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
compute_count

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
scale

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.provider.openstack_infra.RHOSEndpoint(**kwargs)[source]

	Bases: cfme.common.provider.DefaultEndpoint

	
view_value_mapping

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.infrastructure package

 	cfme.infrastructure.provider package

cfme.infrastructure.provider.rhevm module

	
class cfme.infrastructure.provider.rhevm.RHEVMEndpoint(**kwargs)[source]

	Bases: cfme.common.provider.DefaultEndpoint

	
view_value_mapping

	

	
class cfme.infrastructure.provider.rhevm.RHEVMEndpointForm(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
candu

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
default

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.provider.rhevm.RHEVMProvider(name=None, endpoints=None, zone=None, key=None, hostname=None, ip_address=None, start_ip=None, end_ip=None, provider_data=None, appliance=None)[source]

	Bases: cfme.infrastructure.provider.InfraProvider

	
bad_credentials_error_msg = 'Cannot complete login due to an incorrect user name or password.'

	

	
db_types = ['Redhat::InfraManager']

	

	
deployment_helper(deploy_args)[source]

	Used in utils.virtual_machines

	
discover_dict = {'rhevm': True}

	

	
endpoints_form

	alias of RHEVMEndpointForm

	
classmethod from_config(prov_config, prov_key, appliance=None)[source]

	

	
get_console_connection_status()[source]

	

	
get_console_ctrl_alt_del_btn()[source]

	

	
get_console_fullscreen_btn()[source]

	

	
get_remote_console_canvas()[source]

	

	
mgmt_class = <Mock name='mock.RHEVMSystem' id='140544602053520'>

	

	
type_name = 'rhevm'

	

	
view_value_mapping

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.infrastructure package

 	cfme.infrastructure.provider package

cfme.infrastructure.provider.scvmm module

	
class cfme.infrastructure.provider.scvmm.SCVMMEndpoint(**kwargs)[source]

	Bases: cfme.common.provider.DefaultEndpoint

	
view_value_mapping

	

	
class cfme.infrastructure.provider.scvmm.SCVMMEndpointForm(parent, logger=None, **kwargs)[source]

	Bases: cfme.common.provider.DefaultEndpointForm

	
realm

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
security_protocol

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.provider.scvmm.SCVMMProvider(name=None, endpoints=None, key=None, zone=None, hostname=None, ip_address=None, start_ip=None, end_ip=None, provider_data=None, appliance=None)[source]

	Bases: cfme.infrastructure.provider.InfraProvider

	
STATS_TO_MATCH = ['num_template', 'num_vm']

	

	
bad_credentials_error_msg = 'Credential validation was not successful: Unable to connect: WinRM::WinRMAuthorizationError'

	

	
db_types = ['Microsoft::InfraManager']

	

	
deployment_helper(deploy_args)[source]

	Used in utils.virtual_machines

	
discover_dict = {'scvmm': True}

	

	
endpoints_form

	alias of SCVMMEndpointForm

	
classmethod from_config(prov_config, prov_key, appliance=None)[source]

	

	
mgmt_class = <Mock name='mock.SCVMMSystem' id='140544505086864'>

	

	
type_name = 'scvmm'

	

	
view_value_mapping

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.infrastructure package

 	cfme.infrastructure.provider package

cfme.infrastructure.provider.virtualcenter module

	
class cfme.infrastructure.provider.virtualcenter.ProviderNodes(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ProviderNodesView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.provider.virtualcenter.VMwareProvider(name=None, endpoints=None, key=None, zone=None, hostname=None, ip_address=None, start_ip=None, end_ip=None, provider_data=None, appliance=None)[source]

	Bases: cfme.infrastructure.provider.InfraProvider

	
bad_credentials_error_msg = 'Cannot complete login due to an incorrect user name or password.'

	

	
db_types = ['Vmware::InfraManager']

	

	
deployment_helper(deploy_args)[source]

	Used in utils.virtual_machines

	
discover_dict = {'vmware': True}

	

	
endpoints_form

	alias of VirtualCenterEndpointForm

	
classmethod from_config(prov_config, prov_key, appliance=None)[source]

	

	
get_console_connection_status()[source]

	

	
get_console_ctrl_alt_del_btn()[source]

	

	
get_console_fullscreen_btn()[source]

	

	
get_remote_console_canvas()[source]

	

	
mgmt_class = <Mock name='mock.VMWareSystem' id='140544521463184'>

	

	
type_name = 'virtualcenter'

	

	
view_value_mapping

	

	
class cfme.infrastructure.provider.virtualcenter.VirtualCenterEndpoint(**kwargs)[source]

	Bases: cfme.common.provider.DefaultEndpoint

	
class cfme.infrastructure.provider.virtualcenter.VirtualCenterEndpointForm(parent, logger=None, **kwargs)[source]

	Bases: cfme.common.provider.DefaultEndpointForm

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.infrastructure package

cfme.infrastructure.cluster module

A model of an Infrastructure Cluster in CFME

	
class cfme.infrastructure.cluster.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ClusterAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
resetter()[source]

	Reset the view

	
step(*args, **kwargs)[source]

	Navigate to the correct view

	
class cfme.infrastructure.cluster.Cluster(collection, name, provider)[source]

	Bases: cfme.utils.pretty.Pretty, cfme.utils.appliance.BaseEntity, cfme.common.WidgetasticTaggable

Model of an infrastructure cluster in cfme

	Parameters:	
	name – Name of the cluster.

	provider – provider this cluster is attached to.

Note

If given a provider_key, it will navigate through Infrastructure/Providers instead
of the direct path through Infrastructure/Clusters.

	
delete(cancel=True, wait=False)[source]

	Deletes a cluster from CFME

	Parameters:	
	cancel – Whether to cancel the deletion, defaults to True

	wait – Whether or not to wait for the delete to complete, defaults to False

	
exists

	

	
get_detail(*ident)[source]

	Gets details from the details infoblock

The function first ensures that we are on the detail page for the specific cluster.

	Parameters:	
	*ident – An InfoBlock title, followed by the Key name, e.g. “Relationships”, “Images”

	string representing the contents of the InfoBlock's value. (A) –

	
id

	extracts cluster id for this cluster

	
pretty_attrs = ['name', 'provider']

	

	
run_smartstate_analysis()[source]

	Run SmartState analysis

	
short_name

	returns only cluster’s name exactly how it is stored in DB (without datacenter part)

	
wait_for_disappear(timeout=300)[source]

	

	
wait_for_exists()[source]

	Wait for the cluster to be refreshed

	
class cfme.infrastructure.cluster.ClusterAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.infrastructure.cluster.ClusterView

The all view page for clusters

	
entities

	

	
is_displayed

	Determine if this page is currently being displayed

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.cluster.ClusterCollection(appliance)[source]

	Bases: cfme.utils.appliance.BaseCollection

Collection object for the cfme.infrastructure.cluster.Cluster.

	
delete(*clusters)[source]

	Delete one or more Clusters from the list of the Clusters

	Parameters:	of the cfme.infrastructure.cluster.Cluster objects (list) –

	
instantiate(name, provider)[source]

	

	
class cfme.infrastructure.cluster.ClusterDetailsAccordion(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The accordion on the details page

	
cluster

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.cluster.ClusterDetailsEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

A cluster properties on the details page

	
breadcrumb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
smart_management

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
totals_for_hosts

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
totals_for_vms

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.cluster.ClusterDetailsToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The toolbar on the detail page

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
monitoring

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.cluster.ClusterDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.infrastructure.cluster.ClusterView

The details page of a cluster

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	Determine if this page is currently being displayed

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.cluster.ClusterTimelinesView(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.TimelinesView, cfme.infrastructure.cluster.ClusterView

The timelines page of a cluster

	
is_displayed

	Determine if this page is currently being displayed

	
class cfme.infrastructure.cluster.ClusterToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The toolbar on the page

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
view_selector

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.cluster.ClusterView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Base view for all the cluster views

	
in_cluster

	Determine if the browser has navigated to the Cluster page

	
class cfme.infrastructure.cluster.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ClusterDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step(*args, **kwargs)[source]

	Navigate to the correct view

	
class cfme.infrastructure.cluster.EditTagsFromDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TagPageView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.cluster.Timelines(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ClusterTimelinesView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	Navigate to the correct view

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.infrastructure package

cfme.infrastructure.config_management module

	
class cfme.infrastructure.config_management.AnsibleTower(name=None, url=None, ssl=None, credentials=None, key=None)[source]

	Bases: cfme.infrastructure.config_management.ConfigManager

Configuration manager object (Ansible Tower)

	Parameters:	
	name – Name of the Ansible Tower configuration manager

	url – URL, hostname or IP of the configuration manager

	ssl – Boolean value; True if SSL certificate validity should be checked, False otherwise

	credentials – Credentials to access the config. manager

	key – Key to access the cfme_data yaml data (same as name if not specified)

Usage:

Create provider:
.. code-block:: python

 tower_cfg_mgr = AnsibleTower('my_tower', 'https://my-tower.example.com/api/v1',
 ssl=False, ConfigManager.Credential(principal='admin',
 secret='testing'), key='tower_yaml_key')
 tower_cfg_mgr.create()

Update provider:
.. code-block:: python

 with update(tower_cfg_mgr):
 tower_cfg_mgr.name = 'new_tower_name'

Delete provider:
.. code-block:: python

 tower_cfg_mgr.delete()

	
type = 'Ansible Tower'

	

	
class cfme.infrastructure.config_management.ConfigManager(name=None, url=None, ssl=None, credentials=None, key=None, appliance=None)[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable

This is base class for Configuration manager objects (Red Hat Satellite, Foreman, Ansible Tower)

	Parameters:	
	name – Name of the config. manager

	url – URL, hostname or IP of the config. manager

	ssl – Boolean value; True if SSL certificate validity should be checked, False otherwise

	credentials – Credentials to access the config. manager

	key – Key to access the cfme_data yaml data (same as name if not specified)

Usage:

Use Satellite or AnsibleTower classes instead.

	
class Credential(principal, secret, verify_secret=None, domain=None, **ignore)[source]

	Bases: cfme.base.credential.Credential, cfme.utils.update.Updateable

	
ConfigManager.config_profiles

	Returns ‘ConfigProfile’ configuration profiles (hostgroups) available on this manager

	
ConfigManager.create(cancel=False, validate_credentials=True, validate=True, force=False)[source]

	Creates the manager through UI

	Parameters:	
	cancel (bool [http://docs.python.org/2.7/library/functions.html#bool]) – Whether to cancel out of the creation. The cancel is done
after all the information present in the manager has been filled in the UI.

	validate_credentials (bool [http://docs.python.org/2.7/library/functions.html#bool]) – Whether to validate credentials - if True and the
credentials are invalid, an error will be raised.

	validate (bool [http://docs.python.org/2.7/library/functions.html#bool]) – Whether we want to wait for the manager’s data to load
and show up in it’s detail page. True will also wait, False will only set it up.

	force (bool [http://docs.python.org/2.7/library/functions.html#bool]) – Whether to force the creation even if the manager already exists.
True will try anyway; False will check for its existence and leave, if present.

	
ConfigManager.delete(cancel=False, wait_deleted=True, force=False)[source]

	Deletes the manager through UI

	Parameters:	
	cancel (bool [http://docs.python.org/2.7/library/functions.html#bool]) – Whether to cancel out of the deletion, when the alert pops up.

	wait_deleted (bool [http://docs.python.org/2.7/library/functions.html#bool]) – Whether we want to wait for the manager to disappear from the UI.
True will wait; False will only delete it and move on.

	force (bool [http://docs.python.org/2.7/library/functions.html#bool]) – Whether to try to delete the manager even though it doesn’t exist.
True will try to delete it anyway; False will check for its existence and leave,
if not present.

	
ConfigManager.exists

	Returns whether the manager exists in the UI or not

	
classmethod ConfigManager.load_from_yaml(key)[source]

	Returns ‘ConfigManager’ object loaded from yamls, based on its key

	
ConfigManager.pretty_attr = ['name', 'url']

	

	
ConfigManager.quad_name

	

	
ConfigManager.refresh_relationships(cancel=False)[source]

	Refreshes relationships and power states of this manager

	
ConfigManager.systems

	Returns ‘ConfigSystem’ configured systems (hosts) available on this manager

	
ConfigManager.type = None

	

	
ConfigManager.update(updates, cancel=False, validate_credentials=False)[source]

	Updates the manager through UI

	Parameters:	
	updates (dict [http://docs.python.org/2.7/library/stdtypes.html#dict]) – Data to change.

	cancel (bool [http://docs.python.org/2.7/library/functions.html#bool]) – Whether to cancel out of the update. The cancel is done
after all the new information has been filled in the UI.

	validate_credentials (bool [http://docs.python.org/2.7/library/functions.html#bool]) – Whether to validate credentials - if True and the
credentials are invalid, an error will be raised.

Note

utils.update use is recommended over use of this method.

	
ConfigManager.yaml_data

	Returns yaml data for this manager

	
class cfme.infrastructure.config_management.ConfigProfile(name, manager, appliance=None)[source]

	Bases: cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable

Configuration profile object (foreman-side hostgroup)

	Parameters:	
	name – Name of the profile

	manager – ConfigManager object which this profile is bound to

	
pretty_attrs = ['name', 'manager']

	

	
systems

	Returns ‘ConfigSystem’ objects that are active under this profile

	
class cfme.infrastructure.config_management.ConfigSystem(name, profile, appliance=None)[source]

	Bases: cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable

	
pretty_attrs = ['name', 'manager_key']

	

	
tag(tag)[source]

	Tags the system by given tag

	
tags

	Returns a list of this system’s active tags

	
untag(tag)[source]

	Removes the selected tag off the system

	
class cfme.infrastructure.config_management.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.config_management.MgrAdd(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.config_management.MgrAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
resetter()[source]

	

	
step()[source]

	

	
class cfme.infrastructure.config_management.MgrDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.config_management.MgrEdit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.config_management.MgrEditFromDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.config_management.Satellite(name=None, url=None, ssl=None, credentials=None, key=None)[source]

	Bases: cfme.infrastructure.config_management.ConfigManager

Configuration manager object (Red Hat Satellite, Foreman)

	Parameters:	
	name – Name of the Satellite/Foreman configuration manager

	url – URL, hostname or IP of the configuration manager

	ssl – Boolean value; True if SSL certificate validity should be checked, False otherwise

	credentials – Credentials to access the config. manager

	key – Key to access the cfme_data yaml data (same as name if not specified)

Usage:

Create provider:
.. code-block:: python

 satellite_cfg_mgr = Satellite('my_satellite', 'my-satellite.example.com',
 ssl=False, ConfigManager.Credential(principal='admin',
 secret='testing'), key='satellite_yaml_key')
 satellite_cfg_mgr.create()

Update provider:
.. code-block:: python

 with update(satellite_cfg_mgr):
 satellite_cfg_mgr.name = 'new_satellite_name'

Delete provider:
.. code-block:: python

 satellite_cfg_mgr.delete()

	
type

	Returns presumed type of the manager based on CFME version

Note

We cannot actually know the type of the provider from the UI.
This represents the supported type by CFME version and is to be used in navigation.

	
class cfme.infrastructure.config_management.SysAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
resetter()[source]

	

	
step()[source]

	

	
class cfme.infrastructure.config_management.SysEditTags(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.config_management.SysProvision(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
cfme.infrastructure.config_management.cfm_mgr_table()[source]

	

	
cfme.infrastructure.config_management.get_config_manager_from_config(cfg_mgr_key)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.infrastructure package

cfme.infrastructure.datastore module

A model of an Infrastructure Datastore in CFME

	
class cfme.infrastructure.datastore.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DatastoresView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
resetter()[source]

	resets page to default state when user navigates to All Datastores destination

	
step()[source]

	

	
class cfme.infrastructure.datastore.Datastore(collection, name, provider, type=None)[source]

	Bases: cfme.utils.pretty.Pretty, cfme.utils.appliance.BaseEntity, cfme.common.WidgetasticTaggable

Model of an infrastructure datastore in cfme

	Parameters:	
	name – Name of the datastore.

	provider – provider this datastore is attached to.

	
delete(cancel=True)[source]

	Deletes a datastore from CFME

	Parameters:	cancel – Whether to cancel the deletion, defaults to True

Note

Datastore must have 0 hosts and 0 VMs for this to work.

	
delete_all_attached_hosts()[source]

	

	
delete_all_attached_vms()[source]

	

	
exists

	

	
get_hosts()[source]

	Returns names of hosts (from quadicons) that use this datastore

Returns: List of strings with names or [] if no hosts found.

	
get_vms()[source]

	Returns names of VMs (from quadicons) that use this datastore

Returns: List of strings with names or [] if no vms found.

	
pretty_attrs = ['name', 'provider_key']

	

	
run_smartstate_analysis()[source]

	Runs smartstate analysis on this host

Note

The host must have valid credentials already set up for this to work.

	
class cfme.infrastructure.datastore.DatastoreCollection(appliance)[source]

	Bases: cfme.utils.appliance.BaseCollection

Collection class for cfme.infrastructure.datastore.Datastore

	
delete(*datastores)[source]

	
Note

Datastores must have 0 hosts and 0 VMs for this to work.

	
instantiate(name, provider, type=None)[source]

	

	
run_smartstate_analysis(*datastores)[source]

	

	
class cfme.infrastructure.datastore.DatastoreDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

represents Datastore Details page

	
contents

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.datastore.DatastoreEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.BaseEntitiesView

represents central view where all QuadIcons, etc are displayed

	
class cfme.infrastructure.datastore.DatastoreSideBar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

represents left side bar. it usually contains navigation, filters, etc

	
clusters

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
datastores

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.datastore.DatastoreToolBar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

represents datastore toolbar and its controls

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
view_selector

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.datastore.DatastoresView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

represents whole All Datastores page

	
entities

	

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.datastore.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DatastoreDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.datastore.DetailsFromProvider(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DatastoreDetailsView

	
step()[source]

	

	
class cfme.infrastructure.datastore.EditTagsFromDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TagPageView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.datastore.HostAllDatastoresView(parent, logger=None, **kwargs)[source]

	Bases: cfme.infrastructure.datastore.DatastoresView

	
entities

	

	
is_displayed

	

	
class cfme.infrastructure.datastore.RegisteredHostsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.common.host_views.HostsView

represents Hosts related to some datastore

	
entities

	

	
is_displayed

	

	
cfme.infrastructure.datastore.get_all_datastores()[source]

	Returns names (from quadicons) of all datastores

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.infrastructure package

cfme.infrastructure.deployment_roles module

A model of an Infrastructure Deployment roles in CFME

	
class cfme.infrastructure.deployment_roles.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DeploymentRoleAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.deployment_roles.AllForProvider(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DeploymentRoleAllForProviderView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.deployment_roles.DepRoleListEntity(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.BaseListEntity

	
class cfme.infrastructure.deployment_roles.DepRoleQuadIconEntity(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.BaseQuadIconEntity

	
data

	

	
class cfme.infrastructure.deployment_roles.DepRoleTileIconEntity(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.BaseTileIconEntity

	
quad_icon

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.deployment_roles.DeploymentRoleAllForProviderView(parent, logger=None, **kwargs)[source]

	Bases: cfme.infrastructure.deployment_roles.DeploymentRoleView

The Deployment Role for Provider page

	
breadcrumb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
entities

	

	
is_displayed

	Is this page currently being displayed

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.deployment_roles.DeploymentRoleAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.infrastructure.deployment_roles.DeploymentRoleView

The all Deployment Role page

	
entities

	

	
is_displayed

	This is page currently being displayed

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.deployment_roles.DeploymentRoleCollection(appliance)[source]

	Bases: cfme.utils.appliance.BaseCollection

Collection object for the :py:class:’cfme.infrastructure.deployment_role.DeploymentRoles’

	
all(provider)[source]

	

	
delete(*roles)[source]

	Delete one or more Deployment Role from list of Deployment Roles

	Parameters:	or Multiple 'cfme.infrastructure.deployment_role.DeploymentRoles' objects (One) –

	
instantiate(name, provider)[source]

	

	
class cfme.infrastructure.deployment_roles.DeploymentRoleComparisonEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The entities on compare Deployment role page

	
breadcrumb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.deployment_roles.DeploymentRoleComparisonToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The toolbar on Comparison Page of roles

	
actions

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.deployment_roles.DeploymentRoleComparisonView(parent, logger=None, **kwargs)[source]

	Bases: cfme.infrastructure.deployment_roles.DeploymentRoleView

The page for comparison of Deployment Role

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	Is this page currently being displayed

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.deployment_roles.DeploymentRoleDetailsAccordion(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The accordion on the Deployment Role details page

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.deployment_roles.DeploymentRoleDetailsEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The entities on the Deployment Role details page

	
breadcrumb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
smart_management

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
total_for_node

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
total_for_vm

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.deployment_roles.DeploymentRoleDetailsToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The toolbar on the Deployment Role details page

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
monitoring

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.deployment_roles.DeploymentRoleDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.infrastructure.deployment_roles.DeploymentRoleView

The details page for a Deployment Roles

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	Is this page currently being displayed

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.deployment_roles.DeploymentRoleEditTagsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.infrastructure.deployment_roles.DeploymentRoleView

The edit tags of Deployment Role

	
breadcrumb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	Is this page currently being displayed

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
select_tag

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
select_value

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.deployment_roles.DeploymentRoleEntitiesView(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.BaseEntitiesView

The entities on the main list Deployment Role page

	
entity_class

	

	
cfme.infrastructure.deployment_roles.DeploymentRoleEntity()[source]

	Temporary wrapper for Deployment Role Entity during transition to JS based Entity

	
class cfme.infrastructure.deployment_roles.DeploymentRoleManagePoliciesView(parent, logger=None, **kwargs)[source]

	Bases: cfme.infrastructure.deployment_roles.DeploymentRoleView

Deployment role Manage Policies view.

	
breadcrumb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	Is this page currently displayed

	
policies

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.deployment_roles.DeploymentRoleToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The toolbar on the Deployment Role page

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
view_selector

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.deployment_roles.DeploymentRoleView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

A base view for all the Deployment Role pages

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
in_dep_role

	Determine if the Deployment page is currently open

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.deployment_roles.DeploymentRoles(collection, name, provider)[source]

	Bases: cfme.utils.appliance.BaseEntity

Model of an infrastructure deployment roles in cfme

	Parameters:	
	name – Name of the role.

	provider – provider this role is attached to
(deployment roles available only for Openstack!).

	
delete(cancel=False)[source]

	

	
class cfme.infrastructure.deployment_roles.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DeploymentRoleDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step(*args, **kwargs)[source]

	Navigate to the details page of Role

	
class cfme.infrastructure.deployment_roles.DetailsFromProvider(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DeploymentRoleDetailsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.deployment_roles.NonJSDepRoleEntity(parent, name, logger=None)[source]

	Bases: widgetastic_manageiq.NonJSBaseEntity

	
list_entity

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
quad_entity

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
tile_entity

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.infrastructure package

cfme.infrastructure.host module

A model of an Infrastructure Host in CFME.

	
class cfme.infrastructure.host.Add(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of HostAddView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.host.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of HostsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.host.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of HostDetailsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.host.Discover(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of HostDiscoverView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.host.Edit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of HostEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.host.EditTagsFromDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TagPageView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.host.Host(name=None, hostname=None, ip_address=None, custom_ident=None, host_platform=None, ipmi_address=None, mac_address=None, credentials=None, ipmi_credentials=None, interface_type='lan', provider=None, appliance=None)[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable, cfme.common.PolicyProfileAssignable, cfme.common.WidgetasticTaggable

Model of an infrastructure host in cfme.

	Parameters:	
	name – Name of the host.

	hostname – Hostname of the host.

	ip_address – The IP address as a string.

	custom_ident – The custom identifiter.

	host_platform – Included but appears unused in CFME at the moment.

	ipmi_address – The IPMI address.

	mac_address – The mac address of the system.

	credentials (Credential) – see Credential inner class.

	ipmi_credentials (Credential) – see Credential inner class.

Usage:

myhost = Host(name='vmware',
 credentials=Provider.Credential(principal='admin', secret='foobar'))
myhost.create()

	
class Credential(**kwargs)[source]

	Bases: cfme.base.credential.Credential, cfme.utils.update.Updateable

Provider credentials

	Parameters:	**kwargs – If using IPMI type credential, ipmi = True

	
Host.check_compliance(timeout=240)[source]

	Initiates compliance check and waits for it to finish.

	
Host.compliance_status

	Returns the title of the compliance SummaryTable. The title contains datetime so it can
be compared.

	Returns:	NoneType if no title is present (no compliance checks before), otherwise str

	
Host.create(cancel=False, validate_credentials=False)[source]

	Creates a host in the UI.

	Parameters:	
	cancel (bool [http://docs.python.org/2.7/library/functions.html#bool]) – Whether to cancel out of the creation. The cancel is done after all the
information present in the Host has been filled in the UI.

	validate_credentials (bool [http://docs.python.org/2.7/library/functions.html#bool]) – Whether to validate credentials - if True and the
credentials are invalid, an error will be raised.

	
Host.delete(cancel=True)[source]

	Deletes this host from CFME.

	Parameters:	cancel (bool [http://docs.python.org/2.7/library/functions.html#bool]) – Whether to cancel the deletion, defaults to True

	
Host.equal_drift_results(drift_section, section, *indexes)[source]

	Compares drift analysis results of a row specified by it’s title text.

	Parameters:	
	drift_section (str [http://docs.python.org/2.7/library/functions.html#str]) – Title text of the row to compare

	section (str [http://docs.python.org/2.7/library/functions.html#str]) – Accordion section where the change happened

	indexes – Indexes of results to compare starting with 0 for first row (latest result).
Compares all available drifts, if left empty (default)

Note

There have to be at least 2 drift results available for this to work.

	Returns:	bool [http://docs.python.org/2.7/library/functions.html#bool]

	
Host.execute_button(button_group, button, handle_alert=False)[source]

	

	
Host.exists

	Checks if the host exists in the UI.

Returns: bool [http://docs.python.org/2.7/library/functions.html#bool]

	
Host.get_datastores()[source]

	Gets list of all datastores used by this host.

Returns: list of datastores names

	
Host.get_db_id

	

	
Host.get_detail(title, field)[source]

	Gets details from the details summary tables.

	Parameters:	
	title (str [http://docs.python.org/2.7/library/functions.html#str]) – Summary Table title

	field (str [http://docs.python.org/2.7/library/functions.html#str]) – Summary table field name

Returns: A string representing the entities of the SummaryTable’s value.

	
Host.get_ipmi()[source]

	

	
Host.get_power_state()[source]

	

	
Host.has_valid_credentials

	Checks if host has valid credentials save.

Returns: bool [http://docs.python.org/2.7/library/functions.html#bool]

	
Host.is_compliant

	Check if the Host is compliant.

	Returns:	bool [http://docs.python.org/2.7/library/functions.html#bool]

	
Host.load_details(refresh=False)[source]

	To be compatible with the Taggable and PolicyProfileAssignable mixins.

	Parameters:	refresh (bool [http://docs.python.org/2.7/library/functions.html#bool]) – Whether to perform the page refresh, defaults to False

	
Host.power_off()[source]

	

	
Host.power_on()[source]

	

	
Host.pretty_attrs = ['name', 'hostname', 'ip_address', 'custom_ident']

	

	
Host.refresh(cancel=False)[source]

	Perform ‘Refresh Relationships and Power States’ for the host.

	Parameters:	cancel (bool [http://docs.python.org/2.7/library/functions.html#bool]) – Whether the action should be cancelled, default to False

	
Host.run_smartstate_analysis()[source]

	Runs smartstate analysis on this host.

Note

The host must have valid credentials already set up for this to work.

	
Host.update(updates, validate_credentials=False)[source]

	Updates a host in the UI. Better to use utils.update.update context manager than call
this directly.

	Parameters:	updates (dict [http://docs.python.org/2.7/library/stdtypes.html#dict]) – fields that are changing.

	
Host.update_credentials_rest(credentials)[source]

	Updates host’s credentials via rest api

	Parameters:	credentials (dict [http://docs.python.org/2.7/library/stdtypes.html#dict]) – credentials from yaml file

Returns: True if credentials are saved and valid; False otherwise

	
Host.wait_for_host_state_change(desired_state, timeout=300)[source]

	Wait for Host to come to desired state. This function waits just the needed amount of
time thanks to wait_for.

	Parameters:	
	desired_state (str [http://docs.python.org/2.7/library/functions.html#str]) – ‘on’ or ‘off’

	timeout (int [http://docs.python.org/2.7/library/functions.html#int]) – Specify amount of time (in seconds) to wait until TimedOutError is raised

	
class cfme.infrastructure.host.PolicyAssignment(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of HostManagePoliciesView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.host.Provision(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.host.Timelines(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of HostTimelinesView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
cfme.infrastructure.host.get_all_hosts()[source]

	Returns names list of all hosts.

	Returns:	names list of all hosts

	Return type:	list

	
cfme.infrastructure.host.get_credentials_from_config(credential_config_name)[source]

	

	
cfme.infrastructure.host.get_from_config(provider_config_name)[source]

	Creates a Host object given a yaml entry in cfme_data.

Usage:

get_from_config('esx')

Returns: A Host object that has methods that operate on CFME

	
cfme.infrastructure.host.wait_for_a_host()[source]

	Waits for any host to appear in the UI.

	
cfme.infrastructure.host.wait_for_host_delete(host)[source]

	Waits for the host to remove from the UI.

	Parameters:	host (Host) – host object

	
cfme.infrastructure.host.wait_for_host_to_appear(host)[source]

	Waits for the host to appear in the UI.

	Parameters:	host (Host) – host object

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.infrastructure package

cfme.infrastructure.networking module

	
class cfme.infrastructure.networking.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
resetter()[source]

	

	
step()[source]

	

	
class cfme.infrastructure.networking.InfraNetworking(appliance=None)[source]

	Bases: cfme.utils.appliance.Navigatable

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.infrastructure package

cfme.infrastructure.openstack_node module

A model of an Openstack Infrastructure Node in CFME.

	
class cfme.infrastructure.openstack_node.OpenstackNode(name=None, hostname=None, ip_address=None, custom_ident=None, host_platform=None, ipmi_address=None, mac_address=None, credentials=None, ipmi_credentials=None, interface_type='lan', provider=None, appliance=None)[source]

	Bases: cfme.infrastructure.host.Host

Model of Openstack Infrastructure node.
Extends the behavior of Infrastructure Host with Openstack-only functions.
For usage and __init__ args check the doc to Host class

	
provide_node()[source]

	Provide node - make it available

	
run_introspection()[source]

	Run introspection

	
toggle_maintenance_mode()[source]

	Initiate maintenance mode

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.infrastructure package

cfme.infrastructure.pxe module

A model of a PXE Server in CFME

	
class cfme.infrastructure.pxe.CustomizationTemplate(name=None, description=None, image_type=None, script_type=None, script_data=None, appliance=None)[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable

Model of a Customization Template in CFME

	Parameters:	
	name – The name of the template.

	description – Template description.

	image_type – Image type name, must be one of an existing System Image Type.

	script_type – Script type, either Kickstart, Cloudinit or Sysprep.

	script_data – The scripts data.

	
create(cancel=False)[source]

	Creates a Customization Template object

	Parameters:	cancel (boolean) – Whether to cancel out of the creation. The cancel is done
after all the information present in the CT has been filled in the UI.

	
delete(cancel=True)[source]

	Deletes a Customization Template server from CFME

	Parameters:	cancel – Whether to cancel the deletion, defaults to True

	
exists(*args, **kwargs)

	

	
exists_ui = None

	

	
pretty_attrs = ['name', 'image_type']

	

	
update(updates, cancel=False)[source]

	Updates a Customization Template server in the UI. Better to use utils.update.update
context manager than call this directly.

	Parameters:	
	updates (dict [http://docs.python.org/2.7/library/stdtypes.html#dict]) – fields that are changing.

	cancel (boolean) – whether to cancel out of the update.

	
class cfme.infrastructure.pxe.CustomizationTemplateAdd(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PXECustomizationTemplateAddView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.pxe.CustomizationTemplateAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PXECustomizationTemplatesView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.pxe.CustomizationTemplateDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PXECustomizationTemplateDetailsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.pxe.CustomizationTemplateEdit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PXECustomizationTemplateEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.pxe.ISODatastore(provider=None, appliance=None)[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable

Model of a PXE Server object in CFME

	Parameters:	provider – Provider name.

	
create(cancel=False, refresh=True, refresh_timeout=120)[source]

	Creates an ISO datastore object

	Parameters:	
	cancel (boolean) – Whether to cancel out of the creation. The cancel is done
after all the information present in the ISO datastore has been filled in the UI.

	refresh (boolean) – Whether to run the refresh operation on the ISO datastore after
the add has been completed.

	
delete(cancel=True)[source]

	Deletes an ISO Datastore from CFME

	Parameters:	cancel – Whether to cancel the deletion, defaults to True

	
exists(*args, **kwargs)

	

	
exists_ui = None

	

	
pretty_attrs = ['provider']

	

	
refresh(wait=True, timeout=120)[source]

	Refreshes the PXE relationships and waits for it to be updated

	
set_iso_image_type(image_name, image_type)[source]

	Function to set the image type of a PXE image

	
class cfme.infrastructure.pxe.ISODatastoreAdd(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PXEDatastoreAddView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.pxe.ISODatastoreAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PXEDatastoresView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.pxe.ISODatastoreDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PXEDatastoreDetailsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.pxe.PXECustomizationTemplateAddView(parent, logger=None, **kwargs)[source]

	Bases: cfme.infrastructure.pxe.PXECustomizationTemplateForm

	
add

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXECustomizationTemplateDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.infrastructure.pxe.PXEMainView

represents some certain Customization Template Details page

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXECustomizationTemplateEditView(parent, logger=None, **kwargs)[source]

	Bases: cfme.infrastructure.pxe.PXECustomizationTemplateForm

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reset

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXECustomizationTemplateForm(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
image_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
script

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXECustomizationTemplatesView(parent, logger=None, **kwargs)[source]

	Bases: cfme.infrastructure.pxe.PXEMainView

represents Customization Template Groups page

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.infrastructure.pxe.PXEDatastoreAddView(parent, logger=None, **kwargs)[source]

	Bases: cfme.infrastructure.pxe.PXEDatastoreForm

	
add

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXEDatastoreDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.infrastructure.pxe.PXEMainView

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXEDatastoreEditView(parent, logger=None, **kwargs)[source]

	Bases: cfme.infrastructure.pxe.PXEDatastoreForm

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reset

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXEDatastoreForm(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
provider

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXEDatastoresView(parent, logger=None, **kwargs)[source]

	Bases: cfme.infrastructure.pxe.PXEMainView

represents whole All ISO Datastores page

	
is_displayed

	

	
class cfme.infrastructure.pxe.PXEDetailsToolBar(parent, logger=None, **kwargs)[source]

	Bases: cfme.infrastructure.pxe.PXEToolBar

represents the toolbar which appears when any pxe entity is clicked

	
reload

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXEImageEditView(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

it can be found when some image is clicked in PXE Server Tree

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
default_for_windows

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
reset

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXEMainPage(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.pxe.PXEMainView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

represents whole All PXE Servers page

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXEServer(name=None, depot_type=None, uri=None, userid=None, password=None, access_url=None, pxe_dir=None, windows_dir=None, customize_dir=None, menu_filename=None, appliance=None)[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable

Model of a PXE Server object in CFME

	Parameters:	
	name – Name of PXE server.

	depot_type – Depot type, either Samba or Network File System.

	uri – The Depot URI.

	userid – The Samba username.

	password – The Samba password.

	access_url – HTTP access path for PXE server.

	pxe_dir – The PXE dir for accessing configuration.

	windows_dir – Windows source directory.

	customize_dir – Customization directory for templates.

	menu_filename – Menu filename for iPXE/syslinux menu.

	
create(cancel=False, refresh=True, refresh_timeout=120)[source]

	Creates a PXE server object

	Parameters:	
	cancel (boolean) – Whether to cancel out of the creation. The cancel is done
after all the information present in the PXE Server has been filled in the UI.

	refresh (boolean) – Whether to run the refresh operation on the PXE server after
the add has been completed.

	
delete(cancel=True)[source]

	Deletes a PXE server from CFME

	Parameters:	cancel – Whether to cancel the deletion, defaults to True

	
exists(*args, **kwargs)

	

	
exists_ui = None

	

	
get_pxe_image_type(*args, **kwargs)

	

	
get_pxe_image_type_ui = None

	

	
pretty_attrs = ['name', 'uri', 'access_url']

	

	
refresh(wait=True, timeout=120)[source]

	Refreshes the PXE relationships and waits for it to be updated

	
set_pxe_image_type(image_name, image_type)[source]

	Function to set the image type of a PXE image

	
update(updates, cancel=False)[source]

	Updates a PXE server in the UI. Better to use utils.update.update context
manager than call this directly.

	Parameters:	
	updates (dict [http://docs.python.org/2.7/library/stdtypes.html#dict]) – fields that are changing.

	cancel (boolean) – whether to cancel out of the update.

	
class cfme.infrastructure.pxe.PXEServerAdd(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PXEServerAddView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.pxe.PXEServerAddView(parent, logger=None, **kwargs)[source]

	Bases: cfme.infrastructure.pxe.PXEServerForm

represents Add New PXE Server view

	
add

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXEServerAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PXEServersView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.pxe.PXEServerDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PXEServerDetailsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.pxe.PXEServerDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.infrastructure.pxe.PXEMainView

represents Server Details view

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXEServerEdit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PXEServerEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.pxe.PXEServerEditView(parent, logger=None, **kwargs)[source]

	Bases: cfme.infrastructure.pxe.PXEServerForm

represents PXE Server Edit view

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reset

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXEServerForm(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
access_url

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
confirm_password

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
customization_dir

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
depot_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
filename

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
password

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
pxe_dir

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
uri

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
username

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
validate

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
windows_images_dir

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXEServersView(parent, logger=None, **kwargs)[source]

	Bases: cfme.infrastructure.pxe.PXEMainView

represents whole All PXE Servers page

	
is_displayed

	

	
class cfme.infrastructure.pxe.PXESideBar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

represents left side bar. it usually contains navigation, filters, etc

	
datastores

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
image_types

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
servers

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
templates

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXESystemImageTypeAddView(parent, logger=None, **kwargs)[source]

	Bases: cfme.infrastructure.pxe.PXESystemImageTypeForm

	
add

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXESystemImageTypeDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.infrastructure.pxe.PXEMainView

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXESystemImageTypeEditView(parent, logger=None, **kwargs)[source]

	Bases: cfme.infrastructure.pxe.PXESystemImageTypeForm

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reset

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXESystemImageTypeForm(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXESystemImageTypesView(parent, logger=None, **kwargs)[source]

	Bases: cfme.infrastructure.pxe.PXEMainView

represents whole All System Image Types page

	
is_displayed

	

	
class cfme.infrastructure.pxe.PXEToolBar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

represents PXE toolbar and its controls

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.SystemImageType(name=None, provision_type=None, appliance=None)[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable

Model of a System Image Type in CFME.

	Parameters:	
	name – The name of the System Image Type.

	provision_type – The provision type, either Vm or Host.

	
HOST_OR_NODE = 'Host / Node'

	

	
VM_OR_INSTANCE = 'VM and Instance'

	

	
create(cancel=False)[source]

	Creates a System Image Type object

	Parameters:	cancel (boolean) – Whether to cancel out of the creation. The cancel is done
after all the information present in the SIT has been filled in the UI.

	
delete(cancel=True)[source]

	Deletes a System Image Type from CFME

	Parameters:	cancel – Whether to cancel the deletion, defaults to True

	
pretty_attrs = ['name', 'provision_type']

	

	
update(updates, cancel=False)[source]

	Updates a System Image Type in the UI. Better to use utils.update.update context
manager than call this directly.

	Parameters:	
	updates (dict [http://docs.python.org/2.7/library/stdtypes.html#dict]) – fields that are changing.

	cancel (boolean) – whether to cancel out of the update.

	
class cfme.infrastructure.pxe.SystemImageTypeAdd(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PXESystemImageTypeAddView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.pxe.SystemImageTypeAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PXESystemImageTypesView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.pxe.SystemImageTypeDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PXESystemImageTypeDetailsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.pxe.SystemImageTypeEdit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PXESystemImageTypeEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
cfme.infrastructure.pxe.get_pxe_server_from_config(pxe_config_name)[source]

	Convenience function to grab the details for a pxe server fomr the yamls.

	
cfme.infrastructure.pxe.get_template_from_config(template_config_name)[source]

	Convenience function to grab the details for a template from the yamls.

	
cfme.infrastructure.pxe.remove_all_pxe_servers()[source]

	Convenience function to remove all PXE servers

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.infrastructure package

cfme.infrastructure.resource_pool module

A model of an Infrastructure Resource pool in CFME

	var page:	A cfme.web_ui.Region object describing common elements on the
Resource pool pages.

	
class cfme.infrastructure.resource_pool.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

A navigation step for the All page

	
VIEW

	alias of ResourcePoolAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
resetter()[source]

	Reset view and selection

	
step(*args, **kwargs)[source]

	

	
class cfme.infrastructure.resource_pool.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

A navigation step for the Details page

	
VIEW

	alias of ResourcePoolDetailsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	Navigate to the item

	
class cfme.infrastructure.resource_pool.EditTagsFromDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TagPageView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.resource_pool.ResourcePool(name=None, provider_key=None, appliance=None)[source]

	Bases: cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable, cfme.common.WidgetasticTaggable

Model of an infrastructure Resource pool in cfme

	Parameters:	
	name – Name of the Resource pool.

	provider_key – Name of the provider this resource pool is attached to.

Note

If given a provider_key, it will navigate through Infrastructure/Providers instead
of the direct path through Infrastructure/Resourcepool.

	
delete(cancel=True, wait=False)[source]

	Deletes a resource pool from CFME

	Parameters:	
	cancel – Whether or not to cancel the deletion, defaults to True

	wait – Whether or not to wait for the delete, defaults to False

	
exists

	

	
get_detail(*ident)[source]

	Gets details from the details infoblock

The function first ensures that we are on the detail page for the specific resource pool.

	Parameters:	ident – An InfoBlock title, followed by the Key name, e.g. “Properties”

	Returns:	A string representing the contents of the InfoBlock’s value.

	Return type:	returns

	
pretty_attrs = ['name', 'provider_key']

	

	
wait_for_exists()[source]

	Wait for the resource pool to be created

	
class cfme.infrastructure.resource_pool.ResourcePoolAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.infrastructure.resource_pool.ResourcePoolView

The “all” view – a list of app the resource pools

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
paginator

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters:	version_dict – Dictionary of version_introduced: item

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.resource_pool.ResourcePoolDetailsAccordion(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The accordian on the details page

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.resource_pool.ResourcePoolDetailsEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Entities on the details page

	
breadcrumb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
smart_management

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.resource_pool.ResourcePoolDetailsToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The toolbar on the details page

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.resource_pool.ResourcePoolDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.infrastructure.resource_pool.ResourcePoolView

The details page of a resource pool

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	Is this page being displayed?

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.resource_pool.ResourcePoolEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Entities on the main list page

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
search

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.resource_pool.ResourcePoolToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The toolbar on the main page

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
view_selector

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.resource_pool.ResourcePoolView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Base view for header and nav checking, navigatable views should inherit this

	
in_resource_pool

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.infrastructure package

cfme.infrastructure.virtual_machines module

A model of Infrastructure Virtual Machines area of CFME. This includes the VMs explorer tree,
quadicon lists, and VM details page.

	
class cfme.infrastructure.virtual_machines.EditTagsFromDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TagPageView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.virtual_machines.Genealogy(o)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

Class, representing genealogy of an infra object with possibility of data retrieval
and comparison.

	Parameters:	o – The Vm or Template object.

	
ancestors

	Returns list of ancestors of the represented object.

	
apply_button = FormButton('Apply sections')

	

	
attr_mapping = {'all': 'All Attributes', 'different': 'Attributes with different values', 'same': 'Attributes with same values'}

	

	
compare(*objects, **kwargs)[source]

	Compares two or more objects in the genealogy.

	Parameters:	*objects – Vm or Template or str [http://docs.python.org/2.7/library/functions.html#str] with name.

	Keywords:

	sections: Which sections to compare.
attributes: all, different or same. Default: all.
mode: exists or details. Default: exists.

	
genealogy_tree = <cfme.web_ui.BootstrapTreeview object>

	

	
mode_mapping = {'details': 'Details Mode', 'exists': 'Exists Mode'}

	

	
navigate()[source]

	

	
section_comparison_tree = <cfme.web_ui.CheckboxTree locator="//div[@id='all_sections_treebox']/div/table">

	

	
tree

	Returns contents of the tree with genealogy

	
class cfme.infrastructure.virtual_machines.InfraGenericDetailsToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
lifecycle

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
monitoring

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reload

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.virtual_machines.InfraVmDetailsToolbar(parent, logger=None, **kwargs)[source]

	Bases: cfme.infrastructure.virtual_machines.InfraGenericDetailsToolbar

Toolbar for VM details differs from All VMs&TemplatesView

	
access

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
power

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.virtual_machines.InfraVmDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.infrastructure.virtual_machines.InfraVmView

	
TemplatesToolbar = None

	

	
VmsToolbar = None

	

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	Conditional switchable view implementation.

This widget proxy is useful when you have a form whose parts displayed depend on certain
conditions. Eg. when you select certain value from a dropdown, one form is displayed next,
when other value is selected, a different form is displayed next. This widget proxy is designed
to register those multiple views and then upon accessing decide which view to use based on the
registration conditions.

The resulting widget proxy acts similarly like a nested view (if you use view of course).

Example

class SomeForm(View):
 foo = Input('...')
 action_type = Select(name='action_type')

 action_form = ConditionalSwitchableView(reference='action_type')

 # Simple value matching. If Action type 1 is selected in the select, use this view.
 # And if the action_type value does not get matched, use this view as default
 @action_form.register('Action type 1', default=True)
 class ActionType1Form(View):
 widget = Widget()

 # You can use a callable to declare the widget values to compare
 @action_form.register(lambda action_type: action_type == 'Action type 2')
 class ActionType2Form(View):
 widget = Widget()

 # With callable, you can use values from multiple widgets
 @action_form.register(
 lambda action_type, foo: action_type == 'Action type 2' and foo == 2)
 class ActionType2Form(View):
 widget = Widget()

You can see it gives you the flexibility of decision based on the values in the view.

	Parameters:	
	reference – For using non-callable conditions, this must be specified. Specifies the name of
the widget whose value will be used for comparing non-callable conditions. Supports
going across objects using ..

	ignore_bad_reference – If this is enabled, then when the widget representing the reference
is not displayed or otherwise broken, it will then use the default view.

	
class cfme.infrastructure.virtual_machines.InfraVmReconfigureView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cores_per_socket

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cpu

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cpu_total

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
disks_table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed = False

	

	
mem_size

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
mem_size_unit

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
memory

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
sockets

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
submit_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.virtual_machines.InfraVmSummaryView(parent, logger=None, **kwargs)[source]

	Bases: cfme.common.vm_views.VMDetailsEntities

	
datastore_allocation

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
datastore_usage

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
operating_ranges

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.virtual_machines.InfraVmTimelinesView(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.TimelinesView, cfme.base.login.BaseLoggedInPage

	
is_displayed

	

	
class cfme.infrastructure.virtual_machines.InfraVmView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Base view for header/nav check, inherit for navigatable views

	
in_infra_vms

	

	
class cfme.infrastructure.virtual_machines.MigrateView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

	
form

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.virtual_machines.ProvisionVM(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ProvisionView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.infrastructure.virtual_machines.SetRetirement(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RetirementView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.infrastructure.virtual_machines.Template(name, provider, template_name=None)[source]

	Bases: cfme.common.vm.Template

	
REMOVE_MULTI = 'Remove Templates from the VMDB'

	

	
genealogy

	

	
class cfme.infrastructure.virtual_machines.TemplatesAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TemplatesOnlyAllView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.infrastructure.virtual_machines.TemplatesOnlyAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.infrastructure.virtual_machines.InfraVmView

	
adv_search_clear

	

	
entities

	

	
is_displayed

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.virtual_machines.Timelines(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of InfraVmTimelinesView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.virtual_machines.VMConfiguration(vm)[source]

	Bases: cfme.utils.pretty.Pretty

Represents VM’s full configuration - hardware, disks and so forth

	Parameters:	vm – VM that exists within current appliance

Note

It can be only instantiated by fetching an existing VM’s configuration, as it is designed
to be used to reconfigure an existing VM.

	
add_disk(size, size_unit='GB', type='thin', mode='persistent')[source]

	Adds a disk to the VM

	Parameters:	
	size – Size of the disk

	size_unit – Unit of size (‘MB’ or ‘GB’)

	type – Type of the disk (‘thin’ or ‘thick’)

	mode – Mode of the disk (‘persistent’, ‘independent_persistent’ or
‘independent_nonpersistent’)

Note

This method is designed to correspond with the DB, not with the UI.
In the UI, dependency is represented by a separate Yes / No option which is _incorrect_
design that we don’t follow. Correctly, mode should be a selectbox of 3 items:
Persistent, Independent Persistent and Independent Nonpersistent.
Just Nonpersistent is an invalid setup that UI currently (5.8) allows.

	
copy()[source]

	Returns a copy of this configuration

	
delete_disk(filename=None, index=None)[source]

	Removes a disk of given filename or index

	
get_changes_to_fill(other_configuration)[source]

	Returns changes to be applied to this config to reach the other config

Note

Result of this method is used for form filling by VM’s reconfigure method.

	
num_disks

	

	
pretty_attrs = ['hw', 'num_disks']

	

	
class cfme.infrastructure.virtual_machines.VMDisk[source]

	Bases: cfme.infrastructure.virtual_machines.VMDisk

Represents a single VM disk

Note

Cannot be changed once created.

	
EQUAL_ATTRS = set(['size_mb', 'type', 'mode'])

	

	
size_mb

	

	
class cfme.infrastructure.virtual_machines.VMHardware(cores_per_socket=None, sockets=None, mem_size=None, mem_size_unit='MB')[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

Represents VM’s hardware, i.e. CPU (cores, sockets) and memory

	
EQUAL_ATTRS = set(['mem_size_mb', 'cores_per_socket', 'sockets'])

	

	
mem_size_mb

	

	
class cfme.infrastructure.virtual_machines.Vm(name, provider, template_name=None, appliance=None)[source]

	Bases: cfme.common.vm.VM

Represents a VM in CFME

	Parameters:	
	name – Name of the VM

	provider_crud – cfme.cloud.provider.Provider object

	template_name – Name of the template to use for provisioning

	
ALL_LIST_LOCATION = 'infra_vms'

	

	
class CfmeRelationship(o)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
get_relationship()[source]

	

	
is_relationship_set()[source]

	

	
navigate()[source]

	

	
relationship_form = <cfme.web_ui.Form fields=[('server_select', <cfme.web_ui.AngularSelect _loc="//button[@data-id='server_id']", none=None, multi=False, exact=False>), ('save_button', FormButton('Save Changes')), ('reset_button', FormButton('Reset Changes')), ('cancel_button', FormButton('Cancel'))]>

	

	
set_relationship(server_name, server_id, click_cancel=False)[source]

	

	
Vm.GUEST_RESTART = 'Restart Guest'

	

	
Vm.GUEST_SHUTDOWN = 'Shutdown Guest'

	

	
Vm.POWER_OFF = 'Power Off'

	

	
Vm.POWER_ON = 'Power On'

	

	
Vm.RESET = 'Reset'

	

	
Vm.STATE_OFF = 'off'

	

	
Vm.STATE_ON = 'on'

	

	
Vm.STATE_SUSPENDED = 'suspended'

	

	
Vm.SUSPEND = 'Suspend'

	

	
class Vm.Snapshot(name=None, description=None, memory=None, parent_vm=None)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
active

	Check if the snapshot is active.

	Returns:	True if snapshot is active, False otherwise.

	Return type:	bool [http://docs.python.org/2.7/library/functions.html#bool]

	
create(force_check_memory=False)[source]

	

	
delete(cancel=False)[source]

	

	
delete_all(cancel=False)[source]

	

	
exists

	

	
refresh()[source]

	

	
revert_to(cancel=False)[source]

	

	
snapshot_tree = <cfme.web_ui.BootstrapTreeview object>

	

	
Vm.TO_OPEN_EDIT = 'Edit this VM'

	

	
Vm.TO_OPEN_RECONFIGURE = 'Reconfigure this VM'

	

	
Vm.TO_RETIRE = 'Retire this VM'

	

	
Vm.VM_TYPE = 'Virtual Machine'

	

	
Vm.clone_vm(email=None, first_name=None, last_name=None, vm_name=None, provision_type=None)[source]

	

	
Vm.cluster_id

	returns id of cluster current vm belongs to

	
Vm.configuration

	

	
Vm.current_snapshot_description

	Returns the current snapshot description.

	
Vm.current_snapshot_name

	Returns the current snapshot name.

	
Vm.genealogy

	

	
Vm.get_collection_via_rest()[source]

	

	
Vm.get_vm_via_rest()[source]

	

	
Vm.migrate_vm(email=None, first_name=None, last_name=None, host_name=None, datastore_name=None)[source]

	

	
Vm.power_control_from_provider(option)[source]

	Power control a vm from the provider

	Parameters:	option – power control action to take against vm

	Raises:	OptionNotAvailable –
option parm must have proper value

	
Vm.publish_to_template(template_name, email=None, first_name=None, last_name=None)[source]

	

	
Vm.reconfigure(new_configuration=None, changes=None, cancel=False)[source]

	Reconfigures the VM based on given configuration or set of changes

	Parameters:	
	new_configuration – VMConfiguration object with desired configuration

	changes – Set of changes to request; alternative to new_configuration
See VMConfiguration.get_changes_to_fill to see expected format of the data

	cancel – False if we want to submit the changes, True otherwise

	
Vm.total_snapshots

	Returns the number of snapshots for this VM. If it says None, returns 0.

	
class cfme.infrastructure.virtual_machines.VmAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of VmsOnlyAllView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
resetter(*args, **kwargs)[source]

	

	
step(*args, **kwargs)[source]

	

	
class cfme.infrastructure.virtual_machines.VmAllWithTemplates(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of VmsTemplatesAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
resetter(*args, **kwargs)[source]

	

	
step()[source]

	

	
class cfme.infrastructure.virtual_machines.VmAllWithTemplatesDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of InfraVmDetailsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
resetter(*args, **kwargs)[source]

	

	
step()[source]

	

	
class cfme.infrastructure.virtual_machines.VmAllWithTemplatesForProvider(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of VmTemplatesAllForProviderView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
resetter(*args, **kwargs)[source]

	

	
step(*args, **kwargs)[source]

	

	
class cfme.infrastructure.virtual_machines.VmClone(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ProvisionView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.infrastructure.virtual_machines.VmDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of InfraVmDetailsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
resetter(*args, **kwargs)[source]

	

	
step(*args, **kwargs)[source]

	

	
class cfme.infrastructure.virtual_machines.VmEdit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.virtual_machines.VmEngineRelationship(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ManagementEngineView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.virtual_machines.VmMigrate(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of MigrateView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.infrastructure.virtual_machines.VmReconfigure(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of InfraVmReconfigureView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.infrastructure.virtual_machines.VmTemplatesAllForProviderView(parent, logger=None, **kwargs)[source]

	Bases: cfme.infrastructure.virtual_machines.InfraVmView

	
adv_search_clear

	

	
entities

	

	
is_displayed

	

	
reset_page()[source]

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.virtual_machines.VmsOnlyAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.infrastructure.virtual_machines.InfraVmView

	
adv_search_clear

	

	
entities

	

	
is_displayed

	

	
reset_page()[source]

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.virtual_machines.VmsTemplatesAccordion(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The accordion on the Virtual Machines page

	
templates

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
vms

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
vmstemplates

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.virtual_machines.VmsTemplatesAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.infrastructure.virtual_machines.InfraVmView

The collection page for instances

	
adv_search_clear

	

	
entities

	

	
is_displayed

	

	
pagination

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reset_page()[source]

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cfme.infrastructure.virtual_machines.do_power_control(vm_names, option, provider_crud=None, cancel=True)[source]

	Executes a power option against a list of VMs.

	Parameters:	
	vm_names – List of VMs to interact with

	option – Power option param.

	provider_crud – provider object where vm resides on (optional)

	cancel – Whether or not to cancel the power control action

	
cfme.infrastructure.virtual_machines.find_quadicon(vm_name)[source]

	Find and return a quadicon belonging to a specific vm

	Parameters:	vm – vm name as displayed at the quadicon

Returns: entity of appropriate class

	
cfme.infrastructure.virtual_machines.get_all_vms(do_not_navigate=False)[source]

	Returns list of all vms

	
cfme.infrastructure.virtual_machines.get_number_of_vms(do_not_navigate=False)[source]

	Returns the total number of VMs visible to the user,
including those archived or orphaned

	
cfme.infrastructure.virtual_machines.is_pwr_option_enabled(vm_names, option, provider_crud=None)[source]

	Returns whether a particular power option is enabled.

	Parameters:	
	vm_names – List of VMs to interact with

	provider_crud – provider object where vm resides on (optional)

	option – Power option param.

	Raises:	NoOptionAvailable

When unable to find the power option passed

	
cfme.infrastructure.virtual_machines.is_pwr_option_visible(vm_names, option, provider_crud=None)[source]

	Returns whether a particular power option is visible.

	Parameters:	
	vm_names – List of VMs to interact with, if from_details=True is passed, only one VM can
be passed in the list.

	option – Power option param.

	provider_crud – provider object where vm resides on (optional)

	
cfme.infrastructure.virtual_machines.perform_smartstate_analysis(vm_names, provider_crud=None, cancel=True)[source]

	Executes a refresh relationships action against a list of VMs.

	Parameters:	
	vm_names – List of VMs to interact with

	provider_crud – provider object where vm resides on (optional)

	cancel – Whether or not to cancel the refresh relationships action

	
cfme.infrastructure.virtual_machines.remove(vm_names, cancel=True, provider_crud=None)[source]

	Removes multiple VMs from CFME VMDB

	Parameters:	
	vm_names – List of VMs to interact with

	cancel – Whether to cancel the deletion, defaults to True

	provider_crud – provider object where vm resides on (optional)

	
cfme.infrastructure.virtual_machines.wait_for_vm_state_change(vm_name, desired_state, timeout=300, provider_crud=None)[source]

	Wait for VM to come to desired state.

This function waits just the needed amount of time thanks to wait_for.

	Parameters:	
	vm_name – Displayed name of the VM

	desired_state – ‘on’ or ‘off’

	timeout – Specify amount of time (in seconds) to wait until TimedOutError is raised

	provider_crud – provider object where vm resides on (optional)

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

cfme.intelligence package

Subpackages

	cfme.intelligence.chargeback package
	Submodules
	cfme.intelligence.chargeback.assignments module

	cfme.intelligence.chargeback.rates module

	Module contents

	cfme.intelligence.reports package
	Subpackages
	cfme.intelligence.reports.widgets package
	Submodules
	cfme.intelligence.reports.widgets.chart_widgets module

	cfme.intelligence.reports.widgets.menu_widgets module

	cfme.intelligence.reports.widgets.report_widgets module

	cfme.intelligence.reports.widgets.rss_widgets module

	Module contents

	Submodules
	cfme.intelligence.reports.dashboards module

	cfme.intelligence.reports.import_export module

	cfme.intelligence.reports.menus module

	cfme.intelligence.reports.reports module

	cfme.intelligence.reports.saved module

	cfme.intelligence.reports.schedules module

	Module contents

Submodules

	cfme.intelligence.rss module

Module contents

This is a directory of modules, each one represents one menu sub-item.

	cfme.intelligence.reports

	cfme.intelligence.chargeback

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.intelligence package

cfme.intelligence.chargeback package

Submodules

	cfme.intelligence.chargeback.assignments module

	cfme.intelligence.chargeback.rates module

Module contents

	
class cfme.intelligence.chargeback.ChargebackView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

	
assignments

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
in_chargeback

	

	
is_displayed

	

	
rates

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reports

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.chargeback.IntelChargeback(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ChargebackView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.intelligence package

 	cfme.intelligence.chargeback package

cfme.intelligence.chargeback.assignments module

	
class cfme.intelligence.chargeback.assignments.Assign(assign_to=None, tag_category=None, docker_labels=None, selections=None, appliance=None)[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable

Model of Chargeback Assignment page in cfme.

	Parameters:	
	assign_to – Assign the chargeback rate to entities such as VM,Provider,datastore or the
Enterprise itself.

	tag_category – Tag category of the entity

	selections – Selection of a particular entity to which the rate is to be assigned.
Eg:If the chargeback rate is to be assigned to providers,select which of the managed
providers the rate is to be assigned.

Usage:

enterprise = Assign(
assign_to="The Enterprise",
selections={
 'Enterprise': {'Rate': 'Default'}
})

enterprise.computeassign()

	
computeassign()[source]

	

	
storageassign()[source]

	

	
class cfme.intelligence.chargeback.assignments.AssignAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AssignmentsAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.intelligence.chargeback.assignments.AssignCompute(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AssignmentsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.intelligence.chargeback.assignments.AssignStorage(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AssignmentsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.intelligence.chargeback.assignments.AssignmentsAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.chargeback.ChargebackView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.chargeback.assignments.AssignmentsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.chargeback.ChargebackView

	
assign_to

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
docker_labels

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
selections

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
tag_category

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.intelligence package

 	cfme.intelligence.chargeback package

cfme.intelligence.chargeback.rates module

	
class cfme.intelligence.chargeback.rates.AddComputeChargebackView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.chargeback.rates.RatesView

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
currency

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
fields

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.chargeback.rates.AddStorageChargebackView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.chargeback.rates.AddComputeChargebackView

	
is_displayed

	

	
class cfme.intelligence.chargeback.rates.ComputeRate(description=None, currency=None, fields=None, appliance=None)[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable

This class represents a Compute Chargeback rate.

Example

>>> import cfme.intelligence.chargeback.rates as rates
>>> rate = rates.ComputeRate(description=desc,
 fields={'Used CPU':
 {'per_time': 'Hourly', 'variable_rate': '3'},
 'Used Disk I/O':
 {'per_time': 'Hourly', 'variable_rate': '2'},
 'Used Memory':
 {'per_time': 'Hourly', 'variable_rate': '2'}})
>>> rate.create()
>>> rate.delete()

	Parameters:	
	description – Rate description

	currency – Rate currency

	fields – Rate fields

	
create()[source]

	

	
delete()[source]

	

	
pretty_attrs = ['description']

	

	
update(updates)[source]

	

	
class cfme.intelligence.chargeback.rates.ComputeRateAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RatesView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.intelligence.chargeback.rates.ComputeRateDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RatesDetailView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.intelligence.chargeback.rates.ComputeRateEdit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditComputeChargebackView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.intelligence.chargeback.rates.ComputeRateNew(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AddComputeChargebackView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.intelligence.chargeback.rates.EditComputeChargebackView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.chargeback.rates.AddComputeChargebackView

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.chargeback.rates.EditStorageChargebackView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.chargeback.rates.EditComputeChargebackView

	
is_displayed

	

	
class cfme.intelligence.chargeback.rates.RatesDetailView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.chargeback.ChargebackView

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.chargeback.rates.RatesView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.chargeback.ChargebackView

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.chargeback.rates.StorageChargebackView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.chargeback.rates.RatesView

	
is_displayed

	

	
class cfme.intelligence.chargeback.rates.StorageRate(description=None, currency=None, fields=None, appliance=None)[source]

	Bases: cfme.intelligence.chargeback.rates.ComputeRate

	
pretty_attrs = ['description']

	

	
class cfme.intelligence.chargeback.rates.StorageRateAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of StorageChargebackView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.intelligence.chargeback.rates.StorageRateDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RatesDetailView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.intelligence.chargeback.rates.StorageRateEdit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditStorageChargebackView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.intelligence.chargeback.rates.StorageRateNew(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AddStorageChargebackView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.intelligence package

cfme.intelligence.reports package

Subpackages

	cfme.intelligence.reports.widgets package
	Submodules
	cfme.intelligence.reports.widgets.chart_widgets module

	cfme.intelligence.reports.widgets.menu_widgets module

	cfme.intelligence.reports.widgets.report_widgets module

	cfme.intelligence.reports.widgets.rss_widgets module

	Module contents

Submodules

	cfme.intelligence.reports.dashboards module

	cfme.intelligence.reports.import_export module

	cfme.intelligence.reports.menus module

	cfme.intelligence.reports.reports module

	cfme.intelligence.reports.saved module

	cfme.intelligence.reports.schedules module

Module contents

	
class cfme.intelligence.reports.CloudIntelReports(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of CloudIntelReportsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.intelligence.reports.CloudIntelReportsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
dashboard_widgets

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
dashboards

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
edit_report_menus

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
import_export

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
in_intel_reports

	

	
is_displayed

	

	
reports

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
saved_reports

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
schedules

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.ReportsMultiBoxSelect(parent, move_into=None, move_from=None, available_items=None, chosen_items=None, logger=None)[source]

	Bases: widgetastic_manageiq.MultiBoxSelect

	
move_from_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
move_into_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.intelligence package

 	cfme.intelligence.reports package

cfme.intelligence.reports.widgets package

Submodules

	cfme.intelligence.reports.widgets.chart_widgets module

	cfme.intelligence.reports.widgets.menu_widgets module

	cfme.intelligence.reports.widgets.report_widgets module

	cfme.intelligence.reports.widgets.rss_widgets module

Module contents

Page model for Cloud Intel / Reports / Dashboard Widgets

	
class cfme.intelligence.reports.widgets.AllDashboardWidgetsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.widgets.DashboardWidgetsView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.widgets.BaseDashboardReportWidget(*args, **kwargs)[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable

	
TITLE = None

	

	
TYPE = None

	

	
check_status()[source]

	

	
create()[source]

	Create this Widget in the UI.

	
delete(cancel=False)[source]

	Delete this Widget in the UI.

	Parameters:	cancel – Whether to cancel the deletion (default False).

	
generate(wait=True, cancel=False, **kwargs)[source]

	

	
pretty_attrs = []

	

	
refresh()[source]

	

	
update(updates)[source]

	Update this Widget in the UI.

	Parameters:	
	updates – Provided by update() context manager.

	cancel – Whether to cancel the update (default False).

	
wait_generated(timeout=600)[source]

	

	
class cfme.intelligence.reports.widgets.BaseDashboardWidgetDetailsStep(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DashboardWidgetDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.intelligence.reports.widgets.BaseDashboardWidgetFormCommon(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.widgets.DashboardWidgetsView

	
active

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
visibility

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
widget_title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.widgets.BaseEditDashboardWidgetStep(obj, navigate_obj)[source]

	Bases: cfme.intelligence.reports.widgets.BaseDashboardWidgetDetailsStep

	
step()[source]

	

	
class cfme.intelligence.reports.widgets.BaseEditDashboardWidgetView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.widgets.DashboardWidgetsView

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.widgets.BaseNewDashboardWidgetStep(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW = None

	

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.intelligence.reports.widgets.BaseNewDashboardWidgetView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.widgets.DashboardWidgetsView

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.intelligence.reports.widgets.DashboardWidgetDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.widgets.DashboardWidgetsView

	
is_displayed

	

	
reload_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
status_info

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.widgets.DashboardWidgetsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.CloudIntelReportsView

	
in_dashboard_widgets

	

	
is_displayed

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.intelligence package

 	cfme.intelligence.reports package

 	cfme.intelligence.reports.widgets package

cfme.intelligence.reports.widgets.chart_widgets module

Page model for Cloud Intel / Reports / Dashboard Widgets / Charts

	
class cfme.intelligence.reports.widgets.chart_widgets.ChartWidget(title, description=None, active=None, filter=None, timer=None, visibility=None)[source]

	Bases: cfme.intelligence.reports.widgets.BaseDashboardReportWidget

	
TITLE = 'Chart'

	

	
TYPE = 'Charts'

	

	
fill_dict

	

	
pretty_attrs = ['title', 'description', 'filter', 'visibility']

	

	
class cfme.intelligence.reports.widgets.chart_widgets.ChartWidgetFormCommon(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.widgets.BaseDashboardWidgetFormCommon

	
every

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
filter

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
run

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
starting_date

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
starting_hour

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
starting_minute

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
time_zone

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.widgets.chart_widgets.EditChartWidget(obj, navigate_obj)[source]

	Bases: cfme.intelligence.reports.widgets.BaseEditDashboardWidgetStep

	
VIEW

	alias of EditChartWidgetView

	
class cfme.intelligence.reports.widgets.chart_widgets.EditChartWidgetView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.widgets.BaseEditDashboardWidgetView, cfme.intelligence.reports.widgets.chart_widgets.ChartWidgetFormCommon

	
class cfme.intelligence.reports.widgets.chart_widgets.NewChartWidget(obj, navigate_obj)[source]

	Bases: cfme.intelligence.reports.widgets.BaseNewDashboardWidgetStep

	
VIEW

	alias of NewChartWidgetView

	
class cfme.intelligence.reports.widgets.chart_widgets.NewChartWidgetView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.widgets.BaseNewDashboardWidgetView, cfme.intelligence.reports.widgets.chart_widgets.ChartWidgetFormCommon

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.intelligence package

 	cfme.intelligence.reports package

 	cfme.intelligence.reports.widgets package

cfme.intelligence.reports.widgets.menu_widgets module

Page model for Cloud Intel / Reports / Dashboard Widgets / Menus

	
class cfme.intelligence.reports.widgets.menu_widgets.EditMenuWidget(obj, navigate_obj)[source]

	Bases: cfme.intelligence.reports.widgets.BaseEditDashboardWidgetStep

	
VIEW

	alias of EditMenuWidgetView

	
class cfme.intelligence.reports.widgets.menu_widgets.EditMenuWidgetView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.widgets.BaseEditDashboardWidgetView, cfme.intelligence.reports.widgets.menu_widgets.MenuWidgetFormCommon

	
class cfme.intelligence.reports.widgets.menu_widgets.MenuWidget(title, description=None, active=None, shortcuts=None, visibility=None)[source]

	Bases: cfme.intelligence.reports.widgets.BaseDashboardReportWidget

	
TITLE = 'Menu'

	

	
TYPE = 'Menus'

	

	
fill_dict

	

	
pretty_attrs = ['description', 'shortcuts', 'visibility']

	

	
class cfme.intelligence.reports.widgets.menu_widgets.MenuWidgetFormCommon(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.widgets.BaseDashboardWidgetFormCommon

	
menu_shortcuts

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.widgets.menu_widgets.NewMenuWidget(obj, navigate_obj)[source]

	Bases: cfme.intelligence.reports.widgets.BaseNewDashboardWidgetStep

	
VIEW

	alias of NewMenuWidgetView

	
class cfme.intelligence.reports.widgets.menu_widgets.NewMenuWidgetView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.widgets.BaseNewDashboardWidgetView, cfme.intelligence.reports.widgets.menu_widgets.MenuWidgetFormCommon

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.intelligence package

 	cfme.intelligence.reports package

 	cfme.intelligence.reports.widgets package

cfme.intelligence.reports.widgets.report_widgets module

Page model for Cloud Intel / Reports / Dashboard Widgets / Reports

	
class cfme.intelligence.reports.widgets.report_widgets.EditReportWidget(obj, navigate_obj)[source]

	Bases: cfme.intelligence.reports.widgets.BaseEditDashboardWidgetStep

	
VIEW

	alias of EditReportWidgetView

	
class cfme.intelligence.reports.widgets.report_widgets.EditReportWidgetView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.widgets.BaseEditDashboardWidgetView, cfme.intelligence.reports.widgets.report_widgets.ReportWidgetFormCommon

	
class cfme.intelligence.reports.widgets.report_widgets.NewReportWidget(obj, navigate_obj)[source]

	Bases: cfme.intelligence.reports.widgets.BaseNewDashboardWidgetStep

	
VIEW

	alias of NewReportWidgetView

	
class cfme.intelligence.reports.widgets.report_widgets.NewReportWidgetView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.widgets.BaseNewDashboardWidgetView, cfme.intelligence.reports.widgets.report_widgets.ReportWidgetFormCommon

	
class cfme.intelligence.reports.widgets.report_widgets.ReportWidget(title, description=None, active=None, filter=None, columns=None, rows=None, timer=None, visibility=None)[source]

	Bases: cfme.intelligence.reports.widgets.BaseDashboardReportWidget

	
TITLE = 'Report'

	

	
TYPE = 'Reports'

	

	
fill_dict

	

	
pretty_attrs = ['description', 'filter', 'visibility']

	

	
class cfme.intelligence.reports.widgets.report_widgets.ReportWidgetFormCommon(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.widgets.BaseDashboardWidgetFormCommon

	
column1

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
column2

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
column3

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
column4

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
every

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
filter

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
repfilter

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
row_count

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
run

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
starting_date

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
starting_hour

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
starting_minute

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
subfilter

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
time_zone

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.intelligence package

 	cfme.intelligence.reports package

 	cfme.intelligence.reports.widgets package

cfme.intelligence.reports.widgets.rss_widgets module

Page model for Cloud Intel / Reports / Dashboard Widgets / RSS Feeds

	
class cfme.intelligence.reports.widgets.rss_widgets.EditRSSWidget(obj, navigate_obj)[source]

	Bases: cfme.intelligence.reports.widgets.BaseEditDashboardWidgetStep

	
VIEW

	alias of EditRSSWidgetView

	
class cfme.intelligence.reports.widgets.rss_widgets.EditRSSWidgetView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.widgets.BaseEditDashboardWidgetView, cfme.intelligence.reports.widgets.rss_widgets.RSSWidgetFormCommon

	
class cfme.intelligence.reports.widgets.rss_widgets.NewRSSWidget(obj, navigate_obj)[source]

	Bases: cfme.intelligence.reports.widgets.BaseNewDashboardWidgetStep

	
VIEW

	alias of NewRSSWidgetView

	
class cfme.intelligence.reports.widgets.rss_widgets.NewRSSWidgetView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.widgets.BaseNewDashboardWidgetView, cfme.intelligence.reports.widgets.rss_widgets.RSSWidgetFormCommon

	
class cfme.intelligence.reports.widgets.rss_widgets.RSSFeedWidget(title, description=None, active=None, type=None, feed=None, external=None, rows=None, timer=None, visibility=None)[source]

	Bases: cfme.intelligence.reports.widgets.BaseDashboardReportWidget

	
TITLE = 'RSS Feed'

	

	
TYPE = 'RSS Feeds'

	

	
fill_dict

	

	
pretty_attrs = ['title', 'description', 'type', 'feed', 'visibility']

	

	
class cfme.intelligence.reports.widgets.rss_widgets.RSSWidgetFormCommon(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.widgets.BaseDashboardWidgetFormCommon

	
every

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
external

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
rows

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
run

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
starting_date

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
starting_hour

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
starting_minute

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
time_zone

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
url

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.intelligence package

 	cfme.intelligence.reports package

cfme.intelligence.reports.dashboards module

Page model for Cloud Intel / Reports / Dashboards

	
class cfme.intelligence.reports.dashboards.Dashboard(name, group, title=None, locked=None, widgets=None, appliance=None)[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable

	
create(cancel=False)[source]

	Create this Dashboard in the UI.

	
delete(cancel=False)[source]

	Delete this Dashboard in the UI.

	Parameters:	cancel – Whether to cancel the deletion (default False).

	
group

	

	
pretty_attrs = ['name', 'group', 'title', 'widgets']

	

	
update(updates)[source]

	Update this Dashboard in the UI.

	Parameters:	updates – Provided by update() context manager.

	
class cfme.intelligence.reports.dashboards.DashboardAllGroupsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.CloudIntelReportsView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.dashboards.DashboardDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DashboardDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.intelligence.reports.dashboards.DashboardDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.CloudIntelReportsView

	
ITEM_TITLE_LOCATOR = ".//h3[contains(@class, 'panel-title')]"

	

	
SAMPLE_DASHBOARD_ROOT = ".//div[@id='modules']"

	

	
is_displayed

	

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
selected_items

	

	
tab_title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.dashboards.DashboardEdit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditDashboardView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.intelligence.reports.dashboards.DashboardFormCommon(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.CloudIntelReportsView

	
basic_information

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
locked

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
sample_dashboard

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
tab_title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
widgets

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.dashboards.DashboardNew(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NewDashboardView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.intelligence.reports.dashboards.DefaultDashboard(title='Default Dashboard', locked=None, widgets=None, appliance=None)[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable

	
name

	Name of Default Dashboard cannot be changed.

	
pretty_attrs = ['name', 'title', 'widgets']

	

	
update(updates)[source]

	Update Default Dashboard in the UI.

	Parameters:	updates – Provided by update() context manager.

	
class cfme.intelligence.reports.dashboards.DefaultDashboardDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DefaultDashboardDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.intelligence.reports.dashboards.DefaultDashboardDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.dashboards.DashboardDetailsView

	
is_displayed

	

	
class cfme.intelligence.reports.dashboards.DefaultDashboardEdit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditDefaultDashboardView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.intelligence.reports.dashboards.EditDashboardView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.dashboards.DashboardFormCommon

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.dashboards.EditDefaultDashboardView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.dashboards.EditDashboardView

	
is_displayed

	

	
class cfme.intelligence.reports.dashboards.NewDashboardView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.dashboards.DashboardFormCommon

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.intelligence package

 	cfme.intelligence.reports package

cfme.intelligence.reports.import_export module

	
class cfme.intelligence.reports.import_export.ImportExportCommonForm(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.CloudIntelReportsView

	
export_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
items_for_export

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
subtitle

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
upload_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
upload_file

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.import_export.ImportExportCustomReports(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ImportExportCustomReportsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.intelligence.reports.import_export.ImportExportCustomReportsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.import_export.ImportExportCommonForm

	
is_displayed

	

	
overwrite

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.import_export.ImportExportWidgets(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ImportExportWidgetsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.intelligence.reports.import_export.ImportExportWidgetsCommitView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.CloudIntelReportsView

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
commit_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.import_export.ImportExportWidgetsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.import_export.ImportExportCommonForm

	
is_displayed

	

	
class cfme.intelligence.reports.import_export.InputButton(parent, name=None, id=None, locator=None, logger=None)[source]

	Bases: widgetastic_patternfly.Input, widgetastic.widget.ClickableMixin

	
cfme.intelligence.reports.import_export.export_reports(*custom_report_names)[source]

	

	
cfme.intelligence.reports.import_export.export_widgets(*widget_names)[source]

	

	
cfme.intelligence.reports.import_export.import_reports(filename, overwrite=False)[source]

	

	
cfme.intelligence.reports.import_export.import_widgets(filename, overwrite=False)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.intelligence package

 	cfme.intelligence.reports package

cfme.intelligence.reports.menus module

Module handling report menus contents

	
class cfme.intelligence.reports.menus.EditReportMenus(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditReportMenusView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.intelligence.reports.menus.EditReportMenusView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.CloudIntelReportsView

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
commit_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
default_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
discard_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
manager

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
report_select

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reports_tree

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters:	version_dict – Dictionary of version_introduced: item

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.menus.ReportMenu(appliance=None)[source]

	Bases: cfme.utils.appliance.Navigatable

This is a fake class mainly needed for navmazing navigation.

	
add_folder(group, folder)[source]

	Adds a folder under top-level.

	Parameters:	
	group – User group.

	folder – Name of the new folder.

	
add_subfolder(group, folder, subfolder)[source]

	Adds a subfolder under specified folder.

	Parameters:	
	group – User group.

	folder – Name of the folder.

	subfolder – Name of the new subdfolder.

	
get_folders(group)[source]

	Returns list of folders for given user group.

	Parameters:	group – User group to check.

	
get_subfolders(group, folder)[source]

	Returns list of sub-folders for given user group and folder.

	Parameters:	
	group – User group to check.

	folder – Folder to read.

	
go_to_group(group_name)[source]

	

	
manage_folder(*args, **kwds)[source]

	Context manager to use when modifying the folder contents.

You can use manager’s FolderManager.bail_out() classmethod to end and discard the
changes done inside the with block. This context manager does not give the manager as a
value to the with block so you have to import and use the FolderManager class
manually.

	Parameters:	
	group – User group.

	folder – Which folder to manage. If None, top-level will be managed.

Returns: Context-managed widgetastic_manageiq.FolderManager instance

	
manage_subfolder(*args, **kwds)[source]

	Context manager to use when modifying the subfolder contents.

You can use manager’s FolderManager.bail_out() classmethod to end and discard the
changes done inside the with block.

	Parameters:	
	group – User group.

	folder – Parent folder name.

	subfolder – Subfolder name to manage.

Returns: Context-managed :py:class: widgetastic_manageiq.MultiBoxSelect instance

	
reset_to_default(group)[source]

	Clicks the Default button.

	Parameters:	group – Group to set to Default

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.intelligence package

 	cfme.intelligence.reports package

cfme.intelligence.reports.reports module

Page model for Cloud Intel / Reports / Reports

	
class cfme.intelligence.reports.reports.AllCustomReportsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.CloudIntelReportsView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.reports.AllReportsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.CloudIntelReportsView

	
is_displayed

	

	
reports_table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.reports.CannedReportInfo(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of CannedReportView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.intelligence.reports.reports.CannedReportView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.reports.CustomReportDetailsView

	
is_displayed

	

	
class cfme.intelligence.reports.reports.CannedSavedReport(path_to_report, run_datetime, queued_datetime, candu=False, appliance=None)[source]

	Bases: cfme.intelligence.reports.reports.CustomSavedReport, cfme.utils.appliance.Navigatable

As we cannot create or edit canned reports, we don’t know their titles and so, so we
need to change the navigation a little bit for it to work correctly.

	Parameters:	
	path_to_report – Iterable with path to report.

	datetime – Datetime of “Run At” of the report. That’s what queue_canned_report()
returns.

	
delete(cancel=False)[source]

	

	
delete_if_exists()[source]

	

	
exists

	

	
get_saved_canned_reports(*path)[source]

	

	
navigate()[source]

	

	
classmethod new(path)[source]

	

	
classmethod queue_canned_report(path)[source]

	Queue report from selection of pre-prepared reports.

	Parameters:	*path – Path in tree after All Reports

Returns: Value of Run At in the table so the run can be then checked.

	
class cfme.intelligence.reports.reports.CannedSavedReportDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of CannedSavedReportView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.intelligence.reports.reports.CannedSavedReportView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.reports.CustomSavedReportDetailsView

	
is_displayed

	

	
class cfme.intelligence.reports.reports.CustomReport(appliance=None, **values)[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.appliance.Navigatable

	
create(cancel=False)[source]

	

	
delete(cancel=False)[source]

	

	
get_saved_reports()[source]

	

	
queue(wait_for_finish=False)[source]

	

	
update(updates)[source]

	

	
class cfme.intelligence.reports.reports.CustomReportAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AllReportsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.intelligence.reports.reports.CustomReportDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of CustomReportDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.intelligence.reports.reports.CustomReportDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.CloudIntelReportsView

	
is_displayed

	

	
reload_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
report_info

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
saved_reports

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.reports.CustomReportEdit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditCustomReportView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.intelligence.reports.reports.CustomReportFormCommon(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.CloudIntelReportsView

	
base_report_on

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel_after

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
charts

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
consolidation

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
filter

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
formatting

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
menu_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
report_fields

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
report_title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
styling

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
summary

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
timeline

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.reports.CustomReportNew(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NewCustomReportView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.intelligence.reports.reports.CustomSavedReport(report, run_datetime, queued_datetime, candu=False, appliance=None)[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable

Custom Saved Report. Enables us to retrieve data from the table.

	Parameters:	
	report – Report that we have data from.

	run_datetime – Datetime of “Run At” of the report. That’s what queue() returns.

	queued_datetime – Datetime of “Queued At” of the report.

	candu – If it is a C&U report, in that case it uses a different table.

	
data

	Retrieves data from the saved report.

Returns: SavedReportData.

	
download(extension)[source]

	

	
pretty_attrs = ['report', 'run_datetime', 'queued_datetime']

	

	
class cfme.intelligence.reports.reports.CustomSavedReportDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of CustomSavedReportDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.intelligence.reports.reports.CustomSavedReportDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.CloudIntelReportsView

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
paginator

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters:	version_dict – Dictionary of version_introduced: item

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.reports.EditCustomReportView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.reports.CustomReportFormCommon

	
is_displayed

	

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.reports.NewCustomReportView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.reports.CustomReportFormCommon

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.intelligence.reports.reports.SavedReportData(headers, body)[source]

	Bases: cfme.utils.pretty.Pretty

This class stores data retrieved from saved report.

	Parameters:	
	headers – Tuple with header columns.

	body – List of tuples with body rows.

	
find_cell(column, value, cell)[source]

	

	
find_row(column, value)[source]

	

	
pretty_attrs = ['headers', 'body']

	

	
rows

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.intelligence package

 	cfme.intelligence.reports package

cfme.intelligence.reports.saved module

	
class cfme.intelligence.reports.saved.AllSavedReportsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.CloudIntelReportsView

	
is_displayed

	

	
paginator

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters:	version_dict – Dictionary of version_introduced: item

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.saved.SavedReport(name, run_at_datetime, queued_datetime_in_title, appliance=None)[source]

	Bases: cfme.utils.appliance.Navigatable

	
delete(cancel=False)[source]

	

	
class cfme.intelligence.reports.saved.SavedReportDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.reports.CustomSavedReportDetailsView

	
is_displayed

	

	
class cfme.intelligence.reports.saved.SavedReportView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.saved.AllSavedReportsView

	
is_displayed

	

	
class cfme.intelligence.reports.saved.ScheduleDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of SavedReportDetailsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.intelligence package

 	cfme.intelligence.reports package

cfme.intelligence.reports.schedules module

Module handling schedules

	
class cfme.intelligence.reports.schedules.EditScheduleView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.schedules.SchedulesFormCommon

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.schedules.NewScheduleView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.schedules.SchedulesFormCommon

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.intelligence.reports.schedules.Schedule(collection, name, description, filter, active=None, timer=None, emails=None, email_options=None)[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.pretty.Pretty, cfme.utils.appliance.BaseEntity

Represents a schedule in Cloud Intel/Reports/Schedules.

	Parameters:	
	name – Schedule name.

	description – Schedule description.

	filter – 3-tuple with filter selection (see the UI).

	active – Whether is this schedule active.

	run – Specifies how often this schedule runs. It can be either string “Once”, or a tuple,
which maps to the two selects in UI (“Hourly”, “Every hour”)...

	time_zone – Specify time zone.

	start_date – Specify the start date.

	start_time – Specify the start time either as a string (“0:15”) or tuple (“0”, “15”)

	send_email – If specifies, turns on e-mail sending. Can be string, or list or set.

	
delete(cancel=False)[source]

	

	
exists

	

	
pretty_attrs = ['name', 'filter']

	

	
queue()[source]

	Queue this schedule.

	
update(updates)[source]

	

	
class cfme.intelligence.reports.schedules.ScheduleAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of SchedulesAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.intelligence.reports.schedules.ScheduleCollection(appliance)[source]

	Bases: cfme.utils.appliance.BaseCollection

	
create(name=None, description=None, filter=None, active=None, timer=None, emails=None, email_options=None)[source]

	

	
delete_schedules(*schedules, **kwargs)[source]

	Select and delete specified schedules from VMDB.

	Parameters:	
	*schedules – Schedules to delete. Can be objects or strings.

	cancel – (kwarg) Whether to cancel the deletion (Default: False)

Raises: NameError when some of the schedules were not found.

	
disable_schedules(*schedules)[source]

	Select and disable specified schedules.

	Parameters:	*schedules – Schedules to disable. Can be objects or strings.

Raises: NameError when some of the schedules were not found.

	
enable_schedules(*schedules)[source]

	Select and enable specified schedules.

	Parameters:	*schedules – Schedules to enable. Can be objects or strings.

Raises: NameError when some of the schedules were not found.

	
instantiate(name, description, filter, active=None, timer=None, emails=None, email_options=None)[source]

	

	
queue_schedules(*schedules)[source]

	Select and queue specified schedules.

	Parameters:	*schedules – Schedules to queue. Can be objects or strings.

Raises: NameError when some of the schedules were not found.

	
class cfme.intelligence.reports.schedules.ScheduleDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ScheduleDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.intelligence.reports.schedules.ScheduleDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.CloudIntelReportsView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.schedules.ScheduleEdit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditScheduleView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.intelligence.reports.schedules.ScheduleNew(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NewScheduleView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.intelligence.reports.schedules.SchedulesAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.CloudIntelReportsView

	
is_displayed

	

	
paginator

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters:	version_dict – Dictionary of version_introduced: item

	
schedules_table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.schedules.SchedulesFormCommon(parent, logger=None, **kwargs)[source]

	Bases: cfme.intelligence.reports.CloudIntelReportsView

	
active

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
emails

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
emails_send

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
filter1

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
filter2

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
filter3

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
hour

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
minute

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
run

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
send_csv

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
send_if_empty

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
send_pdf

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
send_txt

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
starting_date

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
time_zone

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.intelligence package

cfme.intelligence.rss module

	
class cfme.intelligence.rss.RSSView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

	
is_displayed

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

cfme.metaplugins package

Submodules

	cfme.metaplugins.blockers module

	cfme.metaplugins.server_roles module

	cfme.metaplugins.skip module

Module contents

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.metaplugins package

cfme.metaplugins.blockers module

A generalized framowork for handling test blockers.

Currently handling Bugzilla nad GitHub issues. For extensions, see this file and
utils.blockers.

If you want to mark test with blockers, use meta mark blockers and specify a list of the
blockers. The blockers can be directly the objects of utils.blockers.Blocker subclasses,
but you can use just plain strings that will get resolved into the objects when required.

Example comes:

@pytest.mark.meta(
 blockers=[
 BZ(123456), # Will get resolved to BZ obviously
 GH(1234), # Will get resolved to GH if you have default repo set
 GH("owner/repo:issue"), # Otherwise you need to use this syntax
 # Generic blocker writing - (<engine_name>#<blocker_spec>)
 # These work for any engine that is in :py:mod:`utils.blockers`
 "BZ#123456", # Will resolve to BZ
 "GH#123", # Will resolve to GH (needs default repo specified)
 "GH#owner/repo:123", # Will resolve to GH
 # Shortcut writing
 123456, # Will resolve to BZ
]
)

Íf you want to unskip, then you have to use the full object (BZ()) and pass it a kwarg called
unblock. When the function in unblock resolves to a truthy value, the test won’t be skipped.
If the blocker does not block, the unblock is not called. There is also a custom_action that
will get called if the blocker blocks. if the action does nothing, then it continues with next
actions etc., until it gets to the point that it skips the test because there are blockers.

	
cfme.metaplugins.blockers.kwargify(f)[source]

	Convert function having only positional args to a function taking dictionary.

If you pass False or None, a function which always returns False is returned.
If you pass True, a function which always returns True is returned.

	
cfme.metaplugins.blockers.resolve_blockers(item, blockers)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.metaplugins package

cfme.metaplugins.server_roles module

Set server roles based on a list of roles attached to the test using metadata plugin.

If you want to specify certain roles that have to be set,
you can use this type of decoration:

@pytest.mark.meta(server_roles="+automate")
def test_appliance_roles():
 assert foo

This takes the current list from cfme_data.yaml and modifies
it by the server_roles keyword. If prefixed with + or nothing, it adds,
if prefixed with -, it removes the role. It can be combined either
in string and in list, so these lines are functionally equivalent:

"+automate -foo bar" # (add automate and bar, remove foo)
["+automate", "-foo", "bar"]

If you specify the server_roles as None, then all roles
are flushed and the list contains only user_interface role.

Roles can be pulled from the cfme_data fixture using yaml selectors,
which will do a ‘set’ with the list of roles found at the target path:

@pytest.mark.meta(server_roles=('level1', 'sublevel2'), server_roles_mode='cfmedata')
def test_appliance_roles():
 assert len(get_server_roles()) == 3

Which corresponds to this yaml layout:

level1:
 sublevel2:
 - database_operations
 - user_interface
 - web_services

To ensure the appliance has the default roles:

@pytest.mark.fixtureconf(server_roles="default")
def test_appliance_roles():
 do(test)

For a list of server role names currently exposed in the CFME interface,
see keys of cfme.configure.configuration.server_roles.

	
cfme.metaplugins.server_roles.add_server_roles(server_roles, server_roles_mode='add')[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.metaplugins package

cfme.metaplugins.skip module

I missed callable based skipper so here it is.

	
cfme.metaplugins.skip.skip_plugin(item, skip, reason='Skipped')[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

cfme.middleware package

Subpackages

	cfme.middleware.provider package
	Submodules
	cfme.middleware.provider.hawkular module

	cfme.middleware.provider.middleware_views module

	Module contents

Submodules

	cfme.middleware.datasource module

	cfme.middleware.deployment module

	cfme.middleware.domain module

	cfme.middleware.messaging module

	cfme.middleware.server module

	cfme.middleware.server_group module

	cfme.middleware.topology module

Module contents

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.middleware package

cfme.middleware.provider package

Submodules

	cfme.middleware.provider.hawkular module

	cfme.middleware.provider.middleware_views module

Module contents

	
class cfme.middleware.provider.Add(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of MiddlewareProviderAddView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.middleware.provider.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of MiddlewareProvidersView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
resetter()[source]

	

	
step()[source]

	

	
class cfme.middleware.provider.Container[source]

	Bases: cfme.common.SummaryMixin

	
add_datasource(ds_type, ds_name, jndi_name, ds_url, xa_ds=False, driver_name=None, existing_driver=None, driver_module_name=None, driver_class=None, username=None, password=None, sec_domain=None, cancel=False)[source]

	Clicks to “Add Datasource” button,
in opened window fills fields by provided parameter by clicking ‘Next’,
and submits the form by clicking ‘Finish’.

	Parameters:	
	ds_type – Type of database.

	ds_name – Name of newly created Datasource.

	jndi_name – JNDI Name of Datasource.

	driver_name – JDBC Driver name in Datasource.

	driver_module_name – Module name of JDBC Driver used in datasource.

	driver_class – JDBC Driver Class.

	ds_url – Database connection URL in jdbc format.

	username – Database username.

	password – Databasae password, optional.

	sec_domain – Security Domain, optional.

	cancel – Whether to click Cancel instead of commit.

	
add_deployment(filename, runtime_name=None, enable_deploy=True, overwrite=False, cancel=False)[source]

	Clicks to “Add Deployment” button, in opened window fills fields by provided parameters,
and deploys.

	Parameters:	
	filename – Full path to file to import.

	runtime_name – Runtime name of deployment archive.

	enable_deploy – Whether to enable deployment archive or keep disabled.

	cancel – Whether to click Cancel instead of commit.

	
add_jdbc_driver(filename, driver_name, module_name, driver_class, xa_class=None, major_version=None, minor_version=None, cancel=False)[source]

	Clicks to “Add JDBC Driver” button, in opened window fills fields by provided parameters,
and deploys.

	Parameters:	
	filename – Full path to JDBC Driver to import.

	driver_name – Name of newly created JDBC Driver.

	module_name – Name on Module to register on server side.

	driver_class – JDBC Driver Class.

	major_version – Major version of JDBC driver, optional.

	minor_version – Minor version of JDBC driver, optional.

	cancel – Whether to click Cancel instead of commit.

	
is_immutable()[source]

	

	
class cfme.middleware.provider.Deployable[source]

	Bases: cfme.common.SummaryMixin

	
disable()[source]

	Clicks on “Disable” menu item and verifies message shown

	
enable()[source]

	Clicks on “Enable” menu item and verifies message shown

	
restart()[source]

	Clicks on “Restart” menu item and verifies message shown

	
undeploy()[source]

	Clicks on “Undeploy” menu item and verifies message shown

	
class cfme.middleware.provider.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of MiddlewareProviderDetailsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.middleware.provider.Edit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of MiddlewareProviderEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.middleware.provider.EditFromDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of MiddlewareProviderEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.middleware.provider.EditTags(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TagPageView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.middleware.provider.EditTagsFromDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TagPageView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.middleware.provider.MiddlewareBase[source]

	Bases: cfme.common.Validatable

MiddlewareBase class used to define common functions across pages.
Also used to override existing function when required.

	
download_summary()[source]

	

	
get_detail(*ident)[source]

	Gets details from the details infoblock

The function first ensures that we are on the detail page for the specific cluster.

	Parameters:	ident – An InfoBlock title, followed by the Key name, e.g. “Relationships”, “Images”

Returns: A string representing the contents of the InfoBlock’s value.

	
class cfme.middleware.provider.MiddlewareProvider(*args, **kwargs)[source]

	Bases: cfme.common.provider.BaseProvider

	
STATS_TO_MATCH = []

	

	
category = 'middleware'

	

	
db_types = ['MiddlewareManager']

	

	
detail_page_suffix = 'provider_detail'

	

	
edit_page_suffix = 'provider_edit_detail'

	

	
in_version = ('5.7', Version('master'))

	

	
page_name = 'middleware'

	

	
property_tuples = []

	

	
provider_types = {}

	

	
refresh_text = 'Refresh items and relationships'

	

	
string_name = 'Middleware'

	

	
taggable_type = 'ExtManagementSystem'

	

	
class cfme.middleware.provider.ProviderDatasources(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ProviderDatasourceAllView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.middleware.provider.ProviderDeployments(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ProviderDeploymentAllView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.middleware.provider.ProviderDomains(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ProviderDomainsAllView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.middleware.provider.ProviderMessagings(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ProviderMessagingAllView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.middleware.provider.ProviderServers(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ProviderServerAllView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.middleware.provider.Timelines(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of MiddlewareProviderTimelinesView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.middleware.provider.TopologyFromDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
cfme.middleware.provider.download(view, extension)[source]

	

	
cfme.middleware.provider.get_random_list(items, limit)[source]

	In tests, when we have big list iterating through each element will take lot of time.
To avoid this, select random list with limited numbers

	
cfme.middleware.provider.get_server_name(path)[source]

	

	
cfme.middleware.provider.parse_properties(props)[source]

	Parses provided properties in string format into dictionary format.
It splits string into lines and splits each line into key and value.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.middleware package

 	cfme.middleware.provider package

cfme.middleware.provider.hawkular module

	
class cfme.middleware.provider.hawkular.HawkularEndpoint(**kwargs)[source]

	Bases: cfme.common.provider.DefaultEndpoint

	
view_value_mapping

	

	
class cfme.middleware.provider.hawkular.HawkularEndpointForm(parent, logger=None, **kwargs)[source]

	Bases: cfme.common.provider.DefaultEndpointForm

	
api_port

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
security_protocol

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.hawkular.HawkularProvider(name=None, endpoints=None, hostname=None, port=None, credentials=None, key=None, appliance=None, sec_protocol=None, **kwargs)[source]

	Bases: cfme.middleware.provider.MiddlewareBase, cfme.common.TopologyMixin, cfme.common.TimelinesMixin, cfme.middleware.provider.MiddlewareProvider

HawkularProvider class holds provider data. Used to perform actions on hawkular provider page

	Parameters:	
	name – Name of the provider

	endpoints – one or several provider endpoints like DefaultEndpoint. it should be either dict

	format dict{endpoint.name, endpoint, endpoint_n.name, endpoint_n}, list of endpoints or (in) –

	one endpoint (mere) –

	hostname – Hostname/IP of the provider

	port – http/https port of hawkular provider

	credentials – see Credential inner class.

	key – The CFME key of the provider in the yaml.

	db_id – database row id of provider

Usage:

myprov = HawkularProvider(name='foo',
 endpoints=endpoint,
 hostname='localhost',
 port=8080,
 credentials=Provider.Credential(principal='admin', secret='foobar')))
myprov.create()
myprov.num_deployment(method="ui")

	
STATS_TO_MATCH = ['num_server', 'num_domain', 'num_deployment', 'num_datasource', 'num_messaging']

	

	
db_types = ['Hawkular::MiddlewareManager']

	

	
classmethod download(extension)[source]

	

	
endpoints_form

	alias of HawkularEndpointForm

	
static from_config(prov_config, prov_key, appliance=None)[source]

	

	
is_refreshed(*args, **kwargs)

	

	
is_refreshed_db = None

	

	
load_details(refresh=False)[source]

	Navigate to Details and load db_id if not set

	
load_timelines_page()[source]

	

	
load_topology_page()[source]

	

	
mgmt_class = <Mock name='mock.Hawkular' id='140544509513424'>

	

	
num_datasource(*args, **kwargs)

	

	
num_datasource_ui = None

	

	
num_deployment(*args, **kwargs)

	

	
num_deployment_ui = None

	

	
num_domain(*args, **kwargs)

	

	
num_domain_ui = None

	

	
num_messaging(*args, **kwargs)

	

	
num_messaging_ui = None

	

	
num_server(*args, **kwargs)

	

	
num_server_group(*args, **kwargs)

	

	
num_server_ui = None

	

	
property_tuples = [('name', 'Name'), ('hostname', 'Host Name'), ('port', 'Port'), ('provider_type', 'Type')]

	

	
recheck_auth_status()[source]

	

	
type_name = 'hawkular'

	

	
view_value_mapping

	Maps values to view attrs

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.middleware package

 	cfme.middleware.provider package

cfme.middleware.provider.middleware_views module

	
class cfme.middleware.provider.middleware_views.AddDatasourceForm(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Entities on the Add Datasource widget

	
back_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
driver_class

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
driver_module_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
driver_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
ds_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
ds_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
ds_url

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
existing_driver

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
finish_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
jndi_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
next_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
password

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
sec_domain

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
tab_existing_driver

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
tab_specify_driver

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
username

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
xa_ds

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.AddDatasourceView(parent, logger=None, **kwargs)[source]

	Bases: cfme.middleware.provider.middleware_views.DatasourceView

The “Add” view – new datasources

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
form

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	This view is opened as a widget box after clicking on toolbar operation

	
class cfme.middleware.provider.middleware_views.AddDeploymentForm(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Entities on the Add Deployment widget

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
deploy_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
enable_deployment

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
file_select

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
force_deployment

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
runtime_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.AddDeploymentView(parent, logger=None, **kwargs)[source]

	Bases: cfme.middleware.provider.middleware_views.DeploymentView

The “Add” view – new deployments

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
form

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	This view is opened as a widget box after clicking on toolbar operation

	
class cfme.middleware.provider.middleware_views.AddJDBCDriverForm(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Entities on the Add JDBC Driver widget

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
deploy_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
driver_xa_datasource_class

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
file_select

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
jdbc_driver_class

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
jdbc_driver_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
jdbc_module_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
major_version

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
minor_version

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.AddJDBCDriverView(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The “Add” view – new JDBC Drivers

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
form

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	This view is opened as a widget box after clicking on toolbar operation

	
class cfme.middleware.provider.middleware_views.DatasourceAllToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The toolbar on the main page

	
back

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
operations

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
view_selector

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.DatasourceAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.middleware.provider.middleware_views.DatasourceView

The “all” view – a list of datasources

	
entities

	

	
flash

	

	
is_displayed

	

	
search

	

	
table

	

	
title

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.DatasourceDetailsAccordion(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The accordian on the details page

	
datasource

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.DatasourceDetailsEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Entities on the details page

	
breadcrumb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
smart_management

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.DatasourceDetailsToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The toolbar on the details page

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
monitoring

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.DatasourceDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.middleware.provider.middleware_views.DatasourceView

The details page of a datasource

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	Is this page being displayed?

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.DatasourceEntitiesView(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.BaseEntitiesView

Entities on the main list page

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
search

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.DatasourceView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Base view for header and nav checking, navigatable views should inherit this

	
in_datasource

	

	
class cfme.middleware.provider.middleware_views.DeploymentAllToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The toolbar on the main page

	
back

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
operations

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
view_selector

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.DeploymentAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.middleware.provider.middleware_views.DeploymentView

The “all” view – a list of deployments

	
entities

	

	
flash

	

	
is_displayed

	

	
search

	

	
table

	

	
title

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.DeploymentDetailsAccordion(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The accordian on the details page

	
deployment

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.DeploymentDetailsEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Entities on the details page

	
breadcrumb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
smart_management

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.DeploymentDetailsToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The toolbar on the details page

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
operations

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.DeploymentDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.middleware.provider.middleware_views.DeploymentView

The details page of a deployment

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	Is this page being displayed?

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.DeploymentEntitiesView(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.BaseEntitiesView

Entities on the main list page

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
search

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.DeploymentView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Base view for header and nav checking, navigatable views should inherit this

	
in_deployment

	

	
class cfme.middleware.provider.middleware_views.DomainAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.middleware.provider.middleware_views.DomainView

The “all” view – a list of domains

	
entities

	

	
flash

	

	
is_displayed

	

	
search

	

	
table

	

	
title

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.DomainDetailsAccordion(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The accordian on the details page

	
domain

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.DomainDetailsEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Entities on the details page

	
breadcrumb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
smart_management

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.DomainDetailsToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The toolbar on the details page

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
power

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.DomainDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.middleware.provider.middleware_views.DomainView

The details page of a domain

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	Is this page being displayed?

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.DomainEntitiesView(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.BaseEntitiesView

Entities on the main list page

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
search

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.DomainServerGroupAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.middleware.provider.middleware_views.DomainView

The “all” view – a list of domain’s server groups

	
entities

	

	
flash

	

	
is_displayed

	

	
search

	

	
table

	

	
title

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.DomainToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The toolbar on the main page

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
view_selector

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.DomainView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Base view for header and nav checking, navigatable views should inherit this

	
in_domain

	

	
class cfme.middleware.provider.middleware_views.MessagingAllToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The toolbar on the main page

	
back

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
view_selector

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.MessagingAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.middleware.provider.middleware_views.MessagingView

The “all” view – a list of deployments

	
entities

	

	
flash

	

	
is_displayed

	

	
search

	

	
table

	

	
title

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.MessagingDetailsAccordion(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The accordian on the details page

	
messaging

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.MessagingDetailsEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Entities on the details page

	
breadcrumb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
smart_management

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.MessagingDetailsToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The toolbar on the details page

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
monitoring

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.MessagingDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.middleware.provider.middleware_views.MessagingView

The details page of a deployment

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	Is this page being displayed?

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.MessagingEntitiesView(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.BaseEntitiesView

Entities on the main list page

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
search

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.MessagingView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Base view for header and nav checking, navigatable views should inherit this

	
in_messaging

	

	
class cfme.middleware.provider.middleware_views.MiddlewareProviderTimelinesView(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.TimelinesView, cfme.base.login.BaseLoggedInPage

	
is_displayed

	

	
class cfme.middleware.provider.middleware_views.PowerOperationForm(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Entities on the Power Operations widget

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
shutdown_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
stop_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
suspend_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
timeout

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.ProviderDatasourceAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.middleware.provider.middleware_views.DatasourceView

The “all” view – a list of provider’s datasources

	
entities

	

	
flash

	

	
is_displayed

	

	
search

	

	
table

	

	
title

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.ProviderDeploymentAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.middleware.provider.middleware_views.DeploymentView

The “all” view – a list of provider’s deployments

	
entities

	

	
flash

	

	
is_displayed

	

	
search

	

	
table

	

	
title

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.ProviderDomainAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.middleware.provider.middleware_views.DomainView

The “all” view – a list of provider’s domains

	
entities

	

	
flash

	

	
is_displayed

	

	
search

	

	
table

	

	
title

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.ProviderDomainsAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.middleware.provider.middleware_views.DomainView

The “all” view – a list of provider’s domains

	
entities

	

	
flash

	

	
is_displayed

	

	
search

	

	
table

	

	
title

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.ProviderMessagingAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.middleware.provider.middleware_views.MessagingView

The “all” view – a list of provider’s messagings

	
entities

	

	
flash

	

	
is_displayed

	

	
search

	

	
table

	

	
title

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.ProviderServerAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.middleware.provider.middleware_views.ServerView

The “all” view – a list of provider’s servers

	
entities

	

	
flash

	

	
is_displayed

	

	
search

	

	
table

	

	
title

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.ServerAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.middleware.provider.middleware_views.ServerView

The “all” view – a list of servers

	
entities

	

	
flash

	

	
is_displayed

	

	
search

	

	
table

	

	
title

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.ServerDatasourceAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.middleware.provider.middleware_views.DatasourceView

The “all” view – a list of server’s datasources

	
entities

	

	
flash

	

	
is_displayed

	

	
search

	

	
table

	

	
title

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.ServerDeploymentAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.middleware.provider.middleware_views.DeploymentView

The “all” view – a list of server’s deployments

	
entities

	

	
flash

	

	
is_displayed

	

	
search

	

	
table

	

	
title

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.ServerDetailsAccordion(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The accordian on the details page

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
server

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.ServerDetailsEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Entities on the details page

	
breadcrumb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
smart_management

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.ServerDetailsToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The toolbar on the details page

	
datasources

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
deployments

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
drivers

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
monitoring

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
power

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.ServerDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.middleware.provider.middleware_views.ServerView

The details page of a datasource

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	Is this page being displayed?

	
power_operation_form

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.ServerEntitiesView(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.BaseEntitiesView

Entities on the main list page

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
search

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.ServerGroupDetailsAccordion(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The accordian on the details page

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
server_group

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.ServerGroupDetailsEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Entities on the details page

	
breadcrumb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
smart_management

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.ServerGroupDetailsToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The toolbar on the details page

	
deployments

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
power

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.ServerGroupDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.middleware.provider.middleware_views.ServerGroupView

The details page of a server group

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	Is this page being displayed?

	
power_operation_form

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.ServerGroupEntitiesView(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.BaseEntitiesView

Entities on the main list page

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
search

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.ServerGroupServerAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.middleware.provider.middleware_views.ServerView

The “all” view – a list of server group servers

	
entities

	

	
flash

	

	
is_displayed

	

	
search

	

	
table

	

	
title

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.ServerGroupToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The toolbar on the main page

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
view_selector

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.ServerGroupView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Base view for header and nav checking, navigatable views should inherit this

	
class cfme.middleware.provider.middleware_views.ServerMessagingAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.middleware.provider.middleware_views.MessagingView

The “all” view – a list of server’s messagings

	
entities

	

	
flash

	

	
is_displayed

	

	
search

	

	
table

	

	
title

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.ServerToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

The toolbar on the main page

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
view_selector

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.middleware.provider.middleware_views.ServerView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Base view for header and nav checking, navigatable views should inherit this

	
in_server

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.middleware package

cfme.middleware.datasource module

	
class cfme.middleware.datasource.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DatasourceAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
resetter()[source]

	Reset view and selection

	
step()[source]

	

	
class cfme.middleware.datasource.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DatasourceDetailsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.middleware.datasource.MiddlewareDatasource(name, server, provider=None, appliance=None, **kwargs)[source]

	Bases: cfme.middleware.provider.MiddlewareBase, cfme.common.Taggable, cfme.utils.appliance.Navigatable, cfme.common.UtilizationMixin

MiddlewareDatasource class provides details on datasource page.
Class methods available to get existing datasources list

	Parameters:	
	name – Name of the datasource

	provider – Provider object (HawkularProvider)

	nativeid – Native id (internal id) of datasource

	server – Server object of the datasource (MiddlewareServer)

	properties – Datasource driver name, connection URL and JNDI name

	db_id – database row id of datasource

Usage:

mydatasource = MiddlewareDatasource(name='FooDS',
 server=ser_instance,
 provider=haw_provider,
 properties='ds-properties')
datasources = MiddlewareDatasource.datasources() [or]
datasources = MiddlewareDeployment.datasources(provider=haw_provider) [or]
datasources = MiddlewareDeployment.datasources(provider=haw_provider,server=ser_instance)

	
datasource(*args, **kwargs)

	

	
datasource_in_db = None

	

	
datasource_in_mgmt = None

	

	
datasource_in_rest = None

	

	
classmethod datasources(provider=None, server=None)[source]

	

	
classmethod datasources_in_db(server=None, provider=None, strict=True)[source]

	

	
classmethod datasources_in_mgmt(provider=None, server=None)[source]

	

	
delete(cancel=False)[source]

	Deletes a datasource from CFME

	Parameters:	cancel – Whether to cancel the deletion, defaults to False

	
classmethod download(extension, provider=None, server=None)[source]

	

	
load_details(refresh=False)[source]

	

	
property_tuples = [('name', 'Name'), ('nativeid', 'Nativeid'), ('driver_name', 'Driver Name'), ('jndi_name', 'JNDI Name'), ('connection_url', 'Connection URL'), ('enabled', 'Enabled')]

	

	
classmethod remove_from_list(datasource)[source]

	

	
taggable_type = 'MiddlewareDatasource'

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.middleware package

cfme.middleware.deployment module

	
class cfme.middleware.deployment.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DeploymentAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
resetter()[source]

	

	
step()[source]

	

	
class cfme.middleware.deployment.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DeploymentDetailsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.middleware.deployment.MiddlewareDeployment(name, server, provider=None, appliance=None, **kwargs)[source]

	Bases: cfme.middleware.provider.MiddlewareBase, cfme.common.Taggable, cfme.utils.appliance.Navigatable, cfme.middleware.provider.Deployable

MiddlewareDeployment class provides details on deployment page.
Class methods available to get existing deployments list

	Parameters:	
	name – Name of the deployment

	provider – Provider object (HawkularProvider)

	server – Server object of the deployment (MiddlewareServer)

	nativeid – Native id (internal id) of deployment

	db_id – database row id of deployment

Usage:

mydeployment = MiddlewareDeployment(name='Foo.war',
 server=ser_instance,
 provider=haw_provider)

deployments = MiddlewareDeployment.deployments() [or]
deployments = MiddlewareDeployment.deployments(provider=haw_provider) [or]
deployments = MiddlewareDeployment.deployments(provider=haw_provider,server=ser_instance)

	
deployment(*args, **kwargs)

	

	
deployment_in_db = None

	

	
deployment_in_mgmt = None

	

	
deployment_in_rest = None

	

	
classmethod deployments(provider=None, server=None)[source]

	

	
classmethod deployments_in_db(server=None, provider=None, strict=True)[source]

	

	
classmethod deployments_in_mgmt(provider=None, server=None)[source]

	

	
classmethod download(extension, provider=None, server=None)[source]

	

	
load_details(refresh=False)[source]

	

	
property_tuples = [('name', 'Name'), ('status', 'Status')]

	

	
taggable_type = 'MiddlewareDeployment'

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.middleware package

cfme.middleware.domain module

	
class cfme.middleware.domain.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DomainAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
resetter()[source]

	

	
step()[source]

	

	
class cfme.middleware.domain.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DomainDetailsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.middleware.domain.DomainServerGroups(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DomainServerGroupAllView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.middleware.domain.MiddlewareDomain(name, provider=None, appliance=None, **kwargs)[source]

	Bases: cfme.middleware.provider.MiddlewareBase, cfme.utils.appliance.Navigatable, cfme.common.Taggable

MiddlewareDomain class provides actions and details on Domain page.
Class method available to get existing domains list

	Parameters:	
	name – name of the domain

	provider – Provider object (HawkularProvider)

	product – Product type of the domain

	feed – feed of the domain

	db_id – database row id of domain

Usage:

mydomain = MiddlewareDomain(name='master', provider=haw_provider)

mydomains = MiddlewareDomain.domains()

	
domain(*args, **kwargs)

	

	
domain_in_db = None

	

	
domain_in_mgmt = None

	

	
domain_in_rest = None

	

	
classmethod domains(provider=None, strict=True)[source]

	

	
classmethod domains_in_db(name=None, feed=None, provider=None, strict=True)[source]

	

	
classmethod domains_in_mgmt(provider=None)[source]

	

	
classmethod download(extension, provider=None)[source]

	

	
classmethod headers()[source]

	

	
is_running(*args, **kwargs)

	

	
is_running_in_db = None

	

	
is_running_in_mgmt = None

	

	
load_details(refresh=False)[source]

	

	
property_tuples = [('name', 'Name')]

	

	
shutdown_domain()[source]

	

	
start_domain()[source]

	

	
taggable_type = 'MiddlewareDomain'

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.middleware package

cfme.middleware.messaging module

	
class cfme.middleware.messaging.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ProviderMessagingAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
resetter()[source]

	

	
step()[source]

	

	
class cfme.middleware.messaging.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of MessagingDetailsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.middleware.messaging.MiddlewareMessaging(name, server, provider=None, appliance=None, **kwargs)[source]

	Bases: cfme.middleware.provider.MiddlewareBase, cfme.utils.appliance.Navigatable, cfme.common.Taggable, cfme.common.UtilizationMixin

MiddlewareMessaging class provides details on messaging page.
Class methods available to get existing messagings list

	Parameters:	
	name – Name of the messaging

	provider – Provider object (HawkularProvider)

	nativeid – Native id (internal id) of messaging

	server – Server object of the messaging (MiddlewareServer)

	properties – Messaging providers

	db_id – database row id of messaging

Usage:

mymessaging = MiddlewareMessaging(name='JMS Queue [hawkular/metrics/counters/new]',
 server=ser_instance,
 provider=haw_provider,
 properties='ds-properties')

messagings = MiddlewareMessaging.messagings() [or]
messagings = MiddlewareMessaging.messagings(provider=haw_provider) [or]
messagings = MiddlewareMessaging.messagings(provider=haw_provider,server=ser_instance)

	
classmethod download(extension, provider=None, server=None)[source]

	

	
classmethod headers()[source]

	

	
load_details(refresh=False)[source]

	

	
messaging(*args, **kwargs)

	

	
messaging_in_db = None

	

	
messaging_in_mgmt = None

	

	
messaging_in_rest = None

	

	
classmethod messagings(provider=None, server=None)[source]

	

	
classmethod messagings_in_db(server=None, provider=None, strict=True)[source]

	

	
classmethod messagings_in_mgmt(provider=None, server=None)[source]

	

	
property_tuples = [('name', 'Name'), ('nativeid', 'Nativeid'), ('messaging_type', 'Messaging type')]

	

	
taggable_type = 'MiddlewareMessaging'

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.middleware package

cfme.middleware.server module

	
class cfme.middleware.server.AddDatasource(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AddDatasourceView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.middleware.server.AddDeployment(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AddDeploymentView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.middleware.server.AddJDBCDriver(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AddJDBCDriverView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.middleware.server.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.middleware.server.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerDetailsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.middleware.server.MiddlewareServer(name, provider=None, appliance=None, **kwargs)[source]

	Bases: cfme.middleware.provider.MiddlewareBase, cfme.common.Taggable, cfme.middleware.provider.Container, cfme.utils.appliance.Navigatable, cfme.common.UtilizationMixin

MiddlewareServer class provides actions and details on Server page.
Class method available to get existing servers list

	Parameters:	
	name – name of the server

	hostname – Host name of the server

	provider – Provider object (HawkularProvider)

	product – Product type of the server

	feed – feed of the server

	db_id – database row id of server

Usage:

myserver = MiddlewareServer(name='Foo.war', provider=haw_provider)
myserver.reload_server()

myservers = MiddlewareServer.servers()

	
deployment_message = 'Deployment "{}" has been initiated on this server.'

	

	
classmethod download(extension, provider=None, server_group=None)[source]

	

	
classmethod headers()[source]

	

	
is_reload_required(*args, **kwargs)

	

	
is_running(*args, **kwargs)

	

	
is_starting(*args, **kwargs)

	

	
is_stopped(*args, **kwargs)

	

	
is_stopping(*args, **kwargs)

	

	
is_suspended(*args, **kwargs)

	

	
kill_server()[source]

	

	
load_details(refresh=False)[source]

	

	
property_tuples = [('name', 'Name'), ('feed', 'Feed'), ('bound_address', 'Bind Address')]

	

	
reload_server()[source]

	

	
restart_server()[source]

	

	
resume_server()[source]

	

	
server(*args, **kwargs)

	

	
server_group(*args, **kwargs)

	

	
server_in_db = None

	

	
server_in_mgmt = None

	

	
server_in_rest = None

	

	
classmethod servers(provider=None, server_group=None, strict=True)[source]

	

	
classmethod servers_in_db(name=None, feed=None, provider=None, product=None, server_group=None, strict=True)[source]

	

	
classmethod servers_in_mgmt(provider=None, server_group=None)[source]

	

	
shutdown_server(timeout=10, cancel=False)[source]

	

	
start_server()[source]

	

	
stop_server()[source]

	

	
suspend_server(timeout=10, cancel=False)[source]

	

	
taggable_type = 'MiddlewareServer'

	

	
class cfme.middleware.server.ServerDatasources(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerDatasourceAllView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.middleware.server.ServerDeployments(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerDeploymentAllView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.middleware.server.ServerGroup(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerGroupDetailsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.middleware.server.ServerMessagings(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerMessagingAllView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.middleware package

cfme.middleware.server_group module

	
class cfme.middleware.server_group.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerGroupDetailsView

	
prerequisite()[source]

	

	
step()[source]

	

	
class cfme.middleware.server_group.MiddlewareServerGroup(name, domain, appliance=None, **kwargs)[source]

	Bases: cfme.middleware.provider.MiddlewareBase, cfme.common.Taggable, cfme.middleware.provider.Container, cfme.utils.appliance.Navigatable

MiddlewareServerGroup class provides actions and details on Server Group page.
Class method available to get existing server groups list

	Parameters:	
	name – name of the server group

	domain – Domain (MiddlewareDomain) object to which belongs server group

	profile – Profile of the server group

	feed – feed of the server group

	db_id – database row id of server group

Usage:

myservergroup = MiddlewareServerGroup(name='main-server-group', domain=middleware_domain)

myservergroups = MiddlewareServerGroup.server_groups()

	
deployment_message = 'Deployment "{}" has been initiated on this group.'

	

	
classmethod download(extension, domain)[source]

	

	
classmethod headers(domain)[source]

	

	
load_details(refresh=False)[source]

	

	
property_tuples = [('name', 'Name'), ('profile', 'Profile')]

	

	
reload_server_group()[source]

	

	
restart_server_group()[source]

	

	
resume_server_group()[source]

	

	
server_group(*args, **kwargs)

	

	
server_group_in_db = None

	

	
server_group_in_mgmt = None

	

	
server_group_in_rest = None

	

	
classmethod server_groups(domain, strict=True)[source]

	

	
classmethod server_groups_in_db(domain, name=None, strict=True)[source]

	

	
classmethod server_groups_in_mgmt(domain)[source]

	

	
start_server_group()[source]

	

	
stop_server_group(timeout=10, cancel=False)[source]

	

	
suspend_server_group(timeout=10, cancel=False)[source]

	

	
taggable_type = 'MiddlewareServerGroup'

	

	
class cfme.middleware.server_group.ServerGroupServers(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerGroupServerAllView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.middleware package

cfme.middleware.topology module

	
class cfme.middleware.topology.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.middleware.topology.MiddlewareTopology[source]

	Bases: cfme.common.TopologyMixin

	
classmethod load_topology_page()[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

cfme.networks package

Subpackages

	cfme.networks.provider package
	Module contents

Submodules

	cfme.networks.balancer module

	cfme.networks.cloud_network module

	cfme.networks.network_port module

	cfme.networks.network_router module

	cfme.networks.security_group module

	cfme.networks.subnet module

	cfme.networks.views module

Module contents

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.networks package

cfme.networks.provider package

Module contents

	
class cfme.networks.provider.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NetworkProviderView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.networks.provider.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NetworkProviderDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.networks.provider.EditTags(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TagPageView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.networks.provider.NetworkProvider(collection, name, provider=None)[source]

	Bases: cfme.common.provider.BaseProvider, cfme.common.WidgetasticTaggable, cfme.utils.appliance.BaseEntity

Class representing network provider in sdn

	Note: Network provider can be added to cfme database

	only automaticaly with cloud provider

	
STATS_TO_MATCH = []

	

	
balancers

	

	
category = 'networks'

	

	
db_types = ['NetworksManager']

	

	
delete(cancel=True)[source]

	Deletes a network provider from CFME

	
detail_page_suffix = 'provider_detail'

	

	
edit_page_suffix = ''

	

	
exists

	

	
in_version = ('5.8', Version('master'))

	

	
networks

	

	
page_name = 'networks'

	

	
ports

	

	
property_tuples = []

	

	
provider_types = {}

	

	
quad_name = None

	

	
refresh_provider_relationships(cancel=True)[source]

	Refresh relationships of network provider

	
refresh_text = 'Refresh items and relationships'

	

	
routers

	

	
security_groups

	

	
string_name = 'Networks'

	

	
subnets

	

	
valid_credentials_state

	Checks whether credentials are valid

	
class cfme.networks.provider.NetworkProviderCollection(appliance=None)[source]

	Bases: cfme.utils.appliance.BaseCollection

Collection object for NetworkProvider object
Note: Network providers object are not implemented in mgmt

	
all()[source]

	

	
instantiate(name)[source]

	

	
class cfme.networks.provider.OpenCloudNetworks(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of OneProviderCloudNetworkView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.networks.provider.OpenCloudSubnets(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of OneProviderSubnetView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.networks.provider.OpenFloatingIPs(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.networks.provider.OpenNetworkBalancers(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of OneProviderBalancerView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.networks.provider.OpenNetworkPorts(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of OneProviderNetworkPortView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.networks.provider.OpenNetworkRouters(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of OneProviderNetworkRouterView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.networks.provider.OpenSecurityGroups(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of OneProviderSecurityGroupView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.networks.provider.OpenTopologyFromDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.networks package

cfme.networks.balancer module

	
class cfme.networks.balancer.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of BalancerView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.networks.balancer.Balancer(collection, name, provider=None)[source]

	Bases: cfme.common.WidgetasticTaggable, cfme.utils.appliance.BaseEntity

Class representing balancers in sdn

	
category = 'networks'

	

	
db_types = ['NetworkBalancer']

	

	
detail_page_suffix = 'network_balancer_detail'

	

	
health_checks

	Returns health check state

	
in_version = ('5.8', Version('master'))

	

	
listeners

	Returns listeners of balancer

	
network_provider

	Returns network provider

	
page_name = 'network_balancer'

	

	
quad_name = None

	

	
refresh_text = 'Refresh items and relationships'

	

	
string_name = 'NetworkBalancer'

	

	
class cfme.networks.balancer.BalancerCollection(appliance, parent_provider=None)[source]

	Bases: cfme.utils.appliance.BaseCollection

Collection object for Balancer object

	
all()[source]

	

	
instantiate(name)[source]

	

	
class cfme.networks.balancer.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of BalancerDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.networks.balancer.EditTags(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TagPageView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.networks package

cfme.networks.cloud_network module

	
class cfme.networks.cloud_network.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of CloudNetworkView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.networks.cloud_network.CloudNetwork(collection, name, provider=None)[source]

	Bases: cfme.common.WidgetasticTaggable, cfme.utils.appliance.BaseEntity

Class representing cloud networks in cfme database

	
category = 'networks'

	

	
db_types = ['CloudNetwork']

	

	
in_version = ('5.8', Version('master'))

	

	
network_provider

	Returns network provider

	
network_type

	Return type of network

	
page_name = 'cloud_network'

	

	
parent_provider

	Return object of parent cloud provider

	
quad_name = None

	

	
string_name = 'CloudNetwork'

	

	
class cfme.networks.cloud_network.CloudNetworkCollection(appliance, parent_provider=None)[source]

	Bases: cfme.utils.appliance.BaseCollection

Collection object for Cloud Network object

	
all()[source]

	

	
instantiate(name)[source]

	

	
class cfme.networks.cloud_network.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of CloudNetworkDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.networks.cloud_network.EditTags(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TagPageView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.networks package

cfme.networks.network_port module

	
class cfme.networks.network_port.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NetworkPortView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.networks.network_port.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NetworkPortDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.networks.network_port.EditTags(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TagPageView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.networks.network_port.NetworkPort(collection, name, provider=None)[source]

	Bases: cfme.common.WidgetasticTaggable, cfme.utils.appliance.BaseEntity

Class representing network ports in sdn

	
category = 'networks'

	

	
db_types = ['CloudNetworkPort']

	

	
fixed_ips

	Returns fixed ips (string) of the port

	
floating_ips

	Returns floating ips (string) of the port

	
in_version = ('5.8', Version('master'))

	

	
mac_address

	Returns mac adress (string) of the port

	
network_provider

	Returns network provider

	
network_type

	

	
page_name = 'network_port'

	

	
quad_name = None

	

	
string_name = 'NetworkPort'

	

	
class cfme.networks.network_port.NetworkPortCollection(appliance, parent_provider=None)[source]

	Bases: cfme.utils.appliance.BaseCollection

Collection object for NetworkPort object
Note: Network providers object are not implemented in mgmt

	
all()[source]

	

	
instantiate(name)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.networks package

cfme.networks.network_router module

	
class cfme.networks.network_router.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NetworkRouterView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.networks.network_router.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NetworkRouterDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.networks.network_router.EditTags(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TagPageView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.networks.network_router.NetworkRouter(collection, name, provider=None)[source]

	Bases: cfme.common.WidgetasticTaggable, cfme.utils.appliance.BaseEntity

Class representing network ports in sdn

	
category = 'networks'

	

	
db_types = ['NetworkRouter']

	

	
in_version = ('5.8', Version('master'))

	

	
network_provider

	Returns network provider

	
page_name = 'NetworkRouter'

	

	
quad_name = None

	

	
string_name = 'NetworkRouter'

	

	
class cfme.networks.network_router.NetworkRouterCollection(appliance, parent_provider=None)[source]

	Bases: cfme.utils.appliance.BaseCollection

Collection object for NetworkRouter object
Note: Network providers object are not implemented in mgmt

	
all()[source]

	

	
instantiate(name)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.networks package

cfme.networks.security_group module

	
class cfme.networks.security_group.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of SecurityGroupView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.networks.security_group.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of SecurityGroupDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.networks.security_group.EditTags(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TagPageView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.networks.security_group.SecurityGroup(collection, name, provider=None)[source]

	Bases: cfme.common.WidgetasticTaggable, cfme.utils.appliance.BaseEntity

Class representing security group in sdn

	
category = 'networks'

	

	
db_types = ['SecurityGroup']

	

	
in_version = ('5.8', Version('master'))

	

	
network_provider

	Returns network provider

	
page_name = 'security_group'

	

	
quad_name = None

	

	
string_name = 'SecurityGroup'

	

	
class cfme.networks.security_group.SecurityGroupCollection(appliance, parent_provider=None)[source]

	Bases: cfme.utils.appliance.BaseCollection

Collection object for SecurityGroup object
Note: Network providers object are not implemented in mgmt

	
all()[source]

	

	
instantiate(name)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.networks package

cfme.networks.subnet module

	
class cfme.networks.subnet.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of SubnetView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.networks.subnet.EditTags(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TagPageView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.networks.subnet.OpenCloudNetworks(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of SubnetDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.networks.subnet.Subnet(collection, name, provider=None)[source]

	Bases: cfme.common.WidgetasticTaggable, cfme.utils.appliance.BaseEntity

Class representing subnets in sdn

	
category = 'networks'

	

	
db_types = ['NetworkSubnet']

	

	
in_version = ('5.8', Version('master'))

	

	
network_provider

	Returns network provider

	
page_name = 'network_subnet'

	

	
parent_provider

	Return object of parent cloud provider

	
quad_name = None

	

	
string_name = 'NetworkSubnet'

	

	
zone

	

	
class cfme.networks.subnet.SubnetCollection(appliance, parent_provider=None)[source]

	Bases: cfme.utils.appliance.BaseCollection

Collection object for Subnet object
Note: Network providers object are not implemented in mgmt

	
all()[source]

	

	
instantiate(name)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.networks package

cfme.networks.views module

	
class cfme.networks.views.BalancerDetailsSideBar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Represents left side bar of balancer details

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.BalancerDetailsToolBar(parent, logger=None, **kwargs)[source]

	Bases: cfme.networks.views.BalancerToolBar

Represents details toolbar of balancer summary

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.BalancerDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Represents detail view of network provider

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.BalancerEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.BaseEntitiesView

Represents central view where all QuadIcons, etc are displayed

	
class cfme.networks.views.BalancerSideBar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Represents left side bar, usually contains navigation, filters, etc

	
class cfme.networks.views.BalancerToolBar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Represents balancers toolbar and its controls

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
view_selector

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.BalancerView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Represents whole All NetworkProviders page

	
entities

	

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.CloudNetworkDetailsSideBar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Represents left side bar of network providers details

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.CloudNetworkDetailsToolBar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Represents provider details toolbar

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.CloudNetworkDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Represents detail view of cloud network

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.CloudNetworkEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.BaseEntitiesView

Represents central view where all QuadIcons, etc are displayed

	
class cfme.networks.views.CloudNetworkSideBar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Represents left side bar, usually contains navigation, filters, etc

	
class cfme.networks.views.CloudNetworkToolBar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Represents cloud networks toolbar and its controls

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
view_selector

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.CloudNetworkView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Represents whole All Cloud network page

	
entities

	

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.NetworkPortDetailsSideBar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Represents left side bar of network providers details

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.NetworkPortDetailsToolBar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Represents toolbar of summary of port

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.NetworkPortDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Represents detail view of network provider

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.NetworkPortEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.BaseEntitiesView

Represents central view where all QuadIcons, etc are displayed

	
class cfme.networks.views.NetworkPortSideBar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Represents left side bar, usually contains navigation, filters, etc

	
class cfme.networks.views.NetworkPortToolBar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Represents provider toolbar and its controls

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
view_selector

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.NetworkPortView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Represents whole All NetworkPorts page

	
entities

	

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.NetworkProviderDetailsSideBar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Represents left side bar of network providers details

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.NetworkProviderDetailsToolBar(parent, logger=None, **kwargs)[source]

	Bases: cfme.networks.views.NetworkProviderToolBar

Represents provider details toolbar

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
monitoring

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.NetworkProviderDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Represents detail view of network provider

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.NetworkProviderEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.BaseEntitiesView

Represents central view where all QuadIcons, etc are displayed

	
class cfme.networks.views.NetworkProviderSideBar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Represents left side bar, usually contains navigation, filters, etc

	
class cfme.networks.views.NetworkProviderToolBar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Represents provider toolbar and its controls

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
view_selector

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.NetworkProviderView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Represents whole All NetworkProviders page

	
entities

	

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.NetworkRouterDetailsSideBar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Represents left side bar of network providers details

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.NetworkRouterDetailsToolBar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Represents provider toolbar and its controls

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.NetworkRouterDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Represents detail view of network provider

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.NetworkRouterEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.BaseEntitiesView

Represents central view where all QuadIcons, etc are displayed

	
class cfme.networks.views.NetworkRouterSideBar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Represents left side bar, usually contains navigation, filters, etc

	
class cfme.networks.views.NetworkRouterToolBar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Represents provider toolbar and its controls

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
view_selector

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.NetworkRouterView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Represents whole All NetworkRouters page

	
entities

	

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.OneProviderBalancerView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Represents whole All Subnets page

	
entities

	

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.OneProviderCloudNetworkView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Represents whole All Subnets page

	
entities

	

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.OneProviderComponentsToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
back

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
view_selector

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.OneProviderNetworkPortView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Represents whole All Subnets page

	
entities

	

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.OneProviderNetworkRouterView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Represents whole All Subnets page

	
entities

	

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.OneProviderSecurityGroupView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Represents whole All Subnets page

	
entities

	

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.OneProviderSubnetView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Represents whole All Subnets page

	
entities

	

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.SecurityGroupDetailsSideBar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Represents left side bar of network providers details

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.SecurityGroupDetailsToolBar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Represents provider details toolbar

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
view_selector

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.SecurityGroupDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Represents detail view of network provider

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.SecurityGroupEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.BaseEntitiesView

Represents central view where all QuadIcons, etc are displayed

	
class cfme.networks.views.SecurityGroupSideBar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Represents left side bar, usually contains navigation, filters, etc

	
class cfme.networks.views.SecurityGroupToolBar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Represents provider toolbar and its controls

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
view_selector

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.SecurityGroupView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Represents whole All SecurityGroups page

	
entities

	

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.SubnetDetailsSideBar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Represents left side bar of network providers details

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.SubnetDetailsToolBar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Represents provider details toolbar

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.SubnetDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Represents detail view of network provider

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.SubnetEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.BaseEntitiesView

Represents central view where all QuadIcons, etc are displayed

	
class cfme.networks.views.SubnetSideBar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Represents left side bar, usually contains navigation, filters, etc

	
class cfme.networks.views.SubnetToolBar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Represents provider toolbar and its controls

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
view_selector

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.networks.views.SubnetView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Represents whole All Subnets page

	
entities

	

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

cfme.optimize package

Submodules

	cfme.optimize.bottlenecks module

	cfme.optimize.utilization module

Module contents

	
class cfme.optimize.Bottlenecks(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of BottlenecksView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.optimize.BottlenecksView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

	
bottlenecks

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
in_explorer()[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.optimize package

cfme.optimize.bottlenecks module

	
class cfme.optimize.bottlenecks.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of BottlenecksTabsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
resetter()[source]

	Set values to default

	
class cfme.optimize.bottlenecks.Bottlenecks(appliance=None)[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable

	
class cfme.optimize.bottlenecks.BottlenecksTabsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.optimize.BottlenecksView

	
is_displayed

	

	
report

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
summary

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.optimize package

cfme.optimize.utilization module

	
class cfme.optimize.utilization.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.optimize.utilization.Utilization(appliance=None)[source]

	Bases: cfme.utils.appliance.Navigatable

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

cfme.rest package

Submodules

	cfme.rest.gen_data module

Module contents

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.rest package

cfme.rest.gen_data module

	
cfme.rest.gen_data.a_provider(request)[source]

	

	
cfme.rest.gen_data.arbitration_profiles(request, rest_api, a_provider, num=2)[source]

	

	
cfme.rest.gen_data.arbitration_rules(request, rest_api, num=2)[source]

	

	
cfme.rest.gen_data.arbitration_settings(request, rest_api, num=2)[source]

	

	
cfme.rest.gen_data.automation_requests_data(vm, requests_collection=False, approve=True, num=4)[source]

	

	
cfme.rest.gen_data.blueprints(request, rest_api, num=2)[source]

	

	
cfme.rest.gen_data.categories(request, rest_api, num=1)[source]

	

	
cfme.rest.gen_data.conditions(request, rest_api, num=2)[source]

	

	
cfme.rest.gen_data.copy_role(rest_api, orig_name, new_name=None)[source]

	

	
cfme.rest.gen_data.dialog(appliance)[source]

	

	
cfme.rest.gen_data.groups(request, rest_api, role, tenant, num=1)[source]

	

	
cfme.rest.gen_data.mark_vm_as_template(rest_api, provider, vm_name)[source]

	Function marks vm as template via mgmt and returns template Entity
.. rubric:: Usage:

mark_vm_as_template(rest_api, provider, vm_name)

	
cfme.rest.gen_data.orchestration_templates(request, rest_api, num=2)[source]

	

	
cfme.rest.gen_data.policies(request, rest_api, num=2)[source]

	

	
cfme.rest.gen_data.rates(request, rest_api, num=3)[source]

	

	
cfme.rest.gen_data.roles(request, rest_api, num=1)[source]

	

	
cfme.rest.gen_data.service_catalog_obj(request, rest_api)[source]

	Return service catalog object.

	
cfme.rest.gen_data.service_catalogs(request, rest_api, num=5)[source]

	Create service catalogs using REST API.

	
cfme.rest.gen_data.service_data(request, appliance, a_provider, service_dialog=None, service_catalog=None)[source]

	

	
cfme.rest.gen_data.service_templates(request, appliance, service_dialog=None, service_catalog=None, num=4)[source]

	

	
cfme.rest.gen_data.service_templates_rest(request, appliance, service_dialog=None, service_catalog=None, num=4)[source]

	

	
cfme.rest.gen_data.service_templates_ui(request, appliance, service_dialog=None, service_catalog=None, a_provider=None, num=4)[source]

	

	
cfme.rest.gen_data.services(request, appliance, a_provider, service_dialog=None, service_catalog=None)[source]

	The attempt to add the service entities via web

	
cfme.rest.gen_data.tags(request, rest_api, categories)[source]

	

	
cfme.rest.gen_data.tenants(request, rest_api, num=1)[source]

	

	
cfme.rest.gen_data.users(request, rest_api, num=1)[source]

	

	
cfme.rest.gen_data.vm(request, a_provider, rest_api)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

cfme.scripting package

Subpackages

	cfme.scripting.tests package
	Submodules
	cfme.scripting.tests.test_quickstart module

	Module contents

Submodules

	cfme.scripting.appliance module

	cfme.scripting.conf module

	cfme.scripting.disable_bytecode module

	cfme.scripting.ipyshell module

	cfme.scripting.miq module

	cfme.scripting.quickstart module

	cfme.scripting.runtest module

	cfme.scripting.setup_ansible module

	cfme.scripting.setup_env module

	cfme.scripting.sprout module

Module contents

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.scripting package

cfme.scripting.tests package

Submodules

	cfme.scripting.tests.test_quickstart module

Module contents

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.scripting package

 	cfme.scripting.tests package

cfme.scripting.tests.test_quickstart module

	
cfme.scripting.tests.test_quickstart.check_docker()[source]

	

	
cfme.scripting.tests.test_quickstart.root_volume()[source]

	

	
cfme.scripting.tests.test_quickstart.test_quickstart_run(image, python, root_volume, yamls_volume)[source]

	

	
cfme.scripting.tests.test_quickstart.yamls_volume()[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.scripting package

cfme.scripting.appliance module

Script to encrypt config files.

Usage:

scripts/encrypt_conf.py confname1 confname2 ... confnameN
scripts/encrypt_conf.py credentials

	
cfme.scripting.appliance.fn(method, *args, **kwargs)[source]

	Helper to access the right properties

	
cfme.scripting.appliance.get_appliance(appliance_ip)[source]

	Checks an appliance is not None and if so, loads the appropriate things

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.scripting package

cfme.scripting.conf module

Script to encrypt config files.

Usage:

scripts/encrypt_conf.py confname1 confname2 ... confnameN
scripts/encrypt_conf.py credentials

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.scripting package

cfme.scripting.disable_bytecode module

	
cfme.scripting.disable_bytecode.ensure_file_contains(target, content)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.scripting package

cfme.scripting.ipyshell module

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.scripting package

cfme.scripting.miq module

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.scripting package

cfme.scripting.quickstart module

	
cfme.scripting.quickstart.call_or_exit(command, shell=False, **kw)[source]

	

	
cfme.scripting.quickstart.command_text(command, shell)[source]

	

	
cfme.scripting.quickstart.disable_bytecode(venv_path)[source]

	

	
cfme.scripting.quickstart.ensure_pycurl_works(venv_path)[source]

	

	
cfme.scripting.quickstart.hash_file(path)[source]

	

	
cfme.scripting.quickstart.install_requirements(venv_path, quiet=False)[source]

	

	
cfme.scripting.quickstart.install_system_packages()[source]

	

	
cfme.scripting.quickstart.link_config_files(src, dest)[source]

	

	
cfme.scripting.quickstart.main(args)[source]

	

	
cfme.scripting.quickstart.pip_json_list(venv)[source]

	

	
cfme.scripting.quickstart.pip_version_list_to_map(version_list)[source]

	

	
cfme.scripting.quickstart.print_packages_diff(old, new)[source]

	

	
cfme.scripting.quickstart.print_version_diff(old, new)[source]

	

	
cfme.scripting.quickstart.self_install(venv_path)[source]

	

	
cfme.scripting.quickstart.setup_virtualenv(target, use_site)[source]

	

	
cfme.scripting.quickstart.venv_call(venv_path, command, *args, **kwargs)[source]

	

	
cfme.scripting.quickstart.version_changes(old, new)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.scripting package

cfme.scripting.runtest module

	
cfme.scripting.runtest.main()[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.scripting package

cfme.scripting.setup_ansible module

	
cfme.scripting.setup_ansible.get_ansible_password(app)[source]

	

	
cfme.scripting.setup_ansible.install_packages(app)[source]

	

	
cfme.scripting.setup_ansible.open_port(app)[source]

	

	
cfme.scripting.setup_ansible.run_command(app, command)[source]

	

	
cfme.scripting.setup_ansible.setup_ansible(app, license_path)[source]

	

	
cfme.scripting.setup_ansible.setup_repos(app)[source]

	

	
cfme.scripting.setup_ansible.stop_embedded_ansible(app)[source]

	

	
cfme.scripting.setup_ansible.upload_license(app, license_path)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.scripting package

cfme.scripting.setup_env module

	
class cfme.scripting.setup_env.TimedCommand(command, timeout)

	Bases: tuple

	
__getnewargs__()

	Return self as a plain tuple. Used by copy and pickle.

	
__getstate__()

	Exclude the OrderedDict from pickling

	
__repr__()

	Return a nicely formatted representation string

	
command

	Alias for field number 0

	
timeout

	Alias for field number 1

	
cfme.scripting.setup_env.provision_appliances(count, cfme_version, provider, lease_time)[source]

	

	
cfme.scripting.setup_env.tot_time(string)[source]

	Takes the lease string and converts it to minutes to pass to sprout

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.scripting package

cfme.scripting.sprout module

Script to checkout a sprout appliance

Usage:

sprout.py checkout

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

cfme.services package

Subpackages

	cfme.services.catalogs package
	Submodules
	cfme.services.catalogs.ansible_catalog_item module

	cfme.services.catalogs.catalog module

	cfme.services.catalogs.catalog_item module

	cfme.services.catalogs.orchestration_template module

	cfme.services.catalogs.service_catalogs module

	Module contents

	cfme.services.dashboard package
	Submodules
	cfme.services.dashboard.ssui module

	Module contents

	cfme.services.myservice package
	Submodules
	cfme.services.myservice.ssui module

	cfme.services.myservice.ui module

	Module contents

Submodules

	cfme.services.requests module

	cfme.services.workloads module

Module contents

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.services package

cfme.services.catalogs package

Submodules

	cfme.services.catalogs.ansible_catalog_item module

	cfme.services.catalogs.catalog module

	cfme.services.catalogs.catalog_item module

	cfme.services.catalogs.orchestration_template module

	cfme.services.catalogs.service_catalogs module

Module contents

	
class cfme.services.catalogs.ServicesCatalog(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServicesCatalogView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.services.catalogs.ServicesCatalogView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

	
catalog_items

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
catalogs

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
in_explorer

	

	
is_displayed

	

	
orchestration_templates

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
service_catalogs

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.services package

 	cfme.services.catalogs package

cfme.services.catalogs.ansible_catalog_item module

	
class cfme.services.catalogs.ansible_catalog_item.ActionsCell(parent, tab, logger=None)[source]

	Bases: widgetastic.widget.View

	
delete

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
edit

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.catalogs.ansible_catalog_item.Add(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AddAnsibleCatalogItemView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.services.catalogs.ansible_catalog_item.AddAnsibleCatalogItemView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.catalogs.ansible_catalog_item.AnsibleCatalogItemForm

	
add

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.services.catalogs.ansible_catalog_item.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AllCatalogItemView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.services.catalogs.ansible_catalog_item.AnsibleCatalogItemForm(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.catalogs.ServicesCatalogView

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
catalog

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
display_in_catalog

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
provisioning

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
retirement

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.catalogs.ansible_catalog_item.AnsibleExtraVariables(parent, tab, logger=None)[source]

	Bases: widgetastic.widget.View

Represents extra variables part of ansible service catalog edit form.

	Parameters:	tab (str [http://docs.python.org/2.7/library/functions.html#str]) – tab name where this view is located. Can be “provisioning” or “retirement”.

	
add

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
all_vars

	

	
default_value

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
fill(*args, **kwargs)[source]

	

	Parameters:	values (list) – [] to remove all vars or [(“var”, “value”), ...] to fill the view.

	
read(*args, **kwargs)[source]

	

	
variable

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
variables_table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.catalogs.ansible_catalog_item.AnsiblePlaybookCatalogItem(name, description, provisioning, display_in_catalog=None, catalog=None, retirement=None, appliance=None)[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.appliance.Navigatable, cfme.common.WidgetasticTaggable

Represents Ansible Playbook catalog item.

Example

from cfme.services.catalogs.ansible_catalog_item import AnsiblePlaybookCatalogItem
catalog_item = AnsiblePlaybookCatalogItem(
 "some_catalog_name",
 "some_description",
 provisioning={
 "repository": "Some repository",
 "playbook": "some_playbook.yml",
 "machine_credential": "CFME Default Credential",
 "create_new": True,
 "provisioning_dialog_name": "some_dialog",
 "extra_vars": [("some_var", "some_value")]
 }
)
catalog_item.create()
catalog_item.delete()

	Parameters:	
	name (str [http://docs.python.org/2.7/library/functions.html#str]) – catalog item name

	description (str [http://docs.python.org/2.7/library/functions.html#str]) – catalog item description

	provisioning (dict [http://docs.python.org/2.7/library/stdtypes.html#dict]) – provisioning data

	catalog (py:class:cfme.services.catalogs.catalog.Catalog) – catalog object

	display_in_catalog (bool [http://docs.python.org/2.7/library/functions.html#bool]) – whether this playbook displayed in catalog

	retirement (dict [http://docs.python.org/2.7/library/stdtypes.html#dict]) – retirement data

	
create()[source]

	

	
delete(cancel=False)[source]

	

	
exists

	

	
update(updates)[source]

	

	
class cfme.services.catalogs.ansible_catalog_item.BootstrapSelect(parent, id=None, name=None, locator=None, can_hide_on_select=False, logger=None)[source]

	Bases: widgetastic_patternfly.BootstrapSelect

BootstrapSelect widget for Ansible Playbook Catalog Item form.

BootstrapSelect widgets don’t have data-id attribute in this form, so we have to override ROOT
locator.

	
ROOT

	

	
class cfme.services.catalogs.ansible_catalog_item.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DetailsAnsibleCatalogItemView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.services.catalogs.ansible_catalog_item.DetailsAnsibleCatalogItemView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.catalogs.ServicesCatalogView

Has to be in view standards, changed for WidgetasticTaggable.get_tags()

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.services.catalogs.ansible_catalog_item.DetailsEntitiesAnsibleCatalogItemView(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
basic_information

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
custom_image

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
provisioning

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
retirement

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
smart_management

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
upload

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.catalogs.ansible_catalog_item.Edit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditAnsibleCatalogItemView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.services.catalogs.ansible_catalog_item.EditAnsibleCatalogItemView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.catalogs.ansible_catalog_item.AnsibleCatalogItemForm

	
is_displayed

	

	
reset

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.catalogs.ansible_catalog_item.EditTags(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TagPageView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.services.catalogs.ansible_catalog_item.PickItemType(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of SelectCatalogItemTypeView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.services.catalogs.ansible_catalog_item.SelectCatalogItemTypeView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.catalogs.ServicesCatalogView

	
add

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
catalog_item_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.services package

 	cfme.services.catalogs package

cfme.services.catalogs.catalog module

	
class cfme.services.catalogs.catalog.Add(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AddCatalogView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.services.catalogs.catalog.AddCatalogView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.catalogs.catalog.CatalogForm

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.services.catalogs.catalog.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of CatalogsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.services.catalogs.catalog.Catalog(name=None, description=None, items=None, appliance=None)[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable, cfme.common.WidgetasticTaggable

	
create()[source]

	

	
delete()[source]

	

	
exists

	

	
update(updates)[source]

	

	
class cfme.services.catalogs.catalog.CatalogForm(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.catalogs.ServicesCatalogView

	
assign_catalog_items

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.catalogs.catalog.CatalogsMultiBoxSelect(parent, move_into=None, move_from=None, available_items=None, chosen_items=None, logger=None)[source]

	Bases: widgetastic_manageiq.MultiBoxSelect

	
move_from_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
move_into_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.catalogs.catalog.CatalogsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.catalogs.ServicesCatalogView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.catalogs.catalog.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DetailsCatalogView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.services.catalogs.catalog.DetailsCatalogView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.catalogs.ServicesCatalogView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.catalogs.catalog.Edit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditCatalogView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.services.catalogs.catalog.EditCatalogView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.catalogs.catalog.CatalogForm

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.catalogs.catalog.EditTagsFromDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TagPageView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.services package

 	cfme.services.catalogs package

cfme.services.catalogs.catalog_item module

	
class cfme.services.catalogs.catalog_item.Add(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AddCatalogItemView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.services.catalogs.catalog_item.AddButton(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AddButtonView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.services.catalogs.catalog_item.AddButtonGroup(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AddButtonGroupView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.services.catalogs.catalog_item.AddButtonGroupView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.catalogs.catalog_item.ButtonGroupForm

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.services.catalogs.catalog_item.AddButtonView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.catalogs.catalog_item.ButtonForm

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.services.catalogs.catalog_item.AddCatalogBundleView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.catalogs.catalog_item.CatalogBundleFormView

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
apply_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.services.catalogs.catalog_item.AddCatalogItemView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.catalogs.catalog_item.CatalogForm

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
apply_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
template_table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.catalogs.catalog_item.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AllCatalogItemView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.services.catalogs.catalog_item.AllCatalogItemView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.catalogs.ServicesCatalogView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.catalogs.catalog_item.BasicInfoForm(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.catalogs.ServicesCatalogView

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
display

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
field_entry_point

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
retirement_entry_point

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
select_catalog

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
select_config_template

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
select_dialog

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
select_orch_template

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
select_provider

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
select_resource

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
tree

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters:	version_dict – Dictionary of version_introduced: item

	
class cfme.services.catalogs.catalog_item.BundleAdd(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AddCatalogBundleView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.services.catalogs.catalog_item.BundleAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AllCatalogItemView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.services.catalogs.catalog_item.BundleDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DetailsCatalogItemView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.services.catalogs.catalog_item.BundleEdit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditCatalogBundleView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.services.catalogs.catalog_item.ButtonForm(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.catalogs.ServicesCatalogView

	
btn_hvr_text

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
btn_image

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
btn_text

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
request

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
select_dialog

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
system_process

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.catalogs.catalog_item.ButtonGroupForm(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.catalogs.ServicesCatalogView

	
btn_group_hvr_text

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
btn_group_text

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
btn_image

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.catalogs.catalog_item.CatalogBundle(name=None, description=None, display_in=None, catalog=None, dialog=None, catalog_items=None, appliance=None)[source]

	Bases: cfme.services.catalogs.catalog_item.CatalogItem, cfme.utils.appliance.Navigatable

	
create()[source]

	

	
update(updates)[source]

	

	
class cfme.services.catalogs.catalog_item.CatalogBundleFormView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.catalogs.ServicesCatalogView

	
basic_info

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
resources

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.catalogs.catalog_item.CatalogForm(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.catalogs.catalog_item.BasicInfoForm

	
before_filling()[source]

	

	
is_displayed

	

	
select_item_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.catalogs.catalog_item.CatalogItem(name=None, description=None, item_type=None, vm_name=None, display_in=False, catalog=None, dialog=None, catalog_name=None, orch_template=None, provider_type=None, provider=None, config_template=None, prov_data=None, domain='ManageIQ (Locked)', appliance=None)[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable, cfme.common.WidgetasticTaggable

	
add_button()[source]

	

	
add_button_group()[source]

	

	
create()[source]

	

	
delete()[source]

	

	
exists

	

	
update(updates)[source]

	

	
class cfme.services.catalogs.catalog_item.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DetailsCatalogItemView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.services.catalogs.catalog_item.DetailsCatalogItemView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.catalogs.ServicesCatalogView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.catalogs.catalog_item.Edit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditCatalogItemView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.services.catalogs.catalog_item.EditCatalogBundleView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.catalogs.catalog_item.CatalogBundleFormView

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.catalogs.catalog_item.EditCatalogItemView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.catalogs.catalog_item.BasicInfoForm

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.catalogs.catalog_item.EditTags(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TagPageView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.services package

 	cfme.services.catalogs package

cfme.services.catalogs.orchestration_template module

	
class cfme.services.catalogs.orchestration_template.AddDialog(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AddDialogView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.services.catalogs.orchestration_template.AddDialogView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.catalogs.orchestration_template.DialogForm

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.services.catalogs.orchestration_template.AddTemplate(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AddTemplateView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.services.catalogs.orchestration_template.AddTemplateView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.catalogs.orchestration_template.TemplateForm

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.services.catalogs.orchestration_template.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of OrchestrationTemplatesView

	
am_i_here(*args, **kwargs)[source]

	

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.services.catalogs.orchestration_template.CopyTemplate(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of CopyTemplateView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.services.catalogs.orchestration_template.CopyTemplateForm(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.catalogs.ServicesCatalogView

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
content

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
draft

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.catalogs.orchestration_template.CopyTemplateView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.catalogs.orchestration_template.CopyTemplateForm

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.services.catalogs.orchestration_template.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DetailsTemplateView

	
am_i_here(*args, **kwargs)[source]

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.services.catalogs.orchestration_template.DetailsTemplateView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.catalogs.ServicesCatalogView

	
is_displayed

	Removing last ‘s’ character from template_type.
For ex. ‘CloudFormation Templates’ -> ‘CloudFormation Template’

	
class cfme.services.catalogs.orchestration_template.DialogForm(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.catalogs.ServicesCatalogView

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.catalogs.orchestration_template.EditTagsFromDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TagPageView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.services.catalogs.orchestration_template.EditTemplate(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditTemplateView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.services.catalogs.orchestration_template.EditTemplateView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.catalogs.orchestration_template.TemplateForm

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.catalogs.orchestration_template.OrchestrationTemplate(template_type=None, template_name=None, description=None, draft=None, content=None, appliance=None)[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable, cfme.common.WidgetasticTaggable

	
copy_template(template_name, content, draft=None, description=None)[source]

	

	
create(content)[source]

	

	
create_service_dialog_from_template(dialog_name, template_name)[source]

	

	
delete()[source]

	

	
delete_all_templates()[source]

	

	
update(updates)[source]

	

	
class cfme.services.catalogs.orchestration_template.OrchestrationTemplatesView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.catalogs.ServicesCatalogView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.catalogs.orchestration_template.TemplateForm(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.catalogs.orchestration_template.CopyTemplateForm

	
template_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.catalogs.orchestration_template.TemplateType(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TemplateTypeView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.services.catalogs.orchestration_template.TemplateTypeView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.catalogs.ServicesCatalogView

	
is_displayed

	

	
templates

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.services package

 	cfme.services.catalogs package

cfme.services.catalogs.service_catalogs module

	
class cfme.services.catalogs.service_catalogs.DetailsServiceCatalogView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.catalogs.ServicesCatalogView

	
is_displayed

	

	
order_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.catalogs.service_catalogs.OrderForm(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.catalogs.ServicesCatalogView

	
db_root_password

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
db_user

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
default_select_value

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flavor

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
hosts

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
image

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
key

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
key_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
machine_credential

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
mode

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
os_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
private_network

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
resource_group

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
select_instance_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
ssh_location

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
stack_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
stack_timeout

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
timeout

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
user_image

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
vm_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
vm_password

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
vm_size

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
vm_user

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.catalogs.service_catalogs.OrderServiceCatalogView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.catalogs.service_catalogs.OrderForm

	
is_displayed

	

	
submit_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.catalogs.service_catalogs.ServiceCatalogDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DetailsServiceCatalogView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.services.catalogs.service_catalogs.ServiceCatalogOrder(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of OrderServiceCatalogView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.services.catalogs.service_catalogs.ServiceCatalogs(catalog=None, name=None, stack_data=None, dialog_values=None, ansible_dialog_values=None, appliance=None)[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable

	
order()[source]

	

	
class cfme.services.catalogs.service_catalogs.ServiceCatalogsAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServiceCatalogsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.services.catalogs.service_catalogs.ServiceCatalogsDefault(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServiceCatalogsDefaultView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.services.catalogs.service_catalogs.ServiceCatalogsDefaultView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.catalogs.ServicesCatalogView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.catalogs.service_catalogs.ServiceCatalogsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.catalogs.ServicesCatalogView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.services package

cfme.services.dashboard package

Submodules

	cfme.services.dashboard.ssui module

Module contents

	
class cfme.services.dashboard.Dashboard(appliance)[source]

	Bases: cfme.utils.appliance.Navigatable, sentaku.modeling.ElementMixin

Dashboard main class for SSUI.

	
current_services

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
monthly_charges

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
retired_services

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
retiring_soon

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
total_request

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
total_service

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.services package

 	cfme.services.dashboard package

cfme.services.dashboard.ssui module

	
class cfme.services.dashboard.ssui.CurrentServices(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ssui.SSUINavigateStep

	
VIEW

	alias of MyServicesView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.services.dashboard.ssui.DashboardAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ssui.SSUINavigateStep

	
VIEW

	alias of DashboardView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.services.dashboard.ssui.DashboardView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ssui.SSUIBaseLoggedInPage

	
aggregate_card

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
dashboard_card

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
in_dashboard()[source]

	

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.dashboard.ssui.MyServiceForm(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ssui.SSUIBaseLoggedInPage

	
service

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.dashboard.ssui.MyServicesView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.dashboard.ssui.MyServiceForm

	
in_myservices()[source]

	

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.dashboard.ssui.RetiredServices(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ssui.SSUINavigateStep

	
VIEW

	alias of MyServicesView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.services.dashboard.ssui.RetiringSoon(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ssui.SSUINavigateStep

	
VIEW

	alias of MyServicesView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.services.dashboard.ssui.TotalServices(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ssui.SSUINavigateStep

	
VIEW

	alias of MyServicesView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
cfme.services.dashboard.ssui.current_service(self)[source]

	Returns the count of active services displayed on dashboard

	
cfme.services.dashboard.ssui.monthly_charges(self)[source]

	Returns the chargeback data displayed on dashboard

	
cfme.services.dashboard.ssui.retired_service(self)[source]

	Returns the count of retired services displayed on dashboard

	
cfme.services.dashboard.ssui.retiring_soon(self)[source]

	Returns the count of retiring soon services displayed on dashboard

	
cfme.services.dashboard.ssui.total_request(self)[source]

	Total Request cannot be clicked so this method just
returns the total number of requests displayed on dashboard.

	
cfme.services.dashboard.ssui.total_service(self)[source]

	Returns the count of total services(Integer) displayed on dashboard

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.services package

cfme.services.myservice package

Submodules

	cfme.services.myservice.ssui module

	cfme.services.myservice.ui module

Module contents

	
class cfme.services.myservice.MyService(appliance, name=None, description=None, vm_name=None)[source]

	Bases: cfme.utils.update.Updateable, cfme.utils.appliance.Navigatable, cfme.common.WidgetasticTaggable, sentaku.modeling.ElementMixin

My Service main class to context switch between ui
and ssui. All the below methods are implemented in both ui
and ssui side .

	
check_vm_add

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
delete

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
download_file

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
edit_tags

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
exists

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
reconfigure_service

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
retire

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
retire_on_date

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
set_ownership

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
update

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.services package

 	cfme.services.myservice package

cfme.services.myservice.ssui module

	
class cfme.services.myservice.ssui.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ssui.SSUINavigateStep

	
VIEW

	alias of DetailsMyServiceView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.services.myservice.ssui.DetailsMyServiceView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.myservice.ssui.MyServicesView

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
lifecycle_btn

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy_btn

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
power_operations

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.myservice.ssui.EditMyServiceView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.myservice.ssui.ServiceEditForm

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.myservice.ssui.MyServiceAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ssui.SSUINavigateStep

	
VIEW

	alias of MyServicesView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.services.myservice.ssui.MyServiceEdit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ssui.SSUINavigateStep

	
VIEW

	alias of EditMyServiceView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.services.myservice.ssui.MyServicesView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.ssui.SSUIBaseLoggedInPage

	
in_myservices()[source]

	

	
is_displayed

	

	
service

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.myservice.ssui.ServiceEditForm(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.myservice.ssui.MyServicesView

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cfme.services.myservice.ssui.update(self, updates)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.services package

 	cfme.services.myservice package

cfme.services.myservice.ui module

	
class cfme.services.myservice.ui.EditMyServiceView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.myservice.ui.ServiceEditForm

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.myservice.ui.MyServiceAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of MyServicesView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.services.myservice.ui.MyServiceDetailView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.myservice.ui.MyServicesView

	
details

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
provisioning

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
retirement

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.myservice.ui.MyServiceDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of MyServiceDetailView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.services.myservice.ui.MyServiceDetailsToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

View of toolbar widgets to nest

	
reload

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.myservice.ui.MyServiceEdit(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditMyServiceView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.services.myservice.ui.MyServiceEditTags(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TagPageView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.services.myservice.ui.MyServiceReconfigure(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ReconfigureServiceView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.services.myservice.ui.MyServiceSetOwnership(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of SetOwnershipView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.services.myservice.ui.MyServiceSetRetirement(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServiceRetirementView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.services.myservice.ui.MyServicesView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download_choice

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
in_myservices()[source]

	

	
is_displayed

	

	
lifecycle_btn

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
myservice

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy_btn

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reload

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.myservice.ui.ReconfigureServiceView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.myservice.ui.SetOwnershipForm

	
is_displayed

	

	
submit_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.myservice.ui.ServiceEditForm(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.myservice.ui.MyServicesView

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.myservice.ui.ServiceRetirementForm(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.myservice.ui.MyServicesView

	
retirement_date

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
retirement_warning

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.myservice.ui.ServiceRetirementView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.myservice.ui.ServiceRetirementForm

	
is_displayed

	

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.myservice.ui.SetOwnershipForm(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.myservice.ui.MyServicesView

	
select_group

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
select_owner

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.myservice.ui.SetOwnershipView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.myservice.ui.SetOwnershipForm

	
is_displayed

	

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cfme.services.myservice.ui.check_vm_add(self, add_vm_name)[source]

	

	
cfme.services.myservice.ui.delete(self)[source]

	

	
cfme.services.myservice.ui.download_file(self, extension)[source]

	

	
cfme.services.myservice.ui.edit_tags(self, tag, value)[source]

	

	
cfme.services.myservice.ui.exists(self)[source]

	

	
cfme.services.myservice.ui.reconfigure_service(self)[source]

	

	
cfme.services.myservice.ui.retire(self)[source]

	

	
cfme.services.myservice.ui.retire_on_date(self, retirement_date)[source]

	

	
cfme.services.myservice.ui.set_ownership(self, owner, group)[source]

	

	
cfme.services.myservice.ui.update(self, updates)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.services package

cfme.services.requests module

	
class cfme.services.requests.ApproveRequest(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RequestApprovalView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.services.requests.CopyRequest(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RequestCopyView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.services.requests.DenyRequest(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RequestDenialView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.services.requests.EditRequest(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RequestEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.services.requests.Request(collection, description=None, cells=None, partial_check=False)[source]

	Bases: cfme.utils.appliance.BaseEntity

Class describes request row from Services - Requests page

	
REQUEST_FINISHED_STATES = set(['Migrated', 'Finished'])

	

	
approve_request(*args, **kwargs)

	

	
approve_request_ui = None

	

	
copy_request(values=None, cancel=False)[source]

	Copies the request and edits if needed

	
deny_request(*args, **kwargs)

	

	
deny_request_ui = None

	

	
edit_request(values, cancel=False)[source]

	Opens the request for editing and saves or cancels depending on success.

	
exists(*args, **kwargs)

	

	
exists_ui = None

	

	
get_request_id()[source]

	

	
get_request_row_from_ui()[source]

	Opens CFME UI and return table_row object

	
is_finished(*args, **kwargs)

	

	
is_finished_ui = None

	

	
is_succeeded(*args, **kwargs)

	

	
is_succeeded_ui = None

	

	
remove_request(cancel=False)[source]

	Opens the specified request and deletes it - removes from UI
:param cancel: Whether to cancel the deletion.

	
request_state

	

	
rest

	

	
status

	

	
update(*args, **kwargs)

	

	
update_ui = None

	

	
wait_for_request(*args, **kwargs)

	

	
wait_for_request_ui = None

	

	
class cfme.services.requests.RequestAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RequestsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.services.requests.RequestApprovalView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.requests.RequestDetailsView

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
reason

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
submit

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.requests.RequestBasicView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

	
in_requests

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.requests.RequestCollection(appliance)[source]

	Bases: cfme.utils.appliance.BaseCollection

The appliance collection of requests

	
instantiate(description=None, cells=None, partial_check=False)[source]

	Create a request object

	
class cfme.services.requests.RequestCopyView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.requests.RequestProvisionView

	
is_displayed

	

	
class cfme.services.requests.RequestDenialView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.requests.RequestDetailsView

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
reason

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
submit

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.requests.RequestDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RequestDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.services.requests.RequestDetailsToolBar(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.requests.RequestsView

	
approve

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
copy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
delete

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
deny

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
edit

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.requests.RequestDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.requests.RequestsView

	
breadcrumb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
catalog

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
customize

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
details

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
environment

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
hardware

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
network

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
purpose

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
request

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
schedule

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.requests.RequestEditView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.requests.RequestProvisionView

	
is_displayed

	

	
class cfme.services.requests.RequestProvisionView(parent, logger=None, **kwargs)[source]

	Bases: cfme.common.vm_views.ProvisionView

	
form

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.services.requests.RequestsToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

Toolbar on the requests view

	
reload

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.requests.RequestsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.requests.RequestBasicView

	
find_request(cells, partial_check=False)[source]

	Finds the request and returns the row element
:param cells: Search data for the requests table.
:param partial_check: If to use the __contains operator

Returns: row

	
is_displayed

	

	
paginator

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters:	version_dict – Dictionary of version_introduced: item

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.services package

cfme.services.workloads module

A model of Workloads page in CFME

	
class cfme.services.workloads.AllTemplates(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of WorkloadsTemplate

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.services.workloads.AllVMs(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of WorkloadsVM

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.services.workloads.TemplatesImages(appliance=None)[source]

	Bases: cfme.utils.appliance.Navigatable

This is fake class mainly needed for navmazing navigation

	
class cfme.services.workloads.VmsInstances(appliance=None)[source]

	Bases: cfme.utils.appliance.Navigatable

This is fake class mainly needed for navmazing navigation

	
class cfme.services.workloads.WorkloadsDefault(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of WorkloadsDefaultView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.services.workloads.WorkloadsDefaultView(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.workloads.WorkloadsView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.workloads.WorkloadsTemplate(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.workloads.WorkloadsView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.workloads.WorkloadsVM(parent, logger=None, **kwargs)[source]

	Bases: cfme.services.workloads.WorkloadsView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.workloads.WorkloadsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

	
in_workloads

	

	
search

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
templates

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
vms

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

cfme.storage package

Submodules

	cfme.storage.object_store module

	cfme.storage.volume module

Module contents

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.storage package

cfme.storage.object_store module

	
class cfme.storage.object_store.All(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
resetter()[source]

	

	
step()[source]

	

	
class cfme.storage.object_store.Details(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
am_i_here()[source]

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()[source]

	

	
class cfme.storage.object_store.ObjectStore(name=None, appliance=None)[source]

	Bases: cfme.common.Taggable, cfme.common.SummaryMixin, cfme.utils.appliance.Navigatable

Automate Model page of Cloud Object Stores

	Parameters:	name – Name of Object Store

	
add_tag(tag, **kwargs)[source]

	Tags the system by given tag

	
untag(tag)[source]

	Removes the selected tag off the system

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.storage package

cfme.storage.volume module

	
class cfme.storage.volume.NonJSVolumeEntity(parent, name, logger=None)[source]

	Bases: widgetastic_manageiq.NonJSBaseEntity

	
list_entity

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
quad_entity

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
tile_entity

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.storage.volume.Volume(collection, name, provider)[source]

	Bases: cfme.utils.appliance.BaseEntity

	
delete(wait=True)[source]

	Delete the Volume

	
exists

	

	
nav

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters:	version_dict – Dictionary of version_introduced: item

	
wait_for_disappear(timeout=300)[source]

	

	
class cfme.storage.volume.VolumeAdd(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of VolumeAddView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.storage.volume.VolumeAddEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
breadcrumb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.storage.volume.VolumeAddForm(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
add

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
size

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
tenant

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
volume_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.storage.volume.VolumeAddView(parent, logger=None, **kwargs)[source]

	Bases: cfme.storage.volume.VolumeView

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
form

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.storage.volume.VolumeAll(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of VolumeAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.storage.volume.VolumeAllView(parent, logger=None, **kwargs)[source]

	Bases: cfme.storage.volume.VolumeView

	
entities

	

	
is_displayed

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.storage.volume.VolumeCollection(appliance)[source]

	Bases: cfme.utils.appliance.BaseCollection

Collection object for the :py:class:’cfme.storage.volume.Volume’.

	
delete(*volumes)[source]

	Delete one or more Volumes from list of Volumes

	Parameters:	or Multiple 'cfme.storage.volume.Volume' objects (One) –

	
instantiate(name, provider)[source]

	

	
class cfme.storage.volume.VolumeDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of VolumeDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step(*args, **kwargs)[source]

	

	
class cfme.storage.volume.VolumeDetailsAccordion(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.storage.volume.VolumeDetailsEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
breadcrumb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
smart_management

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.storage.volume.VolumeDetailsToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.storage.volume.VolumeDetailsView(parent, logger=None, **kwargs)[source]

	Bases: cfme.storage.volume.VolumeView

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.storage.volume.VolumeEntities(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.BaseEntitiesView

The entities on the main list of Volume Page

	
entity_class

	

	
cfme.storage.volume.VolumeEntity()[source]

	Temporary wrapper for Volume Entity during transition to JS based Entity

	
class cfme.storage.volume.VolumeListEntity(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.BaseListEntity

	
class cfme.storage.volume.VolumeQuadIconEntity(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.BaseQuadIconEntity

	
class cfme.storage.volume.VolumeTileIconEntity(parent, logger=None, **kwargs)[source]

	Bases: widgetastic_manageiq.BaseTileIconEntity

	
quad_icon

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.storage.volume.VolumeToolbar(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
view_selector

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.storage.volume.VolumeView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

Base class for header and nav check

	
in_volume

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

cfme.test_framework package

Subpackages

	cfme.test_framework.sprout package
	Submodules
	cfme.test_framework.sprout.client module

	cfme.test_framework.sprout.plugin module

	Module contents

Submodules

	cfme.test_framework.appliance_police module

	cfme.test_framework.config module

	cfme.test_framework.pytest_plugin module

Module contents

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.test_framework package

cfme.test_framework.sprout package

Submodules

	cfme.test_framework.sprout.client module

	cfme.test_framework.sprout.plugin module

Module contents

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.test_framework package

 	cfme.test_framework.sprout package

cfme.test_framework.sprout.client module

	
class cfme.test_framework.sprout.client.APIMethodCall(client, method_name)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
exception cfme.test_framework.sprout.client.AuthException[source]

	Bases: cfme.test_framework.sprout.client.SproutException

	
class cfme.test_framework.sprout.client.SproutClient(protocol='http', host='localhost', port=8000, entry='appliances/api', auth=None)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
api_entry

	

	
call_method(name, *args, **kwargs)[source]

	

	
destroy_pool(pool_id)[source]

	

	
classmethod from_config(**kwargs)[source]

	

	
provision_appliances(count=1, preconfigured=False, version=None, stream=None, provider=None, lease_time=120, ram=None, cpu=None)[source]

	

	
exception cfme.test_framework.sprout.client.SproutException[source]

	Bases: exceptions.Exception [http://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.test_framework package

 	cfme.test_framework.sprout package

cfme.test_framework.sprout.plugin module

	
class cfme.test_framework.sprout.plugin.NewHooks[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
pytest_miq_node_shutdown(config, nodeinfo)[source]

	

	
class cfme.test_framework.sprout.plugin.ShutdownPlugin[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
pytest_miq_node_shutdown(config, nodeinfo)[source]

	

	
class cfme.test_framework.sprout.plugin.SproutManager(client=NOTHING)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
__eq__(other)

	Automatically created by attrs.

	
__ge__(other)

	Automatically created by attrs.

	
__gt__(other)

	Automatically created by attrs.

	
__le__(other)

	Automatically created by attrs.

	
__lt__(other)

	Automatically created by attrs.

	
__ne__(other)

	Automatically created by attrs.

	
__repr__()

	Automatically created by attrs.

	
check_fullfilled()[source]

	

	
clean_jenkins_job(jenkins_job)[source]

	

	
client = Attribute(name='client', default=Factory(factory=<bound method type.from_config of <class 'cfme.test_framework.sprout.client.SproutClient'>>, takes_self=False), validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
destroy_pool()[source]

	

	
lease_time = Attribute(name='lease_time', default=None, validator=None, repr=False, cmp=True, hash=None, init=False, convert=None, metadata=mappingproxy({}))

	

	
ping_pool()[source]

	

	
pool = Attribute(name='pool', default=None, validator=None, repr=True, cmp=True, hash=None, init=False, convert=None, metadata=mappingproxy({}))

	

	
request_appliances(provision_request)[source]

	

	
request_check()[source]

	

	
request_pool(provision_request)[source]

	

	
reset_timer(timeout=None)[source]

	

	
timer = Attribute(name='timer', default=None, validator=None, repr=False, cmp=True, hash=None, init=False, convert=None, metadata=mappingproxy({}))

	

	
class cfme.test_framework.sprout.plugin.SproutProvisioningRequest(group, count, version, provider, date, lease_time, desc, provision_timeout, cpu, ram)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

data holder for provisioning metadata

	
__eq__(other)

	Automatically created by attrs.

	
__ge__(other)

	Automatically created by attrs.

	
__gt__(other)

	Automatically created by attrs.

	
__le__(other)

	Automatically created by attrs.

	
__lt__(other)

	Automatically created by attrs.

	
__ne__(other)

	Automatically created by attrs.

	
__repr__()

	Automatically created by attrs.

	
count = Attribute(name='count', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
cpu = Attribute(name='cpu', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
date = Attribute(name='date', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
desc = Attribute(name='desc', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
classmethod from_config(config)[source]

	

	
group = Attribute(name='group', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
lease_time = Attribute(name='lease_time', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
provider = Attribute(name='provider', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
provision_timeout = Attribute(name='provision_timeout', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
ram = Attribute(name='ram', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
version = Attribute(name='version', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
cfme.test_framework.sprout.plugin.dump_pool_info(log, pool_data)[source]

	

	
cfme.test_framework.sprout.plugin.pytest_addhooks(pluginmanager)[source]

	

	
cfme.test_framework.sprout.plugin.pytest_addoption(parser)[source]

	

	
cfme.test_framework.sprout.plugin.pytest_configure(config)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.test_framework package

cfme.test_framework.appliance_police module

	
exception cfme.test_framework.appliance_police.AppliancePoliceException(message, port)[source]

	Bases: exceptions.Exception [http://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

	
__eq__(other)

	Automatically created by attrs.

	
__ge__(other)

	Automatically created by attrs.

	
__gt__(other)

	Automatically created by attrs.

	
__le__(other)

	Automatically created by attrs.

	
__lt__(other)

	Automatically created by attrs.

	
__ne__(other)

	Automatically created by attrs.

	
__repr__()

	Automatically created by attrs.

	
message = Attribute(name='message', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
port = Attribute(name='port', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
cfme.test_framework.appliance_police.appliance_police()[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.test_framework package

cfme.test_framework.config module

classes to manage the cfme test framework configuration

	
class cfme.test_framework.config.Configuration[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

holds the current configuration

	
configure(config_dir, crypt_key_file=None)[source]

	do the defered initial loading of the configuration

	Parameters:	
	config_dir – path to the folder with configuration files

	crypt_key_file – optional name of a file holding the key for encrypted
configuration files

	Raises:	AssertionError if called more than once

if the utils.conf api is removed, the loading can be transformed to eager loading

	
get_config(name)[source]

	returns a yaycl config object

	Parameters:	name – name of the configuration object

	
class cfme.test_framework.config.DeprecatedConfigWrapper(configuration, warn=False)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

a wrapper that provides the old :code:utils.conf api

	
__eq__(other)

	Automatically created by attrs.

	
__ge__(other)

	Automatically created by attrs.

	
__gt__(other)

	Automatically created by attrs.

	
__le__(other)

	Automatically created by attrs.

	
__lt__(other)

	Automatically created by attrs.

	
__ne__(other)

	Automatically created by attrs.

	
__repr__()

	Automatically created by attrs.

	
configuration = Attribute(name='configuration', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
runtime

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.test_framework package

cfme.test_framework.pytest_plugin module

cfme main plugin

this loads all of the elemental cfme plugins and prepares configuration

	
cfme.test_framework.pytest_plugin.pytest_addoption(parser)[source]

	

	
cfme.test_framework.pytest_plugin.pytest_collection_finish(session)[source]

	

	
cfme.test_framework.pytest_plugin.pytest_configure(config)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

cfme.utils package

Subpackages

	cfme.utils.appliance package
	Subpackages
	cfme.utils.appliance.implementations package
	Submodules
	cfme.utils.appliance.implementations.ssui module

	cfme.utils.appliance.implementations.ui module

	Module contents

	Submodules
	cfme.utils.appliance.db module

	cfme.utils.appliance.plugin module

	cfme.utils.appliance.services module

	Module contents

	cfme.utils.mgmt_system package
	Module contents

Submodules

	cfme.utils.ansible module

	cfme.utils.apidoc module

	cfme.utils.blockers module

	cfme.utils.browser module

	cfme.utils.bz module

	cfme.utils.category module

	cfme.utils.conf module

	cfme.utils.datafile module

	cfme.utils.db module

	cfme.utils.deprecation module

	cfme.utils.error module

	cfme.utils.events module

	cfme.utils.ext_auth module

	cfme.utils.ftp module

	cfme.utils.generators module

	cfme.utils.grafana module

	cfme.utils.hosts module
	utils.hosts

	cfme.utils.ipmi module

	cfme.utils.log module
	Example Usage

	Log Message Source

	Configuration

	Message Format

	Members

	cfme.utils.log_validator module

	cfme.utils.net module

	cfme.utils.ocp_cli module

	cfme.utils.path module

	cfme.utils.perf module

	cfme.utils.perf_message_stats module

	cfme.utils.ports module

	cfme.utils.pretty module

	cfme.utils.providers module

	cfme.utils.pytest_shortcuts module

	cfme.utils.quote module

	cfme.utils.rest module

	cfme.utils.smem_memory_monitor module

	cfme.utils.smtp_collector_client module

	cfme.utils.soft_get module

	cfme.utils.ssh module

	cfme.utils.stats module

	cfme.utils.testgen module

	cfme.utils.timeutil module

	cfme.utils.tracer module

	cfme.utils.trackerbot module

	cfme.utils.units module

	cfme.utils.update module

	cfme.utils.varmeth module

	cfme.utils.version module

	cfme.utils.video module

	cfme.utils.virtual_machines module

	cfme.utils.wait module

	cfme.utils.workloads module

Module contents

	
class cfme.utils.FakeObject(**kwargs)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
class cfme.utils.InstanceClassMethod(instance_or_class_method)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

Decorator-descriptor that enables you to use any method both as class and instance one

Usage:

class SomeClass(object):
 @InstanceClassMethod
 def a_method(self):
 the_instance_variant()

 @a_method.classmethod
 def a_method(cls):
 the_class_variant()

i = SomeClass()
i.a_method()
SomeClass.a_method()
Both are possible

If you don’t pass classmethod the “instance” method, the one that was passed first will
be called for both kinds of invocation.

	
classmethod(class_method)[source]

	

	
class cfme.utils.ParamClassName(instance_attr, class_attr='__name__')[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

ParamClassName is a Descriptor to help when using classes and instances as parameters

Note: This descriptor is a hack until collections are implemented everywhere

Usage:

class Provider(object):
 _param_name = ParamClassName('name')

 def __init__(self, name):
 self.name = name

When accessing the _param_name on the class object it will return the __name__ of the
class by default. When accessing the _param_name on an instance of the class, it will return
the attribute that is passed in.

	
cfme.utils.at_exit(f, *args, **kwargs)[source]

	Diaper-protected atexit handler registering. Same syntax as atexit.register()

	
cfme.utils.attributize_string(text)[source]

	Converts a string to a lowercase string containing only letters, digits and underscores.

Usable for eg. generating object key names.
The underscore is always one character long if it is present.

	
cfme.utils.castmap(t, i, *args, **kwargs)[source]

	Works like the map() but is made specially to map classes on iterables.

This function only applies the t to the item of i if it is not of that type.

	Parameters:	
	t – The class that you want all theitems in the list to be type of.

	i – Iterable with items to be cast.

	Returns:	A list.

	
cfme.utils.classproperty(f)[source]

	Enables properties for whole classes:

Usage:

>>> class Foo(object):
... @classproperty
... def bar(cls):
... return "bar"
...
>>> print(Foo.bar)
baz

	
cfme.utils.clear_property_cache(obj, *names)[source]

	clear a cached property regardess of if it was cached priority

	
class cfme.utils.deferred_verpick(version_pick)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

descriptor that version-picks on Access

Useful for verpicked constants in classes

	
cfme.utils.fakeobject_or_object(obj, attr, default=None)[source]

	

	
cfme.utils.icastmap(t, i, *args, **kwargs)[source]

	Works like the map() but is made specially to map classes on iterables. A generator version.

This function only applies the t to the item of i if it is not of that type.

	Parameters:	
	t – The class that you want all the yielded items to be type of.

	i – Iterable with items to be cast.

	Returns:	A generator.

	
cfme.utils.iterate_pairs(iterable)[source]

	Iterates over iterable, always taking two items at time.

Eg. [1, 2, 3, 4, 5, 6] will yield (1, 2), then (3, 4) ...

Must have even number of items.

	Parameters:	iterable – An iterable with even number of items to be iterated over.

	
cfme.utils.normalize_space(text)[source]

	Works in accordance with the XPath’s normalize-space() operator.

Description [https://developer.mozilla.org/en-US/docs/Web/XPath/Functions/normalize-space]:

The normalize-space function strips leading and trailing white-space from a string,
replaces sequences of whitespace characters by a single space, and returns the resulting
string.

	
cfme.utils.normalize_text(text)[source]

	Converts a string to a lowercase string containing only letters, digits and spaces.

The space is always one character long if it is present.

	
cfme.utils.process_pytest_path(path)[source]

	

	
cfme.utils.process_shell_output(value)[source]

	This function allows you to unify the behaviour when you putput some values to stdout.

You can check the code of the function how exactly does it behave for the particular types of
variables. If no output is expected, it returns None.

	Parameters:	value – Value to be outputted.

	Returns:	A tuple consisting of returncode and the output to be printed.

	
cfme.utils.read_env(file)[source]

	Given a py.path.Local file name, return a dict of exported shell vars and their
values.

	Parameters:	file – A py.path.Local instance.

Note

This will only include shell variables that are exported from the file being parsed

	Returns:	A dict [http://docs.python.org/2.7/library/stdtypes.html#dict] of key/value pairs. If the file does not exist or bash could not
parse the file, this dict will be empty.

	
cfme.utils.safe_string(o)[source]

	This will make string out of ANYTHING without having to worry about the stupid Unicode errors

This function tries to make str/unicode out of o unless it already is one of those and then
it processes it so in the end there is a harmless ascii string.

	Parameters:	o – Anything.

	
cfme.utils.tries(num_tries, exceptions, f, *args, **kwargs)[source]

	Tries to call the function multiple times if specific exceptions occur.

	Parameters:	
	num_tries – How many times to try if exception is raised

	exceptions – Tuple (or just single one) of exceptions that should be treated as repeat.

	f – Callable to be called.

	*args – Arguments to be passed through to the callable

	**kwargs – Keyword arguments to be passed through to the callable

	Returns:	What f returns.

	Raises:	What f raises if the try count is exceeded.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.appliance package

Subpackages

	cfme.utils.appliance.implementations package
	Submodules
	cfme.utils.appliance.implementations.ssui module

	cfme.utils.appliance.implementations.ui module

	Module contents

Submodules

	cfme.utils.appliance.db module

	cfme.utils.appliance.plugin module

	cfme.utils.appliance.services module

Module contents

	
class cfme.utils.appliance.Appliance(provider_name, vm_name, browser_steal=False, container=None)[source]

	Bases: cfme.utils.appliance.IPAppliance

Appliance represents an already provisioned cfme appliance vm

	Parameters:	
	provider_name – Name of the provider this appliance is running under

	vm_name – Name of the VM this appliance is running as

	browser_steal – Setting of the browser_steal attribute.

	
CONFIG_MAPPING = {'vm_name': 'vm_name', 'provider_name': 'provider_name', 'container': 'container'}

	

	
CONFIG_NONGLOBAL = set(['vm_name'])

	

	
add_rhev_direct_lun_disk(log_callback=None)[source]

	

	
address

	

	
configure(*args, **kwargs)

	

	
configure_fleecing(*args, **kwargs)

	

	
destroy()[source]

	Destroys the VM this appliance is running as

	
does_vm_exist()[source]

	

	
ipapp

	

	
is_on_rhev

	

	
is_on_vsphere

	

	
is_running

	

	
provider

	
Note

Cannot be cached because provider object is unpickable.

	
remove_rhev_direct_lun_disk(*args, **kwargs)

	

	
rename(new_name)[source]

	Changes appliance name

	Parameters:	new_name – Name to set

Note

Database must be up and running and evm service must be (re)started afterwards
for the name change to take effect.

	
start()[source]

	Starts the VM this appliance is running as

	
stop()[source]

	Stops the VM this appliance is running as

	
templatize(seal=True)[source]

	Marks the appliance as a template. Destroys the original VM in the process.

By default it runs the sealing process. If you have done it differently, you can opt out.

	Parameters:	seal – Whether to run the sealing process (making the VM ‘universal’).

	
vm_name

	VM’s name of the appliance on the provider

	
class cfme.utils.appliance.ApplianceConsole(appliance)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

ApplianceConsole is used for navigating and running appliance_console commands against an
appliance.

	
run_commands(commands, autoreturn=True, timeout=10, channel=None)[source]

	

	
timezone_check(timezone)[source]

	

	
class cfme.utils.appliance.ApplianceConsoleCli(appliance)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
configure_appliance_external_create(region, dbhostname, username, password, dbname, fetch_key, sshlogin, sshpass)[source]

	

	
configure_appliance_external_join(dbhostname, username, password, dbname, fetch_key, sshlogin, sshpass)[source]

	

	
configure_appliance_internal_fetch_key(region, dbhostname, username, password, dbname, fetch_key, sshlogin, sshpass)[source]

	

	
configure_ipa(ipaserver, username, password, domain, realm)[source]

	

	
set_hostname(hostname)[source]

	

	
uninstall_ipa_client()[source]

	

	
exception cfme.utils.appliance.ApplianceException[source]

	Bases: exceptions.Exception [http://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

	
class cfme.utils.appliance.ApplianceStack[source]

	Bases: werkzeug.local.LocalStack

	
pop()[source]

	

	
push(obj)[source]

	

	
class cfme.utils.appliance.BaseCollection[source]

	Bases: cfme.utils.appliance.NavigatableMixin

	
class cfme.utils.appliance.BaseEntity[source]

	Bases: cfme.utils.appliance.NavigatableMixin

	
class cfme.utils.appliance.CurrentAppliance(*args, **kwargs)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
class cfme.utils.appliance.IPAppliance(address=None, browser_steal=False, container=None, openshift_creds=None, db_host=None, db_port=None, ssh_port=None)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

IPAppliance represents an already provisioned cfme appliance whos provider is unknown
but who has an IP address. This has a lot of core functionality that Appliance uses, since
it knows both the provider, vm_name and can there for derive the IP address.

	Parameters:	
	ipaddress – The IP address of the provider

	browser_steal – If True then then current browser is killed and the new appliance
is used to generate a new session.

	container – If the appliance is running as a container or as a pod, specifies its name.

	openshift_creds – If the appliance runs as a project on openshift, provides credentials for
the openshift host so the framework can interact with the project.

	db_host – If the database is located somewhere else than on the appliance itself, specify
the host here.

	db_port – Database port.

	ssh_port – SSH port.

	
CONFIG_MAPPING = {'container': 'container', 'db_host': 'db_host', 'ssh_port': 'ssh_port', 'openshift_creds': 'openshift_creds', 'pod': 'container', 'db_port': 'db_port', 'base_url': 'address', 'browser_steal': 'browser_steal'}

	

	
CONFIG_NONGLOBAL = set(['base_url'])

	

	
__call__(**kwargs)[source]

	Syntactic sugar for overriding certain instance variables for context managers.

Currently possible variables are:

	browser_steal

	
__enter__()[source]

	This method will replace the current appliance in the store

	
add_pglogical_replication_subscription(host)[source]

	Add a pglogical replication subscription without using the Web UI.

	
add_product_repo(repo_url, **kwargs)[source]

	
	This method ensures that when we add a new repo URL, there will be no other version

	of such product present in the yum.repos.d. You can specify conf options in kwargs. They
will be applied only to newly created repo file.

	Returns:	The repo id.

	
address

	

	
appliance

	

	
as_json

	Dumps the arguments that can create this appliance as a JSON. None values are ignored.

	
build

	

	
build_date

	

	
build_datetime

	

	
check_domain_enabled(domain)[source]

	

	
clean_appliance()[source]

	

	
clone_domain(*args, **kwargs)

	

	
company_name

	

	
configuration_details

	Return details that are necessary to navigate through Configuration accordions.

	Parameters:	ip_address – IP address of the server to match. If None, uses hostname from
conf.env['base_url']

	Returns:	If the data weren’t found in the DB, NoneType
If the data were found, it returns tuple (region, server name,
server id, server zone id)

	
configuration_details_old

	

	
configure(*args, **kwargs)

	

	
configure_appliance_for_openldap_ext_auth(appliance_fqdn)[source]

	
	This method changes the /etc/sssd/sssd.conf and /etc/openldap/ldap.conf files to set

	up the appliance for an external authentication with OpenLdap.
Apache file configurations are updated, for webui to take effect.

	Parameters:	appliance_name – FQDN for the appliance.

	
configure_gce(*args, **kwargs)

	

	
configure_vm_console_cert(*args, **kwargs)

	

	
coverage

	

	
db

	

	
default_zone

	

	
delete_all_providers()[source]

	

	
deploy_merkyl(*args, **kwargs)

	

	
diagnose_evm_failure()[source]

	Go through various EVM processes, trying to figure out what fails

Returns: A string describing the error, or None if no errors occurred.

This is intended to be run after an appliance is configured but failed for some reason,
such as in the template tester.

	
enable_disable_repo(repo_id, enable)[source]

	

	
enable_embedded_ansible_role()[source]

	Enables embbeded ansible role

This is necessary because server_roles does not wait long enough

	
event_listener()[source]

	Returns an instance of the event listening class pointed to this appliance.

	
evm_id

	

	
evmserverd

	

	
find_product_repos()[source]

	Returns a dictionary of products, where the keys are names of product (repos) and values
are dictionaries where keys are the versions and values the names of the repositories.

	
fix_ntp_clock(*args, **kwargs)

	

	
classmethod from_json(json_string)[source]

	

	
classmethod from_url(url)[source]

	

	
get(cls, *args, **kwargs)[source]

	A generic getter for instantiation of Collection classes

This generic getter will supply an appliance (self) to an object and instantiate
it with the supplied args/kwargs e.g.:

my_appliance.get(NodeCollection)

This will return a NodeCollection object that is bound to the appliance.

	
get_host_address

	

	
get_repofile_list()[source]

	Returns list of repofiles present at the appliance.

Ignores certain files, like redhat.repo.

	
get_yaml_config()[source]

	

	
guid

	

	
has_cli

	

	
has_netapp()[source]

	

	
host_id(hostname)[source]

	

	
hostname

	

	
install_netapp_sdk(*args, **kwargs)

	

	
install_vddk(*args, **kwargs)

	

	
is_downstream

	

	
is_embedded_ansible_running

	

	
is_embedded_ensible_role_enabled

	

	
is_evm_service_running(*args, **kwargs)

	

	
is_idle

	Return appliance idle state measured by last production.log activity.
It runs one liner script, which first gathers current date on appliance and then gathers
date of last entry in production.log(which has to be parsed) with /api calls filtered
(These calls occur every minute.)
Then it deducts that last time in log from current date and if it is lower than idle_time it
returns False else True.

Args:

	Returns:	True if appliance is idling for longer or equal to idle_time seconds.
False if appliance is not idling for longer or equal to idle_time seconds.

	
is_miqqe_patch_candidate

	

	
is_nginx_running

	

	
is_rabbitmq_running

	

	
is_registration_complete(used_repo_or_channel)[source]

	Checks if an appliance has the correct repos enabled with RHSM or SAT6

	
is_ssh_running

	

	
is_storage_enabled

	

	
is_supervisord_running

	

	
is_web_ui_running(unsure=False)[source]

	Triple checks if web UI is up and running

	Parameters:	unsure – Variable to return when not sure if web UI is running or not
(default False)

	
log

	

	
managed_known_providers

	Returns a set of provider crud objects of known providers managed by this appliance

Note

Recognized by name only.

	
managed_provider_names

	Returns a list of names for all providers configured on the appliance

Note

Unlike managed_known_providers, this will also return names of providers that were
not recognized, but are present.

	
miqqe_patch_applied

	

	
miqqe_version

	Returns version of applied JS patch or None if not present

	
new_rest_api_instance(entry_point=None, auth=None, logger='default', verify_ssl=False)[source]

	Returns new REST API instance.

	
os_version

	

	
patch_with_miqqe(*args, **kwargs)

	

	
precompile_assets(*args, **kwargs)

	

	
product_name

	

	
product_url_regexp = <_sre.SRE_Pattern object at 0x447cf30>

	

	
read_repos()[source]

	Reads repofiles so it gives you mapping of id and url.

	
reboot(*args, **kwargs)

	

	
reset_automate_model()[source]

	

	
rest_api

	

	
rest_logger

	

	
restart_evm_service(*args, **kwargs)

	

	
scheme

	

	
seal_for_templatizing()[source]

	Prepares the VM to be “generalized” for saving as a template.

	
server

	

	
server_details_changed()[source]

	

	
server_id()[source]

	

	
server_name()[source]

	

	
server_region()[source]

	

	
server_region_string()[source]

	

	
server_roles

	Return a dictionary of server roles from database

	
server_zone_id()[source]

	

	
set_cap_and_util_all_via_rails()[source]

	Turns on Collect for All Clusters and Collect for all Datastores without using Web UI.

	
set_cfme_server_relationship(vm_name, server_id=1)[source]

	Set MiqServer record to the id of a VM by name, effectively setting the CFME Server
Relationship without using the Web UI.

	
set_full_refresh_threshold(threshold=100)[source]

	

	
set_pglogical_replication(replication_type=':none')[source]

	Set pglogical replication type (:none, :remote, :global) without using the Web UI.

	
set_rubyrep_replication(host, port=5432, database='vmdb_production', username='root', password=None)[source]

	Sets up rubyrep replication via advanced configuration settings yaml.

	
set_session_timeout(timeout=86400, quiet=True)[source]

	Sets the timeout of UI timeout.

	Parameters:	
	timeout – Timeout in seconds

	quiet – Whether to ignore any errors

	
set_yaml_config(data_dict)[source]

	

	
slave_server_name()[source]

	

	
slave_server_zone_id()[source]

	

	
ssh_client

	Creates an ssh client connected to this appliance

Returns: A configured :py:class:utils.ssh.SSHClient instance.

Usage:

with appliance.ssh_client as ssh:
 status, output = ssh.run_command('...')

Note

The credentials default to those found under ssh key in credentials.yaml.

	
ssh_client_with_privatekey()[source]

	

	
start_evm_service(*args, **kwargs)

	

	
swap

	Retrieves the value of swap for the appliance. Might raise an exception if SSH fails.

	Returns:	An integer value of swap in the VM in megabytes. If None is returned, it means it
was not possible to parse the command output.

	Raises:	paramiko.ssh_exception.SSHException or socket.error [http://docs.python.org/2.7/library/socket.html#socket.error]

	
ui_port

	

	
uninstall_vddk(*args, **kwargs)

	

	
unregister()[source]

	unregisters appliance from RHSM/SAT6

	
update_guid(*args, **kwargs)

	

	
update_rhel(*args, **kwargs)

	

	
update_server_roles(changed_roles)[source]

	

	
url

	

	
use_dev_branch(*args, **kwargs)

	

	
user

	

	
utc_time()[source]

	

	
version

	

	
wait_for_embedded_ansible(timeout=900)[source]

	Waits for embedded ansible to be ready

	Parameters:	timeout – Number of seconds to wait until timeout (default 900)

	
wait_for_evm_service(*args, **kwargs)

	

	
wait_for_host_address()[source]

	

	
wait_for_miq_server_workers_started(evm_tail=None, poll_interval=5)[source]

	Waits for the CFME’s workers to be started by tailing evm.log for:
‘INFO – : MIQ(MiqServer#wait_for_started_workers) All workers have been started’

	
wait_for_ssh(timeout=600)[source]

	Waits for appliance SSH connection to be ready

	Parameters:	timeout – Number of seconds to wait until timeout (default 600)

	
wait_for_web_ui(*args, **kwargs)

	

	
workaround_missing_gemfile(*args, **kwargs)

	

	
write_repofile(repo_id, repo_url, **kwargs)[source]

	Wrapper around writing a repofile. You can specify conf options in kwargs.

	
zone_description

	

	
class cfme.utils.appliance.MiqApi(entry_point, auth, logger=None, verify_ssl=True, ca_bundle_path=None)[source]

	Bases: manageiq_client.api.ManageIQClient

	
get_entity_by_href(href)[source]

	Parses the collections

	
class cfme.utils.appliance.Navigatable(*args, **kwargs)[source]

	Bases: cfme.utils.appliance.NavigatableMixin

	
appliance = IPAppliance(address='10.11.12.13', container=None, db_host=None, db_port=5432, ssh_port=22)

	

	
class cfme.utils.appliance.NavigatableMixin[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
browser

	

	
create_view(view_class, o=None, override=None)[source]

	

	
cfme.utils.appliance.get_or_create_current_appliance()[source]

	

	
cfme.utils.appliance.load_appliances(appliance_list, global_kwargs)[source]

	Instantiate a list of appliances from configuration data.

	Parameters:	
	appliance_list – List of dictionaries that contain parameters for IPAppliance

	global_kwargs – Arguments that will be defined for each appliances. Appliance can override.

	Result:

	List of IPAppliance

	
cfme.utils.appliance.load_appliances_from_config(config)[source]

	Backwards-compatible config loader.

The config contains some global values and appliances key which contains a list of dicts
that have the same keys as IPAppliance.CONFIG_MAPPING‘s keys. If appliances key is not
present, it is assumed it is old-format definition and the whole dict is used as a reference
for one single appliance.

The global values in the root of the dict (in case of appliances present) have lesser
priority than the values in appliance definitions themselves

	Parameters:	config – A dictionary with the configuration

	
cfme.utils.appliance.provision_appliance(version=None, vm_name_prefix='cfme', template=None, provider_name=None, vm_name=None)[source]

	Provisions fresh, unconfigured appliance of a specific version

Note

Version must be mapped to template name under appliance_provisioning > versions
in cfme_data.yaml.
If no matching template for given version is found, and trackerbot is set up,
the latest available template of the same stream will be used.
E.g.: if there is no template for 5.5.5.1 but there is 5.5.5.3, it will be used instead.
If both template name and version are specified, template name takes priority.

	Parameters:	
	version – version of appliance to provision

	vm_name_prefix – name prefix to use when deploying the appliance vm

Returns: Unconfigured appliance; instance of Appliance

Usage:

my_appliance = provision_appliance('5.5.1.8', 'my_tests')
my_appliance.fix_ntp_clock()
...other configuration...
my_appliance.db.enable_internal()
my_appliance.wait_for_web_ui()
or
my_appliance = provision_appliance('5.5.1.8', 'my_tests')
my_appliance.configure()

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

 	cfme.utils.appliance package

cfme.utils.appliance.implementations package

Submodules

	cfme.utils.appliance.implementations.ssui module

	cfme.utils.appliance.implementations.ui module

Module contents

	
class cfme.utils.appliance.implementations.Implementation(owner)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

UI implementation using the normal ux

	
appliance

	

	
create_view(view_class, additional_context=None)[source]

	Method that is used to instantiate a Widgetastic View.

Views may define LOCATION on them, that implies a force_navigate() call with
LOCATION as parameter.

	Parameters:	
	view_class – A view class, subclass of widgetastic.widget.View

	additional_context – Additional informations passed to the view (user name, VM name, ...)
which is also passed to the force_navigate() in case when navigation is
requested.

	Returns:	An instance of the view_class

	
open_browser(url_key=None)[source]

	

	
quit_browser()[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

 	cfme.utils.appliance package

 	cfme.utils.appliance.implementations package

cfme.utils.appliance.implementations.ssui module

	
class cfme.utils.appliance.implementations.ssui.MiqSSUIBrowser(selenium, endpoint, extra_objects=None)[source]

	Bases: widgetastic.browser.Browser

	
appliance

	

	
create_view(*args, **kwargs)[source]

	

	
product_version

	

	
class cfme.utils.appliance.implementations.ssui.MiqSSUIBrowserPlugin(browser)[source]

	Bases: widgetastic.browser.DefaultPlugin

	
ENSURE_PAGE_SAFE = "function checkProgressBar(){try{return $('#ngProgress').attr('style').indexOf('width: 0%')>-1;}catch(err){return false;}}\nfunction checkJquery(){if(typeof $=='undefined'){return true;}else{return!($.active>0);}}\nreturn checkProgressBar()&&checkJquery();"

	

	
after_keyboard_input(element, keyboard_input)[source]

	

	
ensure_page_safe(timeout='20s')[source]

	

	
class cfme.utils.appliance.implementations.ssui.SSUINavigateStep(obj, navigate_obj)[source]

	Bases: navmazing.NavigateStep

	
VIEW = None

	

	
am_i_here()[source]

	

	
appliance

	

	
create_view(*args, **kwargs)[source]

	

	
do_nav(_tries=0, *args, **kwargs)[source]

	Describes how the navigation should take place.

	
go(_tries=0)[source]

	

	
pre_navigate(*args, **kwargs)[source]

	

	
view

	

	
class cfme.utils.appliance.implementations.ssui.ViaSSUI(owner)[source]

	Bases: cfme.utils.appliance.implementations.Implementation

	
widgetastic

	This gives us a widgetastic browser.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

 	cfme.utils.appliance package

 	cfme.utils.appliance.implementations package

cfme.utils.appliance.implementations.ui module

	
class cfme.utils.appliance.implementations.ui.CFMENavigateStep(obj, navigate_obj)[source]

	Bases: navmazing.NavigateStep

	
VIEW = None

	

	
am_i_here()[source]

	

	
appliance

	

	
check_for_badness(fn, _tries, nav_args, *args, **kwargs)[source]

	

	
construst_message(here, resetter, view, duration)[source]

	

	
create_view(*args, **kwargs)[source]

	

	
go(_tries=0, *args, **kwargs)[source]

	

	
log_message(msg, level='debug')[source]

	

	
post_navigate(*args, **kwargs)[source]

	

	
pre_navigate(*args, **kwargs)[source]

	

	
resetter(*args, **kwargs)[source]

	

	
view

	

	
class cfme.utils.appliance.implementations.ui.ErrorView(parent, logger=None, **kwargs)[source]

	Bases: widgetastic.widget.View

	
body

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
error_text

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
get_rails_error()[source]

	Gets the displayed error messages

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.utils.appliance.implementations.ui.MiqBrowser(selenium, endpoint, extra_objects=None)[source]

	Bases: widgetastic.browser.Browser

	
appliance

	

	
create_view(*args, **kwargs)[source]

	

	
product_version

	

	
class cfme.utils.appliance.implementations.ui.MiqBrowserPlugin(browser)[source]

	Bases: widgetastic.browser.DefaultPlugin

	
DEFAULT_WAIT = 0.8

	

	
ENSURE_PAGE_SAFE = 'function isHidden(el){if(el===null)return true;return el.offsetParent===null;}\ntry{angular.element(\'error-modal\').hide();}catch(err){}\ntry{return!ManageIQ.qe.anythingInFlight();}catch(err){return(((typeof $==="undefined")?true:$.active<1)&&(!((!isHidden(document.getElementById("spinner_div")))&&isHidden(document.getElementById("lightbox_div"))))&&document.readyState=="complete"&&((typeof checkMiqQE==="undefined")?true:checkMiqQE(\'autofocus\')<1)&&((typeof checkMiqQE==="undefined")?true:checkMiqQE(\'debounce\')<1)&&((typeof checkAllMiqQE==="undefined")?true:checkAllMiqQE()<1));}'

	

	
OBSERVED_FIELD_MARKERS = ('data-miq_observe', 'data-miq_observe_date', 'data-miq_observe_checkbox')

	

	
after_keyboard_input(element, keyboard_input)[source]

	

	
ensure_page_safe(timeout='10s')[source]

	

	
class cfme.utils.appliance.implementations.ui.ViaUI(owner)[source]

	Bases: cfme.utils.appliance.implementations.Implementation

UI implementation using the normal ux

	
widgetastic

	This gives us a widgetastic browser.

	
cfme.utils.appliance.implementations.ui.can_skip_badness_test(fn)[source]

	Decorator for setting a noop

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

 	cfme.utils.appliance package

cfme.utils.appliance.db module

	
class cfme.utils.appliance.db.ApplianceDB(appliance, ssh_client=None)[source]

	Bases: cfme.utils.appliance.plugin.AppliancePlugin

Holder for appliance DB related methods and functions

	
__eq__(other)

	Automatically created by attrs.

	
__ge__(other)

	Automatically created by attrs.

	
__gt__(other)

	Automatically created by attrs.

	
__le__(other)

	Automatically created by attrs.

	
__lt__(other)

	Automatically created by attrs.

	
__ne__(other)

	Automatically created by attrs.

	
__repr__()

	Automatically created by attrs.

	
address

	

	
backup(database_path='/tmp/evm_db.backup')[source]

	Backup VMDB database

	
client

	

	
drop()[source]

	Drops the vmdb_production database

Note: EVM service has to be stopped for this to work.

	
enable_external(db_address, region=0, db_name=None, db_username=None, db_password=None)[source]

	Enables external database

	Parameters:	
	db_address – Address of the external database

	region – Number of region to join

	db_name – Name of the external DB

	db_username – Username to access the external DB

	db_password – Password to access the external DB

Returns a tuple of (exitstatus, script_output) for reporting, if desired

	
enable_internal(region=0, key_address=None, db_password=None, ssh_password=None)[source]

	Enables internal database

	Parameters:	
	region – Region number of the CFME appliance.

	key_address – Address of CFME appliance where key can be fetched.

Note

If key_address is None, a new encryption key is generated for the appliance.

	
extend_partition()[source]

	Extends the /var partition with DB while shrinking the unused /repo partition

	
has_database

	Does database have a database defined

	
has_tables

	Does database have tables defined

	
is_dedicated_active

	

	
is_enabled

	Is database enabled

	
is_internal

	Is database internal

	
is_online

	Is database online

	
is_partition_extended

	

	
is_ready

	Is database ready

	
loosen_pgssl(with_ssl=False)[source]

	Loosens postgres connections

	
postgres_version = 'rh-postgresql95'

	

	
restore(database_path='/tmp/evm_db.backup')[source]

	Restore VMDB database

	
service_name = 'rh-postgresql95-postgresql'

	

	
setup(**kwargs)[source]

	Configure database

On downstream appliances, invokes the internal database setup.
On all appliances waits for database to be ready.

	
ssh_client

	

	
start_db_service()[source]

	Starts the postgresql service via systemctl

	
stop_db_service()[source]

	Starts the postgresql service via systemctl

	
wait_for(timeout=600)[source]

	Waits for appliance database to be ready

	Parameters:	timeout – Number of seconds to wait until timeout (default 180)

	
exception cfme.utils.appliance.db.ApplianceDBException[source]

	Bases: cfme.utils.appliance.plugin.AppliancePluginException

Basic Exception for Appliance DB object

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

 	cfme.utils.appliance package

cfme.utils.appliance.plugin module

	
class cfme.utils.appliance.plugin.AppliancePlugin(appliance)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

Base class for all appliance plugins.

Usage:

.. code-block:: python

 class IPAppliance(object):
 # ...

 foo = FooPlugin.declare(parameter='value')

Instance of such plugin is then created upon first access.

	
__eq__(other)

	Automatically created by attrs.

	
__ge__(other)

	Automatically created by attrs.

	
__gt__(other)

	Automatically created by attrs.

	
__le__(other)

	Automatically created by attrs.

	
__lt__(other)

	Automatically created by attrs.

	
__ne__(other)

	Automatically created by attrs.

	
__repr__()

	Automatically created by attrs.

	
appliance = Attribute(name='appliance', default=NOTHING, validator=None, repr=False, cmp=True, hash=None, init=True, convert=<built-in function proxy>, metadata=mappingproxy({}))

	

	
classmethod declare(**kwargs)[source]

	

	
logger

	

	
class cfme.utils.appliance.plugin.AppliancePluginDescriptor(cls, args, kwargs)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
__eq__(other)

	Automatically created by attrs.

	
__ge__(other)

	Automatically created by attrs.

	
__gt__(other)

	Automatically created by attrs.

	
__le__(other)

	Automatically created by attrs.

	
__lt__(other)

	Automatically created by attrs.

	
__ne__(other)

	Automatically created by attrs.

	
__repr__()

	Automatically created by attrs.

	
args

	

	
cache

	

	
cls

	

	
kwargs

	

	
exception cfme.utils.appliance.plugin.AppliancePluginException[source]

	Bases: exceptions.Exception [http://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

Base class for all custom exceptions raised from plugins.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

 	cfme.utils.appliance package

cfme.utils.appliance.services module

	
exception cfme.utils.appliance.services.SystemdException[source]

	Bases: cfme.utils.appliance.plugin.AppliancePluginException

	
class cfme.utils.appliance.services.SystemdService(appliance, unit_name)[source]

	Bases: cfme.utils.appliance.plugin.AppliancePlugin

	
__eq__(other)

	Automatically created by attrs.

	
__ge__(other)

	Automatically created by attrs.

	
__gt__(other)

	Automatically created by attrs.

	
__le__(other)

	Automatically created by attrs.

	
__lt__(other)

	Automatically created by attrs.

	
__ne__(other)

	Automatically created by attrs.

	
__repr__()

	Automatically created by attrs.

	
enable()[source]

	

	
restart()[source]

	

	
running

	

	
start()[source]

	

	
stop()[source]

	

	
unit_name = Attribute(name='unit_name', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
wait_for_running(timeout=600)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.mgmt_system package

Module contents

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.ansible module

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.apidoc module

Sphinx plugin for automatically generating (and optionally cleaning) project api documentation

To enable the optional cleaning, set clean_autogenerated_docs to True in docs/conf.py

	
cfme.utils.apidoc.modules_to_document = ['cfme', 'fixtures', 'markers', 'utils']

	List of modules/packages to document, paths relative to the project root.

	
cfme.utils.apidoc.purge_module_apidoc(sphinx, exception)[source]

	

	
cfme.utils.apidoc.setup(sphinx)[source]

	Main sphinx entry point, calls sphinx-apidoc

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.blockers module

	
class cfme.utils.blockers.BZ(bug_id, **kwargs)[source]

	Bases: cfme.utils.blockers.Blocker

	
blocks

	

	
bugzilla_bug

	

	
data

	

	
get_bug_url()[source]

	

	
url

	

	
class cfme.utils.blockers.Blocker(**kwargs)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

Base class for all blockers

REQUIRED THING! Any subclass’ constructors must accept kwargs and after POPping the values
required for the blocker’s operation, call to ``super` with **kwargs must be done!
Failing to do this will render some of the functionality disabled ;).

	
classmethod all_blocker_engines()[source]

	Return mapping of name:class of all the blocker engines in this module.

Having this as a separate function will later enable to scatter the engines across modules
in case of extraction into a separate library.

	
blocks = False

	

	
kwargs = {}

	

	
classmethod parse(blocker, **kwargs)[source]

	Create a blocker object from some representation

	
url

	

	
class cfme.utils.blockers.GH(description, **kwargs)[source]

	Bases: cfme.utils.blockers.Blocker

	
DEFAULT_REPOSITORY = 'foo/bar'

	

	
blocks

	

	
data

	

	
github = <github.MainClass.Github object>

	

	
repo

	

	
url

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.browser module

Core functionality for starting, restarting, and stopping a selenium browser.

	
class cfme.utils.browser.BrowserFactory(webdriver_class, browser_kwargs)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
close(browser)[source]

	

	
create(url_key)[source]

	

	
processed_browser_args()[source]

	

	
class cfme.utils.browser.BrowserManager(browser_factory)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
add_cleanup(callback)[source]

	

	
coerce_url_key(key)[source]

	

	
ensure_open(url_key=None)[source]

	

	
classmethod from_conf(browser_conf)[source]

	

	
open_fresh(url_key=None)[source]

	

	
quit()[source]

	

	
start(url_key=None)[source]

	

	
class cfme.utils.browser.Wharf(wharf_url)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
checkin()[source]

	

	
checkout()[source]

	

	
docker_id = None

	

	
class cfme.utils.browser.WharfFactory(webdriver_class, browser_kwargs, wharf)[source]

	Bases: cfme.utils.browser.BrowserFactory

	
close(browser)[source]

	

	
create(url_key)[source]

	

	
processed_browser_args()[source]

	

	
class cfme.utils.browser.WithZoom(level)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

This class is a decorator that used to wrap function with zoom level.
this class perform zoom by <level>, call the target function and exit
by zooming back to the original zoom level.

	Parameters:	level (*) – int, the zooming value (i.e. -2 -> 2 clicks out; 3 -> 3 clicks in)

	
cfme.utils.browser.browser()[source]

	callable that will always return the current browser instance

If None, no browser is running.

	Returns:	The current browser instance.

	
cfme.utils.browser.ensure_browser_open(url_key=None)[source]

	Ensures that there is a browser instance currently open

Will reuse an existing browser or start a new one as-needed

	Returns:	The current browser instance.

	
cfme.utils.browser.quit()[source]

	Close the current browser

Will silently fail if the current browser can’t be closed for any reason.

Note

If a browser can’t be closed, it’s usually because it has already been closed elsewhere.

	
cfme.utils.browser.start(url_key=None)[source]

	Starts a new web browser

If a previous browser was open, it will be closed before starting the new browser

Args:

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.bz module

	
class cfme.utils.bz.BugWrapper(bugzilla, bug)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
__getattr__(attr)[source]

	This proxies the attribute queries to the Bug object and modifies its result.

If the field looked up is specified as loose field, it will be converted to Version.
If the field is string and it has zero length, or the value is specified as “not specified”,
it will return None.

	
bugzilla

	

	
can_test_on_upstream

	

	
copies

	Returns list of copies of this bug.

	
copy_of

	Returns either id of the bug this is copy of, or None, if it is not a copy.

	
is_opened

	

	
loose

	

	
product

	

	
qa_whiteboard

	Returns a set of QA Whiteboard markers.

It relies on the fact, that our QA Whiteboard uses format foo:bar:baz.

Should be able to handle cases like ‘foo::bar’, or ‘abc:’.

	
release_flag

	

	
upstream_bug

	

	
zstream

	

	
class cfme.utils.bz.Bugzilla(**kwargs)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
bug_count

	

	
bugs

	

	
bugzilla

	

	
default_product

	

	
classmethod from_config()[source]

	

	
get_bug(id)[source]

	

	
get_bug_variants(id)[source]

	

	
loose

	

	
open_states

	

	
product(product)[source]

	

	
products(*names)[source]

	

	
resolve_blocker(blocker, version=None, ignore_bugs=None, force_block_streams=None)[source]

	

	
upstream_version

	

	
class cfme.utils.bz.Product(data)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
default_release

	

	
latest_version

	

	
milestones

	

	
name

	

	
releases

	

	
versions

	

	
cfme.utils.bz.check_fixed_in(fixed_in, version_series)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.category module

Module used for handling categories of let’s say form values and for categorizing them.

	
class cfme.utils.category.CategoryBase(value)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

Base class for categories

	Parameters:	value – Value to be categorized.

	
cfme.utils.category.categorize(iterable, cat)[source]

	Function taking iterable of values and a dictionary of rules to categorize the values.

Keys of the dictionary are callables, taking one parameter - the current iterable item. If the
call on it returns positive, then the value part of dictionary is taken (assumed callable)
and it is called with the current item.

	Parameters:	
	iterable – Iterable to categorize.

	cat – Category specification dictionary

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.conf module

a wrapper that provides the old :code:utils.conf api

	
cfme.utils.conf.__format__()

	default object formatter

	
cfme.utils.conf.__new__(S, ...) a new object with type S, a subtype of T

	

	
cfme.utils.conf.__reduce__()

	helper for pickle

	
cfme.utils.conf.__reduce_ex__()

	helper for pickle

	
cfme.utils.conf.__sizeof__() int

	size of object in memory, in bytes

	
cfme.utils.conf.__subclasshook__()

	Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__().
It should return True, False or NotImplemented. If it returns
NotImplemented, the normal algorithm is used. Otherwise, it
overrides the normal algorithm (and the outcome is cached).

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.datafile module

datafile functions, to help reliably datafiles from the data directory.

	
cfme.utils.datafile.data_path_for_filename(filename, base_path, testmod_path=None)[source]

	Returns the data path for a given file name

	
cfme.utils.datafile.load_data_file(filename, replacements=None)[source]

	Opens the given filename, returning a file object

	Parameters:	
	filename – If a base_path string is passed, filename will be loaded from there

	replacements – If a replacements mapping is passed, the loaded file is assumed to
be a template [http://docs.python.org/2/library/string.html#template-strings].
In this case the replacements mapping will be used in that template’s subsitute method.

Returns: A file object.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.db module

	
class cfme.utils.db.Db(hostname=None, credentials=None, port=None)[source]

	Bases: _abcoll.Mapping

Helper class for interacting with a CFME database using SQLAlchemy

	Parameters:	
	hostname – base url to be used (default is from current_appliance)

	credentials – name of credentials to use from utils.conf.credentials
(default database)

Provides convient attributes to common sqlalchemy objects related to this DB,
as well as a Mapping interface to access and reflect database tables. Where possible,
attributes are cached.

Db objects support getting tables by name via the mapping interface:

table = db['table_name']

Usage:

Usually used to query the DB for info, here's a common query
for vm in db.session.query(db['vms']).all():
 print(vm.name)
 print(vm.guid)

List comprehension to get all templates
[(vm.name, vm.guid) for vm in session.query(db['vms']).all() if vm.template is True]

Use the transaction manager for write operations:
with db.transaction:
 db.session.query(db['vms']).all().delete()

Note

Creating a table object requires a call to the database so that SQLAlchemy can do
reflection to determine the table’s structure (columns, keys, indices, etc). On
a latent connection, this can be extremely slow, which will affect methods that return
tables, like the mapping interface or values().

	
__contains__(table_name)[source]

	Whether or not the named table is in this db

	
__eq__(other)[source]

	Check if this db is equal to another db

	
__getitem__(table_name)[source]

	Access tables as items contained in this db

Usage:

To get a table called 'table_name':
db['table_name']

This may return None in the case where a table is found but reflection fails.

	
__iter__()[source]

	Iterator of table names in this db

	
__len__()[source]

	Number of tables in this db

	
__ne__(other)[source]

	Check if this db is not equal to another db

	
copy()[source]

	Copy this database instance, keeping the same credentials and hostname

	
db_url

	The connection URL for this database, including credentials

	
engine

	The Engine [http://docs.sqlalchemy.org/en/latest/core/connections.html#sqlalchemy.engine.Engine] for this database

It uses pessimistic disconnection handling, checking that the database is still
connected before executing commands.

	
get(table_name, default=None)[source]

	table getter

	Parameters:	
	table_name – Name of the table to get

	default – Default value to return if table_name is not found.

Returns: a table if table_name exists, otherwise ‘None’ or the passed-in default

	
items()[source]

	Iterator of (table_name, table) pairs

	
keys()[source]

	Iterator of table names in this db

	
metadata

	MetaData [http://docs.sqlalchemy.org/en/latest/core/metadata.html#sqlalchemy.schema.MetaData] for this database

This can be used for introspection of reflected items.

Note

Tables that haven’t been reflected won’t show up in metadata. To reflect a table,
use reflect_table().

	
reflect_table(table_name)[source]

	Populate metadata with information on a table

	Parameters:	table_name – The name of a table to reflect

	
session

	Returns a Session [http://docs.sqlalchemy.org/en/latest/orm/session_api.html#sqlalchemy.orm.session.Session]

This is used for database queries. For writing to the database, start a
transaction().

Note

This attribute is cached. In cases where a new session needs to be explicitly created,
use sessionmaker().

	
sessionmaker

	A sessionmaker [http://docs.sqlalchemy.org/en/latest/orm/session_api.html#sqlalchemy.orm.session.sessionmaker]

Used to make new sessions with this database, as needed.

	
table_base

	Base class for all tables returned by this database

This base class is created using
declarative_base.

	
table_names

	A sorted list of table names available in this database.

	
transaction

	Context manager for simple transaction management

Sessions understand the concept of transactions, and provider context managers to
handle conditionally committing or rolling back transactions as needed.

Note

Sessions automatically commit transactions by default. For predictable results when
writing to the database, use the transaction manager.

Usage:

with db.transaction:
 db.session.do_something()

	
values()[source]

	Iterator of tables in this db

	
cfme.utils.db.database_on_server(*args, **kwds)[source]

	

	
cfme.utils.db.ping_connection(dbapi_connection, connection_record, connection_proxy)[source]

	ping_connection event hook, used to reconnect db sessions that time out

Note

See also: Connection Invalidation [http://docs.sqlalchemy.org/en/latest/core/pooling.html#pool-connection-invalidation]

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.deprecation module

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.error module

Handles errors based on something beyond the type. You can match
error messages with regular expressions. You can also extend the
matching behavior however you like. By default, strings are treated
as regex and matched against the message of the error. Functions are
passed the error and if the function returns ‘truthy’, then the error
is caught.

Usage:

from cfme.utils import error
with error.expected('foo'):
 x = 1
 raise Exception('oh noes foo happened!') # this will be caught because regex matches

with error.expected('foo'):
 raise Exception('oh noes bar happened!') # this will bubble up because it doesn't match

with error.expected('foo'):
 pass # an error will be thrown because we expected an error but there wasn't one.

	
exception cfme.utils.error.UnexpectedSuccessException[source]

	Bases: exceptions.Exception [http://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

An error that is thrown when something we expected to fail didn’t
fail.

	
cfme.utils.error.expected(*args, **kwds)[source]

	Inverts error handling. If the enclosed block doesn’t raise an
error, it will raise one. If it raises a matching error, it will
return normally. If it raises a non-matching error, that error
will be allowed to propagate up the stack.

	
cfme.utils.error.handler(*args, **kwds)[source]

	Handles errors based on more than just their type. Any matching
error will be caught, the rest will be allowed to propagate up the
stack.

	
cfme.utils.error.regex(expr, e)[source]

	Search the message of the exception using the regex expr

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.events module

Library for event testing.

	
class cfme.utils.events.Event(event_tool, *args)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

represents either db event received by CFME and stored in event_streams or an expected event

	
add_attrs(*attrs)[source]

	event consists of attributes like event_type, etc.
this method allows to add an attribute to event

	
build_from_raw_event(evt)[source]

	helper method which takes raw event from event_streams and prepares event object

	
matches(evt)[source]

	compares current event with passed event.

	
class cfme.utils.events.EventAttr(attr_type=None, cmp_func=None, **attrs)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

contains one event attribute and the method for comparing it.

	
match(attr)[source]

	compares current attribute with passed attribute

	
class cfme.utils.events.EventListener(appliance)[source]

	Bases: threading.Thread [http://docs.python.org/2.7/library/threading.html#threading.Thread]

accepts “expected” events, listens to db events and compares showed up events with expected
events. Runs callback function if expected events have it.

	
__call__(*args, **kwargs)[source]

	it is called by register_event fixture.
bad idea, to replace register_event by object later

	
check_expected_events()[source]

	

	
get_next_portion()[source]

	

	
got_events

	returns dict with expected events and all the events matched to expected ones

	
listen_to(*evts, **kwargs)[source]

	accepts one or many events
callback function will be called when event arrived in event_streams.
callback will receive expected event and got event as params.

	Parameters:	
	evts – list of events which EventListener should listen to

	callback – callback function that will be called if event is received

	first_event – EventListener waits for only first event of such type.
it ignores such event in future if first matching event is found.

By default EventListener collects and receives all matching events.

	
new_event(*attrs, **kwattrs)[source]

	this method just simplifies “expected” event creation.

Usage:

listener = appliance.event_listener()
evt = listener.new_event(target_type='VmOrTemplate',
 target_name='my_lovely_vm',
 event_type='vm_create')
listener.listen_to(evt)

	
process_events()[source]

	processes all new db events and compares them with expected events.
processed events are ignored next time

	
reset_events()[source]

	

	
reset_matches()[source]

	

	
run()[source]

	

	
set_last_record(evt=None)[source]

	

	
start()[source]

	

	
started

	

	
stop()[source]

	

	
class cfme.utils.events.EventTool(appliance)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

EventTool serves as a wrapper to getting the events from the database.

	Variables:	OBJECT_TABLE – Mapping of object types to tables and column names.

	
OBJECT_TABLE = {'Host': ('hosts', 'name', 'id'), 'Service': ('services', 'name', 'id'), 'VmOrTemplate': ('vms', 'name', 'id')}

	

	
all_event_types

	Returns a list of all possible events that can be used.

	Returns:	A list of str [http://docs.python.org/2.7/library/functions.html#str].

	
ensure_event_happens(*args, **kwds)[source]

	Context manager usable for one-off checking of the events.

See also: query_miq_events()

	Parameters:	
	target_type – What kind of object is the target of the event (MiqServer, VmOrTemplate)

	target_id – What is the ID of the object (or name, see process_id()).

	event_type – Type of the event. Ideally one of the all_event_types() but other
kinds of events exist too.

	
event_streams

	event_streams table.

	
event_streams_attributes

	event_streams columns and python’s column types

	
miq_event_definitions

	miq_event_definitions table.

	
process_id(target_type, target_name)[source]

	Resolves id, let it be a string or an id.

In case the target_type is defined in the OBJECT_TABLE, you can pass a
string with object’s name, otherwise a numeric id to the table is required.

	Parameters:	
	target_type – What kind of object is the target of the event (MiqServer, VmOrTemplate...)

	target_name – An id or a name of the object.

	Returns:	int [http://docs.python.org/2.7/library/functions.html#int] with id of the object in the database.

	
query(*args, **kwargs)[source]

	Wrapper for the SQLAlchemy query method.

	
query_miq_events(target_type=None, target_id=None, event_type=None, since=None, until=None, from_id=None)[source]

	Checks whether an event occured.

	Parameters:	
	target_type – What kind of object is the target of the event (MiqServer, VmOrTemplate)

	target_id – What is the ID of the object (or name, see process_id()).

	event_type – Type of the event. Ideally one of the all_event_types() but other
kinds of events exist too.

	since – Since when you want to check it. UTC

	until – Until what time you want to check it.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.ext_auth module

	
cfme.utils.ext_auth.disable_external_auth(auth_mode)[source]

	

	
cfme.utils.ext_auth.disable_external_auth_ipa()[source]

	Unconfigure external auth.

	
cfme.utils.ext_auth.disable_external_auth_openldap()[source]

	

	
cfme.utils.ext_auth.setup_external_auth_ipa(**data)[source]

	Sets up the appliance for an external authentication with IPA.

	Keywords:

	get_groups: Get User Groups from External Authentication (httpd).
ipaserver: IPA server address.
iparealm: Realm.
credentials: Key of the credential in credentials.yaml

	
cfme.utils.ext_auth.setup_external_auth_openldap(**data)[source]

	Sets up the appliance for an external authentication with OpenLdap.

	Keywords:

	get_groups: Get User Groups from External Authentication (httpd).
ipaserver: IPA server address.
iparealm: Realm.
credentials: Key of the credential in credentials.yaml

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.ftp module

FTP manipulation library

@author: Milan Falešník <mfalesni@redhat.com>

	
class cfme.utils.ftp.FTPClient(host, login, password, upload_dir='/')[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

FTP Client encapsulation

This class provides basic encapsulation around ftplib’s FTP class.
It wraps some methods and allows to easily delete whole directory or walk
through the directory tree.

Usage:

>>> from utils.ftp import FTPClient
>>> ftp = FTPClient("host", "user", "password")
>>> only_files_with_EVM_in_name = ftp.filesystem.search("EVM", directories=False)
>>> only_files_by_regexp = ftp.filesystem.search(re.compile("regexp"), directories=False)
>>> some_directory = ftp.filesystem.cd("a/b/c") # cd's to this directory
>>> root = some_directory.cd("/")

Always going through filesystem property is a bit slow as it parses the structure on each use.
If you are sure that the structure will remain intact between uses, you can do as follows
to save the time:

>>> fs = ftp.filesystem

Let’s download some files:

>>> for f in ftp.filesystem.search("IMPORTANT_FILE", directories=False):
... f.download() # To pickup its original name
... f.download("custom_name")

We finished the testing, so we don’t need the content of the directory:

>>> ftp.recursively_delete()

And it’s gone.

	
__enter__()[source]

	Entering the context does nothing, because the client is already connected

	
__exit__(type, value, traceback)[source]

	Exiting the context means just calling .close() on the client.

	
cdup()[source]

	Goes one level up in directory hierarchy (cd ..)

	
close()[source]

	Finish work and close connection

	
connect()[source]

	

	
cwd(d)[source]

	Enter a directory

	Parameters:	d – Directory name

	Returns:	Success of the action

	
dele(f)[source]

	Remove a file

	Parameters:	f – File name

	Returns:	Success of the action

	
filesystem

	Returns the object structure of the filesystem

	Returns:	Root directory

	
ls()[source]

	Lists the content of a directory.

	Returns:	List of all items in current directory
Return format is [(is_dir?, “name”, remote_time), ...]

	
mkd(d)[source]

	Create a directory

	Parameters:	d – Directory name

	Returns:	Success of the action

	
pwd()[source]

	Get current directory

	Returns:	Current directory

	Raises:	AssertionError –
PWD command fails

	
recursively_delete(d=None)[source]

	Recursively deletes content of pwd

WARNING: Destructive!

	Parameters:	
	d – Directory to enter (None for not entering - root directory)

	d – str or None

	Raises:	AssertionError –
When some of the FTP commands fail.

	
retrbinary(f, callback)[source]

	Download file

You need to specify the callback function, which accepts one parameter
(data), to be processed.

	Parameters:	
	f – Requested file name

	callback – Callable with one parameter accepting the data

	
rmd(d)[source]

	Remove a directory

	Parameters:	d – Directory name

	Returns:	Success of the action

	
storbinary(f, file_obj)[source]

	Store file

You need to specify the file object.

	Parameters:	
	f – Requested file name

	file_obj – File object to be stored

	
tree(d=None)[source]

	Walks the tree recursively and creates a tree

Base structure is a list. List contains directory content and the type decides whether
it’s a directory or a file:
- tuple: it’s a file, therefore it represents file’s name and time
- dict: it’s a directory. Then the dict structure is as follows:

dir: directory name
content: list of directory content (recurse)

	Parameters:	d – Directory to enter(None for no entering - root directory)

	Returns:	Directory structure in lists nad dicts.

	Raises:	AssertionError –
When some of the FTP commands fail.

	
update_time_difference()[source]

	Determine the time difference between the FTP server and this computer.

This is done by uploading a fake file, reading its time and deleting it.
Then the self.dt variable captures the time you need to ADD to the remote
time or SUBTRACT from local time.

The FTPFile object carries this automatically as it has .local_time property
which adds the client’s .dt to its time.

	
class cfme.utils.ftp.FTPDirectory(client, name, items, parent_dir=None, time=None)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

FTP FS Directory encapsulation

This class represents one directory.
Contains pointers to all child directories (self.directories)
and also all files in current directory (self.files)

	
cd(path)[source]

	Change to a directory

Changes directory to a path specified by parameter path. There are three special cases:
/ - climbs by self.parent_dir up in the hierarchy until it reaches root element.
. - does nothing
.. - climbs one level up in hierarchy, if present, otherwise does the same as preceeding.

	Parameters:	path – Path to change

	
path

	

	Returns:	whole path for this directory

	
search(by, files=True, directories=True)[source]

	Recursive search by string or regexp.

Searches throughout all the filesystem structure from top till the bottom until
it finds required files or dirctories.
You can specify either plain string or regexp. String search does classic in,
regexp matching is done by exact matching (by.match).

	Parameters:	
	by – Search string or regexp

	files – Whether look for files

	directories – Whether look for directories

	Returns:	List of all objects found in FS

	
exception cfme.utils.ftp.FTPException[source]

	Bases: exceptions.Exception [http://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

	
class cfme.utils.ftp.FTPFile(client, name, parent_dir, time)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

FTP FS File encapsulation

This class represents one file in the FS hierarchy.
It encapsulates mainly its position in FS and adds the possibility
of downloading the file.

	
download(target=None)[source]

	Download file into this machine

Wrapper around self.retr function. It downloads the file from remote filesystem
into local filesystem. Name is either preserved original, or can be changed.

	Parameters:	target – Target file name (None to preserver the original)

	
local_time

	

	Returns:	time modified to match local computer’s time zone

	
path

	

	Returns:	whole path for this file

	
retr(callback)[source]

	Retrieve file

Wrapper around ftplib.FTP.retrbinary().
This function cd’s to the directory where this file is present, then calls the
FTP’s retrbinary() function with provided callable and then cd’s back where it started
to keep it consistent.

	Parameters:	callback – Any callable that accepts one parameter as the data

	Raises:	
	AssertionError –
When any of the CWD or CDUP commands fail.

	ftplib.error_perm [http://docs.python.org/2.7/library/ftplib.html#ftplib.error_perm] –
When retrbinary call of ftplib fails

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.generators module

	
cfme.utils.generators.random_vm_name(context=None, max_length=15)[source]

	Generates a valid VM name that should be valid for any provider we use.

	Constraints:

	
	Maximum string length 15 characters (by default)

	Only [a-z0-9-]

	Parameters:	context – If you want to provide some custom string after test- instead of vm.
It is recommended to use a maximum of 5 characters with the default 15 character limit.
Longer strings will be truncated

	Returns:	A valid randomized VM name.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.grafana module

Wrap interactions with Grafana or logging Grafana URLs.

	
cfme.utils.grafana.get_scenario_dashboard_urls(scenario, from_ts, to_ts, output_to_log=True)[source]

	Builds a dictionary of URLs to Grafana Dashboards of relevant appliances for a single
workload’s scenario. It accounts for when a replication_master appliance is under test too.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.hosts module

utils.hosts

	
cfme.utils.hosts.get_host_data_by_name(provider_key, host_name)[source]

	

	
cfme.utils.hosts.setup_all_provider_hosts_credentials()[source]

	

	
cfme.utils.hosts.setup_host_creds(provider_key, host_name, remove_creds=False, ignore_errors=False)[source]

	

	
cfme.utils.hosts.setup_providers_hosts_credentials(provider_key, ignore_errors=False)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.ipmi module

	
class cfme.utils.ipmi.IPMI(hostname, username, password, interface_type='lan', timeout=30)[source]

	Utility to access IPMI via CLI.

The IPMI utility uses the ipmitool package to access the remote management
card of a server.

	Parameters:	
	hostname – The hostname of the remote management console.

	username – The username for the remote management console.

	password – The password tied to the username.

	interface_type – A string giving the interface_type to pass to the CLI.

	timeout – The number of seconds to wait before giving up on a command.

Returns: A IPMI instnace.

	
is_power_on()[source]

	Checks if the power is on.

Returns: True if power is on, False if not.

	
power_off()[source]

	Turns the power off.

Returns: True if power is off, False if not.

	
power_on()[source]

	Turns the power on.

Returns: True if power is on, False if not.

	
power_reset()[source]

	Turns the power off.

Returns: True if power reset initiated, False if not.

	
exception cfme.utils.ipmi.IPMIException[source]

	Bases: exceptions.Exception [http://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

Raised during _run_ipmi() if the error code is non zero.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.log module

Logging framework

This module creates the cfme logger, for use throughout the project. This logger only captures log
messages explicitly sent to it, not logs emitted by other components (such as selenium). To capture
those, consider using the pytest-capturelog plugin.

Example Usage

from utils.log import logger

logger.debug('debug log message')
logger.info('info log message')
logger.warning('warning log message')
logger.error('error log message')
logger.critical('critical log message')

The above will result in the following output in cfme_tests/logs/cfme.log:

1970-01-01 00:00:00,000 [D] debug log message (filename.py:3)
1970-01-01 00:00:00,000 [I] info log message (filename.py:4)
1970-01-01 00:00:00,000 [W] warning log message (filename.py:5)
1970-01-01 00:00:00,000 [E] error log message (filename.py:6)
1970-01-01 00:00:00,000 [C] fatal log message (filename.py:7)

Additionally, if log_error_to_console is True (see below), the following will be
written to stderr:

[E] error (filename.py:6)
[C] fatal (filename.py:7)

Log Message Source

We have added a custom log record attribute that can be used in log messages: %(source)s This
attribute is included in the default ‘cfme’ logger configuration.

This attribute will be generated by default and include the filename and line number from where the
log message was emitted. It will attempt to convert file paths to be relative to cfme_tests, but use
the absolute file path if a relative path can’t be determined.

When writting generic logging facilities, it is sometimes helpful to override
those source locations to make the resultant log message more useful. To do so, pass the extra
source_file (str) and source_lineno (int) to the log emission:

logger.info('info log message', extra={'source_file': 'somefilename.py', 'source_lineno': 7})

If source_lineno is None and source_file is included, the line number will be omitted.
This is useful in cases where the line number can’t be determined or isn’t necessary.

Configuration

in env.yaml
logging:
 # Can be one of DEBUG, INFO, WARNING, ERROR, CRITICAL
 level: INFO
 # Maximum logfile size, in bytes, before starting a new logfile
 # Set to 0 to disable log rotation
 max_logfile_size: 0
 # Maximimum backup copies to make of rotated log files (e.g. cfme.log.1, cfme.log.2, ...)
 # Set to 0 to keep no backups
 max_logfile_backups: 0
 # If True, messages of level ERROR and CRITICAL are also written to stderr
 errors_to_console: False
 # Default file format
 file_format: "%(asctime)-15s [%(levelname).1s] %(message)s (%(source)s)"
 # Default format to console if errors_to_console is True
 stream_format: "[%(levelname)s] %(message)s (%(source)s)"

Additionally, individual logger configurations can be overridden by defining nested configuration
values using the logger name as the configuration key. Note that the name of the logger objects
exposed by this module don’t obviously line up with their key in cfme_data. The ‘name’ attribute
of loggers can be inspected to get this value:

>>> utils.log.logger.name
'cfme'
>>> utils.log.perflog.logger.name
'perf'

Here’s an example of those names being used in env.local.yaml to configure loggers
individually:

logging:
 cfme:
 # set the cfme log level to debug
 level: DEBUG
 perf:
 # make the perflog a little more "to the point"
 file_format: "%(message)s"

Notes:

	The cfme and perf loggers are guaranteed to exist when using this module.

	The name of a logger is used to generate its filename, and will usually not have the word
“log” in it.
	perflog‘s logger name is perf for this reason, resulting in log/perf.log
instead of log/perflog.log.

	Similarly, logger‘s’ name is cfme, to prevent having log/logger.log.

Warning

Creating a logger with the same name as one of the default configuration keys,
e.g. create_logger('level') will cause a rift in space-time (or a ValueError).

Do not attempt.

Message Format

year-month-day hour:minute:second,millisecond [Level] message text (file:linenumber)

[Level]:

One letter in square brackets, where [I] corresponds to INFO, [D] corresponds to
DEBUG, and so on.

(file:linenumber):

The relative location from which this log message was emitted. Paths outside

Members

	
class cfme.utils.log.ArtifactorHandler(level=0)[source]

	Bases: logging.Handler

Logger handler that hands messages off to the artifactor

	
artifactor = None

	

	
emit(record)[source]

	

	
slaveid = None

	

	
class cfme.utils.log.NamedLoggerAdapter(logger, extra)[source]

	Bases: cfme.utils.log.TraceLoggerAdapter

An adapter that injects a name into log messages

	
process(message, kwargs)[source]

	

	
class cfme.utils.log.Perflog(perflog_name='perf')[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

Performance logger, useful for timing arbitrary events by name

Logged events will be written to log/perf.log by default, unless
a different log file name is passed to the Perflog initializer.

Usage:

from cfme.utils.log import perflog
perflog.start('event_name')
do stuff
seconds_taken = perflog.stop('event_name')
seconds_taken is also written to perf.log for later analysis

	
start(event_name)[source]

	Start tracking the named event

Will reset the start time if the event is already being tracked

	
stop(event_name)[source]

	Stop tracking the named event

	Returns:	A float value of the time passed since start was last called, in seconds,
or None if start was never called.

	
tracking_events = {}

	

	
class cfme.utils.log.PrefixAddingLoggerFilter(prefix=None)[source]

	Bases: logging.Filter [http://docs.python.org/2.7/library/logging.html#logging.Filter]

	
filter(record)[source]

	

	
class cfme.utils.log.TraceLogger(name, level=0)[source]

	Bases: logging.Logger [http://docs.python.org/2.7/library/logging.html#logging.Logger]

A trace-loglevel-aware Logger [http://docs.python.org/2.7/library/logging.html#logging.Logger]

	
trace(msg, *args, **kwargs)[source]

	Log ‘msg % args’ with severity ‘TRACE’.

	
class cfme.utils.log.TraceLoggerAdapter(logger, extra)[source]

	Bases: logging.LoggerAdapter [http://docs.python.org/2.7/library/logging.html#logging.LoggerAdapter]

A trace-loglevel-aware LoggerAdapter [http://docs.python.org/2.7/library/logging.html#logging.LoggerAdapter]

	
trace(msg, *args, **kwargs)[source]

	Delegate a trace call to the underlying logger, after adding
contextual information from this adapter instance.

	
class cfme.utils.log.WarningsDeduplicationFilter[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

this filter is needed since something in the codebase causes the warnings
once filter to be reset, so we need to deduplicate on our own

there is no indicative codepath that is clearly at fault
so this low implementation cost solution was choosen to deduplicate off-band

	
filter(record)[source]

	

	
class cfme.utils.log.WarningsRelpathFilter(name='')[source]

	Bases: logging.Filter [http://docs.python.org/2.7/library/logging.html#logging.Filter]

filter to modify warnings messages, to use relative paths in the project

	
filter(record)[source]

	

	
cfme.utils.log.add_stdout_handler(logger)[source]

	Look for a stdout handler in the logger, add one if not present

	
cfme.utils.log.create_sublogger(logger_sub_name)[source]

	

	
cfme.utils.log.error_console_handler()[source]

	

	
cfme.utils.log.format_marker(mstring, mark='-')[source]

	Creates a marker in log files using a string and leader mark.

This function uses the constant MARKER_LEN to determine the length of the marker,
and then centers the message string between padding made up of leader_mark characters.

	Parameters:	
	mstring – The message string to be placed in the marker.

	leader_mark – The marker character to use for leading and trailing.

Returns: The formatted marker string.

	Note: If the message string is too long to fit one character of leader/trailer and

	a space, then the message is returned as is.

	
class cfme.utils.log.logger_wrap(*args, **kwargs)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

Sets up the logger by default, used as a decorator in utils.appliance

If the logger doesn’t exist, sets up a sensible alternative

	
cfme.utils.log.make_file_handler(filename, root='/home/docs/checkouts/readthedocs.org/user_builds/cfme-tests/checkouts/17.12.0/log', level=None, **kw)[source]

	

	
cfme.utils.log.nth_frame_info(n)[source]

	Inspect the stack to determine the filename and lineno of the code running at the “n”th frame

	Parameters:	n – Number of the stack frame to inspect

Raises IndexError if the stack doesn’t contain the nth frame (the caller should know this)

Returns a frameinfo namedtuple as described in inspect [http://docs.python.org/2.7/library/inspect.html#inspect.getframeinfo]

	
cfme.utils.log.setup_for_worker(workername, loggers=('cfme', 'py.warnings'))[source]

	

	
cfme.utils.log.setup_logger(logger)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.log_validator module

	
class cfme.utils.log_validator.LogValidator(remote_filename, **kwargs)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

Log content validator class provides methods
to fix the log content before test is started,
and validate the content of log during test execution,
according to predefined patterns.
Predefined patterns are:

	Logs which should be skipped. Skip further checks on particular line if matched

	Logs which should cause failure of test.

	Logs which are expected to be matched, otherwise fail.

The priority of patterns to be checked are defined in above order.
Skipping patterns have priority over other ones,
to be possible to skip particular ERROR log,
but fail for wider range of other ERRORs.

	Parameters:	
	remote_filename – path to the remote log file

	skip_patterns – array of skip regex patterns

	failure_patterns – array of failure regex patterns

	matched_patterns – array of expected regex patterns to be matched

Usage:

.. code-block:: python
 evm_tail = LogValidator('/var/www/miq/vmdb/log/evm.log',
 skip_patterns=['PARTICULAR_ERROR'],
 failure_patterns=['.*ERROR.*'],
 matched_patterns=['PARTICULAR_INFO'])
 evm_tail.fix_before_start()
 evm_tail.validate_logs()

	
fix_before_start()[source]

	

	
validate_logs()[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.net module

	
cfme.utils.net.ip_echo_socket(port=32123)[source]

	A simple socket server, for use with my_ip_address()

	
cfme.utils.net.is_pingable(ip_addr)[source]

	verifies the specified ip_address is reachable or not.

	Parameters:	ip_addr – ip_address to verify the PING.

returns: return True is ip_address is pinging else returns False.

	
cfme.utils.net.my_ip_address(http=False)[source]

	Get the ip address of the host running tests using the service listed in cfme_data[‘ip_echo’]

The ip echo endpoint is expected to write the ip address to the socket and close the
connection. See a working example of this in ip_echo_socket().

	
cfme.utils.net.net_check(port, addr=None, force=False)[source]

	Checks the availablility of a port

	
cfme.utils.net.net_check_remote(port, addr=None, machine_addr=None, ssh_creds=None, force=False)[source]

	Checks the availability of a port from outside using another machine (over SSH)

	
cfme.utils.net.random_port(tcp=True)[source]

	Get a random port number for making a socket

	Parameters:	tcp – Return a TCP port number if True, UDP if False

This may not be reliable at all due to an inherent race condition. This works
by creating a socket on an ephemeral port, inspecting it to see what port was used,
closing it, and returning that port number. In the time between closing the socket
and opening a new one, it’s possible for the OS to reopen that port for another purpose.

In practical testing, this race condition did not result in a failure to (re)open the
returned port number, making this solution squarely “good enough for now”.

	
cfme.utils.net.resolve_hostname(hostname, force=False)[source]

	Cached DNS resolver. If the hostname does not resolve to an IP, returns None.

	
cfme.utils.net.resolve_ips(host_iterable, force_dns=False)[source]

	Takes list of hostnames, ips and another things. If the item is not an IP, it will be tried
to be converted to an IP. If that succeeds, it is appended to the set together with original
hostname. If it can’t be resolved, just the original hostname is appended.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.ocp_cli module

	
class cfme.utils.ocp_cli.OcpCli(provider)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

This class provides CLI functionality for Openshift provider.

	
close()[source]

	

	
run_command(*args, **kwargs)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.path module

Project path helpers

Contains py.path.local [http://pylib.readthedocs.org/en/latest/path.html] objects for accessing common project locations.

Paths rendered below will be different in your local environment.

	
cfme.utils.path.conf_path = local('/home/docs/checkouts/readthedocs.org/user_builds/cfme-tests/checkouts/17.12.0/conf')

	conf yaml storage, cfme_tests/conf/

	
cfme.utils.path.data_path = local('/home/docs/checkouts/readthedocs.org/user_builds/cfme-tests/checkouts/17.12.0/data')

	datafile storage, cfme_tests/data/

	
cfme.utils.path.docs_path = local('/home/docs/checkouts/readthedocs.org/user_builds/cfme-tests/checkouts/17.12.0/docs')

	doc root, where these file came from! cfme_tests/docs/

	
cfme.utils.path.get_rel_path(absolute_path_str)[source]

	Get a relative path for object in the project root

	Parameters:	absolute_path_str – An absolute path to a file anywhere under project_path

Note

This will be a no-op for files that are not in project_path

	
cfme.utils.path.log_path = local('/home/docs/checkouts/readthedocs.org/user_builds/cfme-tests/checkouts/17.12.0/log')

	log storage, cfme_tests/log/

	
cfme.utils.path.middleware_resources_path = local('/home/docs/checkouts/readthedocs.org/user_builds/cfme-tests/checkouts/17.12.0/data/resources/middleware')

	middleware provider resource files path, cfme_tests/data/resources/middleware

	
cfme.utils.path.orchestration_path = local('/home/docs/checkouts/readthedocs.org/user_builds/cfme-tests/checkouts/17.12.0/data/orchestration')

	orchestration datafile storage, cfme_tests/data/orchestration

	
cfme.utils.path.patches_path = local('/home/docs/checkouts/readthedocs.org/user_builds/cfme-tests/checkouts/17.12.0/data/patches')

	patch files (diffs)

	
cfme.utils.path.project_path = local('/home/docs/checkouts/readthedocs.org/user_builds/cfme-tests/checkouts/17.12.0')

	The project root, cfme_tests/

	
cfme.utils.path.resources_path = local('/home/docs/checkouts/readthedocs.org/user_builds/cfme-tests/checkouts/17.12.0/data/resources')

	resource files root directory, cfme_tests/data/resources

	
cfme.utils.path.results_path = local('/home/docs/checkouts/readthedocs.org/user_builds/cfme-tests/checkouts/17.12.0/results')

	results path for performance tests, cfme_tests/results/

	
cfme.utils.path.scripts_data_path = local('/home/docs/checkouts/readthedocs.org/user_builds/cfme-tests/checkouts/17.12.0/scripts/data')

	interactive scripts’ data, cfme_tests/scripts/data

	
cfme.utils.path.scripts_path = local('/home/docs/checkouts/readthedocs.org/user_builds/cfme-tests/checkouts/17.12.0/scripts')

	interactive scripts, cfme_tests/scripts/

	
cfme.utils.path.template_path = local('/home/docs/checkouts/readthedocs.org/user_builds/cfme-tests/checkouts/17.12.0/data/templates')

	jinja2 templates, use with jinja2.FileSystemLoader

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.perf module

Functions that performance tests use.

	
cfme.utils.perf.collect_log(ssh_client, log_prefix, local_file_name, strip_whitespace=False)[source]

	Collects all of the logs associated with a single log prefix (ex. evm or top_output) and
combines to single gzip log file. The log file is then scp-ed back to the host.

	
cfme.utils.perf.convert_top_mem_to_mib(top_mem)[source]

	Takes a top memory unit from top_output.log and converts it to MiB

	
cfme.utils.perf.generate_statistics(the_list, decimals=2)[source]

	Returns comma seperated statistics over a list of numbers.

	Returns: list of samples(runs), minimum, average, median, maximum,

	stddev, 90th(percentile),
99th(percentile)

	
cfme.utils.perf.get_worker_pid(worker_type)[source]

	Obtains the pid of the first worker with the worker_type specified

	
cfme.utils.perf.set_rails_loglevel(level, validate_against_worker='MiqUiWorker')[source]

	Sets the logging level for level_rails and detects when change occured.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.perf_message_stats module

Functions for performance analysis/charting of the backend messages and top_output from an
appliance.

	
class cfme.utils.perf_message_stats.MiqMsgBucket[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
class cfme.utils.perf_message_stats.MiqMsgLists[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
class cfme.utils.perf_message_stats.MiqMsgStat[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
class cfme.utils.perf_message_stats.MiqWorker[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
cfme.utils.perf_message_stats.evm_to_messages(evm_file, filters)[source]

	

	
cfme.utils.perf_message_stats.evm_to_workers(evm_file)[source]

	

	
cfme.utils.perf_message_stats.generate_appliance_charts(top_appliance, charts_dir, start_index, end_index)[source]

	

	
cfme.utils.perf_message_stats.generate_hourly_charts_and_csvs(hourly_buckets, charts_dir)[source]

	

	
cfme.utils.perf_message_stats.generate_raw_data_csv(rawdata_dict, csv_file_name)[source]

	

	
cfme.utils.perf_message_stats.generate_total_time_charts(msg_cmds, charts_dir)[source]

	

	
cfme.utils.perf_message_stats.generate_worker_charts(workers, top_workers, charts_dir)[source]

	

	
cfme.utils.perf_message_stats.get_first_miqtop(top_log_file)[source]

	

	
cfme.utils.perf_message_stats.get_msg_args(log_line)[source]

	

	
cfme.utils.perf_message_stats.get_msg_cmd(log_line)[source]

	

	
cfme.utils.perf_message_stats.get_msg_del(log_line)[source]

	

	
cfme.utils.perf_message_stats.get_msg_deq(log_line)[source]

	

	
cfme.utils.perf_message_stats.get_msg_id(log_line)[source]

	

	
cfme.utils.perf_message_stats.get_msg_timestamp_pid(log_line)[source]

	

	
cfme.utils.perf_message_stats.hour_bucket_init(init)[source]

	

	
cfme.utils.perf_message_stats.line_chart_render(title, xtitle, ytitle, x_labels, lines, fname, stacked=False)[source]

	

	
cfme.utils.perf_message_stats.messages_to_hourly_buckets(messages, test_start, test_end)[source]

	

	
cfme.utils.perf_message_stats.messages_to_statistics_csv(messages, statistics_file_name)[source]

	

	
cfme.utils.perf_message_stats.perf_process_evm(evm_file, top_file)[source]

	

	
cfme.utils.perf_message_stats.provision_hour_buckets(test_start, test_end, init=True)[source]

	

	
cfme.utils.perf_message_stats.split_appliance_charts(top_appliance, charts_dir)[source]

	

	
cfme.utils.perf_message_stats.top_to_appliance(top_file)[source]

	

	
cfme.utils.perf_message_stats.top_to_workers(workers, top_file)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.ports module

	
cfme.utils.ports.__format__()

	default object formatter

	
cfme.utils.ports.__new__(S, ...) a new object with type S, a subtype of T

	

	
cfme.utils.ports.__reduce__()

	helper for pickle

	
cfme.utils.ports.__reduce_ex__()

	helper for pickle

	
cfme.utils.ports.__sizeof__() int

	size of object in memory, in bytes

	
cfme.utils.ports.__subclasshook__()

	Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__().
It should return True, False or NotImplemented. If it returns
NotImplemented, the normal algorithm is used. Otherwise, it
overrides the normal algorithm (and the outcome is cached).

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.pretty module

	
class cfme.utils.pretty.Pretty[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

A mixin that prints repr as <MyClass field1=..., field2=...>. The
fields that will be printed should be stored in the class’s
pretty_attrs attribute (none by default).

	
pretty_attrs = []

	

	
cfme.utils.pretty.attr_repr(o, attr)[source]

	Return the string repr of the attribute attr on the object o

	
cfme.utils.pretty.pr_obj(attrs)[source]

	

	
cfme.utils.pretty.pretty_repr(attrs, o)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.providers module

Helper functions related to the creation, listing, filtering and destruction of providers

The list_providers function in this module depend on a (by default global) dict of filters.
If you are writing tests or fixtures, you want to depend on this function as a de facto gateway.

The rest of the functions, such as get_mgmt, get_crud, get_provider_keys etc ignore this global
dict and will provide you with whatever you ask for with no limitations.

The main clue to know what is limited by the filters and what isn’t is the ‘filters’ parameter.

	
class cfme.utils.providers.ProviderFilter(keys=None, classes=None, required_fields=None, required_tags=None, required_flags=None, restrict_version=False, inverted=False, conjunctive=True)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

Filter used to obtain only providers matching given requirements

	Parameters:	
	keys – List of acceptable provider keys, all if None

	categories – List of acceptable provider categories, all if None

	types – List of acceptable provider types, all if None

	required_fields – List of required fields, see providers_by_class()

	restrict_version – Checks provider version in yamls if True

	required_tags – List of tags that must be set in yamls

	inverted – Inclusive if False, exclusive otherwise

	conjunctive – If true, all subfilters are applied and all must match (default)
If false (disjunctive), at least one of the subfilters must match

	
__call__(provider)[source]

	Applies this filter on a given provider

Usage:

pf = ProviderFilter('cloud_infra', categories=['cloud', 'infra'])
providers = list_providers([pf])
pf2 = ProviderFilter(
 classes=[GCEProvider, EC2Provider], required_fields=['small_template'])
provider_keys = [prov.key for prov in list_providers([pf, pf2])]
^ this will list keys of all GCE and EC2 providers
...or...
pf = ProviderFilter(required_tags=['openstack', 'complete'])
pf_inverted = ProviderFilter(required_tags=['disabled'], inverted=True)
providers = list_providers([pf, pf_inverted])
^ this will return providers that have both the "openstack" and "complete" tags set
 and at the same time don't have the "disabled" tag
...or...
pf = ProviderFilter(keys=['rhevm34'], class=CloudProvider, conjunctive=False)
providers = list_providers([pf])
^ this will list all providers that either have the 'rhevm34' key or are an instance
 of the CloudProvider class and therefore are a cloud provider

	Returns:	True if provider passed all checks and was not filtered out, False otherwise.
The result is opposite if the ‘inverted’ attribute is set to True.

	
copy()[source]

	

	
exception cfme.utils.providers.UnknownProvider(provider_key, *args, **kwargs)[source]

	Bases: exceptions.Exception [http://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

	
cfme.utils.providers.get_class_from_type(prov_type)[source]

	

	
cfme.utils.providers.get_crud(provider_key, appliance=None)[source]

	Creates a Provider object given a management_system key in cfme_data.

Usage:

get_crud('ec2east')

Returns: A Provider object that has methods that operate on CFME

	
cfme.utils.providers.get_crud_by_name(provider_name, appliance=None)[source]

	Creates a Provider object given a management_system name in cfme_data.

Usage:

get_crud_by_name('My RHEV 3.6 Provider')

Returns: A Provider object that has methods that operate on CFME

	
cfme.utils.providers.get_mgmt(provider_key, providers=None, credentials=None)[source]

	Provides a wrapanapi object, based on the request.

	Parameters:	
	provider_key – The name of a provider, as supplied in the yaml configuration files.
You can also use the dictionary if you want to pass the provider data directly.

	providers – A set of data in the same format as the management_systems section in the
configuration yamls. If None then the configuration is loaded from the default
locations. Expects a dict.

	credentials – A set of credentials in the same format as the credentials yamls files.
If None then credentials are loaded from the default locations. Expects a dict.

	Return: A provider instance of the appropriate wrapanapi.WrapanapiAPIBase

	subclass

	
cfme.utils.providers.list_provider_keys(provider_type=None)[source]

	Lists provider keys from conf (yamls)

	Parameters:	provider_type – Optional filtering by ‘type’ string (from yaml); disabled by default

Note: Doesn’t require the framework to be pointed at an appliance to succeed.

Returns: List of provider keys (strings).

	
cfme.utils.providers.list_providers(filters=None, use_global_filters=True, appliance=None)[source]

	Lists provider crud objects, global filter optional

	Parameters:	
	filters – List if ProviderFilter or None

	use_global_filters – Will apply global filters as well if True, will not otherwise

	appliance – Optional utils.appliance.IPAppliance to be passed to provider CRUD
objects

Note: Requires the framework to be pointed at an appliance to succeed.

Returns: List of provider crud objects.

	
cfme.utils.providers.list_providers_by_class(prov_class, use_global_filters=True, appliance=None)[source]

	Lists provider crud objects of a specific class (or its subclasses), global filter optional

	Parameters:	
	prov_class – Provider class to apply for filtering

	use_global_filters – See list_providers()

	appliance – Optional utils.appliance.IPAppliance to be passed to provider CRUD
objects

Note: Requires the framework to be pointed at an appliance to succeed.

Returns: List of provider crud objects.

	
cfme.utils.providers.load_setuptools_entrypoints()[source]

	Load modules from querying the specified setuptools entrypoint name.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.pytest_shortcuts module

	
cfme.utils.pytest_shortcuts.extract_fixtures_values(item)[source]

	Extracts names and values of all the fixtures that the test has.

	Parameters:	item – py.test test item

	Returns:	dict [http://docs.python.org/2.7/library/stdtypes.html#dict] with fixtures and their values.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.quote module

	
cfme.utils.quote.quote(*args)[source]

	Combine the arguments into a single string and escape any and
all shell special characters or (reserved) words. The shortest
possible string (correctly quoted suited to pass to a bash shell)
is returned.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.rest module

Helper functions for tests using REST API.

	
cfme.utils.rest.assert_response(rest_obj, success=None, http_status=None, results_num=None)[source]

	Asserts that the response HTTP status code and content is as expected.

	
cfme.utils.rest.get_vms_in_service(rest_api, service)[source]

	Gets list of vm entities associated with the service.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.smem_memory_monitor module

Monitor Memory on a CFME/Miq appliance and builds report&graphs displaying usage per process.

	
class cfme.utils.smem_memory_monitor.SmemMemoryMonitor(ssh_client, scenario_data)[source]

	Bases: threading.Thread [http://docs.python.org/2.7/library/threading.html#threading.Thread]

	
create_process_result(process_results, starttime, process_pid, process_name, memory_by_pid)[source]

	

	
get_appliance_memory(appliance_results, plottime)[source]

	

	
get_evm_workers()[source]

	

	
get_miq_server_id()[source]

	

	
get_pids_memory()[source]

	

	
run()[source]

	

	
cfme.utils.smem_memory_monitor.add_workload_quantifiers(quantifiers, scenario_data)[source]

	

	
cfme.utils.smem_memory_monitor.compile_per_process_results(procs_to_compile, process_results, ts_end)[source]

	

	
cfme.utils.smem_memory_monitor.create_dict(attr_dict)[source]

	

	
cfme.utils.smem_memory_monitor.create_report(scenario_data, appliance_results, process_results, use_slab, grafana_urls)[source]

	

	
cfme.utils.smem_memory_monitor.generate_raw_data_csv(directory, appliance_results, process_results)[source]

	

	
cfme.utils.smem_memory_monitor.generate_summary_csv(file_name, appliance_results, process_results, provider_names, version_string)[source]

	

	
cfme.utils.smem_memory_monitor.generate_summary_html(directory, version_string, appliance_results, process_results, scenario_data, provider_names, grafana_urls)[source]

	

	
cfme.utils.smem_memory_monitor.generate_workload_html(directory, ver, scenario_data, provider_names, grafana_urls)[source]

	

	
cfme.utils.smem_memory_monitor.get_scenario_html(scenario_data)[source]

	

	
cfme.utils.smem_memory_monitor.graph_all_miq_workers(graph_file_path, process_results, provider_names)[source]

	

	
cfme.utils.smem_memory_monitor.graph_appliance_measurements(graphs_path, ver, appliance_results, use_slab, provider_names)[source]

	

	
cfme.utils.smem_memory_monitor.graph_individual_process_measurements(graph_file_path, process_results, provider_names)[source]

	

	
cfme.utils.smem_memory_monitor.graph_same_miq_workers(graph_file_path, process_results, provider_names)[source]

	

	
cfme.utils.smem_memory_monitor.install_smem(ssh_client)[source]

	

	
cfme.utils.smem_memory_monitor.summary_csv_measurement_dump(csv_file, process_results, measurement)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.smtp_collector_client module

	
class cfme.utils.smtp_collector_client.SMTPCollectorClient(host='localhost', port=1026)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

Client for smtp_collector.py script

	Parameters:	
	host – Host where collector runs (Default: localhost)

	port – Port where the collector query interface listens (Default: 1026)

	
clear_database()[source]

	Clear the database in collector

Returns: bool [http://docs.python.org/2.7/library/functions.html#bool]

	
get_emails(**filter)[source]

	Get emails. Eventually apply filtering on SQLite level

Time variables can be passed as instances of utils.timeutil.parsetime. That
carries out the necessary conversion automatically.

_like args - see SQLite’s LIKE operator syntax

	Keywords:

	from_address: E-mail matches.
to_address: E-mail matches.
subject: Subject matches exactly.
subject_like: Subject is LIKE.
time_from: E-mails arrived since this time.
time_to: E-mail arrived before this time.
text: Text matches exactly.
text_like: Text is LIKE.

Returns: List of dicts with e-mails matching the criteria.

	
get_html_report()[source]

	

	
set_test_name(test_name)[source]

	Set the test name for folder name in the collector.

	Parameters:	test_name – Name to set

Returns: bool [http://docs.python.org/2.7/library/functions.html#bool] with result.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.soft_get module

	
exception cfme.utils.soft_get.MultipleResultsException[source]

	Bases: exceptions.Exception [http://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

	
cfme.utils.soft_get.soft_get(obj, field_base_name, dict_=False, case_sensitive=False, best_match=True, dont_include=None)[source]

	This function used for cases that we want to get some attribute that we
either know only few parts of its name or want to prevent from case issues.

Example

Imagine you have a relationships table and you want to get ‘image’ field.
Since sometimes the exact name of the field is changing among versions, pages, etc.
it could be appear as ‘Images’, ‘Image’, ‘Container Images’, Containers Images’, etc.
Since we don’t care for the exact name and know that ‘image’ is a unique in the table,
we can use this function to prevent from this complexity.

	Parameters:	
	obj (*) – The object which we want to get the attribute

	field_base_name (*) – The base name, a string that we know
for sure that is a sub-string of the target field

	dict (*) – Whether this is a dict AND we want to perform the same functionality on its keys

	case_sensitive (*) – Whether the search is a sensitive case.

	best_match (*) –
	If True: in case that it found more than 1 match field,

	it will take the closest one

	If False: in case that it found more than 1 match field,

	it will raise an error

	dont_include (*) – Strings that should not be a part of the field.
Used to prevent cases like: soft_get(obj, ‘image’) -> obj.image_registry

	Returns:	The value of the target attribute

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.ssh module

	
class cfme.utils.ssh.SSHClient(stream_output=False, **connect_kwargs)[source]

	Bases: paramiko.client.SSHClient

paramiko.SSHClient wrapper

Allows copying/overriding and use as a context manager
Constructor kwargs are handed directly to paramiko.SSHClient.connect()

	Parameters:	
	container – If specified, then it is assumed that the VM hosts a container of CFME. The
param then contains the name of the container.

	is_pod – If specified and True, then it is assumed that the target is a podified openshift
app and container then specifies the name of the pod to interact with.

	stdout – If specified, overrides the system stdout file for streaming output.

	stderr – If specified, overrides the system stderr file for streaming output.

	
appliance_has_netapp()[source]

	

	
client_address()[source]

	

	
close()[source]

	

	
connect(hostname=None, **kwargs)[source]

	See paramiko.SSHClient.connect

	
connected

	

	
cpu_spike(seconds=60, cpus=2, **kwargs)[source]

	Creates a CPU spike of specific length and processes.

	Parameters:	
	seconds – How long the spike should last.

	cpus – How many processes to use.

	Returns:	See SSHClient.run_command()

	
get_build_date()[source]

	

	
get_build_datetime()[source]

	

	
get_file(remote_file, local_path='', **kwargs)[source]

	

	
get_transport(*args, **kwargs)[source]

	

	
is_appliance_downstream()[source]

	

	
is_container

	

	
open_sftp(*args, **kwargs)[source]

	

	
patch_file(local_path, remote_path, md5=None)[source]

	Patches a single file on the appliance

	Parameters:	
	local_path – Path to patch (diff) file

	remote_path – Path to file to be patched (on the appliance)

	md5 – MD5 checksum of the original file to check if it has changed

	Returns:	True if changes were applied, False if patching was not necessary

Note

If there is a .bak file present and the file-to-be-patched was
not patched by the current patch-file, it will be used to restore it first.
Recompiling assets and restarting appropriate services might be required.

	
put_file(local_file, remote_file='.', **kwargs)[source]

	

	
run_command(command, timeout=1200.0, reraise=False, ensure_host=False, ensure_user=False)[source]

	Run a command over SSH.

	Parameters:	
	command – The command. Supports taking dicts as version picking.

	timeout – Timeout after which the command execution fails.

	reraise – Does not muffle the paramiko exceptions in the log.

	ensure_host – Ensure that the command is run on the machine with the IP given, not any
container or such that we might be using by default.

	ensure_user – Ensure that the command is run as the user we logged in, so in case we are
not root, setting this to True will prevent from running sudo.

	Returns:	A SSHResult instance.

	
run_rails_command(command, timeout=1200.0, **kwargs)[source]

	

	
run_rails_console(command, sandbox=False, timeout=1200.0)[source]

	Runs Ruby inside of rails console. stderr is thrown away right now but could prove useful
for future performance analysis of the queries rails runs. The command is encapsulated by
double quotes. Sandbox rolls back all changes made to the database if used.

	
run_rake_command(command, timeout=1200.0, **kwargs)[source]

	

	
status

	Parses the output of the systemctl status evmserverd.

	Returns:	A dictionary containing servers and workers, both lists. Each of the lists
contains dictionaries, one per line. You can refer inside the dictionary using the
headers.

	
uptime()[source]

	

	
username

	

	
class cfme.utils.ssh.SSHResult[source]

	Bases: cfme.utils.ssh.SSHResult

Allows rich comparison for more convenient testing.

Given you have result which is an instance of SSHResult, you can do as follows

assert result # If $?=0, then the result evaluates to a truthy value and passes the assert
assert result == 'installed' # direct matching of the output value
assert 'something' in result # like before but uses the ``in`` matching for a partial match
assert result == 5 # assert that the $?=5 (you can use <, >, ...)

Therefore this class can act like 3 kinds of values

	Like a string (with the output of the command) when compared with or cast to one

	Like a number (with the return code) when compared with or cast to one

	Like a bool, giving truthy value if the return code was zero. That is related to the
preceeding bullet.

But it still subclasses the original class therefore all old behaviour is kept. But you don’t
have to expand the tuple or pull the value out if you are checking only one of them.

	
failed

	

	
success

	

	
class cfme.utils.ssh.SSHTail(remote_filename, **connect_kwargs)[source]

	Bases: cfme.utils.ssh.SSHClient

	
lines_as_list()[source]

	Return lines as list

	
raw_lines()[source]

	

	
raw_string()[source]

	

	
set_initial_file_end()[source]

	

	
cfme.utils.ssh.keygen()[source]

	Generate temporary ssh keypair for appliance SSH auth

Intended not only to simplify ssh access to appliances, but also to simplify
SSH access from one appliance to another in multi-appliance setups

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.stats module

	
cfme.utils.stats.tol_check(ref, compare, min_error=0.05, low_val_correction=3.0)[source]

	Tolerance check

The tolerance check is very simple. In essence it checks to ensure
that the compare value is within min_error percentage of the ref value.
However there are special conditions.

If the ref value is zero == the compare value we will alwys return True to avoid
calculation overhead.

If the ref value is zero we check if the compare value is below the low_val_correction
threshold.

The low value correction is also used if ref is small. In this case, if one minus the
difference of the ref and low value correction / reference value yields greater error
correction, then this is used.

For example, if the reference was 1 and the compare was 2, with a min_error set to the
default, the tolerance check would return False. At low values this is probably undesirable
and so, the low_val_correction allows for a greater amount of error at low values.
As an example, with the lvc set to 3, the allowe error would be much higher, allowing the
tolerance check to pass.

The lvc will only take effect if the error it produces is greater than the min_error.

	Parameters:	
	ref – The reference value

	compare – The comparison value

	min_error – The minimum allowed error

	low_val_correction – A correction value for lower values

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.testgen module

Test generation helpers

Intended to functionalize common tasks when working with the pytest_generate_tests hook.

When running a test, it is quite often the case that multiple parameters need to be passed
to a single test. An example of this would be the need to run a Provider Add test against
multiple providers. We will assume that the providers are stored in the yaml under a common
structure like so:

providers:
 prov_1:
 name: test
 ip: 10.0.0.1
 test_vm: abc1
 prov_2:
 name: test2
 ip: 10.0.0.2
 test_vm: abc2

Our test requires that we have a Provider Object and as an example, the ‘test_vm’ field of the
object. Let’s assume a test prototype like so:

test_provider_add(provider_obj, test_vm):

In this case we require the test to be run twice, once for prov_1 and then again for prov_2.
We are going to use the generate function to help us provide parameters to pass to
pytest_generate_tests(). pytest_generate_tests() requires three pieces of
information, argnames, argvalues and an idlist. argnames turns into the
names we use for fixtures. In this case, provider_obj and provider_mgmt_sys.
argvalues becomes the place where the provider_obj and provider_mgmt_sys
items are stored. Each element of argvalues is a list containing a value for both
provider_obj and provider_mgmt_sys. Thus, taking an element from argvalues
gives us the values to unpack to make up one test. An example is below, where we assume
that a provider object is obtained via the Provider class, and the mgmt_sys object
is obtained via a Wrapanapi class.

	~
	provider_obj
	test_vm

	prov1
	Provider(prov1)
	abc1

	prov2
	Provider(prov2)
	abc2

This is analogous to the following layout:

	~
	argnames[0]
	argnames[1]

	idlist[0]
	argvalues[0][0]
	argvalues[0][1]

	idlist[1]
	argvalues[1][0]
	argvalues[1][1]

This could be generated like so:

def gen_providers:

 argnames = ['provider_obj', 'test_vm']
 argvalues = []
 idlist = []

 for provider in yaml['providers']:
 idlist.append(provider)
 argvalues.append([
 Provider(yaml['providers'][provider]['name']),
 yaml['providers'][provider]['test_vm'])
])

 return argnames, argvalues, idlist

This is then used with pytest_generate_tests like so:

pytest_generate_tests(gen_providers)

Additionally, py.test joins the values of idlist with dashes to generate a unique id for this
test, falling back to joining argnames with dashes if idlist is not set. This is the value
seen in square brackets in a test report on parametrized tests.

More information on parametrize can be found in pytest’s documentation:

	https://pytest.org/latest/parametrize.html#_pytest.python.Metafunc.parametrize

	
cfme.utils.testgen.all_providers(metafunc, **options)[source]

	Returns providers of all types

	
cfme.utils.testgen.auth_groups(metafunc, auth_mode)[source]

	Provides two test params based on the ‘auth_modes’ and ‘group_roles’ in cfme_data:

	group_name:

	expected group name in provided by the backend specified in auth_mode

	group_data:

	list of nav destinations that should be visible as a member of group_name

	Parameters:	auth_mode – One of the auth_modes specified in cfme_data.get('auth_modes', {})

	
cfme.utils.testgen.config_managers(metafunc)[source]

	Provides config managers

	
cfme.utils.testgen.generate(*args, **kwargs)[source]

	Functional handler for inline pytest_generate_tests definition

	Parameters:	
	gen_func – Test generator function, expected to return argnames, argvalues, and an idlist
suitable for use with pytest’s parametrize method in pytest_generate_tests hooks

	indirect – Optional keyword argument. If seen, it will be removed from the kwargs
passed to gen_func and used in the wrapped pytest parametrize call

	scope – Optional keyword argument. If seen, it will be removed from the kwargs
passed to gen_func and used in the wrapped pytest parametrize call

	filter_unused – Optional keyword argument. If True (the default), parametrized tests will
be inspected, and only argnames matching fixturenames will be used to parametrize the
test. If seen, it will be removed from the kwargs passed to gen_func.

	*args – Additional positional arguments which will be passed to gen_func

	**kwargs – Additional keyword arguments whill be passed to gen_func

Usage:

Abstract example:
pytest_generate_tests = testgen.generate(arg1, arg2, kwarg1='a')

Concrete example using all infrastructure providers and module scope
pytest_generate_tests = testgen.generate([InfraProvider], scope="module")

Another concrete example using only VMware and SCVMM providers with 'retire' flag
pf = ProviderFilter(
 classes=[WMwareProvider, SCVMMProvider]), required_flags=['retire'])
pytest_generate_tests = testgen.generate(
 gen_func=testgen.providers, filters=[pf], scope="module")

Note

filter_unused is helpful, in that you don’t have to accept all of the args in argnames
in every test in the module. However, if all tests don’t share one common parametrized
argname, py.test may not have enough information to properly organize tests beyond the
‘function’ scope. Thus, when parametrizing in the module scope, it’s a good idea to include
at least one common argname in every test signature to give pytest a clue in sorting tests.

	
cfme.utils.testgen.parametrize(metafunc, argnames, argvalues, *args, **kwargs)[source]

	parametrize wrapper that calls _param_check(), and only parametrizes when needed

This can be used in any place where conditional parametrization is used.

	
cfme.utils.testgen.providers(metafunc, filters=None)[source]

	Gets providers based on given (+ global) filters

Note

Using the default ‘function’ scope, each test will be run individually for each provider
before moving on to the next test. To group all tests related to single provider together,
parametrize tests in the ‘module’ scope.

Note

testgen for providers now requires the usage of test_flags for collection to work.
Please visit http://cfme-tests.readthedocs.org/guides/documenting.html#documenting-tests
for more details.

	
cfme.utils.testgen.providers_by_class(metafunc, classes, required_fields=None)[source]

	Gets providers by their class

	Parameters:	
	metafunc – Passed in by pytest

	classes – List of classes to fetch

	required_fields – See cfme.utils.provider.ProviderFilter

Usage:

In the function itself
def pytest_generate_tests(metafunc):
 argnames, argvalues, idlist = testgen.providers_by_class(
 [GCEProvider, AzureProvider], required_fields=['provisioning']
)
metafunc.parametrize(argnames, argvalues, ids=idlist, scope='module')

Using the parametrize wrapper
pytest_generate_tests = testgen.parametrize([GCEProvider], scope='module')

	
cfme.utils.testgen.pxe_servers(metafunc)[source]

	Provides pxe data based on the server_type

	Parameters:	server_name – One of the server names to filter by, or ‘all’.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.timeutil module

This module should contain all things associated with time or date that can be shared.

	
cfme.utils.timeutil.nice_seconds(t_s)[source]

	Return nicer representation of seconds

	
class cfme.utils.timeutil.parsetime[source]

	Bases: datetime.datetime [http://docs.python.org/2.7/library/datetime.html#datetime.datetime]

Modified class with loaders for our datetime formats.

	
american_date_only_format = '%m/%d/%y'

	

	
american_minutes = '%m/%d/%y %H:%M'

	

	
american_minutes_with_utc = '%m/%d/%y %H:%M UTC'

	

	
american_with_utc_format = '%m/%d/%y %H:%M:%S UTC'

	

	
classmethod from_american_date_only(time_string)[source]

	Convert the string representation of the time into parsetime()

CFME’s format here is ‘mm/dd/yy’

	Parameters:	time_string – String with time to parse

Returns: :py:class`utils.timeutil.datetime()` object

	
classmethod from_american_minutes(time_string)[source]

	Convert the string representation of the time into parsetime()

CFME’s format here is ‘mm/dd/yy hh:mm’

	Parameters:	time_string – String with time to parse

Returns: :py:class`utils.timeutil.datetime()` object

	
classmethod from_american_minutes_with_utc(time_string)[source]

	Convert the string representation of the time into parsetime()

CFME’s format here is ‘mm/dd/yy hh:mm UTC’

	Parameters:	time_string – String with time to parse

Returns: :py:class`utils.timeutil.datetime()` object

	
classmethod from_american_with_utc(time_string)[source]

	Convert the string representation of the time into parsetime()

CFME’s format here is ‘mm/dd/yy hh:mm:ss UTC’

	Parameters:	time_string – String with time to parse

Returns: :py:class`utils.timeutil.datetime()` object

	
classmethod from_iso_date(time_string)[source]

	Convert the string representation of the time into parsetime()

Format here is ‘YYYY-MM-DD’

	Parameters:	time_string – String with time to parse

Returns: :py:class`utils.timeutil.datetime()` object

	
classmethod from_iso_with_utc(time_string)[source]

	Convert the string representation of the time into parsetime()

CFME’s format here is ‘mm-dd-yy hh:mm:ss UTC’

	Parameters:	time_string – String with time to parse

Returns: :py:class`utils.timeutil.datetime()` object

	
classmethod from_long_date_format(time_string)[source]

	Convert the string representation of the time into parsetime()

Format here is ‘%B %d, %Y %H:%M’.

	Parameters:	time_string – String with time to parse

Returns: :py:class`utils.timeutil.datetime()` object

	
classmethod from_request_format(time_string)[source]

	Convert the string representation of the time into parsetime()

Format here is ‘YYYY-MM-DD-HH-MM-SS’. Used for transmitting data over http

	Parameters:	time_string – String with time to parse

Returns: :py:class`utils.timeutil.datetime()` object

	
classmethod from_saved_report_title_format(time_string)[source]

	Convert the string representation of the time into parsetime()

Format here is ‘%a, %d %b %Y %H:%M:%S +0000’.

	Parameters:	time_string – String with time to parse

Returns: :py:class`utils.timeutil.datetime()` object

	
iso_date_only_format = '%Y-%m-%d'

	

	
iso_with_utc_format = '%Y-%m-%d %H:%M:%S UTC'

	

	
long_date_format = '%B %d, %Y %H:%M'

	

	
request_format = '%Y-%m-%d-%H-%M-%S'

	

	
saved_report_title_format = '%a, %d %b %Y %H:%M:%S +0000'

	

	
to_american_date_only()[source]

	Convert the this object to string representation in american date only format.

CFME’s format here is ‘mm/dd/yy’

Returns: :py:class`str` object

	
to_american_minutes()[source]

	Convert the this object to string representation in american with just minutes.

CFME’s format here is ‘mm/dd/yy hh:mm’

Returns: :py:class`str` object

	
to_american_minutes_with_utc()[source]

	Convert the this object to string representation in american with just minutes.

CFME’s format here is ‘mm/dd/yy hh:mm’

Returns: :py:class`str` object

	
to_american_with_utc()[source]

	Convert the this object to string representation in american with UTC.

CFME’s format here is ‘mm/dd/yy hh:mm:ss UTC’

Returns: :py:class`str` object

	
to_iso_date()[source]

	Convert the this object to string representation in ISO format.

Format here is ‘YYYY-MM-DD’

Returns: :py:class`str` object

	
to_iso_with_utc()[source]

	Convert the this object to string representation in american with UTC.

CFME’s format here is ‘mm-dd-yy hh:mm:ss UTC’

Returns: :py:class`str` object

	
to_long_date_format()[source]

	Convert the this object to string representation in http request.

Format here is ‘%B %d, %Y %H:%M’

Returns: :py:class`str` object

	
to_request_format()[source]

	Convert the this object to string representation in http request.

Format here is ‘YYYY-MM-DD-HH-MM-SS’

Returns: :py:class`str` object

	
to_saved_report_title_format()[source]

	Convert the this object to string representation in Saved Report title.

Format here is ‘%a, %d %b %Y %H:%M:%S +0000’

Returns: :py:class`str` object

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.tracer module

To use the function tracer, simply import the trace object and wrap a function with it

from utils.tracer import trace:

@trace(scope=3)
def func():
 print("something")

	
class cfme.utils.tracer.FileStore[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
cfme.utils.tracer.trace(scope=1, file_name_limit=None)[source]

	Very simple tracer for functions and tests

The tracer module is a very simple tracer that prints out lines of code as they are
executed. It is useful when debugging tests so that you can actually see the lines of
code being executed and hence determine where blocks are happening. This is not a
substitute for good logging but a simple enhancement.

	Parameters:	scope – This determines the depth of nested functions to go down, defaults to 1

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.trackerbot module

	
class cfme.utils.trackerbot.Group(name, stream=True, active=True)[source]

	Bases: dict [http://docs.python.org/2.7/library/stdtypes.html#dict]

dict subclass to help serialize groups as JSON

	
class cfme.utils.trackerbot.Provider(key)[source]

	Bases: dict [http://docs.python.org/2.7/library/stdtypes.html#dict]

dict subclass to help serialize providers as JSON

	
class cfme.utils.trackerbot.ProviderTemplate(provider, template, usable=None, tested=None)[source]

	Bases: dict [http://docs.python.org/2.7/library/stdtypes.html#dict]

dict subclass to help serialize providertemplate details as JSON

	
concat_id

	

	
class cfme.utils.trackerbot.Template(name, group=None, datestamp=None)[source]

	Bases: dict [http://docs.python.org/2.7/library/stdtypes.html#dict]

dict subclass to help serialize templates as JSON

	
class cfme.utils.trackerbot.TemplateInfo(group_name, datestamp, stream)

	Bases: tuple

	
__getnewargs__()

	Return self as a plain tuple. Used by copy and pickle.

	
__getstate__()

	Exclude the OrderedDict from pickling

	
__repr__()

	Return a nicely formatted representation string

	
datestamp

	Alias for field number 1

	
group_name

	Alias for field number 0

	
stream

	Alias for field number 2

	
cfme.utils.trackerbot.active_streams(api, force=False)[source]

	

	
cfme.utils.trackerbot.api(trackerbot_url=None)[source]

	Return an API object authenticated to the given trackerbot api

	
cfme.utils.trackerbot.cmdline_parser()[source]

	Get a parser with basic trackerbot configuration params already set up

It will use the following keys from the env conf if they’re available:

with example values
trackerbot:
 url: http://hostname/api/
 username: username
 apikey: 0123456789abcdef

	
cfme.utils.trackerbot.composite_uncollect(build, source='jenkins')[source]

	Composite build function

	
cfme.utils.trackerbot.delete_provider_template(api, provider, template)[source]

	Delete a provider/template relationship, used when a template is removed from one provider

	
cfme.utils.trackerbot.depaginate(api, result)[source]

	Depaginate the first (or only) page of a paginated result

	
cfme.utils.trackerbot.futurecheck(check_date)[source]

	Given a date object, return a date object that isn’t from the future

Some templates only have month/day values, not years. We create a date object

	
cfme.utils.trackerbot.latest_template(api, group, provider_key=None)[source]

	

	
cfme.utils.trackerbot.mark_provider_template(api, provider, template, tested=None, usable=None, diagnosis='', build_number=None, stream=None)[source]

	Mark a provider template as tested and/or usable

	Parameters:	
	api – The trackerbot API to act on

	provider – The provider’s key in cfme_data or a Provider instance

	template – The name of the template to mark on this provider or a Template

	tested – Whether or not this template has been tested on this provider

	usable – Whether or not this template is usable on this provider

	diagnosis – Optional reason for marking a template

Returns the response of the API request

	
cfme.utils.trackerbot.parse_template(template_name)[source]

	Given a template name, attempt to extract its group name and upload date

	Returns:	
	None if no groups matched

	group_name, datestamp of the first matching group. group name will be a string,
datestamp with be a datetime.date [http://docs.python.org/2.7/library/datetime.html#datetime.date], or None if
a date can’t be derived from the template name

	
cfme.utils.trackerbot.post_jenkins_result(job_name, number, stream, date, template, build_status, artifact_report)[source]

	

	
cfme.utils.trackerbot.post_task_result(tid, result, output=None, coverage=0.0)[source]

	

	
cfme.utils.trackerbot.provider_templates(api)[source]

	

	
cfme.utils.trackerbot.set_provider_active(api, provider, active=True)[source]

	Set a provider active (or inactive)

	Parameters:	
	api – The trackerbot API to act on

	active – active flag to set on the provider (True or False)

	
cfme.utils.trackerbot.templates_to_test(api, limit=1, request_type=None)[source]

	get untested templates to pass to jenkins

	Parameters:	
	limit – max number of templates to pull per request

	request_type – request the provider_key of specific type

	openstack (e.g) –

	
cfme.utils.trackerbot.trackerbot_add_provider_template(stream, provider, template_name)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.units module

	
class cfme.utils.units.Unit(number, prefix, unit_type)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

This class serves for simple comparison of numbers that have units.

Imagine you pull a text value from the UI. 2 GB. By doing Unit.parse('2 GB') you get an
instance of Unit, which is comparable.

You can compare two Unit instances or you can compare Unit with
int [http://docs.python.org/2.7/library/functions.html#int], float [http://docs.python.org/2.7/library/functions.html#float] or any str [http://docs.python.org/2.7/library/functions.html#str] as long as it can go through the
Unit.parse().

If you compare Unit only (or a string that gets subsequently parsed), it also takes
the kind of the unit it is, you cannot compare bytes with hertzes. It then calculates the
absolute value in the base units and that gets compared.

If you compare with a number, it does it like it was the number of the same unit. So eg.
doing:

Unit.parse('2 GB') == 2 *1024 * 1024 * 1024 `` is True

	
absolute

	

	
number

	

	
classmethod parse(s)[source]

	

	
prefix

	

	
unit_type

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.update module

	
class cfme.utils.update.Updateable[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

A mixin that helps make an object easily updateable. Two Updateables
are equal if all their public fields are equal.

	
cfme.utils.update.all_public_fields_equal(a, b)[source]

	

	
cfme.utils.update.public_fields(o)[source]

	Returns: a dict of fields whose name don’t start with underscore.

	
cfme.utils.update.update(*args, **kwds)[source]

	Update an object and then sync it with an external application.

It will copy the object into whatever is named in the ‘as’
clause, run the ‘with’ code block (which presumably alters the
object). Then the update() method on the original object will be
called with a dict containing only changed fields, and kwargs
passed to this function.

If an exception is thrown by update(), the original object will be restored,
otherwise the updated object will be returned.

Usage:

with update(myrecord):
 myrecord.lastname = 'Smith'

	
cfme.utils.update.updates(old, new)[source]

	Return a dict of fields that are different between old and new.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.varmeth module

Method variant decorator. You specify the desired method variant by a kwarg.

from cfme.utils.varmeth import variable

class SomeClass(object):
 secret = 42

 @variable
 def mymethod(self):
 print("I am default!")

 @mymethod.variant("foo", "foo_too")
 def i_foo(self):
 print("I foo!")

 @mymethod.variant("bar")
 def in_bar(self):
 print("In bar!")

 @variable(alias="foo")
 def myfoo(self):
 print("foo!")

s = SomeClass()
s.mymethod() # => I am default!
s.mymethod(method="moo") # => I am default!
s.mymethod(method="foo") # => I foo!
s.mymethod(method="foo_too") # => I foo!
s.mymethod(method="bar") # => In bar!
s.mymethod(method="baz") # => AttributeError
s.myfoo() # => foo!
s.myfoo(method="foo") # => foo!

	Original idea:

	Pete Savage

	Implementation:

	Milan Falešník

	
class cfme.utils.varmeth.variable(*args, **kwargs)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

Create a new variable method.

	
variant(*names)[source]

	Register a new variant of a method under a name.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.version module

	
cfme.utils.version.SPTuple

	alias of StreamProductTuple

	
class cfme.utils.version.Version(vstring)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

Version class based on distutil.version.LooseVersion

	
SUFFIXES = ('nightly', 'pre', 'alpha', 'beta', 'rc')

	

	
SUFFIXES_STR = '-nightly(?:\\d+(?:\\.\\d+)?)?|-pre(?:\\d+(?:\\.\\d+)?)?|-alpha(?:\\d+(?:\\.\\d+)?)?|-beta(?:\\d+(?:\\.\\d+)?)?|-rc(?:\\d+(?:\\.\\d+)?)?'

	

	
__contains__(ver)[source]

	Enables to use in expression for Version.is_in_series().

Example

"5.5.5.2" in Version("5.5") returns ``True

	Parameters:	ver – Version that should be checked if it is in series of this version. If
str [http://docs.python.org/2.7/library/functions.html#str] provided, it will be converted to Version.

	
component_re = <_sre.SRE_Pattern object at 0x3f5c950>

	

	
is_in_series(series)[source]

	This method checks whether the version belongs to another version’s series.

Eg.: Version("5.5.5.2").is_in_series("5.5") returns True

	Parameters:	series – Another Version to check against. If string provided, will be
converted to Version

	
classmethod latest()[source]

	

	
classmethod lowest()[source]

	

	
normalized_suffix

	Turns the string suffixes to numbers. Creates a list of tuples.

The list of tuples is consisting of 2-tuples, the first value says the position of the
suffix in the list and the second number the numeric value of an eventual numeric suffix.

If the numeric suffix is not present in a field, then the value is 0

	
parse(vstring)[source]

	

	
product_version()[source]

	

	
series(n=2)[source]

	

	
stream()[source]

	

	
suffix_item_re = <_sre.SRE_Pattern object>

	

	
cfme.utils.version.appliance_build_date()[source]

	

	
cfme.utils.version.appliance_build_datetime()[source]

	

	
cfme.utils.version.appliance_has_netapp()[source]

	

	
cfme.utils.version.appliance_is_downstream()[source]

	

	
cfme.utils.version.before_date_or_version(date=None, version=None)[source]

	Function for deciding based on the build date and version.

Usage:

* If both date and version are set, then two things can happen. If the appliance is
 downstream, both date and version are checked, otherwise only the date.
* If only date is set, then only date is checked.
* if only version is set, then it checks the version if the appliance is downstream,
 otherwise it returns ``False``

The checks are in form appliance_build_date() < date and current_version() < version.
Therefore when used in if statement, the truthy value signalizes ‘older’ version and falsy
signalizes ‘newer’ version.

	
cfme.utils.version.current_stream()[source]

	

	
cfme.utils.version.current_version()[source]

	A lazy cached method to return the appliance version.

Do not catch errors, since generally we cannot proceed with
testing, without knowing the server version.

	
cfme.utils.version.dependent(default_function)[source]

	

	
cfme.utils.version.get_product_version(ver)[source]

	Return product version for given Version obj or version string

	
cfme.utils.version.get_stream(ver)[source]

	Return a stream name for given Version obj or version string

	
cfme.utils.version.get_version(obj=None)[source]

	Return a Version based on obj. For CFME, ‘master’ version
means always the latest (compares as greater than any other version)

If obj is None, the version will be retrieved from the current appliance

	
cfme.utils.version.parsedate(o)[source]

	

	
cfme.utils.version.pick(v_dict)[source]

	Collapses an ambiguous series of objects bound to specific versions
by interrogating the CFME Version and returning the correct item.

	
cfme.utils.version.product_version_dispatch(*_args, **_kwargs)[source]

	Dispatch function for use in multimethods that just ignores
arguments and dispatches on the current product version.

	
cfme.utils.version.since_date_or_version(*args, **kwargs)[source]

	Opposite of before_date_or_version()

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.video module

Video recording library

Configuration for this module + fixture:
.. code-block:: yaml

	logging:

	
	video:

	enabled: True
dir: video
display: ”:99”
quality: 10

	
class cfme.utils.video.Recorder(filename, display=None, quality=None)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

Recorder class

Usage:

with Recorder(filename):
 # do something

or
r = Recorder(filename)
r.start()
do something
r.stop()

The first way is preferred, obviously

	
__del__()[source]

	If the reference is lost and the object is destroyed ...

	
start()[source]

	

	
stop()[source]

	

	
cfme.utils.video.process_running(pid)[source]

	Check whether specified process is running

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.virtual_machines module

Helper functions related to the creation and destruction of virtual machines and instances

	
cfme.utils.virtual_machines.deploy_template(provider_key, vm_name, template_name=None, timeout=900, **deploy_args)[source]

	

	Parameters:	
	provider_key – Provider key on which the VM is to be created

	vm_name – Name of the VM to be deployed

	template_name – Name of the template that the VM is deployed from

	timeout – the timeout for template deploy

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.wait module

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.utils package

cfme.utils.workloads module

Functions for workloads.

	
cfme.utils.workloads.get_capacity_and_utilization_replication_scenarios()[source]

	

	
cfme.utils.workloads.get_capacity_and_utilization_scenarios()[source]

	

	
cfme.utils.workloads.get_idle_scenarios()[source]

	

	
cfme.utils.workloads.get_provisioning_scenarios()[source]

	

	
cfme.utils.workloads.get_refresh_providers_scenarios()[source]

	

	
cfme.utils.workloads.get_refresh_vms_scenarios()[source]

	

	
cfme.utils.workloads.get_smartstate_analysis_scenarios()[source]

	

	
cfme.utils.workloads.get_ui_single_page_scenarios()[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

cfme.web_ui package

Submodules

	cfme.web_ui.accordion module

	cfme.web_ui.cfme_exception module

	cfme.web_ui.expression_editor module

	cfme.web_ui.expression_editor_widgetastic module

	cfme.web_ui.flash module

	cfme.web_ui.form_buttons module

	cfme.web_ui.history module

	cfme.web_ui.jstimelines module

	cfme.web_ui.listaccordion module

	cfme.web_ui.mixins module

	cfme.web_ui.multibox module

	cfme.web_ui.paginator module

	cfme.web_ui.search module

	cfme.web_ui.splitter module

	cfme.web_ui.tabstrip module

	cfme.web_ui.timelines module

	cfme.web_ui.toolbar module

	cfme.web_ui.topology module

	cfme.web_ui.utilization module

Module contents

Provides a number of objects to help with managing certain elements in the CFME UI.

Specifically there are two categories of objects, organizational and elemental.

	Organizational
	Region

	cfme.web_ui.menu

	Elemental
	AngularCalendarInput

	AngularSelect

	ButtonGroup

	Calendar

	ColorGroup

	CheckboxTable

	CheckboxSelect

	DHTMLSelect

	DriftGrid

	DynamicTable

	EmailSelectForm

	Filter

	Form

	InfoBlock

	Input

	MultiFill

	Quadicon

	Radio

	ScriptBox

	Select

	ShowingInputs

	SplitCheckboxTable

	SplitTable

	StatusBox

	Table

	Tree

	cfme.web_ui.accordion

	cfme.web_ui.cfme_exception

	cfme.web_ui.expression_editor

	cfme.web_ui.flash

	cfme.web_ui.form_buttons

	cfme.web_ui.jstimelines

	cfme.web_ui.listaccordion

	cfme.web_ui.menu

	cfme.web_ui.mixins

	cfme.web_ui.paginator

	cfme.web_ui.search

	cfme.web_ui.tabstrip

	cfme.web_ui.toolbar

	
class cfme.web_ui.AngularCalendarInput(input_name, click_away_element)[source]

	Bases: cfme.utils.pretty.Pretty

	
clear()[source]

	

	
clear_button

	

	
fill(value)[source]

	

	
input

	

	
locate()[source]

	

	
pretty_attrs = ('input_name', 'click_away_element')

	

	
class cfme.web_ui.AngularSelect(loc, none=None, multi=False, exact=False)[source]

	Bases: cfme.utils.pretty.Pretty

	
BUTTON = "//button[@data-id='{}']"

	

	
all_options

	

	
classes

	Combines class from the button and from select.

	
did

	

	
first_selected_option

	

	
first_selected_option_text

	

	
is_broken

	

	
is_open

	

	
locate()[source]

	

	
open()[source]

	

	
options

	

	
pretty_attrs = ['_loc', 'none', 'multi', 'exact']

	

	
select

	

	
select_by_value(value)[source]

	

	
select_by_visible_text(text)[source]

	

	
class cfme.web_ui.BootstrapSwitch(input_id)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
angular_help_block

	Returns the first visible angular helper text (like ‘Required’).

	
check()[source]

	Checks the bootstrap box

	
fill(val)[source]

	Convenience function

	
is_selected()[source]

	

	
uncheck()[source]

	Unchecks the bootstrap box

	
class cfme.web_ui.BootstrapTreeview(tree_id)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

A class representing the Bootstrap treeview used in newer builds.

Implements expand_path, click_path, read_contents. All are implemented in manner
very similar to the original Tree.

	Parameters:	tree_id – Id of the tree, the closest div to the root ul element.

	
CHILD_ITEMS = './ul/li[starts-with(@data-nodeid, {id}) and count(./span[contains(@class, "indent")])={indent}]'

	

	
CHILD_ITEMS_TEXT = './ul/li[starts-with(@data-nodeid, {id}) and contains(normalize-space(.), {text}) and count(./span[contains(@class, "indent")])={indent}]'

	

	
INDENT = './span[contains(@class, "indent")]'

	

	
IS_CHECKABLE = './span[contains(@class, "check-icon")]'

	

	
IS_CHECKED = './span[contains(@class, "check-icon") and contains(@class, "fa-check-square-o")]'

	

	
IS_EXPANDABLE = './span[contains(@class, "expand-icon")]'

	

	
IS_EXPANDED = './span[contains(@class, "expand-icon") and contains(@class, "fa-angle-down")]'

	

	
IS_LOADING = './span[contains(@class, "expand-icon") and contains(@class, "fa-spinner")]'

	

	
ITEM_BY_NODEID = './ul/li[@data-nodeid={}]'

	

	
ROOT_ITEMS = './ul/li[not(./span[contains(@class, "indent")])]'

	

	
ROOT_ITEMS_WITH_TEXT = './ul/li[not(./span[contains(@class, "indent")]) and contains(normalize-space(.), {text})]'

	

	
SELECTED_ITEM = './ul/li[contains(@class, "node-selected")]'

	

	
check_node(*path, **kwargs)[source]

	Expands the passed path and checks a checkbox that is located at the node.

	
check_uncheck_node(check, *path, **kwargs)[source]

	

	
child_items(item=None)[source]

	

	
child_items_with_text(item, text)[source]

	

	
click_path(*path, **kwargs)[source]

	Expands the path and clicks the leaf node.

See expand_path() for more informations about synopsis.

	
collapse_node(nodeid)[source]

	Collapses a node given its nodeid. Must be visible

	Parameters:	nodeid – nodeId of the node

	Returns:	True if it was possible to expand the node, otherwise False.

	
expand_node(nodeid)[source]

	Expands a node given its nodeid. Must be visible

	Parameters:	nodeid – nodeId of the node

	Returns:	True if it was possible to expand the node, otherwise False.

	
expand_path(*path, **kwargs)[source]

	Expands given path and returns the leaf node.

The path items can be plain strings. In that case, exact string matching happens. Path items
can also be compiled regexps, where the match method is used to determine if the node
is the one we want. And finally, the path items can be 2-tuples, where the second item can
be the string or regular expression and the first item is the image to be matched using
image_getter() method.

	Parameters:	*path – The path (explained above)

	Returns:	The leaf WebElement.

	Raises:	exceptions.CandidateNotFound when the node is not found in the tree.

	
find_path_to(target, exact=False)[source]

	Method used to look up the exact path to an item we know only by its regexp or partial
description.

Expands whole tree during the execution.

	Parameters:	
	target – Item searched for. Can be regexp made by
re.compile [http://docs.python.org/2.7/library/re.html#re.compile],
otherwise it is taken as a string for in matching.

	exact – Useful in string matching. If set to True, it matches the exact string.
Default is False.

Returns: list with path to that item.

	
classmethod get_expand_arrow(item)[source]

	

	
get_item_by_nodeid(nodeid)[source]

	

	
classmethod get_nodeid(item)[source]

	

	
classmethod image_getter(item)[source]

	Look up the image that is hidden in the style tag

	Returns:	The name of the image without the hash, path and extension.

	
classmethod indents(item)[source]

	

	
classmethod is_checkable(item)[source]

	

	
classmethod is_checked(item)[source]

	

	
classmethod is_collapsed(item)[source]

	

	
classmethod is_expandable(item)[source]

	

	
classmethod is_expanded(item)[source]

	

	
classmethod is_loading(item)[source]

	

	
classmethod is_selected(item)[source]

	

	
locate()[source]

	

	
node_checked(*path, **kwargs)[source]

	Check if a checkbox is checked on the node in that path.

	
classmethod pretty_path(path)[source]

	

	
read_contents(nodeid=None, include_images=False, collapse_after_read=False)[source]

	

	
selected_item

	

	
uncheck_node(*path, **kwargs)[source]

	Expands the passed path and unchecks a checkbox that is located at the node.

	
classmethod validate_node(node, matcher, image)[source]

	

	
class cfme.web_ui.ButtonGroup(key, fieldset=None)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
active

	Returns the alt tag text of the active button in thr group.

	
choose(alt)[source]

	Sets the ButtonGroup to select the button identified by the alt text.

	
locate()[source]

	Moves to the element

	
locator

	

	
locator_base

	

	
status(alt)[source]

	Returns the status of the button identified by the Alt Text of the image.

	
class cfme.web_ui.CAndUGroupTable(table_locator, header_offset=0, body_offset=0, hidden_locator=None)[source]

	Bases: cfme.web_ui.Table

Type of tables used in C&U, not tested in others.

Provides .groups() generator which yields group objects. A group objects consists of the
rows that are located in the group plus the summary informations. THe main principle is that
all the rows inside group are stored in group object’s .rows and when the script encounters
the end of the group, it will store the summary data after the data rows as attributes, so eg.
Totals: will become group.totals. All the rows are represented as dictionaries.

	
class Group(group_id, headers, rows, info_rows)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
class CAndUGroupTable.States[source]

	
	
GROUP_SUMMARY = 1

	

	
NORMAL_ROWS = 0

	

	
CAndUGroupTable.find_group(group_id)[source]

	Finds a group by its group ID (the string that is alone on the line)

	
CAndUGroupTable.groups()[source]

	

	
CAndUGroupTable.paginated_rows()[source]

	

	
class cfme.web_ui.CFMECheckbox(input_id)[source]

	Bases: cfme.web_ui.Selector

	
decide()[source]

	

	
class cfme.web_ui.CachedTableHeaders(table)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

the internal cache of headers

This allows columns to be moved and the Table updated. The headers stores
the header cache element and the list of headers are stored in _headers. The
attribute header_indexes is then created, before finally creating the items
attribute.

	
class cfme.web_ui.Calendar(name)[source]

	Bases: cfme.utils.pretty.Pretty

A CFME calendar form field

Calendar fields are readonly, and managed by the dxhtmlCalendar widget. A Calendar field
will accept any object that can be coerced into a string, but the value may not match the format
expected by dhtmlxCalendar or CFME. For best results, either a datetime.date or
datetime.datetime object should be used to create a valid date field.

	Parameters:	name – “name” property of the readonly calendar field.

Usage:

calendar = web_ui.Calendar("miq_date_1")
web_ui.fill(calendar, date(2000, 1, 1))
web_ui.fill(calendar, '1/1/2001')

	
locate()[source]

	

	
class cfme.web_ui.CheckboxSelect(search_root, text_access_func=None)[source]

	Bases: cfme.utils.pretty.Pretty

Class used for filling those bunches of checkboxes I (@mfalesni) always hated to search for.

Can fill by values, text or both. To search the text for the checkbox, you have 2 choices:

	
	If the text can be got from parent’s tag (like <div><input type=”checkbox”>blablabla</div>

	where blablabla is the checkbox’s description looked up), you can leave the
text_access_func unfilled.

	
	If there is more complicated layout and you don’t mind a bit slower operation, you can pass

	the text_access_func, which should be like lambda checkbox_el: get_text_of(checkbox_el).
The checkbox WebElement is passed to it and the description text is the expected output
of the function.

	Parameters:	
	search_root – Root element for checkbox search

	text_access_func – Function returning descriptive text about passed CB element.

	
check(values)[source]

	Checking function.

	Parameters:	values – Dictionary with key=CB name, value=bool with status.

Look in the function to see.

	
checkbox_by_id(id)[source]

	Find checkbox’s WebElement by id.

	
checkbox_by_text(text)[source]

	Returns checkbox’s WebElement by searched by its text.

	
checkboxes

	All checkboxes.

	
pretty_attrs = ['_root']

	

	
select_all()[source]

	Selects all checkboxes.

	
selected_checkboxes

	Only selected checkboxes.

	
selected_values

	Only selected checkboxes’ values.

	
unselect_all()[source]

	Unselects all checkboxes.

	
unselected_checkboxes

	Only unselected checkboxes.

	
unselected_values

	Only unselected checkboxes’ values.

	
class cfme.web_ui.CheckboxTable(table_locator, header_offset=0, body_offset=0, header_checkbox_locator=None, body_checkbox_locator=None)[source]

	Bases: cfme.web_ui.Table

Table with support for checkboxes

	Parameters:	
	table_locator – See cfme.web_ui.Table

	header_checkbox_locator – Locator of header checkbox (default None)
Specify in case the header checkbox is not part of the header row

	body_checkbox_locator – Locator for checkboxes in body rows

	header_offset – See cfme.web_ui.Table

	body_offset – See cfme.web_ui.Table

	
deselect_all()[source]

	Deselect all rows using the header checkbox or one by one if not present

	
deselect_row(header, value)[source]

	Deselect a single row specified by column header and cell value

	Parameters:	
	header – See Table.find_row()

	value – See Table.find_row()

Returns: True if successful, False otherwise

	
deselect_row_by_cells(cells, partial_check=False)[source]

	Deselect the first row matched by cells

	Parameters:	cells – See Table.find_rows_by_cells()

	
deselect_rows(cell_map)[source]

	Deselect multiple rows

	Parameters:	cell_map – See Table.click_cells()

	Raises:	NotAllCheckboxesFound –
If some cells were unable to be found

	
deselect_rows_by_cells(cells, partial_check=False)[source]

	Deselect the rows matched by cells

	Parameters:	cells – See Table.find_rows_by_cells()

	
deselect_rows_by_indexes(*indexes)[source]

	Deselect rows specified by row indexes (starting with 0)

	
header_checkbox

	Checkbox used to select/deselect all rows

	
select_all()[source]

	Select all rows using the header checkbox or one by one if not present

	
select_row(header, value)[source]

	Select a single row specified by column header and cell value

	Parameters:	
	header – See Table.find_row()

	value – See Table.find_row()

Returns: True if successful, False otherwise

	
select_row_by_cells(cells, partial_check=False)[source]

	Select the first row matched by cells

	Parameters:	cells – See Table.find_rows_by_cells()

	
select_rows(cell_map)[source]

	Select multiple rows

	Parameters:	cell_map – See Table.click_cells()

	Raises:	NotAllCheckboxesFound –
If some cells were unable to be found

	
select_rows_by_cells(cells, partial_check=False)[source]

	Select the rows matched by cells

	Parameters:	cells – See Table.find_rows_by_cells()

	
select_rows_by_indexes(*indexes)[source]

	Select rows specified by row indexes (starting with 0)

	
class cfme.web_ui.CheckboxTree(locator)[source]

	Bases: cfme.web_ui.Tree

Tree that has a checkbox on each node, adds methods to check/uncheck them

	
check_node(*path)[source]

	Convenience function to check a node

	Parameters:	*path – The path as multiple positional string arguments denoting the course to take.

	
node_checkbox = "../span[@class='dynatree-checkbox']"

	

	
uncheck_node(*path)[source]

	Convenience function to uncheck a node

	Parameters:	*path – The path as multiple positional string arguments denoting the course to take.

	
class cfme.web_ui.ColorGroup(key)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
active

	Returns the alt tag text of the active button in thr group.

	
choose(color)[source]

	Sets the ColorGroup to select the button identified by the title text.

	
locate()[source]

	Moves to the element

	
status(color)[source]

	Returns the status of the color button identified by the Title Text of the image.

	
class cfme.web_ui.DHTMLSelect(loc, multi=False, none=None)[source]

	Bases: cfme.fixtures.pytest_selenium.Select

A special Select object for CFME’s icon enhanced DHTMLx Select elements.

	Parameters:	loc – A locator.

Returns a cfme.web_ui.DHTMLSelect object.

	
all_selected_options

	Returns all selected options.

	Note: Since the DHTML select can only have one option selected at a time, we

	simple return the first element (the only element).

Returns: A Web element.

	
first_selected_option

	Returns the first selected option in the DHTML select

Note: In a DHTML select, there is only one option selectable at a time.

Returns: A webelement.

	
locate()[source]

	

	
options

	Returns a list of options of the select as webelements.

Returns: A list of Webelements.

	
select_by_index(index, _cascade=None)[source]

	Selects an option by index.

	Parameters:	index – The select element’s option by index.

	
select_by_value(value, _cascade=None)[source]

	Selects an option by value.

	Parameters:	value – The select element’s option value.

	
select_by_visible_text(text)[source]

	Selects an option by visible text.

	Parameters:	text – The select element option’s visible text.

	
class cfme.web_ui.DriftGrid(loc="//div[@id='compare-grid']")[source]

	Bases: cfme.utils.pretty.Pretty

Class representing the table (grid) specific to host drift analysis comparison page

	
cell_indicates_change(row_text, col_index)[source]

	Finds out if a cell, specified by column index and row text, indicates change

	Parameters:	
	row_text – Title text of the cell’s row

	col_index – Column index of the cell

Note

col_index of 0 is used for the 2nd actual column in the drift grid, because
the 1st column does not contain headers, only row descriptions.

	Returns:	True if there is a change present, False otherwise

	
expand_all_sections()[source]

	Expands all sections to make the row elements found therein available

	
get_cell(row_text, col_index)[source]

	Finds cell element of the grid specified by column index and row text

	Parameters:	
	row_text – Title text of the cell’s row

	col_index – Column index of the cell, starting with 0 for 1st data-containing column

Note

col_index of 0 is used for the 2nd actual column in the drift grid, because
the 1st column does not contain headers, only row descriptions.

	Returns:	Selenium element of the cell.

	
class cfme.web_ui.DynamicTable(root_loc, default_row_item=None)[source]

	Bases: cfme.utils.pretty.Pretty

A table that can add or remove the rows.

	
DELETE_ALL = {Version('lowest'): ".//tbody/tr/td/img[@alt='Delete']", '5.6': './/tbody/tr/td/button/i[contains(@class, "minus")]'}

	

	
ROWS = ".//tbody/tr[not(contains(@id, 'new_tr'))]"

	

	
class Row(table, root)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
inputs

	

	
inputs_for_filling

	

	
values

	

	
DynamicTable.add_row(data)[source]

	

	
DynamicTable.clear()[source]

	

	
DynamicTable.click_add()[source]

	

	
DynamicTable.click_save()[source]

	

	
DynamicTable.delete_row(by)[source]

	

	
DynamicTable.header_names

	

	
DynamicTable.pretty_attrs = ('root_loc', 'default_row_item')

	

	
DynamicTable.rows

	

	
class cfme.web_ui.EmailSelectForm[source]

	Bases: cfme.utils.pretty.Pretty

Class encapsulating the e-mail selector, eg. in Control/Alarms editing.

	
fields = <cfme.web_ui.Region title=None>

	

	
remove_email(email)[source]

	Remove specified e-mail

	Parameters:	email – E-mail to remove

	
to_emails

	Returns list of e-mails that are selected

	
user_emails

	Returns list of e-mail that users inside CFME have so that they can be selected

	
class cfme.web_ui.FileInput(*names, **kwargs)[source]

	Bases: cfme.web_ui.Input

A file input handling widget.

Accepts a string. If the string is a file, then it is put in the input. Otherwise a temporary
file is generated and that one is fed to the file input.

	
class cfme.web_ui.Filter(fields=None, identifying_loc=None)[source]

	Bases: cfme.web_ui.Form

Filters requests pages

This class inherits Form as its base and adds a few methods to assist in filtering
request pages.

Usage:

f = Filter(fields=[
 ('type', Select('//select[@id="type_choice"]')),
 ('approved', Input("state_choice__approved")),
 ('denied', Input"state_choice__denied")),
 ('pending_approval', Input("state_choice__pending_approval")),
 ('date', Select('//select[@id="time_period"]')),
 ('reason', Input("reason_text")),
])

f.apply_filter(type="VM Clone", approved=False,
 pending_approval=False, date="Last 24 Hours", reason="Just Because")

	
apply_filter(**kwargs)[source]

	Method to apply a filter.

First resets the filter to default and then applies the filter.

	Parameters:	**kwargs – A dictionary of form elements to fill and their values.

	
buttons = {'reset': '//div[@id="buttons_on"]//a[@title="Reset filter changes"]', 'apply': '//div[@id="buttons_on"]//a[@title="Apply the selected filters"]', 'default_off': '//div[@id="buttons_off"]/li/a/img[@alt="Set filters to default"]', 'default_on': '//div[@id="buttons_on"]/li/a/img[@alt="Set filters to default"]'}

	

	
default_filter()[source]

	Method to reset the filter back to defaults.

	
reset_filter()[source]

	Method to reset the changes to the filter since last applying.

	
class cfme.web_ui.Form(fields=None, identifying_loc=None)[source]

	Bases: cfme.web_ui.Region

A class for interacting with Form elements on pages.

The Form class takes a set of locators and binds them together to create a
unified Form object. This Form object has a defined field order so that the
user does not have to worry about which order the information is provided.
This enables the data to be provided as a dict meaning it can be passed directly
from yamls. It inherits the base Region class, meaning that locators can still be
referenced in the same way a Region’s locators can. You can also add one more field which will
be a dict [http://docs.python.org/2.7/library/stdtypes.html#dict] of metadata, determining mostly field validity. See field_valid()

	Parameters:	
	fields – A list of field name/locator tuples. The argument not only defines
the order of the elements but also which elements comprise part of the form.

	identifying_loc – A locator which should be present if the form is visible.

Usage:

provider_form = web_ui.Form(
 fields=[
 ('type_select', "//*[@id='server_emstype']"),
 ('name_text', "//*[@id='name']"),
 ('hostname_text', "//*[@id='hostname']"),
 ('ipaddress_text', "//*[@id='ipaddress']"),
 ('amazon_region_select', "//*[@id='hostname']"),
 ('api_port', "//*[@id='port']"),
])

Forms can then be filled in like so.:

provider_info = {
 'type_select': "OpenStack",
 'name_text': "RHOS-01",
 'hostname_text': "RHOS-01",
 'ipaddress_text': "10.0.0.0",
 'api_port': "5000",
}
web_ui.fill(provider_form, provider_info)

Note

Using supertuples in a list, although ordered due to the properties of a List,
will not overide the field order defined in the Form.

	
field_valid(field_name)[source]

	Add the validity constraints here.

	
fill(fill_data)[source]

	

	
pretty_attrs = ['fields']

	

	
class cfme.web_ui.InfoBlock(title)[source]

	Bases: cfme.utils.pretty.Pretty

	
DETAIL = 'detail'

	

	
FORM = 'form'

	

	
class Member(ib, name)[source]

	Bases: cfme.utils.pretty.Pretty

	
container

	

	
element

	

	
elements

	

	
icon_href

	

	
locate()[source]

	

	
pair

	

	
pair_locator

	

	
pretty_attrs = ('name', 'ib')

	

	
text

	

	
title

	

	
InfoBlock.PF = 'patternfly'

	

	
InfoBlock.__call__(member)[source]

	A present for @smyers

	
InfoBlock.by_member_icon(icon)[source]

	In case you want to find the item by icon in the value field (like OS infra diff.)

	
classmethod InfoBlock.container(args, **kwargs)[source]

	

	
classmethod InfoBlock.element(*args, **kwargs)[source]

	

	
classmethod InfoBlock.elements(*args, **kwargs)[source]

	

	
classmethod InfoBlock.icon_href(*args, **kwargs)[source]

	

	
InfoBlock.member(name)[source]

	

	
InfoBlock.pretty_attrs = ['title']

	

	
InfoBlock.root

	

	
classmethod InfoBlock.text(*args, **kwargs)[source]

	

	
InfoBlock.type

	

	
class cfme.web_ui.Input(*names, **kwargs)[source]

	Bases: cfme.utils.pretty.Pretty

Class designed to handle things about <input> tags that have name attr in one place.

Also applies on textarea, which is basically input with multiple lines (if it has name).

	Parameters:	*names – Possible values (or) of the name attribute.

	Keywords:

	
	use_id: Whether to use id instead of name. Useful if there is some input that does

	not have name attribute present.

	
angular_help_block

	Returns the first visible angular helper text (like ‘Required’).

	
locate()[source]

	

	
names

	

	
pretty_attrs = ['_names', '_use_id']

	

	
class cfme.web_ui.MultiFill(*fields)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

Class designed to fill the same value to multiple fields

	Parameters:	*fields – The fields where the value will be mirrored

	
class cfme.web_ui.MultiSelect(available_select=None, selected_select=None, select_arrow=None, deselect_arrow=None)[source]

	Bases: cfme.web_ui.Region

Represents a UI widget where there are two select boxes, one with
possible selections, and another with selected items. Has two
arrow buttons to move items between the two

	
class cfme.web_ui.OldCheckbox(input_id)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
check()[source]

	Convenience function

	
fill(val)[source]

	Checks or unchecks

	Parameters:	value – The value the checkbox should represent as a bool (or None to do nothing)

Returns: Previous state of the checkbox

	
is_selected()[source]

	

	
uncheck()[source]

	Convenience function

	
class cfme.web_ui.PagedTable(table_locator, header_offset=0, body_offset=0, hidden_locator=None)[source]

	Bases: cfme.web_ui.Table

Table with support for paginator

	Parameters:	
	table_locator – See cfme.web_ui.Table

	header_checkbox_locator – Locator of header checkbox (default None)
Specify in case the header checkbox is not part of the header row

	body_checkbox_locator – Locator for checkboxes in body rows

	header_offset – See cfme.web_ui.Table

	body_offset – See cfme.web_ui.Table

	
find_row_by_cell_on_all_pages(cells)[source]

	Find the first row containing cells on all pages

	Parameters:	cells – See Table.find_rows_by_cells()

Returns: The first matching row found on any page

	
find_row_on_all_pages(header, value)[source]

	

	
class cfme.web_ui.Quadicon(name, qtype=None)[source]

	Bases: cfme.utils.pretty.Pretty

Represents a single quadruple icon in the CFME UI.

A Quadicon contains multiple quadrants. These are accessed via attributes.
The qtype is currently one of the following and determines which attribute names
are present. They are mapped internally and can be reassigned easily if the UI changes.

A Quadicon is used by defining the name of the icon and the type. After that, it can be used
to obtain the locator of the Quadicon, or query its quadrants, via attributes.

	Parameters:	
	name – The label of the icon.

	qtype – The type of the quad icon. By default it is None, therefore plain quad without any
retrievable data usable for selecting/clicking.

Usage:

qi = web_ui.Quadicon('hostname.local', 'host')
qi.creds
click(qi)

Known Quadicon Types and Attributes

	host - from the infra/host page - has quads:
	
	no_vm - Number of VMs

	
	state - The current state of the host

	
	vendor - The vendor of the host

	
	creds - If the creds are valid

	infra_prov - from the infra/providers page - has quads:
	
	no_host - Number of hosts

	
	Blank

	
	vendor - The vendor of the provider

	
	creds - If the creds are valid

	vm - from the infra/virtual_machines page - has quads:
	
	os - The OS of the vm

	
	state - The current state of the vm

	
	vendor - The vendor of the vm’s host

	
	no_snapshot - The number of snapshots

	
	policy - The state of the policy

	cloud_prov - from the cloud/providers page - has quads:
	
	no_instance - Number of instances

	
	no_image - Number of machine images

	
	vendor - The vendor of the provider

	
	creds - If the creds are valid

	instance - from the cloud/instances page - has quads:
	
	os - The OS of the instance

	
	state - The current state of the instance

	
	vendor - The vendor of the instance’s host

	
	no_snapshot - The number of snapshots

	
	policy - The state of the policy

	datastore - from the infra/datastores page - has quads:
	
	type - File system type

	
	no_vm - Number of VMs

	
	no_host - Number of hosts

	
	avail_space - Available space

	cluster - from the infra/cluster page - has no quads

	resource_pool - from the infra/resource_pool page - has no quads

	stack - from the clouds/stacks page - has no quads

Returns: A Quadicon object.

	
QUADS = {'resource_pool': {}, 'infra_prov': {'no_host': ('a', 'txt'), 'vendor': ('c', 'img'), 'creds': ('d', 'img')}, 'image': {'vendor': ('c', 'img'), 'state': ('b', 'img'), 'os': ('a', 'img'), 'no_snapshot': ('d', 'txt')}, 'vm': {'policy': ('g', 'img'), 'vendor': ('c', 'img'), 'state': ('b', 'img'), 'os': ('a', 'img'), 'no_snapshot': ('d', 'txt')}, None: {}, 'cluster': {}, 'host': {'no_vm': ('a', 'txt'), 'vendor': ('c', 'img'), 'state': ('b', 'img'), 'creds': ('d', 'img')}, 'datastore': {'no_host': ('c', 'txt'), 'no_vm': ('b', 'txt'), 'type': ('a', 'img'), 'avail_space': ('d', 'img')}, 'stack': {}, 'middleware': {}, 'cloud_prov': {'no_vm': ('a', 'txt'), 'vendor': ('b', 'img'), 'creds': ('d', 'img'), 'no_image': ('b', 'txt')}, 'instance': {'policy': ('g', 'img'), 'vendor': ('c', 'img'), 'state': ('b', 'img'), 'os': ('a', 'img'), 'no_snapshot': ('d', 'txt')}, 'template': {'vendor': ('c', 'img'), 'state': ('b', 'img'), 'os': ('a', 'img'), 'no_snapshot': ('d', 'txt')}, 'object_store': {}}

	

	
__getattr__(name)[source]

	Queries the quadrants by name

	Parameters:	name – The name of the quadrant identifier, as defined above.

Returns: A string containing a representation of what is in the quadrant.

	
a_cond

	

	
classmethod all(qtype=None, this_page=False)[source]

	Allows iteration over Quadicons.

	Parameters:	
	qtype – Quadicon type. Refer to the constructor for reference.

	this_page – Whether to look for Quadicons only on current page (do not list pages).

Returns: list of Quadicon

	
classmethod any_present()[source]

	

	
check_for_single_quadrant_icon

	Checks if the quad icon is a single quadrant icon.

	
checkbox()[source]

	Returns: a locator for the internal checkbox for the quadicon

	
exists

	

	
classmethod first(qtype=None)[source]

	

	
static get_first_quad_title()[source]

	

	
href

	

	
locate()[source]

	Returns: a locator for the quadicon anchor

	
name

	Returns name of the quadicon.

	
pretty_attrs = ['_name', '_qtype']

	

	
qtype

	

	
static select_first_quad()[source]

	

	
class cfme.web_ui.Radio(*names, **kwargs)[source]

	Bases: cfme.web_ui.Input

A class for Radio button groups

Radio allows the usage of HTML radio elements without resorting to previous
practice of iterating over elements to find the value. The name of the radio
group is passed and then when choices are required, the locator is built.

	Parameters:	name – The HTML elements name attribute that identifies a group of radio
buttons.

Usage:

radio = Radio("schedule__schedule_type")

A specific radio element can then be returned by running the following:

el = radio.choice('immediately')
click(el)

The Radio object can be reused over and over with repeated calls to
the Radio.choice() method.

	
choice(val)[source]

	Returns the locator for a choice

	Parameters:	val – A string representing the value attribute of the specific radio
element.

Returns: A string containing the XPATH of the specific radio element.

	
observer_wait(val)[source]

	

	
class cfme.web_ui.Region(locators=None, title=None, identifying_loc=None, **kwargs)[source]

	Bases: cfme.utils.pretty.Pretty

Base class for all UI regions/pages

	Parameters:	
	locators – A dict of locator objects for the given region

	title – A string containing the title of the page,
or a versioned dict of page title strings

	identifying_loc – Single locator key from locators used by Region.is_displayed()
to check if the region is currently visible

Usage:

page = Region(locators={
 'configuration_button': (By.CSS_SELECTOR, "div.dhx_toolbar_btn[title='Configuration']"),
 'discover_button': (By.CSS_SELECTOR,
 "tr[title='Discover Cloud Providers']>td.td_btn_txt>" "div.btn_sel_text")
 },
 title='Cloud Providers',
 identifying_loc='discover_button'
)

The elements can then accessed like so:

page.configuration_button

Locator attributes will return the locator tuple for that particular element,
and can be passed on to other functions, such as element() and click().

Note

When specifying a region title, omit the “Cloudforms Management Engine: ” or “ManageIQ: ”
prefix. They are included on every page, and different for the two versions of the
appliance, and is_displayed() strips them off before checking for equality.

	
is_displayed()[source]

	Checks to see if the region is currently displayed.

Returns: A boolean describing if the region is currently displayed

	
pretty_attrs = ['title']

	

	
title

	

	
class cfme.web_ui.ScriptBox(name=None, ta_locator="//textarea[contains(@id, 'method_data')]")[source]

	Bases: cfme.utils.pretty.Pretty

Represents a script box as is present on the customization templates pages.
This box has to be activated before keys can be sent. Since this can’t be done
until the box element is visible, and some dropdowns change the element, it must
be activated “inline”.

Args:

	
get_value()[source]

	

	
name

	

	
pretty_attrs = ['locator']

	

	
workaround_save_issue()[source]

	

	
class cfme.web_ui.Selector[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

Special Selector object allowing object resolution on attr access

The Selector is a simple class which allows a ‘super’ widget to support multiple
implementations. This is achieved by the use of a decide method which accesses
attrs of the object set by the __init__ of the child class. These attributes
are then used to decide which type of object is on a page. In some cases, this can
avoid a version pick if the information used to instantiate both old and new implementations
can be identical. This is most noteably if using an “id” which remains constant from
implementation to implementation.

As an example, imagine the normal “checkbox” is replaced wit ha fancy new web 2.0
checkbox. Both have an “input” element, and give it the same “id”. When the decide method is
invoked, the “id” is inspected and used to determine if it is an old or a new style widget.
We then set a hidden attribute of the super widget and proxy all further attr requests to
that object.

This means that in order for things to behave as expect ALL implementations must also expose
the same “public” API.

	
decide()[source]

	

	
class cfme.web_ui.ShowingInputs(*locators, **kwargs)[source]

	Bases: cfme.utils.pretty.Pretty

This class abstracts out as a container of inputs, that appear after preceeding was filled.

	Parameters:	*locators – In-order-of-display specification of locators.

	Keywords:

	min_values: How many values are required (Default: 0)

	
__getitem__(i)[source]

	To delegate access to the separate locators

	
pretty_attrs = ['locators', 'min_values']

	

	
zip(with_values)[source]

	

	
class cfme.web_ui.SortTable(table_locator, header_offset=0, body_offset=0, hidden_locator=None)[source]

	Bases: cfme.web_ui.Table

This table is the same as Table, but with added sorting functionality.

	
SORT_CELL = './th[./div/i[contains(@class, "fa-sort")] or contains(@class, "sorting_")]'

	

	
SORT_LINK = './th/a[normalize-space(.)={}]'

	

	
click_header_cell(text)[source]

	Clicks on the header to change sorting conditions.

	Parameters:	text – Header cell text.

	
sort_by(header, order)[source]

	Sorts the table by given conditions

	Parameters:	
	header – Text of the header cell to use for sorting.

	order – ascending or descending

	
sort_order

	Return order.

Returns: ‘ascending’ or ‘descending’

	
sorted_by

	Return column name what is used for sorting now.

	
class cfme.web_ui.SplitCheckboxTable(header_data, body_data, header_checkbox_locator=None, body_checkbox_locator=None)[source]

	Bases: cfme.web_ui.SplitTable, cfme.web_ui.CheckboxTable

SplitTable with support for checkboxes

	Parameters:	
	header_data – See cfme.web_ui.SplitTable

	body_data – See cfme.web_ui.SplitTable

	header_checkbox_locator – See cfme.web_ui.CheckboxTable

	body_checkbox_locator – See cfme.web_ui.CheckboxTable

	header_offset – See cfme.web_ui.Table

	body_offset – See cfme.web_ui.Table

	
class cfme.web_ui.SplitPagedTable(header_data, body_data)[source]

	Bases: cfme.web_ui.SplitTable, cfme.web_ui.PagedTable

SplitTable with support for paginator

	Parameters:	
	header_data – See cfme.web_ui.SplitTable

	body_data – See cfme.web_ui.SplitTable

	header_offset – See cfme.web_ui.Table

	body_offset – See cfme.web_ui.Table

	
class cfme.web_ui.SplitTable(header_data, body_data)[source]

	Bases: cfme.web_ui.Table

Table that supports the header and body rows being in separate tables

	Parameters:	
	header_data – A tuple, containing an element locator and an offset value.
These point to the container of the header row. The offset is used in case
there is a padding row above the header, or in the case that the header
and the body are contained inside the same table element.

	body_data – A tuple, containing an element locator and an offset value.
These point to the container of the body rows. The offset is used in case
there is a padding row above the body rows, or in the case that the header
and the body are contained inside the same table element.

Usage:

table = SplitTable(header_data=('//div[@id="header_table"]//table/tbody', 0),
 body_data=('//div[@id="body_table"]//table/tbody', 1))

The HTML code for a split table looks something like this:

<div id="prov_pxe_img_div">
 <table id="header_table">
 <tbody>
 <tr>
 <td>Name</td>
 <td>Animal</td>
 <td>Size</td>
 </tr>
 </tbody>
 </table>
 <table id="body_table">
 <tbody>
 <tr>
 <td>Useless</td>
 <td>Padding</td>
 <td>Row</td>
 </tr>
 <tr>
 <td>John</td>
 <td>Monkey</td>
 <td>Small</td>
 </tr>
 <tr>
 <td>Mike</td>
 <td>Tiger</td>
 <td>Large</td>
 </tr>
 </tbody>
 </table>
</div>

Note the use of the offset to skip the “Useless Padding Row” in body_data. Most split
tables require an offset for both the heading and body rows.

	
body

	Property representing the element that contains body rows

	
header_row

	Property representing the <tr> element that contains header cells

	
locate()[source]

	

	
class cfme.web_ui.StatusBox(name)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

Status box as seen in containers overview page

Status box modelling.

	Parameters:	name – The name of the status box as it appears in CFME, e.g. ‘Nodes’

Returns: A StatusBox instance.

	
value()[source]

	

	
class cfme.web_ui.Table(table_locator, header_offset=0, body_offset=0, hidden_locator=None)[source]

	Bases: cfme.utils.pretty.Pretty

Helper class for Table/List objects

Turns CFME custom Table/Lists into iterable objects using a generator.

	Parameters:	
	table_locator – locator pointing to a table element with child thead and tbody elements
representing that table’s header and body row containers

	header_offset – In the case of a padding table row above the header, the row offset
can be used to skip rows in <thead> to locate the correct header row. This offset
is 1-indexed, not 0-indexed, so an offset of 1 is the first child row element

	body_offset – In the case of a padding table row above the body rows, the row offset
can be used to skip rows in <ttbody> to locate the correct header row. This offset
is 1-indexed, not 0-indexed, so an offset of 1 is the first child row element

	hidden_locator – If the table can disappear, you probably want ot set this param as it
instructs the table that if it cannot find the table on the page but the element
represented by hidden_locator is visible, it assumes no data and returns no rows.

	
header_indexes

	A dict of header names related to their int index as a column.

Usage:

table = Table('//div[@id="prov_pxe_img_div"]//table')

The HTML code for the table looks something like this:

<div id="prov_pxe_img_div">
 <table>
 <thead>
 <tr>
 <th>Name</th>
 <th>Animal</th>
 <th>Size</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>John</td>
 <td>Monkey</td>
 <td>Small</td>
 </tr>
 <tr>
 <td>Mike</td>
 <td>Tiger</td>
 <td>Large</td>
 </tr>
 </tbody>
 </table>
</div>

We can now click on an element in the list like so, by providing the column
name and the value that we are searching for:

table.click_cell('name', 'Mike')

We can also perform the same, by using the index of the column, like so:

table.click_cell(1, 'Tiger')

Additionally, the rows of a table can be iterated over, and that row’s columns can be accessed
by name or index (left to right, 0-index):

for row in table.rows()
 # Get the first cell in the row
 row[0]
 # Get the row's contents for the column with header 'Row Name'
 # All of these will work, though the first is preferred
 row.row_name, row['row_name'], row['Row Name']

When doing bulk opererations, such as selecting rows in a table based on their content,
the *_by_cells methods are able to find matching row much more quickly than iterating,
as the work can be done with fewer selenium calls.

	find_rows_by_cells()

	find_row_by_cells()

	click_rows_by_cells()

	click_row_by_cells()

Note

A table is defined by the containers of the header and data areas, and offsets to them.
This allows a table to include one or more padding rows above the header row. In
the example above, there is no padding row, as our offset values are set to 0.

	
class Row(row_element, parent_table)[source]

	Bases: cfme.utils.pretty.Pretty

An object representing a row in a Table.

The Row object returns a dymanically addressable attribute space so that
the tables headers are automatically generated.

	Parameters:	
	row_element – A table row WebElement

	parent_table – Table containing row_element

Notes

Attributes are dynamically generated. The index/key accessor is more flexible
than the attr accessor, as it can operate on int indices and header names.

	
__getattr__(name)[source]

	Returns Row element by header name

	
__getitem__(index)[source]

	Returns Row element by header index or name

	
columns

	A list of WebElements corresponding to the <td> elements in this row

	
locate()[source]

	

	
pretty_attrs = ['row_element', 'table']

	

	
Table.body

	Property representing the <tbody> element that contains body rows

	
Table.click_cell(header, value)[source]

	Clicks on a cell defined in the row.

Uses the header identifier and a value to determine which cell to click on.

	Parameters:	
	header – A string or int, describing which column to inspect.

	value – The value to be compared when trying to identify the correct cell
to click the cell in.

Returns: True if item was found and clicked, else False.

	
Table.click_cells(cell_map)[source]

	Submits multiple cells to be clicked on

	Parameters:	cell_map – A mapping of header names and values, representing cells to click.
As an example, {'name': ['wing', 'nut']}, {'age': ['12']} would click on
the cells which had wing and nut in the name column and 12 in
the age column. The yaml example for this would be as follows:

list_items:
 name:
 - wing
 - nut
 age:
 - 12

	Raises:	NotAllItemsClicked –
If some cells were unable to be found.

	
Table.click_row_by_cells(cells, click_column=None, partial_check=False)[source]

	Click the cell at click_column in the first row matched by cells

	Parameters:	
	cells – See Table.find_rows_by_cells()

	click_column – See Table.click_rows_by_cells()

	
Table.click_rows_by_cells(cells, click_column=None, partial_check=False)[source]

	Click the cell at click_column in the rows matched by cells

	Parameters:	
	cells – See Table.find_rows_by_cells()

	click_column – Which column in the row to click, defaults to None,
which will attempt to click the row element

Note

The value of click_column can be a string or an int, and will be passed directly to
the item accessor (__getitem__) for Table.Row

	
Table.create_row_from_element(row_element)[source]

	Given a row element in this table, create a Table.Row

	Parameters:	row_element – A table row (<tr>) WebElement representing a row in this table.

Returns: A Table.Row for row_element

	
Table.find_cell(header, value)[source]

	Finds an item in the Table by iterating through each visible item,
this work used to be done by the :py:meth::click_cell method but
has not been abstracted out to be called separately.

	Parameters:	
	header – A string or int, describing which column to inspect.

	value – The value to be compared when trying to identify the correct cell
to click.

Returns: WebElement of the element if item was found, else None.

	
Table.find_row(header, value)[source]

	Finds a row in the Table by iterating through each visible item.

	Parameters:	
	header – A string or int, describing which column to inspect.

	value – The value to be compared when trying to identify the correct row
to return.

	Returns:	Table.Row containing the requested cell, else None.

	
Table.find_row_by_cells(cells, partial_check=False)[source]

	Find the first row containing cells

	Parameters:	cells – See Table.find_rows_by_cells()

Returns: The first matching row found, or None if no matching row was found

	
Table.find_rows_by_cells(cells, partial_check=False)[source]

	A fast row finder, based on cell content.

If you pass a regexp as a value, then it will be used with its .match() method.

	Parameters:	
	cells – A dict of header: value pairs or a sequence of
nested (header, value) pairs.

	partial_check – If to use the in operator rather than ==.

	Returns: A list of containing Table.Row objects whose contents

	match all of the header: value pairs in cells

	
Table.header_indexes

	Dictionary of header name: column index for this table’s rows

Derived from headers

	
Table.header_row

	Property representing the <tr> element that contains header cells

	
Table.headers

	List of <td> or <th> elements in header_row

	
Table.locate()[source]

	

	
Table.pretty_attrs = ['_loc']

	

	
Table.row_count()[source]

	Returns row count

	
Table.rows()[source]

	A generator method holding the Row objects

This generator yields Row objects starting at the first data row.

	Yields:	Table.Row object corresponding to the next row in the table.

	
Table.rows_as_list()[source]

	Returns rows as list

	
Table.verify_headers()[source]

	Verifies whether the headers in the table correspond with the cached ones.

	
class cfme.web_ui.Tree(locator)[source]

	Bases: cfme.utils.pretty.Pretty

A class directed at CFME Tree elements

The Tree class aims to deal with all kinds of CFME trees

	Parameters:	locator – This is a locator object pointing to the element which contains the rest
of the table.

Returns: A Tree object.

A Tree object is set up by using a locator which contains the node elements. This element
will usually be a in the case of a Dynatree.

Usage:

tree = web_ui.Tree((By.XPATH, '//table//tr[@title="Datastore"]/../..'))

The path can then be navigated to return the last object in the path list, like so:

tree.click_path('Automation', 'VM Lifecycle Management (VMLifecycle)',
 'VM Migrate (Migrate)')

Each path element will be expanded along the way, but will not be clicked.

When used in a Form, a list of path tuples is expected in the form fill data.
The paths will be passed individually to Tree.check_node():

form = Form(fields=[
 ('tree_field', List(locator)),
])

form_fill_data = {
 'tree_field': [
 ('Tree Node', 'Value'),
 ('Tree Node', 'Branch Node', 'Value'),
]
]

Note: Dynatrees, rely on a setup. We class a as a node.

	
classmethod browse(tree, *path)[source]

	Browse through tree via path.

If node not found, raises exception.
If the browsing reached leaf(str), returns True if also the step was last, otherwise False.
If the result of the path is a subtree, it is returned.

	Parameters:	
	tree – List with tree.

	*path – Path to browse.

	
click_path(*path, **kwargs)[source]

	Exposes a path and then clicks it.

	Parameters:	*path – The path as multiple positional string arguments denoting the course to take.

	Keywords:

	by_id: Whether to match ids instead of text.

Returns: The leaf web element.

	
expand_path(*path, **kwargs)[source]

	Exposes a path.

	Parameters:	*path – The path as multiple positional string arguments denoting the course to take.

	Keywords:

	by_id: Whether to match ids instead of text.

Returns: The leaf web element.

	
find_path_to(target, exact=False)[source]

	Method used to look up the exact path to an item we know only by its regexp or partial
description.

Expands whole tree during the execution.

	Parameters:	
	target – Item searched for. Can be regexp made by
re.compile [http://docs.python.org/2.7/library/re.html#re.compile],
otherwise it is taken as a string for in matching.

	exact – Useful in string matching. If set to True, it matches the exact string.
Default is False.

Returns: list with path to that item.

	
classmethod flatten_level(tree)[source]

	Extracts just node names from current tree (top).

It makes:

["asd", "fgh", ("ijk", [...]), ("lmn", [...])]

to

["asd", "fgh", "ijk", "lmn"]

Useful for checking of contents of current tree level

	
locate()[source]

	

	
pretty_attrs = ['locator']

	

	
read_contents(by_id=False)[source]

	

	
root_el()[source]

	

	
tree_id

	

	
class cfme.web_ui.UpDownSelect(select_loc, up_loc, down_loc)[source]

	Bases: cfme.web_ui.Region

Multiselect with two arrows (up/down) next to it. Eg. in AE/Domain priority selection.

	Parameters:	
	select_loc – Locator for the select box (without Select element wrapping)

	up_loc – Locator of the Move Up arrow.

	down_loc – Locator with Move Down arrow.

	
get_items()[source]

	

	
move_bottom(item)[source]

	

	
move_down(item)[source]

	

	
move_top(item)[source]

	

	
move_up(item)[source]

	

	
cfme.web_ui.breadcrumbs()[source]

	Returns a list of breadcrumbs names if names==True else return as elements.

	Returns:	list of breadcrumbs if they are present, NoneType otherwise.

	
cfme.web_ui.breadcrumbs_names()[source]

	

	
cfme.web_ui.browser_title()[source]

	Returns a title of the page.

	Returns:	str [http://docs.python.org/2.7/library/functions.html#str] if present, NoneType otherwise.

	
cfme.web_ui.controller_name()[source]

	Returns a title of the page.

	Returns:	str [http://docs.python.org/2.7/library/functions.html#str] if present, NoneType otherwise.

	
cfme.web_ui.fill_bootstrap_switch(bs, val)[source]

	

	
cfme.web_ui.fill_callable(f, val)[source]

	Fill in a Callable by just calling it with the value, allow for arbitrary actions

	
cfme.web_ui.fill_cb_select_bool(select, all_state)[source]

	

	
cfme.web_ui.fill_cb_select_dictlist(select, dictlist)[source]

	

	
cfme.web_ui.fill_cb_select_set(select, names)[source]

	

	
cfme.web_ui.fill_cb_select_string(select, cb)[source]

	

	
cfme.web_ui.fill_cfmecheckbox_switch(ob, val)[source]

	

	
cfme.web_ui.fill_checkbox(cb, val)[source]

	

	
cfme.web_ui.fill_click(el, val)[source]

	Click only when given a truthy value

	
cfme.web_ui.fill_email_select_form(form, emails)[source]

	

	
cfme.web_ui.fill_file(fd, val)[source]

	

	
cfme.web_ui.fill_multiselect(ms, items)[source]

	

	
cfme.web_ui.fill_number(bmbox, val)[source]

	

	
cfme.web_ui.fill_oldcheckbox_switch(ob, val)[source]

	

	
cfme.web_ui.fill_password(pwbox, password)[source]

	

	
cfme.web_ui.fill_scriptbox(sb, script)[source]

	This function now clears and sets the ScriptBox.

	
cfme.web_ui.fill_select(slist, val)[source]

	

	
cfme.web_ui.fill_select_tag(select, value)[source]

	

	
cfme.web_ui.fill_text(textbox, val)[source]

	

	
cfme.web_ui.get_context_current_page()[source]

	Returns the current page name

Returns: A string containing the current page name

	
cfme.web_ui.match_location(controller=None, title=None, summary=None)[source]

	Does exact match of passed data

Returns:
bool [http://docs.python.org/2.7/library/functions.html#bool]

	
cfme.web_ui.select_dhtml(dhtml, s)[source]

	

	
cfme.web_ui.select_multiselect(ms, values)[source]

	

	
cfme.web_ui.summary_title()[source]

	Returns a title of the page.

	Returns:	str [http://docs.python.org/2.7/library/functions.html#str] if present, NoneType otherwise.

	
cfme.web_ui.table_in_object(table_title)[source]

	If you want to point to tables inside object view, this is what you want to use.

Works both on down- and upstream.

	Parameters:	table_title – Text in p element preceeding the table

Returns: XPath locator for the desired table.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.web_ui package

cfme.web_ui.accordion module

A set of functions for dealing with accordions in the UI.

Usage:

Using Accordions is simply a case of either selecting it to return the element,
or using the built in click method. As shown below::

 acc = web_ui.accordion

 acc.click('Diagnostics')
 acc.is_active('Diagnostics')

	
cfme.web_ui.accordion.click(name)[source]

	Clicks an accordion and returns it

	Parameters:	name – The name of the accordion.

Returns: A web element of the clicked accordion.

	
cfme.web_ui.accordion.is_active(name)[source]

	Checks if an accordion is currently open

Note: Only works on traditional accordions.

	Parameters:	name – The name of the accordion.

Returns: True if the button is depressed, False if not.

	
cfme.web_ui.accordion.locate(name)[source]

	Returns an accordion by name

	Parameters:	name – The name of the accordion.

Returns: A web element of the selected accordion.

	
cfme.web_ui.accordion.refresh(name)[source]

	Closes and opens accordion

	Parameters:	name – The name of the accordion.

Returns: A web element of the clicked accordion.

	
cfme.web_ui.accordion.tree(name, *path)[source]

	Get underlying Tree() object. And eventually click path.

If the accordion is not active, will be clicked.
Attention! The object is ‘live’ so when it’s obscured, it won’t work!

Usage:

accordion.tree("Something").click_path("level 1", "level 2")
accordion.tree("Something", "level 1", "level 2") # is the same

	Parameters:	*path – If specified, it will directly pass these parameters into click_path of Tree.
Otherwise it returns the Tree object.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.web_ui package

cfme.web_ui.cfme_exception module

Module handling the Rails exceptions from CFME

	
cfme.web_ui.cfme_exception.assert_no_cfme_exception()[source]

	Raise an exception if CFME exception occured

Raises: cfme.exceptions.CFMEExceptionOccured

	
cfme.web_ui.cfme_exception.cfme_exception_text()[source]

	Get the error message from the exception

	
cfme.web_ui.cfme_exception.is_cfme_exception()[source]

	Check whether an exception is displayed on the page

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.web_ui package

cfme.web_ui.expression_editor module

The expression editor present in some locations of CFME.

	
class cfme.web_ui.expression_editor.Expression(show_func=<function <lambda>>)[source]

	Bases: cfme.utils.pretty.Pretty

This class enables to embed the expression in a Form.

	Parameters:	show_func – Function to call to show the expression if there are more of them.

	
pretty_attrs = ['show_func']

	

	
cfme.web_ui.expression_editor.any_expression_present()[source]

	

	
cfme.web_ui.expression_editor.click_and()[source]

	

	
cfme.web_ui.expression_editor.click_commit()[source]

	

	
cfme.web_ui.expression_editor.click_discard()[source]

	

	
cfme.web_ui.expression_editor.click_not()[source]

	

	
cfme.web_ui.expression_editor.click_or()[source]

	

	
cfme.web_ui.expression_editor.click_redo()[source]

	

	
cfme.web_ui.expression_editor.click_remove()[source]

	

	
cfme.web_ui.expression_editor.click_undo()[source]

	

	
cfme.web_ui.expression_editor.delete_whole_expression()[source]

	

	
cfme.web_ui.expression_editor.fill_count(count=None, key=None, value=None)[source]

	Fills the ‘Count of’ type of form.

If the value is unspecified and we are in the advanced search form (user input), the user_input
checkbox will be checked if the value is None.

	Parameters:	
	count – Name of the field to compare (Host.VMs, ...).

	key – Operation to do (=, <, >=, ...).

	value – Value to check against.

Returns: See cfme.web_ui.fill().

	
cfme.web_ui.expression_editor.fill_field(field=None, key=None, value=None)[source]

	Fills the ‘Field’ type of form.

	Parameters:	
	tag – Name of the field to compare (Host.VMs, ...).

	key – Operation to do (=, <, >=, IS NULL, ...).

	value – Value to check against.

Returns: See cfme.web_ui.fill().

	
cfme.web_ui.expression_editor.fill_find(field=None, skey=None, value=None, check=None, cfield=None, ckey=None, cvalue=None)[source]

	

	
cfme.web_ui.expression_editor.fill_registry(key=None, value=None, operation=None, contents=None)[source]

	Fills the ‘Registry’ type of form.

	
cfme.web_ui.expression_editor.fill_tag(tag=None, value=None)[source]

	Fills the ‘Tag’ type of form.

	Parameters:	
	tag – Name of the field to compare.

	value – Value to check against.

Returns: See cfme.web_ui.fill().

	
cfme.web_ui.expression_editor.get_expression_as_text()[source]

	Returns whole expression as represented visually.

	
cfme.web_ui.expression_editor.get_func(name)[source]

	Return callable from this module by its name.

	Parameters:	name – Name of the variable containing the callable.

Returns: Callable from this module

	
cfme.web_ui.expression_editor.is_editing()[source]

	

	
cfme.web_ui.expression_editor.no_expression_present()[source]

	

	
cfme.web_ui.expression_editor.run_commands(command_list, clear_expression=True)[source]

	Run commands from the command list.

	Command list syntax:

	[
 "function1", # no args
 "function2", # dtto
 {"fill_fields": {"field1": "value", "field2": "value"}}, # Passes kwargs
 {"do_other_things": [1,2,3]} # Passes args
]

	In YAML:

	- function1
- function2
-
 fill_fields:
 field1: value
 field2: value
-
 do_other_things:
 - 1
 - 2
 - 3

	Parameters:	
	command_list – list object of the commands

	clear_expression – Whether to clear the expression before entering new one (default True)

	
cfme.web_ui.expression_editor.select_expression_by_text(text)[source]

	

	
cfme.web_ui.expression_editor.select_first_expression()[source]

	There is always at least one (???), so no checking of bounds.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.web_ui package

cfme.web_ui.expression_editor_widgetastic module

The expression editor present in some locations of CFME.

	
class cfme.web_ui.expression_editor_widgetastic.ExpressionEditor(parent, show_loc=None, logger=None)[source]

	Bases: widgetastic.widget.View, cfme.utils.pretty.Pretty

This class enables to embed the expression in a Form.

	Parameters:	show_func – Function to call to show the expression if there are more of them.

	
AND

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters:	version_dict – Dictionary of version_introduced: item

	
ATOM_ROOT = "./div[@id='exp_atom_editor_div']"

	

	
COMMIT

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters:	version_dict – Dictionary of version_introduced: item

	
DISCARD

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters:	version_dict – Dictionary of version_introduced: item

	
EXPRESSIONS_ROOT = './fieldset/div'

	

	
MAKE_BUTTON = "//span[not(contains(@style,'none'))]//img[@alt='{}']"

	

	
NOT

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters:	version_dict – Dictionary of version_introduced: item

	
OR

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters:	version_dict – Dictionary of version_introduced: item

	
REDO

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters:	version_dict – Dictionary of version_introduced: item

	
REMOVE

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters:	version_dict – Dictionary of version_introduced: item

	
ROOT = "//div[@id='exp_editor_div']"

	

	
SELECT_RELATIVE = "//img[@alt='Click to change to a relative Date/Time format']"

	

	
SELECT_SPECIFIC = "//img[@alt='Click to change to a specific Date/Time format']"

	

	
UNDO

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters:	version_dict – Dictionary of version_introduced: item

	
any_expression_present()[source]

	

	
click_and()[source]

	

	
click_commit()[source]

	

	
click_discard()[source]

	

	
click_not()[source]

	

	
click_or()[source]

	

	
click_redo()[source]

	

	
click_remove()[source]

	

	
click_switch_to_relative()[source]

	

	
click_switch_to_specific()[source]

	

	
click_undo()[source]

	

	
count_form_view

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
date_relative_form_view

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
date_specific_form_view

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
delete_whole_expression()[source]

	

	
enable_editor()[source]

	

	
field_date_form

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
field_form_view

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
fill(*args, **kwargs)[source]

	

	
fill_count(count=None, key=None, value=None)[source]

	Fills the ‘Count of’ type of form.

If the value is unspecified and we are in the advanced search form (user input),
the user_input checkbox will be checked if the value is None.

	Parameters:	
	count – Name of the field to compare (Host.VMs, ...).

	key – Operation to do (=, <, >=, ...).

	value – Value to check against.

Returns: See cfme.web_ui.fill().

	
fill_field(field=None, key=None, value=None)[source]

	Fills the ‘Field’ type of form.

	Parameters:	
	tag – Name of the field to compare (Host.VMs, ...).

	key – Operation to do (=, <, >=, IS NULL, ...).

	value – Value to check against.

Returns: See cfme.web_ui.fill().

	
fill_find(field=None, skey=None, value=None, check=None, cfield=None, ckey=None, cvalue=None)[source]

	

	
fill_registry(key=None, value=None, operation=None, contents=None)[source]

	Fills the ‘Registry’ type of form.

	
fill_tag(tag=None, value=None)[source]

	Fills the ‘Tag’ type of form.

	Parameters:	
	tag – Name of the field to compare.

	value – Value to check against.

	
find_form_view

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_editing()[source]

	

	
no_expression_present()[source]

	

	
pretty_attrs = ['show_loc']

	

	
read(*args, **kwargs)[source]

	Returns whole expression as represented visually.

	
registry_form_view

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
select_expression_by_text(text)[source]

	

	
select_first_expression()[source]

	There is always at least one (???), so no checking of bounds.

	
tag_form_view

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cfme.web_ui.expression_editor_widgetastic.create_program(dsl_program, widget_object)[source]

	Simple DSL to fill the expression editor.

	Syntax:

	DSL consists from statements. Statements are separated with newline or ;.
Each statement is a single function call. Functions are called in this module.
Function without parameters can be called like this:
function
or
function()

If the function has some parameters, you have to choose whether they are kwargs or args.
DSL has no string literals, so if you want to call a function with classic parameters:
function(parameter one, parameter two, you cannot use comma)
And with kwargs:
function(username=John Doe, password=top secret)
You cannot split the statement to multiple lines as the DSL is regexp-based.

	Parameters:	dsl_program – Source string with the program.

Returns: Callable, which fills the expression.

	
cfme.web_ui.expression_editor_widgetastic.create_program_from_list(command_list, widget_object)[source]

	Create function which fills the expression from the command list.

	Parameters:	command_list – Command list for run_program()

Returns: Callable, which fills the expression.

	
cfme.web_ui.expression_editor_widgetastic.get_func(name, context)[source]

	Return callable from this module by its name.

	Parameters:	name – Name of the variable containing the callable.

Returns: Callable from this module

	
cfme.web_ui.expression_editor_widgetastic.run_commands(command_list, clear_expression=True, context=None)[source]

	Run commands from the command list.

	Command list syntax:

	[
 "function1", # no args
 "function2", # dtto
 {"fill_fields": {"field1": "value", "field2": "value"}}, # Passes kwargs
 {"do_other_things": [1,2,3]} # Passes args
]

	In YAML:

	- function1
- function2
-
 fill_fields:
 field1: value
 field2: value
-
 do_other_things:
 - 1
 - 2
 - 3

	Parameters:	
	command_list – list object of the commands

	clear_expression – Whether to clear the expression before entering new one

	True) ((default) –

	context – widget object

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.web_ui package

cfme.web_ui.flash module

Provides functions for the flash area.

	var area:	A cfme.web_ui.Region object representing the flash region.

	
class cfme.web_ui.flash.Message(message=None, level=None)[source]

	Bases: cfme.utils.pretty.Pretty

A simple class to represent a flash error in CFME.

	Parameters:	
	message – The message string.

	level – The level of the message.

	
pretty_attrs = ['message', 'level']

	

	
cfme.web_ui.flash.assert_message_contain(*args, **kwargs)[source]

	Asserts that a message contains a specific string

	
cfme.web_ui.flash.assert_message_match(*args, **kwargs)[source]

	Asserts that a message matches a specific string.

	
cfme.web_ui.flash.assert_no_errors(*args, **kwargs)[source]

	Asserts that there are no current Error messages. If no messages
are passed in, they will be retrieved from the UI.

	
cfme.web_ui.flash.assert_success(*args, **kwargs)[source]

	Asserts that there is 1 or more successful messages, no errors. If no messages
are passed in, they will be retrieved from the UI.

	
cfme.web_ui.flash.assert_success_message(*args, **kwargs)[source]

	Asserts that there are no errors and a (green) info message
matches the given string.

	
cfme.web_ui.flash.dismiss()[source]

	Dismiss the current flash message

	
cfme.web_ui.flash.get_all_messages()[source]

	Returns a list of all flash messages, (including ones hidden behind
the currently showing one, if any). All flash messages will be
dismissed.

	
cfme.web_ui.flash.get_message_level_up(el)[source]

	

	
cfme.web_ui.flash.get_message_text_up(el)[source]

	

	
cfme.web_ui.flash.get_messages()[source]

	Return a list of visible flash messages

	
cfme.web_ui.flash.is_error(message)[source]

	Checks a given message to see if is an Error.’

	Parameters:	message – The message object.

	
cfme.web_ui.flash.message(el)[source]

	Turns an element into a Message object.

	Parameters:	el – The element containing the flass message.

Returns: A Message object.

	
cfme.web_ui.flash.onexception_printall(f)[source]

	If FlashMessageException happens, appends all the present flash messages in the error text

	
cfme.web_ui.flash.verify_rails_error(f)[source]

	

	
cfme.web_ui.flash.verpick_message(f)[source]

	Wrapper that resolves eventual verpick dictionary passed to the function.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.web_ui package

cfme.web_ui.form_buttons module

This module unifies working with CRUD form buttons.

Whenever you use Add, Save, Cancel, Reset button, use this module.
You can use it also for the other buttons with same shape like those CRUD ones.

	
class cfme.web_ui.form_buttons.FormButton(alt, dimmed_alt=None, force_click=False, partial_alt=False, ng_click=None, classes=None)[source]

	Bases: cfme.utils.pretty.Pretty

This class represents the buttons usually located in forms or CRUD.

	Parameters:	
	alt – The text from alt field of the image.

	dimmed_alt – In case the alt param is different in the dimmed variant of the button.

	force_click – Click always, even if it is dimmed. (Causes an error if not visible)

	partial_alt – Whether the alt matching should be only partial (in).

	ng_click – To match the angular buttons, you can use this to specify the contents of
ng-click attributeh.

	
class Button[source]

	Holds pieces of the XPath to be assembled.

	
DIMMED = "(contains(@class, 'dimmed') or contains(@class, 'disabled') or contains(@class, 'btn-disabled'))"

	

	
IS_DISPLAYED = "not(ancestor::*[contains(@style, 'display:none') or contains(@style, 'display: none')])"

	

	
NOT_DIMMED = "not(contains(@class, 'dimmed') or contains(@class, 'disabled') or contains(@class, 'btn-disabled'))"

	

	
ON_CURRENT_TAB = "not(ancestor::div[contains(@class, 'tab-pane') and not(contains(@class, 'active'))])"

	

	
TAG_TYPES = '//a | //button | //img | //input'

	

	
TYPE_CONDITION = "(contains(@class, 'button') or contains(@class, 'btn') or contains(@src, 'button'))"

	

	
FormButton.PRIMARY = 'btn-primary'

	

	
FormButton.__call__(*args, **kwargs)[source]

	For maintaining backward compatibility

	
FormButton.alt_expr(dimmed=False)[source]

	

	
FormButton.can_be_clicked

	Whether the button is displayed, therefore clickable.

	
FormButton.is_dimmed

	

	
FormButton.locate()[source]

	

	
FormButton.pretty_attrs = ['_alt', '_dimmed_alt', '_force', '_partial', '_ng_click']

	

	
cfme.web_ui.form_buttons.change_stored_password()[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.web_ui package

cfme.web_ui.history module

Module handling the history button.

	var HISTORY_ITEMS:

		Locator that finds all the history items from dropdown

	var SINGLE_HISTORY_BUTTON:

		Locator that finds the history button if it is without the dropdown.

	
cfme.web_ui.history.any_history_present()[source]

	Returns if the single history button or the dropdown is present.

	
cfme.web_ui.history.dropdown_history_items()[source]

	Returns a list of strings representing the items from dropdown. Empty if not present

	
cfme.web_ui.history.history_items()[source]

	Returns a list of all history items on the page.

	
cfme.web_ui.history.history_items_present()[source]

	Checks if the history items are present, returns bool

	
cfme.web_ui.history.select_history_item(text)[source]

	Handles selecting the history item by text using the toolbar module.

	
cfme.web_ui.history.select_nth_history_item(n)[source]

	Handles selecting the history items by the position. 0 is the latest (top one).

	
cfme.web_ui.history.single_button()[source]

	Returns the textual contents of the single history button. If not present, None is returned.

	
cfme.web_ui.history.single_button_present()[source]

	Checks if the single history button is present, returns bool

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.web_ui package

cfme.web_ui.jstimelines module

A Timelines object represents the Timelines widget in CFME using JS integration
instead of relying on WebElements

	param loc:	A locator for the Timelines element, usually the div with
id miq_timeline.

	
class cfme.web_ui.jstimelines.Event(element)[source]

	Bases: cfme.web_ui.jstimelines.Object

An event object.

	
block_info()[source]

	Attempts to return a dict with the information from the popup.

	
close_button = '//div[@class="timeline-event-bubble-title"]/../../div[contains(@style, \'close-button\')]'

	

	
data_block = '//div[@class="timeline-event-bubble-title"]/../..//div[@class="timeline-event-bubble-body"]'

	

	
image

	Returns the image name of an event.

	
window_loc = '//div[@class="timeline-event-bubble-title"]/../..'

	

	
class cfme.web_ui.jstimelines.Object(element)[source]

	Bases: cfme.utils.pretty.Pretty

A generic timelines object.

	Parameters:	element – A WebElement for the event.

	
locate()[source]

	

	
pretty_attrs = ['element']

	

	
cfme.web_ui.jstimelines.events()[source]

	A generator yielding all events.

	
cfme.web_ui.jstimelines.find_visible_events_for_vm(vm_name)[source]

	Finds all events for a given vm.

	Parameters:	vm_name – The vm name.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.web_ui package

cfme.web_ui.listaccordion module

A set of functions for dealing with accordions in the UI.

Usage:

Using Accordions is simply a case of either selecting it to return the element,
or using the built in click method. As shown below::

 acc = web_ui.accordion

 acc.click('Diagnostics')
 acc.is_active('Diagnostics')

Note

Inactive links are not available in any way.

	
class cfme.web_ui.listaccordion.ListAccordionLink(title, root=None, by_title=True, partial=False)[source]

	Bases: cfme.utils.pretty.Pretty

Active link in an accordion section

	Parameters:	title – The title of the link.

	
click()[source]

	Clicks a link by title.

	Parameters:	title – The title of the button to check.

	Raises:	ListAccordionLinkNotFound –
when active link is not found.

	
is_selected()[source]

	Looks whether this option is selected

	
locate()[source]

	Locates an active link.

Returns: An XPATH locator for the element.

	
pretty_attrs = ['title', 'root']

	

	
cfme.web_ui.listaccordion.click(name)[source]

	Clicks an accordion and returns it

	Parameters:	name – The name of the accordion.

	
cfme.web_ui.listaccordion.get_active_links(name)[source]

	Returns all active links in a section specified by name

This is only used in pagestats and is likely to be deprecated

	Parameters:	name – Name of the section

	
cfme.web_ui.listaccordion.is_active(name)[source]

	Checks if an accordion is currently open

	Parameters:	name – The name of the accordion.

Returns: True if the button is depressed, False if not.

	
cfme.web_ui.listaccordion.is_selected(name, link_title_or_text, by_title=True, partial=False)[source]

	Checks if the link in accordion section is selected

	Parameters:	
	name – Name of the accordion.

	link_title_or_text – Title or text of link in expanded accordion section.

	by_title – Whether to search by title or by text.

	
cfme.web_ui.listaccordion.locate(name)[source]

	Returns a list-accordion by name

	Parameters:	name – The name of the accordion.

Returns: An xpath locator of the selected accordion.

	
cfme.web_ui.listaccordion.select(name, link_title_or_text, by_title=True, partial=False)[source]

	Clicks an active link in accordion section

	Parameters:	
	name – Name of the accordion.

	link_title_or_text – Title or text of link in expanded accordion section.

	by_title – Whether to search by title or by text.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.web_ui package

cfme.web_ui.mixins module

	
cfme.web_ui.mixins.add_tag(tag, single_value=False, navigate=True)[source]

	

	
cfme.web_ui.mixins.get_tags(tag='My Company Tags')[source]

	

	
cfme.web_ui.mixins.remove_tag(tag)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.web_ui package

cfme.web_ui.multibox module

	
class cfme.web_ui.multibox.Async(value)[source]

	Bases: cfme.utils.category.CategoryBase

	
class cfme.web_ui.multibox.MultiBoxSelect(unselected, selected, to_unselected, to_selected, remove_all=None, sync=None, async=None)[source]

	Bases: cfme.utils.pretty.Pretty

Common UI element for selecting multiple items.

Presence in eg. Control/Explorer/New Policy Profile (for selecting policies)

	Parameters:	
	unselected – Locator for the left (unselected) list of items.

	selected – Locator for the right (selected) list of items.

	to_unselected – Locator for a button which moves items from right to left (unselecting)

	to_selected – Locator for a button which moves items from left to right (selecting)

	remove_all – If present, locator for a button which unselects all items (Default None)

	
add(*values, **kwargs)[source]

	Mark items for selection and then clicks the button to select them.

	Parameters:	*values – Values to select

	Keywords:

	
	flush: By using flush keyword, the selected items list is flushed prior to selecting

	new ones

Returns: bool [http://docs.python.org/2.7/library/functions.html#bool] with success.

	
all_selected

	

	
classmethod categorize(values, sync_l, async_l, dont_care_l)[source]

	Does categorization of values based on their Sync/Async status.

	Parameters:	
	values – Values to be categorized.

	sync_l – List that will be used for appending the Sync values.

	async_l – List that will be used for appending the Async values.

	dont_care_l – List that will be used for appending all the other values.

	
classmethod default()[source]

	The most common type of the MultiBoxSelect

Returns: MultiBoxSelect instance

	
pretty_attrs = ['unselected', 'selected']

	

	
remove(*values)[source]

	Mark items for deselection and then clicks the button to deselect them.

	Parameters:	*values – Values to deselect

Returns: bool [http://docs.python.org/2.7/library/functions.html#bool] with success.

	
remove_all()[source]

	Flush the list of selected items.

Returns: bool [http://docs.python.org/2.7/library/functions.html#bool] with success.

	
set_async(*values)[source]

	

	
set_sync(*values)[source]

	

	
class cfme.web_ui.multibox.SelectItem(sync, value, text)

	Bases: tuple

	
__getnewargs__()

	Return self as a plain tuple. Used by copy and pickle.

	
__getstate__()

	Exclude the OrderedDict from pickling

	
__repr__()

	Return a nicely formatted representation string

	
sync

	Alias for field number 0

	
text

	Alias for field number 2

	
value

	Alias for field number 1

	
class cfme.web_ui.multibox.Sync(value)[source]

	Bases: cfme.utils.category.CategoryBase

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.web_ui package

cfme.web_ui.paginator module

A set of functions for dealing with the paginator controls.

	
cfme.web_ui.paginator.check_all()[source]

	selects all items

	
cfme.web_ui.paginator.first()[source]

	Returns the First button locator.

	
cfme.web_ui.paginator.last()[source]

	Returns the Last button locator.

	
cfme.web_ui.paginator.new_paginator()[source]

	Simple function to avoid module level import

	
cfme.web_ui.paginator.next()[source]

	Returns the Next button locator.

	
cfme.web_ui.paginator.page_controls_exist()[source]

	Simple check to see if page controls exist.

	
cfme.web_ui.paginator.pages()[source]

	A generator to facilitate looping over pages

Usage:

for page in pages():
 # Do seleniumy things here, like finding and clicking elements

	Raises:	ValueError –
When the paginator “breaks” (does not change)

	
cfme.web_ui.paginator.previous()[source]

	Returns the Previous button locator.

	
cfme.web_ui.paginator.rec_end()[source]

	Returns the record set index.

	
cfme.web_ui.paginator.rec_offset()[source]

	Returns the first record offset.

	
cfme.web_ui.paginator.rec_total()[source]

	Returns the total number of records.

	
cfme.web_ui.paginator.reset()[source]

	Reset the paginator to the first page or do nothing if no pages

	
cfme.web_ui.paginator.results_per_page(num)[source]

	Changes the number of results on a page.

	Parameters:	num – Number of results per page

	
cfme.web_ui.paginator.sort_by(sort)[source]

	Changes the sort by field.

	Parameters:	sort – Value to sort by (visible text in select box)

	
cfme.web_ui.paginator.uncheck_all()[source]

	unselects all items

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.web_ui package

cfme.web_ui.search module

This module operates the Advanced search box located on multiple pages.

	
exception cfme.web_ui.search.DisabledButtonException(*args, **kwargs)[source]

	Bases: exceptions.Exception [http://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

	
cfme.web_ui.search.apply_filter()[source]

	Applies an existing filter

	
cfme.web_ui.search.check_and_click_close()[source]

	Check for display of advanced search close button and click it

	
cfme.web_ui.search.check_and_click_open()[source]

	Check for display of advanced search open button and click it

	
cfme.web_ui.search.delete_filter(cancel=False)[source]

	If possible, deletes the currently loaded filter.

	
cfme.web_ui.search.ensure_advanced_search_closed()[source]

	Checks if the advanced search box is open and if it does, closes it.

	
cfme.web_ui.search.ensure_advanced_search_open()[source]

	Make sure the advanced search box is opened.

If the advanced search box is closed, open it if it exists (otherwise exception raised).

	
cfme.web_ui.search.ensure_no_filter_applied()[source]

	If any filter is applied in the quadicon view, it will be disabled.

	
cfme.web_ui.search.ensure_normal_search_empty()[source]

	Makes sure that the normal search field is empty.

	
cfme.web_ui.search.fill_and_apply_filter(expression_program, fill_callback=None, cancel_on_user_filling=False)[source]

	Fill the filtering expression and apply it

	Parameters:	
	expression_program – Expression to fill to the filter.

	fill_callback – Function to be called for each asked user input
(_process_user_filling()).

	
cfme.web_ui.search.fill_expression(expression_program)[source]

	Wrapper to open the box and fill the expression

	Parameters:	expression_program – the expression to be filled.

	
cfme.web_ui.search.has_quick_search_box()[source]

	

	
cfme.web_ui.search.is_advanced_filter_applied()[source]

	Checks whether any filter is in effect on quadicon view

	
cfme.web_ui.search.is_advanced_search_opened()[source]

	Checks whether the advanced search box is currently opened

	
cfme.web_ui.search.is_advanced_search_possible()[source]

	Checks for advanced search possibility in the quadicon view

	
cfme.web_ui.search.load_and_apply_filter(saved_filter=None, report_filter=None, fill_callback=None, cancel_on_user_filling=False)[source]

	Load the filtering expression and apply it

	Parameters:	
	saved_filter – Choose a saved XYZ filter.

	report_filter – Choose a XYZ report filter.

	fill_callback – Function to be called for each asked user input.

	
cfme.web_ui.search.load_filter(saved_filter=None, report_filter=None, cancel=False)[source]

	Load saved filter

	Parameters:	
	saved_filter – Choose a saved XYZ filter

	report_filter – Choose a XYZ report filter

	cancel – Whether to cancel the load dialog without loading

	
cfme.web_ui.search.normal_search(search_term)[source]

	Do normal search via the search bar.

	Parameters:	search_term – What to search.

	
cfme.web_ui.search.reset_filter()[source]

	Clears the filter expression

Returns result of clicking reset when enabled
Returns false when reset is button is disabled

	
cfme.web_ui.search.save_and_apply_filter(expression_program, save_name, global_search=False)[source]

	

	
cfme.web_ui.search.save_filter(expression_program, save_name, global_search=False, cancel=False)[source]

	Fill the filtering expression and save it

	Parameters:	
	expression_program – the expression to be filled.

	save_name – Name of the filter to be saved with.

	global_search – Whether to check the Global search checkbox.

	cancel – Whether to cancel the save dialog without saving

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.web_ui package

cfme.web_ui.splitter module

	
cfme.web_ui.splitter.pull_splitter_left()[source]

	

	
cfme.web_ui.splitter.pull_splitter_right()[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.web_ui package

cfme.web_ui.tabstrip module

The tab strip manipulation which appears in Configure / Configuration and possibly other pages.

Usage:

import cfme.web_ui.tabstrip as tabs
tabs.select_tab("Authentication")
print(is_tab_selected("Authentication"))
print(get_selected_tab())

	
class cfme.web_ui.tabstrip.TabStripForm(fields=None, tab_fields=None, identifying_loc=None, order=None, fields_end=None)[source]

	Bases: cfme.web_ui.Form

A class for interacting with tabstrip-contained Form elements on pages.

This behaves exactly like a Form, but is able to deal with form
elements being broken up into tabs, accessible via a tab strip.

	Parameters:	
	fields – A list of field name/locator tuples (same as Form implementation)

	tab_fields – A dict with tab names as keys, and each key’s value being a list of
field name/locator tuples. The ordering of fields within a tab is guaranteed
(as it is with the normal Form) but the ordering of tabs is not guaranteed by default.
If such ordering is needed, tab_fields can be a collections.OrderedDict.

	identifying_loc – A locator which should be present if the form is visible.

	order – If specified, specifies order of the tabs. Can be lower number than number of tabs,
remaining values will be complemented.

	fields_end – Same as fields, but these are appended at the end of generated fields instead.

Usage:

provisioning_form = web_ui.TabStripForm(
 tab_fields={
 'Request': [
 ('email', Input("requester__owner_email")),
 ('first_name', Input("requester__owner_first_name")),
 ('last_name', Input("requester__owner_last_name")),
 ('notes', '//textarea[@id="requester__request_notes"]'),
],
 'Catalog': [
 ('instance_name', Input("service__vm_name")),
 ('instance_description', '//textarea[@id="service__vm_description"]'),
]
 }
)

Each tab’s fields will be exposed by their name on the resulting instance just like fields
on a Form. Don’t use duplicate field names in the tab_fields dict.

Forms can then be filled in like so:

request_info = {
 'email': 'your@email.com',
 'first_name': 'First',
 'last_name': 'Last',
 'notes': 'Notes about this request',
 'instance_name': 'An instance name',
 'instance_description': 'This is my instance!',
}
web_ui.fill(provisioning_form, request_info)

	
cfme.web_ui.tabstrip.get_all_tabs()[source]

	Return list of all tabs present.

Returns: list of str [http://docs.python.org/2.7/library/functions.html#str] Displayed names.

	
cfme.web_ui.tabstrip.get_clickable_tab(ident_string)[source]

	Returns the relevant tab element that can be clicked on.

	Parameters:	ident_string – The text diplayed on the tab.

	
cfme.web_ui.tabstrip.get_selected_tab()[source]

	Return currently selected tab.

Returns: str [http://docs.python.org/2.7/library/functions.html#str] Displayed name

	
cfme.web_ui.tabstrip.is_tab_element_selected(element)[source]

	Determine whether the passed element is selected.

This function takes the element, climbs to its parent and looks whether the
aria-selected attribute contains true. If yes, element is selected.

	Parameters:	element – WebElement with the link (a)

Returns: bool [http://docs.python.org/2.7/library/functions.html#bool]

	
cfme.web_ui.tabstrip.is_tab_selected(ident_string)[source]

	Determine whether the element identified by passed name is selected.

	Parameters:	ident_string – Identification string (displayed name) of the tab button.

Returns: bool [http://docs.python.org/2.7/library/functions.html#bool]

	
cfme.web_ui.tabstrip.select_tab(ident_string)[source]

	Clicks on the tab with text from ident_string.

Clicks only if it’s not actually selected.

	Parameters:	ident_string – The text displayed on the tab.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.web_ui package

cfme.web_ui.timelines module

	
class cfme.web_ui.timelines.Timelines(o)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

Represents Common UI Page for showing generated events
of different Providers as a timeline.
UI page contains several drop-down items which are doing filtering of displayed events.
In this class, there are described several methods to change those filters.
After each filter change, UI page is reloaded and the displayed events graphic is changed.
And after each page reload, the displayed events are re-read by this class.
The main purpose of this class is to check
whether particular event is displayed or not in timelines page.

Usage:

timelines.change_interval('Days')
timelines.select_event_category('Application')
timelines.check_detailed_events(True)
timelines.contains_event('hawkular_deployment.ok')

	
change_date(value)[source]

	

	
change_event_type(value)[source]

	

	
change_interval(value)[source]

	

	
check_detailed_events(value)[source]

	

	
contains_event(event_type, date_after=datetime.datetime(1, 1, 1, 0, 0))[source]

	Checks whether list of events contains provided particular
‘event_type’ with data not earlier than provided ‘date_after’.
If ‘date_after’ is not provided, will use datetime.min.

	
reload()[source]

	

	
select_event_category(value)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.web_ui package

cfme.web_ui.toolbar module

A set of functions for dealing with the toolbar buttons

The main CFME toolbar is accessed by using the Root and Sub titles of the buttons.

Usage:

tb = web_ui.toolbar
tb.select('Configuration', 'Add a New Host')

	
cfme.web_ui.toolbar.exists(root, sub=None, and_is_not_greyed=False)[source]

	Checks presence and usability of toolbar buttons.

By default it checks whether the button is available, not caring whether it is greyed or not.
You can optionally enable check for greyedness.

	Parameters:	
	root – Button name.

	sub – Item name (optional)

	and_is_not_greyed – Check if the button is available to click.

	
cfme.web_ui.toolbar.is_active(root)[source]

	Checks if a button is currently depressed

	Parameters:	root – The root button’s name as a string.

Returns: True if the button is depressed, False if not.

	
cfme.web_ui.toolbar.is_greyed(root, sub=None)[source]

	Checks if a button is greyed out.

	Parameters:	root – The root button’s name as a string.

Returns: True if the button is greyed, False if not.

	
cfme.web_ui.toolbar.old_select(root, sub=None, invokes_alert=False)[source]

	Clicks on a button by calling the dhtmlx toolbar callEvent.

	Parameters:	
	root – The root button’s name as a string.

	sub – The sub button’s name as a string. (optional)

	invokes_alert – If True, then the behaviour is little bit different. After the last
click, no ajax wait and no move away is done to be able to operate the alert that
appears after click afterwards. Defaults to False.

Returns: True if everything went smoothly
Raises: cfme.exceptions.ToolbarOptionGreyedOrUnavailable

	
cfme.web_ui.toolbar.pf_select(root, sub=None, invokes_alert=False)[source]

	Clicks on a button by calling the click event with the jquery trigger.

	Parameters:	
	root – The root button’s name as a string.

	sub – The sub button’s name as a string. (optional)

	invokes_alert – If True, then the behaviour is little bit different. After the last
click, no ajax wait and no move away is done to be able to operate the alert that
appears after click afterwards. Defaults to False.

Returns: True if everything went smoothly
Raises: cfme.exceptions.ToolbarOptionGreyedOrUnavailable

	
cfme.web_ui.toolbar.refresh()[source]

	Refreshes page, attempts to use cfme refresh button otherwise falls back to browser refresh.

	
cfme.web_ui.toolbar.root_loc(root)[source]

	Returns the locator of the root button

	Parameters:	root – The string name of the button.

Returns: A locator for the root button.

	
cfme.web_ui.toolbar.select(*args, **kwargs)[source]

	

	
cfme.web_ui.toolbar.select_n_move(el)[source]

	Clicks an element and then moves the mouse away

This is required because if the button is active and we clicked it, the CSS class
doesn’t change until the mouse is moved away.

	Parameters:	el – The element to click on.

Returns: None

	
cfme.web_ui.toolbar.sub_loc(sub)[source]

	Returns the locator of the sub button

	Parameters:	sub – The string name of the button.

Returns: A locator for the sub button.

	
cfme.web_ui.toolbar.xpath_quote(x)[source]

	Putting strings in xpath requires unescape also

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.web_ui package

cfme.web_ui.topology module

	
class cfme.web_ui.topology.Topology(o)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
ELEMENTS = '//kubernetes-topology-graph//*[name()="g"]'

	

	
LEGENDS = '//kubernetes-topology-icon'

	

	
LINES = '//kubernetes-topology-graph//*[name()="line"]'

	

	
__iter__()[source]

	This enables you to iterate through like it was a dictionary, just without .iteritems

	
elements(element_type=None)[source]

	

	
legends

	

	
lines(connection=None)[source]

	

	
refresh()[source]

	

	
reload()[source]

	

	
reload_elements()[source]

	

	
class cfme.web_ui.topology.TopologyDisplayNames[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
DISPLAY_NAME = '//*[contains(@class, \'container_topology\')]//label[contains(., \'Display Names\')]/input|//*[@id="box_display_names"]'

	

	
disable()[source]

	

	
enable(enable=True)[source]

	

	
is_enabled

	

	
class cfme.web_ui.topology.TopologyElement(o, element)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
children

	

	
double_click()[source]

	

	
is_displayed()[source]

	

	
is_hidden

	

	
parents

	

	
class cfme.web_ui.topology.TopologyLegend(name, element)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
is_active

	

	
name

	

	
set_active(active=True)[source]

	

	
class cfme.web_ui.topology.TopologyLine(element)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
class cfme.web_ui.topology.TopologySearchBox[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
SEARCH_BOX = "//input[@id='search_topology']|//input[@id='search']"

	

	
SEARCH_CLEAR = "//button[contains(@class, 'clear')]"

	

	
SEARCH_SUBMIT = "//button[contains(@class, 'search-topology-button')]"

	

	
clear()[source]

	

	
submit()[source]

	

	
text(submit=True, text=None)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

 	cfme.web_ui package

cfme.web_ui.utilization module

	
class cfme.web_ui.utilization.Legend(name, legend_object)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

This class used to control/read legends

	
is_active

	Returns True if the legend is on active state, otherwise False

	
name

	User friendly name of the legend

	
set_active(active=True)[source]

	Enable or Disable legend

	Parameters:	active – When we set True, Enables the legend. When we set False disables the legend.
Default True

	
class cfme.web_ui.utilization.LineChart(chart_id, name, utilization_object)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

LineChart supports to do actions on line chart

	
LEGENDS = "//*[name()='g']//*[contains(@class, 'c3-legend-item ') or @class='c3-legend-item']"

	

	
__iter__()[source]

	This enables you to iterate through like it was a dictionary, just without .iteritems

	
has_warning

	

	
is_on_chart_page

	Returns True we we are in detailed chart page, otherwise False

	
key_ui_table_map = {'durable_subscripti': 'durable_subscription_count', 'non_durable_subscr': 'non_durable_subscription_count', 'non_durable_messag': 'non_durable_messages_count', 'delivering_message': 'delivering_message_count'}

	

	
legends

	Returns available legends on chart

	
list_data_chart(raw=False)[source]

	Returns list of data from chart

	
list_data_mgmt()[source]

	Returns data from wrapanapi for the chart option selected

	
list_data_table(raw=False)[source]

	Returns list of data from table

	
load_chart_reference(force_reload=False)[source]

	Takes current page to chart detailed page

	
num_legend(only_enabled=True)[source]

	Returns number of available legends on chart
:param only_enabled: by default True, returns only enabled count when we pass True

	
option

	Gives option object as property

	
class cfme.web_ui.utilization.Option(o)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

Option class used to control options on chart page

	
DD_BASE = "//dt[normalize-space(.)='{}']/following-sibling::dd"

	

	
IN_DAILY = 'Daily'

	

	
IN_HOURLY = 'Hourly'

	

	
IN_MOST_RECENT_HOUR = 'Most Recent Hour'

	

	
MN_10_MINUTE = '10 Minutes'

	

	
MN_15_MINUTE = '15 Minutes'

	

	
MN_30_MINUTE = '30 Minutes'

	

	
MN_45_MINUTE = '45 Minutes'

	

	
MN_60_MINUTE = '1 Hour'

	

	
RANGE = "//dt[normalize-space(.)='Range']/following-sibling::dd"

	

	
TIME_PROFILE = "//dt[normalize-space(.)='Time Profile']/following-sibling::dd"

	

	
WK_1_WEEK = '1 Week'

	

	
WK_2_WEEK = '2 Weeks'

	

	
WK_3_WEEK = '3 Weeks'

	

	
WK_4_WEEK = '4 Weeks'

	

	
get_date()[source]

	Returns selected date from options

	
get_interval(force_visible_text=False)[source]

	Returns selected interval from options

	Parameters:	force_visible_text – default it is False and returns internal value. If you want to get
visible text pass this value as True

	
get_minute(force_visible_text=False)[source]

	Returns selected minute from options

	Parameters:	force_visible_text – default it is False and returns internal value. If you want to get
visible text pass this value as True

	
get_range()[source]

	Returns selected range from options

	
get_time_profile()[source]

	Returns selected time profile from options

	
get_week(force_visible_text=False)[source]

	Returns selected week from options

	Parameters:	force_visible_text – default it is False and returns internal value. If you want to get
visible text pass this value as True

	
set_by_value(op_interval=None, op_date=None, op_week=None, op_minute=None)[source]

	Set options by internal value
:param op_minute: Minute option
:param op_date: Date option, date format should be as ‘MM/DD/YYYY’, ie: 11/21/2016
:param op_interval: Set interval
:param op_week: Set week

	
set_by_visible_text(op_interval=None, op_date=None, op_week=None, op_minute=None)[source]

	Set options by visible text
:param op_minute: Minute option
:param op_date: Date option, date format should be as ‘MM/DD/YYYY’, ie: 11/21/2016
:param op_interval: Set interval
:param op_week: Set week

	
to_string()[source]

	Returns selected options as string

	
class cfme.web_ui.utilization.Utilization(o)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

Utilization class is the top level class for chart management in Middleware.
We have to create Utilization with reference of any page which has
Utilization >> Monitoring tab. Reference page must have implemented
load_utilization_page() function which will take to Monitoring page.

	
__iter__()[source]

	This enables you to iterate through like it was a dictionary, just without .iteritems

	
charts

	Returns available charts on monitoring page

	
load_utilization_page(refresh=True)[source]

	

	
page

	Returns page object of caller

	
reload(force_reload=False)[source]

	Reload the entire page

	
cfme.web_ui.utilization.round_double(value, precision=2)[source]

	Round double value with precision limit

	
cfme.web_ui.utilization.value_of(text_value, remove_comma=True)[source]

	Converts string value to Int, Float or String
:param remove_comma: When we set this value as True,
:param removes all comma from the string. Default True:

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

cfme.dashboard module

	
class cfme.dashboard.Dashboard(collection, name)[source]

	Bases: cfme.utils.appliance.BaseEntity

	
dashboard_view

	Returns a view pointed at a particular dashboard.

	
drag_and_drop(dragged_widget_or_name, dropped_widget_or_name)[source]

	Drags and drops widgets onto each other.

	
widgets

	

	
class cfme.dashboard.DashboardCollection(appliance)[source]

	Bases: cfme.utils.appliance.BaseCollection

Represents the Dashboard page and can jump around various dashboards present.

	
all()[source]

	

	
close_zoom()[source]

	Closes any zoomed widget.

	
default

	Returns an instance of the Default Dashboard

	
instantiate(name)[source]

	

	
refresh()[source]

	Refreshes the dashboard view by forcibly clicking the navigation again.

	
zoomed_name

	Grabs the name of the currently zoomed widget.

	
class cfme.dashboard.DashboardDetails(obj, navigate_obj)[source]

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ParticularDashboardView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()[source]

	

	
class cfme.dashboard.DashboardView(parent, logger=None, **kwargs)[source]

	Bases: cfme.base.login.BaseLoggedInPage

View that represents the Intelligence/Dashboard.

	
add_widget

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
dashboards

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
ensure_zoom_closed()[source]

	

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reset_widgets(cancel=False)[source]

	Clicks the reset button to reset widgets and handles the alert.

	
zoomed

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.dashboard.DashboardWidget(collection, name)[source]

	Bases: cfme.utils.appliance.BaseEntity

Represents a single UI dashboard widget.

	Parameters:	
	name – Name of the widget as displayed in the title.

	widget_collection – The widget collection linked to a dashboard

	
blank

	Returns whether the widget has not been generated before.

	
can_zoom

	Returns whether this widget can be zoomed.

	
close_zoom()[source]

	Close zoom. Works theoretically for any widget, it is just exposed here.

	
content_type

	Returns the type of content of this widget

	
contents

	Returns the WT widget with contents of this dashboard widget.

	
dashboard

	

	
footer

	Return parsed footer value

	
is_zoomed

	Returns whether this widget is zoomed now.

	
last_in_column

	Returns whether this widget is the last in its column

	
minimize()[source]

	Minimize this widget.

	
minimized

	Returns whether the widget is minimized or not.

	
remove()[source]

	Remove this widget.

	
restore()[source]

	Maximize this widget.

	
time_next

	Returns a datetime when the widget will be updated.

	
time_updated

	Returns a datetime when the widget was last updated.

	
widget_view

	Returns a view of the particular widget.

	
zoom()[source]

	Zoom this widget in.

	
class cfme.dashboard.DashboardWidgetCollection(appliance, dashboard)[source]

	Bases: cfme.utils.appliance.BaseCollection

	
all(content_type=None)[source]

	

	
dashboard_view

	

	
instantiate(name)[source]

	

	
reset(cancel=False)[source]

	Clicks the Reset widgets button.

	
class cfme.dashboard.Kebab(parent, button_id=None, logger=None)[source]

	Bases: widgetastic.widget.Widget

The so-called “kebab” widget of Patternfly.

<http://www.patternfly.org/pattern-library/widgets/#kebabs>

	Parameters:	button_id – id of the button tag inside the kebab. If not specified, first kebab available
will be used

	
BUTTON = './button'

	

	
ITEM = './ul/li/a[normalize-space(.)={}]'

	

	
ITEMS = './ul/li/a'

	

	
ROOT

	

	
UL = './ul[contains(@class, "dropdown-menu")]'

	

	
close()[source]

	Close the kebab

	
is_opened

	Returns opened state of the kebab.

	
items

	Lists all items in the kebab.

	Returns:	list of str [http://docs.python.org/2.7/library/functions.html#str]

	
open()[source]

	Open the kebab

	
select(item, close=True)[source]

	Select a specific item from the kebab.

	Parameters:	
	item – Item to be selected.

	close – Whether to close the kebab after selection. If the item is a link, you may want
to set this to False

	
class cfme.dashboard.ParticularDashboardView(parent, logger=None, **kwargs)[source]

	Bases: cfme.dashboard.DashboardView

	
is_displayed

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

cfme.exceptions module

Provides custom exceptions for the cfme module.

	
exception cfme.exceptions.AccordionItemNotFound[source]

	Bases: cfme.exceptions.CFMEException

Raised when it’s not possible to locate and accordion item.

	
exception cfme.exceptions.AddProviderError[source]

	Bases: cfme.exceptions.CFMEException

	
exception cfme.exceptions.AuthModeUnknown[source]

	Bases: cfme.exceptions.CFMEException

Raised if an invalid authenctication mode is passed to
cfme.configure.configuration.set_auth_mode()

	
exception cfme.exceptions.AutomateImportError[source]

	Bases: cfme.exceptions.CFMEException

Raised by scripts dealing with Automate when importing automate XML fails

	
exception cfme.exceptions.AvailabilityZoneNotFound[source]

	Bases: cfme.exceptions.CFMEException

Raised if a specific Cloud Availability Zone cannot be found.

	
exception cfme.exceptions.BlockTypeUnknown[source]

	Bases: cfme.exceptions.CFMEException

Raised if the block type requested to cfme.web_ui.InfoBlock.

	
exception cfme.exceptions.CFMEException[source]

	Bases: exceptions.Exception [http://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

Base class for exceptions in the CFME tree

Used to easily catch errors of our own making, versus errors from external libraries.

	
exception cfme.exceptions.CFMEExceptionOccured[source]

	Bases: cfme.exceptions.CFMEException

Raised by cfme.web_ui.cfme_exception.assert_no_cfme_exception() when there is
a Rails exception currently on page.

	
exception cfme.exceptions.CUCommandException[source]

	Bases: cfme.exceptions.CFMEException

Raised when one of the commands run to set up a CU VM fails

	
exception cfme.exceptions.CandidateNotFound(d)[source]

	Bases: cfme.exceptions.CFMEException

Raised if there is no candidate found whilst trying to traverse a tree in
cfme.web_ui.Tree.click_path().

	
message

	

	
exception cfme.exceptions.CannotContinueWithNavigation[source]

	Bases: cfme.exceptions.CFMEException

Used when it is not possible to continue with navigation.

Raising it will recycle the browser, therefore refresh the session. If you pass a string to
the constructor, it will be written to the log.

	
exception cfme.exceptions.CannotScrollException[source]

	Bases: cfme.exceptions.CFMEException

Raised when even during the heaviest workarounds for scrolling failure comes.

	
exception cfme.exceptions.ClusterNotFound[source]

	Bases: cfme.exceptions.CFMEException

Raised if a cluster is not found

	
exception cfme.exceptions.ConsoleNotSupported(product_name, version)[source]

	Bases: cfme.exceptions.CFMEException

Raised by functions in cfme.configure.configuration when an invalid
console type is given

	
exception cfme.exceptions.ConsoleTypeNotSupported(console_type)[source]

	Bases: cfme.exceptions.CFMEException

Raised by functions in cfme.configure.configuration when an invalid
console type is given

	
exception cfme.exceptions.DbAllocatorConfigNotFound[source]

	Bases: cfme.exceptions.CFMEException

Raised when cdme_data.yaml file does not contain configuration of ‘db_allocator’.

	
exception cfme.exceptions.DestinationNotFound[source]

	Bases: cfme.exceptions.CFMEException

Raised during navigation where the navigator destination is not found

	
exception cfme.exceptions.ElementOrBlockNotFound[source]

	Bases: cfme.exceptions.CFMEException

Raised if an Element or a Block is not found whilst locating in
cfme.web_ui.InfoBlock().

	
exception cfme.exceptions.FlashMessageException[source]

	Bases: cfme.exceptions.CFMEException

Raised by functions in cfme.web_ui.flash

	
skip_and_log(message='Skipping due to flash message')[source]

	

	
exception cfme.exceptions.FlavorNotFound[source]

	Bases: cfme.exceptions.CFMEException

Raised if a specific cloud flavor cannot be found in the UI

	
exception cfme.exceptions.HostNotFound[source]

	Bases: cfme.exceptions.CFMEException

Raised if a specific host cannot be found in UI.

	
exception cfme.exceptions.HostStatsNotContains[source]

	Bases: cfme.exceptions.CFMEException

Raised if the hosts information does not contain the specified key whilst running
cfme.cloud.provider.Provider.do_stats_match().

	
exception cfme.exceptions.ImageNotFound[source]

	Bases: cfme.exceptions.VmOrInstanceNotFound

Raised if a specific image cannot be found

	
exception cfme.exceptions.InstanceNotFound[source]

	Bases: cfme.exceptions.VmOrInstanceNotFound

Raised if a specific instance cannot be found.

	
exception cfme.exceptions.ItemNotFound[source]

	Bases: cfme.exceptions.CFMEException

Raised when an item is not found in general.

	
exception cfme.exceptions.JDBCDriverConfigNotFound[source]

	Bases: cfme.exceptions.CFMEException

Raised when cdme_data.yaml file does not contain configuration of ‘jdbc_drivers’.

	
exception cfme.exceptions.KeyPairNotFound[source]

	Bases: cfme.exceptions.CFMEException

Raised if a specific cloud key pair cannot be found in the UI

	
exception cfme.exceptions.LabelNotFoundException[source]

	Bases: exceptions.Exception [http://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

Raises when failed to remove label from object via cli

	
exception cfme.exceptions.ListAccordionLinkNotFound[source]

	Bases: cfme.exceptions.CFMEException

Raised when active link containing specific text could not be found in
expended cfme.web_ui.listaccordion content section.

	
exception cfme.exceptions.ManyEntitiesFound[source]

	Bases: cfme.exceptions.CFMEException

Raised when one or no items were expected but several/many items were obtained instead.

	
exception cfme.exceptions.MenuItemNotFound[source]

	Bases: cfme.exceptions.CFMEException

Raised during navigation of certain menu item was not found.

	
exception cfme.exceptions.MiddlewareDatasourceNotFound[source]

	Bases: cfme.exceptions.CFMEException

Raised if a specific Middleware Datasource cannot be found.

	
exception cfme.exceptions.MiddlewareDeploymentNotFound[source]

	Bases: cfme.exceptions.CFMEException

Raised if a specific Middleware Deployment cannot be found.

	
exception cfme.exceptions.MiddlewareDomainNotFound[source]

	Bases: cfme.exceptions.CFMEException

Raised if a specific Middleware Domain cannot be found.

	
exception cfme.exceptions.MiddlewareMessagingNotFound[source]

	Bases: cfme.exceptions.CFMEException

Raised if a specific Middleware Messaging cannot be found.

	
exception cfme.exceptions.MiddlewareProviderNotFound[source]

	Bases: cfme.exceptions.CFMEException

Raised if a specific Middleware Provider cannot be found.

	
exception cfme.exceptions.MiddlewareServerGroupNotFound[source]

	Bases: cfme.exceptions.CFMEException

Raised if a specific Middleware Server Group cannot be found.

	
exception cfme.exceptions.MiddlewareServerNotFound[source]

	Bases: cfme.exceptions.CFMEException

Raised if a specific Middleware Server cannot be found.

	
exception cfme.exceptions.NavigationError(page_name)[source]

	Bases: cfme.exceptions.CFMEException

Raised when the pytest.sel.go_to function is unable to navigate to the requested page.

	
exception cfme.exceptions.NoElementsInsideValue[source]

	Bases: cfme.exceptions.CFMEException

Raised if the value part of key/value contains no elements during
cfme.web_ui.InfoBlock.get_el_or_els().

	
exception cfme.exceptions.NodeNotFound[source]

	Bases: cfme.exceptions.CFMEException

Raised if a specific container node cannot be found in the UI

	
exception cfme.exceptions.NotAllCheckboxesFound(failed_selects)[source]

	Bases: cfme.exceptions.CFMEException

Raised if not all the checkboxes could be found during e.g.
cfme.web_ui.CheckboxTable.select_rows() and other methods of this class.

	
exception cfme.exceptions.NotAllItemsClicked(failed_clicks)[source]

	Bases: cfme.exceptions.CFMEException

Raised if not all the items could be clicked during cfme.web_ui.Table.click_cell().

	
exception cfme.exceptions.OptionNotAvailable[source]

	Bases: cfme.exceptions.CFMEException

Raised if a specified option is not available.

	
exception cfme.exceptions.PaginatorException[source]

	Bases: cfme.exceptions.CFMEException

Raised by functions in cfme.web_ui.paginator

	
exception cfme.exceptions.ProviderHasNoKey[source]

	Bases: cfme.exceptions.CFMEException

Raised if the cfme.cloud.provider.Provider.get_mgmt_system() method is called
but the Provider instance has no key.

	
exception cfme.exceptions.ProviderHasNoProperty[source]

	Bases: cfme.exceptions.CFMEException

Raised if the provider does not have the property requested whilst running
cfme.cloud.provider.Provider.do_stats_match().

	
exception cfme.exceptions.RBACOperationBlocked[source]

	Bases: cfme.exceptions.CFMEException

Raised when a Role Based Access Control operation is blocked from execution due to invalid
permissions. Also thrown when trying to perform actions CRUD operations on roles/groups/users
that are CFME defaults

	
exception cfme.exceptions.RequestException[source]

	Bases: cfme.exceptions.CFMEException

Raised if a request was not found or multiple rows matched during _request functions in
cfme.services.requests

	
exception cfme.exceptions.ResourcePoolNotFound[source]

	Bases: cfme.exceptions.CFMEException

Raised if a specific cloud key pair cannot be found in the UI

	
exception cfme.exceptions.RoleNotFound[source]

	Bases: cfme.exceptions.CFMEException

Raised when Deployment role not found

	
exception cfme.exceptions.ScheduleNotFound[source]

	Bases: cfme.exceptions.CFMEException

Raised if a schedule was not found in
cfme.configure.configuration.Schedule.delete_by_name()

	
exception cfme.exceptions.StackNotFound[source]

	Bases: cfme.exceptions.CFMEException

Raised if a specific stack cannot be found.

	
exception cfme.exceptions.StorageManagerNotFound[source]

	Bases: cfme.exceptions.CFMEException

Raised when a Storage Manager is not found

	
exception cfme.exceptions.TemplateNotFound[source]

	Bases: cfme.exceptions.CFMEException

Raised if a specific Template cannot be found.

	
exception cfme.exceptions.TenantNotFound[source]

	Bases: cfme.exceptions.CFMEException

Raised if a specific tenant cannot be found

	
exception cfme.exceptions.ToolbarOptionGreyedOrUnavailable[source]

	Bases: cfme.exceptions.CFMEException

Raised when toolbar wants to click item that is greyed or unavailable

	
exception cfme.exceptions.TreeNotFound[source]

	Bases: cfme.exceptions.CFMEException

Raised if the tree used for cfme.web_ui.Tree.expand_path() cannot be found

	
exception cfme.exceptions.TreeTypeUnknown[source]

	Bases: cfme.exceptions.CFMEException

Raised if the tree type is known whilst detection in cfme.web_ui.Tree

	
exception cfme.exceptions.UnidentifiableTagType[source]

	Bases: cfme.exceptions.CFMEException

Raised if a tag type is not identifiable when processing a form in
cfme.web_ui.Form.fill_fields().

	
exception cfme.exceptions.UnknownProviderType[source]

	Bases: cfme.exceptions.CFMEException

Raised when the passed provider or provider type is not known or usable in given context
e.g. when getting a provider from yaml and the provider type doesn’t match any of known types
or when an infra provider is passed to the cloud’s instance_factory method

	
exception cfme.exceptions.UsingSharedTables[source]

	Bases: cfme.exceptions.CFMEException

Raised if the cfme.web_ui.Table suspects there is a use of shared tables.

	
exception cfme.exceptions.VmNotFound[source]

	Bases: cfme.exceptions.VmOrInstanceNotFound

Raised if a specific VM cannot be found.

	
exception cfme.exceptions.VmNotFoundViaIP[source]

	Bases: cfme.exceptions.CFMEException

Raised if a specific VM cannot be found.

	
exception cfme.exceptions.VmOrInstanceNotFound[source]

	Bases: cfme.exceptions.CFMEException

	
exception cfme.exceptions.VolumeNotFound[source]

	Bases: cfme.exceptions.CFMEException

Raised if a specific cloud volume cannot be found in the UI

	
exception cfme.exceptions.ZoneNotFound[source]

	Bases: cfme.exceptions.CFMEException

Raised when a specific Zone cannot be found in the method
cfme.configure.configuration.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

cfme.js module

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

cfme.provisioning module

	
cfme.provisioning.do_vm_provisioning(appliance, template_name, provider, vm_name, provisioning_data, request, smtp_test, num_sec=1500, wait=True)[source]

	

	
cfme.provisioning.select_security_group(sg)[source]

	TODO: Not even sure this is needed any more, but removal of it is not part of this PR

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

cfme.roles module

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	cfme package

cfme.test_requirements module

Test requirements mapping

This module contains predefined pytest markers for CFME product requirements.

Please import the module instead of elements:

from cfme import test_requirements

pytestmark = [test_requirements.alert]

@test_requirments.quota
def test_quota_alert():
 pass

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

fixtures package

Subpackages

	fixtures.parallelizer package
	Submodules
	fixtures.parallelizer.hooks module

	fixtures.parallelizer.parallelizer_tester module

	fixtures.parallelizer.remote module

	Module contents
	The Workflow

Submodules

	fixtures.appliance module

	fixtures.appliance_update module

	fixtures.artifactor_plugin module

	fixtures.blockers module

	fixtures.browser module

	fixtures.cfme_data module

	fixtures.datafile module

	fixtures.dev_branch module

	fixtures.disable_forgery_protection module

	fixtures.events module

	fixtures.fixtureconf module

	fixtures.log module

	fixtures.maximized module

	fixtures.merkyl module

	fixtures.middleware_log module

	fixtures.nelson module

	fixtures.node_annotate module

	fixtures.page_screenshots module

	fixtures.perf module

	fixtures.portset module

	fixtures.prov_filter module

	fixtures.provider module

	fixtures.pytest_store module

	fixtures.qa_contact module

	fixtures.randomness module

	fixtures.rbac module

	fixtures.screenshots module

	fixtures.soft_assert module
	Functionality Overview

	fixtures.ssh_client module

	fixtures.templateloader module

	fixtures.terminalreporter module

	fixtures.ui_coverage module
	Usage

	General Notes

	Workflow Overview

	fixtures.version_file module

	fixtures.version_info module

	fixtures.video module

	fixtures.virtual_machine module

	fixtures.widgets module

	fixtures.xunit_tools module

Module contents

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

fixtures.parallelizer package

Submodules

	fixtures.parallelizer.hooks module

	fixtures.parallelizer.parallelizer_tester module

	fixtures.parallelizer.remote module

Module contents

Parallel testing, supporting arbitrary collection ordering

The Workflow

	Master py.test process starts up, inspects config to decide how many slave to start, if at all
	env[‘parallel_base_urls’] is inspected first

	py.test config.option.appliances and the related –appliance cmdline flag are used
if env[‘parallel_base_urls’] isn’t set

	if neither are set, no parallelization happens

	Slaves are started

	Master runs collection, blocks until slaves report their collections

	Slaves each run collection and submit them to the master, then block inside their runtest loop,
waiting for tests to run

	Master diffs slave collections against its own; the test ids are verified to match
across all nodes

	Master enters main runtest loop, uses a generator to build lists of test groups which are then
sent to slaves, one group at a time

	For each phase of each test, the slave serializes test reports, which are then unserialized on
the master and handed to the normal pytest reporting hooks, which is able to deal with test
reports arriving out of order

	Before running the last test in a group, the slave will request more tests from the master
	If more tests are received, they are run

	If no tests are received, the slave will shut down after running its final test

	After all slaves are shut down, the master will do its end-of-session reporting as usual, and
shut down

	
class fixtures.parallelizer.Outcome(word, markup)

	Bases: tuple

	
__getnewargs__()

	Return self as a plain tuple. Used by copy and pickle.

	
__getstate__()

	Exclude the OrderedDict from pickling

	
__repr__()

	Return a nicely formatted representation string

	
markup

	Alias for field number 1

	
word

	Alias for field number 0

	
class fixtures.parallelizer.ParallelSession(config, appliances)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
ack(slave, event_name)[source]

	Acknowledge a slave’s message

	
get(slave)[source]

	

	
interrupt(slave, **kwargs)[source]

	Nicely ask a slave to terminate

	
kill(slave, **kwargs)[source]

	Rudely kill a slave

	
monitor_shutdown(slave)[source]

	

	
print_message(message, prefix='master', **markup)[source]

	Print a message from a node to the py.test console

	Parameters:	
	message – The message to print

	**markup – If set, overrides the default markup when printing the message

	
pytest_runtestloop()[source]

	pytest runtest loop

	Disable the master terminal reporter hooks, so we can add our own handlers
that include the slaveid in the output

	Send tests to slaves when they ask

	Log the starting of tests and test results, including slave id

	Handle clean slave shutdown when they finish their runtest loops

	Restore the master terminal reporter after testing so we get the final report

	
pytest_sessionstart(session)[source]

	pytest sessionstart hook

	sets up distributed terminal reporter

	sets up zmp ipc socket for the slaves to use

	writes pytest options and args to slave_config.yaml

	starts the slaves

	register atexit kill hooks to destroy slaves at the end if things go terribly wrong

	
recv()[source]

	

	
send(slave, event_data)[source]

	Send data to slave.

event_data will be serialized as JSON, and so must be JSON serializable

	
send_tests(slave)[source]

	Send a slave a group of tests

	
class fixtures.parallelizer.SlaveDetail(appliance, id=NOTHING, tests=NOTHING, process=None, provider_allocation=NOTHING)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
__eq__(other)

	Automatically created by attrs.

	
__ge__(other)

	Automatically created by attrs.

	
__gt__(other)

	Automatically created by attrs.

	
__le__(other)

	Automatically created by attrs.

	
__lt__(other)

	Automatically created by attrs.

	
__ne__(other)

	Automatically created by attrs.

	
__repr__()

	Automatically created by attrs.

	
appliance = Attribute(name='appliance', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
forbid_restart = Attribute(name='forbid_restart', default=False, validator=None, repr=True, cmp=True, hash=None, init=False, convert=None, metadata=mappingproxy({}))

	

	
id = Attribute(name='id', default=Factory(factory=<function <lambda> at 0x7fd2fa726140>, takes_self=False), validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
poll()[source]

	

	
process = Attribute(name='process', default=None, validator=None, repr=False, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
provider_allocation = Attribute(name='provider_allocation', default=Factory(factory=<type 'list'>, takes_self=False), validator=None, repr=False, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
slaveid_generator = <generator object <genexpr>>

	

	
start()[source]

	

	
tests = Attribute(name='tests', default=Factory(factory=<type 'set'>, takes_self=False), validator=None, repr=False, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
class fixtures.parallelizer.TerminalDistReporter(config, terminal)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

Terminal Reporter for Distributed Testing

trdist reporter exists to make sure we get good distributed logging during the runtest loop,
which means the normal terminal reporter should be disabled during the loop

This class is where we make sure the terminal reporter is made aware of whatever state it
needs to report properly once we turn it back on after the runtest loop

It has special versions of pytest reporting hooks that, where possible, try to include a
slave ID. These hooks are called in ParallelSession‘s runtestloop hook.

	
runtest_logreport(slaveid, report)[source]

	

	
runtest_logstart(slaveid, nodeid, location)[source]

	

	
fixtures.parallelizer.handle_end_session(signal, frame)[source]

	

	
fixtures.parallelizer.pytest_addhooks(pluginmanager)[source]

	

	
fixtures.parallelizer.pytest_configure(config)[source]

	Configures the parallel session, then fires pytest_parallel_configured.

	
fixtures.parallelizer.report_collection_diff(slaveid, from_collection, to_collection)[source]

	Report differences, if any exist, between master and a slave collection

Raises RuntimeError if collections differ

Note

This function will sort functions before comparing them.

	
fixtures.parallelizer.unserialize_report(reportdict)[source]

	Generate a TestReport [http://pytest.org/latest/writing_plugins.html#_pytest.runner.TestReport] from a serialized report

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

 	fixtures.parallelizer package

fixtures.parallelizer.hooks module

parallelizer hooks

Custom hooks to help keep runtime ordering straight with regard to the parallelizer’s state

	
fixtures.parallelizer.hooks.pytest_parallel_configured(parallel_session)[source]

	called after the parallel session is configured

This is always called, whether running parallel or not.

If running standalone, parallel_session will be None.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

 	fixtures.parallelizer package

fixtures.parallelizer.parallelizer_tester module

parallelizer tester

Useful to make sure tests are being parallelized properly, and then reported correctly.

This file is named specially to prevent being picked up by py.test’s default collector, and should
not be run during a normal test run.

	
fixtures.parallelizer.parallelizer_tester.setup_fail()[source]

	

	
fixtures.parallelizer.parallelizer_tester.teardown_fail()[source]

	

	
fixtures.parallelizer.parallelizer_tester.test_fails()[source]

	

	
fixtures.parallelizer.parallelizer_tester.test_fails_setup(setup_fail)[source]

	

	
fixtures.parallelizer.parallelizer_tester.test_fails_teardown(teardown_fail)[source]

	

	
fixtures.parallelizer.parallelizer_tester.test_passes()[source]

	

	
fixtures.parallelizer.parallelizer_tester.test_skipped()[source]

	

	
fixtures.parallelizer.parallelizer_tester.test_xfails()[source]

	

	
fixtures.parallelizer.parallelizer_tester.test_xpasses()[source]

	

	
fixtures.parallelizer.parallelizer_tester.the_param()[source]

	

	
fixtures.parallelizer.parallelizer_tester.wait()[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

 	fixtures.parallelizer package

fixtures.parallelizer.remote module

	
class fixtures.parallelizer.remote.SlaveManager(config, slaveid, base_url, zmq_endpoint)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

SlaveManager which coordinates with the master process for parallel testing

	
handle_quit()[source]

	

	
message(message, **kwargs)[source]

	Send a message to the master, which should get printed to the console

	
pytest_collection_finish(session)[source]

	pytest collection hook

	Sends collected tests to the master for comparison

	
pytest_internalerror(excrepr)[source]

	pytest internal error hook

	logs full traceback

	reports short traceback to the py.test console

	
pytest_runtest_logreport(report)[source]

	pytest runtest logreport hook

	sends serialized log reports to the master

	
pytest_runtest_logstart(nodeid, location)[source]

	pytest runtest logstart hook

	sends logstart notice to the master

	
pytest_runtestloop(session)[source]

	pytest runtest loop

	iterates over and runs tests in the order received from the master

	
pytest_sessionfinish()[source]

	

	
send_event(name, **kwargs)[source]

	

	
shutdown()[source]

	

	
fixtures.parallelizer.remote.serialize_report(rep)[source]

	Get a TestReport [http://pytest.org/latest/writing_plugins.html#_pytest.runner.TestReport] ready to send to the master

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

fixtures.appliance module

This module contains fixtures to use when you need a temporary appliance for testing.

In cases where you cannot run a certain test againts the primary appliance because of the test’s
destructive potential (which could render all subsequent testing useless), you want to use
a temporary appliance parallel to the primary one.

For tests where all you need is a single preconfigured appliance to run a database restore on for
example, you will want to use the temp_appliance_preconfig() fixture.

For tests that require multiple unconfigured appliances (e.g. replication testing), there is
temp_appliances_unconfig().

	
fixtures.appliance.temp_appliance_preconfig(temp_appliance_preconfig_modscope)[source]

	

	
fixtures.appliance.temp_appliance_preconfig_clsscope()[source]

	

	
fixtures.appliance.temp_appliance_preconfig_funcscope()[source]

	

	
fixtures.appliance.temp_appliance_preconfig_funcscope_upgrade(appliance)[source]

	

	
fixtures.appliance.temp_appliance_preconfig_modscope()[source]

	

	
fixtures.appliance.temp_appliance_unconfig(temp_appliance_unconfig_modscope)[source]

	

	
fixtures.appliance.temp_appliance_unconfig_clsscope()[source]

	

	
fixtures.appliance.temp_appliance_unconfig_funcscope()[source]

	

	
fixtures.appliance.temp_appliance_unconfig_modscope()[source]

	

	
fixtures.appliance.temp_appliances(*args, **kwds)[source]

	Provisions one or more appliances for testing

	Parameters:	
	count – Number of appliances

	preconfigured – True if the appliance should be already configured, False otherwise

	lease_time – Lease time in minutes (3 hours by default)

	
fixtures.appliance.temp_appliances_unconfig(temp_appliances_unconfig_modscope)[source]

	

	
fixtures.appliance.temp_appliances_unconfig_clsscope()[source]

	

	
fixtures.appliance.temp_appliances_unconfig_funcscope()[source]

	

	
fixtures.appliance.temp_appliances_unconfig_modscope()[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

fixtures.appliance_update module

This module allows you to update an appliance with latest RHEL.

It has two uses:
1) If only --update-appliance is specified, it will use the YAML url.
2) If you also specify one or more --update-url, it will use them instead.

	
fixtures.appliance_update.pytest_addoption(parser)[source]

	

	
fixtures.appliance_update.pytest_sessionstart(session)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

fixtures.artifactor_plugin module

An example config:

artifactor:
 log_dir: /home/test/workspace/cfme_tests/artiout
 per_run: test #test, run, None
 reuse_dir: True
 squash_exceptions: False
 threaded: False
 server_address: 127.0.0.1
 server_port: 21212
 server_enabled: True
 plugins:

log_dir is the destination for all artifacts

per_run denotes if the test artifacts should be group by run, test, or None

reuse_dir if this is False and Artifactor comes across a dir that has
already been used, it will die

	
class fixtures.artifactor_plugin.DummyClient[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
fire_hook(*args, **kwargs)[source]

	

	
task_status()[source]

	

	
terminate()[source]

	

	
fixtures.artifactor_plugin.fire_art_hook(config, hook, **hook_args)[source]

	

	
fixtures.artifactor_plugin.fire_art_test_hook(node, hook, **hook_args)[source]

	

	
fixtures.artifactor_plugin.get_client(art_config, pytest_config)[source]

	

	
fixtures.artifactor_plugin.get_name(obj)[source]

	

	
fixtures.artifactor_plugin.get_test_idents(item)[source]

	

	
fixtures.artifactor_plugin.pytest_addoption(parser)[source]

	

	
fixtures.artifactor_plugin.pytest_configure(config)[source]

	

	
fixtures.artifactor_plugin.pytest_runtest_logreport(report)[source]

	

	
fixtures.artifactor_plugin.pytest_runtest_protocol(item)[source]

	

	
fixtures.artifactor_plugin.pytest_runtest_teardown(item, nextitem)[source]

	

	
fixtures.artifactor_plugin.pytest_unconfigure(config)[source]

	

	
fixtures.artifactor_plugin.shutdown(config)[source]

	

	
fixtures.artifactor_plugin.spawn_server(config, art_client)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

fixtures.blockers module

Collection of fixtures for simplified work with blockers.

You can use the blocker() fixture to retrieve any blocker
using blocker syntax (as described in cfme.metaplugins.blockers).
The bug() fixture is specific for bugzilla,
it accepts number argument and spits out the BUGZILLA BUG!
(a utils.bz.BugWrapper, not a utils.blockers.BZ!).
The blockers() retrieves list of all blockers
as specified in the meta marker.
All of them are converted to the utils.blockers.Blocker instances

	
fixtures.blockers.blocker(uses_blockers)[source]

	Return any blocker that matches the expression.

	Returns:	Instance of utils.blockers.Blocker

	
fixtures.blockers.blockers(uses_blockers, meta)[source]

	Returns list of all assigned blockers.

	Returns:	List of utils.blockers.Blocker instances.

	
fixtures.blockers.bug(blocker)[source]

	Return bugzilla bug by its id.

	Returns:	Instance of utils.bz.BugWrapper or NoneType if the bug is closed.

	
fixtures.blockers.pytest_addoption(parser)[source]

	

	
fixtures.blockers.pytest_collection_modifyitems(session, config, items)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

fixtures.browser module

	
fixtures.browser.browser()[source]

	

	
fixtures.browser.nuke_browser_after_test()[source]

	Some more disruptive tests have to take this measure.

	
fixtures.browser.pytest_exception_interact(node, call, report)[source]

	

	
fixtures.browser.pytest_namespace()[source]

	

	
fixtures.browser.pytest_runtest_setup(item)[source]

	

	
fixtures.browser.pytest_sessionfinish(session, exitstatus)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

fixtures.cfme_data module

	
fixtures.cfme_data.cfme_data(request)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

fixtures.datafile module

	
fixtures.datafile.datafile(filename, replacements)[source]

	datafile fixture, with templating support

	Parameters:	
	filename – filename to load from the data dir

	replacements – template replacements

Returns: Path to the loaded datafile

Usage:

Given a filename, it will attempt to open the given file from the
test's corresponding data dir. For example, this:

 datafile('testfile') # in tests/subdir/test_module_name.py

Would return a file object representing this file:

 /path/to/cfme_tests/data/subdir/test_module_name/testfile

Given a filename with a leading slash, it will attempt to load the file
relative to the root of the data dir. For example, this:

 datafile('/common/testfile') # in tests/subdir/test_module_name.py

Would return a file object representing this file:

 /path/to/cfme_tests/data/common/testfile

Note that the test module name is not used with the leading slash.

Templates:

This fixture can also handle template replacements. If the datafile
being loaded is a python template, the dictionary of replacements
can be passed as the ‘replacements’ keyword argument. In this case,
the returned data file will be a NamedTemporaryFile prepopulated
with the interpolated result from combining the template with
the replacements mapping.

	http://docs.python.org/2/library/string.html#template-strings

	http://docs.python.org/2/library/tempfile.html#tempfile.NamedTemporaryFile

	
fixtures.datafile.pytest_addoption(parser)[source]

	

	
fixtures.datafile.pytest_sessionfinish(session, exitstatus)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

fixtures.dev_branch module

	
fixtures.dev_branch.pytest_addoption(parser)[source]

	

	
fixtures.dev_branch.pytest_sessionstart(session)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

fixtures.disable_forgery_protection module

	
fixtures.disable_forgery_protection.disable_forgery_protection()[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

fixtures.events module

Event testing fixture.

The idea of this fixture is to pass some “expected” events to
utils.events.EventListener and check whether all expected events are received
at the test end.

register_event fixture accepts attributes for one expected event

simple example:

register_event(target_type='VmOrTemplate', target_name=vm_crud.name, event_type='vm_create')

more complex example:

def add_cmp(_, y):
 data = yaml.load(y)
 return data['resourceId'].endswith(nsg_name) and data['status']['value'] == 'Accepted' and data['subStatus']['value'] == 'Created'

fd_add_attr = {'full_data': 'will be ignored',
 'cmp_func': add_cmp}

add network security group event
register_event(fd_add_attr, source='AZURE',
 event_type='networkSecurityGroups_write_EndRequest')

def rm_cmp(_, y):
 data = yaml.load(y)
 return data['resourceId'].endswith(nsg_name) and data['status']['value'] == 'Succeeded' and len(data['subStatus']['value']) == 0

fd_rm_attr = {'full_data': 'will be ignored',
 'cmp_func': rm_cmp}

remove network security group event
register_event(fd_rm_attr, source=provider.type.upper(),
 event_type='networkSecurityGroups_delete_EndRequest')

Expected events are defined by set of event attributes which should match to the same event
attributes in event_streams db table except one fake attribute - target_name which is resolved into
certain object’s id.

Default match algorithm is ==. Event also accepts match function in order to change default
match type.

	
fixtures.events.pytest_runtest_call(item)[source]

	

	
fixtures.events.register_event(list of event attributes)[source]

	Event registration fixture.

This fixture is used to notify the testing system that some event
should have occurred during execution of the test case using it.
It does not register anything by itself.

	Parameters:	
	attribute 1 (event) –

	.. –

	attribute N (event) –

Returns: None

Usage:

def test_something(foo, bar, register_event, appliance):
 register_event(target_type = 'VmOrTemplate', target_name = vm.name,
 event_type = 'vm_create')

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

fixtures.fixtureconf module

	
fixtures.fixtureconf.fixtureconf(request)[source]

	Provides easy access to the fixtureconf dict in fixtures

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

fixtures.log module

	
fixtures.log.logger()[source]

	

	
fixtures.log.pytest_collection_modifyitems(session, config, items)[source]

	

	
fixtures.log.pytest_exception_interact(node, call, report)[source]

	

	
fixtures.log.pytest_runtest_logreport(report)[source]

	

	
fixtures.log.pytest_runtest_setup(item)[source]

	

	
fixtures.log.pytest_sessionfinish(session, exitstatus)[source]

	

	
fixtures.log.test_tracking = defaultdict(<type 'dict'>, {})

	A dict of tests, and their state at various test phases

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

fixtures.maximized module

Created on Mar 4, 2013

@author: bcrochet

	
fixtures.maximized.maximized()[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

fixtures.merkyl module

	
class fixtures.merkyl.MerkylInspector(request)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
add_log(log_name)[source]

	Adds a log file to the merkyl process.

This function adds a log file path to the merkyl process on the
appliance. This is relevant only for the duration of the test. At
the end of the test, the file is removed from the merkyl tracker.

Note that this is a blocking call, ie, we ensure that the file
is being logged by merkyl, before we continue. This is important
and prevents the file_add operation being queued and processes
which generate log information activating before the log is being
monitored. This is achieved using the grab_result switch, but
in fact, nothing will be received.

It is worth noting that the file path must be “discoverable” by merkyl.
This may mean editing the allowed_files prior to deploying merkyl.

	Parameters:	log_name – Full path to the log file wishing to be monitored.

	
get_log(log_name)[source]

	A simple getter for log files.

Returns the cached content of a particular log

	Parameters:	log_name – Full path to the log file wishing to be received.

	
search_log(needle, log_name)[source]

	A simple search, test if needle is in cached log_contents.

Does a simple search of needle in contents. Note that this does not
trawl the previous contents of the file, but only looks at the log
information which has been gathered since merkyl was tracking the file.

	
fixtures.merkyl.merkyl_inspector(request)[source]

	Provides a MerkylInspector instance.

This fixture is used to gain access to a relevant MerkylInspector instance.

Example usage is below:

def test_test(merkyl_inspector):
 merkyl_inspector.add_log('/path/to/log/file')
 # Do something
 if merkyl_inspector.search_log('needle', '/path/to/log/file'):
 print(merkyl_inspector.get_log('/path/to/log/file'))

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

fixtures.middleware_log module

	
fixtures.middleware_log.middleware_evm_log_no_error()[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

fixtures.nelson module

	
class fixtures.nelson.GoogleDocstring(*args, **kwargs)[source]

	Bases: sphinx.ext.napoleon.docstring.GoogleDocstring

Custom version of napoleon’s GoogleDocstring that adds some special cases

	
fixtures.nelson.get_meta(obj)[source]

	

	
fixtures.nelson.pytest_collection_modifyitems(items)[source]

	

	
fixtures.nelson.pytest_pycollect_makeitem(collector, name, obj)[source]

	pytest hook that adds docstring metadata (if found) to a test’s meta mark

	
fixtures.nelson.setup(app)[source]

	Sphinx extension setup function.

See also

http://sphinx-doc.org/extensions.html

	
fixtures.nelson.stripper(docstring)[source]

	Slightly smarter dedent [http://docs.python.org/2.7/library/textwrap.html#textwrap.dedent]

It strips a docstring’s first line indentation and dedents the rest

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

fixtures.node_annotate module

	
class fixtures.node_annotate.MarkFromMap(mark_map)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
classmethod from_parsed_list(parsed, key, map_value)[source]

	

	
pytest_itemcollected(item)[source]

	

	
fixtures.node_annotate.generate_nodeid(mapping)[source]

	

	
fixtures.node_annotate.parse(path)[source]

	

	
fixtures.node_annotate.pytest_addoption(parser)[source]

	

	
fixtures.node_annotate.pytest_collection_modifyitems(config, items)[source]

	

	
fixtures.node_annotate.pytest_configure(config)[source]

	

	
fixtures.node_annotate.requirement_matches(item, requirements)[source]

	

	
fixtures.node_annotate.tier_matches(item, tiers)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

fixtures.page_screenshots module

	
fixtures.page_screenshots.pytest_addoption(parser)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

fixtures.perf module

Fixtures specifically for performance tests.

	
fixtures.perf.cfme_log_level_rails_debug()[source]

	

	
fixtures.perf.ui_worker_pid()[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

fixtures.portset module

	
fixtures.portset.pytest_addoption(parser)[source]

	

	
fixtures.portset.pytest_configure(config)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

fixtures.prov_filter module

	
fixtures.prov_filter.pytest_addoption(parser)[source]

	

	
fixtures.prov_filter.pytest_configure(config)[source]

	Filters the list of providers as part of pytest configuration

Note

Additional filter is added to the global_filters dict of active filters here.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

fixtures.provider module

Fixtures to set up providers

Used to ensure that we have a provider set up on the appliance before running a test.

There are two ways to request a setup provider depending on what kind of test we create:

	Test parametrized by provider (test is run once per each matching provider)
For parametrized tests, provider is delivered by testgen. Testgen ensures that the requested
provider is available as the provider parameter. It doesn’t set the provider up, however, as
it will only provide you with the appropriate provider CRUD object.
To get the provider set up, we need to add one of the following fixtures to parameters as well:
- setup_provider
- setup_provider_modscope
- setup_provider_clsscope
- setup_provider_funcscope (same as setup_provider)

This ensures that whatever is currently hiding under the provider parameter will be set up.

	Test not parametrized by provider (test is run once and we just need some provider available)
In this case, we don’t really care about what sort of a provider we have available. Usually,
we just want something to fill the UI with data so that we can test our provider non-specific
functionality. For that, we can leverage one of the following fixtures:
- infra_provider
- cloud_provider
- middleware_provider
- containers_provider
- ...and others

If these don’t really fit your needs, you can implement your own module-local a_provider
fixture using setup_one_by_class_or_skip or more adjustable setup_one_or_skip.
These functions do exactly what their names suggest - they setup one of the providers fitting
given parameters or skip the test. All of these fixtures are (and should be) function scoped.
Please keep that in mind when creating your module-local substitutes.

If setting up a provider fails, the issue is logged and an internal counter is incremented
as a result. If this counter reaches a predefined number of failures (see SETUP_FAIL_LIMIT),
the failing provider will be added to the list of problematic providers and no further attempts
to set it up will be made.

	
fixtures.provider.big_template(provider)[source]

	

	
fixtures.provider.big_template_modscope(provider)[source]

	

	
fixtures.provider.console_template(provider)[source]

	

	
fixtures.provider.console_template_modscope(provider)[source]

	

	
fixtures.provider.full_template(provider)[source]

	

	
fixtures.provider.full_template_modscope(provider)[source]

	

	
fixtures.provider.has_no_providers(request)[source]

	

	
fixtures.provider.has_no_providers_modscope(request)[source]

	

	
fixtures.provider.provisioning(provider)[source]

	

	
fixtures.provider.pytest_addoption(parser)[source]

	

	
fixtures.provider.setup_one_by_class_or_skip(request, prov_class, use_global_filters=True)[source]

	

	
fixtures.provider.setup_one_or_skip(request, filters=None, use_global_filters=True)[source]

	Sets up one of matching providers or skips the test

	Parameters:	
	filters – List of ProviderFilter or None

	request – Needed for logging a potential skip correctly in artifactor

	use_global_filters – Will apply global filters as well if True, will not otherwise

	
fixtures.provider.setup_only_one_provider(request, has_no_providers)[source]

	

	
fixtures.provider.setup_or_skip(request, provider)[source]

	Sets up given provider or skips the test

Note

If a provider fails to setup SETUP_FAIL_LIMIT times, it will be added to the list
of problematic providers and won’t be used by any test until the end of the test run.

	
fixtures.provider.setup_perf_provider(request, use_global_filters=True)[source]

	

	
fixtures.provider.setup_provider(request, provider)[source]

	Function-scoped fixture to set up a provider

	
fixtures.provider.setup_provider_clsscope(request, provider)[source]

	Module-scoped fixture to set up a provider

	
fixtures.provider.setup_provider_funcscope(request, provider)[source]

	Function-scoped fixture to set up a provider

	
fixtures.provider.setup_provider_modscope(request, provider)[source]

	Module-scoped fixture to set up a provider

	
fixtures.provider.small_template(provider)[source]

	

	
fixtures.provider.small_template_modscope(provider)[source]

	

	
fixtures.provider.template(template_location, provider)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

fixtures.pytest_store module

Storage for pytest objects during test runs

The objects in the module will change during the course of a test run,
so they have been stashed into the ‘store’ namespace

Usage:

as pytest.store
import pytest
pytest.store.config, pytest.store.pluginmanager, pytest.store.session

imported directly (store is pytest.store)
from fixtures.pytest_store import store
store.config, store.pluginmanager, store.session

The availability of these objects varies during a test run, but
all should be available in the collection and testing phases of a test run.

	
class fixtures.pytest_store.FlexibleTerminalReporter(config=None, file=None)[source]

	Bases: _pytest.terminal.TerminalReporter

A TerminalReporter stand-in that pretends to work even without a py.test config.

	
class fixtures.pytest_store.Store[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

pytest object store

If a property isn’t available for any reason (including being accessed outside of a pytest run),
it will be None.

	
base_url

	If there is a current appliance the base url of that appliance is returned
else, the base_url from the config is returned.

	
capturemanager

	

	
config = None

	The py.test config instance, None if not in py.test

	
current_appliance

	

	
fixturemanager

	

	
has_config

	

	
in_pytest_session

	

	
my_ip_address

	

	
parallel_session

	

	
parallelizer_role = None

	Parallelizer role, None if not running a parallelized session

	
pluginmanager

	

	
session = None

	The current py.test session, None if not in a py.test session

	
slave_manager

	

	
slaveid

	

	
ssh_clients_to_close = None

	hack variable until we get a more sustainable solution

	
terminaldistreporter

	

	
terminalreporter

	

	
write_line(line, **kwargs)[source]

	

	
fixtures.pytest_store.pytest_namespace()[source]

	

	
fixtures.pytest_store.pytest_plugin_registered(manager)[source]

	

	
fixtures.pytest_store.pytest_sessionstart(session)[source]

	

	
fixtures.pytest_store.write_line(line, **kwargs)[source]

	A write-line helper that should always write a line to the terminal

It knows all of py.tests dirty tricks, including ones that we made, and works around them.

	Parameters:	**kwargs – Normal kwargs for pytest line formatting, stripped from slave messages

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

fixtures.qa_contact module

	
fixtures.qa_contact.dig_code(node)[source]

	

	
fixtures.qa_contact.pytest_runtest_teardown(item, nextitem)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

fixtures.randomness module

	
fixtures.randomness.random_string()[source]

	Generate a random string for use in tests

	
fixtures.randomness.random_uuid_as_string()[source]

	Creates a random uuid and returns is as a string

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

fixtures.rbac module

RBAC Role based parametrization and checking

The purpose of this fixture is to allow tests to be run within the context of multiple different
users, without the hastle or modifying the test. To this end, the RBAC module and fixture do not
require any modifications to the test body.

The RBAC fixture starts by receiving a list of roles and associated errors from the test metadata.
This data is in YAML format and an example can be seen below.

Metadata:
 test_flag: provision
 suite: infra_provisioning
 rbac:
 roles:
 default:
 evmgroup-super_administrator:
 evmgroup-administrator:
 evmgroup-operator: NoSuchElementException
 evmgroup-auditor: NoSuchElementException

Let’s assume also we have a test that looks like the following:

def test_rbac(rbac_role):
 if rbac_role != 'evmgroup-superadministrator' or rbac_role != 'evmgroup-operator':
 1 / 0

This metadata defines the roles to be tested, and associates with them the exceptions that are
expected for that particular test, or blank if no Exception is expected. In this way we can have
5 states of test result.

	Test Passed - This was expected - We do nothing to this and exit early. In the example above
evmgroup-super_administrator fulfills this, as it expects no Exception.

	Test Failed - This was expected - We consume the Exception and change the result of the test
to be a pass. In the example, this is fulfilled by evmgroup-auditor as it was expected to fail
with the ZeroDivisionError.

	Test Failed - This was unexpected - We consume the Exception and raise another informing that
the test should have passed. In the example above, evmgroup-administrator satisfies this
condition as it didn’t expect a failure, but got one.

	Test Failed - This was expected, but the wrong Exception appeared - We consume the Exception
throw another stating that the Exception wasn’t of the expected type. In the example above, the
default user satifies this as it receives the ZeroDivisionError, but expects MonkeyError.

	Test Passed - This was unexpected - We have Exception to consume, but we raise an Exception
of our own as the test should have failed. In the example above, evmgroup-operator satisfies
this as it should have received the ZeroDivisionError, but actually passes with no error.

When a test is configured to run against the RBAC suite, it will first parametrize the test with
the associated roles from the metadata. The test will then be wrapped and before it begins
we login as the new user. This process is also two fold. The pytest_store holds the current
user, and logging in is performed with whatever this user value is set to. So we first replace this
value with our new user. This ensures that if the browser fails during a navigation, we get
the opportunity to log in again with the right user. Once the user is set, we attempt to login.

When the test finishes, we set the user back to default before moving on to handling the outcome
of the test with the wrapped hook handler. This ensures that the next test will have the correct
user at login, even if the test fails horribly, and even if the inspection of the outcome should
fail.

To configure a test to use RBAC is simple. We simply need to add rbac_role to the list of
fixtures and the addition and the ldap configuration fixture also. Below is a complete
example of adding RBAC to a test.

import pytest

def test_rbac(rbac_role):
""" Tests provisioning from a template

Metadata:
 rbac:
 roles:
 default:
 evmgroup-super_administrator:
 evmgroup-administrator:
 evmgroup-operator: NoSuchElementException
 evmgroup-auditor: NoSuchElementException
"""
 if rbac_role != 'evmgroup-superadministrator' or rbac_role != 'evmgroup-operator':
 1 / 0

Exception matching is done with a simple string startswith match.

Currently there is no provision for skipping a role for a certain test, though this is easy to
implement. There is also no provision, for tests that have multiple parameters, to change the
expectation of the test, with relation to a parameter. For example, if there was a parameter
called rhos and one called ec2 we could not change the expected exception to be different
depending on if the test was run against rhos or ec2.

	
fixtures.rbac.pytest_addoption(parser)[source]

	

	
fixtures.rbac.pytest_configure(config)[source]

	Filters the list of providers as part of pytest configuration.

	
fixtures.rbac.pytest_generate_tests(metafunc)[source]

	

	
fixtures.rbac.pytest_pyfunc_call(pyfuncitem)[source]

	Inspects and consumes certain exceptions

The guts of this function are explained above in the module documentation.

	Parameters:	pyfuncitem – A pytest test item.

	
fixtures.rbac.really_logout()[source]

	A convenience function logging out

This function simply ensures that we are logged out and that a new browser is loaded
ready for use.

	
fixtures.rbac.save_screenshot(node, ss, sse)[source]

	

	
fixtures.rbac.save_traceback_file(node, contents)[source]

	A convenience function for artifactor file sending

This function simply takes the nodes id and the contents of the file and processes
them and sends them to artifactor

	Parameters:	
	node – A pytest node

	contents – The contents of the traceback file

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

fixtures.screenshots module

Taking screenshots inside tests!

If you want to take a screenshot inside your test, just do it like this:

def test_my_test(take_screenshot):
 # do something
 take_screenshot("Particular name for the screenshot")
 # do something else

	
fixtures.screenshots.take_screenshot(request)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

fixtures.soft_assert module

Soft assert context manager and assert function

A “soft assert” is an assertion that, if it fails, does not fail the entire test.
Soft assertions can be mixed with normal assertions as needed, and will be automatically
collected/reported after a test runs.

Functionality Overview

	If soft_assert() is used by a test, that test’s call phase is wrapped in
a context manager. Entering that context sets up a thread-local store for failed assertions.

	Inside the test, soft_assert() is a function with access to the thread-local store
of failed assertions, allowing it to store failed assertions during a test run.

	After a test runs, the context manager wrapping the test’s call phase exits, which inspects the
thread-local store of failed assertions, raising a
custom AssertionError if any are found.

No effort is made to clear the thread-local store; rather it’s explicitly overwritten with an empty
list by the context manager. Because the store is a list, failed assertions
will be reported in the order that they failed.

	
exception fixtures.soft_assert.SoftAssertionError(failed_assertions)[source]

	Bases: exceptions.AssertionError [http://docs.python.org/2.7/library/exceptions.html#exceptions.AssertionError]

exception class containing failed assertions

Functions like AssertionError [http://docs.python.org/2.7/library/exceptions.html#exceptions.AssertionError], but
also stores the failed soft exceptions that it represents in order to properly
display them when cast as str

	Parameters:	
	failed_assertions – List of collected assertion failure messages

	where – Where the SoftAssert context was entered, can be omitted

	
failed_assertions

	failed_assertions handed to the initializer,
useful in cases where inspecting the failed soft assertions is desired.

	
fixtures.soft_assert.handle_assert_artifacts(request, fail_message=None)[source]

	

	
fixtures.soft_assert.pytest_runtest_protocol(item, nextitem)[source]

	

	
fixtures.soft_assert.pytest_runtest_teardown(item, nextitem)[source]

	pytest hook to handle soft_assert() fixture for case
when soft_assert is used in another fixture like register_event

	
fixtures.soft_assert.soft_assert(request)[source]

	soft assert fixture, used to defer AssertionError to the end of a test run

Usage:

contents of test_soft_assert.py, for example
def test_uses_soft_assert(soft_assert):
 soft_assert(True)
 soft_assert(False, 'failure message')

 # soft_assert.catch_assert will intercept AssertionError
 # and turn it into a soft assert
 with soft_assert.catch_assert():
 assert None

 # Soft asserts can be cleared at any point within a test:
 soft_assert.clear_asserts()

 # If more in-depth interaction is desired with the caught_asserts, the list of failure
 # messages can be retrieved. This will return the directly mutable caught_asserts list:
 caught_asserts = soft_assert.caught_asserts()

The test above will report two soft assertion failures, with the following message:

SoftAssertionError:
failure message (test_soft_assert.py:3)
soft_assert(None) (test_soft_assert.py:8)

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

fixtures.ssh_client module

	
fixtures.ssh_client.pytest_sessionfinish(session, exitstatus)[source]

	Loop through the appliance stack and close ssh connections

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

fixtures.templateloader module

Preloads all templates on all providers that were selected for testing. Useful for test collect.

	
fixtures.templateloader.pytest_addoption(parser)[source]

	

	
fixtures.templateloader.pytest_configure(config)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

fixtures.terminalreporter module

	
fixtures.terminalreporter.disable()[source]

	

	
fixtures.terminalreporter.enable()[source]

	

	
fixtures.terminalreporter.reporter(config=None)[source]

	Return a py.test terminal reporter that will write to the console no matter what

Only useful when trying to write to the console before or during a
pytest_configure [http://pytest.org/latest/writing_plugins.html#_pytest.hookspec.pytest_configure] hook.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

fixtures.ui_coverage module

UI Coverage for a CFME/MIQ Appliance

Usage

py.test --ui-coverage

General Notes

simplecov can merge test results, but doesn’t appear to like working in a
multi-process environment. Specifically, it clobbers its own results when running
simultaneously in multiple processes. To solve this, each process records its
output to its own directory (configured in coverage_hook). All of the
individual process’ results are then manually merged (coverage_merger) into one
big json result, and handed back to simplecov which generates the compiled html
(for humans) and rcov (for jenkins) reports.

thing_toucher makes a best-effort pass at requiring all of the ruby files in
the rails root, as well as any external MIQ libs/utils outside of the rails
root (../lib and ../lib/util). This makes sure files that are never
required still show up in the coverage report.

Workflow Overview

Pre-testing (pytest_configure hook):

	Add Gemfile.dev.rb to the rails root, then run bundler to install simplecov
and its dependencies.

	Install and require the coverage hook (copy coverage_hook to config/, add
require line to the end of config/boot.rb)

	Restart EVM (Rudely) to start running coverage on the appliance processes:
killall -9 ruby; sysemctl start evmserverd

	TOUCH ALL THE THINGS (run thing_toucher.rb with the rails runner).
Fork this process off and come back to it later

Post-testing (pytest_unconfigure hook):

	Poll thing_toucher to make sure it completed; block if needed.

	Stop EVM, but nicely this time so the coverage atexit hooks run:
systemctl stop evmserverd

	Run coverage_merger.rb with the rails runner, which compiles all the individual process
reports and runs coverage again, additionally creating an rcov report

	Pull the coverage dir back for parsing and archiving

	For fun: Read the results from coverage/.last_run.json and print it to the test terminal/log

Post-testing (e.g. ci environment):
1. Use the generated rcov report with the ruby stats plugin to get a coverage graph
2. Zip up and archive the entire coverage dir for review

	
class fixtures.ui_coverage.CoverageManager(ipappliance)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
collect()[source]

	

	
collection_appliance

	

	
install()[source]

	

	
merge()[source]

	

	
print_message(message)[source]

	

	
class fixtures.ui_coverage.UiCoveragePlugin[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
pytest_collection_finish()[source]

	

	
pytest_configure(config)[source]

	

	
pytest_sessionfinish(exitstatus)[source]

	

	
pytest_sessionstart(session)[source]

	

	
fixtures.ui_coverage.appliance_coverage_root = local('/var/www/miq/vmdb/coverage')

	coverage root, should match what’s in the coverage hook and merger scripts

	
fixtures.ui_coverage.clean_coverage_dir()[source]

	

	
fixtures.ui_coverage.manager()[source]

	

	
fixtures.ui_coverage.pytest_addoption(parser)[source]

	

	
fixtures.ui_coverage.pytest_cmdline_main(config)[source]

	

	
fixtures.ui_coverage.rails_root = local('/var/www/miq/vmdb')

	Corresponds to Rails.root in the rails env

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

fixtures.version_file module

	
fixtures.version_file.pytest_sessionstart()[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

fixtures.version_info module

	
fixtures.version_info.find_nth_pos(string, substring, n)[source]

	helper-method used in getting version info

	
fixtures.version_info.generate_gems_file(ssh_client, directory)[source]

	

	
fixtures.version_info.generate_processes_file(ssh_client, directory)[source]

	

	
fixtures.version_info.generate_rpms_file(ssh_client, directory)[source]

	

	
fixtures.version_info.generate_system_file(ssh_client, directory)[source]

	

	
fixtures.version_info.generate_version_files()[source]

	

	
fixtures.version_info.get_gem_versions(ssh_client)[source]

	get version information for gems

	
fixtures.version_info.get_process_versions(ssh_client)[source]

	get version information for processes

	
fixtures.version_info.get_rpm_versions(ssh_client)[source]

	get version information for rpms

	
fixtures.version_info.get_system_versions(ssh_client)[source]

	get version information for the system

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

fixtures.video module

Provides video options

	Yaml example:

	logging:
 video:
 enabled: True
 dir: video
 display: ":99"
 quality: 10

	
fixtures.video.get_path_and_file_name(node)[source]

	Extract filename and location from the node.

	Parameters:	node – py.test collection node to examine.

Returns: 2-tuple (path, filename)

	
fixtures.video.pytest_runtest_setup(item)[source]

	

	
fixtures.video.pytest_runtest_teardown(item, nextitem)[source]

	

	
fixtures.video.pytest_unconfigure(config)[source]

	

	
fixtures.video.stop_recording()[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

fixtures.virtual_machine module

Fixtures ensuring that a VM/instance is in the specified state for the test

	
fixtures.virtual_machine.verify_vm_paused(provider, vm_name)[source]

	Ensures that the VM/instance is paused for the test

Uses calls to the actual provider api; it will pause the vm if necessary.

	Parameters:	
	provider.mgmt – Provider class object

	vm_name – Name of the VM/instance

	
fixtures.virtual_machine.verify_vm_running(provider, vm_name)[source]

	Ensures that the VM/instance is in running state for the test

Uses calls to the actual provider api; it will start the vm if necessary.

	Parameters:	
	provider – Provider class object

	vm_name – Name of the VM/instance

	
fixtures.virtual_machine.verify_vm_stopped(provider, vm_name)[source]

	Ensures that the VM/instance is stopped for the test

Uses calls to the actual provider api; it will stop the vm if necessary.

	Parameters:	
	provider – Provider class object

	vm_name – Name of the VM/instance

	
fixtures.virtual_machine.verify_vm_suspended(provider, vm_name)[source]

	Ensures that the VM/instance is suspended for the test

Uses calls to the actual provider api; it will suspend the vm if necessary.

	Parameters:	
	provider.mgmt – Provider class object

	vm_name – Name of the VM/instance

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

fixtures.widgets module

	
fixtures.widgets.widgets_generated(setup_only_one_provider)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	fixtures package

fixtures.xunit_tools module

	
fixtures.xunit_tools.gen_duplicates_log(items)[source]

	Generates log file containing non-unique test cases names.

	
fixtures.xunit_tools.get_polarion_name(item)[source]

	Gets Polarion test case name out of the Node ID.

	
fixtures.xunit_tools.get_testcase_data(tests, test_names, item, legacy=False)[source]

	Gets data for single testcase entry.

	
fixtures.xunit_tools.get_testresult_data(tests, test_names, item, legacy=False)[source]

	Gets data for single test result entry.

	
fixtures.xunit_tools.pytest_addoption(parser)[source]

	Adds command line options.

	
fixtures.xunit_tools.pytest_collection_modifyitems(config, items)[source]

	Generates the XML files using collected items.

	
fixtures.xunit_tools.testcase_record(test_name, description=None, parameters=None, custom_fields=None, linked_items=None)[source]

	Generates single testcase entry.

	
fixtures.xunit_tools.testcases_gen(tests, filename)[source]

	Generates content of the XML file used for test cases import.

	
fixtures.xunit_tools.testresult_record(test_name, parameters=None, result=None)[source]

	Generates single test result entry.

	
fixtures.xunit_tools.testrun_gen(tests, filename, config, collectonly=True)[source]

	Generates content of the XML file used for test run import.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

markers package

Subpackages

	markers.env_markers package
	Submodules
	markers.env_markers.provider module

	Module contents

Submodules

	markers.composite module

	markers.crud module

	markers.env module

	markers.fixtureconf module

	markers.manual module

	markers.meta module

	markers.polarion module

	markers.requires module

	markers.sauce module

	markers.skipper module

	markers.smoke module

	markers.stream_excluder module

	markers.uncollect module
	uncollect

	uncollectif

	markers.uses module

Module contents

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	markers package

markers.env_markers package

Submodules

	markers.env_markers.provider module

Module contents

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	markers package

 	markers.env_markers package

markers.env_markers.provider module

	
class markers.env_markers.provider.ProviderEnvironmentMarker[source]

	Bases: markers.env.EnvironmentMarker

	
NAME = 'provider'

	

	
process_env_mark(metafunc)[source]

	

	
markers.env_markers.provider.parametrize(metafunc, argnames, argvalues, *args, **kwargs)[source]

	parametrize wrapper that calls _param_check(), and only parametrizes when needed

This can be used in any place where conditional parametrization is used.

	
markers.env_markers.provider.providers(metafunc, filters=None, selector='all')[source]

	Gets providers based on given (+ global) filters

Note

Using the default ‘function’ scope, each test will be run individually for each provider
before moving on to the next test. To group all tests related to single provider together,
parametrize tests in the ‘module’ scope.

Note

testgen for providers now requires the usage of test_flags for collection to work.
Please visit http://cfme-tests.readthedocs.org/guides/documenting.html#documenting-tests
for more details.

	
markers.env_markers.provider.providers_by_class(metafunc, classes, required_fields=None, selector='all')[source]

	Gets providers by their class

	Parameters:	
	metafunc – Passed in by pytest

	classes – List of classes to fetch

	required_fields – See cfme.utils.provider.ProviderFilter

Usage:

In the function itself
def pytest_generate_tests(metafunc):
 argnames, argvalues, idlist = testgen.providers_by_class(
 [GCEProvider, AzureProvider], required_fields=['provisioning']
)
metafunc.parametrize(argnames, argvalues, ids=idlist, scope='module')

Using the parametrize wrapper
pytest_generate_tests = testgen.parametrize([GCEProvider], scope='module')

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	markers package

markers.composite module

	
markers.composite.pytest_addoption(parser)[source]

	Adds options for the composite uncollection system

	
markers.composite.pytest_collection_modifyitems(session, config, items)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	markers package

markers.crud module

crud: Marker for marking the test as a CRUD test (crud)

Useful for eg. running only crud tests.
Tests will be marked automatically if:

	their name starts with crud_

	their name ends with _crud

	their name contains _crud_

	
markers.crud.pytest_configure(config)[source]

	

	
markers.crud.pytest_itemcollected(item)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	markers package

markers.env module

This file provides multiple markers for environmental parameters

A test can be marked with

@pytest.mark.browser(ALL)
@pytest.mark.browser(NONE)
@pytest.mark.browser(‘firefox’)

At the moment, lists of parameters are not supported

	
class markers.env.BrowserEnvironmentMarker[source]

	Bases: markers.env.EnvironmentMarker

Browser Envrionment Marker

	
CHOICES = ['firefox', 'chrome', 'ie']

	

	
NAME = 'browser'

	

	
class markers.env.EnvironmentMarker[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

Base Environment Marker

	
PARAM_BY_DEFAULT = False

	

	
process_env_mark(metafunc)[source]

	

	
class markers.env.TCPEnvironmentMarker[source]

	Bases: markers.env.EnvironmentMarker

TCP Environment Marker

	
CHOICES = ['ipv4', 'ipv6']

	

	
NAME = 'tcpstack'

	

	
markers.env.pytest_generate_tests(metafunc)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	markers package

markers.fixtureconf module

fixtureconf: Marker for passing args and kwargs to test fixtures

Positional and keyword arguments to this marker will be stored on test items
in the _fixtureconf attribute (dict). kwargs will be stored as-is, the args
tuple will be packed into the dict under the ‘args’ key.

Use the “fixtureconf” fixture in tests to easily access the fixtureconf dict

	
markers.fixtureconf.pytest_configure(config)[source]

	

	
markers.fixtureconf.pytest_runtest_setup(item)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	markers package

markers.manual module

manual: Marker for marking tests asmanual tests.

	
markers.manual.pytest_addoption(parser)[source]

	Adds options for the composite uncollection system

	
markers.manual.pytest_collection_modifyitems(session, config, items)[source]

	

	
markers.manual.pytest_configure(config)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	markers package

markers.meta module

meta(**metadata): Marker for metadata addition.

To add metadata to a test simply pass the kwargs as plugins wish.

You can write your own plugins. They generally live in metaplugins/ directory but you can
define them pretty much everywhere py.test loads modules. Plugin has a name and a set
of callbacks that are called when certain combination of keys is present in the metadata.

To define plugin, do like this:

@plugin("plugin_name")
def someaction(plugin_name):
 print(plugin_name) # Will contain value of `plugin_name` key of metadict

This is the simplest usage, where it is supposed that the plugin checks only one key with the
same name s the plugin’s name. I won’t use this one in the latter examples, I will use the
more verbose one.

@plugin("plugin_name", keys=["plugin_name", "another_key"])
def someaction(plugin_name, another_key):
 print(plugin_name) # Will contain value of `plugin_name` key of metadict
 print(another_key) # Similarly this one

This one reacts when the two keys are present. You can make even more complex setups:

@plugin("plugin_name", keys=["plugin_name"])
@plugin("plugin_name", ["plugin_name", "another_key"]) # You don't have to write keys=
def someaction(plugin_name, another_key=None):
 print(plugin_name) # Will contain value of `plugin_name` key of metadict
 print(another_key) # Similarly this one if specified, otherwise None

This created a nonrequired parameter for the action.

You can specify as many actions as you wish per plugin. The only thing that limits you is the
correct action choice. First, all the actions are filtered by present keys in metadata. Then
after this selection, only the action with the most matched keywords is called. Bear this
in your mind. If this is not enough in the future, it can be extended if you wish.

It has a command-line option that allows you to disable certain plugins. Just specify
--disablemetaplugins a,b,c where a, b and c are the plugins that should be disabled

	
class markers.meta.Plugin(name, metas, function, kwargs)

	Bases: tuple

	
__getnewargs__()

	Return self as a plain tuple. Used by copy and pickle.

	
__getstate__()

	Exclude the OrderedDict from pickling

	
__repr__()

	Return a nicely formatted representation string

	
function

	Alias for field number 2

	
kwargs

	Alias for field number 3

	
metas

	Alias for field number 1

	
name

	Alias for field number 0

	
class markers.meta.PluginContainer[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
AFTER_RUN = 'after_run'

	

	
BEFORE_RUN = 'before_run'

	

	
DEFAULT = 'setup'

	

	
SETUP = 'setup'

	

	
TEARDOWN = 'teardown'

	

	
markers.meta.meta(request)[source]

	

	
markers.meta.pytest_addoption(parser)[source]

	

	
markers.meta.pytest_collection_modifyitems(session, config, items)[source]

	

	
markers.meta.pytest_configure(config)[source]

	

	
markers.meta.pytest_pycollect_makeitem(collector, name, obj)[source]

	

	
markers.meta.pytest_runtest_call(item)[source]

	

	
markers.meta.pytest_runtest_setup(item)[source]

	

	
markers.meta.pytest_runtest_teardown(item)[source]

	

	
markers.meta.run_plugins(item, when)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	markers package

markers.polarion module

polarion(*tcid): Marker for marking tests as automation for polarion test cases.

	
markers.polarion.extract_polarion_ids(item)[source]

	Extracts Polarion TC IDs from the test item. Returns None if no marker present.

	
markers.polarion.pytest_configure(config)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	markers package

markers.requires module

requires_test(test_name_or_nodeid): Mark a test as requiring another test

If another test is required to have run and passed before a suite of tests has
any hope of succeeding, such as a smoke test, apply this mark to those tests.

It takes a test name as the only positional argument. In the event that the
test name is ambiguous, a full py.test nodeid can be used. A test’s nodeid can
be found by inspecting the request.node.nodeid attribute inside the required
test item.

	
markers.requires.pytest_configure(config)[source]

	

	
markers.requires.pytest_runtest_setup(item)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	markers package

markers.sauce module

sauce: Mark a test to run on sauce

Mark a single test to run on sauce.

	
markers.sauce.pytest_addoption(parser)[source]

	

	
markers.sauce.pytest_configure(config)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	markers package

markers.skipper module

skipper: Autmatically skip tests with certain marks as defined in this module

This doesn’t provide any special markers, but it does add behavor to marks defined in
skip_marks.

	
markers.skipper.pytest_addoption(parser)[source]

	

	
markers.skipper.pytest_collection_modifyitems(items)[source]

	

	
markers.skipper.pytest_configure(config)[source]

	

	
markers.skipper.skip_marks = [('long_running', '--long-running'), ('perf', '--perf')]

	List of (mark, commandline flag) tuples. When the given mark is used on a test, it will
be skipped unless the commandline flag is used. If the mark is already found in py.test’s
parsed mark expression, no changes will be made for that mark.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	markers package

markers.smoke module

smoke: Mark a test as a smoke test to be run as early as possible

Mark a single test as a smoke test, moving it to the beginning of a test run.

The –halt-on-smoke-test-failure command-line argument will halt after running the smoke tests
if any smoke tests fail.

This mark must be used with caution, as marked tests must be able to run out of order,
and in isolation.

Furthermore, smoke tests are an excellent target for the requires_test mark
since they’re run first.

	
class markers.smoke.SmokeTests(reporter)[source]

	Bases: object [http://docs.python.org/2.7/library/functions.html#object]

	
complete = False

	

	
failed_tests = 0

	

	
halt_on_fail = False

	

	
pytest_runtest_logreport(report)[source]

	

	
pytest_runtest_teardown(item, nextitem)[source]

	

	
reported = False

	

	
run_tests = 0

	

	
start_time = 0.0

	

	
markers.smoke.pytest_addoption(parser)[source]

	

	
markers.smoke.pytest_collection_modifyitems(session, config, items)[source]

	

	
markers.smoke.pytest_configure(config)[source]

	

	
markers.smoke.reporter(config)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	markers package

markers.stream_excluder module

ignore_stream(*streams): Marker for uncollecting the tests based on appliance stream.

Streams are the first two fields from version of the appliance (5.0, 5.1, ...), the nightly upstream
is represented as upstream. If you want to ensure, that the test shall not be collected because it
is not supposed to run on 5.0 and 5.1 streams, just put those streams in the parameters and that
is enough.

It also provides a facility to check the appliance’s version/stream for smoke testing.

	
markers.stream_excluder.get_streams_id()[source]

	

	
markers.stream_excluder.pytest_addoption(parser)[source]

	

	
markers.stream_excluder.pytest_collection_modifyitems(session, config, items)[source]

	

	
markers.stream_excluder.pytest_configure(config)[source]

	

	
markers.stream_excluder.pytest_itemcollected(item)[source]

	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	markers package

markers.uncollect module

uncollect

Used internally to mark a test to be “uncollected”

This mark should be used at any point before or during test collection to
dynamically flag a test to be removed from the list of collected tests.

py.test adds marks to test items a few different ways. When marking in a py.test
hook that takes an Item or Node [http://pytest.org/latest/writing_plugins.html#_pytest.main.Node] (Item
is a subclass of Node), use item.add_marker('uncollect') or
item.add_marker(pytest.mark.uncollect)

When dealing with the test function directly, using the mark decorator is preferred.
In this case, either decorate a test function directly (and have a good argument ready
for adding a test that won’t run...), e.g. @pytest.mark.uncollect before the test
def, or instantiate the mark decorator and use it to wrap a test function, e.g.
pytest.mark.uncollect()(test_function)

uncollectif

The uncollectif marker is very special and can cause harm to innocent kittens if used
incorrectly. The uncollectif marker enables the ability to uncollect a specific test
if a certain condition is evaluated to True. The following is an example:

@pytest.mark.uncollectif(lambda: version.current_version() < '5.3')

In this case, when pytest runs the modify items hook, it will evaluate the lambda function
and if it results in True, then the test will be uncollected. Fixtures that are
generated by testgen, such as provider_key, provider_data etc, are also usable inside
the collectif marker, assuming the fixture name is also a prerequisite for the test
itself. For example:: python

@pytest.mark.uncollectif(lambda provider_type: provider_type != 'virtualcenter')
def test_delete_all_snapshots(test_vm, provider_key, provider_type):
 pass

Here, the fixture provider_type is special as it comes from testgen and is passed to the
lambda for comparison.

Note

Be aware, that this cannot be used for any other fixture types. Doing so will break
pytest and may invalidate your puppies.

	
markers.uncollect.get_uncollect_function(marker_or_markdecorator)[source]

	

	
markers.uncollect.pytest_collection_modifyitems(session, config, items)[source]

	

	
markers.uncollect.uncollectif(item)[source]

	Evaluates if an item should be uncollected

Tests markers against a supplied lambda from the marker object to determine
if the item should be uncollected or not.

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	cfme_tests documentation

 	Modules

 	markers package

markers.uses module

uses_*: Provides a set of fixtures used to mark tests for filtering on the command-line.

Tests using these fixtures directly or indirectly can be filtered using py.test’s
-k filter argument. For example, run tests that use the ssh client:

py.test -k uses_ssh

Additionally, tests using one of the fixtures listed in appliance_marks will be marked
with is_appliance, for easily filtering out appliance tests, e.g:

py.test -k 'not is_appliance'

All fixtures created by this module will have the uses_ prefix.

Note

is_appliance is a mark that will be dynamically set based on fixtures used,
but is not a fixture itself.

	
markers.uses.appliance_marks = set(['uses_ssh', 'uses_db'])

	List of fixtures that, when used, indicate an appliance is being tested
by applying the is_appliance mark.

	
markers.uses.pytest_itemcollected(item)[source]

	pytest hook that actually does the marking

See: http://pytest.org/latest/plugins.html#_pytest.hookspec.pytest_collection_modifyitems

	
markers.uses.uses_blockers()

	Fixture which marks a test with the uses_blockers mark

	
markers.uses.uses_cloud_providers(uses_providers)[source]

	Fixture which marks a test with the uses_cloud_providers and uses_providers marks

	
markers.uses.uses_db()

	Fixture which marks a test with the uses_db mark

	
markers.uses.uses_event_listener()

	Fixture which marks a test with the uses_event_listener mark

	
markers.uses.uses_infra_providers(uses_providers)[source]

	Fixture which marks a test with the uses_infra_providers and uses_providers marks

	
markers.uses.uses_providers()

	Fixture which marks a test with the uses_providers mark

	
markers.uses.uses_pxe()

	Fixture which marks a test with the uses_pxe mark

	
markers.uses.uses_ssh()

	Fixture which marks a test with the uses_ssh mark

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	cfme_tests documentation

 Python Module Index

 c |
 f |
 m

 			

 		
 c	

 	[image: -]
 	
 cfme	

 	
 	
 cfme.ansible	

 	
 	
 cfme.ansible.credentials	

 	
 	
 cfme.ansible.playbooks	

 	
 	
 cfme.ansible.repositories	

 	
 	
 cfme.automate	

 	
 	
 cfme.automate.buttons	

 	
 	
 cfme.automate.dialog_box	

 	
 	
 cfme.automate.dialog_element	

 	
 	
 cfme.automate.dialog_tab	

 	
 	
 cfme.automate.explorer	

 	
 	
 cfme.automate.explorer.common	

 	
 	
 cfme.automate.explorer.domain	

 	
 	
 cfme.automate.explorer.instance	

 	
 	
 cfme.automate.explorer.klass	

 	
 	
 cfme.automate.explorer.method	

 	
 	
 cfme.automate.explorer.namespace	

 	
 	
 cfme.automate.import_export	

 	
 	
 cfme.automate.provisioning_dialogs	

 	
 	
 cfme.automate.service_dialogs	

 	
 	
 cfme.automate.simulation	

 	
 	
 cfme.base	

 	
 	
 cfme.base.credential	

 	
 	
 cfme.base.login	

 	
 	
 cfme.base.ssui	

 	
 	
 cfme.base.ui	

 	
 	
 cfme.cloud	

 	
 	
 cfme.cloud.availability_zone	

 	
 	
 cfme.cloud.flavor	

 	
 	
 cfme.cloud.instance	

 	
 	
 cfme.cloud.instance.azure	

 	
 	
 cfme.cloud.instance.ec2	

 	
 	
 cfme.cloud.instance.gce	

 	
 	
 cfme.cloud.instance.image	

 	
 	
 cfme.cloud.instance.openstack	

 	
 	
 cfme.cloud.keypairs	

 	
 	
 cfme.cloud.provider	

 	
 	
 cfme.cloud.provider.azure	

 	
 	
 cfme.cloud.provider.ec2	

 	
 	
 cfme.cloud.provider.gce	

 	
 	
 cfme.cloud.provider.openstack	

 	
 	
 cfme.cloud.security_group	

 	
 	
 cfme.cloud.stack	

 	
 	
 cfme.cloud.tenant	

 	
 	
 cfme.common	

 	
 	
 cfme.common.host_views	

 	
 	
 cfme.common.provider	

 	
 	
 cfme.common.provider_views	

 	
 	
 cfme.common.vm	

 	
 	
 cfme.common.vm_console	

 	
 	
 cfme.common.vm_views	

 	
 	
 cfme.configure	

 	
 	
 cfme.configure.about	

 	
 	
 cfme.configure.access_control	

 	
 	
 cfme.configure.configuration	

 	
 	
 cfme.configure.configuration.analysis_profile	

 	
 	
 cfme.configure.configuration.region_settings	

 	
 	
 cfme.configure.documentation	

 	
 	
 cfme.configure.settings	

 	
 	
 cfme.configure.tasks	

 	
 	
 cfme.containers	

 	
 	
 cfme.containers.container	

 	
 	
 cfme.containers.image	

 	
 	
 cfme.containers.image_registry	

 	
 	
 cfme.containers.node	

 	
 	
 cfme.containers.overview	

 	
 	
 cfme.containers.pod	

 	
 	
 cfme.containers.project	

 	
 	
 cfme.containers.provider	

 	
 	
 cfme.containers.provider.kubernetes	

 	
 	
 cfme.containers.provider.openshift	

 	
 	
 cfme.containers.replicator	

 	
 	
 cfme.containers.route	

 	
 	
 cfme.containers.service	

 	
 	
 cfme.containers.template	

 	
 	
 cfme.containers.topology	

 	
 	
 cfme.containers.volume	

 	
 	
 cfme.control	

 	
 	
 cfme.control.explorer	

 	
 	
 cfme.control.explorer.actions	

 	
 	
 cfme.control.explorer.alert_profiles	

 	
 	
 cfme.control.explorer.alerts	

 	
 	
 cfme.control.explorer.conditions	

 	
 	
 cfme.control.explorer.policies	

 	
 	
 cfme.control.explorer.policy_profiles	

 	
 	
 cfme.control.import_export	

 	
 	
 cfme.control.log	

 	
 	
 cfme.control.simulation	

 	
 	
 cfme.control.snmp_form	

 	
 	
 cfme.dashboard	

 	
 	
 cfme.exceptions	

 	
 	
 cfme.fixtures	

 	
 	
 cfme.fixtures.base	

 	
 	
 cfme.fixtures.cli	

 	
 	
 cfme.fixtures.configure_auth_mode	

 	
 	
 cfme.fixtures.model_collections	

 	
 	
 cfme.fixtures.pytest_selenium	

 	
 	
 cfme.fixtures.rdb	

 	
 	
 cfme.fixtures.service_fixtures	

 	
 	
 cfme.fixtures.smtp	

 	
 	
 cfme.fixtures.tag	

 	
 	
 cfme.fixtures.vm_name	

 	
 	
 cfme.fixtures.vporizer	

 	
 	
 cfme.infrastructure	

 	
 	
 cfme.infrastructure.cluster	

 	
 	
 cfme.infrastructure.config_management	

 	
 	
 cfme.infrastructure.datastore	

 	
 	
 cfme.infrastructure.deployment_roles	

 	
 	
 cfme.infrastructure.host	

 	
 	
 cfme.infrastructure.networking	

 	
 	
 cfme.infrastructure.openstack_node	

 	
 	
 cfme.infrastructure.provider	

 	
 	
 cfme.infrastructure.provider.openstack_infra	

 	
 	
 cfme.infrastructure.provider.rhevm	

 	
 	
 cfme.infrastructure.provider.scvmm	

 	
 	
 cfme.infrastructure.provider.virtualcenter	

 	
 	
 cfme.infrastructure.pxe	

 	
 	
 cfme.infrastructure.resource_pool	

 	
 	
 cfme.infrastructure.virtual_machines	

 	
 	
 cfme.intelligence	

 	
 	
 cfme.intelligence.chargeback	

 	
 	
 cfme.intelligence.chargeback.assignments	

 	
 	
 cfme.intelligence.chargeback.rates	

 	
 	
 cfme.intelligence.reports	

 	
 	
 cfme.intelligence.reports.dashboards	

 	
 	
 cfme.intelligence.reports.import_export	

 	
 	
 cfme.intelligence.reports.menus	

 	
 	
 cfme.intelligence.reports.reports	

 	
 	
 cfme.intelligence.reports.saved	

 	
 	
 cfme.intelligence.reports.schedules	

 	
 	
 cfme.intelligence.reports.widgets	

 	
 	
 cfme.intelligence.reports.widgets.chart_widgets	

 	
 	
 cfme.intelligence.reports.widgets.menu_widgets	

 	
 	
 cfme.intelligence.reports.widgets.report_widgets	

 	
 	
 cfme.intelligence.reports.widgets.rss_widgets	

 	
 	
 cfme.intelligence.rss	

 	
 	
 cfme.js	

 	
 	
 cfme.metaplugins	

 	
 	
 cfme.metaplugins.blockers	

 	
 	
 cfme.metaplugins.server_roles	

 	
 	
 cfme.metaplugins.skip	

 	
 	
 cfme.middleware	

 	
 	
 cfme.middleware.datasource	

 	
 	
 cfme.middleware.deployment	

 	
 	
 cfme.middleware.domain	

 	
 	
 cfme.middleware.messaging	

 	
 	
 cfme.middleware.provider	

 	
 	
 cfme.middleware.provider.hawkular	

 	
 	
 cfme.middleware.provider.middleware_views	

 	
 	
 cfme.middleware.server	

 	
 	
 cfme.middleware.server_group	

 	
 	
 cfme.middleware.topology	

 	
 	
 cfme.networks	

 	
 	
 cfme.networks.balancer	

 	
 	
 cfme.networks.cloud_network	

 	
 	
 cfme.networks.network_port	

 	
 	
 cfme.networks.network_router	

 	
 	
 cfme.networks.provider	

 	
 	
 cfme.networks.security_group	

 	
 	
 cfme.networks.subnet	

 	
 	
 cfme.networks.views	

 	
 	
 cfme.optimize	

 	
 	
 cfme.optimize.bottlenecks	

 	
 	
 cfme.optimize.utilization	

 	
 	
 cfme.provisioning	

 	
 	
 cfme.rest	

 	
 	
 cfme.rest.gen_data	

 	
 	
 cfme.roles	

 	
 	
 cfme.scripting	

 	
 	
 cfme.scripting.appliance	

 	
 	
 cfme.scripting.conf	

 	
 	
 cfme.scripting.disable_bytecode	

 	
 	
 cfme.scripting.ipyshell	

 	
 	
 cfme.scripting.miq	

 	
 	
 cfme.scripting.quickstart	

 	
 	
 cfme.scripting.runtest	

 	
 	
 cfme.scripting.setup_ansible	

 	
 	
 cfme.scripting.setup_env	

 	
 	
 cfme.scripting.sprout	

 	
 	
 cfme.scripting.tests	

 	
 	
 cfme.scripting.tests.test_quickstart	

 	
 	
 cfme.services	

 	
 	
 cfme.services.catalogs	

 	
 	
 cfme.services.catalogs.ansible_catalog_item	

 	
 	
 cfme.services.catalogs.catalog	

 	
 	
 cfme.services.catalogs.catalog_item	

 	
 	
 cfme.services.catalogs.orchestration_template	

 	
 	
 cfme.services.catalogs.service_catalogs	

 	
 	
 cfme.services.dashboard	

 	
 	
 cfme.services.dashboard.ssui	

 	
 	
 cfme.services.myservice	

 	
 	
 cfme.services.myservice.ssui	

 	
 	
 cfme.services.myservice.ui	

 	
 	
 cfme.services.requests	

 	
 	
 cfme.services.workloads	

 	
 	
 cfme.storage	

 	
 	
 cfme.storage.object_store	

 	
 	
 cfme.storage.volume	

 	
 	
 cfme.test_framework	

 	
 	
 cfme.test_framework.appliance_police	

 	
 	
 cfme.test_framework.config	

 	
 	
 cfme.test_framework.pytest_plugin	

 	
 	
 cfme.test_framework.sprout	

 	
 	
 cfme.test_framework.sprout.client	

 	
 	
 cfme.test_framework.sprout.plugin	

 	
 	
 cfme.test_requirements	

 	
 	
 cfme.utils	

 	
 	
 cfme.utils.apidoc	

 	
 	
 cfme.utils.appliance	

 	
 	
 cfme.utils.appliance.db	

 	
 	
 cfme.utils.appliance.implementations	

 	
 	
 cfme.utils.appliance.implementations.ssui	

 	
 	
 cfme.utils.appliance.implementations.ui	

 	
 	
 cfme.utils.appliance.plugin	

 	
 	
 cfme.utils.appliance.services	

 	
 	
 cfme.utils.blockers	

 	
 	
 cfme.utils.browser	

 	
 	
 cfme.utils.bz	

 	
 	
 cfme.utils.category	

 	
 	
 cfme.utils.conf	

 	
 	
 cfme.utils.datafile	

 	
 	
 cfme.utils.db	

 	
 	
 cfme.utils.deprecation	

 	
 	
 cfme.utils.error	

 	
 	
 cfme.utils.events	

 	
 	
 cfme.utils.ext_auth	

 	
 	
 cfme.utils.ftp	

 	
 	
 cfme.utils.generators	

 	
 	
 cfme.utils.grafana	

 	
 	
 cfme.utils.hosts	

 	
 	
 cfme.utils.ipmi	

 	
 	
 cfme.utils.log	

 	
 	
 cfme.utils.log_validator	

 	
 	
 cfme.utils.mgmt_system	

 	
 	
 cfme.utils.net	

 	
 	
 cfme.utils.ocp_cli	

 	
 	
 cfme.utils.path	

 	
 	
 cfme.utils.perf	

 	
 	
 cfme.utils.perf_message_stats	

 	
 	
 cfme.utils.ports	

 	
 	
 cfme.utils.pretty	

 	
 	
 cfme.utils.providers	

 	
 	
 cfme.utils.pytest_shortcuts	

 	
 	
 cfme.utils.quote	

 	
 	
 cfme.utils.rest	

 	
 	
 cfme.utils.smem_memory_monitor	

 	
 	
 cfme.utils.smtp_collector_client	

 	
 	
 cfme.utils.soft_get	

 	
 	
 cfme.utils.ssh	

 	
 	
 cfme.utils.stats	

 	
 	
 cfme.utils.testgen	

 	
 	
 cfme.utils.timeutil	

 	
 	
 cfme.utils.tracer	

 	
 	
 cfme.utils.trackerbot	

 	
 	
 cfme.utils.units	

 	
 	
 cfme.utils.update	

 	
 	
 cfme.utils.varmeth	

 	
 	
 cfme.utils.version	

 	
 	
 cfme.utils.video	

 	
 	
 cfme.utils.virtual_machines	

 	
 	
 cfme.utils.wait	

 	
 	
 cfme.utils.workloads	

 	
 	
 cfme.web_ui	

 	
 	
 cfme.web_ui.accordion	

 	
 	
 cfme.web_ui.cfme_exception	

 	
 	
 cfme.web_ui.expression_editor	

 	
 	
 cfme.web_ui.expression_editor_widgetastic	

 	
 	
 cfme.web_ui.flash	

 	
 	
 cfme.web_ui.form_buttons	

 	
 	
 cfme.web_ui.history	

 	
 	
 cfme.web_ui.jstimelines	

 	
 	
 cfme.web_ui.listaccordion	

 	
 	
 cfme.web_ui.mixins	

 	
 	
 cfme.web_ui.multibox	

 	
 	
 cfme.web_ui.paginator	

 	
 	
 cfme.web_ui.search	

 	
 	
 cfme.web_ui.splitter	

 	
 	
 cfme.web_ui.tabstrip	

 	
 	
 cfme.web_ui.timelines	

 	
 	
 cfme.web_ui.toolbar	

 	
 	
 cfme.web_ui.topology	

 	
 	
 cfme.web_ui.utilization	

 			

 		
 f	

 	[image: -]
 	
 fixtures	

 	
 	
 fixtures.appliance	

 	
 	
 fixtures.appliance_update	

 	
 	
 fixtures.artifactor_plugin	

 	
 	
 fixtures.blockers	

 	
 	
 fixtures.browser	

 	
 	
 fixtures.cfme_data	

 	
 	
 fixtures.datafile	

 	
 	
 fixtures.dev_branch	

 	
 	
 fixtures.disable_forgery_protection	

 	
 	
 fixtures.events	

 	
 	
 fixtures.fixtureconf	

 	
 	
 fixtures.log	

 	
 	
 fixtures.maximized	

 	
 	
 fixtures.merkyl	

 	
 	
 fixtures.middleware_log	

 	
 	
 fixtures.nelson	

 	
 	
 fixtures.node_annotate	

 	
 	
 fixtures.page_screenshots	

 	
 	
 fixtures.parallelizer	

 	
 	
 fixtures.parallelizer.hooks	

 	
 	
 fixtures.parallelizer.parallelizer_tester	

 	
 	
 fixtures.parallelizer.remote	

 	
 	
 fixtures.perf	

 	
 	
 fixtures.portset	

 	
 	
 fixtures.prov_filter	

 	
 	
 fixtures.provider	

 	
 	
 fixtures.pytest_store	

 	
 	
 fixtures.qa_contact	

 	
 	
 fixtures.randomness	

 	
 	
 fixtures.rbac	

 	
 	
 fixtures.screenshots	

 	
 	
 fixtures.soft_assert	

 	
 	
 fixtures.ssh_client	

 	
 	
 fixtures.templateloader	

 	
 	
 fixtures.terminalreporter	

 	
 	
 fixtures.ui_coverage	

 	
 	
 fixtures.version_file	

 	
 	
 fixtures.version_info	

 	
 	
 fixtures.video	

 	
 	
 fixtures.virtual_machine	

 	
 	
 fixtures.widgets	

 	
 	
 fixtures.xunit_tools	

 			

 		
 m	

 	[image: -]
 	
 markers	

 	
 	
 markers.composite	

 	
 	
 markers.crud	

 	
 	
 markers.env	

 	
 	
 markers.env_markers	

 	
 	
 markers.env_markers.provider	

 	
 	
 markers.fixtureconf	

 	
 	
 markers.manual	

 	
 	
 markers.meta	

 	
 	
 markers.polarion	

 	
 	
 markers.requires	

 	
 	
 markers.sauce	

 	
 	
 markers.skipper	

 	
 	
 markers.smoke	

 	
 	
 markers.stream_excluder	

 	
 	
 markers.uncollect	

 	
 	
 markers.uses	

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	cfme_tests documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

_

 	

 	__call__() (cfme.utils.appliance.IPAppliance method)

 	

 	(cfme.utils.events.EventListener method)

 	(cfme.utils.providers.ProviderFilter method)

 	(cfme.web_ui.InfoBlock method)

 	(cfme.web_ui.form_buttons.FormButton method)

 	__contains__() (cfme.utils.db.Db method)

 	

 	(cfme.utils.version.Version method)

 	__del__() (cfme.utils.video.Recorder method)

 	__enter__() (cfme.utils.appliance.IPAppliance method)

 	

 	(cfme.utils.ftp.FTPClient method)

 	__eq__() (cfme.test_framework.appliance_police.AppliancePoliceException method)

 	

 	(cfme.test_framework.config.DeprecatedConfigWrapper method)

 	(cfme.test_framework.sprout.plugin.SproutManager method)

 	(cfme.test_framework.sprout.plugin.SproutProvisioningRequest method)

 	(cfme.utils.appliance.db.ApplianceDB method)

 	(cfme.utils.appliance.plugin.AppliancePlugin method)

 	(cfme.utils.appliance.plugin.AppliancePluginDescriptor method)

 	(cfme.utils.appliance.services.SystemdService method)

 	(cfme.utils.db.Db method)

 	(fixtures.parallelizer.SlaveDetail method)

 	__exit__() (cfme.utils.ftp.FTPClient method)

 	__format__() (in module cfme.utils.conf)

 	

 	(in module cfme.utils.ports)

 	__ge__() (cfme.test_framework.appliance_police.AppliancePoliceException method)

 	

 	(cfme.test_framework.config.DeprecatedConfigWrapper method)

 	(cfme.test_framework.sprout.plugin.SproutManager method)

 	(cfme.test_framework.sprout.plugin.SproutProvisioningRequest method)

 	(cfme.utils.appliance.db.ApplianceDB method)

 	(cfme.utils.appliance.plugin.AppliancePlugin method)

 	(cfme.utils.appliance.plugin.AppliancePluginDescriptor method)

 	(cfme.utils.appliance.services.SystemdService method)

 	(fixtures.parallelizer.SlaveDetail method)

 	__getattr__() (cfme.utils.bz.BugWrapper method)

 	

 	(cfme.web_ui.Quadicon method)

 	(cfme.web_ui.Table.Row method)

 	__getitem__() (cfme.utils.db.Db method)

 	

 	(cfme.web_ui.ShowingInputs method)

 	(cfme.web_ui.Table.Row method)

 	__getnewargs__() (cfme.fixtures.cli.TimedCommand method)

 	

 	(cfme.fixtures.pytest_selenium.Select.Option method)

 	(cfme.fixtures.vporizer.vpor_data_instance method)

 	(cfme.scripting.setup_env.TimedCommand method)

 	(cfme.utils.trackerbot.TemplateInfo method)

 	(cfme.web_ui.multibox.SelectItem method)

 	(fixtures.parallelizer.Outcome method)

 	(markers.meta.Plugin method)

 	__getstate__() (cfme.fixtures.cli.TimedCommand method)

 	

 	(cfme.fixtures.pytest_selenium.Select.Option method)

 	(cfme.fixtures.vporizer.vpor_data_instance method)

 	(cfme.scripting.setup_env.TimedCommand method)

 	(cfme.utils.trackerbot.TemplateInfo method)

 	(cfme.web_ui.multibox.SelectItem method)

 	(fixtures.parallelizer.Outcome method)

 	(markers.meta.Plugin method)

 	__gt__() (cfme.test_framework.appliance_police.AppliancePoliceException method)

 	

 	(cfme.test_framework.config.DeprecatedConfigWrapper method)

 	(cfme.test_framework.sprout.plugin.SproutManager method)

 	(cfme.test_framework.sprout.plugin.SproutProvisioningRequest method)

 	(cfme.utils.appliance.db.ApplianceDB method)

 	(cfme.utils.appliance.plugin.AppliancePlugin method)

 	(cfme.utils.appliance.plugin.AppliancePluginDescriptor method)

 	(cfme.utils.appliance.services.SystemdService method)

 	(fixtures.parallelizer.SlaveDetail method)

 	

 	__iter__() (cfme.common.Summary method)

 	

 	(cfme.utils.db.Db method)

 	(cfme.web_ui.topology.Topology method)

 	(cfme.web_ui.utilization.LineChart method)

 	(cfme.web_ui.utilization.Utilization method)

 	__le__() (cfme.test_framework.appliance_police.AppliancePoliceException method)

 	

 	(cfme.test_framework.config.DeprecatedConfigWrapper method)

 	(cfme.test_framework.sprout.plugin.SproutManager method)

 	(cfme.test_framework.sprout.plugin.SproutProvisioningRequest method)

 	(cfme.utils.appliance.db.ApplianceDB method)

 	(cfme.utils.appliance.plugin.AppliancePlugin method)

 	(cfme.utils.appliance.plugin.AppliancePluginDescriptor method)

 	(cfme.utils.appliance.services.SystemdService method)

 	(fixtures.parallelizer.SlaveDetail method)

 	__len__() (cfme.utils.db.Db method)

 	__lt__() (cfme.test_framework.appliance_police.AppliancePoliceException method)

 	

 	(cfme.test_framework.config.DeprecatedConfigWrapper method)

 	(cfme.test_framework.sprout.plugin.SproutManager method)

 	(cfme.test_framework.sprout.plugin.SproutProvisioningRequest method)

 	(cfme.utils.appliance.db.ApplianceDB method)

 	(cfme.utils.appliance.plugin.AppliancePlugin method)

 	(cfme.utils.appliance.plugin.AppliancePluginDescriptor method)

 	(cfme.utils.appliance.services.SystemdService method)

 	(fixtures.parallelizer.SlaveDetail method)

 	__ne__() (cfme.test_framework.appliance_police.AppliancePoliceException method)

 	

 	(cfme.test_framework.config.DeprecatedConfigWrapper method)

 	(cfme.test_framework.sprout.plugin.SproutManager method)

 	(cfme.test_framework.sprout.plugin.SproutProvisioningRequest method)

 	(cfme.utils.appliance.db.ApplianceDB method)

 	(cfme.utils.appliance.plugin.AppliancePlugin method)

 	(cfme.utils.appliance.plugin.AppliancePluginDescriptor method)

 	(cfme.utils.appliance.services.SystemdService method)

 	(cfme.utils.db.Db method)

 	(fixtures.parallelizer.SlaveDetail method)

 	__new__() (in module cfme.utils.conf)

 	

 	(in module cfme.utils.ports)

 	__reduce__() (in module cfme.utils.conf)

 	

 	(in module cfme.utils.ports)

 	__reduce_ex__() (in module cfme.utils.conf)

 	

 	(in module cfme.utils.ports)

 	__repr__() (cfme.fixtures.cli.TimedCommand method)

 	

 	(cfme.fixtures.pytest_selenium.Select.Option method)

 	(cfme.fixtures.vporizer.vpor_data_instance method)

 	(cfme.scripting.setup_env.TimedCommand method)

 	(cfme.test_framework.appliance_police.AppliancePoliceException method)

 	(cfme.test_framework.config.DeprecatedConfigWrapper method)

 	(cfme.test_framework.sprout.plugin.SproutManager method)

 	(cfme.test_framework.sprout.plugin.SproutProvisioningRequest method)

 	(cfme.utils.appliance.db.ApplianceDB method)

 	(cfme.utils.appliance.plugin.AppliancePlugin method)

 	(cfme.utils.appliance.plugin.AppliancePluginDescriptor method)

 	(cfme.utils.appliance.services.SystemdService method)

 	(cfme.utils.trackerbot.TemplateInfo method)

 	(cfme.web_ui.multibox.SelectItem method)

 	(fixtures.parallelizer.Outcome method)

 	(fixtures.parallelizer.SlaveDetail method)

 	(markers.meta.Plugin method)

 	__sizeof__() (in module cfme.utils.conf)

 	

 	(in module cfme.utils.ports)

 	__str__() (cfme.control.explorer.alerts.Alert method)

 	__subclasshook__() (in module cfme.utils.conf)

 	

 	(in module cfme.utils.ports)

A

 	

 	a_cond (cfme.web_ui.Quadicon attribute)

 	a_provider() (in module cfme.rest.gen_data)

 	About (class in cfme.base.ui)

 	AboutView (class in cfme.configure.about)

 	absolute (cfme.utils.units.Unit attribute)

 	access (cfme.cloud.instance.InstanceDetailsToolbar attribute)

 	

 	(cfme.infrastructure.virtual_machines.InfraVmDetailsToolbar attribute)

 	access_url (cfme.infrastructure.pxe.PXEServerForm attribute)

 	AccessControlToolbar (class in cfme.configure.access_control)

 	AccordionItemNotFound

 	accordions (cfme.base.ui.ConfigurationView attribute)

 	ack() (fixtures.parallelizer.ParallelSession method)

 	Action (class in cfme.control.explorer.actions)

 	action_type (cfme.control.explorer.actions.ActionFormCommon attribute)

 	ActionDetails (class in cfme.control.explorer.actions)

 	ActionDetailsView (class in cfme.control.explorer.actions)

 	ActionEdit (class in cfme.control.explorer.actions)

 	ActionFormCommon (class in cfme.control.explorer.actions)

 	ActionNew (class in cfme.control.explorer.actions)

 	actions (cfme.control.explorer.ControlExplorerView attribute)

 	

 	(cfme.infrastructure.deployment_roles.DeploymentRoleComparisonToolbar attribute)

 	ActionsAllView (class in cfme.control.explorer.actions)

 	ActionsCell (class in cfme.services.catalogs.ansible_catalog_item)

 	active (cfme.control.explorer.alerts.AlertFormCommon attribute)

 	

 	(cfme.control.explorer.policies.PolicyFormCommon attribute)

 	(cfme.infrastructure.virtual_machines.Vm.Snapshot attribute)

 	(cfme.intelligence.reports.schedules.SchedulesFormCommon attribute)

 	(cfme.intelligence.reports.widgets.BaseDashboardWidgetFormCommon attribute)

 	(cfme.web_ui.ButtonGroup attribute)

 	(cfme.web_ui.ColorGroup attribute)

 	active_streams() (in module cfme.utils.trackerbot)

 	add (cfme.cloud.keypairs.KeyPairAddForm attribute)

 	

 	(cfme.common.provider_views.ProviderAddView attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileAddView attribute)

 	(cfme.infrastructure.pxe.PXECustomizationTemplateAddView attribute)

 	(cfme.infrastructure.pxe.PXEDatastoreAddView attribute)

 	(cfme.infrastructure.pxe.PXEServerAddView attribute)

 	(cfme.infrastructure.pxe.PXESystemImageTypeAddView attribute)

 	(cfme.services.catalogs.ansible_catalog_item.AddAnsibleCatalogItemView attribute)

 	(cfme.services.catalogs.ansible_catalog_item.AnsibleExtraVariables attribute)

 	(cfme.services.catalogs.ansible_catalog_item.SelectCatalogItemTypeView attribute)

 	(cfme.storage.volume.VolumeAddForm attribute)

 	Add (class in cfme.ansible.credentials)

 	

 	(class in cfme.ansible.repositories)

 	(class in cfme.automate.dialog_box)

 	(class in cfme.automate.dialog_element)

 	(class in cfme.automate.dialog_tab)

 	(class in cfme.automate.explorer.domain)

 	(class in cfme.automate.explorer.instance)

 	(class in cfme.automate.explorer.klass)

 	(class in cfme.automate.explorer.method)

 	(class in cfme.automate.explorer.namespace)

 	(class in cfme.automate.provisioning_dialogs)

 	(class in cfme.automate.service_dialogs)

 	(class in cfme.cloud.keypairs)

 	(class in cfme.containers.provider)

 	(class in cfme.infrastructure.host)

 	(class in cfme.infrastructure.provider)

 	(class in cfme.middleware.provider)

 	(class in cfme.services.catalogs.ansible_catalog_item)

 	(class in cfme.services.catalogs.catalog)

 	(class in cfme.services.catalogs.catalog_item)

 	add() (cfme.web_ui.multibox.MultiBoxSelect method)

 	add_another_element() (cfme.automate.dialog_element.Element method)

 	add_attrs() (cfme.utils.events.Event method)

 	add_button (cfme.ansible.credentials.CredentialAddView attribute)

 	

 	(cfme.ansible.repositories.RepositoryAddView attribute)

 	(cfme.automate.buttons.NewButtonGroupView attribute)

 	(cfme.automate.buttons.NewButtonView attribute)

 	(cfme.automate.dialog_element.AddElementView attribute)

 	(cfme.automate.explorer.domain.DomainAddView attribute)

 	(cfme.automate.explorer.instance.InstanceAddView attribute)

 	(cfme.automate.explorer.klass.ClassAddView attribute)

 	(cfme.automate.explorer.method.MethodAddView attribute)

 	(cfme.automate.explorer.namespace.NamespaceAddView attribute)

 	(cfme.automate.service_dialogs.AddDialogView attribute)

 	(cfme.base.ui.ZoneAddView attribute)

 	(cfme.common.host_views.HostAddView attribute)

 	(cfme.configure.access_control.AddGroupView attribute)

 	(cfme.configure.access_control.AddRoleView attribute)

 	(cfme.configure.access_control.AddTenantView attribute)

 	(cfme.configure.access_control.AddUserView attribute)

 	(cfme.configure.configuration.region_settings.CompanyCategoriesAllView attribute)

 	(cfme.configure.configuration.region_settings.CompanyTagsAllView attribute)

 	(cfme.configure.configuration.region_settings.MapTagsAddView attribute)

 	(cfme.configure.configuration.region_settings.MapTagsAllView attribute)

 	(cfme.control.explorer.actions.NewActionView attribute)

 	(cfme.control.explorer.alert_profiles.NewAlertProfileView attribute)

 	(cfme.control.explorer.alerts.NewAlertView attribute)

 	(cfme.control.explorer.conditions.NewConditionView attribute)

 	(cfme.control.explorer.policies.NewPolicyView attribute)

 	(cfme.control.explorer.policy_profiles.NewPolicyProfileView attribute)

 	(cfme.intelligence.chargeback.rates.AddComputeChargebackView attribute)

 	(cfme.intelligence.reports.dashboards.NewDashboardView attribute)

 	(cfme.intelligence.reports.reports.NewCustomReportView attribute)

 	(cfme.intelligence.reports.schedules.NewScheduleView attribute)

 	(cfme.intelligence.reports.widgets.BaseNewDashboardWidgetView attribute)

 	(cfme.services.catalogs.catalog.AddCatalogView attribute)

 	(cfme.services.catalogs.catalog_item.AddButtonGroupView attribute)

 	(cfme.services.catalogs.catalog_item.AddButtonView attribute)

 	(cfme.services.catalogs.catalog_item.AddCatalogBundleView attribute)

 	(cfme.services.catalogs.catalog_item.AddCatalogItemView attribute)

 	(cfme.services.catalogs.orchestration_template.AddDialogView attribute)

 	(cfme.services.catalogs.orchestration_template.AddTemplateView attribute)

 	(cfme.services.catalogs.orchestration_template.CopyTemplateView attribute)

 	add_button() (cfme.services.catalogs.catalog_item.CatalogItem method)

 	add_button_group() (cfme.services.catalogs.catalog_item.CatalogItem method)

 	add_cleanup() (cfme.utils.browser.BrowserManager method)

 	add_custom_attributes() (cfme.containers.provider.openshift.OpenshiftProvider method)

 	add_datasource() (cfme.middleware.provider.Container method)

 	add_deployment() (cfme.middleware.provider.Container method)

 	add_disk() (cfme.infrastructure.virtual_machines.VMConfiguration method)

 	add_entry_button (cfme.automate.dialog_element.ElementForm attribute)

 	add_field() (cfme.automate.explorer.klass.ClassSchema method)

 	add_fields() (cfme.automate.explorer.klass.ClassSchema method)

 	add_folder() (cfme.intelligence.reports.menus.ReportMenu method)

 	add_group_from_ext_auth_lookup() (cfme.configure.access_control.Group method)

 	add_group_from_ldap_lookup() (cfme.configure.access_control.Group method)

 	add_jdbc_driver() (cfme.middleware.provider.Container method)

 	add_log() (fixtures.merkyl.MerkylInspector method)

 	add_pglogical_replication_subscription() (cfme.utils.appliance.IPAppliance method)

 	add_product_repo() (cfme.utils.appliance.IPAppliance method)

 	add_rhev_direct_lun_disk() (cfme.utils.appliance.Appliance method)

 	add_row() (cfme.web_ui.DynamicTable method)

 	add_server_roles() (in module cfme.metaplugins.server_roles)

 	add_stdout_handler() (in module cfme.utils.log)

 	add_subfolder() (cfme.intelligence.reports.menus.ReportMenu method)

 	add_tab() (cfme.automate.dialog_tab.TabCollection method)

 	add_tag() (cfme.common.Taggable method)

 	

 	(cfme.common.WidgetasticTaggable method)

 	(cfme.storage.object_store.ObjectStore method)

 	(in module cfme.web_ui.mixins)

 	add_tags() (cfme.common.Taggable method)

 	

 	(cfme.common.WidgetasticTaggable method)

 	add_widget (cfme.dashboard.DashboardView attribute)

 	add_workload_quantifiers() (in module cfme.utils.smem_memory_monitor)

 	AddAnsibleCatalogItemView (class in cfme.services.catalogs.ansible_catalog_item)

 	AddBoxView (class in cfme.automate.dialog_box)

 	AddButton (class in cfme.services.catalogs.catalog_item)

 	AddButtonGroup (class in cfme.services.catalogs.catalog_item)

 	AddButtonGroupView (class in cfme.services.catalogs.catalog_item)

 	AddButtonView (class in cfme.services.catalogs.catalog_item)

 	AddCatalogBundleView (class in cfme.services.catalogs.catalog_item)

 	AddCatalogItemView (class in cfme.services.catalogs.catalog_item)

 	AddCatalogView (class in cfme.services.catalogs.catalog)

 	AddComputeChargebackView (class in cfme.intelligence.chargeback.rates)

 	AddDatasource (class in cfme.middleware.server)

 	AddDatasourceForm (class in cfme.middleware.provider.middleware_views)

 	AddDatasourceView (class in cfme.middleware.provider.middleware_views)

 	AddDeployment (class in cfme.middleware.server)

 	AddDeploymentForm (class in cfme.middleware.provider.middleware_views)

 	AddDeploymentView (class in cfme.middleware.provider.middleware_views)

 	AddDialog (class in cfme.services.catalogs.orchestration_template)

 	AddDialogView (class in cfme.automate.service_dialogs)

 	

 	(class in cfme.services.catalogs.orchestration_template)

 	AddElementView (class in cfme.automate.dialog_element)

 	AddFloatingIP (class in cfme.cloud.instance.openstack)

 	AddFloatingIPView (class in cfme.cloud.instance.openstack)

 	AddGroupView (class in cfme.configure.access_control)

 	AddJDBCDriver (class in cfme.middleware.server)

 	AddJDBCDriverForm (class in cfme.middleware.provider.middleware_views)

 	AddJDBCDriverView (class in cfme.middleware.provider.middleware_views)

 	AddProviderError

 	address (cfme.base.Server attribute)

 	

 	(cfme.utils.appliance.Appliance attribute)

 	(cfme.utils.appliance.IPAppliance attribute)

 	(cfme.utils.appliance.db.ApplianceDB attribute)

 	address() (in module cfme.base.ssui)

 	

 	(in module cfme.base.ui)

 	AddRoleView (class in cfme.configure.access_control)

 	AddStorageChargebackView (class in cfme.intelligence.chargeback.rates)

 	AddTabView (class in cfme.automate.dialog_tab)

 	AddTemplate (class in cfme.services.catalogs.orchestration_template)

 	AddTemplateView (class in cfme.services.catalogs.orchestration_template)

 	AddTenantView (class in cfme.configure.access_control)

 	AddUserView (class in cfme.configure.access_control)

 	AdHocMain (class in cfme.containers.provider)

 	AdHocMetricsView (class in cfme.containers.provider)

 	adv_search_clear (cfme.cloud.instance.InstanceAllView attribute)

 	

 	(cfme.cloud.instance.InstanceProviderAllView attribute)

 	(cfme.common.vm_views.VMEntities attribute)

 	(cfme.infrastructure.virtual_machines.TemplatesOnlyAllView attribute)

 	(cfme.infrastructure.virtual_machines.VmTemplatesAllForProviderView attribute)

 	(cfme.infrastructure.virtual_machines.VmsOnlyAllView attribute)

 	(cfme.infrastructure.virtual_machines.VmsTemplatesAllView attribute)

 	advanced (cfme.base.ui.ServerView attribute)

 	Advanced (class in cfme.base.ui)

 	after_keyboard_input() (cfme.utils.appliance.implementations.ssui.MiqSSUIBrowserPlugin method)

 	

 	(cfme.utils.appliance.implementations.ui.MiqBrowserPlugin method)

 	AFTER_RUN (markers.meta.PluginContainer attribute)

 	aggregate_card (cfme.services.dashboard.ssui.DashboardView attribute)

 	ajax_timeout() (in module cfme.fixtures.pytest_selenium)

 	Alert (class in cfme.control.explorer.alerts)

 	alert_profiles (cfme.control.explorer.ControlExplorerView attribute)

 	AlertCopy (class in cfme.control.explorer.alerts)

 	AlertDetails (class in cfme.control.explorer.alerts)

 	AlertDetailsView (class in cfme.control.explorer.alerts)

 	AlertEdit (class in cfme.control.explorer.alerts)

 	AlertFormCommon (class in cfme.control.explorer.alerts)

 	AlertNew (class in cfme.control.explorer.alerts)

 	AlertProfileDetails (class in cfme.control.explorer.alert_profiles)

 	AlertProfileDetailsView (class in cfme.control.explorer.alert_profiles)

 	AlertProfileEdit (class in cfme.control.explorer.alert_profiles)

 	AlertProfileEditAssignments (class in cfme.control.explorer.alert_profiles)

 	AlertProfileFormCommon (class in cfme.control.explorer.alert_profiles)

 	AlertProfileNew (class in cfme.control.explorer.alert_profiles)

 	AlertProfilesAllView (class in cfme.control.explorer.alert_profiles)

 	AlertProfilesEditAssignmentsView (class in cfme.control.explorer.alert_profiles)

 	alerts (cfme.control.explorer.alert_profiles.AlertProfileFormCommon attribute)

 	

 	(cfme.control.explorer.ControlExplorerView attribute)

 	alerts_to_evaluate (cfme.control.explorer.actions.Action attribute)

 	

 	(cfme.control.explorer.actions.ActionFormCommon attribute)

 	AlertsAllView (class in cfme.control.explorer.alerts)

 	All (class in cfme.automate.explorer.domain)

 	

 	(class in cfme.automate.provisioning_dialogs)

 	(class in cfme.automate.service_dialogs)

 	(class in cfme.cloud.instance)

 	(class in cfme.cloud.provider)

 	(class in cfme.cloud.stack)

 	(class in cfme.containers.image)

 	(class in cfme.containers.node)

 	(class in cfme.containers.overview)

 	(class in cfme.containers.pod)

 	(class in cfme.containers.project)

 	(class in cfme.containers.provider)

 	(class in cfme.containers.replicator)

 	(class in cfme.containers.route)

 	(class in cfme.containers.service)

 	(class in cfme.containers.template)

 	(class in cfme.containers.topology)

 	(class in cfme.containers.volume)

 	(class in cfme.infrastructure.cluster)

 	(class in cfme.infrastructure.datastore)

 	(class in cfme.infrastructure.deployment_roles)

 	(class in cfme.infrastructure.host)

 	(class in cfme.infrastructure.networking)

 	(class in cfme.infrastructure.provider)

 	(class in cfme.infrastructure.resource_pool)

 	(class in cfme.middleware.datasource)

 	(class in cfme.middleware.deployment)

 	(class in cfme.middleware.domain)

 	(class in cfme.middleware.messaging)

 	(class in cfme.middleware.provider)

 	(class in cfme.middleware.server)

 	(class in cfme.middleware.topology)

 	(class in cfme.networks.balancer)

 	(class in cfme.networks.cloud_network)

 	(class in cfme.networks.network_port)

 	(class in cfme.networks.network_router)

 	(class in cfme.networks.provider)

 	(class in cfme.networks.security_group)

 	(class in cfme.networks.subnet)

 	(class in cfme.optimize.bottlenecks)

 	(class in cfme.optimize.utilization)

 	(class in cfme.services.catalogs.ansible_catalog_item)

 	(class in cfme.services.catalogs.catalog)

 	(class in cfme.services.catalogs.catalog_item)

 	(class in cfme.services.catalogs.orchestration_template)

 	(class in cfme.storage.object_store)

 	all() (cfme.ansible.playbooks.PlaybooksCollection method)

 	

 	(cfme.ansible.repositories.RepositoryCollection method)

 	(cfme.automate.explorer.domain.DomainCollection method)

 	(cfme.containers.node.NodeCollection method)

 	(cfme.dashboard.DashboardCollection method)

 	(cfme.dashboard.DashboardWidgetCollection method)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleCollection method)

 	(cfme.networks.balancer.BalancerCollection method)

 	(cfme.networks.cloud_network.CloudNetworkCollection method)

 	(cfme.networks.network_port.NetworkPortCollection method)

 	(cfme.networks.network_router.NetworkRouterCollection method)

 	(cfme.networks.provider.NetworkProviderCollection method)

 	(cfme.networks.security_group.SecurityGroupCollection method)

 	(cfme.networks.subnet.SubnetCollection method)

 	(cfme.web_ui.Quadicon class method)

 	all_blocker_engines() (cfme.utils.blockers.Blocker class method)

 	all_clusters_cb (cfme.configure.configuration.region_settings.CANDUCollectionView attribute)

 	all_datastores_cb (cfme.configure.configuration.region_settings.CANDUCollectionView attribute)

 	all_event_types (cfme.utils.events.EventTool attribute)

 	ALL_LIST_LOCATION (cfme.cloud.instance.image.Image attribute)

 	

 	(cfme.cloud.instance.Instance attribute)

 	(cfme.common.vm.BaseVM attribute)

 	(cfme.infrastructure.virtual_machines.Vm attribute)

 	all_options (cfme.fixtures.pytest_selenium.Select attribute)

 	

 	(cfme.web_ui.AngularSelect attribute)

 	all_providers() (in module cfme.utils.testgen)

 	all_public_fields_equal() (in module cfme.utils.update)

 	all_selected (cfme.web_ui.multibox.MultiBoxSelect attribute)

 	all_selected_options (cfme.fixtures.pytest_selenium.Select attribute)

 	

 	(cfme.web_ui.DHTMLSelect attribute)

 	all_types() (in module cfme.common.provider)

 	

 	(in module cfme.common.vm)

 	all_vars (cfme.services.catalogs.ansible_catalog_item.AnsibleExtraVariables attribute)

 	AllCatalogItemView (class in cfme.services.catalogs.catalog_item)

 	AllCustomReportsView (class in cfme.intelligence.reports.reports)

 	AllDashboardWidgetsView (class in cfme.intelligence.reports.widgets)

 	AllForProvider (class in cfme.cloud.instance)

 	

 	(class in cfme.infrastructure.deployment_roles)

 	AllGroupView (class in cfme.configure.access_control)

 	AllOtherTasks (class in cfme.configure.tasks)

 	ALLOWED_TYPES (cfme.automate.provisioning_dialogs.ProvisioningDialog attribute)

 	AllReportsView (class in cfme.intelligence.reports.reports)

 	AllRolesView (class in cfme.configure.access_control)

 	AllSavedReportsView (class in cfme.intelligence.reports.saved)

 	AllTasks (class in cfme.configure.tasks)

 	AllTemplates (class in cfme.services.workloads)

 	AllTenantView (class in cfme.configure.access_control)

 	AllUserView (class in cfme.configure.access_control)

 	AllVMs (class in cfme.services.workloads)

 	alt_expr() (cfme.web_ui.form_buttons.FormButton method)

 	am_i_here() (cfme.base.ui.Advanced method)

 	

 	(cfme.base.ui.AuditLog method)

 	(cfme.base.ui.Authentication method)

 	(cfme.base.ui.CFMELog method)

 	(cfme.base.ui.CustomLogos method)

 	(cfme.base.ui.DiagnosticsDetails method)

 	(cfme.base.ui.DiagnosticsWorkers method)

 	(cfme.base.ui.Import method)

 	(cfme.base.ui.ImportTags method)

 	(cfme.base.ui.ProductionLog method)

 	(cfme.base.ui.RegionDiagnosticsDatabase method)

 	(cfme.base.ui.RegionDiagnosticsOrphanedData method)

 	(cfme.base.ui.RegionDiagnosticsReplication method)

 	(cfme.base.ui.RegionDiagnosticsRolesByServers method)

 	(cfme.base.ui.RegionDiagnosticsServers method)

 	(cfme.base.ui.RegionDiagnosticsServersByRoles method)

 	(cfme.base.ui.RegionDiagnosticsZones method)

 	(cfme.base.ui.ServerDetails method)

 	(cfme.base.ui.Timelines method)

 	(cfme.base.ui.Utilization method)

 	(cfme.base.ui.Workers method)

 	(cfme.cloud.provider.Images method)

 	(cfme.cloud.provider.Instances method)

 	(cfme.configure.tasks.AllOtherTasks method)

 	(cfme.configure.tasks.AllTasks method)

 	(cfme.configure.tasks.MyOtherTasks method)

 	(cfme.configure.tasks.MyTasks method)

 	(cfme.containers.image.Details method)

 	(cfme.containers.image_registry.ImageRegistryDetails method)

 	(cfme.containers.overview.All method)

 	(cfme.containers.pod.Details method)

 	(cfme.containers.project.Details method)

 	(cfme.containers.replicator.Details method)

 	(cfme.containers.route.Details method)

 	(cfme.containers.service.Details method)

 	(cfme.containers.template.Details method)

 	(cfme.containers.volume.Details method)

 	(cfme.infrastructure.config_management.MgrAll method)

 	(cfme.infrastructure.config_management.MgrDetails method)

 	(cfme.infrastructure.config_management.SysAll method)

 	(cfme.services.catalogs.orchestration_template.All method)

 	(cfme.services.catalogs.orchestration_template.Details method)

 	(cfme.storage.object_store.Details method)

 	(cfme.utils.appliance.implementations.ssui.SSUINavigateStep method)

 	(cfme.utils.appliance.implementations.ui.CFMENavigateStep method)

 	Amazon (cfme.common.provider_views.CloudProvidersDiscoverView attribute)

 	AmazonAuthSetting (class in cfme.configure.configuration)

 	american_date_only_format (cfme.utils.timeutil.parsetime attribute)

 	american_minutes (cfme.utils.timeutil.parsetime attribute)

 	american_minutes_with_utc (cfme.utils.timeutil.parsetime attribute)

 	american_with_utc_format (cfme.utils.timeutil.parsetime attribute)

 	analysis_profile (cfme.control.explorer.actions.ActionDetailsView attribute)

 	

 	(cfme.control.explorer.actions.ActionFormCommon attribute)

 	(cfme.control.explorer.policies.PolicyDetailsView attribute)

 	AnalysisProfile (class in cfme.configure.configuration.analysis_profile)

 	

 	AnalysisProfileAdd (class in cfme.configure.configuration.analysis_profile)

 	AnalysisProfileAddHost (cfme.configure.configuration.analysis_profile.AnalysisProfileAddView attribute)

 	AnalysisProfileAddView (class in cfme.configure.configuration.analysis_profile)

 	AnalysisProfileAddVm (cfme.configure.configuration.analysis_profile.AnalysisProfileAddView attribute)

 	AnalysisProfileAll (class in cfme.configure.configuration.analysis_profile)

 	AnalysisProfileAllView (class in cfme.configure.configuration.analysis_profile)

 	AnalysisProfileBaseAddForm (class in cfme.configure.configuration.analysis_profile)

 	AnalysisProfileCopy (class in cfme.configure.configuration.analysis_profile)

 	AnalysisProfileCopyView (class in cfme.configure.configuration.analysis_profile)

 	AnalysisProfileDetails (class in cfme.configure.configuration.analysis_profile)

 	AnalysisProfileDetailsEntities (class in cfme.configure.configuration.analysis_profile)

 	AnalysisProfileDetailsView (class in cfme.configure.configuration.analysis_profile)

 	AnalysisProfileEdit (class in cfme.configure.configuration.analysis_profile)

 	AnalysisProfileEditView (class in cfme.configure.configuration.analysis_profile)

 	AnalysisProfileEntities (class in cfme.configure.configuration.analysis_profile)

 	AnalysisProfileToolbar (class in cfme.configure.configuration.analysis_profile)

 	analyze_button (cfme.common.host_views.HostDriftHistory attribute)

 	ancestors (cfme.infrastructure.virtual_machines.Genealogy attribute)

 	AND (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor attribute)

 	angular_help_block (cfme.web_ui.BootstrapSwitch attribute)

 	

 	(cfme.web_ui.Input attribute)

 	AngularCalendarInput (class in cfme.web_ui)

 	AngularSelect (class in cfme.web_ui)

 	AnsibleCatalogItemForm (class in cfme.services.catalogs.ansible_catalog_item)

 	AnsibleCredentials (class in cfme.ansible.credentials)

 	AnsibleExtraVariables (class in cfme.services.catalogs.ansible_catalog_item)

 	AnsiblePlaybookCatalogItem (class in cfme.services.catalogs.ansible_catalog_item)

 	AnsiblePlaybooks (class in cfme.ansible.playbooks)

 	AnsibleRepositories (class in cfme.ansible.repositories)

 	AnsibleTower (class in cfme.infrastructure.config_management)

 	any_expression_present() (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor method)

 	

 	(in module cfme.web_ui.expression_editor)

 	any_history_present() (in module cfme.web_ui.history)

 	any_present() (cfme.web_ui.Quadicon class method)

 	api() (in module cfme.utils.trackerbot)

 	api_entry (cfme.test_framework.sprout.client.SproutClient attribute)

 	api_port (cfme.middleware.provider.hawkular.HawkularEndpointForm attribute)

 	api_version (cfme.common.provider_views.CloudProviderAddView attribute)

 	

 	(cfme.common.provider_views.InfraProviderAddView attribute)

 	APIMethodCall (class in cfme.test_framework.sprout.client)

 	app_creds() (in module cfme.fixtures.cli)

 	app_creds_modscope() (in module cfme.fixtures.cli)

 	appliance (cfme.utils.appliance.implementations.Implementation attribute)

 	

 	(cfme.utils.appliance.IPAppliance attribute)

 	(cfme.utils.appliance.Navigatable attribute)

 	(cfme.utils.appliance.implementations.ssui.MiqSSUIBrowser attribute)

 	(cfme.utils.appliance.implementations.ssui.SSUINavigateStep attribute)

 	(cfme.utils.appliance.implementations.ui.CFMENavigateStep attribute)

 	(cfme.utils.appliance.implementations.ui.MiqBrowser attribute)

 	(cfme.utils.appliance.plugin.AppliancePlugin attribute)

 	Appliance (class in cfme.utils.appliance)

 	appliance (fixtures.parallelizer.SlaveDetail attribute)

 	appliance() (in module cfme.fixtures.base)

 	appliance_build_date() (in module cfme.utils.version)

 	appliance_build_datetime() (in module cfme.utils.version)

 	appliance_coverage_root (in module fixtures.ui_coverage)

 	appliance_has_netapp() (cfme.utils.ssh.SSHClient method)

 	

 	(in module cfme.utils.version)

 	appliance_is_downstream() (in module cfme.utils.version)

 	appliance_marks (in module markers.uses)

 	appliance_police() (in module cfme.test_framework.appliance_police)

 	ApplianceConsole (class in cfme.utils.appliance)

 	ApplianceConsoleCli (class in cfme.utils.appliance)

 	ApplianceDB (class in cfme.utils.appliance.db)

 	ApplianceDBException

 	ApplianceException

 	AppliancePlugin (class in cfme.utils.appliance.plugin)

 	AppliancePluginDescriptor (class in cfme.utils.appliance.plugin)

 	AppliancePluginException

 	AppliancePoliceException

 	ApplianceStack (class in cfme.utils.appliance)

 	apply_btn (cfme.automate.dialog_element.ElementForm attribute)

 	

 	(cfme.containers.provider.AdHocMetricsView attribute)

 	apply_button (cfme.common.host_views.HostDriftAnalysis attribute)

 	

 	(cfme.infrastructure.virtual_machines.Genealogy attribute)

 	(cfme.services.catalogs.catalog_item.AddCatalogBundleView attribute)

 	(cfme.services.catalogs.catalog_item.AddCatalogItemView attribute)

 	apply_cfme_update (cfme.configure.configuration.region_settings.RedHatUpdatesView attribute)

 	apply_filter() (cfme.containers.provider.AdHocMetricsView method)

 	

 	(cfme.web_ui.Filter method)

 	(in module cfme.web_ui.search)

 	approve (cfme.services.requests.RequestDetailsToolBar attribute)

 	approve_request() (cfme.services.requests.Request method)

 	approve_request_ui (cfme.services.requests.Request attribute)

 	ApproveRequest (class in cfme.services.requests)

 	arbitration_profiles() (in module cfme.rest.gen_data)

 	arbitration_rules() (in module cfme.rest.gen_data)

 	arbitration_settings() (in module cfme.rest.gen_data)

 	args (cfme.utils.appliance.plugin.AppliancePluginDescriptor attribute)

 	artifactor (cfme.utils.log.ArtifactorHandler attribute)

 	ArtifactorHandler (class in cfme.utils.log)

 	as_fill_value() (cfme.automate.explorer.domain.Domain method)

 	

 	(cfme.automate.service_dialogs.Dialog method)

 	(cfme.cloud.provider.CloudProvider method)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfile method)

 	(cfme.infrastructure.provider.InfraProvider method)

 	as_json (cfme.utils.appliance.IPAppliance attribute)

 	as_tuple (cfme.control.snmp_form.SNMPTrap attribute)

 	assert_message_contain() (in module cfme.web_ui.flash)

 	assert_message_match() (in module cfme.web_ui.flash)

 	assert_no_cfme_exception() (in module cfme.web_ui.cfme_exception)

 	assert_no_errors() (in module cfme.web_ui.flash)

 	assert_response() (in module cfme.utils.rest)

 	assert_success() (in module cfme.web_ui.flash)

 	assert_success_message() (in module cfme.web_ui.flash)

 	Assign (class in cfme.intelligence.chargeback.assignments)

 	assign_actions_to_event() (cfme.control.explorer.policies.BasePolicy method)

 	assign_catalog_items (cfme.services.catalogs.catalog.CatalogForm attribute)

 	assign_conditions() (cfme.control.explorer.policies.BasePolicy method)

 	assign_events() (cfme.control.explorer.policies.BasePolicy method)

 	assign_policy_profiles() (cfme.common.PolicyProfileAssignable method)

 	assign_to (cfme.control.explorer.alert_profiles.AlertProfilesEditAssignmentsView attribute)

 	

 	(cfme.intelligence.chargeback.assignments.AssignmentsView attribute)

 	assign_to() (cfme.control.explorer.alert_profiles.BaseAlertProfile method)

 	AssignAll (class in cfme.intelligence.chargeback.assignments)

 	AssignCompute (class in cfme.intelligence.chargeback.assignments)

 	assigned_events (cfme.control.explorer.policies.BasePolicy attribute)

 	assigned_policy_profiles (cfme.common.PolicyProfileAssignable attribute)

 	assignments (cfme.intelligence.chargeback.ChargebackView attribute)

 	AssignmentsAllView (class in cfme.intelligence.chargeback.assignments)

 	AssignmentsView (class in cfme.intelligence.chargeback.assignments)

 	AssignStorage (class in cfme.intelligence.chargeback.assignments)

 	Async (class in cfme.web_ui.multibox)

 	at_exit() (in module cfme.utils)

 	ATOM_ROOT (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor attribute)

 	AttachVolume (class in cfme.cloud.instance.openstack)

 	AttachVolumeView (class in cfme.cloud.instance.openstack)

 	attr_mapping (cfme.infrastructure.virtual_machines.Genealogy attribute)

 	attr_repr() (in module cfme.utils.pretty)

 	attributes (cfme.common.vm_views.VMDetailsEntities attribute)

 	attributize_string() (in module cfme.utils)

 	auditlog (cfme.base.ui.ServerDiagnosticsView attribute)

 	AuditLog (class in cfme.base.ui)

 	auth_groups() (in module cfme.utils.testgen)

 	AUTH_MODE (cfme.configure.configuration.LDAPAuthSetting attribute)

 	

 	(cfme.configure.configuration.LDAPSAuthSetting attribute)

 	authentication (cfme.base.ui.ServerView attribute)

 	

 	(cfme.common.provider_views.ProviderDetailsToolBar attribute)

 	(cfme.common.provider_views.ProviderToolBar attribute)

 	Authentication (class in cfme.base.ui)

 	authentication_status (cfme.common.host_views.HostDetailsEntities attribute)

 	AuthException

 	AuthModeUnknown

 	AuthSetting (class in cfme.configure.configuration)

 	automate_menu_name() (in module cfme.base.ui)

 	AutomateCustomization (class in cfme.automate)

 	AutomateCustomizationView (class in cfme.automate)

 	AutomateExplorer (class in cfme.automate.explorer)

 	AutomateExplorerView (class in cfme.automate.explorer)

 	AutomateGitRepository (class in cfme.automate.import_export)

 	AutomateImportError

 	AutomateImportExport (class in cfme.base.ui)

 	AutomateImportExportBaseView (class in cfme.base.ui)

 	AutomateImportExportView (class in cfme.base.ui)

 	AutomateSimulation (class in cfme.base.ui)

 	AutomateSimulationView (class in cfme.base.ui)

 	automation (cfme.configure.documentation.LinksView attribute)

 	automation_requests_data() (in module cfme.rest.gen_data)

 	availability_zones (cfme.configure.settings.DefaultViewForm attribute)

 	AvailabilityZone (class in cfme.cloud.availability_zone)

 	AvailabilityZoneAll (class in cfme.cloud.availability_zone)

 	AvailabilityZoneAllView (class in cfme.cloud.availability_zone)

 	AvailabilityZoneDetails (class in cfme.cloud.availability_zone)

 	AvailabilityZoneDetailsAccordion (class in cfme.cloud.availability_zone)

 	AvailabilityZoneDetailsEntities (class in cfme.cloud.availability_zone)

 	AvailabilityZoneDetailsToolBar (class in cfme.cloud.availability_zone)

 	AvailabilityZoneDetailsView (class in cfme.cloud.availability_zone)

 	AvailabilityZoneEditTags (class in cfme.cloud.availability_zone)

 	AvailabilityZoneEntities (class in cfme.cloud.availability_zone)

 	AvailabilityZoneNotFound

 	AvailabilityZoneTimelines (class in cfme.cloud.availability_zone)

 	AvailabilityZoneToolBar (class in cfme.cloud.availability_zone)

 	AvailabilityZoneView (class in cfme.cloud.availability_zone)

 	available_auth_modes() (in module cfme.fixtures.configure_auth_mode)

 	available_update_version (cfme.configure.configuration.region_settings.RedHatUpdatesView attribute)

 	avp (cfme.base.ui.AutomateSimulationView attribute)

 	Azure (cfme.common.provider_views.CloudProvidersDiscoverView attribute)

 	AzureCredential (class in cfme.base.credential)

 	AzureEndpoint (class in cfme.cloud.provider.azure)

 	AzureEndpointForm (class in cfme.cloud.provider.azure)

 	AzureInstance (class in cfme.cloud.instance.azure)

 	AzureProvider (class in cfme.cloud.provider.azure)

B

 	

 	back (cfme.base.ui.LoginPage attribute)

 	

 	(cfme.middleware.provider.middleware_views.DatasourceAllToolbar attribute)

 	(cfme.middleware.provider.middleware_views.DeploymentAllToolbar attribute)

 	(cfme.middleware.provider.middleware_views.MessagingAllToolbar attribute)

 	(cfme.networks.views.OneProviderComponentsToolbar attribute)

 	back_button (cfme.middleware.provider.middleware_views.AddDatasourceForm attribute)

 	backup() (cfme.utils.appliance.db.ApplianceDB method)

 	bad_credentials_error_msg (cfme.infrastructure.provider.openstack_infra.OpenstackInfraProvider attribute)

 	

 	(cfme.infrastructure.provider.rhevm.RHEVMProvider attribute)

 	(cfme.infrastructure.provider.scvmm.SCVMMProvider attribute)

 	(cfme.infrastructure.provider.virtualcenter.VMwareProvider attribute)

 	Balancer (class in cfme.networks.balancer)

 	BalancerCollection (class in cfme.networks.balancer)

 	BalancerDetailsSideBar (class in cfme.networks.views)

 	BalancerDetailsToolBar (class in cfme.networks.views)

 	BalancerDetailsView (class in cfme.networks.views)

 	BalancerEntities (class in cfme.networks.views)

 	balancers (cfme.networks.provider.NetworkProvider attribute)

 	BalancerSideBar (class in cfme.networks.views)

 	BalancerToolBar (class in cfme.networks.views)

 	BalancerView (class in cfme.networks.views)

 	base_report_on (cfme.intelligence.reports.reports.CustomReportFormCommon attribute)

 	base_types() (in module cfme.common.provider)

 	

 	(in module cfme.common.vm)

 	base_url (fixtures.pytest_store.Store attribute)

 	base_url() (in module cfme.fixtures.pytest_selenium)

 	BaseAlertProfile (class in cfme.control.explorer.alert_profiles)

 	BaseCollection (class in cfme.utils.appliance)

 	BaseCondition (class in cfme.control.explorer.conditions)

 	based_on (cfme.control.explorer.alert_profiles.AlertProfilesEditAssignmentsView attribute)

 	

 	(cfme.control.explorer.alerts.AlertFormCommon attribute)

 	BaseDashboardReportWidget (class in cfme.intelligence.reports.widgets)

 	BaseDashboardWidgetDetailsStep (class in cfme.intelligence.reports.widgets)

 	BaseDashboardWidgetFormCommon (class in cfme.intelligence.reports.widgets)

 	BaseEditDashboardWidgetStep (class in cfme.intelligence.reports.widgets)

 	BaseEditDashboardWidgetView (class in cfme.intelligence.reports.widgets)

 	BaseEntity (class in cfme.utils.appliance)

 	BaseLoggedInPage (class in cfme.base.login)

 	BaseNewDashboardWidgetStep (class in cfme.intelligence.reports.widgets)

 	BaseNewDashboardWidgetView (class in cfme.intelligence.reports.widgets)

 	BasePolicy (class in cfme.control.explorer.policies)

 	BaseProvider (class in cfme.common.provider)

 	BaseVM (class in cfme.common.vm)

 	basic_info (cfme.automate.provisioning_dialogs.ProvDiagDetailsEntities attribute)

 	

 	(cfme.services.catalogs.catalog_item.CatalogBundleFormView attribute)

 	basic_information (cfme.configure.configuration.BasicInformation attribute)

 	

 	(cfme.intelligence.reports.dashboards.DashboardFormCommon attribute)

 	(cfme.services.catalogs.ansible_catalog_item.DetailsEntitiesAnsibleCatalogItemView attribute)

 	BasicInfoForm (class in cfme.services.catalogs.catalog_item)

 	BasicInformation (class in cfme.configure.configuration)

 	BasicProvisionFormView (class in cfme.common.vm_views)

 	before_date_or_version() (in module cfme.utils.version)

 	before_fill() (cfme.ansible.credentials.CredentialEditView method)

 	

 	(cfme.common.provider_views.BeforeFillMixin method)

 	before_filling() (cfme.services.catalogs.catalog_item.CatalogForm method)

 	BEFORE_RUN (markers.meta.PluginContainer attribute)

 	BeforeFillMixin (class in cfme.common.provider_views)

 	big_template() (in module fixtures.provider)

 	big_template_modscope() (in module fixtures.provider)

 	blank (cfme.dashboard.DashboardWidget attribute)

 	block_info() (cfme.web_ui.jstimelines.Event method)

 	Blocker (class in cfme.utils.blockers)

 	blocker() (in module fixtures.blockers)

 	blockers() (in module fixtures.blockers)

 	blocks (cfme.utils.blockers.Blocker attribute)

 	

 	(cfme.utils.blockers.BZ attribute)

 	(cfme.utils.blockers.GH attribute)

 	BlockTypeUnknown

 	blueprints() (in module cfme.rest.gen_data)

 	body (cfme.utils.appliance.implementations.ui.ErrorView attribute)

 	

 	(cfme.web_ui.SplitTable attribute)

 	(cfme.web_ui.Table attribute)

 	BootstrapSelect (class in cfme.services.catalogs.ansible_catalog_item)

 	BootstrapSwitch (class in cfme.web_ui)

 	BootstrapTreeview (class in cfme.web_ui)

 	bottlenecks (cfme.optimize.BottlenecksView attribute)

 	Bottlenecks (class in cfme.optimize)

 	

 	(class in cfme.optimize.bottlenecks)

 	BottlenecksTabsView (class in cfme.optimize.bottlenecks)

 	BottlenecksView (class in cfme.optimize)

 	Box (class in cfme.automate.dialog_box)

 	

 	box_desc (cfme.automate.dialog_box.BoxForm attribute)

 	box_label (cfme.automate.dialog_box.BoxForm attribute)

 	BoxCollection (class in cfme.automate.dialog_box)

 	boxes (cfme.automate.dialog_tab.Tab attribute)

 	BoxForm (class in cfme.automate.dialog_box)

 	branch (cfme.automate.import_export.GitImportSelectorView attribute)

 	breadcrumb (cfme.ansible.playbooks.PlaybookDetailsView attribute)

 	

 	(cfme.cloud.availability_zone.AvailabilityZoneDetailsEntities attribute)

 	(cfme.cloud.flavor.FlavorDetailsEntities attribute)

 	(cfme.cloud.keypairs.KeyPairAddEntities attribute)

 	(cfme.cloud.keypairs.KeyPairDetailsEntities attribute)

 	(cfme.cloud.stack.StackDetailsEntities attribute)

 	(cfme.cloud.stack.StackOutputsEntities attribute)

 	(cfme.cloud.stack.StackParametersEntities attribute)

 	(cfme.cloud.stack.StackResourcesEntities attribute)

 	(cfme.cloud.stack.StackSecurityGroupsEntities attribute)

 	(cfme.cloud.tenant.TenantDetailsEntities attribute)

 	(cfme.cloud.tenant.TenantEditEntities attribute)

 	(cfme.cloud.tenant.TenantEditTagEntities attribute)

 	(cfme.common.host_views.HostDetailsView attribute)

 	(cfme.common.host_views.HostDriftHistory attribute)

 	(cfme.common.provider_views.ProviderDetailsView attribute)

 	(cfme.common.vm_views.ProvisionView attribute)

 	(cfme.configure.settings.TimeprofileAddEntities attribute)

 	(cfme.infrastructure.cluster.ClusterDetailsEntities attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleAllForProviderView attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleComparisonEntities attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleDetailsEntities attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleEditTagsView attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleManagePoliciesView attribute)

 	(cfme.infrastructure.provider.ProviderClustersView attribute)

 	(cfme.infrastructure.resource_pool.ResourcePoolDetailsEntities attribute)

 	(cfme.middleware.provider.middleware_views.DatasourceDetailsEntities attribute)

 	(cfme.middleware.provider.middleware_views.DeploymentDetailsEntities attribute)

 	(cfme.middleware.provider.middleware_views.DomainDetailsEntities attribute)

 	(cfme.middleware.provider.middleware_views.MessagingDetailsEntities attribute)

 	(cfme.middleware.provider.middleware_views.ServerDetailsEntities attribute)

 	(cfme.middleware.provider.middleware_views.ServerGroupDetailsEntities attribute)

 	(cfme.services.requests.RequestDetailsView attribute)

 	(cfme.storage.volume.VolumeAddEntities attribute)

 	(cfme.storage.volume.VolumeDetailsEntities attribute)

 	breadcrumbs() (in module cfme.web_ui)

 	breadcrumbs_names() (in module cfme.web_ui)

 	browse() (cfme.web_ui.Tree class method)

 	browser (cfme.utils.appliance.NavigatableMixin attribute)

 	browser() (in module cfme.utils.browser)

 	

 	(in module fixtures.browser)

 	browser_title() (in module cfme.web_ui)

 	BrowserEnvironmentMarker (class in markers.env)

 	BrowserFactory (class in cfme.utils.browser)

 	BrowserManager (class in cfme.utils.browser)

 	bt_tree (cfme.automate.dialog_element.ElementForm attribute)

 	btn_group_hvr_text (cfme.services.catalogs.catalog_item.ButtonGroupForm attribute)

 	btn_group_text (cfme.services.catalogs.catalog_item.ButtonGroupForm attribute)

 	btn_hvr_text (cfme.services.catalogs.catalog_item.ButtonForm attribute)

 	btn_image (cfme.services.catalogs.catalog_item.ButtonForm attribute)

 	

 	(cfme.services.catalogs.catalog_item.ButtonGroupForm attribute)

 	btn_text (cfme.services.catalogs.catalog_item.ButtonForm attribute)

 	bug() (in module fixtures.blockers)

 	bug_count (cfme.utils.bz.Bugzilla attribute)

 	bugs (cfme.utils.bz.Bugzilla attribute)

 	BugWrapper (class in cfme.utils.bz)

 	bugzilla (cfme.utils.bz.BugWrapper attribute)

 	

 	(cfme.utils.bz.Bugzilla attribute)

 	Bugzilla (class in cfme.utils.bz)

 	bugzilla_bug (cfme.utils.blockers.BZ attribute)

 	build (cfme.utils.appliance.IPAppliance attribute)

 	build_date (cfme.utils.appliance.IPAppliance attribute)

 	build_datetime (cfme.utils.appliance.IPAppliance attribute)

 	build_from_raw_event() (cfme.utils.events.Event method)

 	BundleAdd (class in cfme.services.catalogs.catalog_item)

 	BundleAll (class in cfme.services.catalogs.catalog_item)

 	BundleDetails (class in cfme.services.catalogs.catalog_item)

 	BundleEdit (class in cfme.services.catalogs.catalog_item)

 	BUTTON (cfme.dashboard.Kebab attribute)

 	

 	(cfme.web_ui.AngularSelect attribute)

 	Button (class in cfme.automate.buttons)

 	ButtonAll (class in cfme.automate.buttons)

 	ButtonDetails (class in cfme.automate.buttons)

 	ButtonDetailView (class in cfme.automate.buttons)

 	ButtonEdit (class in cfme.automate.buttons)

 	ButtonForm (class in cfme.services.catalogs.catalog_item)

 	ButtonFormCommon (class in cfme.automate.buttons)

 	ButtonGroup (class in cfme.automate.buttons)

 	

 	(class in cfme.web_ui)

 	ButtonGroupAll (class in cfme.automate.buttons)

 	ButtonGroupDetails (class in cfme.automate.buttons)

 	ButtonGroupDetailView (class in cfme.automate.buttons)

 	ButtonGroupEdit (class in cfme.automate.buttons)

 	ButtonGroupForm (class in cfme.services.catalogs.catalog_item)

 	ButtonGroupFormCommon (class in cfme.automate.buttons)

 	ButtonGroupNew (class in cfme.automate.buttons)

 	ButtonGroupObjectType (class in cfme.automate.buttons)

 	ButtonGroupObjectTypeView (class in cfme.automate.buttons)

 	ButtonNew (class in cfme.automate.buttons)

 	buttons (cfme.automate.AutomateCustomizationView attribute)

 	

 	(cfme.configure.configuration.SMTPSettings attribute)

 	(cfme.web_ui.Filter attribute)

 	ButtonsAllView (class in cfme.automate.buttons)

 	by_member_icon() (cfme.web_ui.InfoBlock method)

 	ByText (class in cfme.fixtures.pytest_selenium)

 	ByValue (class in cfme.fixtures.pytest_selenium)

 	BZ (class in cfme.utils.blockers)

C

 	

 	cache (cfme.utils.appliance.plugin.AppliancePluginDescriptor attribute)

 	CachedTableHeaders (class in cfme.web_ui)

 	Calendar (class in cfme.web_ui)

 	call_method() (cfme.test_framework.sprout.client.SproutClient method)

 	call_or_exit() (in module cfme.scripting.quickstart)

 	can_be_clicked (cfme.web_ui.form_buttons.FormButton attribute)

 	can_skip_badness_test() (in module cfme.utils.appliance.implementations.ui)

 	can_test_on_upstream (cfme.utils.bz.BugWrapper attribute)

 	can_zoom (cfme.dashboard.DashboardWidget attribute)

 	cancel (cfme.automate.buttons.ButtonFormCommon attribute)

 	

 	(cfme.automate.import_export.GitImportSelectorView attribute)

 	(cfme.automate.provisioning_dialogs.ProvDiagForm attribute)

 	(cfme.base.ui.DiagnosticsCollectLogsEditView attribute)

 	(cfme.cloud.keypairs.KeyPairAddForm attribute)

 	(cfme.common.provider_views.CloudProvidersDiscoverView attribute)

 	(cfme.common.provider_views.InfraProvidersDiscoverView attribute)

 	(cfme.common.provider_views.ProviderAddView attribute)

 	(cfme.common.provider_views.ProviderEditView attribute)

 	(cfme.common.provider_views.ProvidersManagePoliciesView attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileAddView attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleEditTagsView attribute)

 	(cfme.infrastructure.provider.openstack_infra.ProviderRegisterNodesView attribute)

 	(cfme.infrastructure.provider.openstack_infra.ProviderScaleDownView attribute)

 	(cfme.infrastructure.provider.openstack_infra.ProviderScaleOutView attribute)

 	(cfme.infrastructure.pxe.PXECustomizationTemplateAddView attribute)

 	(cfme.infrastructure.pxe.PXECustomizationTemplateEditView attribute)

 	(cfme.infrastructure.pxe.PXEDatastoreAddView attribute)

 	(cfme.infrastructure.pxe.PXEDatastoreEditView attribute)

 	(cfme.infrastructure.pxe.PXEImageEditView attribute)

 	(cfme.infrastructure.pxe.PXEServerAddView attribute)

 	(cfme.infrastructure.pxe.PXEServerEditView attribute)

 	(cfme.infrastructure.pxe.PXESystemImageTypeAddView attribute)

 	(cfme.infrastructure.pxe.PXESystemImageTypeEditView attribute)

 	(cfme.services.catalogs.ansible_catalog_item.AnsibleCatalogItemForm attribute)

 	(cfme.services.catalogs.ansible_catalog_item.SelectCatalogItemTypeView attribute)

 	(cfme.services.requests.RequestApprovalView attribute)

 	(cfme.services.requests.RequestDenialView attribute)

 	(cfme.storage.volume.VolumeAddForm attribute)

 	cancel_after (cfme.intelligence.reports.reports.CustomReportFormCommon attribute)

 	cancel_button (cfme.ansible.credentials.CredentialFormView attribute)

 	

 	(cfme.ansible.repositories.RepositoryFormView attribute)

 	(cfme.automate.buttons.ButtonGroupFormCommon attribute)

 	(cfme.automate.explorer.common.CopyViewBase attribute)

 	(cfme.automate.explorer.domain.DomainForm attribute)

 	(cfme.automate.explorer.domain.DomainPriorityView attribute)

 	(cfme.automate.explorer.instance.InstanceAddView attribute)

 	(cfme.automate.explorer.instance.InstanceEditView attribute)

 	(cfme.automate.explorer.klass.ClassForm attribute)

 	(cfme.automate.explorer.method.MethodAddView attribute)

 	(cfme.automate.explorer.method.MethodEditView attribute)

 	(cfme.automate.explorer.namespace.NamespaceForm attribute)

 	(cfme.automate.service_dialogs.DialogForm attribute)

 	(cfme.base.ui.ZoneForm attribute)

 	(cfme.cloud.tenant.TenantAddForm attribute)

 	(cfme.cloud.tenant.TenantEditForm attribute)

 	(cfme.common.host_views.HostAddView attribute)

 	(cfme.common.host_views.HostDiscoverView attribute)

 	(cfme.common.host_views.HostFormView attribute)

 	(cfme.common.host_views.HostManagePoliciesView attribute)

 	(cfme.configure.access_control.EditGroupSequenceView attribute)

 	(cfme.configure.access_control.EditTagsUserView attribute)

 	(cfme.configure.access_control.GroupEditTagsView attribute)

 	(cfme.configure.access_control.GroupForm attribute)

 	(cfme.configure.access_control.RoleForm attribute)

 	(cfme.configure.access_control.TenantForm attribute)

 	(cfme.configure.access_control.TenantQuotaView attribute)

 	(cfme.configure.access_control.UserForm attribute)

 	(cfme.configure.configuration.region_settings.CompanyCategoriesAddView attribute)

 	(cfme.configure.configuration.region_settings.CompanyTagsAllView attribute)

 	(cfme.configure.configuration.region_settings.MapTagsAddView attribute)

 	(cfme.configure.configuration.region_settings.RedHatUpdatesEditView attribute)

 	(cfme.configure.settings.TimeProfileAddForm attribute)

 	(cfme.containers.node.NodeEditTagsForm attribute)

 	(cfme.containers.node.NodeManagePoliciesForm attribute)

 	(cfme.control.explorer.actions.ActionFormCommon attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfileFormCommon attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfilesEditAssignmentsView attribute)

 	(cfme.control.explorer.alerts.AlertFormCommon attribute)

 	(cfme.control.explorer.conditions.ConditionFormCommon attribute)

 	(cfme.control.explorer.policies.EditEventView attribute)

 	(cfme.control.explorer.policies.EditPolicyConditionAssignments attribute)

 	(cfme.control.explorer.policies.EditPolicyEventAssignments attribute)

 	(cfme.control.explorer.policies.PolicyFormCommon attribute)

 	(cfme.control.explorer.policy_profiles.PolicyProfileFormCommon attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleManagePoliciesView attribute)

 	(cfme.infrastructure.virtual_machines.InfraVmReconfigureView attribute)

 	(cfme.intelligence.chargeback.rates.AddComputeChargebackView attribute)

 	(cfme.intelligence.reports.dashboards.DashboardFormCommon attribute)

 	(cfme.intelligence.reports.import_export.ImportExportWidgetsCommitView attribute)

 	(cfme.intelligence.reports.menus.EditReportMenusView attribute)

 	(cfme.intelligence.reports.reports.CustomReportFormCommon attribute)

 	(cfme.intelligence.reports.schedules.SchedulesFormCommon attribute)

 	(cfme.intelligence.reports.widgets.BaseDashboardWidgetFormCommon attribute)

 	(cfme.middleware.provider.middleware_views.AddDatasourceForm attribute)

 	(cfme.middleware.provider.middleware_views.AddDeploymentForm attribute)

 	(cfme.middleware.provider.middleware_views.AddJDBCDriverForm attribute)

 	(cfme.middleware.provider.middleware_views.PowerOperationForm attribute)

 	(cfme.services.catalogs.catalog.CatalogForm attribute)

 	(cfme.services.catalogs.catalog_item.AddCatalogBundleView attribute)

 	(cfme.services.catalogs.catalog_item.BasicInfoForm attribute)

 	(cfme.services.catalogs.orchestration_template.CopyTemplateForm attribute)

 	(cfme.services.myservice.ssui.EditMyServiceView attribute)

 	(cfme.services.myservice.ui.EditMyServiceView attribute)

 	cancel_password_change (cfme.configure.access_control.EditUserView attribute)

 	CandidateNotFound

 	candu (cfme.infrastructure.provider.rhevm.RHEVMEndpointForm attribute)

 	canducollection (cfme.base.ui.RegionView attribute)

 	CANDUCollection (class in cfme.configure.configuration.region_settings)

 	CANDUCollectionDetails (class in cfme.configure.configuration.region_settings)

 	CANDUCollectionView (class in cfme.configure.configuration.region_settings)

 	CANDUCredential (class in cfme.base.credential)

 	CANDUEndpoint (class in cfme.common.provider)

 	candugapcollection (cfme.base.ui.ZoneDiagnosticsView attribute)

 	CAndUGroupTable (class in cfme.web_ui)

 	CAndUGroupTable.Group (class in cfme.web_ui)

 	CAndUGroupTable.States (class in cfme.web_ui)

 	CannedReportInfo (class in cfme.intelligence.reports.reports)

 	CannedReportView (class in cfme.intelligence.reports.reports)

 	CannedSavedReport (class in cfme.intelligence.reports.reports)

 	CannedSavedReportDetails (class in cfme.intelligence.reports.reports)

 	CannedSavedReportView (class in cfme.intelligence.reports.reports)

 	CannotContinueWithNavigation

 	CannotScrollException

 	capture_candu (cfme.configure.configuration.region_settings.CompanyCategoriesAddView attribute)

 	capturemanager (fixtures.pytest_store.Store attribute)

 	castmap() (in module cfme.utils)

 	catalog (cfme.common.vm_views.BasicProvisionFormView attribute)

 	

 	(cfme.services.catalogs.ansible_catalog_item.AnsibleCatalogItemForm attribute)

 	(cfme.services.requests.RequestDetailsView attribute)

 	Catalog (class in cfme.services.catalogs.catalog)

 	catalog() (in module cfme.fixtures.service_fixtures)

 	catalog_item() (in module cfme.fixtures.service_fixtures)

 	catalog_item_type (cfme.services.catalogs.ansible_catalog_item.SelectCatalogItemTypeView attribute)

 	catalog_items (cfme.configure.settings.DefaultViewForm attribute)

 	

 	(cfme.services.catalogs.ServicesCatalogView attribute)

 	CatalogBundle (class in cfme.services.catalogs.catalog_item)

 	CatalogBundleFormView (class in cfme.services.catalogs.catalog_item)

 	CatalogForm (class in cfme.services.catalogs.catalog)

 	

 	(class in cfme.services.catalogs.catalog_item)

 	CatalogItem (class in cfme.services.catalogs.catalog_item)

 	catalogs (cfme.services.catalogs.ServicesCatalogView attribute)

 	CatalogsMultiBoxSelect (class in cfme.services.catalogs.catalog)

 	CatalogsView (class in cfme.services.catalogs.catalog)

 	categories() (in module cfme.rest.gen_data)

 	categorize() (cfme.web_ui.multibox.MultiBoxSelect class method)

 	

 	(in module cfme.utils.category)

 	category (cfme.cloud.provider.CloudProvider attribute)

 	

 	(cfme.configure.configuration.region_settings.MapTagsAddView attribute)

 	(cfme.containers.provider.ContainersProvider attribute)

 	(cfme.infrastructure.provider.InfraProvider attribute)

 	(cfme.middleware.provider.MiddlewareProvider attribute)

 	(cfme.networks.balancer.Balancer attribute)

 	(cfme.networks.cloud_network.CloudNetwork attribute)

 	(cfme.networks.network_port.NetworkPort attribute)

 	(cfme.networks.network_router.NetworkRouter attribute)

 	(cfme.networks.provider.NetworkProvider attribute)

 	(cfme.networks.security_group.SecurityGroup attribute)

 	(cfme.networks.subnet.Subnet attribute)

 	Category (class in cfme.configure.configuration)

 	

 	(class in cfme.configure.configuration.region_settings)

 	category() (in module cfme.fixtures.tag)

 	category_dropdown (cfme.configure.configuration.region_settings.CompanyTagsAllView attribute)

 	CategoryAdd (class in cfme.configure.configuration)

 	

 	(class in cfme.configure.configuration.region_settings)

 	CategoryAll (class in cfme.configure.configuration)

 	

 	(class in cfme.configure.configuration.region_settings)

 	CategoryBase (class in cfme.utils.category)

 	CategoryEdit (class in cfme.configure.configuration)

 	

 	(class in cfme.configure.configuration.region_settings)

 	cd() (cfme.utils.ftp.FTPDirectory method)

 	cdup() (cfme.utils.ftp.FTPClient method)

 	cell_indicates_change() (cfme.web_ui.DriftGrid method)

 	cfm_mgr_table() (in module cfme.infrastructure.config_management)

 	cfme (module)

 	cfme.ansible (module)

 	cfme.ansible.credentials (module)

 	cfme.ansible.playbooks (module)

 	cfme.ansible.repositories (module)

 	cfme.automate (module)

 	cfme.automate.buttons (module)

 	cfme.automate.dialog_box (module)

 	cfme.automate.dialog_element (module)

 	cfme.automate.dialog_tab (module)

 	cfme.automate.explorer (module)

 	cfme.automate.explorer.common (module)

 	cfme.automate.explorer.domain (module)

 	cfme.automate.explorer.instance (module)

 	cfme.automate.explorer.klass (module)

 	cfme.automate.explorer.method (module)

 	cfme.automate.explorer.namespace (module)

 	cfme.automate.import_export (module)

 	cfme.automate.provisioning_dialogs (module)

 	cfme.automate.service_dialogs (module)

 	cfme.automate.simulation (module)

 	cfme.base (module)

 	cfme.base.credential (module)

 	cfme.base.login (module)

 	cfme.base.ssui (module)

 	cfme.base.ui (module)

 	cfme.cloud (module)

 	cfme.cloud.availability_zone (module)

 	cfme.cloud.flavor (module)

 	cfme.cloud.instance (module)

 	cfme.cloud.instance.azure (module)

 	cfme.cloud.instance.ec2 (module)

 	cfme.cloud.instance.gce (module)

 	cfme.cloud.instance.image (module)

 	cfme.cloud.instance.openstack (module)

 	cfme.cloud.keypairs (module)

 	cfme.cloud.provider (module)

 	cfme.cloud.provider.azure (module)

 	cfme.cloud.provider.ec2 (module)

 	cfme.cloud.provider.gce (module)

 	cfme.cloud.provider.openstack (module)

 	cfme.cloud.security_group (module)

 	cfme.cloud.stack (module)

 	cfme.cloud.tenant (module)

 	cfme.common (module)

 	cfme.common.host_views (module)

 	cfme.common.provider (module)

 	cfme.common.provider_views (module)

 	cfme.common.vm (module)

 	cfme.common.vm_console (module)

 	cfme.common.vm_views (module)

 	cfme.configure (module)

 	cfme.configure.about (module)

 	cfme.configure.access_control (module)

 	cfme.configure.configuration (module)

 	cfme.configure.configuration.analysis_profile (module)

 	cfme.configure.configuration.region_settings (module)

 	cfme.configure.documentation (module)

 	cfme.configure.settings (module)

 	cfme.configure.tasks (module)

 	cfme.containers (module)

 	cfme.containers.container (module)

 	cfme.containers.image (module)

 	cfme.containers.image_registry (module)

 	cfme.containers.node (module)

 	cfme.containers.overview (module)

 	cfme.containers.pod (module)

 	cfme.containers.project (module)

 	cfme.containers.provider (module)

 	cfme.containers.provider.kubernetes (module)

 	cfme.containers.provider.openshift (module)

 	cfme.containers.replicator (module)

 	cfme.containers.route (module)

 	cfme.containers.service (module)

 	cfme.containers.template (module)

 	cfme.containers.topology (module)

 	cfme.containers.volume (module)

 	cfme.control (module)

 	cfme.control.explorer (module)

 	cfme.control.explorer.actions (module)

 	cfme.control.explorer.alert_profiles (module)

 	cfme.control.explorer.alerts (module)

 	cfme.control.explorer.conditions (module)

 	cfme.control.explorer.policies (module)

 	cfme.control.explorer.policy_profiles (module)

 	cfme.control.import_export (module)

 	cfme.control.log (module)

 	cfme.control.simulation (module)

 	cfme.control.snmp_form (module)

 	cfme.dashboard (module)

 	cfme.exceptions (module)

 	cfme.fixtures (module)

 	cfme.fixtures.base (module)

 	cfme.fixtures.cli (module)

 	cfme.fixtures.configure_auth_mode (module)

 	cfme.fixtures.model_collections (module)

 	cfme.fixtures.pytest_selenium (module)

 	cfme.fixtures.rdb (module)

 	cfme.fixtures.service_fixtures (module)

 	cfme.fixtures.smtp (module)

 	cfme.fixtures.tag (module)

 	cfme.fixtures.vm_name (module)

 	cfme.fixtures.vporizer (module)

 	cfme.infrastructure (module)

 	cfme.infrastructure.cluster (module)

 	cfme.infrastructure.config_management (module)

 	cfme.infrastructure.datastore (module)

 	cfme.infrastructure.deployment_roles (module)

 	cfme.infrastructure.host (module)

 	cfme.infrastructure.networking (module)

 	cfme.infrastructure.openstack_node (module)

 	cfme.infrastructure.provider (module)

 	cfme.infrastructure.provider.openstack_infra (module)

 	cfme.infrastructure.provider.rhevm (module)

 	cfme.infrastructure.provider.scvmm (module)

 	cfme.infrastructure.provider.virtualcenter (module)

 	cfme.infrastructure.pxe (module)

 	cfme.infrastructure.resource_pool (module)

 	cfme.infrastructure.virtual_machines (module)

 	cfme.intelligence (module)

 	cfme.intelligence.chargeback (module)

 	cfme.intelligence.chargeback.assignments (module)

 	cfme.intelligence.chargeback.rates (module)

 	cfme.intelligence.reports (module)

 	cfme.intelligence.reports.dashboards (module)

 	cfme.intelligence.reports.import_export (module)

 	cfme.intelligence.reports.menus (module)

 	cfme.intelligence.reports.reports (module)

 	cfme.intelligence.reports.saved (module)

 	cfme.intelligence.reports.schedules (module)

 	cfme.intelligence.reports.widgets (module)

 	cfme.intelligence.reports.widgets.chart_widgets (module)

 	cfme.intelligence.reports.widgets.menu_widgets (module)

 	cfme.intelligence.reports.widgets.report_widgets (module)

 	cfme.intelligence.reports.widgets.rss_widgets (module)

 	cfme.intelligence.rss (module)

 	cfme.js (module)

 	cfme.metaplugins (module)

 	cfme.metaplugins.blockers (module)

 	cfme.metaplugins.server_roles (module)

 	cfme.metaplugins.skip (module)

 	cfme.middleware (module)

 	cfme.middleware.datasource (module)

 	cfme.middleware.deployment (module)

 	cfme.middleware.domain (module)

 	cfme.middleware.messaging (module)

 	cfme.middleware.provider (module)

 	cfme.middleware.provider.hawkular (module)

 	cfme.middleware.provider.middleware_views (module)

 	cfme.middleware.server (module)

 	cfme.middleware.server_group (module)

 	cfme.middleware.topology (module)

 	cfme.networks (module)

 	cfme.networks.balancer (module)

 	cfme.networks.cloud_network (module)

 	cfme.networks.network_port (module)

 	cfme.networks.network_router (module)

 	cfme.networks.provider (module)

 	cfme.networks.security_group (module)

 	cfme.networks.subnet (module)

 	cfme.networks.views (module)

 	cfme.optimize (module)

 	cfme.optimize.bottlenecks (module)

 	cfme.optimize.utilization (module)

 	cfme.provisioning (module)

 	cfme.rest (module)

 	cfme.rest.gen_data (module)

 	cfme.roles (module)

 	cfme.scripting (module)

 	cfme.scripting.appliance (module)

 	cfme.scripting.conf (module)

 	cfme.scripting.disable_bytecode (module)

 	cfme.scripting.ipyshell (module)

 	cfme.scripting.miq (module)

 	cfme.scripting.quickstart (module)

 	cfme.scripting.runtest (module)

 	cfme.scripting.setup_ansible (module)

 	cfme.scripting.setup_env (module)

 	cfme.scripting.sprout (module)

 	cfme.scripting.tests (module)

 	cfme.scripting.tests.test_quickstart (module)

 	cfme.services (module)

 	cfme.services.catalogs (module)

 	cfme.services.catalogs.ansible_catalog_item (module)

 	cfme.services.catalogs.catalog (module)

 	cfme.services.catalogs.catalog_item (module)

 	cfme.services.catalogs.orchestration_template (module)

 	cfme.services.catalogs.service_catalogs (module)

 	cfme.services.dashboard (module)

 	cfme.services.dashboard.ssui (module)

 	cfme.services.myservice (module)

 	cfme.services.myservice.ssui (module)

 	cfme.services.myservice.ui (module)

 	cfme.services.requests (module)

 	cfme.services.workloads (module)

 	cfme.storage (module)

 	cfme.storage.object_store (module)

 	cfme.storage.volume (module)

 	cfme.test_framework (module)

 	cfme.test_framework.appliance_police (module)

 	cfme.test_framework.config (module)

 	cfme.test_framework.pytest_plugin (module)

 	cfme.test_framework.sprout (module)

 	cfme.test_framework.sprout.client (module)

 	cfme.test_framework.sprout.plugin (module)

 	cfme.test_requirements (module), [1]

 	cfme.utils (module)

 	cfme.utils.apidoc (module)

 	cfme.utils.appliance (module)

 	cfme.utils.appliance.db (module)

 	cfme.utils.appliance.implementations (module)

 	cfme.utils.appliance.implementations.ssui (module)

 	cfme.utils.appliance.implementations.ui (module)

 	cfme.utils.appliance.plugin (module)

 	cfme.utils.appliance.services (module)

 	cfme.utils.blockers (module)

 	cfme.utils.browser (module)

 	cfme.utils.bz (module)

 	cfme.utils.category (module)

 	cfme.utils.conf (module)

 	cfme.utils.datafile (module)

 	cfme.utils.db (module)

 	cfme.utils.deprecation (module)

 	cfme.utils.error (module)

 	cfme.utils.events (module)

 	cfme.utils.ext_auth (module)

 	cfme.utils.ftp (module)

 	cfme.utils.generators (module)

 	cfme.utils.grafana (module)

 	cfme.utils.hosts (module)

 	cfme.utils.ipmi (module)

 	cfme.utils.log (module)

 	cfme.utils.log_validator (module)

 	cfme.utils.mgmt_system (module)

 	cfme.utils.net (module)

 	cfme.utils.ocp_cli (module)

 	cfme.utils.path (module)

 	cfme.utils.perf (module)

 	cfme.utils.perf_message_stats (module)

 	cfme.utils.ports (module)

 	cfme.utils.pretty (module)

 	cfme.utils.providers (module)

 	cfme.utils.pytest_shortcuts (module)

 	cfme.utils.quote (module)

 	cfme.utils.rest (module)

 	cfme.utils.smem_memory_monitor (module)

 	cfme.utils.smtp_collector_client (module)

 	cfme.utils.soft_get (module)

 	cfme.utils.ssh (module)

 	cfme.utils.stats (module)

 	cfme.utils.testgen (module)

 	cfme.utils.timeutil (module)

 	cfme.utils.tracer (module)

 	cfme.utils.trackerbot (module)

 	cfme.utils.units (module)

 	cfme.utils.update (module)

 	cfme.utils.varmeth (module)

 	cfme.utils.version (module)

 	cfme.utils.video (module)

 	cfme.utils.virtual_machines (module)

 	cfme.utils.wait (module)

 	cfme.utils.workloads (module)

 	cfme.web_ui (module)

 	cfme.web_ui.accordion (module)

 	cfme.web_ui.cfme_exception (module)

 	cfme.web_ui.expression_editor (module)

 	cfme.web_ui.expression_editor_widgetastic (module)

 	cfme.web_ui.flash (module)

 	cfme.web_ui.form_buttons (module)

 	cfme.web_ui.history (module)

 	cfme.web_ui.jstimelines (module)

 	cfme.web_ui.listaccordion (module)

 	cfme.web_ui.mixins (module)

 	cfme.web_ui.multibox (module)

 	cfme.web_ui.paginator (module)

 	cfme.web_ui.search (module)

 	cfme.web_ui.splitter (module)

 	cfme.web_ui.tabstrip (module)

 	cfme.web_ui.timelines (module)

 	cfme.web_ui.toolbar (module)

 	cfme.web_ui.topology (module)

 	cfme.web_ui.utilization (module)

 	cfme_data() (in module fixtures.cfme_data)

 	cfme_exception_text() (in module cfme.web_ui.cfme_exception)

 	cfme_log_level_rails_debug() (in module fixtures.perf)

 	CFMECheckbox (class in cfme.web_ui)

 	CFMEException

 	CFMEExceptionOccured

 	cfmelog (cfme.base.ui.ServerDiagnosticsView attribute)

 	CFMELog (class in cfme.base.ui)

 	CFMENavigateStep (class in cfme.utils.appliance.implementations.ui)

 	change_date() (cfme.web_ui.timelines.Timelines method)

 	change_event_type() (cfme.web_ui.timelines.Timelines method)

 	change_interval() (cfme.web_ui.timelines.Timelines method)

 	change_password (cfme.base.ui.LoginPage attribute)

 	

 	(cfme.common.provider.DefaultEndpointForm attribute)

 	change_stored_password (cfme.common.host_views.HostEditView attribute)

 	

 	(cfme.configure.access_control.EditUserView attribute)

 	change_stored_password() (cfme.configure.access_control.User method)

 	

 	(in module cfme.web_ui.form_buttons)

 	Chargeback (class in cfme.base.ui)

 	ChargebackView (class in cfme.intelligence.chargeback)

 	charts (cfme.intelligence.reports.reports.CustomReportFormCommon attribute)

 	

 	(cfme.web_ui.utilization.Utilization attribute)

 	ChartWidget (class in cfme.intelligence.reports.widgets.chart_widgets)

 	ChartWidgetFormCommon (class in cfme.intelligence.reports.widgets.chart_widgets)

 	check() (cfme.web_ui.BootstrapSwitch method)

 	

 	(cfme.web_ui.CheckboxSelect method)

 	(cfme.web_ui.OldCheckbox method)

 	(in module cfme.fixtures.pytest_selenium)

 	check_all() (in module cfme.web_ui.paginator)

 	check_and_click_close() (in module cfme.web_ui.search)

 	check_and_click_open() (in module cfme.web_ui.search)

 	check_compliance() (cfme.common.vm.BaseVM method)

 	

 	(cfme.containers.image.Image method)

 	(cfme.infrastructure.host.Host method)

 	check_detailed_events() (cfme.web_ui.timelines.Timelines method)

 	check_docker() (in module cfme.scripting.tests.test_quickstart)

 	check_domain_enabled() (cfme.utils.appliance.IPAppliance method)

 	check_expected_events() (cfme.utils.events.EventListener method)

 	check_fixed_in() (in module cfme.utils.bz)

 	check_for_badness() (cfme.utils.appliance.implementations.ui.CFMENavigateStep method)

 	check_for_single_quadrant_icon (cfme.web_ui.Quadicon attribute)

 	check_for_updates (cfme.configure.configuration.region_settings.RedHatUpdatesView attribute)

 	check_fullfilled() (cfme.test_framework.sprout.plugin.SproutManager method)

 	check_item_visibility() (in module cfme.fixtures.tag)

 	

 	check_node() (cfme.web_ui.BootstrapTreeview method)

 	

 	(cfme.web_ui.CheckboxTree method)

 	check_status() (cfme.intelligence.reports.widgets.BaseDashboardReportWidget method)

 	check_tree_path() (in module cfme.automate.explorer)

 	check_uncheck_node() (cfme.web_ui.BootstrapTreeview method)

 	check_updates() (cfme.configure.configuration.region_settings.RedHatUpdates method)

 	check_vm_add (cfme.services.myservice.MyService attribute)

 	check_vm_add() (in module cfme.services.myservice.ui)

 	checkbox (cfme.infrastructure.provider.openstack_infra.ProviderScaleDownView attribute)

 	checkbox() (cfme.web_ui.Quadicon method)

 	

 	(in module cfme.fixtures.pytest_selenium)

 	checkbox_by_id() (cfme.web_ui.CheckboxSelect method)

 	checkbox_by_text() (cfme.web_ui.CheckboxSelect method)

 	checkboxes (cfme.web_ui.CheckboxSelect attribute)

 	CheckboxSelect (class in cfme.web_ui)

 	CheckboxTable (class in cfme.web_ui)

 	CheckboxTree (class in cfme.web_ui)

 	checked_updates() (cfme.configure.configuration.region_settings.RedHatUpdates method)

 	checkin() (cfme.utils.browser.Wharf method)

 	checkout() (cfme.utils.browser.Wharf method)

 	CHILD_ITEMS (cfme.web_ui.BootstrapTreeview attribute)

 	child_items() (cfme.web_ui.BootstrapTreeview method)

 	CHILD_ITEMS_TEXT (cfme.web_ui.BootstrapTreeview attribute)

 	child_items_with_text() (cfme.web_ui.BootstrapTreeview method)

 	children (cfme.web_ui.topology.TopologyElement attribute)

 	choice() (cfme.web_ui.Radio method)

 	CHOICES (markers.env.BrowserEnvironmentMarker attribute)

 	

 	(markers.env.TCPEnvironmentMarker attribute)

 	choose() (cfme.web_ui.ButtonGroup method)

 	

 	(cfme.web_ui.ColorGroup method)

 	choose_type (cfme.automate.dialog_element.ElementForm attribute)

 	Class (class in cfme.automate.explorer.klass)

 	ClassAddView (class in cfme.automate.explorer.klass)

 	ClassCollection (class in cfme.automate.explorer.klass)

 	ClassCopyView (class in cfme.automate.explorer.klass)

 	ClassDetailsView (class in cfme.automate.explorer.klass)

 	ClassEditView (class in cfme.automate.explorer.klass)

 	classes (cfme.automate.explorer.namespace.Namespace attribute)

 	

 	(cfme.fixtures.pytest_selenium.Select attribute)

 	(cfme.web_ui.AngularSelect attribute)

 	classes() (in module cfme.fixtures.pytest_selenium)

 	ClassForm (class in cfme.automate.explorer.klass)

 	classmethod() (cfme.utils.InstanceClassMethod method)

 	classproperty() (in module cfme.utils)

 	ClassSchema (class in cfme.automate.explorer.klass)

 	ClassSchemaEditView (class in cfme.automate.explorer.klass)

 	clean (cfme.ansible.repositories.RepositoryFormView attribute)

 	clean_appliance() (cfme.utils.appliance.IPAppliance method)

 	clean_coverage_dir() (in module fixtures.ui_coverage)

 	clean_jenkins_job() (cfme.test_framework.sprout.plugin.SproutManager method)

 	cleanup_vm() (in module cfme.common.provider)

 	clear() (cfme.configure.configuration.ServerLogDepot method)

 	

 	(cfme.web_ui.AngularCalendarInput method)

 	(cfme.web_ui.DynamicTable method)

 	(cfme.web_ui.topology.TopologySearchBox method)

 	clear_button (cfme.web_ui.AngularCalendarInput attribute)

 	clear_database() (cfme.utils.smtp_collector_client.SMTPCollectorClient method)

 	clear_property_cache() (in module cfme.utils)

 	clear_providers() (cfme.common.provider.BaseProvider class method)

 	cli (cfme.containers.provider.openshift.OpenshiftProvider attribute)

 	click() (cfme.common.SummaryValue method)

 	

 	(cfme.web_ui.listaccordion.ListAccordionLink method)

 	(in module cfme.fixtures.pytest_selenium)

 	(in module cfme.web_ui.accordion)

 	(in module cfme.web_ui.listaccordion)

 	click_add() (cfme.web_ui.DynamicTable method)

 	click_and() (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor method)

 	

 	(in module cfme.web_ui.expression_editor)

 	click_cell() (cfme.web_ui.Table method)

 	click_cells() (cfme.web_ui.Table method)

 	click_commit() (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor method)

 	

 	(in module cfme.web_ui.expression_editor)

 	click_discard() (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor method)

 	

 	(in module cfme.web_ui.expression_editor)

 	click_element() (cfme.containers.container.Container method)

 	

 	(cfme.containers.pod.Pod method)

 	(cfme.containers.project.Project method)

 	(cfme.containers.replicator.Replicator method)

 	(cfme.containers.route.Route method)

 	(cfme.containers.service.Service method)

 	(cfme.containers.template.Template method)

 	click_header_cell() (cfme.web_ui.SortTable method)

 	click_not() (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor method)

 	

 	(in module cfme.web_ui.expression_editor)

 	click_or() (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor method)

 	

 	(in module cfme.web_ui.expression_editor)

 	click_path() (cfme.web_ui.BootstrapTreeview method)

 	

 	(cfme.web_ui.Tree method)

 	click_redo() (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor method)

 	

 	(in module cfme.web_ui.expression_editor)

 	click_remove() (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor method)

 	

 	(in module cfme.web_ui.expression_editor)

 	click_row_by_cells() (cfme.web_ui.Table method)

 	click_rows_by_cells() (cfme.web_ui.Table method)

 	click_save() (cfme.web_ui.DynamicTable method)

 	click_switch_to_relative() (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor method)

 	click_switch_to_specific() (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor method)

 	click_undo() (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor method)

 	

 	(in module cfme.web_ui.expression_editor)

 	clickable (cfme.common.SummaryValue attribute)

 	client (cfme.test_framework.sprout.plugin.SproutManager attribute)

 	

 	(cfme.utils.appliance.db.ApplianceDB attribute)

 	client_address() (cfme.utils.ssh.SSHClient method)

 	clone_domain() (cfme.utils.appliance.IPAppliance method)

 	clone_vm() (cfme.infrastructure.virtual_machines.Vm method)

 	close() (cfme.dashboard.Kebab method)

 	

 	(cfme.utils.browser.BrowserFactory method)

 	(cfme.utils.browser.WharfFactory method)

 	(cfme.utils.ftp.FTPClient method)

 	(cfme.utils.ocp_cli.OcpCli method)

 	(cfme.utils.ssh.SSHClient method)

 	close_button (cfme.web_ui.jstimelines.Event attribute)

 	close_console_window() (cfme.common.vm_console.VMConsole method)

 	close_zoom() (cfme.dashboard.DashboardCollection method)

 	

 	(cfme.dashboard.DashboardWidget method)

 	cloud_provider (cfme.cloud.tenant.TenantAddForm attribute)

 	cloud_provider_quad (cfme.configure.settings.Visual attribute)

 	cloud_providers (cfme.configure.settings.DefaultViewForm attribute)

 	cloud_stacks (cfme.configure.settings.DefaultViewForm attribute)

 	CloudAvailabilityZoneTimelinesView (class in cfme.cloud.availability_zone)

 	CloudInfraProvider (class in cfme.common.provider)

 	CloudInstanceView (class in cfme.cloud.instance)

 	CloudIntelReports (class in cfme.intelligence.reports)

 	CloudIntelReportsView (class in cfme.intelligence.reports)

 	CloudKeyPairs (class in cfme.cloud.keypairs)

 	CloudNetwork (class in cfme.networks.cloud_network)

 	CloudNetworkCollection (class in cfme.networks.cloud_network)

 	CloudNetworkDetailsSideBar (class in cfme.networks.views)

 	CloudNetworkDetailsToolBar (class in cfme.networks.views)

 	CloudNetworkDetailsView (class in cfme.networks.views)

 	CloudNetworkEntities (class in cfme.networks.views)

 	CloudNetworkSideBar (class in cfme.networks.views)

 	CloudNetworkToolBar (class in cfme.networks.views)

 	CloudNetworkView (class in cfme.networks.views)

 	CloudProvider (class in cfme.cloud.provider)

 	CloudProviderAddView (class in cfme.common.provider_views)

 	CloudProviderDetailsView (class in cfme.common.provider_views)

 	CloudProviderEditView (class in cfme.common.provider_views)

 	CloudProvidersDiscoverView (class in cfme.common.provider_views)

 	CloudProvidersView (class in cfme.common.provider_views)

 	CloudProviderTimelinesView (class in cfme.cloud.provider)

 	cls (cfme.utils.appliance.plugin.AppliancePluginDescriptor attribute)

 	CLUSTER (cfme.automate.buttons.ButtonGroup attribute)

 	cluster (cfme.infrastructure.cluster.ClusterDetailsAccordion attribute)

 	Cluster (class in cfme.infrastructure.cluster)

 	cluster_id (cfme.infrastructure.virtual_machines.Vm attribute)

 	ClusterAlertProfile (class in cfme.control.explorer.alert_profiles)

 	ClusterAllView (class in cfme.infrastructure.cluster)

 	ClusterCollection (class in cfme.infrastructure.cluster)

 	ClusterDetailsAccordion (class in cfme.infrastructure.cluster)

 	ClusterDetailsEntities (class in cfme.infrastructure.cluster)

 	ClusterDetailsToolbar (class in cfme.infrastructure.cluster)

 	ClusterDetailsView (class in cfme.infrastructure.cluster)

 	ClusterNotFound

 	clusters (cfme.infrastructure.datastore.DatastoreSideBar attribute)

 	ClusterTimelinesView (class in cfme.infrastructure.cluster)

 	ClusterToolbar (class in cfme.infrastructure.cluster)

 	ClusterView (class in cfme.infrastructure.cluster)

 	cmdline_parser() (in module cfme.utils.trackerbot)

 	coerce_url_key() (cfme.utils.browser.BrowserManager method)

 	collapse_node() (cfme.web_ui.BootstrapTreeview method)

 	collect (cfme.base.ui.DiagnosticsCollectLogsView attribute)

 	collect() (fixtures.ui_coverage.CoverageManager method)

 	collect_all() (cfme.configure.configuration.ServerLogDepot method)

 	collect_current() (cfme.configure.configuration.ServerLogDepot method)

 	collect_log() (in module cfme.utils.perf)

 	collection_appliance (fixtures.ui_coverage.CoverageManager attribute)

 	collectlogs (cfme.base.ui.ServerDiagnosticsView attribute)

 	

 	(cfme.base.ui.ZoneDiagnosticsView attribute)

 	ColorGroup (class in cfme.web_ui)

 	column1 (cfme.intelligence.reports.widgets.report_widgets.ReportWidgetFormCommon attribute)

 	column2 (cfme.intelligence.reports.widgets.report_widgets.ReportWidgetFormCommon attribute)

 	column3 (cfme.intelligence.reports.widgets.report_widgets.ReportWidgetFormCommon attribute)

 	column4 (cfme.intelligence.reports.widgets.report_widgets.ReportWidgetFormCommon attribute)

 	columns (cfme.web_ui.Table.Row attribute)

 	command (cfme.fixtures.cli.TimedCommand attribute)

 	

 	(cfme.scripting.setup_env.TimedCommand attribute)

 	command_text() (in module cfme.scripting.quickstart)

 	COMMIT (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor attribute)

 	commit_button (cfme.control.import_export.ControlImportExportView attribute)

 	

 	(cfme.intelligence.reports.import_export.ImportExportWidgetsCommitView attribute)

 	(cfme.intelligence.reports.menus.EditReportMenusView attribute)

 	company_name (cfme.utils.appliance.IPAppliance attribute)

 	companycategories (cfme.base.ui.RegionView attribute)

 	CompanyCategoriesAddView (class in cfme.configure.configuration.region_settings)

 	CompanyCategoriesAllView (class in cfme.configure.configuration.region_settings)

 	CompanyCategoriesEditView (class in cfme.configure.configuration.region_settings)

 	companytags (cfme.base.ui.RegionView attribute)

 	CompanyTagsAddView (class in cfme.configure.configuration.region_settings)

 	CompanyTagsAllView (class in cfme.configure.configuration.region_settings)

 	CompanyTagsEditView (class in cfme.configure.configuration.region_settings)

 	compare (cfme.configure.settings.DefaultViewForm attribute)

 	compare() (cfme.infrastructure.virtual_machines.Genealogy method)

 	compare_mode (cfme.configure.settings.DefaultViewForm attribute)

 	compile_per_process_results() (in module cfme.utils.smem_memory_monitor)

 	complete (markers.smoke.SmokeTests attribute)

 	compliance (cfme.cloud.instance.image.ImageDetailsEntities attribute)

 	

 	(cfme.common.host_views.HostDetailsEntities attribute)

 	(cfme.common.vm_views.VMDetailsEntities attribute)

 	compliance_status (cfme.common.vm.BaseVM attribute)

 	

 	(cfme.containers.image.Image attribute)

 	(cfme.infrastructure.host.Host attribute)

 	compliant (cfme.common.vm.BaseVM attribute)

 	

 	(cfme.containers.image.Image attribute)

 	component_re (cfme.utils.version.Version attribute)

 	composite_uncollect() (in module cfme.utils.trackerbot)

 	compute_count (cfme.infrastructure.provider.openstack_infra.ProviderScaleOutView attribute)

 	computeassign() (cfme.intelligence.chargeback.assignments.Assign method)

 	ComputeInfrastructureHostsView (class in cfme.common.host_views)

 	ComputeRate (class in cfme.intelligence.chargeback.rates)

 	ComputeRateAll (class in cfme.intelligence.chargeback.rates)

 	ComputeRateDetails (class in cfme.intelligence.chargeback.rates)

 	ComputeRateEdit (class in cfme.intelligence.chargeback.rates)

 	ComputeRateNew (class in cfme.intelligence.chargeback.rates)

 	concat_id (cfme.utils.trackerbot.ProviderTemplate attribute)

 	ConditionDetails (class in cfme.control.explorer.conditions)

 	ConditionDetailsView (class in cfme.control.explorer.conditions)

 	

 	(class in cfme.control.explorer.policies)

 	ConditionEdit (class in cfme.control.explorer.conditions)

 	ConditionFormCommon (class in cfme.control.explorer.conditions)

 	ConditionNew (class in cfme.control.explorer.conditions)

 	conditions (cfme.control.explorer.ControlExplorerView attribute)

 	

 	(cfme.control.explorer.policies.EditPolicyConditionAssignments attribute)

 	conditions() (in module cfme.rest.gen_data)

 	ConditionsAllView (class in cfme.control.explorer.conditions)

 	conf_path (in module cfme.utils.path)

 	config (fixtures.pytest_store.Store attribute)

 	config_managers() (in module cfme.utils.testgen)

 	CONFIG_MAPPING (cfme.utils.appliance.Appliance attribute)

 	

 	(cfme.utils.appliance.IPAppliance attribute)

 	CONFIG_NONGLOBAL (cfme.utils.appliance.Appliance attribute)

 	

 	(cfme.utils.appliance.IPAppliance attribute)

 	config_profiles (cfme.infrastructure.config_management.ConfigManager attribute)

 	ConfigManager (class in cfme.infrastructure.config_management)

 	ConfigManager.Credential (class in cfme.infrastructure.config_management)

 	ConfigProfile (class in cfme.infrastructure.config_management)

 	ConfigSystem (class in cfme.infrastructure.config_management)

 	configuration (cfme.ansible.credentials.CredentialDetailsView attribute)

 	

 	(cfme.ansible.credentials.CredentialsListView attribute)

 	(cfme.ansible.repositories.RepositoryAllView attribute)

 	(cfme.ansible.repositories.RepositoryDetailsView attribute)

 	(cfme.automate.AutomateCustomizationView attribute)

 	(cfme.automate.explorer.AutomateExplorerView attribute)

 	(cfme.automate.provisioning_dialogs.ProvDiagAllToolbar attribute)

 	(cfme.base.ui.ServerDiagnosticsView attribute)

 	(cfme.base.ui.ZoneDetailsView attribute)

 	(cfme.base.ui.ZoneListView attribute)

 	(cfme.cloud.instance.InstanceDetailsToolbar attribute)

 	(cfme.cloud.instance.image.ImageDetailsEntities attribute)

 	(cfme.cloud.instance.image.ImageDetailsToolbar attribute)

 	(cfme.cloud.instance.image.ImageToolbar attribute)

 	(cfme.cloud.keypairs.KeyPairDetailsToolbar attribute)

 	(cfme.cloud.keypairs.KeyPairToolbar attribute)

 	(cfme.cloud.stack.StackDetailsToolbar attribute)

 	(cfme.cloud.stack.StackSubpageToolbar attribute)

 	(cfme.cloud.stack.StackToolbar attribute)

 	(cfme.cloud.tenant.TenantDetailsToolbar attribute)

 	(cfme.cloud.tenant.TenantToolbar attribute)

 	(cfme.common.host_views.HostDetailsEntities attribute)

 	(cfme.common.host_views.HostDetailsToolbar attribute)

 	(cfme.common.host_views.HostsToolbar attribute)

 	(cfme.common.provider_views.NodesToolBar attribute)

 	(cfme.common.provider_views.ProviderDetailsToolBar attribute)

 	(cfme.common.provider_views.ProviderToolBar attribute)

 	(cfme.common.vm_views.VMDetailsEntities attribute)

 	(cfme.common.vm_views.VMToolbar attribute)

 	(cfme.configure.access_control.AccessControlToolbar attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileToolbar attribute)

 	(cfme.configure.settings.TimeProfileAddForm attribute)

 	(cfme.containers.image.ImageAllView attribute)

 	(cfme.control.explorer.ControlExplorerView attribute)

 	(cfme.control.explorer.policies.EventDetailsToolbar attribute)

 	(cfme.infrastructure.cluster.ClusterDetailsEntities attribute)

 	(cfme.infrastructure.cluster.ClusterDetailsToolbar attribute)

 	(cfme.infrastructure.cluster.ClusterToolbar attribute)

 	(cfme.infrastructure.datastore.DatastoreToolBar attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleDetailsToolbar attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleToolbar attribute)

 	(cfme.infrastructure.pxe.PXEToolBar attribute)

 	(cfme.infrastructure.resource_pool.ResourcePoolDetailsToolbar attribute)

 	(cfme.infrastructure.resource_pool.ResourcePoolToolbar attribute)

 	(cfme.infrastructure.virtual_machines.InfraGenericDetailsToolbar attribute)

 	(cfme.infrastructure.virtual_machines.Vm attribute)

 	(cfme.intelligence.chargeback.rates.RatesDetailView attribute)

 	(cfme.intelligence.chargeback.rates.RatesView attribute)

 	(cfme.intelligence.reports.CloudIntelReportsView attribute)

 	(cfme.networks.views.CloudNetworkToolBar attribute)

 	(cfme.networks.views.NetworkProviderToolBar attribute)

 	(cfme.networks.views.NetworkRouterToolBar attribute)

 	(cfme.networks.views.SecurityGroupToolBar attribute)

 	(cfme.networks.views.SubnetToolBar attribute)

 	(cfme.services.catalogs.ServicesCatalogView attribute)

 	(cfme.services.myservice.ssui.DetailsMyServiceView attribute)

 	(cfme.services.myservice.ui.MyServicesView attribute)

 	(cfme.storage.volume.VolumeDetailsToolbar attribute)

 	(cfme.storage.volume.VolumeToolbar attribute)

 	(cfme.test_framework.config.DeprecatedConfigWrapper attribute)

 	Configuration (class in cfme.base.ui)

 	

 	(class in cfme.test_framework.config)

 	configuration_details (cfme.utils.appliance.IPAppliance attribute)

 	configuration_details_old (cfme.utils.appliance.IPAppliance attribute)

 	configuration_management_providers (cfme.configure.settings.DefaultViewForm attribute)

 	ConfigurationView (class in cfme.base.ui)

 	configure() (cfme.test_framework.config.Configuration method)

 	

 	(cfme.utils.appliance.Appliance method)

 	(cfme.utils.appliance.IPAppliance method)

 	configure_appliance_external_create() (cfme.utils.appliance.ApplianceConsoleCli method)

 	configure_appliance_external_join() (cfme.utils.appliance.ApplianceConsoleCli method)

 	configure_appliance_for_openldap_ext_auth() (cfme.utils.appliance.IPAppliance method)

 	configure_appliance_internal_fetch_key() (cfme.utils.appliance.ApplianceConsoleCli method)

 	configure_auth() (in module cfme.fixtures.configure_auth_mode)

 	configure_aws_iam_auth_mode() (in module cfme.fixtures.configure_auth_mode)

 	configure_fleecing() (cfme.utils.appliance.Appliance method)

 	configure_gce() (cfme.utils.appliance.IPAppliance method)

 	configure_ipa() (cfme.utils.appliance.ApplianceConsoleCli method)

 	configure_ldap_auth_mode() (in module cfme.fixtures.configure_auth_mode)

 	configure_openldap_auth_mode() (in module cfme.fixtures.configure_auth_mode)

 	configure_openldap_auth_mode_default_groups() (in module cfme.fixtures.configure_auth_mode)

 	configure_vm_console_cert() (cfme.utils.appliance.IPAppliance method)

 	confirm_password (cfme.base.ui.DiagnosticsCollectLogsEditView attribute)

 	

 	(cfme.common.provider.DefaultEndpointForm attribute)

 	(cfme.infrastructure.pxe.PXEServerForm attribute)

 	connect() (cfme.utils.ftp.FTPClient method)

 	

 	(cfme.utils.ssh.SSHClient method)

 	connected (cfme.utils.ssh.SSHClient attribute)

 	console_handle (cfme.common.vm.BaseVM attribute)

 	console_template() (in module fixtures.provider)

 	console_template_modscope() (in module fixtures.provider)

 	CONSOLE_TYPES (cfme.configure.configuration.VMwareConsoleSupport attribute)

 	ConsoleNotSupported

 	ConsoleTypeNotSupported

 	consolidation (cfme.intelligence.reports.reports.CustomReportFormCommon attribute)

 	construst_message() (cfme.utils.appliance.implementations.ui.CFMENavigateStep method)

 	container (cfme.web_ui.InfoBlock.Member attribute)

 	Container (class in cfme.containers.container)

 	

 	(class in cfme.middleware.provider)

 	container() (cfme.web_ui.InfoBlock class method)

 	container_builds (cfme.configure.settings.DefaultViewForm attribute)

 	container_containers (cfme.configure.settings.DefaultViewForm attribute)

 	container_image_registries (cfme.configure.settings.DefaultViewForm attribute)

 	container_images (cfme.configure.settings.DefaultViewForm attribute)

 	container_nodes (cfme.configure.settings.DefaultViewForm attribute)

 	container_pods (cfme.configure.settings.DefaultViewForm attribute)

 	container_projects (cfme.configure.settings.DefaultViewForm attribute)

 	container_replicators (cfme.configure.settings.DefaultViewForm attribute)

 	container_routes (cfme.configure.settings.DefaultViewForm attribute)

 	container_services (cfme.configure.settings.DefaultViewForm attribute)

 	container_templates (cfme.configure.settings.DefaultViewForm attribute)

 	container_volumes (cfme.configure.settings.DefaultViewForm attribute)

 	ContainerAll (class in cfme.containers.container)

 	ContainerAllView (class in cfme.containers.container)

 	ContainerDetails (class in cfme.containers.container)

 	ContainerEditTags (class in cfme.containers.container)

 	ContainerImageCompliancePolicy (class in cfme.control.explorer.policies)

 	ContainerImageCondition (class in cfme.control.explorer.conditions)

 	ContainerImageControlPolicy (class in cfme.control.explorer.policies)

 	ContainerNodeCompliancePolicy (class in cfme.control.explorer.policies)

 	ContainerNodeCondition (class in cfme.control.explorer.conditions)

 	ContainerNodeControlPolicy (class in cfme.control.explorer.policies)

 	ContainerObjectAllBaseView (class in cfme.containers.provider)

 	containers (cfme.containers.container.ContainerAllView attribute)

 	containers_providers (cfme.configure.settings.DefaultViewForm attribute)

 	ContainersOverview (class in cfme.containers.overview)

 	ContainersProvider (class in cfme.containers.provider)

 	ContainersProviderAddView (class in cfme.common.provider_views)

 	ContainersProviderDefaultEndpoint (class in cfme.containers.provider)

 	ContainersProviderEditView (class in cfme.common.provider_views)

 	ContainersProviderEndpointsForm (class in cfme.containers.provider)

 	ContainersProvidersView (class in cfme.common.provider_views)

 	ContainersTestItem (class in cfme.containers.provider)

 	ContainerTimeLines (class in cfme.containers.container)

 	ContainerUtilization (class in cfme.containers.container)

 	contains_event() (cfme.web_ui.timelines.Timelines method)

 	content (cfme.automate.provisioning_dialogs.ProvDiagDetailsEntities attribute)

 	

 	(cfme.automate.provisioning_dialogs.ProvDiagForm attribute)

 	(cfme.services.catalogs.orchestration_template.CopyTemplateForm attribute)

 	content_type (cfme.dashboard.DashboardWidget attribute)

 	contents (cfme.common.provider_views.ProviderDetailsView attribute)

 	

 	(cfme.dashboard.DashboardWidget attribute)

 	(cfme.infrastructure.datastore.DatastoreDetailsView attribute)

 	ContextWrapper (class in cfme.fixtures.pytest_selenium)

 	ControlExplorer (class in cfme.control.explorer)

 	ControlExplorerView (class in cfme.control.explorer)

 	ControlImportExport (class in cfme.control.import_export)

 	ControlImportExportView (class in cfme.control.import_export)

 	controller_name() (in module cfme.web_ui)

 	ControlLog (class in cfme.control.log)

 	ControlLogView (class in cfme.control.log)

 	ControlSimulation (class in cfme.control.simulation)

 	ControlSimulationView (class in cfme.control.simulation)

 	convert_top_mem_to_mib() (in module cfme.utils.perf)

 	Copiable (class in cfme.automate.explorer.common)

 	copies (cfme.utils.bz.BugWrapper attribute)

 	copy (cfme.services.requests.RequestDetailsToolBar attribute)

 	Copy (class in cfme.automate.explorer.instance)

 	

 	(class in cfme.automate.explorer.klass)

 	(class in cfme.automate.explorer.method)

 	copy() (cfme.configure.access_control.Role method)

 	

 	(cfme.configure.access_control.User method)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfile method)

 	(cfme.configure.settings.Timeprofile method)

 	(cfme.control.explorer.alerts.Alert method)

 	(cfme.control.explorer.policies.BasePolicy method)

 	(cfme.infrastructure.virtual_machines.VMConfiguration method)

 	(cfme.utils.db.Db method)

 	(cfme.utils.providers.ProviderFilter method)

 	copy_button (cfme.automate.explorer.common.CopyViewBase attribute)

 	copy_of (cfme.utils.bz.BugWrapper attribute)

 	copy_request() (cfme.services.requests.Request method)

 	copy_role() (in module cfme.rest.gen_data)

 	copy_template() (cfme.services.catalogs.orchestration_template.OrchestrationTemplate method)

 	copy_to() (cfme.automate.explorer.common.Copiable method)

 	CopyRequest (class in cfme.services.requests)

 	CopyTemplate (class in cfme.services.catalogs.orchestration_template)

 	CopyTemplateForm (class in cfme.services.catalogs.orchestration_template)

 	CopyTemplateView (class in cfme.services.catalogs.orchestration_template)

 	CopyViewBase (class in cfme.automate.explorer.common)

 	cores_per_socket (cfme.infrastructure.virtual_machines.InfraVmReconfigureView attribute)

 	count (cfme.test_framework.sprout.plugin.SproutProvisioningRequest attribute)

 	count_form_view (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor attribute)

 	coverage (cfme.utils.appliance.IPAppliance attribute)

 	CoverageManager (class in fixtures.ui_coverage)

 	cpu (cfme.infrastructure.virtual_machines.InfraVmReconfigureView attribute)

 	

 	(cfme.test_framework.sprout.plugin.SproutProvisioningRequest attribute)

 	cpu_cb (cfme.configure.access_control.TenantQuotaForm attribute)

 	cpu_number (cfme.control.explorer.actions.ActionFormCommon attribute)

 	cpu_spike() (cfme.utils.ssh.SSHClient method)

 	cpu_total (cfme.infrastructure.virtual_machines.InfraVmReconfigureView attribute)

 	cpu_txt (cfme.configure.access_control.TenantQuotaForm attribute)

 	cpu_usagemhz_rate_average (cfme.fixtures.vporizer.vpor_data_instance attribute)

 	create (cfme.base.ZoneCollection attribute)

 	create() (cfme.ansible.credentials.CredentialsCollection method)

 	

 	(cfme.ansible.repositories.RepositoryCollection method)

 	(cfme.automate.buttons.Button method)

 	(cfme.automate.buttons.ButtonGroup method)

 	(cfme.automate.dialog_box.BoxCollection method)

 	(cfme.automate.dialog_element.ElementCollection method)

 	(cfme.automate.dialog_tab.TabCollection method)

 	(cfme.automate.explorer.domain.DomainCollection method)

 	(cfme.automate.explorer.instance.InstanceCollection method)

 	(cfme.automate.explorer.klass.ClassCollection method)

 	(cfme.automate.explorer.method.MethodCollection method)

 	(cfme.automate.explorer.namespace.NamespaceCollection method)

 	(cfme.automate.provisioning_dialogs.ProvisioningDialog method)

 	(cfme.automate.service_dialogs.DialogCollection method)

 	(cfme.cloud.instance.Instance method)

 	(cfme.cloud.instance.azure.AzureInstance method)

 	(cfme.cloud.instance.ec2.EC2Instance method)

 	(cfme.cloud.instance.gce.GCEInstance method)

 	(cfme.cloud.instance.openstack.OpenStackInstance method)

 	(cfme.cloud.keypairs.KeyPairCollection method)

 	(cfme.cloud.provider.openstack.OpenStackProvider method)

 	(cfme.cloud.tenant.TenantCollection method)

 	(cfme.common.provider.BaseProvider method)

 	(cfme.configure.access_control.Group method)

 	(cfme.configure.access_control.Role method)

 	(cfme.configure.access_control.Tenant method)

 	(cfme.configure.access_control.User method)

 	(cfme.configure.configuration.Category method)

 	(cfme.configure.configuration.DatabaseBackupSchedule method)

 	(cfme.configure.configuration.Schedule method)

 	(cfme.configure.configuration.ServerLogDepot method)

 	(cfme.configure.configuration.Tag method)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfile method)

 	(cfme.configure.configuration.region_settings.Category method)

 	(cfme.configure.configuration.region_settings.MapTags method)

 	(cfme.configure.configuration.region_settings.Tag method)

 	(cfme.configure.settings.Timeprofile method)

 	(cfme.control.explorer.actions.Action method)

 	(cfme.control.explorer.alert_profiles.BaseAlertProfile method)

 	(cfme.control.explorer.alerts.Alert method)

 	(cfme.control.explorer.conditions.BaseCondition method)

 	(cfme.control.explorer.policies.BasePolicy method)

 	(cfme.control.explorer.policy_profiles.PolicyProfile method)

 	(cfme.infrastructure.config_management.ConfigManager method)

 	(cfme.infrastructure.host.Host method)

 	(cfme.infrastructure.pxe.CustomizationTemplate method)

 	(cfme.infrastructure.pxe.ISODatastore method)

 	(cfme.infrastructure.pxe.PXEServer method)

 	(cfme.infrastructure.pxe.SystemImageType method)

 	(cfme.infrastructure.virtual_machines.Vm.Snapshot method)

 	(cfme.intelligence.chargeback.rates.ComputeRate method)

 	(cfme.intelligence.reports.dashboards.Dashboard method)

 	(cfme.intelligence.reports.reports.CustomReport method)

 	(cfme.intelligence.reports.schedules.ScheduleCollection method)

 	(cfme.intelligence.reports.widgets.BaseDashboardReportWidget method)

 	(cfme.services.catalogs.ansible_catalog_item.AnsiblePlaybookCatalogItem method)

 	(cfme.services.catalogs.catalog.Catalog method)

 	(cfme.services.catalogs.catalog_item.CatalogBundle method)

 	(cfme.services.catalogs.catalog_item.CatalogItem method)

 	(cfme.services.catalogs.orchestration_template.OrchestrationTemplate method)

 	(cfme.utils.browser.BrowserFactory method)

 	(cfme.utils.browser.WharfFactory method)

 	(in module cfme.base.ui)

 	create_dict() (in module cfme.utils.smem_memory_monitor)

 	CREATE_LOC (cfme.configure.configuration.analysis_profile.AnalysisProfile attribute)

 	create_on_provider() (cfme.common.vm.VM method)

 	create_process_result() (cfme.utils.smem_memory_monitor.SmemMemoryMonitor method)

 	create_program() (in module cfme.web_ui.expression_editor_widgetastic)

 	create_program_from_list() (in module cfme.web_ui.expression_editor_widgetastic)

 	create_report() (in module cfme.utils.smem_memory_monitor)

 	create_rest() (cfme.common.provider.BaseProvider method)

 	create_row_from_element() (cfme.web_ui.Table method)

 	create_service_dialog_from_template() (cfme.services.catalogs.orchestration_template.OrchestrationTemplate method)

 	create_sublogger() (in module cfme.utils.log)

 	create_view() (cfme.utils.appliance.implementations.Implementation method)

 	

 	(cfme.utils.appliance.NavigatableMixin method)

 	(cfme.utils.appliance.implementations.ssui.MiqSSUIBrowser method)

 	(cfme.utils.appliance.implementations.ssui.SSUINavigateStep method)

 	(cfme.utils.appliance.implementations.ui.CFMENavigateStep method)

 	(cfme.utils.appliance.implementations.ui.MiqBrowser method)

 	created_on (cfme.automate.explorer.method.MethodDetailsView attribute)

 	Credential (class in cfme.ansible.credentials)

 	

 	(class in cfme.base.credential)

 	credential_class (cfme.cloud.provider.gce.GCEEndpoint attribute)

 	

 	(cfme.common.provider.CANDUEndpoint attribute)

 	(cfme.common.provider.DefaultEndpoint attribute)

 	(cfme.common.provider.EventsEndpoint attribute)

 	(cfme.common.provider.SSHEndpoint attribute)

 	(cfme.containers.provider.ContainersProviderDefaultEndpoint attribute)

 	credential_form (cfme.ansible.credentials.CredentialFormView attribute)

 	credential_options (cfme.ansible.credentials.CredentialDetailsView attribute)

 	credential_type (cfme.ansible.credentials.CredentialAddView attribute)

 	

 	(cfme.ansible.credentials.CredentialEditView attribute)

 	CredentialAddView (class in cfme.ansible.credentials)

 	CredentialDetailsView (class in cfme.ansible.credentials)

 	CredentialEditView (class in cfme.ansible.credentials)

 	CredentialFormAmazonView (cfme.ansible.credentials.CredentialFormView attribute)

 	CredentialFormDefaultView (cfme.ansible.credentials.CredentialFormView attribute)

 	CredentialFormMachineView (cfme.ansible.credentials.CredentialFormView attribute)

 	CredentialFormScmView (cfme.ansible.credentials.CredentialFormView attribute)

 	CredentialFormView (class in cfme.ansible.credentials)

 	CredentialFormVMwareView (cfme.ansible.credentials.CredentialFormView attribute)

 	credentials (cfme.ansible.credentials.CredentialsListView attribute)

 	CredentialsBaseView (class in cfme.ansible.credentials)

 	CredentialsCollection (class in cfme.ansible.credentials)

 	CredentialsListView (class in cfme.ansible.credentials)

 	CSRF_TOKEN (cfme.base.login.BaseLoggedInPage attribute)

 	csrf_token (cfme.base.login.BaseLoggedInPage attribute)

 	CUCommandException

 	currency (cfme.intelligence.chargeback.rates.AddComputeChargebackView attribute)

 	current_appliance (fixtures.pytest_store.Store attribute)

 	current_full_name (cfme.base.Server attribute)

 	current_full_name() (in module cfme.base.ui)

 	current_fullname (cfme.base.login.BaseLoggedInPage attribute)

 	

 	(cfme.base.ssui.SSUIBaseLoggedInPage attribute)

 	(cfme.base.ui.LoginPage attribute)

 	current_service() (in module cfme.services.dashboard.ssui)

 	current_services (cfme.services.dashboard.Dashboard attribute)

 	current_snapshot_description (cfme.infrastructure.virtual_machines.Vm attribute)

 	current_snapshot_name (cfme.infrastructure.virtual_machines.Vm attribute)

 	current_stream() (in module cfme.utils.version)

 	current_url() (in module cfme.fixtures.pytest_selenium)

 	current_username (cfme.base.login.BaseLoggedInPage attribute)

 	

 	(cfme.base.Server attribute)

 	(cfme.base.ssui.SSUIBaseLoggedInPage attribute)

 	(cfme.base.ui.LoginPage attribute)

 	current_version() (in module cfme.utils.version)

 	CurrentAppliance (class in cfme.utils.appliance)

 	currently_selected (cfme.common.vm_views.SelectTable attribute)

 	CurrentServices (class in cfme.services.dashboard.ssui)

 	custom_attributes() (cfme.containers.provider.openshift.OpenshiftProvider method)

 	custom_button (cfme.common.host_views.HostDetailsToolbar attribute)

 	custom_ident (cfme.common.host_views.HostFormView attribute)

 	custom_image (cfme.services.catalogs.ansible_catalog_item.DetailsEntitiesAnsibleCatalogItemView attribute)

 	CustomAttribute (class in cfme.containers.provider.openshift)

 	customer_portal (cfme.configure.documentation.LinksView attribute)

 	customization_dir (cfme.infrastructure.pxe.PXEServerForm attribute)

 	CustomizationTemplate (class in cfme.infrastructure.pxe)

 	CustomizationTemplateAdd (class in cfme.infrastructure.pxe)

 	CustomizationTemplateAll (class in cfme.infrastructure.pxe)

 	CustomizationTemplateDetails (class in cfme.infrastructure.pxe)

 	CustomizationTemplateEdit (class in cfme.infrastructure.pxe)

 	customize (cfme.common.vm_views.BasicProvisionFormView attribute)

 	

 	(cfme.services.requests.RequestDetailsView attribute)

 	customlogos (cfme.base.ui.ServerView attribute)

 	CustomLogos (class in cfme.base.ui)

 	CustomReport (class in cfme.intelligence.reports.reports)

 	CustomReportAll (class in cfme.intelligence.reports.reports)

 	CustomReportDetails (class in cfme.intelligence.reports.reports)

 	CustomReportDetailsView (class in cfme.intelligence.reports.reports)

 	CustomReportEdit (class in cfme.intelligence.reports.reports)

 	CustomReportFormCommon (class in cfme.intelligence.reports.reports)

 	CustomReportNew (class in cfme.intelligence.reports.reports)

 	CustomSavedReport (class in cfme.intelligence.reports.reports)

 	CustomSavedReportDetails (class in cfme.intelligence.reports.reports)

 	CustomSavedReportDetailsView (class in cfme.intelligence.reports.reports)

 	cwd() (cfme.utils.ftp.FTPClient method)

D

 	

 	dashboard (cfme.dashboard.DashboardWidget attribute)

 	Dashboard (class in cfme.base.ui)

 	

 	(class in cfme.dashboard)

 	(class in cfme.intelligence.reports.dashboards)

 	(class in cfme.services.dashboard)

 	dashboard_card (cfme.services.dashboard.ssui.DashboardView attribute)

 	dashboard_view (cfme.dashboard.Dashboard attribute)

 	

 	(cfme.dashboard.DashboardWidgetCollection attribute)

 	dashboard_widgets (cfme.intelligence.reports.CloudIntelReportsView attribute)

 	DashboardAll (class in cfme.services.dashboard.ssui)

 	DashboardAllGroupsView (class in cfme.intelligence.reports.dashboards)

 	DashboardCollection (class in cfme.dashboard)

 	DashboardDetails (class in cfme.dashboard)

 	

 	(class in cfme.intelligence.reports.dashboards)

 	DashboardDetailsView (class in cfme.intelligence.reports.dashboards)

 	DashboardEdit (class in cfme.intelligence.reports.dashboards)

 	DashboardFormCommon (class in cfme.intelligence.reports.dashboards)

 	DashboardNew (class in cfme.intelligence.reports.dashboards)

 	dashboards (cfme.dashboard.DashboardView attribute)

 	

 	(cfme.intelligence.reports.CloudIntelReportsView attribute)

 	dashboards() (in module cfme.fixtures.model_collections)

 	DashboardView (class in cfme.dashboard)

 	

 	(class in cfme.services.dashboard.ssui)

 	DashboardWidget (class in cfme.dashboard)

 	DashboardWidgetCollection (class in cfme.dashboard)

 	DashboardWidgetDetailsView (class in cfme.intelligence.reports.widgets)

 	DashboardWidgetsView (class in cfme.intelligence.reports.widgets)

 	data (cfme.automate.explorer.method.MethodAddView attribute)

 	

 	(cfme.automate.explorer.method.MethodEditView attribute)

 	(cfme.common.host_views.HostQuadIconEntity attribute)

 	(cfme.common.provider.BaseProvider attribute)

 	(cfme.common.vm_views.InstanceQuadIconEntity attribute)

 	(cfme.infrastructure.deployment_roles.DepRoleQuadIconEntity attribute)

 	(cfme.intelligence.reports.reports.CustomSavedReport attribute)

 	(cfme.utils.blockers.BZ attribute)

 	(cfme.utils.blockers.GH attribute)

 	data_block (cfme.web_ui.jstimelines.Event attribute)

 	data_path (in module cfme.utils.path)

 	data_path_for_filename() (in module cfme.utils.datafile)

 	database (cfme.base.ui.RegionDiagnosticsView attribute)

 	database_on_server() (in module cfme.utils.db)

 	DatabaseAuthSetting (class in cfme.configure.configuration)

 	DatabaseBackupSchedule (class in cfme.configure.configuration)

 	datafile() (in module fixtures.datafile)

 	datasource (cfme.middleware.provider.middleware_views.DatasourceDetailsAccordion attribute)

 	datasource() (cfme.middleware.datasource.MiddlewareDatasource method)

 	datasource_in_db (cfme.middleware.datasource.MiddlewareDatasource attribute)

 	datasource_in_mgmt (cfme.middleware.datasource.MiddlewareDatasource attribute)

 	datasource_in_rest (cfme.middleware.datasource.MiddlewareDatasource attribute)

 	DatasourceAllToolbar (class in cfme.middleware.provider.middleware_views)

 	DatasourceAllView (class in cfme.middleware.provider.middleware_views)

 	DatasourceDetailsAccordion (class in cfme.middleware.provider.middleware_views)

 	DatasourceDetailsEntities (class in cfme.middleware.provider.middleware_views)

 	DatasourceDetailsToolbar (class in cfme.middleware.provider.middleware_views)

 	DatasourceDetailsView (class in cfme.middleware.provider.middleware_views)

 	DatasourceEntitiesView (class in cfme.middleware.provider.middleware_views)

 	datasources (cfme.middleware.provider.middleware_views.ServerDetailsToolbar attribute)

 	datasources() (cfme.middleware.datasource.MiddlewareDatasource class method)

 	datasources_in_db() (cfme.middleware.datasource.MiddlewareDatasource class method)

 	datasources_in_mgmt() (cfme.middleware.datasource.MiddlewareDatasource class method)

 	DatasourceView (class in cfme.middleware.provider.middleware_views)

 	DATASTORE (cfme.automate.buttons.ButtonGroup attribute)

 	datastore (cfme.automate.explorer.AutomateExplorerView attribute)

 	Datastore (class in cfme.infrastructure.datastore)

 	datastore_allocation (cfme.infrastructure.virtual_machines.InfraVmSummaryView attribute)

 	datastore_quad (cfme.configure.settings.Visual attribute)

 	datastore_usage (cfme.infrastructure.virtual_machines.InfraVmSummaryView attribute)

 	DatastoreAlertProfile (class in cfme.control.explorer.alert_profiles)

 	DatastoreCollection (class in cfme.infrastructure.datastore)

 	DatastoreDetailsView (class in cfme.infrastructure.datastore)

 	DatastoreEntities (class in cfme.infrastructure.datastore)

 	datastores (cfme.infrastructure.datastore.DatastoreSideBar attribute)

 	

 	(cfme.infrastructure.pxe.PXESideBar attribute)

 	DatastoreSideBar (class in cfme.infrastructure.datastore)

 	DatastoresView (class in cfme.infrastructure.datastore)

 	DatastoreToolBar (class in cfme.infrastructure.datastore)

 	date (cfme.test_framework.sprout.plugin.SproutProvisioningRequest attribute)

 	date_relative_form_view (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor attribute)

 	date_retire_element() (in module cfme.common.vm)

 	date_specific_form_view (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor attribute)

 	datestamp (cfme.utils.trackerbot.TemplateInfo attribute)

 	days (cfme.configure.settings.TimeProfileAddForm attribute)

 	db (cfme.utils.appliance.IPAppliance attribute)

 	Db (class in cfme.utils.db)

 	db_id (cfme.automate.explorer.domain.Domain attribute)

 	

 	(cfme.automate.explorer.instance.Instance attribute)

 	(cfme.automate.explorer.klass.Class attribute)

 	(cfme.automate.explorer.method.Method attribute)

 	(cfme.automate.explorer.namespace.Namespace attribute)

 	db_object (cfme.ansible.repositories.Repository attribute)

 	

 	(cfme.automate.explorer.domain.Domain attribute)

 	(cfme.automate.explorer.instance.Instance attribute)

 	(cfme.automate.explorer.klass.Class attribute)

 	(cfme.automate.explorer.method.Method attribute)

 	(cfme.automate.explorer.namespace.Namespace attribute)

 	db_root_password (cfme.services.catalogs.service_catalogs.OrderForm attribute)

 	db_types (cfme.cloud.provider.azure.AzureProvider attribute)

 	

 	(cfme.cloud.provider.CloudProvider attribute)

 	(cfme.cloud.provider.ec2.EC2Provider attribute)

 	(cfme.cloud.provider.gce.GCEProvider attribute)

 	(cfme.cloud.provider.openstack.OpenStackProvider attribute)

 	(cfme.common.provider.BaseProvider attribute)

 	(cfme.common.provider.CloudInfraProvider attribute)

 	(cfme.containers.provider.ContainersProvider attribute)

 	(cfme.containers.provider.kubernetes.KubernetesProvider attribute)

 	(cfme.containers.provider.openshift.OpenshiftProvider attribute)

 	(cfme.infrastructure.provider.InfraProvider attribute)

 	(cfme.infrastructure.provider.openstack_infra.OpenstackInfraProvider attribute)

 	(cfme.infrastructure.provider.rhevm.RHEVMProvider attribute)

 	(cfme.infrastructure.provider.scvmm.SCVMMProvider attribute)

 	(cfme.infrastructure.provider.virtualcenter.VMwareProvider attribute)

 	(cfme.middleware.provider.MiddlewareProvider attribute)

 	(cfme.middleware.provider.hawkular.HawkularProvider attribute)

 	(cfme.networks.balancer.Balancer attribute)

 	(cfme.networks.cloud_network.CloudNetwork attribute)

 	(cfme.networks.network_port.NetworkPort attribute)

 	(cfme.networks.network_router.NetworkRouter attribute)

 	(cfme.networks.provider.NetworkProvider attribute)

 	(cfme.networks.security_group.SecurityGroup attribute)

 	(cfme.networks.subnet.Subnet attribute)

 	db_url (cfme.utils.db.Db attribute)

 	db_user (cfme.services.catalogs.service_catalogs.OrderForm attribute)

 	DbAllocatorConfigNotFound

 	DD_BASE (cfme.web_ui.utilization.Option attribute)

 	decide() (cfme.web_ui.CFMECheckbox method)

 	

 	(cfme.web_ui.Selector method)

 	declare() (cfme.utils.appliance.plugin.AppliancePlugin class method)

 	dedicated_db_appliance() (in module cfme.fixtures.cli)

 	default (cfme.containers.provider.ContainersProviderEndpointsForm attribute)

 	

 	(cfme.dashboard.DashboardCollection attribute)

 	(cfme.infrastructure.provider.openstack_infra.OpenStackInfraEndpointForm attribute)

 	(cfme.infrastructure.provider.rhevm.RHEVMEndpointForm attribute)

 	DEFAULT (markers.meta.PluginContainer attribute)

 	default() (cfme.web_ui.multibox.MultiBoxSelect class method)

 	default_button (cfme.intelligence.reports.menus.EditReportMenusView attribute)

 	default_endpoint (cfme.common.provider.BaseProvider attribute)

 	default_filter() (cfme.web_ui.Filter method)

 	default_for_windows (cfme.infrastructure.pxe.PXEImageEditView attribute)

 	default_product (cfme.utils.bz.Bugzilla attribute)

 	default_release (cfme.utils.bz.Product attribute)

 	DEFAULT_REPOSITORY (cfme.utils.blockers.GH attribute)

 	default_select_value (cfme.services.catalogs.service_catalogs.OrderForm attribute)

 	default_text_box (cfme.automate.dialog_element.ElementForm attribute)

 	default_value (cfme.automate.dialog_element.ElementForm attribute)

 	

 	(cfme.services.catalogs.ansible_catalog_item.AnsibleExtraVariables attribute)

 	DEFAULT_WAIT (cfme.utils.appliance.implementations.ui.MiqBrowserPlugin attribute)

 	default_zone (cfme.utils.appliance.IPAppliance attribute)

 	DefaultDashboard (class in cfme.intelligence.reports.dashboards)

 	DefaultDashboardDetails (class in cfme.intelligence.reports.dashboards)

 	DefaultDashboardDetailsView (class in cfme.intelligence.reports.dashboards)

 	DefaultDashboardEdit (class in cfme.intelligence.reports.dashboards)

 	DefaultEndpoint (class in cfme.common.provider)

 	DefaultEndpointForm (class in cfme.common.provider)

 	DefaultFilter (class in cfme.configure.settings)

 	DefaultFilterAll (class in cfme.configure.settings)

 	DefaultFilterForm (class in cfme.configure.settings)

 	DefaultView (class in cfme.configure.settings)

 	DefaultViewAll (class in cfme.configure.settings)

 	DefaultViewForm (class in cfme.configure.settings)

 	deferred_verpick (class in cfme.utils)

 	dele() (cfme.utils.ftp.FTPClient method)

 	delete (cfme.base.Zone attribute)

 	DELETE (cfme.cloud.instance.azure.AzureInstance attribute)

 	

 	(cfme.cloud.instance.ec2.EC2Instance attribute)

 	(cfme.cloud.instance.gce.GCEInstance attribute)

 	(cfme.cloud.instance.openstack.OpenStackInstance attribute)

 	delete (cfme.configure.tasks.TasksView attribute)

 	

 	(cfme.services.catalogs.ansible_catalog_item.ActionsCell attribute)

 	(cfme.services.myservice.MyService attribute)

 	(cfme.services.requests.RequestDetailsToolBar attribute)

 	delete() (cfme.ansible.credentials.Credential method)

 	

 	(cfme.ansible.repositories.Repository method)

 	(cfme.ansible.repositories.RepositoryCollection method)

 	(cfme.automate.buttons.Button method)

 	(cfme.automate.buttons.ButtonGroup method)

 	(cfme.automate.explorer.domain.Domain method)

 	(cfme.automate.explorer.domain.DomainCollection method)

 	(cfme.automate.explorer.instance.Instance method)

 	(cfme.automate.explorer.instance.InstanceCollection method)

 	(cfme.automate.explorer.klass.Class method)

 	(cfme.automate.explorer.klass.ClassCollection method)

 	(cfme.automate.explorer.method.Method method)

 	(cfme.automate.explorer.method.MethodCollection method)

 	(cfme.automate.explorer.namespace.Namespace method)

 	(cfme.automate.explorer.namespace.NamespaceCollection method)

 	(cfme.automate.provisioning_dialogs.ProvisioningDialog method)

 	(cfme.automate.service_dialogs.Dialog method)

 	(cfme.cloud.keypairs.KeyPair method)

 	(cfme.cloud.stack.Stack method)

 	(cfme.cloud.stack.StackCollection method)

 	(cfme.cloud.tenant.Tenant method)

 	(cfme.cloud.tenant.TenantCollection method)

 	(cfme.common.provider.BaseProvider method)

 	(cfme.common.vm.BaseVM method)

 	(cfme.configure.access_control.Group method)

 	(cfme.configure.access_control.Role method)

 	(cfme.configure.access_control.Tenant method)

 	(cfme.configure.access_control.User method)

 	(cfme.configure.configuration.Category method)

 	(cfme.configure.configuration.Schedule method)

 	(cfme.configure.configuration.Tag method)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfile method)

 	(cfme.configure.configuration.region_settings.Category method)

 	(cfme.configure.configuration.region_settings.MapTags method)

 	(cfme.configure.configuration.region_settings.Tag method)

 	(cfme.configure.settings.Timeprofile method)

 	(cfme.control.explorer.actions.Action method)

 	(cfme.control.explorer.alert_profiles.BaseAlertProfile method)

 	(cfme.control.explorer.alerts.Alert method)

 	(cfme.control.explorer.conditions.BaseCondition method)

 	(cfme.control.explorer.policies.BasePolicy method)

 	(cfme.control.explorer.policy_profiles.PolicyProfile method)

 	(cfme.infrastructure.cluster.Cluster method)

 	(cfme.infrastructure.cluster.ClusterCollection method)

 	(cfme.infrastructure.config_management.ConfigManager method)

 	(cfme.infrastructure.datastore.Datastore method)

 	(cfme.infrastructure.datastore.DatastoreCollection method)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleCollection method)

 	(cfme.infrastructure.deployment_roles.DeploymentRoles method)

 	(cfme.infrastructure.host.Host method)

 	(cfme.infrastructure.pxe.CustomizationTemplate method)

 	(cfme.infrastructure.pxe.ISODatastore method)

 	(cfme.infrastructure.pxe.PXEServer method)

 	(cfme.infrastructure.pxe.SystemImageType method)

 	(cfme.infrastructure.resource_pool.ResourcePool method)

 	(cfme.infrastructure.virtual_machines.Vm.Snapshot method)

 	(cfme.intelligence.chargeback.rates.ComputeRate method)

 	(cfme.intelligence.reports.dashboards.Dashboard method)

 	(cfme.intelligence.reports.reports.CannedSavedReport method)

 	(cfme.intelligence.reports.reports.CustomReport method)

 	(cfme.intelligence.reports.saved.SavedReport method)

 	(cfme.intelligence.reports.schedules.Schedule method)

 	(cfme.intelligence.reports.widgets.BaseDashboardReportWidget method)

 	(cfme.middleware.datasource.MiddlewareDatasource method)

 	(cfme.networks.provider.NetworkProvider method)

 	(cfme.services.catalogs.ansible_catalog_item.AnsiblePlaybookCatalogItem method)

 	(cfme.services.catalogs.catalog.Catalog method)

 	(cfme.services.catalogs.catalog_item.CatalogItem method)

 	(cfme.services.catalogs.orchestration_template.OrchestrationTemplate method)

 	(cfme.storage.volume.Volume method)

 	(cfme.storage.volume.VolumeCollection method)

 	(in module cfme.base.ui)

 	(in module cfme.services.myservice.ui)

 	DELETE_ALL (cfme.web_ui.DynamicTable attribute)

 	delete_all() (cfme.infrastructure.virtual_machines.Vm.Snapshot method)

 	delete_all_attached_hosts() (cfme.infrastructure.datastore.Datastore method)

 	delete_all_attached_vms() (cfme.infrastructure.datastore.Datastore method)

 	delete_all_providers() (cfme.utils.appliance.IPAppliance method)

 	delete_all_tasks() (in module cfme.configure.tasks)

 	delete_all_templates() (cfme.services.catalogs.orchestration_template.OrchestrationTemplate method)

 	delete_custom_attributes() (cfme.containers.provider.openshift.OpenshiftProvider method)

 	delete_disk() (cfme.infrastructure.virtual_machines.VMConfiguration method)

 	delete_field() (cfme.automate.explorer.klass.ClassSchema method)

 	delete_fields() (cfme.automate.explorer.klass.ClassSchema method)

 	delete_filter() (in module cfme.web_ui.search)

 	delete_from_provider() (cfme.common.vm.VM method)

 	delete_if_exists() (cfme.automate.buttons.Button method)

 	

 	(cfme.automate.buttons.ButtonGroup method)

 	(cfme.automate.explorer.domain.Domain method)

 	(cfme.automate.explorer.instance.Instance method)

 	(cfme.automate.explorer.klass.Class method)

 	(cfme.automate.explorer.method.Method method)

 	(cfme.automate.explorer.namespace.Namespace method)

 	(cfme.automate.service_dialogs.Dialog method)

 	(cfme.common.provider.BaseProvider method)

 	(cfme.control.explorer.actions.Action method)

 	(cfme.intelligence.reports.reports.CannedSavedReport method)

 	delete_on_update (cfme.ansible.repositories.RepositoryFormView attribute)

 	delete_provider_template() (in module cfme.utils.trackerbot)

 	delete_row() (cfme.web_ui.DynamicTable method)

 	delete_schedules() (cfme.intelligence.reports.schedules.ScheduleCollection method)

 	delete_whole_expression() (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor method)

 	

 	(in module cfme.web_ui.expression_editor)

 	deny (cfme.services.requests.RequestDetailsToolBar attribute)

 	deny_request() (cfme.services.requests.Request method)

 	deny_request_ui (cfme.services.requests.Request attribute)

 	DenyRequest (class in cfme.services.requests)

 	depaginate() (in module cfme.utils.trackerbot)

 	dependent() (in module cfme.utils.version)

 	deploy_button (cfme.middleware.provider.middleware_views.AddDeploymentForm attribute)

 	

 	(cfme.middleware.provider.middleware_views.AddJDBCDriverForm attribute)

 	deploy_merkyl() (cfme.utils.appliance.IPAppliance method)

 	deploy_template() (in module cfme.utils.virtual_machines)

 	Deployable (class in cfme.middleware.provider)

 	deployment (cfme.middleware.provider.middleware_views.DeploymentDetailsAccordion attribute)

 	deployment() (cfme.middleware.deployment.MiddlewareDeployment method)

 	deployment_helper() (cfme.cloud.provider.azure.AzureProvider method)

 	

 	(cfme.cloud.provider.openstack.OpenStackProvider method)

 	(cfme.common.provider.BaseProvider method)

 	(cfme.infrastructure.provider.rhevm.RHEVMProvider method)

 	(cfme.infrastructure.provider.scvmm.SCVMMProvider method)

 	(cfme.infrastructure.provider.virtualcenter.VMwareProvider method)

 	deployment_in_db (cfme.middleware.deployment.MiddlewareDeployment attribute)

 	deployment_in_mgmt (cfme.middleware.deployment.MiddlewareDeployment attribute)

 	deployment_in_rest (cfme.middleware.deployment.MiddlewareDeployment attribute)

 	deployment_message (cfme.middleware.server.MiddlewareServer attribute)

 	

 	(cfme.middleware.server_group.MiddlewareServerGroup attribute)

 	DeploymentAllToolbar (class in cfme.middleware.provider.middleware_views)

 	DeploymentAllView (class in cfme.middleware.provider.middleware_views)

 	DeploymentDetailsAccordion (class in cfme.middleware.provider.middleware_views)

 	DeploymentDetailsEntities (class in cfme.middleware.provider.middleware_views)

 	DeploymentDetailsToolbar (class in cfme.middleware.provider.middleware_views)

 	DeploymentDetailsView (class in cfme.middleware.provider.middleware_views)

 	DeploymentEntitiesView (class in cfme.middleware.provider.middleware_views)

 	DeploymentRoleAllForProviderView (class in cfme.infrastructure.deployment_roles)

 	DeploymentRoleAllView (class in cfme.infrastructure.deployment_roles)

 	DeploymentRoleCollection (class in cfme.infrastructure.deployment_roles)

 	DeploymentRoleComparisonEntities (class in cfme.infrastructure.deployment_roles)

 	DeploymentRoleComparisonToolbar (class in cfme.infrastructure.deployment_roles)

 	DeploymentRoleComparisonView (class in cfme.infrastructure.deployment_roles)

 	DeploymentRoleDetailsAccordion (class in cfme.infrastructure.deployment_roles)

 	DeploymentRoleDetailsEntities (class in cfme.infrastructure.deployment_roles)

 	DeploymentRoleDetailsToolbar (class in cfme.infrastructure.deployment_roles)

 	DeploymentRoleDetailsView (class in cfme.infrastructure.deployment_roles)

 	DeploymentRoleEditTagsView (class in cfme.infrastructure.deployment_roles)

 	DeploymentRoleEntitiesView (class in cfme.infrastructure.deployment_roles)

 	DeploymentRoleEntity() (in module cfme.infrastructure.deployment_roles)

 	DeploymentRoleManagePoliciesView (class in cfme.infrastructure.deployment_roles)

 	

 	DeploymentRoles (class in cfme.infrastructure.deployment_roles)

 	DeploymentRoleToolbar (class in cfme.infrastructure.deployment_roles)

 	DeploymentRoleView (class in cfme.infrastructure.deployment_roles)

 	deployments (cfme.middleware.provider.middleware_views.ServerDetailsToolbar attribute)

 	

 	(cfme.middleware.provider.middleware_views.ServerGroupDetailsToolbar attribute)

 	deployments() (cfme.middleware.deployment.MiddlewareDeployment class method)

 	deployments_in_db() (cfme.middleware.deployment.MiddlewareDeployment class method)

 	deployments_in_mgmt() (cfme.middleware.deployment.MiddlewareDeployment class method)

 	DeploymentView (class in cfme.middleware.provider.middleware_views)

 	depot_name (cfme.base.ui.DiagnosticsCollectLogsEditView attribute)

 	depot_type (cfme.base.ui.DiagnosticsCollectLogsEditView attribute)

 	

 	(cfme.infrastructure.pxe.PXEServerForm attribute)

 	DeprecatedConfigWrapper (class in cfme.test_framework.config)

 	DepRoleListEntity (class in cfme.infrastructure.deployment_roles)

 	DepRoleQuadIconEntity (class in cfme.infrastructure.deployment_roles)

 	DepRoleTileIconEntity (class in cfme.infrastructure.deployment_roles)

 	derived_memory_used (cfme.fixtures.vporizer.vpor_data_instance attribute)

 	desc (cfme.test_framework.sprout.plugin.SproutProvisioningRequest attribute)

 	description (cfme.ansible.repositories.RepositoryFormView attribute)

 	

 	(cfme.automate.explorer.domain.DomainForm attribute)

 	(cfme.automate.explorer.instance.Instance attribute)

 	(cfme.automate.explorer.instance.InstanceAddView attribute)

 	(cfme.automate.explorer.instance.InstanceEditView attribute)

 	(cfme.automate.explorer.klass.Class attribute)

 	(cfme.automate.explorer.klass.ClassForm attribute)

 	(cfme.automate.explorer.namespace.Namespace attribute)

 	(cfme.automate.explorer.namespace.NamespaceForm attribute)

 	(cfme.automate.provisioning_dialogs.ProvDiagForm attribute)

 	(cfme.automate.service_dialogs.DialogForm attribute)

 	(cfme.base.ui.ZoneForm attribute)

 	(cfme.configure.access_control.TenantForm attribute)

 	(cfme.configure.access_control.User attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileBaseAddForm attribute)

 	(cfme.configure.settings.TimeProfileAddForm attribute)

 	(cfme.control.explorer.actions.ActionFormCommon attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfileFormCommon attribute)

 	(cfme.control.explorer.alerts.AlertFormCommon attribute)

 	(cfme.control.explorer.conditions.ConditionFormCommon attribute)

 	(cfme.control.explorer.policies.PolicyFormCommon attribute)

 	(cfme.control.explorer.policy_profiles.PolicyProfileFormCommon attribute)

 	(cfme.infrastructure.pxe.PXECustomizationTemplateForm attribute)

 	(cfme.intelligence.chargeback.rates.AddComputeChargebackView attribute)

 	(cfme.intelligence.reports.schedules.SchedulesFormCommon attribute)

 	(cfme.intelligence.reports.widgets.BaseDashboardWidgetFormCommon attribute)

 	(cfme.services.catalogs.ansible_catalog_item.AnsibleCatalogItemForm attribute)

 	(cfme.services.catalogs.catalog.CatalogForm attribute)

 	(cfme.services.catalogs.catalog_item.BasicInfoForm attribute)

 	(cfme.services.catalogs.orchestration_template.CopyTemplateForm attribute)

 	(cfme.services.myservice.ssui.ServiceEditForm attribute)

 	(cfme.services.myservice.ui.ServiceEditForm attribute)

 	description_txt (cfme.configure.access_control.GroupForm attribute)

 	deselect_all() (cfme.fixtures.pytest_selenium.Select method)

 	

 	(cfme.web_ui.CheckboxTable method)

 	deselect_by_text() (in module cfme.fixtures.pytest_selenium)

 	deselect_by_value() (in module cfme.fixtures.pytest_selenium)

 	deselect_row() (cfme.web_ui.CheckboxTable method)

 	deselect_row_by_cells() (cfme.web_ui.CheckboxTable method)

 	deselect_rows() (cfme.web_ui.CheckboxTable method)

 	deselect_rows_by_cells() (cfme.web_ui.CheckboxTable method)

 	deselect_rows_by_indexes() (cfme.web_ui.CheckboxTable method)

 	DestinationNotFound

 	destroy() (cfme.utils.appliance.Appliance method)

 	destroy_pool() (cfme.test_framework.sprout.client.SproutClient method)

 	

 	(cfme.test_framework.sprout.plugin.SproutManager method)

 	DetachVolume (class in cfme.cloud.instance.openstack)

 	DetachVolumeView (class in cfme.cloud.instance.openstack)

 	DETAIL (cfme.web_ui.InfoBlock attribute)

 	detail_page_suffix (cfme.common.provider.CloudInfraProvider attribute)

 	

 	(cfme.containers.provider.ContainersProvider attribute)

 	(cfme.middleware.provider.MiddlewareProvider attribute)

 	(cfme.networks.balancer.Balancer attribute)

 	(cfme.networks.provider.NetworkProvider attribute)

 	details (cfme.base.ui.LoginPage attribute)

 	

 	(cfme.base.ui.RegionView attribute)

 	(cfme.services.myservice.ui.MyServiceDetailView attribute)

 	(cfme.services.requests.RequestDetailsView attribute)

 	Details (class in cfme.ansible.credentials)

 	

 	(class in cfme.ansible.playbooks)

 	(class in cfme.ansible.repositories)

 	(class in cfme.automate.explorer.domain)

 	(class in cfme.automate.explorer.instance)

 	(class in cfme.automate.explorer.klass)

 	(class in cfme.automate.explorer.method)

 	(class in cfme.automate.explorer.namespace)

 	(class in cfme.automate.provisioning_dialogs)

 	(class in cfme.automate.service_dialogs)

 	(class in cfme.base.ui)

 	(class in cfme.cloud.instance)

 	(class in cfme.cloud.keypairs)

 	(class in cfme.cloud.provider)

 	(class in cfme.cloud.stack)

 	(class in cfme.configure.configuration.region_settings)

 	(class in cfme.containers.image)

 	(class in cfme.containers.node)

 	(class in cfme.containers.pod)

 	(class in cfme.containers.project)

 	(class in cfme.containers.provider)

 	(class in cfme.containers.replicator)

 	(class in cfme.containers.route)

 	(class in cfme.containers.service)

 	(class in cfme.containers.template)

 	(class in cfme.containers.volume)

 	(class in cfme.infrastructure.cluster)

 	(class in cfme.infrastructure.config_management)

 	(class in cfme.infrastructure.datastore)

 	(class in cfme.infrastructure.deployment_roles)

 	(class in cfme.infrastructure.host)

 	(class in cfme.infrastructure.provider)

 	(class in cfme.infrastructure.resource_pool)

 	(class in cfme.middleware.datasource)

 	(class in cfme.middleware.deployment)

 	(class in cfme.middleware.domain)

 	(class in cfme.middleware.messaging)

 	(class in cfme.middleware.provider)

 	(class in cfme.middleware.server)

 	(class in cfme.middleware.server_group)

 	(class in cfme.networks.balancer)

 	(class in cfme.networks.cloud_network)

 	(class in cfme.networks.network_port)

 	(class in cfme.networks.network_router)

 	(class in cfme.networks.provider)

 	(class in cfme.networks.security_group)

 	(class in cfme.services.catalogs.ansible_catalog_item)

 	(class in cfme.services.catalogs.catalog)

 	(class in cfme.services.catalogs.catalog_item)

 	(class in cfme.services.catalogs.orchestration_template)

 	(class in cfme.services.myservice.ssui)

 	(class in cfme.storage.object_store)

 	DetailsAnsibleCatalogItemView (class in cfme.services.catalogs.ansible_catalog_item)

 	DetailsCatalogItemView (class in cfme.services.catalogs.catalog_item)

 	DetailsCatalogView (class in cfme.services.catalogs.catalog)

 	DetailsDialogView (class in cfme.automate.dialog_element)

 	

 	(class in cfme.automate.service_dialogs)

 	DetailsEntitiesAnsibleCatalogItemView (class in cfme.services.catalogs.ansible_catalog_item)

 	DetailsFromProvider (class in cfme.infrastructure.datastore)

 	

 	(class in cfme.infrastructure.deployment_roles)

 	(class in cfme.infrastructure.provider)

 	DetailsGroupView (class in cfme.configure.access_control)

 	DetailsMyServiceView (class in cfme.services.myservice.ssui)

 	DetailsRoleView (class in cfme.configure.access_control)

 	DetailsServiceCatalogView (class in cfme.services.catalogs.service_catalogs)

 	DetailsTabView (class in cfme.automate.dialog_tab)

 	DetailsTemplateView (class in cfme.services.catalogs.orchestration_template)

 	DetailsTenantView (class in cfme.configure.access_control)

 	DetailsUserView (class in cfme.configure.access_control)

 	detect_observed_field() (in module cfme.fixtures.pytest_selenium)

 	DHTMLSelect (class in cfme.web_ui)

 	diag_type (cfme.automate.provisioning_dialogs.ProvDiagForm attribute)

 	diagnose_evm_failure() (cfme.utils.appliance.IPAppliance method)

 	diagnostics (cfme.common.vm_views.VMDetailsEntities attribute)

 	Diagnostics (class in cfme.base.ui)

 	DiagnosticsCollectLogs (class in cfme.base.ui)

 	DiagnosticsCollectLogsEdit (class in cfme.base.ui)

 	DiagnosticsCollectLogsEditSlave (class in cfme.base.ui)

 	DiagnosticsCollectLogsEditView (class in cfme.base.ui)

 	DiagnosticsCollectLogsSlave (class in cfme.base.ui)

 	DiagnosticsCollectLogsView (class in cfme.base.ui)

 	DiagnosticsDetails (class in cfme.base.ui)

 	DiagnosticsWorkers (class in cfme.base.ui)

 	dialog (cfme.automate.buttons.ButtonDetailView attribute)

 	

 	(cfme.automate.buttons.ButtonFormCommon attribute)

 	(cfme.automate.dialog_element.Element attribute)

 	(cfme.automate.dialog_tab.Tab attribute)

 	(cfme.automate.service_dialogs.Dialog attribute)

 	Dialog (class in cfme.automate.service_dialogs)

 	dialog() (in module cfme.fixtures.service_fixtures)

 	

 	(in module cfme.rest.gen_data)

 	DialogCollection (class in cfme.automate.service_dialogs)

 	DialogForm (class in cfme.automate.service_dialogs)

 	

 	(class in cfme.services.catalogs.orchestration_template)

 	DialogsView (class in cfme.automate.service_dialogs)

 	did (cfme.web_ui.AngularSelect attribute)

 	dig_code() (in module fixtures.qa_contact)

 	DIMMED (cfme.web_ui.form_buttons.FormButton.Button attribute)

 	disable() (cfme.configure.configuration.Schedule method)

 	

 	(cfme.middleware.provider.Deployable method)

 	(cfme.web_ui.topology.TopologyDisplayNames method)

 	(in module fixtures.terminalreporter)

 	disable_all() (cfme.configure.configuration.region_settings.CANDUCollection method)

 	disable_bytecode() (in module cfme.scripting.quickstart)

 	disable_external_auth() (in module cfme.utils.ext_auth)

 	disable_external_auth_ipa() (in module cfme.utils.ext_auth)

 	disable_external_auth_openldap() (in module cfme.utils.ext_auth)

 	disable_forgery_protection() (in module fixtures.disable_forgery_protection)

 	disable_schedules() (cfme.intelligence.reports.schedules.ScheduleCollection method)

 	disabled (cfme.configure.settings.SaveButton attribute)

 	DisabledButtonException

 	DISCARD (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor attribute)

 	discard_button (cfme.intelligence.reports.menus.EditReportMenusView attribute)

 	Discover (class in cfme.cloud.provider)

 	

 	(class in cfme.infrastructure.host)

 	(class in cfme.infrastructure.provider)

 	discover() (cfme.infrastructure.provider.InfraProvider method)

 	

 	(in module cfme.cloud.provider)

 	(in module cfme.infrastructure.provider)

 	discover_dict (cfme.infrastructure.provider.rhevm.RHEVMProvider attribute)

 	

 	(cfme.infrastructure.provider.scvmm.SCVMMProvider attribute)

 	(cfme.infrastructure.provider.virtualcenter.VMwareProvider attribute)

 	discover_dict() (cfme.cloud.provider.azure.AzureProvider static method)

 	

 	(cfme.cloud.provider.CloudProvider static method)

 	(cfme.cloud.provider.ec2.EC2Provider static method)

 	discover_name (cfme.cloud.provider.azure.AzureProvider attribute)

 	

 	(cfme.cloud.provider.ec2.EC2Provider attribute)

 	discover_type (cfme.common.provider_views.CloudProvidersDiscoverView attribute)

 	disks_table (cfme.infrastructure.virtual_machines.InfraVmReconfigureView attribute)

 	dismiss() (in module cfme.web_ui.flash)

 	dismiss_any_alerts() (in module cfme.fixtures.pytest_selenium)

 	display (cfme.automate.buttons.ButtonFormCommon attribute)

 	

 	(cfme.automate.buttons.ButtonGroupFormCommon attribute)

 	(cfme.services.catalogs.catalog_item.BasicInfoForm attribute)

 	display_in_catalog (cfme.services.catalogs.ansible_catalog_item.AnsibleCatalogItemForm attribute)

 	display_name (cfme.automate.explorer.instance.Instance attribute)

 	

 	(cfme.automate.explorer.instance.InstanceAddView attribute)

 	(cfme.automate.explorer.instance.InstanceEditView attribute)

 	(cfme.automate.explorer.klass.Class attribute)

 	(cfme.automate.explorer.klass.ClassForm attribute)

 	(cfme.automate.explorer.method.Method attribute)

 	(cfme.automate.explorer.method.MethodAddView attribute)

 	(cfme.automate.explorer.method.MethodDetailsView attribute)

 	(cfme.automate.explorer.method.MethodEditView attribute)

 	(cfme.configure.configuration.region_settings.CompanyCategoriesAddView attribute)

 	DISPLAY_NAME (cfme.web_ui.topology.TopologyDisplayNames attribute)

 	do_c() (cfme.fixtures.rdb.Rdb method)

 	do_cont() (cfme.fixtures.rdb.Rdb method)

 	do_continue() (cfme.fixtures.rdb.Rdb method)

 	do_nav() (cfme.utils.appliance.implementations.ssui.SSUINavigateStep method)

 	do_power_control() (in module cfme.infrastructure.virtual_machines)

 	do_vm_provisioning() (in module cfme.provisioning)

 	docker_id (cfme.utils.browser.Wharf attribute)

 	docker_labels (cfme.intelligence.chargeback.assignments.AssignmentsView attribute)

 	docs_path (in module cfme.utils.path)

 	Documentation (class in cfme.base.ui)

 	DocView (class in cfme.configure.documentation)

 	does_template_exist_on_provider() (cfme.common.vm.Template method)

 	does_vm_exist() (cfme.utils.appliance.Appliance method)

 	does_vm_exist_on_provider() (cfme.common.vm.Template method)

 	

 	(cfme.common.vm.VM method)

 	domain (cfme.automate.explorer.domain.Domain attribute)

 	

 	(cfme.automate.explorer.instance.Instance attribute)

 	(cfme.automate.explorer.klass.Class attribute)

 	(cfme.automate.explorer.method.Method attribute)

 	(cfme.automate.explorer.namespace.Namespace attribute)

 	(cfme.middleware.provider.middleware_views.DomainDetailsAccordion attribute)

 	Domain (class in cfme.automate.explorer.domain)

 	domain() (cfme.middleware.domain.MiddlewareDomain method)

 	domain_in_db (cfme.middleware.domain.MiddlewareDomain attribute)

 	domain_in_mgmt (cfme.middleware.domain.MiddlewareDomain attribute)

 	domain_in_rest (cfme.middleware.domain.MiddlewareDomain attribute)

 	domain_switcher (cfme.base.ssui.SSUIBaseLoggedInPage attribute)

 	DomainAddView (class in cfme.automate.explorer.domain)

 	DomainAllView (class in cfme.middleware.provider.middleware_views)

 	DomainCollection (class in cfme.automate.explorer.domain)

 	DomainDetailsAccordion (class in cfme.middleware.provider.middleware_views)

 	DomainDetailsEntities (class in cfme.middleware.provider.middleware_views)

 	DomainDetailsToolbar (class in cfme.middleware.provider.middleware_views)

 	DomainDetailsView (class in cfme.automate.explorer.domain)

 	

 	(class in cfme.middleware.provider.middleware_views)

 	DomainEditView (class in cfme.automate.explorer.domain)

 	DomainEntitiesView (class in cfme.middleware.provider.middleware_views)

 	DomainForm (class in cfme.automate.explorer.domain)

 	DomainListView (class in cfme.automate.explorer.domain)

 	DomainPriorityView (class in cfme.automate.explorer.domain)

 	domains (cfme.automate.explorer.domain.DomainListView attribute)

 	

 	(cfme.automate.explorer.domain.DomainPriorityView attribute)

 	domains() (cfme.middleware.domain.MiddlewareDomain class method)

 	domains_in_db() (cfme.middleware.domain.MiddlewareDomain class method)

 	domains_in_mgmt() (cfme.middleware.domain.MiddlewareDomain class method)

 	DomainServerGroupAllView (class in cfme.middleware.provider.middleware_views)

 	DomainServerGroups (class in cfme.middleware.domain)

 	DomainToolbar (class in cfme.middleware.provider.middleware_views)

 	DomainView (class in cfme.middleware.provider.middleware_views)

 	double_click() (cfme.web_ui.topology.TopologyElement method)

 	

 	(in module cfme.fixtures.pytest_selenium)

 	download (cfme.ansible.credentials.CredentialDetailsView attribute)

 	

 	(cfme.ansible.playbooks.PlaybooksToolbar attribute)

 	(cfme.ansible.repositories.RepositoryDetailsView attribute)

 	(cfme.cloud.availability_zone.AvailabilityZoneDetailsToolBar attribute)

 	(cfme.cloud.availability_zone.AvailabilityZoneToolBar attribute)

 	(cfme.cloud.flavor.FlavorDetailsToolBar attribute)

 	(cfme.cloud.flavor.FlavorToolBar attribute)

 	(cfme.cloud.instance.InstanceDetailsToolbar attribute)

 	(cfme.cloud.instance.image.ImageDetailsToolbar attribute)

 	(cfme.cloud.instance.image.ImageToolbar attribute)

 	(cfme.cloud.keypairs.KeyPairDetailsToolbar attribute)

 	(cfme.cloud.keypairs.KeyPairToolbar attribute)

 	(cfme.cloud.stack.StackDetailsToolbar attribute)

 	(cfme.cloud.stack.StackToolbar attribute)

 	(cfme.cloud.tenant.TenantDetailsToolbar attribute)

 	(cfme.cloud.tenant.TenantToolbar attribute)

 	(cfme.common.provider_views.NodesToolBar attribute)

 	(cfme.common.provider_views.ProviderToolBar attribute)

 	(cfme.common.vm_views.VMToolbar attribute)

 	(cfme.containers.node.NodeDetailsView attribute)

 	(cfme.containers.provider.ContainerObjectAllBaseView attribute)

 	(cfme.infrastructure.cluster.ClusterDetailsToolbar attribute)

 	(cfme.infrastructure.cluster.ClusterToolbar attribute)

 	(cfme.infrastructure.datastore.DatastoreToolBar attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleComparisonToolbar attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleDetailsToolbar attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleToolbar attribute)

 	(cfme.infrastructure.resource_pool.ResourcePoolDetailsToolbar attribute)

 	(cfme.infrastructure.resource_pool.ResourcePoolToolbar attribute)

 	(cfme.infrastructure.virtual_machines.InfraGenericDetailsToolbar attribute)

 	(cfme.intelligence.reports.reports.CustomSavedReportDetailsView attribute)

 	(cfme.middleware.provider.middleware_views.DatasourceAllToolbar attribute)

 	(cfme.middleware.provider.middleware_views.DatasourceDetailsToolbar attribute)

 	(cfme.middleware.provider.middleware_views.DeploymentAllToolbar attribute)

 	(cfme.middleware.provider.middleware_views.DeploymentDetailsToolbar attribute)

 	(cfme.middleware.provider.middleware_views.DomainDetailsToolbar attribute)

 	(cfme.middleware.provider.middleware_views.DomainToolbar attribute)

 	(cfme.middleware.provider.middleware_views.MessagingAllToolbar attribute)

 	(cfme.middleware.provider.middleware_views.MessagingDetailsToolbar attribute)

 	(cfme.middleware.provider.middleware_views.ServerDetailsToolbar attribute)

 	(cfme.middleware.provider.middleware_views.ServerGroupDetailsToolbar attribute)

 	(cfme.middleware.provider.middleware_views.ServerGroupToolbar attribute)

 	(cfme.middleware.provider.middleware_views.ServerToolbar attribute)

 	(cfme.networks.views.BalancerDetailsToolBar attribute)

 	(cfme.networks.views.BalancerToolBar attribute)

 	(cfme.networks.views.CloudNetworkDetailsToolBar attribute)

 	(cfme.networks.views.CloudNetworkToolBar attribute)

 	(cfme.networks.views.NetworkPortDetailsToolBar attribute)

 	(cfme.networks.views.NetworkPortToolBar attribute)

 	(cfme.networks.views.NetworkProviderDetailsToolBar attribute)

 	(cfme.networks.views.NetworkProviderToolBar attribute)

 	(cfme.networks.views.NetworkRouterDetailsToolBar attribute)

 	(cfme.networks.views.NetworkRouterToolBar attribute)

 	(cfme.networks.views.OneProviderComponentsToolbar attribute)

 	(cfme.networks.views.SecurityGroupDetailsToolBar attribute)

 	(cfme.networks.views.SecurityGroupToolBar attribute)

 	(cfme.networks.views.SubnetDetailsToolBar attribute)

 	(cfme.networks.views.SubnetToolBar attribute)

 	(cfme.storage.volume.VolumeDetailsToolbar attribute)

 	(cfme.storage.volume.VolumeToolbar attribute)

 	download() (cfme.intelligence.reports.reports.CustomSavedReport method)

 	

 	(cfme.middleware.datasource.MiddlewareDatasource class method)

 	(cfme.middleware.deployment.MiddlewareDeployment class method)

 	(cfme.middleware.domain.MiddlewareDomain class method)

 	(cfme.middleware.messaging.MiddlewareMessaging class method)

 	(cfme.middleware.provider.hawkular.HawkularProvider class method)

 	(cfme.middleware.server.MiddlewareServer class method)

 	(cfme.middleware.server_group.MiddlewareServerGroup class method)

 	(cfme.utils.ftp.FTPFile method)

 	(in module cfme.middleware.provider)

 	download_button (cfme.ansible.playbooks.PlaybookDetailsView attribute)

 	

 	(cfme.control.log.ControlLogView attribute)

 	download_choice (cfme.services.myservice.ui.MyServicesView attribute)

 	download_file (cfme.services.myservice.MyService attribute)

 	download_file() (in module cfme.services.myservice.ui)

 	download_summary() (cfme.middleware.provider.MiddlewareBase method)

 	draft (cfme.services.catalogs.orchestration_template.CopyTemplateForm attribute)

 	drag_and_drop() (cfme.dashboard.Dashboard method)

 	

 	(in module cfme.fixtures.pytest_selenium)

 	drag_and_drop_by_offset() (in module cfme.fixtures.pytest_selenium)

 	drift_analysis (cfme.common.host_views.HostDriftAnalysis attribute)

 	drift_sections (cfme.common.host_views.HostDriftAnalysis attribute)

 	DriftGrid (class in cfme.web_ui)

 	driver_class (cfme.middleware.provider.middleware_views.AddDatasourceForm attribute)

 	driver_module_name (cfme.middleware.provider.middleware_views.AddDatasourceForm attribute)

 	driver_name (cfme.middleware.provider.middleware_views.AddDatasourceForm attribute)

 	driver_xa_datasource_class (cfme.middleware.provider.middleware_views.AddJDBCDriverForm attribute)

 	drivers (cfme.middleware.provider.middleware_views.ServerDetailsToolbar attribute)

 	driving_event (cfme.control.explorer.alerts.AlertFormCommon attribute)

 	drop() (cfme.utils.appliance.db.ApplianceDB method)

 	dropdown_history_items() (in module cfme.web_ui.history)

 	ds_name (cfme.middleware.provider.middleware_views.AddDatasourceForm attribute)

 	ds_type (cfme.middleware.provider.middleware_views.AddDatasourceForm attribute)

 	ds_url (cfme.middleware.provider.middleware_views.AddDatasourceForm attribute)

 	DummyClient (class in fixtures.artifactor_plugin)

 	dump_pool_info() (in module cfme.test_framework.sprout.plugin)

 	dynamic_chkbox (cfme.automate.dialog_element.ElementForm attribute)

 	dynamic_tree (cfme.automate.dialog_element.ElementForm attribute)

 	DynamicTable (class in cfme.web_ui)

 	DynamicTable.Row (class in cfme.web_ui)

E

 	

 	EC2Endpoint (class in cfme.cloud.provider.ec2)

 	EC2EndpointForm (class in cfme.cloud.provider.ec2)

 	EC2Instance (class in cfme.cloud.instance.ec2)

 	EC2Provider (class in cfme.cloud.provider.ec2)

 	edit (cfme.base.ui.DiagnosticsCollectLogsView attribute)

 	

 	(cfme.base.ui.ZoneDiagnosticsCollectLogsView attribute)

 	(cfme.services.catalogs.ansible_catalog_item.ActionsCell attribute)

 	(cfme.services.requests.RequestDetailsToolBar attribute)

 	Edit (class in cfme.ansible.credentials)

 	

 	(class in cfme.ansible.repositories)

 	(class in cfme.automate.dialog_element)

 	(class in cfme.automate.explorer.domain)

 	(class in cfme.automate.explorer.instance)

 	(class in cfme.automate.explorer.klass)

 	(class in cfme.automate.explorer.method)

 	(class in cfme.automate.explorer.namespace)

 	(class in cfme.automate.provisioning_dialogs)

 	(class in cfme.automate.service_dialogs)

 	(class in cfme.cloud.instance)

 	(class in cfme.cloud.provider)

 	(class in cfme.configure.configuration.region_settings)

 	(class in cfme.containers.provider)

 	(class in cfme.infrastructure.host)

 	(class in cfme.infrastructure.provider)

 	(class in cfme.middleware.provider)

 	(class in cfme.services.catalogs.ansible_catalog_item)

 	(class in cfme.services.catalogs.catalog)

 	(class in cfme.services.catalogs.catalog_item)

 	edit_custom_attributes() (cfme.containers.provider.openshift.OpenshiftProvider method)

 	edit_form (cfme.common.vm.BaseVM attribute)

 	edit_page_suffix (cfme.common.provider.CloudInfraProvider attribute)

 	

 	(cfme.containers.provider.ContainersProvider attribute)

 	(cfme.middleware.provider.MiddlewareProvider attribute)

 	(cfme.networks.provider.NetworkProvider attribute)

 	edit_registration (cfme.configure.configuration.region_settings.RedHatUpdatesView attribute)

 	edit_report_menus (cfme.intelligence.reports.CloudIntelReportsView attribute)

 	edit_request() (cfme.services.requests.Request method)

 	edit_tags (cfme.services.myservice.MyService attribute)

 	edit_tags() (cfme.configure.access_control.Group method)

 	

 	(cfme.configure.access_control.User method)

 	(in module cfme.services.myservice.ui)

 	EditActionView (class in cfme.control.explorer.actions)

 	EditAlertProfileView (class in cfme.control.explorer.alert_profiles)

 	EditAlertView (class in cfme.control.explorer.alerts)

 	EditAnsibleCatalogItemView (class in cfme.services.catalogs.ansible_catalog_item)

 	EditBoxView (class in cfme.automate.dialog_box)

 	EditButtonGroupView (class in cfme.automate.buttons)

 	EditButtonView (class in cfme.automate.buttons)

 	EditCatalogBundleView (class in cfme.services.catalogs.catalog_item)

 	EditCatalogItemView (class in cfme.services.catalogs.catalog_item)

 	EditCatalogView (class in cfme.services.catalogs.catalog)

 	EditChartWidget (class in cfme.intelligence.reports.widgets.chart_widgets)

 	EditChartWidgetView (class in cfme.intelligence.reports.widgets.chart_widgets)

 	EditComputeChargebackView (class in cfme.intelligence.chargeback.rates)

 	EditConditionView (class in cfme.control.explorer.conditions)

 	EditCustomReportView (class in cfme.intelligence.reports.reports)

 	EditDashboardView (class in cfme.intelligence.reports.dashboards)

 	EditDefaultDashboardView (class in cfme.intelligence.reports.dashboards)

 	EditDialogView (class in cfme.automate.service_dialogs)

 	EditElementView (class in cfme.automate.dialog_element)

 	EditEventView (class in cfme.control.explorer.policies)

 	EditFromDetails (class in cfme.cloud.provider)

 	

 	(class in cfme.containers.provider)

 	(class in cfme.middleware.provider)

 	EditGroupSequence (class in cfme.configure.access_control)

 	EditGroupSequenceView (class in cfme.configure.access_control)

 	EditGroupView (class in cfme.configure.access_control)

 	EditManagementEngineRelationship (class in cfme.cloud.instance)

 	EditMenuWidget (class in cfme.intelligence.reports.widgets.menu_widgets)

 	EditMenuWidgetView (class in cfme.intelligence.reports.widgets.menu_widgets)

 	EditMyServiceView (class in cfme.services.myservice.ssui)

 	

 	(class in cfme.services.myservice.ui)

 	EditPolicyConditionAssignments (class in cfme.control.explorer.policies)

 	EditPolicyEventAssignments (class in cfme.control.explorer.policies)

 	EditPolicyProfileView (class in cfme.control.explorer.policy_profiles)

 	EditPolicyView (class in cfme.control.explorer.policies)

 	EditReportMenus (class in cfme.intelligence.reports.menus)

 	EditReportMenusView (class in cfme.intelligence.reports.menus)

 	EditReportWidget (class in cfme.intelligence.reports.widgets.report_widgets)

 	EditReportWidgetView (class in cfme.intelligence.reports.widgets.report_widgets)

 	EditRequest (class in cfme.services.requests)

 	EditRoleView (class in cfme.configure.access_control)

 	EditRSSWidget (class in cfme.intelligence.reports.widgets.rss_widgets)

 	EditRSSWidgetView (class in cfme.intelligence.reports.widgets.rss_widgets)

 	EditScheduleView (class in cfme.intelligence.reports.schedules)

 	EditSchema (class in cfme.automate.explorer.klass)

 	EditStorageChargebackView (class in cfme.intelligence.chargeback.rates)

 	EditTabView (class in cfme.automate.dialog_tab)

 	EditTags (class in cfme.cloud.instance)

 	

 	(class in cfme.cloud.provider)

 	(class in cfme.cloud.stack)

 	(class in cfme.containers.node)

 	(class in cfme.containers.provider)

 	(class in cfme.infrastructure.provider)

 	(class in cfme.middleware.provider)

 	(class in cfme.networks.balancer)

 	(class in cfme.networks.cloud_network)

 	(class in cfme.networks.network_port)

 	(class in cfme.networks.network_router)

 	(class in cfme.networks.provider)

 	(class in cfme.networks.security_group)

 	(class in cfme.networks.subnet)

 	(class in cfme.services.catalogs.ansible_catalog_item)

 	(class in cfme.services.catalogs.catalog_item)

 	EditTagsFromDetails (class in cfme.cloud.keypairs)

 	

 	(class in cfme.cloud.provider)

 	(class in cfme.containers.provider)

 	(class in cfme.infrastructure.cluster)

 	(class in cfme.infrastructure.datastore)

 	(class in cfme.infrastructure.host)

 	(class in cfme.infrastructure.provider)

 	(class in cfme.infrastructure.resource_pool)

 	(class in cfme.infrastructure.virtual_machines)

 	(class in cfme.middleware.provider)

 	(class in cfme.services.catalogs.catalog)

 	(class in cfme.services.catalogs.orchestration_template)

 	EditTagsUserView (class in cfme.configure.access_control)

 	EditTemplate (class in cfme.services.catalogs.orchestration_template)

 	EditTemplateView (class in cfme.services.catalogs.orchestration_template)

 	EditTenantView (class in cfme.configure.access_control)

 	EditUserView (class in cfme.configure.access_control)

 	EditView (class in cfme.common.vm_views)

 	ele_desc (cfme.automate.dialog_element.ElementForm attribute)

 	ele_label (cfme.automate.dialog_element.ElementForm attribute)

 	ele_name (cfme.automate.dialog_element.ElementForm attribute)

 	element (cfme.web_ui.InfoBlock.Member attribute)

 	Element (class in cfme.automate.dialog_element)

 	element() (cfme.web_ui.InfoBlock class method)

 	

 	(in module cfme.fixtures.pytest_selenium)

 	element_loc() (cfme.automate.dialog_element.Element method)

 	element_tree (cfme.automate.dialog_element.ElementForm attribute)

 	

 	(cfme.automate.service_dialogs.EditDialogView attribute)

 	ElementCollection (class in cfme.automate.dialog_element)

 	ElementForm (class in cfme.automate.dialog_element)

 	ElementOrBlockNotFound

 	elements (cfme.automate.dialog_box.Box attribute)

 	

 	(cfme.web_ui.InfoBlock.Member attribute)

 	ELEMENTS (cfme.web_ui.topology.Topology attribute)

 	elements (in module cfme.fixtures.pytest_selenium)

 	elements() (cfme.web_ui.InfoBlock class method)

 	

 	(cfme.web_ui.topology.Topology method)

 	email_recipient (cfme.control.explorer.actions.ActionFormCommon attribute)

 	email_sender (cfme.control.explorer.actions.ActionFormCommon attribute)

 	email_txt (cfme.configure.access_control.UserForm attribute)

 	emails (cfme.control.explorer.alerts.AlertFormCommon attribute)

 	

 	(cfme.intelligence.reports.schedules.SchedulesFormCommon attribute)

 	emails_send (cfme.control.explorer.alerts.AlertFormCommon attribute)

 	

 	(cfme.intelligence.reports.schedules.SchedulesFormCommon attribute)

 	EmailSelectForm (class in cfme.web_ui)

 	

 	emit() (cfme.utils.log.ArtifactorHandler method)

 	enable() (cfme.configure.configuration.Schedule method)

 	

 	(cfme.middleware.provider.Deployable method)

 	(cfme.utils.appliance.services.SystemdService method)

 	(cfme.web_ui.topology.TopologyDisplayNames method)

 	(in module fixtures.terminalreporter)

 	enable_all() (cfme.configure.configuration.region_settings.CANDUCollection method)

 	enable_deployment (cfme.middleware.provider.middleware_views.AddDeploymentForm attribute)

 	enable_disable_repo() (cfme.utils.appliance.IPAppliance method)

 	enable_editor() (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor method)

 	enable_embedded_ansible_role() (cfme.utils.appliance.IPAppliance method)

 	enable_external() (cfme.utils.appliance.db.ApplianceDB method)

 	enable_internal() (cfme.utils.appliance.db.ApplianceDB method)

 	enable_schedules() (cfme.intelligence.reports.schedules.ScheduleCollection method)

 	enabled (cfme.automate.explorer.domain.Domain attribute)

 	

 	(cfme.automate.explorer.domain.DomainForm attribute)

 	endpoints (cfme.common.host_views.HostFormView attribute)

 	

 	(cfme.common.provider_views.ProviderAddView attribute)

 	endpoints_form (cfme.cloud.provider.azure.AzureProvider attribute)

 	

 	(cfme.cloud.provider.ec2.EC2Provider attribute)

 	(cfme.cloud.provider.gce.GCEProvider attribute)

 	(cfme.cloud.provider.openstack.OpenStackProvider attribute)

 	(cfme.containers.provider.ContainersProvider attribute)

 	(cfme.containers.provider.openshift.OpenshiftProvider attribute)

 	(cfme.infrastructure.provider.openstack_infra.OpenstackInfraProvider attribute)

 	(cfme.infrastructure.provider.rhevm.RHEVMProvider attribute)

 	(cfme.infrastructure.provider.scvmm.SCVMMProvider attribute)

 	(cfme.infrastructure.provider.virtualcenter.VMwareProvider attribute)

 	(cfme.middleware.provider.hawkular.HawkularProvider attribute)

 	engine (cfme.utils.db.Db attribute)

 	ensure_advanced_search_closed() (in module cfme.web_ui.search)

 	ensure_advanced_search_open() (in module cfme.web_ui.search)

 	ensure_browser_open() (in module cfme.utils.browser)

 	ensure_event_happens() (cfme.utils.events.EventTool method)

 	ensure_file_contains() (in module cfme.scripting.disable_bytecode)

 	ensure_no_filter_applied() (in module cfme.web_ui.search)

 	ensure_normal_search_empty() (in module cfme.web_ui.search)

 	ensure_open() (cfme.utils.browser.BrowserManager method)

 	ENSURE_PAGE_SAFE (cfme.utils.appliance.implementations.ssui.MiqSSUIBrowserPlugin attribute)

 	

 	(cfme.utils.appliance.implementations.ui.MiqBrowserPlugin attribute)

 	ensure_page_safe() (cfme.utils.appliance.implementations.ssui.MiqSSUIBrowserPlugin method)

 	

 	(cfme.utils.appliance.implementations.ui.MiqBrowserPlugin method)

 	ensure_pycurl_works() (in module cfme.scripting.quickstart)

 	ensure_websocket_role_disabled() (in module cfme.fixtures.base)

 	ensure_zoom_closed() (cfme.dashboard.DashboardView method)

 	entities (cfme.ansible.playbooks.PlaybookDetailsView attribute)

 	

 	(cfme.ansible.playbooks.PlaybooksView attribute)

 	(cfme.ansible.repositories.RepositoryAllView attribute)

 	(cfme.automate.provisioning_dialogs.ProvDiagAllView attribute)

 	(cfme.automate.provisioning_dialogs.ProvDiagDetailsView attribute)

 	(cfme.cloud.availability_zone.AvailabilityZoneAllView attribute)

 	(cfme.cloud.availability_zone.AvailabilityZoneDetailsView attribute)

 	(cfme.cloud.flavor.FlavorAllView attribute)

 	(cfme.cloud.flavor.FlavorDetailsView attribute)

 	(cfme.cloud.instance.InstanceAllView attribute)

 	(cfme.cloud.instance.InstanceDetailsView attribute)

 	(cfme.cloud.instance.InstanceProviderAllView attribute)

 	(cfme.cloud.instance.image.ImageAllView attribute)

 	(cfme.cloud.instance.image.ImageDetailsView attribute)

 	(cfme.cloud.instance.image.ImageProviderAllView attribute)

 	(cfme.cloud.keypairs.KeyPairAddView attribute)

 	(cfme.cloud.keypairs.KeyPairAllView attribute)

 	(cfme.cloud.keypairs.KeyPairDetailsView attribute)

 	(cfme.cloud.stack.StackAllView attribute)

 	(cfme.cloud.stack.StackDetailsView attribute)

 	(cfme.cloud.stack.StackOutputsView attribute)

 	(cfme.cloud.stack.StackParametersView attribute)

 	(cfme.cloud.stack.StackResourcesView attribute)

 	(cfme.cloud.stack.StackSecurityGroupsView attribute)

 	(cfme.cloud.tenant.TenantAddView attribute)

 	(cfme.cloud.tenant.TenantAllView attribute)

 	(cfme.cloud.tenant.TenantDetailsView attribute)

 	(cfme.cloud.tenant.TenantEditView attribute)

 	(cfme.common.host_views.HostDetailsView attribute)

 	(cfme.common.host_views.HostManagePoliciesView attribute)

 	(cfme.common.host_views.HostsView attribute)

 	(cfme.common.provider_views.CloudProvidersView attribute)

 	(cfme.common.provider_views.ContainersProvidersView attribute)

 	(cfme.common.provider_views.InfraProvidersView attribute)

 	(cfme.common.provider_views.MiddlewareProvidersView attribute)

 	(cfme.common.provider_views.ProviderNodesView attribute)

 	(cfme.common.provider_views.ProvidersManagePoliciesView attribute)

 	(cfme.common.provider_views.ProvidersView attribute)

 	(cfme.configure.access_control.AllUserView attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileAllView attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileDetailsView attribute)

 	(cfme.configure.settings.TimeProfileAddFormView attribute)

 	(cfme.containers.container.ContainerAllView attribute)

 	(cfme.containers.image.ImageAllView attribute)

 	(cfme.containers.image_registry.ImageRegistryAllView attribute)

 	(cfme.containers.node.NodeAllView attribute)

 	(cfme.containers.node.NodeDetailsView attribute)

 	(cfme.containers.node.NodeEditTagsForm attribute)

 	(cfme.containers.node.NodeManagePoliciesForm attribute)

 	(cfme.containers.node.NodeTimelinesForm attribute)

 	(cfme.containers.node.NodeUtilizationView attribute)

 	(cfme.containers.node.NodeView attribute)

 	(cfme.containers.pod.PodAllView attribute)

 	(cfme.containers.project.ProjectAllView attribute)

 	(cfme.containers.provider.ContainerObjectAllBaseView attribute)

 	(cfme.containers.replicator.ReplicatorAllView attribute)

 	(cfme.containers.route.RouteAllView attribute)

 	(cfme.containers.service.ServiceAllView attribute)

 	(cfme.containers.template.TemplateAllView attribute)

 	(cfme.containers.volume.VolumeAllView attribute)

 	(cfme.infrastructure.cluster.ClusterAllView attribute)

 	(cfme.infrastructure.cluster.ClusterDetailsView attribute)

 	(cfme.infrastructure.datastore.DatastoresView attribute)

 	(cfme.infrastructure.datastore.HostAllDatastoresView attribute)

 	(cfme.infrastructure.datastore.RegisteredHostsView attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleAllForProviderView attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleAllView attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleComparisonView attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleDetailsView attribute)

 	(cfme.infrastructure.provider.ProviderClustersView attribute)

 	(cfme.infrastructure.pxe.PXECustomizationTemplateDetailsView attribute)

 	(cfme.infrastructure.pxe.PXECustomizationTemplatesView attribute)

 	(cfme.infrastructure.pxe.PXEDatastoreDetailsView attribute)

 	(cfme.infrastructure.pxe.PXEMainView attribute)

 	(cfme.infrastructure.pxe.PXEServerDetailsView attribute)

 	(cfme.infrastructure.pxe.PXESystemImageTypeDetailsView attribute)

 	(cfme.infrastructure.resource_pool.ResourcePoolAllView attribute)

 	(cfme.infrastructure.resource_pool.ResourcePoolDetailsView attribute)

 	(cfme.infrastructure.virtual_machines.InfraVmDetailsView attribute)

 	(cfme.infrastructure.virtual_machines.TemplatesOnlyAllView attribute)

 	(cfme.infrastructure.virtual_machines.VmTemplatesAllForProviderView attribute)

 	(cfme.infrastructure.virtual_machines.VmsOnlyAllView attribute)

 	(cfme.infrastructure.virtual_machines.VmsTemplatesAllView attribute)

 	(cfme.middleware.provider.middleware_views.DatasourceAllView attribute)

 	(cfme.middleware.provider.middleware_views.DatasourceDetailsView attribute)

 	(cfme.middleware.provider.middleware_views.DeploymentAllView attribute)

 	(cfme.middleware.provider.middleware_views.DeploymentDetailsView attribute)

 	(cfme.middleware.provider.middleware_views.DomainAllView attribute)

 	(cfme.middleware.provider.middleware_views.DomainDetailsView attribute)

 	(cfme.middleware.provider.middleware_views.DomainServerGroupAllView attribute)

 	(cfme.middleware.provider.middleware_views.MessagingAllView attribute)

 	(cfme.middleware.provider.middleware_views.MessagingDetailsView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderDatasourceAllView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderDeploymentAllView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderDomainAllView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderDomainsAllView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderMessagingAllView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderServerAllView attribute)

 	(cfme.middleware.provider.middleware_views.ServerAllView attribute)

 	(cfme.middleware.provider.middleware_views.ServerDatasourceAllView attribute)

 	(cfme.middleware.provider.middleware_views.ServerDeploymentAllView attribute)

 	(cfme.middleware.provider.middleware_views.ServerDetailsView attribute)

 	(cfme.middleware.provider.middleware_views.ServerGroupDetailsView attribute)

 	(cfme.middleware.provider.middleware_views.ServerGroupServerAllView attribute)

 	(cfme.middleware.provider.middleware_views.ServerMessagingAllView attribute)

 	(cfme.networks.views.BalancerDetailsView attribute)

 	(cfme.networks.views.BalancerView attribute)

 	(cfme.networks.views.CloudNetworkDetailsView attribute)

 	(cfme.networks.views.CloudNetworkView attribute)

 	(cfme.networks.views.NetworkPortDetailsView attribute)

 	(cfme.networks.views.NetworkPortView attribute)

 	(cfme.networks.views.NetworkProviderDetailsView attribute)

 	(cfme.networks.views.NetworkProviderView attribute)

 	(cfme.networks.views.NetworkRouterDetailsView attribute)

 	(cfme.networks.views.NetworkRouterView attribute)

 	(cfme.networks.views.OneProviderBalancerView attribute)

 	(cfme.networks.views.OneProviderCloudNetworkView attribute)

 	(cfme.networks.views.OneProviderNetworkPortView attribute)

 	(cfme.networks.views.OneProviderNetworkRouterView attribute)

 	(cfme.networks.views.OneProviderSecurityGroupView attribute)

 	(cfme.networks.views.OneProviderSubnetView attribute)

 	(cfme.networks.views.SecurityGroupDetailsView attribute)

 	(cfme.networks.views.SecurityGroupView attribute)

 	(cfme.networks.views.SubnetDetailsView attribute)

 	(cfme.networks.views.SubnetView attribute)

 	(cfme.services.catalogs.ansible_catalog_item.DetailsAnsibleCatalogItemView attribute)

 	(cfme.storage.volume.VolumeAddView attribute)

 	(cfme.storage.volume.VolumeAllView attribute)

 	(cfme.storage.volume.VolumeDetailsView attribute)

 	entity_class (cfme.ansible.playbooks.PlaybookEntitiesView attribute)

 	

 	(cfme.common.host_views.HostEntitiesView attribute)

 	(cfme.common.provider_views.ProviderEntitiesView attribute)

 	(cfme.common.vm_views.VMEntities attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleEntitiesView attribute)

 	(cfme.storage.volume.VolumeEntities attribute)

 	entry_description (cfme.automate.dialog_element.ElementForm attribute)

 	entry_table (cfme.automate.dialog_element.ElementForm attribute)

 	entry_value (cfme.automate.dialog_element.ElementForm attribute)

 	environment (cfme.common.vm_views.BasicProvisionFormView attribute)

 	

 	(cfme.services.requests.RequestDetailsView attribute)

 	EnvironmentMarker (class in markers.env)

 	EQUAL_ATTRS (cfme.infrastructure.virtual_machines.VMDisk attribute)

 	

 	(cfme.infrastructure.virtual_machines.VMHardware attribute)

 	equal_drift_results() (cfme.common.vm.VM method)

 	

 	(cfme.infrastructure.host.Host method)

 	error_console_handler() (in module cfme.utils.log)

 	error_text (cfme.utils.appliance.implementations.ui.ErrorView attribute)

 	ErrorView (class in cfme.utils.appliance.implementations.ui)

 	esx (cfme.common.host_views.HostDiscoverView attribute)

 	Evacuate (class in cfme.cloud.instance.openstack)

 	EvacuateView (class in cfme.cloud.instance.openstack)

 	evaluate (cfme.control.explorer.alerts.AlertFormCommon attribute)

 	Event (class in cfme.utils.events)

 	

 	(class in cfme.web_ui.jstimelines)

 	event_listener() (cfme.utils.appliance.IPAppliance method)

 	event_selection (cfme.control.simulation.ControlSimulationView attribute)

 	event_streams (cfme.utils.events.EventTool attribute)

 	event_streams_attributes (cfme.utils.events.EventTool attribute)

 	EventAttr (class in cfme.utils.events)

 	EventDetailsToolbar (class in cfme.control.explorer.policies)

 	EventDetailsView (class in cfme.control.explorer.policies)

 	EventListener (class in cfme.utils.events)

 	events (cfme.configure.configuration.analysis_profile.AnalysisProfileBaseAddForm attribute)

 	

 	(cfme.control.explorer.ControlExplorerView attribute)

 	(cfme.control.explorer.policies.EditPolicyEventAssignments attribute)

 	(cfme.infrastructure.provider.openstack_infra.OpenStackInfraEndpointForm attribute)

 	events() (in module cfme.web_ui.jstimelines)

 	EventsCredential (class in cfme.base.credential)

 	EventsEndpoint (class in cfme.common.provider)

 	EventTool (class in cfme.utils.events)

 	every (cfme.intelligence.reports.widgets.chart_widgets.ChartWidgetFormCommon attribute)

 	

 	(cfme.intelligence.reports.widgets.report_widgets.ReportWidgetFormCommon attribute)

 	(cfme.intelligence.reports.widgets.rss_widgets.RSSWidgetFormCommon attribute)

 	evm_id (cfme.utils.appliance.IPAppliance attribute)

 	evm_to_messages() (in module cfme.utils.perf_message_stats)

 	evm_to_workers() (in module cfme.utils.perf_message_stats)

 	evmserverd (cfme.utils.appliance.IPAppliance attribute)

 	execute_button() (cfme.infrastructure.host.Host method)

 	execute_methods (cfme.base.ui.AutomateSimulationView attribute)

 	execute_script() (in module cfme.fixtures.pytest_selenium)

 	existing_driver (cfme.middleware.provider.middleware_views.AddDatasourceForm attribute)

 	exists (cfme.ansible.credentials.Credential attribute)

 	

 	(cfme.ansible.playbooks.Playbook attribute)

 	(cfme.ansible.repositories.Repository attribute)

 	(cfme.automate.buttons.Button attribute)

 	(cfme.automate.buttons.ButtonGroup attribute)

 	(cfme.automate.explorer.domain.Domain attribute)

 	(cfme.automate.explorer.instance.Instance attribute)

 	(cfme.automate.explorer.klass.Class attribute)

 	(cfme.automate.explorer.method.Method attribute)

 	(cfme.automate.explorer.namespace.Namespace attribute)

 	(cfme.automate.provisioning_dialogs.ProvisioningDialog attribute)

 	(cfme.automate.service_dialogs.Dialog attribute)

 	(cfme.base.Zone attribute)

 	(cfme.cloud.instance.Instance attribute)

 	(cfme.cloud.instance.image.Image attribute)

 	(cfme.cloud.keypairs.KeyPair attribute)

 	(cfme.cloud.stack.Stack attribute)

 	(cfme.cloud.tenant.Tenant attribute)

 	(cfme.common.provider.BaseProvider attribute)

 	(cfme.common.vm.BaseVM attribute)

 	(cfme.configure.access_control.Group attribute)

 	(cfme.configure.access_control.Tenant attribute)

 	(cfme.configure.access_control.User attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfile attribute)

 	(cfme.control.explorer.actions.Action attribute)

 	(cfme.control.explorer.alert_profiles.BaseAlertProfile attribute)

 	(cfme.control.explorer.alerts.Alert attribute)

 	(cfme.control.explorer.conditions.BaseCondition attribute)

 	(cfme.control.explorer.policies.BasePolicy attribute)

 	(cfme.control.explorer.policy_profiles.PolicyProfile attribute)

 	(cfme.infrastructure.cluster.Cluster attribute)

 	(cfme.infrastructure.config_management.ConfigManager attribute)

 	(cfme.infrastructure.datastore.Datastore attribute)

 	(cfme.infrastructure.host.Host attribute)

 	(cfme.infrastructure.resource_pool.ResourcePool attribute)

 	(cfme.infrastructure.virtual_machines.Vm.Snapshot attribute)

 	(cfme.intelligence.reports.reports.CannedSavedReport attribute)

 	(cfme.intelligence.reports.schedules.Schedule attribute)

 	(cfme.networks.provider.NetworkProvider attribute)

 	(cfme.services.catalogs.ansible_catalog_item.AnsiblePlaybookCatalogItem attribute)

 	(cfme.services.catalogs.catalog.Catalog attribute)

 	(cfme.services.catalogs.catalog_item.CatalogItem attribute)

 	(cfme.services.myservice.MyService attribute)

 	(cfme.storage.volume.Volume attribute)

 	(cfme.web_ui.Quadicon attribute)

 	exists() (cfme.infrastructure.pxe.CustomizationTemplate method)

 	

 	(cfme.infrastructure.pxe.ISODatastore method)

 	(cfme.infrastructure.pxe.PXEServer method)

 	(cfme.services.requests.Request method)

 	(in module cfme.base.ui)

 	(in module cfme.services.myservice.ui)

 	(in module cfme.web_ui.toolbar)

 	exists_ui (cfme.infrastructure.pxe.CustomizationTemplate attribute)

 	

 	(cfme.infrastructure.pxe.ISODatastore attribute)

 	(cfme.infrastructure.pxe.PXEServer attribute)

 	(cfme.services.requests.Request attribute)

 	expand_all_sections() (cfme.web_ui.DriftGrid method)

 	expand_node() (cfme.web_ui.BootstrapTreeview method)

 	expand_path() (cfme.web_ui.BootstrapTreeview method)

 	

 	(cfme.web_ui.Tree method)

 	expected() (in module cfme.utils.error)

 	export (cfme.control.import_export.ControlImportExportView attribute)

 	export_all (cfme.base.ui.AutomateImportExportView attribute)

 	export_button (cfme.control.import_export.ControlImportExportView attribute)

 	

 	(cfme.intelligence.reports.import_export.ImportExportCommonForm attribute)

 	export_reports() (in module cfme.intelligence.reports.import_export)

 	export_widgets() (in module cfme.intelligence.reports.import_export)

 	expression (cfme.control.explorer.conditions.ConditionDetailsView attribute)

 	

 	(cfme.control.explorer.conditions.ConditionFormCommon attribute)

 	Expression (class in cfme.control.explorer.conditions)

 	

 	(class in cfme.web_ui.expression_editor)

 	ExpressionEditor (class in cfme.web_ui.expression_editor_widgetastic)

 	EXPRESSIONS_ROOT (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor attribute)

 	extend_partition() (cfme.utils.appliance.db.ApplianceDB method)

 	external (cfme.intelligence.reports.widgets.rss_widgets.RSSWidgetFormCommon attribute)

 	ExternalAuthSetting (class in cfme.configure.configuration)

 	extract_fixtures_values() (in module cfme.utils.pytest_shortcuts)

 	extract_polarion_ids() (in module markers.polarion)

F

 	

 	factory() (cfme.common.vm.BaseVM class method)

 	failed (cfme.utils.ssh.SSHResult attribute)

 	failed_assertions (fixtures.soft_assert.SoftAssertionError attribute)

 	failed_tests (markers.smoke.SmokeTests attribute)

 	FakeObject (class in cfme.utils)

 	fakeobject_or_object() (in module cfme.utils)

 	false_actions (cfme.control.explorer.policies.EditEventView attribute)

 	field_category (cfme.automate.dialog_element.ElementForm attribute)

 	field_date_form (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor attribute)

 	field_entry_point (cfme.automate.dialog_element.ElementForm attribute)

 	

 	(cfme.services.catalogs.catalog_item.BasicInfoForm attribute)

 	field_form_view (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor attribute)

 	FIELD_NAMES (cfme.automate.explorer.klass.ClassSchema attribute)

 	field_past_dates (cfme.automate.dialog_element.ElementForm attribute)

 	field_required (cfme.automate.dialog_element.ElementForm attribute)

 	field_show_refresh_button (cfme.automate.dialog_element.ElementForm attribute)

 	field_valid() (cfme.web_ui.Form method)

 	FIELD_VALUE (cfme.control.explorer.conditions.BaseCondition attribute)

 	

 	(cfme.control.explorer.conditions.ContainerImageCondition attribute)

 	(cfme.control.explorer.conditions.ContainerNodeCondition attribute)

 	(cfme.control.explorer.conditions.HostCondition attribute)

 	(cfme.control.explorer.conditions.PodCondition attribute)

 	(cfme.control.explorer.conditions.ProviderCondition attribute)

 	(cfme.control.explorer.conditions.ReplicatorCondition attribute)

 	(cfme.control.explorer.conditions.VMCondition attribute)

 	fields (cfme.automate.explorer.instance.InstanceAddView attribute)

 	

 	(cfme.automate.explorer.instance.InstanceEditView attribute)

 	(cfme.common.provider_views.CloudProvidersDiscoverView attribute)

 	(cfme.control.snmp_form.SNMPForm attribute)

 	(cfme.intelligence.chargeback.rates.AddComputeChargebackView attribute)

 	(cfme.web_ui.EmailSelectForm attribute)

 	file (cfme.infrastructure.provider.openstack_infra.ProviderRegisterNodesView attribute)

 	file_select (cfme.middleware.provider.middleware_views.AddDeploymentForm attribute)

 	

 	(cfme.middleware.provider.middleware_views.AddJDBCDriverForm attribute)

 	FileInput (class in cfme.web_ui)

 	filename (cfme.infrastructure.pxe.PXEServerForm attribute)

 	files (cfme.configure.configuration.analysis_profile.AnalysisProfileBaseAddForm attribute)

 	FileStore (class in cfme.utils.tracer)

 	filesystem (cfme.utils.ftp.FTPClient attribute)

 	fill() (cfme.common.vm_views.SelectTable method)

 	

 	(cfme.services.catalogs.ansible_catalog_item.AnsibleExtraVariables method)

 	(cfme.web_ui.AngularCalendarInput method)

 	(cfme.web_ui.BootstrapSwitch method)

 	(cfme.web_ui.Form method)

 	(cfme.web_ui.OldCheckbox method)

 	(cfme.web_ui.expression_editor_widgetastic.ExpressionEditor method)

 	fill_and_apply_filter() (in module cfme.web_ui.search)

 	fill_bootstrap_switch() (in module cfme.web_ui)

 	fill_callable() (in module cfme.web_ui)

 	fill_cb_select_bool() (in module cfme.web_ui)

 	fill_cb_select_dictlist() (in module cfme.web_ui)

 	fill_cb_select_set() (in module cfme.web_ui)

 	fill_cb_select_string() (in module cfme.web_ui)

 	fill_cfmecheckbox_switch() (in module cfme.web_ui)

 	fill_checkbox() (in module cfme.web_ui)

 	fill_click() (in module cfme.web_ui)

 	fill_count() (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor method)

 	

 	(in module cfme.web_ui.expression_editor)

 	fill_dict (cfme.intelligence.reports.widgets.chart_widgets.ChartWidget attribute)

 	

 	(cfme.intelligence.reports.widgets.menu_widgets.MenuWidget attribute)

 	(cfme.intelligence.reports.widgets.report_widgets.ReportWidget attribute)

 	(cfme.intelligence.reports.widgets.rss_widgets.RSSFeedWidget attribute)

 	fill_email_select_form() (in module cfme.web_ui)

 	fill_expression() (in module cfme.web_ui.search)

 	fill_field() (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor method)

 	

 	(in module cfme.web_ui.expression_editor)

 	fill_file() (in module cfme.web_ui)

 	fill_find() (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor method)

 	

 	(in module cfme.web_ui.expression_editor)

 	fill_multiselect() (in module cfme.web_ui)

 	fill_number() (in module cfme.web_ui)

 	fill_oldcheckbox_switch() (in module cfme.web_ui)

 	fill_password() (in module cfme.web_ui)

 	fill_registry() (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor method)

 	

 	(in module cfme.web_ui.expression_editor)

 	fill_scriptbox() (in module cfme.web_ui)

 	fill_select() (in module cfme.web_ui)

 	fill_select_tag() (in module cfme.web_ui)

 	fill_snmp_form() (in module cfme.control.snmp_form)

 	fill_snmp_hosts_field_basestr() (in module cfme.control.snmp_form)

 	fill_snmp_hosts_field_list() (in module cfme.control.snmp_form)

 	fill_snmp_trap_field_dict() (in module cfme.control.snmp_form)

 	fill_snmp_trap_field_trap() (in module cfme.control.snmp_form)

 	fill_snmp_trap_field_tuple() (in module cfme.control.snmp_form)

 	fill_snmp_traps_field_list() (in module cfme.control.snmp_form)

 	fill_snmp_traps_field_single_trap() (in module cfme.control.snmp_form)

 	fill_tag() (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor method)

 	

 	(in module cfme.web_ui.expression_editor)

 	fill_text() (in module cfme.web_ui)

 	fill_values_branch_select() (cfme.automate.import_export.AutomateGitRepository method)

 	fill_values_repo_add (cfme.automate.import_export.AutomateGitRepository attribute)

 	filter (cfme.intelligence.reports.reports.CustomReportFormCommon attribute)

 	

 	(cfme.intelligence.reports.widgets.chart_widgets.ChartWidgetFormCommon attribute)

 	(cfme.intelligence.reports.widgets.report_widgets.ReportWidgetFormCommon attribute)

 	Filter (class in cfme.web_ui)

 	filter() (cfme.utils.log.PrefixAddingLoggerFilter method)

 	

 	(cfme.utils.log.WarningsDeduplicationFilter method)

 	(cfme.utils.log.WarningsRelpathFilter method)

 	filter1 (cfme.intelligence.reports.schedules.SchedulesFormCommon attribute)

 	filter2 (cfme.intelligence.reports.schedules.SchedulesFormCommon attribute)

 	filter3 (cfme.intelligence.reports.schedules.SchedulesFormCommon attribute)

 	filter_dropdown (cfme.containers.provider.AdHocMetricsView attribute)

 	filter_result_header (cfme.containers.provider.AdHocMetricsView attribute)

 	Filters (cfme.containers.container.ContainerAllView attribute)

 	find_cell() (cfme.intelligence.reports.reports.SavedReportData method)

 	

 	(cfme.web_ui.Table method)

 	find_form_view (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor attribute)

 	find_group() (cfme.web_ui.CAndUGroupTable method)

 	find_nth_pos() (in module fixtures.version_info)

 	find_path_to() (cfme.web_ui.BootstrapTreeview method)

 	

 	(cfme.web_ui.Tree method)

 	find_product_repos() (cfme.utils.appliance.IPAppliance method)

 	find_quadicon() (cfme.cloud.instance.Instance method)

 	

 	(cfme.common.vm.BaseVM method)

 	(in module cfme.infrastructure.virtual_machines)

 	find_request() (cfme.services.requests.RequestsView method)

 	find_row() (cfme.intelligence.reports.reports.SavedReportData method)

 	

 	(cfme.web_ui.Table method)

 	find_row_by_cell_on_all_pages() (cfme.web_ui.PagedTable method)

 	find_row_by_cells() (cfme.web_ui.Table method)

 	find_row_on_all_pages() (cfme.web_ui.PagedTable method)

 	find_rows_by_cells() (cfme.web_ui.Table method)

 	find_text_on_screen() (cfme.common.vm_console.VMConsole method)

 	find_visible_events_for_vm() (in module cfme.web_ui.jstimelines)

 	finish_button (cfme.middleware.provider.middleware_views.AddDatasourceForm attribute)

 	fire_art_hook() (in module fixtures.artifactor_plugin)

 	fire_art_test_hook() (in module fixtures.artifactor_plugin)

 	fire_hook() (fixtures.artifactor_plugin.DummyClient method)

 	first() (cfme.web_ui.Quadicon class method)

 	

 	(in module cfme.web_ui.paginator)

 	first_selected_option (cfme.fixtures.pytest_selenium.Select attribute)

 	

 	(cfme.web_ui.AngularSelect attribute)

 	(cfme.web_ui.DHTMLSelect attribute)

 	first_selected_option_text (cfme.fixtures.pytest_selenium.Select attribute)

 	

 	(cfme.web_ui.AngularSelect attribute)

 	fix_before_start() (cfme.utils.log_validator.LogValidator method)

 	fix_merkyl_workaround() (in module cfme.fixtures.base)

 	fix_missing_hostname() (in module cfme.fixtures.base)

 	fix_ntp_clock() (cfme.utils.appliance.IPAppliance method)

 	fixed_ips (cfme.networks.network_port.NetworkPort attribute)

 	fixtureconf() (in module fixtures.fixtureconf)

 	fixturemanager (fixtures.pytest_store.Store attribute)

 	fixtures (module)

 	fixtures.appliance (module)

 	fixtures.appliance_update (module)

 	

 	fixtures.artifactor_plugin (module)

 	fixtures.blockers (module)

 	fixtures.browser (module)

 	fixtures.cfme_data (module)

 	fixtures.datafile (module)

 	fixtures.dev_branch (module)

 	fixtures.disable_forgery_protection (module)

 	fixtures.events (module)

 	fixtures.fixtureconf (module)

 	fixtures.log (module)

 	fixtures.maximized (module)

 	fixtures.merkyl (module)

 	fixtures.middleware_log (module)

 	fixtures.nelson (module)

 	fixtures.node_annotate (module)

 	fixtures.page_screenshots (module)

 	fixtures.parallelizer (module)

 	fixtures.parallelizer.hooks (module)

 	fixtures.parallelizer.parallelizer_tester (module)

 	fixtures.parallelizer.remote (module)

 	fixtures.perf (module)

 	fixtures.portset (module)

 	fixtures.prov_filter (module)

 	fixtures.provider (module)

 	fixtures.pytest_store (module)

 	fixtures.qa_contact (module)

 	fixtures.randomness (module)

 	fixtures.rbac (module)

 	fixtures.screenshots (module)

 	fixtures.soft_assert (module)

 	fixtures.ssh_client (module)

 	fixtures.templateloader (module)

 	fixtures.terminalreporter (module)

 	fixtures.ui_coverage (module)

 	fixtures.version_file (module)

 	fixtures.version_info (module)

 	fixtures.video (module)

 	fixtures.virtual_machine (module)

 	fixtures.widgets (module)

 	fixtures.xunit_tools (module)

 	flash (cfme.ansible.credentials.CredentialsBaseView attribute)

 	

 	(cfme.ansible.playbooks.PlaybookBaseView attribute)

 	(cfme.ansible.repositories.RepositoryBaseView attribute)

 	(cfme.automate.explorer.AutomateExplorerView attribute)

 	(cfme.base.login.BaseLoggedInPage attribute)

 	(cfme.base.ssui.LoginPage attribute)

 	(cfme.base.ssui.SSUIBaseLoggedInPage attribute)

 	(cfme.base.ui.AutomateImportExportBaseView attribute)

 	(cfme.base.ui.ConfigurationView attribute)

 	(cfme.base.ui.LoginPage attribute)

 	(cfme.cloud.instance.image.ImageDetailsEntities attribute)

 	(cfme.cloud.keypairs.KeyPairDetailsEntities attribute)

 	(cfme.cloud.stack.StackDetailsEntities attribute)

 	(cfme.cloud.stack.StackEntities attribute)

 	(cfme.cloud.stack.StackOutputsEntities attribute)

 	(cfme.cloud.stack.StackParametersEntities attribute)

 	(cfme.cloud.stack.StackResourcesEntities attribute)

 	(cfme.cloud.stack.StackSecurityGroupsEntities attribute)

 	(cfme.cloud.tenant.TenantDetailsEntities attribute)

 	(cfme.cloud.tenant.TenantEntities attribute)

 	(cfme.common.host_views.ComputeInfrastructureHostsView attribute)

 	(cfme.common.provider_views.ProviderAddView attribute)

 	(cfme.common.provider_views.ProviderDetailsView attribute)

 	(cfme.common.provider_views.ProviderEditView attribute)

 	(cfme.common.vm_views.VMDetailsEntities attribute)

 	(cfme.configure.tasks.TasksView attribute)

 	(cfme.infrastructure.cluster.ClusterDetailsEntities attribute)

 	(cfme.infrastructure.datastore.DatastoreDetailsView attribute)

 	(cfme.infrastructure.datastore.DatastoresView attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleView attribute)

 	(cfme.infrastructure.pxe.PXECustomizationTemplateForm attribute)

 	(cfme.infrastructure.pxe.PXEDatastoreForm attribute)

 	(cfme.infrastructure.pxe.PXEImageEditView attribute)

 	(cfme.infrastructure.pxe.PXEMainView attribute)

 	(cfme.infrastructure.pxe.PXEServerForm attribute)

 	(cfme.infrastructure.pxe.PXESystemImageTypeForm attribute)

 	(cfme.infrastructure.resource_pool.ResourcePoolEntities attribute)

 	(cfme.intelligence.chargeback.assignments.AssignmentsView attribute)

 	(cfme.intelligence.reports.CloudIntelReportsView attribute)

 	(cfme.middleware.provider.middleware_views.AddDatasourceView attribute)

 	(cfme.middleware.provider.middleware_views.AddDeploymentView attribute)

 	(cfme.middleware.provider.middleware_views.AddJDBCDriverView attribute)

 	(cfme.middleware.provider.middleware_views.DatasourceAllView attribute)

 	(cfme.middleware.provider.middleware_views.DatasourceDetailsEntities attribute)

 	(cfme.middleware.provider.middleware_views.DatasourceDetailsView attribute)

 	(cfme.middleware.provider.middleware_views.DatasourceEntitiesView attribute)

 	(cfme.middleware.provider.middleware_views.DeploymentAllView attribute)

 	(cfme.middleware.provider.middleware_views.DeploymentDetailsEntities attribute)

 	(cfme.middleware.provider.middleware_views.DeploymentDetailsView attribute)

 	(cfme.middleware.provider.middleware_views.DeploymentEntitiesView attribute)

 	(cfme.middleware.provider.middleware_views.DomainAllView attribute)

 	(cfme.middleware.provider.middleware_views.DomainDetailsEntities attribute)

 	(cfme.middleware.provider.middleware_views.DomainEntitiesView attribute)

 	(cfme.middleware.provider.middleware_views.DomainServerGroupAllView attribute)

 	(cfme.middleware.provider.middleware_views.MessagingAllView attribute)

 	(cfme.middleware.provider.middleware_views.MessagingDetailsEntities attribute)

 	(cfme.middleware.provider.middleware_views.MessagingEntitiesView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderDatasourceAllView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderDeploymentAllView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderDomainAllView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderDomainsAllView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderMessagingAllView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderServerAllView attribute)

 	(cfme.middleware.provider.middleware_views.ServerAllView attribute)

 	(cfme.middleware.provider.middleware_views.ServerDatasourceAllView attribute)

 	(cfme.middleware.provider.middleware_views.ServerDeploymentAllView attribute)

 	(cfme.middleware.provider.middleware_views.ServerDetailsEntities attribute)

 	(cfme.middleware.provider.middleware_views.ServerDetailsView attribute)

 	(cfme.middleware.provider.middleware_views.ServerEntitiesView attribute)

 	(cfme.middleware.provider.middleware_views.ServerGroupDetailsEntities attribute)

 	(cfme.middleware.provider.middleware_views.ServerGroupDetailsView attribute)

 	(cfme.middleware.provider.middleware_views.ServerGroupEntitiesView attribute)

 	(cfme.middleware.provider.middleware_views.ServerGroupServerAllView attribute)

 	(cfme.middleware.provider.middleware_views.ServerMessagingAllView attribute)

 	(cfme.networks.views.BalancerDetailsView attribute)

 	(cfme.networks.views.BalancerView attribute)

 	(cfme.networks.views.CloudNetworkDetailsView attribute)

 	(cfme.networks.views.CloudNetworkView attribute)

 	(cfme.networks.views.NetworkPortDetailsView attribute)

 	(cfme.networks.views.NetworkPortView attribute)

 	(cfme.networks.views.NetworkProviderDetailsView attribute)

 	(cfme.networks.views.NetworkProviderView attribute)

 	(cfme.networks.views.NetworkRouterDetailsView attribute)

 	(cfme.networks.views.NetworkRouterView attribute)

 	(cfme.networks.views.OneProviderBalancerView attribute)

 	(cfme.networks.views.OneProviderCloudNetworkView attribute)

 	(cfme.networks.views.OneProviderNetworkPortView attribute)

 	(cfme.networks.views.OneProviderNetworkRouterView attribute)

 	(cfme.networks.views.OneProviderSecurityGroupView attribute)

 	(cfme.networks.views.OneProviderSubnetView attribute)

 	(cfme.networks.views.SecurityGroupDetailsView attribute)

 	(cfme.networks.views.SecurityGroupView attribute)

 	(cfme.networks.views.SubnetDetailsView attribute)

 	(cfme.networks.views.SubnetView attribute)

 	(cfme.services.catalogs.ServicesCatalogView attribute)

 	(cfme.storage.volume.VolumeDetailsEntities attribute)

 	FlashMessageException

 	flatten_level() (cfme.web_ui.Tree class method)

 	flavor (cfme.services.catalogs.service_catalogs.OrderForm attribute)

 	Flavor (class in cfme.cloud.flavor)

 	FlavorAll (class in cfme.cloud.flavor)

 	FlavorAllView (class in cfme.cloud.flavor)

 	FlavorDetails (class in cfme.cloud.flavor)

 	FlavorDetailsAccordion (class in cfme.cloud.flavor)

 	FlavorDetailsEntities (class in cfme.cloud.flavor)

 	FlavorDetailsToolBar (class in cfme.cloud.flavor)

 	FlavorDetailsView (class in cfme.cloud.flavor)

 	FlavorEditTags (class in cfme.cloud.flavor)

 	FlavorEntities (class in cfme.cloud.flavor)

 	FlavorNotFound

 	flavors (cfme.configure.settings.DefaultViewForm attribute)

 	FlavorToolBar (class in cfme.cloud.flavor)

 	FlavorView (class in cfme.cloud.flavor)

 	FlexibleTerminalReporter (class in fixtures.pytest_store)

 	floating_ips (cfme.networks.network_port.NetworkPort attribute)

 	fn() (in module cfme.scripting.appliance)

 	footer (cfme.dashboard.DashboardWidget attribute)

 	forbid_restart (fixtures.parallelizer.SlaveDetail attribute)

 	force_deployment (cfme.middleware.provider.middleware_views.AddDeploymentForm attribute)

 	form (cfme.automate.provisioning_dialogs.ProvDiagAddView attribute)

 	

 	(cfme.automate.provisioning_dialogs.ProvDiagEditView attribute)

 	(cfme.base.credential.Credential attribute)

 	(cfme.base.credential.ServiceAccountCredential attribute)

 	(cfme.base.credential.TokenCredential attribute)

 	(cfme.cloud.instance.image.ImageProvisionView attribute)

 	(cfme.cloud.instance.openstack.AddFloatingIPView attribute)

 	(cfme.cloud.instance.openstack.AttachVolumeView attribute)

 	(cfme.cloud.instance.openstack.DetachVolumeView attribute)

 	(cfme.cloud.instance.openstack.EvacuateView attribute)

 	(cfme.cloud.instance.openstack.MigrateView attribute)

 	(cfme.cloud.instance.openstack.ReconfigureView attribute)

 	(cfme.cloud.instance.openstack.RemoveFloatingIPView attribute)

 	(cfme.cloud.keypairs.KeyPairAddView attribute)

 	(cfme.cloud.tenant.TenantAddView attribute)

 	(cfme.cloud.tenant.TenantEditView attribute)

 	(cfme.common.TagPageView attribute)

 	(cfme.common.vm_views.EditView attribute)

 	(cfme.common.vm_views.ManagePoliciesView attribute)

 	(cfme.common.vm_views.ManagementEngineView attribute)

 	(cfme.common.vm_views.PolicySimulationView attribute)

 	(cfme.common.vm_views.ProvisionView attribute)

 	(cfme.common.vm_views.RetirementView attribute)

 	(cfme.common.vm_views.SetOwnershipView attribute)

 	(cfme.configure.access_control.TenantQuotaView attribute)

 	(cfme.configure.configuration.AmazonAuthSetting attribute)

 	(cfme.configure.configuration.AuthSetting attribute)

 	(cfme.configure.configuration.DatabaseAuthSetting attribute)

 	(cfme.configure.configuration.DatabaseBackupSchedule attribute)

 	(cfme.configure.configuration.ExternalAuthSetting attribute)

 	(cfme.configure.configuration.LDAPAuthSetting attribute)

 	(cfme.configure.configuration.Schedule attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileAddView attribute)

 	(cfme.infrastructure.virtual_machines.MigrateView attribute)

 	(cfme.middleware.provider.middleware_views.AddDatasourceView attribute)

 	(cfme.middleware.provider.middleware_views.AddDeploymentView attribute)

 	(cfme.middleware.provider.middleware_views.AddJDBCDriverView attribute)

 	(cfme.services.requests.RequestProvisionView attribute)

 	(cfme.storage.volume.VolumeAddView attribute)

 	FORM (cfme.web_ui.InfoBlock attribute)

 	Form (class in cfme.web_ui)

 	form_fill_args() (cfme.configure.configuration.analysis_profile.AnalysisProfile method)

 	format_marker() (in module cfme.utils.log)

 	formatting (cfme.intelligence.reports.reports.CustomReportFormCommon attribute)

 	FormButton (class in cfme.web_ui.form_buttons)

 	FormButton.Button (class in cfme.web_ui.form_buttons)

 	fqdn (cfme.automate.explorer.klass.Class attribute)

 	

 	(cfme.automate.explorer.method.MethodDetailsView attribute)

 	fqdn_appliance() (in module cfme.fixtures.cli)

 	from_american_date_only() (cfme.utils.timeutil.parsetime class method)

 	from_american_minutes() (cfme.utils.timeutil.parsetime class method)

 	from_american_minutes_with_utc() (cfme.utils.timeutil.parsetime class method)

 	from_american_with_utc() (cfme.utils.timeutil.parsetime class method)

 	from_conf() (cfme.utils.browser.BrowserManager class method)

 	from_config() (cfme.base.credential.FromConfigMixin class method)

 	

 	(cfme.base.credential.ServiceAccountCredential class method)

 	(cfme.cloud.provider.azure.AzureProvider class method)

 	(cfme.cloud.provider.ec2.EC2Provider class method)

 	(cfme.cloud.provider.gce.GCEProvider class method)

 	(cfme.cloud.provider.openstack.OpenStackProvider class method)

 	(cfme.containers.provider.kubernetes.KubernetesProvider static method)

 	(cfme.containers.provider.openshift.OpenshiftProvider class method)

 	(cfme.infrastructure.provider.openstack_infra.OpenstackInfraProvider class method)

 	(cfme.infrastructure.provider.rhevm.RHEVMProvider class method)

 	(cfme.infrastructure.provider.scvmm.SCVMMProvider class method)

 	(cfme.infrastructure.provider.virtualcenter.VMwareProvider class method)

 	(cfme.middleware.provider.hawkular.HawkularProvider static method)

 	(cfme.test_framework.sprout.client.SproutClient class method)

 	(cfme.test_framework.sprout.plugin.SproutProvisioningRequest class method)

 	(cfme.utils.bz.Bugzilla class method)

 	from_db() (cfme.automate.import_export.AutomateGitRepository class method)

 	from_ip1 (cfme.common.host_views.HostDiscoverView attribute)

 	

 	(cfme.common.provider_views.InfraProvidersDiscoverView attribute)

 	from_ip2 (cfme.common.host_views.HostDiscoverView attribute)

 	

 	(cfme.common.provider_views.InfraProvidersDiscoverView attribute)

 	from_ip3 (cfme.common.host_views.HostDiscoverView attribute)

 	

 	(cfme.common.provider_views.InfraProvidersDiscoverView attribute)

 	from_ip4 (cfme.common.host_views.HostDiscoverView attribute)

 	

 	(cfme.common.provider_views.InfraProvidersDiscoverView attribute)

 	from_iso_date() (cfme.utils.timeutil.parsetime class method)

 	from_iso_with_utc() (cfme.utils.timeutil.parsetime class method)

 	from_json() (cfme.utils.appliance.IPAppliance class method)

 	from_long_date_format() (cfme.utils.timeutil.parsetime class method)

 	from_parsed_list() (fixtures.node_annotate.MarkFromMap class method)

 	from_plaintext() (cfme.base.credential.FromConfigMixin class method)

 	from_request_format() (cfme.utils.timeutil.parsetime class method)

 	from_saved_report_title_format() (cfme.utils.timeutil.parsetime class method)

 	from_url() (cfme.utils.appliance.IPAppliance class method)

 	FromConfigMixin (class in cfme.base.credential)

 	FTPClient (class in cfme.utils.ftp)

 	FTPDirectory (class in cfme.utils.ftp)

 	FTPException

 	FTPFile (class in cfme.utils.ftp)

 	full_template() (in module fixtures.provider)

 	full_template_modscope() (in module fixtures.provider)

 	function (markers.meta.Plugin attribute)

 	futurecheck() (in module cfme.utils.trackerbot)

G

 	

 	GCEEndpoint (class in cfme.cloud.provider.gce)

 	GCEEndpointForm (class in cfme.cloud.provider.gce)

 	GCEInstance (class in cfme.cloud.instance.gce)

 	GCEProvider (class in cfme.cloud.provider.gce)

 	gen_duplicates_log() (in module fixtures.xunit_tools)

 	gen_vpor_values() (in module cfme.fixtures.vporizer)

 	genealogy (cfme.infrastructure.virtual_machines.Template attribute)

 	

 	(cfme.infrastructure.virtual_machines.Vm attribute)

 	Genealogy (class in cfme.infrastructure.virtual_machines)

 	genealogy_tree (cfme.infrastructure.virtual_machines.Genealogy attribute)

 	general (cfme.configure.documentation.LinksView attribute)

 	generate() (cfme.intelligence.reports.widgets.BaseDashboardReportWidget method)

 	

 	(in module cfme.utils.testgen)

 	generate_appliance_charts() (in module cfme.utils.perf_message_stats)

 	generate_gems_file() (in module fixtures.version_info)

 	generate_hourly_charts_and_csvs() (in module cfme.utils.perf_message_stats)

 	generate_nodeid() (in module fixtures.node_annotate)

 	generate_processes_file() (in module fixtures.version_info)

 	generate_raw_data_csv() (in module cfme.utils.perf_message_stats)

 	

 	(in module cfme.utils.smem_memory_monitor)

 	generate_rpms_file() (in module fixtures.version_info)

 	generate_statistics() (in module cfme.utils.perf)

 	generate_summary_csv() (in module cfme.utils.smem_memory_monitor)

 	generate_summary_html() (in module cfme.utils.smem_memory_monitor)

 	generate_system_file() (in module fixtures.version_info)

 	generate_total_time_charts() (in module cfme.utils.perf_message_stats)

 	generate_updown() (in module cfme.automate.explorer.domain)

 	generate_version_files() (in module fixtures.version_info)

 	generate_worker_charts() (in module cfme.utils.perf_message_stats)

 	generate_workload_html() (in module cfme.utils.smem_memory_monitor)

 	get() (cfme.utils.appliance.IPAppliance method)

 	

 	(cfme.utils.db.Db method)

 	(fixtures.parallelizer.ParallelSession method)

 	(in module cfme.fixtures.pytest_selenium)

 	get_active_links() (in module cfme.web_ui.listaccordion)

 	get_alert() (in module cfme.fixtures.pytest_selenium)

 	get_all_datastores() (in module cfme.infrastructure.datastore)

 	get_all_host_ids() (cfme.common.provider.BaseProvider method)

 	get_all_hosts() (in module cfme.infrastructure.host)

 	get_all_messages() (in module cfme.web_ui.flash)

 	get_all_provider_ids() (cfme.common.provider.BaseProvider method)

 	get_all_providers() (in module cfme.cloud.provider)

 	

 	(in module cfme.infrastructure.provider)

 	get_all_tabs() (in module cfme.web_ui.tabstrip)

 	get_all_template_details() (cfme.common.provider.BaseProvider method)

 	get_all_template_ids() (cfme.common.provider.BaseProvider method)

 	get_all_vm_ids() (cfme.common.provider.BaseProvider method)

 	get_all_vms() (in module cfme.infrastructure.virtual_machines)

 	get_ansible_password() (in module cfme.scripting.setup_ansible)

 	get_appliance() (in module cfme.scripting.appliance)

 	get_appliance_memory() (cfme.utils.smem_memory_monitor.SmemMemoryMonitor method)

 	get_appliance_rows() (cfme.configure.configuration.region_settings.RedHatUpdates method)

 	get_attribute() (in module cfme.fixtures.pytest_selenium)

 	get_available_version() (cfme.configure.configuration.region_settings.RedHatUpdates method)

 	get_banner() (cfme.common.vm_console.VMConsole method)

 	get_bug() (cfme.utils.bz.Bugzilla method)

 	get_bug_url() (cfme.utils.blockers.BZ method)

 	get_bug_variants() (cfme.utils.bz.Bugzilla method)

 	get_build_date() (cfme.utils.ssh.SSHClient method)

 	get_build_datetime() (cfme.utils.ssh.SSHClient method)

 	get_ca_cert() (cfme.containers.provider.openshift.OpenshiftDefaultEndpoint static method)

 	get_capacity_and_utilization_replication_scenarios() (in module cfme.utils.workloads)

 	get_capacity_and_utilization_scenarios() (in module cfme.utils.workloads)

 	get_cell() (cfme.web_ui.DriftGrid method)

 	get_changes_to_fill() (cfme.infrastructure.virtual_machines.VMConfiguration method)

 	get_class_from_type() (in module cfme.utils.providers)

 	get_clickable_tab() (in module cfme.web_ui.tabstrip)

 	get_client() (in module fixtures.artifactor_plugin)

 	get_clusters() (cfme.infrastructure.provider.InfraProvider method)

 	get_collection_via_rest() (cfme.cloud.instance.Instance method)

 	

 	(cfme.infrastructure.virtual_machines.Vm method)

 	get_config() (cfme.test_framework.config.Configuration method)

 	get_config_manager_from_config() (in module cfme.infrastructure.config_management)

 	get_console_connection_status() (cfme.cloud.provider.openstack.OpenStackProvider method)

 	

 	(cfme.common.provider.BaseProvider method)

 	(cfme.infrastructure.provider.rhevm.RHEVMProvider method)

 	(cfme.infrastructure.provider.virtualcenter.VMwareProvider method)

 	get_console_ctrl_alt_del_btn() (cfme.cloud.provider.openstack.OpenStackProvider method)

 	

 	(cfme.common.provider.BaseProvider method)

 	(cfme.infrastructure.provider.rhevm.RHEVMProvider method)

 	(cfme.infrastructure.provider.virtualcenter.VMwareProvider method)

 	get_console_fullscreen_btn() (cfme.common.provider.BaseProvider method)

 	

 	(cfme.infrastructure.provider.rhevm.RHEVMProvider method)

 	(cfme.infrastructure.provider.virtualcenter.VMwareProvider method)

 	get_context_current_page() (in module cfme.web_ui)

 	get_credentials() (cfme.cloud.provider.gce.GCEProvider class method)

 	

 	(cfme.common.provider.BaseProvider class method)

 	get_credentials_from_config() (cfme.common.provider.BaseProvider class method)

 	

 	(in module cfme.infrastructure.host)

 	get_crud() (in module cfme.utils.providers)

 	get_crud_by_name() (in module cfme.utils.providers)

 	get_datastores() (cfme.infrastructure.host.Host method)

 	get_date() (cfme.web_ui.utilization.Option method)

 	get_db_id (cfme.infrastructure.host.Host attribute)

 	get_default_view() (cfme.configure.settings.DefaultView class method)

 	get_detail() (cfme.common.provider.BaseProvider method)

 	

 	(cfme.common.vm.BaseVM method)

 	(cfme.containers.container.Container method)

 	(cfme.containers.image.Image method)

 	(cfme.containers.node.Node method)

 	(cfme.containers.pod.Pod method)

 	(cfme.containers.project.Project method)

 	(cfme.containers.provider.ContainersProvider method)

 	(cfme.containers.replicator.Replicator method)

 	(cfme.containers.route.Route method)

 	(cfme.containers.service.Service method)

 	(cfme.containers.template.Template method)

 	(cfme.containers.volume.Volume method)

 	(cfme.infrastructure.cluster.Cluster method)

 	(cfme.infrastructure.host.Host method)

 	(cfme.infrastructure.resource_pool.ResourcePool method)

 	(cfme.middleware.provider.MiddlewareBase method)

 	(in module cfme.configure.about)

 	get_emails() (cfme.utils.smtp_collector_client.SMTPCollectorClient method)

 	get_entity_by_href() (cfme.utils.appliance.MiqApi method)

 	get_evm_workers() (cfme.utils.smem_memory_monitor.SmemMemoryMonitor method)

 	get_expand_arrow() (cfme.web_ui.BootstrapTreeview class method)

 	get_expression_as_text() (in module cfme.web_ui.expression_editor)

 	get_file() (cfme.utils.ssh.SSHClient method)

 	get_first_miqtop() (in module cfme.utils.perf_message_stats)

 	get_first_quad_title() (cfme.web_ui.Quadicon static method)

 	get_first_vm_title() (cfme.common.vm.BaseVM class method)

 	get_folders() (cfme.intelligence.reports.menus.ReportMenu method)

 	get_from_config() (in module cfme.infrastructure.host)

 	get_func() (in module cfme.web_ui.expression_editor)

 	

 	(in module cfme.web_ui.expression_editor_widgetastic)

 	get_gem_versions() (in module fixtures.version_info)

 	get_host_address (cfme.utils.appliance.IPAppliance attribute)

 	get_host_data_by_name() (in module cfme.utils.hosts)

 	get_hosts() (cfme.infrastructure.datastore.Datastore method)

 	get_html_report() (cfme.utils.smtp_collector_client.SMTPCollectorClient method)

 	get_idle_scenarios() (in module cfme.utils.workloads)

 	get_interval() (cfme.web_ui.utilization.Option method)

 	get_ipmi() (cfme.infrastructure.host.Host method)

 	get_item_by_nodeid() (cfme.web_ui.BootstrapTreeview method)

 	get_items() (cfme.web_ui.UpDownSelect method)

 	get_labels() (cfme.containers.provider.Labelable method)

 	get_log() (fixtures.merkyl.MerkylInspector method)

 	get_logging_url() (cfme.containers.provider.LoggingableView method)

 	get_message_level_up() (in module cfme.web_ui.flash)

 	get_message_text_up() (in module cfme.web_ui.flash)

 	get_messages() (in module cfme.web_ui.flash)

 	get_meta() (in module fixtures.nelson)

 	get_mgmt() (in module cfme.utils.providers)

 	get_mgmt_system() (cfme.common.provider.BaseProvider method)

 	get_minute() (cfme.web_ui.utilization.Option method)

 	get_miq_server_id() (cfme.utils.smem_memory_monitor.SmemMemoryMonitor method)

 	get_msg_args() (in module cfme.utils.perf_message_stats)

 	get_msg_cmd() (in module cfme.utils.perf_message_stats)

 	get_msg_del() (in module cfme.utils.perf_message_stats)

 	get_msg_deq() (in module cfme.utils.perf_message_stats)

 	

 	get_msg_id() (in module cfme.utils.perf_message_stats)

 	get_msg_timestamp_pid() (in module cfme.utils.perf_message_stats)

 	get_name() (in module fixtures.artifactor_plugin)

 	get_next_portion() (cfme.utils.events.EventListener method)

 	get_nodeid() (cfme.web_ui.BootstrapTreeview class method)

 	get_ntp_servers() (in module cfme.configure.configuration)

 	get_number_of_vms() (in module cfme.infrastructure.virtual_machines)

 	get_or_create_current_appliance() (in module cfme.utils.appliance)

 	get_path_and_file_name() (in module fixtures.video)

 	get_pids_memory() (cfme.utils.smem_memory_monitor.SmemMemoryMonitor method)

 	get_polarion_name() (in module fixtures.xunit_tools)

 	get_power_state() (cfme.infrastructure.host.Host method)

 	get_pretty_id() (cfme.containers.provider.ContainersTestItem class method)

 	get_process_versions() (in module fixtures.version_info)

 	get_product_version() (in module cfme.utils.version)

 	get_provider_details() (cfme.common.provider.BaseProvider method)

 	get_provisioning_scenarios() (in module cfme.utils.workloads)

 	get_pxe_image_type() (cfme.infrastructure.pxe.PXEServer method)

 	get_pxe_image_type_ui (cfme.infrastructure.pxe.PXEServer attribute)

 	get_pxe_server_from_config() (in module cfme.infrastructure.pxe)

 	get_rails_error() (cfme.utils.appliance.implementations.ui.ErrorView method)

 	

 	(in module cfme.fixtures.pytest_selenium)

 	get_random_filter() (cfme.containers.provider.AdHocMetricsView method)

 	get_random_instances() (cfme.containers.container.Container class method)

 	

 	(cfme.containers.image.Image class method)

 	(cfme.containers.image_registry.ImageRegistry class method)

 	(cfme.containers.node.Node class method)

 	(cfme.containers.pod.Pod class method)

 	(cfme.containers.project.Project class method)

 	(cfme.containers.replicator.Replicator class method)

 	(cfme.containers.route.Route class method)

 	(cfme.containers.service.Service class method)

 	(cfme.containers.template.Template class method)

 	(cfme.containers.volume.Volume class method)

 	get_random_list() (in module cfme.middleware.provider)

 	get_range() (cfme.web_ui.utilization.Option method)

 	get_refresh_providers_scenarios() (in module cfme.utils.workloads)

 	get_refresh_vms_scenarios() (in module cfme.utils.workloads)

 	get_rel_path() (in module cfme.utils.path)

 	get_relationship() (cfme.infrastructure.virtual_machines.Vm.CfmeRelationship method)

 	get_remote_console_canvas() (cfme.cloud.provider.openstack.OpenStackProvider method)

 	

 	(cfme.common.provider.BaseProvider method)

 	(cfme.infrastructure.provider.rhevm.RHEVMProvider method)

 	(cfme.infrastructure.provider.virtualcenter.VMwareProvider method)

 	get_replication_backlog() (in module cfme.configure.configuration)

 	get_replication_status() (in module cfme.configure.configuration)

 	get_repofile_list() (cfme.utils.appliance.IPAppliance method)

 	get_repository_names() (cfme.configure.configuration.region_settings.RedHatUpdates method)

 	get_request_id() (cfme.services.requests.Request method)

 	get_request_row_from_ui() (cfme.services.requests.Request method)

 	get_root_tenant() (cfme.configure.access_control.Tenant class method)

 	get_rpm_versions() (in module fixtures.version_info)

 	get_saved_canned_reports() (cfme.intelligence.reports.reports.CannedSavedReport method)

 	get_saved_reports() (cfme.intelligence.reports.reports.CustomReport method)

 	get_scenario_dashboard_urls() (in module cfme.utils.grafana)

 	get_scenario_html() (in module cfme.utils.smem_memory_monitor)

 	get_screen() (cfme.common.vm_console.VMConsole method)

 	get_screen_text() (cfme.common.vm_console.VMConsole method)

 	get_selected_tab() (in module cfme.web_ui.tabstrip)

 	get_server_name() (in module cfme.middleware.provider)

 	get_server_roles() (in module cfme.configure.configuration)

 	get_smartstate_analysis_scenarios() (in module cfme.utils.workloads)

 	get_stream() (in module cfme.utils.version)

 	get_streams_id() (in module markers.stream_excluder)

 	get_subfolders() (cfme.intelligence.reports.menus.ReportMenu method)

 	get_system_versions() (in module fixtures.version_info)

 	get_tags() (cfme.common.Taggable method)

 	

 	(cfme.common.WidgetasticTaggable method)

 	(in module cfme.web_ui.mixins)

 	get_tags_db (cfme.common.Taggable attribute)

 	get_template_details() (cfme.common.provider.BaseProvider method)

 	get_template_from_config() (in module cfme.infrastructure.pxe)

 	get_template_guids() (cfme.common.provider.BaseProvider method)

 	get_test_idents() (in module fixtures.artifactor_plugin)

 	get_testcase_data() (in module fixtures.xunit_tools)

 	get_testresult_data() (in module fixtures.xunit_tools)

 	get_time_profile() (cfme.web_ui.utilization.Option method)

 	get_total_results_count() (cfme.containers.provider.AdHocMetricsView method)

 	get_transport() (cfme.utils.ssh.SSHClient method)

 	get_ui_single_page_scenarios() (in module cfme.utils.workloads)

 	get_uncollect_function() (in module markers.uncollect)

 	get_value() (cfme.web_ui.ScriptBox method)

 	get_value_by_text() (cfme.fixtures.pytest_selenium.Select method)

 	get_version() (in module cfme.utils.version)

 	get_vm_details() (cfme.common.provider.BaseProvider method)

 	get_vm_id() (cfme.common.provider.BaseProvider method)

 	get_vm_ids() (cfme.common.provider.BaseProvider method)

 	get_vm_via_rest() (cfme.cloud.instance.Instance method)

 	

 	(cfme.infrastructure.virtual_machines.Vm method)

 	get_vms() (cfme.infrastructure.datastore.Datastore method)

 	get_vms_in_service() (in module cfme.utils.rest)

 	get_week() (cfme.web_ui.utilization.Option method)

 	get_worker_pid() (in module cfme.utils.perf)

 	get_workers_list() (in module cfme.configure.configuration)

 	get_yaml_config() (cfme.utils.appliance.IPAppliance method)

 	get_yaml_data() (cfme.common.provider.BaseProvider method)

 	GH (class in cfme.utils.blockers)

 	git_checkout_type (cfme.automate.explorer.domain.Domain attribute)

 	git_checkout_value (cfme.automate.explorer.domain.Domain attribute)

 	git_repository (cfme.automate.explorer.domain.Domain attribute)

 	github (cfme.utils.blockers.GH attribute)

 	GitImportSelectorView (class in cfme.automate.import_export)

 	go() (cfme.utils.appliance.implementations.ssui.SSUINavigateStep method)

 	

 	(cfme.utils.appliance.implementations.ui.CFMENavigateStep method)

 	go_to_group() (cfme.intelligence.reports.menus.ReportMenu method)

 	GoogleDocstring (class in fixtures.nelson)

 	got_events (cfme.utils.events.EventListener attribute)

 	graph_all_miq_workers() (in module cfme.utils.smem_memory_monitor)

 	graph_appliance_measurements() (in module cfme.utils.smem_memory_monitor)

 	graph_individual_process_measurements() (in module cfme.utils.smem_memory_monitor)

 	graph_same_miq_workers() (in module cfme.utils.smem_memory_monitor)

 	grid_entity (cfme.ansible.playbooks.PlaybookEntity attribute)

 	grid_view_limit (cfme.configure.settings.Visual attribute)

 	group (cfme.intelligence.reports.dashboards.Dashboard attribute)

 	

 	(cfme.test_framework.sprout.plugin.SproutProvisioningRequest attribute)

 	Group (class in cfme.configure.access_control)

 	

 	(class in cfme.utils.trackerbot)

 	group_name (cfme.utils.trackerbot.TemplateInfo attribute)

 	group_names (cfme.common.Summary attribute)

 	group_order (cfme.configure.access_control.Group attribute)

 	group_order_selector (cfme.configure.access_control.EditGroupSequenceView attribute)

 	GROUP_SUMMARY (cfme.web_ui.CAndUGroupTable.States attribute)

 	group_tenant (cfme.configure.access_control.GroupForm attribute)

 	group_with_tag() (in module cfme.fixtures.tag)

 	GroupAdd (class in cfme.configure.access_control)

 	GroupAll (class in cfme.configure.access_control)

 	GroupDetails (class in cfme.configure.access_control)

 	GroupEdit (class in cfme.configure.access_control)

 	GroupEditTagsView (class in cfme.configure.access_control)

 	GroupForm (class in cfme.configure.access_control)

 	groups() (cfme.common.Summary method)

 	

 	(cfme.web_ui.CAndUGroupTable method)

 	(in module cfme.rest.gen_data)

 	GroupTagsEdit (class in cfme.configure.access_control)

 	GUEST_RESTART (cfme.infrastructure.virtual_machines.Vm attribute)

 	GUEST_SHUTDOWN (cfme.infrastructure.virtual_machines.Vm attribute)

 	guid (cfme.utils.appliance.IPAppliance attribute)

H

 	

 	halt_on_fail (markers.smoke.SmokeTests attribute)

 	handle_alert() (in module cfme.fixtures.pytest_selenium)

 	handle_assert_artifacts() (in module fixtures.soft_assert)

 	handle_end_session() (in module fixtures.parallelizer)

 	handle_quit() (fixtures.parallelizer.remote.SlaveManager method)

 	handler() (in module cfme.utils.error)

 	HARD_REBOOT (cfme.cloud.instance.openstack.OpenStackInstance attribute)

 	hardware (cfme.common.vm_views.BasicProvisionFormView attribute)

 	

 	(cfme.services.requests.RequestDetailsView attribute)

 	hardware_reconfigured_parameters (cfme.control.explorer.alerts.AlertDetailsView attribute)

 	has_cli (cfme.utils.appliance.IPAppliance attribute)

 	has_config (fixtures.pytest_store.Store attribute)

 	has_database (cfme.utils.appliance.db.ApplianceDB attribute)

 	has_netapp() (cfme.utils.appliance.IPAppliance method)

 	has_no_providers() (in module fixtures.provider)

 	has_no_providers_modscope() (in module fixtures.provider)

 	has_nodes() (cfme.infrastructure.provider.openstack_infra.OpenstackInfraProvider method)

 	has_quick_search_box() (in module cfme.web_ui.search)

 	has_tables (cfme.utils.appliance.db.ApplianceDB attribute)

 	has_valid_credentials (cfme.infrastructure.host.Host attribute)

 	has_warning (cfme.web_ui.utilization.LineChart attribute)

 	hash_file() (in module cfme.scripting.quickstart)

 	hawkular (cfme.containers.provider.ContainersProviderEndpointsForm attribute)

 	HawkularEndpoint (class in cfme.containers.provider.openshift)

 	

 	(class in cfme.middleware.provider.hawkular)

 	HawkularEndpointForm (class in cfme.middleware.provider.hawkular)

 	HawkularProvider (class in cfme.middleware.provider.hawkular)

 	header (cfme.control.explorer.alert_profiles.AlertProfilesEditAssignmentsView attribute)

 	header_checkbox (cfme.web_ui.CheckboxTable attribute)

 	header_indexes (cfme.web_ui.Table attribute), [1]

 	header_names (cfme.web_ui.DynamicTable attribute)

 	header_row (cfme.web_ui.SplitTable attribute)

 	

 	(cfme.web_ui.Table attribute)

 	HEADERS (cfme.common.Summary attribute)

 	headers (cfme.web_ui.Table attribute)

 	headers() (cfme.middleware.domain.MiddlewareDomain class method)

 	

 	(cfme.middleware.messaging.MiddlewareMessaging class method)

 	(cfme.middleware.server.MiddlewareServer class method)

 	(cfme.middleware.server_group.MiddlewareServerGroup class method)

 	health_checks (cfme.networks.balancer.Balancer attribute)

 	help (cfme.base.login.BaseLoggedInPage attribute)

 	

 	(cfme.base.ssui.SSUIBaseLoggedInPage attribute)

 	help_block (cfme.configure.settings.TimeProfileAddForm attribute)

 	hide_update_password() (cfme.base.ui.LoginPage method)

 	history_items() (in module cfme.web_ui.history)

 	history_items_present() (in module cfme.web_ui.history)

 	history_table (cfme.common.host_views.HostDriftHistory attribute)

 	HOST (cfme.automate.buttons.ButtonGroup attribute)

 	Host (class in cfme.infrastructure.host)

 	Host.Credential (class in cfme.infrastructure.host)

 	

 	host_fields (cfme.control.snmp_form.SNMPHostsField attribute)

 	host_id() (cfme.utils.appliance.IPAppliance method)

 	HOST_OR_NODE (cfme.infrastructure.pxe.SystemImageType attribute)

 	host_platform (cfme.common.host_views.HostAddView attribute)

 	HOST_PROVISION (cfme.automate.provisioning_dialogs.ProvisioningDialog attribute)

 	host_quad (cfme.configure.settings.Visual attribute)

 	HOST_TYPE (cfme.configure.configuration.analysis_profile.AnalysisProfile attribute)

 	HostAddView (class in cfme.common.host_views)

 	HostAlertProfile (class in cfme.control.explorer.alert_profiles)

 	HostAllDatastoresView (class in cfme.infrastructure.datastore)

 	HostCompliancePolicy (class in cfme.control.explorer.policies)

 	HostCondition (class in cfme.control.explorer.conditions)

 	HostControlPolicy (class in cfme.control.explorer.policies)

 	HostDetailsEntities (class in cfme.common.host_views)

 	HostDetailsToolbar (class in cfme.common.host_views)

 	HostDetailsView (class in cfme.common.host_views)

 	HostDiscoverView (class in cfme.common.host_views)

 	HostDriftAnalysis (class in cfme.common.host_views)

 	HostDriftHistory (class in cfme.common.host_views)

 	HostEditView (class in cfme.common.host_views)

 	HostEntitiesView (class in cfme.common.host_views)

 	HostEntity() (in module cfme.common.host_views)

 	HostFormView (class in cfme.common.host_views)

 	HostListEntity (class in cfme.common.host_views)

 	HostManagePoliciesView (class in cfme.common.host_views)

 	hostname (cfme.common.host_views.HostFormView attribute)

 	

 	(cfme.common.provider.CloudInfraProvider attribute)

 	(cfme.common.provider.DefaultEndpointForm attribute)

 	(cfme.utils.appliance.IPAppliance attribute)

 	HostNotFound

 	HostQuadIconEntity (class in cfme.common.host_views)

 	hosts (cfme.infrastructure.provider.InfraProvider attribute)

 	

 	(cfme.services.catalogs.service_catalogs.OrderForm attribute)

 	hosts_and_clusters (cfme.configure.access_control.GroupForm attribute)

 	HostsEditView (class in cfme.common.host_views)

 	HostSideBar (class in cfme.common.host_views)

 	HostStatsNotContains

 	HostsToolbar (class in cfme.common.host_views)

 	HostsView (class in cfme.common.host_views)

 	HostTileIconEntity (class in cfme.common.host_views)

 	HostTimelinesView (class in cfme.common.host_views)

 	hour (cfme.intelligence.reports.schedules.SchedulesFormCommon attribute)

 	hour_bucket_init() (in module cfme.utils.perf_message_stats)

 	hours (cfme.configure.settings.TimeProfileAddForm attribute)

 	hover (cfme.automate.buttons.ButtonDetailView attribute)

 	

 	(cfme.automate.buttons.ButtonFormCommon attribute)

 	(cfme.automate.buttons.ButtonGroupDetailView attribute)

 	(cfme.automate.buttons.ButtonGroupFormCommon attribute)

 	href (cfme.web_ui.Quadicon attribute)

 	href() (cfme.containers.provider.openshift.OpenshiftProvider method)

I

 	

 	icastmap() (in module cfme.utils)

 	icon_href (cfme.web_ui.InfoBlock.Member attribute)

 	icon_href() (cfme.web_ui.InfoBlock class method)

 	id (cfme.common.provider.BaseProvider attribute)

 	

 	(cfme.infrastructure.cluster.Cluster attribute)

 	(fixtures.parallelizer.SlaveDetail attribute)

 	image (cfme.automate.buttons.ButtonFormCommon attribute)

 	

 	(cfme.automate.buttons.ButtonGroupFormCommon attribute)

 	(cfme.services.catalogs.service_catalogs.OrderForm attribute)

 	(cfme.web_ui.jstimelines.Event attribute)

 	Image (class in cfme.cloud.instance.image)

 	

 	(class in cfme.containers.image)

 	image_getter() (cfme.web_ui.BootstrapTreeview class method)

 	image_type (cfme.infrastructure.pxe.PXECustomizationTemplateForm attribute)

 	image_types (cfme.infrastructure.pxe.PXESideBar attribute)

 	ImageAll (class in cfme.cloud.instance.image)

 	ImageAllForProvider (class in cfme.cloud.instance.image)

 	ImageAllView (class in cfme.cloud.instance.image)

 	

 	(class in cfme.containers.image)

 	ImageDetails (class in cfme.cloud.instance.image)

 	ImageDetailsEntities (class in cfme.cloud.instance.image)

 	ImageDetailsToolbar (class in cfme.cloud.instance.image)

 	ImageDetailsView (class in cfme.cloud.instance.image)

 	ImageEdit (class in cfme.cloud.instance.image)

 	ImageEditTags (class in cfme.cloud.instance.image)

 	ImageManagePolicies (class in cfme.cloud.instance.image)

 	ImageNotFound

 	ImagePolicySimulation (class in cfme.cloud.instance.image)

 	ImageProviderAllView (class in cfme.cloud.instance.image)

 	ImageProvisionImage (class in cfme.cloud.instance.image)

 	ImageProvisionView (class in cfme.cloud.instance.image)

 	ImageRegistry (class in cfme.containers.image_registry)

 	ImageRegistryAll (class in cfme.containers.image_registry)

 	ImageRegistryAllView (class in cfme.containers.image_registry)

 	ImageRegistryDetails (class in cfme.containers.image_registry)

 	ImageRegistryEditTags (class in cfme.containers.image_registry)

 	images (cfme.cloud.instance.InstanceAccordion attribute)

 	

 	(cfme.configure.settings.DefaultViewForm attribute)

 	Images (class in cfme.cloud.provider)

 	images_by_provider (cfme.cloud.instance.InstanceAccordion attribute)

 	ImageSetOwnership (class in cfme.cloud.instance.image)

 	ImageToolbar (class in cfme.cloud.instance.image)

 	img (cfme.common.SummaryValue attribute)

 	Implementation (class in cfme.utils.appliance.implementations)

 	Import (class in cfme.base.ui)

 	import_domain_from() (cfme.automate.import_export.AutomateGitRepository method)

 	import_export (cfme.automate.AutomateCustomizationView attribute)

 	

 	(cfme.intelligence.reports.CloudIntelReportsView attribute)

 	import_file (cfme.base.ui.AutomateImportExportView attribute)

 	import_file() (in module cfme.control.import_export)

 	import_git (cfme.base.ui.AutomateImportExportView attribute)

 	import_reports() (in module cfme.intelligence.reports.import_export)

 	import_widgets() (in module cfme.intelligence.reports.import_export)

 	ImportExportCommonForm (class in cfme.intelligence.reports.import_export)

 	ImportExportCustomReports (class in cfme.intelligence.reports.import_export)

 	ImportExportCustomReportsView (class in cfme.intelligence.reports.import_export)

 	ImportExportWidgets (class in cfme.intelligence.reports.import_export)

 	ImportExportWidgetsCommitView (class in cfme.intelligence.reports.import_export)

 	ImportExportWidgetsView (class in cfme.intelligence.reports.import_export)

 	imports (cfme.base.ui.RegionView attribute)

 	importtags (cfme.base.ui.RegionView attribute)

 	ImportTags (class in cfme.base.ui)

 	in_ansible_credentials (cfme.ansible.credentials.CredentialsBaseView attribute)

 	in_ansible_playbooks (cfme.ansible.playbooks.PlaybookBaseView attribute)

 	in_ansible_repositories (cfme.ansible.repositories.RepositoryBaseView attribute)

 	in_availability_zones (cfme.cloud.availability_zone.AvailabilityZoneView attribute)

 	

 	(cfme.cloud.flavor.FlavorView attribute)

 	in_chargeback (cfme.intelligence.chargeback.ChargebackView attribute)

 	in_cloud_instance (cfme.cloud.instance.CloudInstanceView attribute)

 	

 	(cfme.containers.node.NodeView attribute)

 	in_cluster (cfme.infrastructure.cluster.ClusterView attribute)

 	in_compute_infrastructure_hosts (cfme.common.host_views.ComputeInfrastructureHostsView attribute)

 	in_configuration (cfme.base.ui.ConfigurationView attribute)

 	in_control_explorer (cfme.control.explorer.ControlExplorerView attribute)

 	in_customization (cfme.automate.AutomateCustomizationView attribute)

 	

 	(cfme.automate.provisioning_dialogs.ProvDiagView attribute)

 	IN_DAILY (cfme.web_ui.utilization.Option attribute)

 	in_dashboard() (cfme.services.dashboard.ssui.DashboardView method)

 	in_dashboard_widgets (cfme.intelligence.reports.widgets.DashboardWidgetsView attribute)

 	in_datasource (cfme.middleware.provider.middleware_views.DatasourceView attribute)

 	in_dep_role (cfme.infrastructure.deployment_roles.DeploymentRoleView attribute)

 	in_deployment (cfme.middleware.provider.middleware_views.DeploymentView attribute)

 	in_domain (cfme.middleware.provider.middleware_views.DomainView attribute)

 	in_explorer (cfme.automate.explorer.AutomateExplorerView attribute)

 	

 	(cfme.services.catalogs.ServicesCatalogView attribute)

 	in_explorer() (cfme.optimize.BottlenecksView method)

 	in_flight() (in module cfme.fixtures.pytest_selenium)

 	IN_HOURLY (cfme.web_ui.utilization.Option attribute)

 	in_import_export (cfme.base.ui.AutomateImportExportBaseView attribute)

 	in_infra_vms (cfme.infrastructure.virtual_machines.InfraVmView attribute)

 	in_intel_reports (cfme.intelligence.reports.CloudIntelReportsView attribute)

 	in_keypair (cfme.cloud.keypairs.KeyPairView attribute)

 	in_messaging (cfme.middleware.provider.middleware_views.MessagingView attribute)

 	IN_MOST_RECENT_HOUR (cfme.web_ui.utilization.Option attribute)

 	in_myservices() (cfme.services.dashboard.ssui.MyServicesView method)

 	

 	(cfme.services.myservice.ssui.MyServicesView method)

 	(cfme.services.myservice.ui.MyServicesView method)

 	in_pytest_session (fixtures.pytest_store.Store attribute)

 	in_requests (cfme.services.requests.RequestBasicView attribute)

 	in_resource_pool (cfme.infrastructure.resource_pool.ResourcePoolView attribute)

 	in_server (cfme.middleware.provider.middleware_views.ServerView attribute)

 	in_stacks (cfme.cloud.stack.StackView attribute)

 	in_tenants (cfme.cloud.tenant.TenantView attribute)

 	in_version (cfme.containers.provider.ContainersProvider attribute)

 	

 	(cfme.middleware.provider.MiddlewareProvider attribute)

 	(cfme.networks.balancer.Balancer attribute)

 	(cfme.networks.cloud_network.CloudNetwork attribute)

 	(cfme.networks.network_port.NetworkPort attribute)

 	(cfme.networks.network_router.NetworkRouter attribute)

 	(cfme.networks.provider.NetworkProvider attribute)

 	(cfme.networks.security_group.SecurityGroup attribute)

 	(cfme.networks.subnet.Subnet attribute)

 	in_volume (cfme.storage.volume.VolumeView attribute)

 	in_workloads (cfme.services.workloads.WorkloadsView attribute)

 	INDENT (cfme.web_ui.BootstrapTreeview attribute)

 	indents() (cfme.web_ui.BootstrapTreeview class method)

 	info (cfme.control.explorer.alerts.AlertDetailsView attribute)

 	info_description (cfme.configure.configuration.analysis_profile.AnalysisProfileDetailsEntities attribute)

 	info_name (cfme.configure.configuration.analysis_profile.AnalysisProfileDetailsEntities attribute)

 	info_type (cfme.configure.configuration.analysis_profile.AnalysisProfileDetailsEntities attribute)

 	InfoBlock (class in cfme.web_ui)

 	InfoBlock.Member (class in cfme.web_ui)

 	infra_provider (cfme.common.provider_views.CloudProviderAddView attribute)

 	infra_provider_quad (cfme.configure.settings.Visual attribute)

 	InfraGenericDetailsToolbar (class in cfme.infrastructure.virtual_machines)

 	InfraNetworking (class in cfme.infrastructure.networking)

 	InfraProvider (class in cfme.infrastructure.provider)

 	InfraProviderAddView (class in cfme.common.provider_views)

 	InfraProviderDetailsView (class in cfme.common.provider_views)

 	InfraProviderEditView (class in cfme.common.provider_views)

 	InfraProvidersDiscoverView (class in cfme.common.provider_views)

 	InfraProvidersView (class in cfme.common.provider_views)

 	infrastructure_providers (cfme.configure.settings.DefaultViewForm attribute)

 	InfraVmDetailsToolbar (class in cfme.infrastructure.virtual_machines)

 	InfraVmDetailsView (class in cfme.infrastructure.virtual_machines)

 	InfraVmReconfigureView (class in cfme.infrastructure.virtual_machines)

 	InfraVmSummaryView (class in cfme.infrastructure.virtual_machines)

 	InfraVmTimelinesView (class in cfme.infrastructure.virtual_machines)

 	InfraVmView (class in cfme.infrastructure.virtual_machines)

 	input (cfme.ansible.credentials.CredentialEditView attribute)

 	

 	(cfme.web_ui.AngularCalendarInput attribute)

 	Input (class in cfme.web_ui)

 	InputButton (class in cfme.control.import_export)

 	

 	(class in cfme.intelligence.reports.import_export)

 	inputs (cfme.web_ui.DynamicTable.Row attribute)

 	inputs_for_filling (cfme.web_ui.DynamicTable.Row attribute)

 	install() (fixtures.ui_coverage.CoverageManager method)

 	install_netapp_sdk() (cfme.utils.appliance.IPAppliance method)

 	install_packages() (in module cfme.scripting.setup_ansible)

 	install_requirements() (in module cfme.scripting.quickstart)

 	install_smem() (in module cfme.utils.smem_memory_monitor)

 	install_system_packages() (in module cfme.scripting.quickstart)

 	install_vddk() (cfme.utils.appliance.IPAppliance method)

 	instance (cfme.base.ui.AutomateSimulationView attribute)

 	Instance (class in cfme.automate.explorer.instance)

 	

 	(class in cfme.cloud.instance)

 	instance_types() (in module cfme.common.vm)

 	InstanceAccordion (class in cfme.cloud.instance)

 	InstanceAddView (class in cfme.automate.explorer.instance)

 	InstanceAllView (class in cfme.cloud.instance)

 	InstanceClassMethod (class in cfme.utils)

 	InstanceCollection (class in cfme.automate.explorer.instance)

 	InstanceCopyView (class in cfme.automate.explorer.instance)

 	InstanceDetailsToolbar (class in cfme.cloud.instance)

 	InstanceDetailsView (class in cfme.automate.explorer.instance)

 	

 	(class in cfme.cloud.instance)

 	InstanceEditView (class in cfme.automate.explorer.instance)

 	

 	InstanceEntity() (in module cfme.common.vm_views)

 	InstanceListEntity (class in cfme.common.vm_views)

 	InstanceNotFound

 	InstanceProviderAllView (class in cfme.cloud.instance)

 	InstanceQuadIconEntity (class in cfme.common.vm_views)

 	instances (cfme.automate.explorer.klass.Class attribute)

 	

 	(cfme.automate.explorer.klass.ClassDetailsView attribute)

 	(cfme.cloud.instance.InstanceAccordion attribute)

 	(cfme.configure.settings.DefaultViewForm attribute)

 	Instances (class in cfme.cloud.provider)

 	instances_by_provider (cfme.cloud.instance.InstanceAccordion attribute)

 	

 	(cfme.cloud.instance.InstanceProviderAllView attribute)

 	InstanceTileIconEntity (class in cfme.common.vm_views)

 	InstanceTimelinesView (class in cfme.cloud.instance)

 	instantiate() (cfme.ansible.credentials.CredentialsCollection method)

 	

 	(cfme.ansible.playbooks.PlaybooksCollection method)

 	(cfme.ansible.repositories.RepositoryCollection method)

 	(cfme.automate.dialog_box.BoxCollection method)

 	(cfme.automate.dialog_element.ElementCollection method)

 	(cfme.automate.dialog_tab.TabCollection method)

 	(cfme.automate.explorer.domain.DomainCollection method)

 	(cfme.automate.explorer.instance.InstanceCollection method)

 	(cfme.automate.explorer.klass.ClassCollection method)

 	(cfme.automate.explorer.method.MethodCollection method)

 	(cfme.automate.explorer.namespace.NamespaceCollection method)

 	(cfme.automate.service_dialogs.DialogCollection method)

 	(cfme.cloud.keypairs.KeyPairCollection method)

 	(cfme.cloud.stack.StackCollection method)

 	(cfme.cloud.tenant.TenantCollection method)

 	(cfme.containers.node.NodeCollection method)

 	(cfme.dashboard.DashboardCollection method)

 	(cfme.dashboard.DashboardWidgetCollection method)

 	(cfme.infrastructure.cluster.ClusterCollection method)

 	(cfme.infrastructure.datastore.DatastoreCollection method)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleCollection method)

 	(cfme.intelligence.reports.schedules.ScheduleCollection method)

 	(cfme.networks.balancer.BalancerCollection method)

 	(cfme.networks.cloud_network.CloudNetworkCollection method)

 	(cfme.networks.network_port.NetworkPortCollection method)

 	(cfme.networks.network_router.NetworkRouterCollection method)

 	(cfme.networks.provider.NetworkProviderCollection method)

 	(cfme.networks.security_group.SecurityGroupCollection method)

 	(cfme.networks.subnet.SubnetCollection method)

 	(cfme.services.requests.RequestCollection method)

 	(cfme.storage.volume.VolumeCollection method)

 	IntelChargeback (class in cfme.intelligence.chargeback)

 	interaction() (cfme.fixtures.rdb.Rdb method)

 	interrupt() (fixtures.parallelizer.ParallelSession method)

 	inventory (cfme.configure.documentation.LinksView attribute)

 	

 	(cfme.control.explorer.actions.RunAnsiblePlaybookFromView attribute)

 	ip_address (cfme.common.provider.CloudInfraProvider attribute)

 	

 	(cfme.common.vm.BaseVM attribute)

 	ip_echo_socket() (in module cfme.utils.net)

 	ipa_creds() (in module cfme.fixtures.cli)

 	ipa_crud() (in module cfme.fixtures.cli)

 	ipapp (cfme.utils.appliance.Appliance attribute)

 	IPAppliance (class in cfme.utils.appliance)

 	ipmi (cfme.common.host_views.HostDiscoverView attribute)

 	IPMI (class in cfme.utils.ipmi)

 	ipmi_address (cfme.common.host_views.HostFormView attribute)

 	IPMIException

 	is_active (cfme.web_ui.topology.TopologyLegend attribute)

 	

 	(cfme.web_ui.utilization.Legend attribute)

 	is_active() (in module cfme.web_ui.accordion)

 	

 	(in module cfme.web_ui.listaccordion)

 	(in module cfme.web_ui.toolbar)

 	is_advanced_filter_applied() (in module cfme.web_ui.search)

 	is_advanced_search_opened() (in module cfme.web_ui.search)

 	is_advanced_search_possible() (in module cfme.web_ui.search)

 	is_alert_present() (in module cfme.fixtures.pytest_selenium)

 	is_analysis_finished() (in module cfme.configure.tasks)

 	is_appliance_downstream() (cfme.utils.ssh.SSHClient method)

 	is_broken (cfme.fixtures.pytest_selenium.Select attribute)

 	

 	(cfme.web_ui.AngularSelect attribute)

 	is_cfme_exception() (in module cfme.web_ui.cfme_exception)

 	IS_CHECKABLE (cfme.web_ui.BootstrapTreeview attribute)

 	is_checkable() (cfme.web_ui.BootstrapTreeview class method)

 	IS_CHECKED (cfme.web_ui.BootstrapTreeview attribute)

 	is_checked() (cfme.web_ui.BootstrapTreeview class method)

 	is_cleared (cfme.configure.configuration.ServerLogDepot attribute)

 	is_cluster_analysis_finished() (in module cfme.configure.tasks)

 	is_collapsed() (cfme.web_ui.BootstrapTreeview class method)

 	is_compliant (cfme.infrastructure.host.Host attribute)

 	is_condition_assigned() (cfme.control.explorer.policies.BasePolicy method)

 	is_connected() (cfme.common.vm_console.VMConsole method)

 	is_container (cfme.utils.ssh.SSHClient attribute)

 	is_datastore_analysis_finished() (in module cfme.configure.tasks)

 	is_dedicated_active (cfme.utils.appliance.db.ApplianceDB attribute)

 	is_dimmed (cfme.web_ui.form_buttons.FormButton attribute)

 	is_displayed (cfme.ansible.credentials.CredentialAddView attribute)

 	

 	(cfme.ansible.credentials.CredentialDetailsView attribute)

 	(cfme.ansible.credentials.CredentialEditView attribute)

 	(cfme.ansible.credentials.CredentialsListView attribute)

 	(cfme.ansible.playbooks.PlaybookDetailsView attribute)

 	(cfme.ansible.playbooks.PlaybooksView attribute)

 	(cfme.ansible.repositories.RepositoryAddView attribute)

 	(cfme.ansible.repositories.RepositoryAllView attribute)

 	(cfme.ansible.repositories.RepositoryDetailsView attribute)

 	(cfme.ansible.repositories.RepositoryEditView attribute)

 	(cfme.automate.AutomateCustomizationView attribute)

 	(cfme.automate.buttons.ButtonDetailView attribute)

 	(cfme.automate.buttons.ButtonGroupDetailView attribute)

 	(cfme.automate.buttons.ButtonGroupObjectTypeView attribute)

 	(cfme.automate.buttons.ButtonsAllView attribute)

 	(cfme.automate.buttons.EditButtonGroupView attribute)

 	(cfme.automate.buttons.EditButtonView attribute)

 	(cfme.automate.buttons.NewButtonGroupView attribute)

 	(cfme.automate.buttons.NewButtonView attribute)

 	(cfme.automate.dialog_box.AddBoxView attribute)

 	(cfme.automate.dialog_box.EditBoxView attribute)

 	(cfme.automate.dialog_element.AddElementView attribute)

 	(cfme.automate.dialog_element.DetailsDialogView attribute)

 	(cfme.automate.dialog_element.EditElementView attribute)

 	(cfme.automate.dialog_tab.AddTabView attribute)

 	(cfme.automate.dialog_tab.DetailsTabView attribute)

 	(cfme.automate.dialog_tab.EditTabView attribute)

 	(cfme.automate.explorer.AutomateExplorerView attribute)

 	(cfme.automate.explorer.domain.DomainAddView attribute)

 	(cfme.automate.explorer.domain.DomainDetailsView attribute)

 	(cfme.automate.explorer.domain.DomainEditView attribute)

 	(cfme.automate.explorer.domain.DomainListView attribute)

 	(cfme.automate.explorer.domain.DomainPriorityView attribute)

 	(cfme.automate.explorer.instance.InstanceAddView attribute)

 	(cfme.automate.explorer.instance.InstanceCopyView attribute)

 	(cfme.automate.explorer.instance.InstanceDetailsView attribute)

 	(cfme.automate.explorer.instance.InstanceEditView attribute)

 	(cfme.automate.explorer.klass.ClassAddView attribute)

 	(cfme.automate.explorer.klass.ClassCopyView attribute)

 	(cfme.automate.explorer.klass.ClassDetailsView attribute)

 	(cfme.automate.explorer.klass.ClassEditView attribute)

 	(cfme.automate.explorer.klass.ClassSchemaEditView attribute)

 	(cfme.automate.explorer.method.MethodAddView attribute)

 	(cfme.automate.explorer.method.MethodCopyView attribute)

 	(cfme.automate.explorer.method.MethodDetailsView attribute)

 	(cfme.automate.explorer.method.MethodEditView attribute)

 	(cfme.automate.explorer.namespace.NamespaceAddView attribute)

 	(cfme.automate.explorer.namespace.NamespaceDetailsView attribute)

 	(cfme.automate.explorer.namespace.NamespaceEditView attribute)

 	(cfme.automate.import_export.GitImportSelectorView attribute)

 	(cfme.automate.provisioning_dialogs.ProvDiagAddView attribute)

 	(cfme.automate.provisioning_dialogs.ProvDiagAllView attribute)

 	(cfme.automate.provisioning_dialogs.ProvDiagDetailsView attribute)

 	(cfme.automate.provisioning_dialogs.ProvDiagEditView attribute)

 	(cfme.automate.service_dialogs.AddDialogView attribute)

 	(cfme.automate.service_dialogs.DetailsDialogView attribute)

 	(cfme.automate.service_dialogs.DialogsView attribute)

 	(cfme.automate.service_dialogs.EditDialogView attribute)

 	(cfme.base.login.BaseLoggedInPage attribute)

 	(cfme.base.ssui.SSUIBaseLoggedInPage attribute)

 	(cfme.base.ui.AutomateImportExportBaseView attribute)

 	(cfme.base.ui.AutomateImportExportView attribute)

 	(cfme.base.ui.AutomateSimulationView attribute)

 	(cfme.base.ui.ConfigurationView attribute)

 	(cfme.base.ui.DiagnosticsCollectLogsEditView attribute)

 	(cfme.base.ui.DiagnosticsCollectLogsView attribute)

 	(cfme.base.ui.LoginPage attribute)

 	(cfme.base.ui.MySettingsView attribute)

 	(cfme.base.ui.RegionDiagnosticsView attribute)

 	(cfme.base.ui.RegionView attribute)

 	(cfme.base.ui.ServerDiagnosticsView attribute)

 	(cfme.base.ui.ServerView attribute)

 	(cfme.base.ui.ZoneAddView attribute)

 	(cfme.base.ui.ZoneDetailsView attribute)

 	(cfme.base.ui.ZoneDiagnosticsCollectLogsView attribute)

 	(cfme.base.ui.ZoneDiagnosticsView attribute)

 	(cfme.base.ui.ZoneEditView attribute)

 	(cfme.base.ui.ZoneListView attribute)

 	(cfme.cloud.availability_zone.AvailabilityZoneAllView attribute)

 	(cfme.cloud.availability_zone.AvailabilityZoneDetailsView attribute)

 	(cfme.cloud.availability_zone.CloudAvailabilityZoneTimelinesView attribute)

 	(cfme.cloud.flavor.FlavorAllView attribute)

 	(cfme.cloud.flavor.FlavorDetailsView attribute)

 	(cfme.cloud.instance.InstanceAllView attribute)

 	(cfme.cloud.instance.InstanceDetailsView attribute)

 	(cfme.cloud.instance.InstanceProviderAllView attribute)

 	(cfme.cloud.instance.InstanceTimelinesView attribute)

 	(cfme.cloud.instance.image.ImageAllView attribute)

 	(cfme.cloud.instance.image.ImageDetailsView attribute)

 	(cfme.cloud.instance.image.ImageProviderAllView attribute)

 	(cfme.cloud.instance.image.ImageProvisionView attribute)

 	(cfme.cloud.instance.openstack.AddFloatingIPView attribute)

 	(cfme.cloud.instance.openstack.AttachVolumeView attribute)

 	(cfme.cloud.instance.openstack.DetachVolumeView attribute)

 	(cfme.cloud.instance.openstack.EvacuateView attribute)

 	(cfme.cloud.instance.openstack.MigrateView attribute)

 	(cfme.cloud.instance.openstack.ReconfigureView attribute)

 	(cfme.cloud.instance.openstack.RemoveFloatingIPView attribute)

 	(cfme.cloud.keypairs.KeyPairAddView attribute)

 	(cfme.cloud.keypairs.KeyPairAllView attribute)

 	(cfme.cloud.keypairs.KeyPairDetailsView attribute)

 	(cfme.cloud.provider.CloudProviderTimelinesView attribute)

 	(cfme.cloud.stack.StackAllView attribute)

 	(cfme.cloud.stack.StackDetailsView attribute)

 	(cfme.cloud.stack.StackOutputsView attribute)

 	(cfme.cloud.stack.StackParametersView attribute)

 	(cfme.cloud.stack.StackResourcesView attribute)

 	(cfme.cloud.stack.StackSecurityGroupsView attribute)

 	(cfme.cloud.tenant.TenantAddView attribute)

 	(cfme.cloud.tenant.TenantAllView attribute)

 	(cfme.cloud.tenant.TenantDetailsView attribute)

 	(cfme.cloud.tenant.TenantEditView attribute)

 	(cfme.common.TagPageView attribute)

 	(cfme.common.host_views.HostAddView attribute)

 	(cfme.common.host_views.HostDetailsView attribute)

 	(cfme.common.host_views.HostDiscoverView attribute)

 	(cfme.common.host_views.HostDriftAnalysis attribute)

 	(cfme.common.host_views.HostDriftHistory attribute)

 	(cfme.common.host_views.HostEditView attribute)

 	(cfme.common.host_views.HostManagePoliciesView attribute)

 	(cfme.common.host_views.HostTimelinesView attribute)

 	(cfme.common.host_views.HostsEditView attribute)

 	(cfme.common.host_views.HostsView attribute)

 	(cfme.common.provider_views.CloudProviderAddView attribute)

 	(cfme.common.provider_views.CloudProviderDetailsView attribute)

 	(cfme.common.provider_views.CloudProviderEditView attribute)

 	(cfme.common.provider_views.CloudProvidersDiscoverView attribute)

 	(cfme.common.provider_views.CloudProvidersView attribute)

 	(cfme.common.provider_views.ContainersProviderAddView attribute)

 	(cfme.common.provider_views.ContainersProviderEditView attribute)

 	(cfme.common.provider_views.ContainersProvidersView attribute)

 	(cfme.common.provider_views.InfraProviderAddView attribute)

 	(cfme.common.provider_views.InfraProviderDetailsView attribute)

 	(cfme.common.provider_views.InfraProviderEditView attribute)

 	(cfme.common.provider_views.InfraProvidersDiscoverView attribute)

 	(cfme.common.provider_views.InfraProvidersView attribute)

 	(cfme.common.provider_views.MiddlewareProviderAddView attribute)

 	(cfme.common.provider_views.MiddlewareProviderDetailsView attribute)

 	(cfme.common.provider_views.MiddlewareProviderEditView attribute)

 	(cfme.common.provider_views.MiddlewareProvidersView attribute)

 	(cfme.common.provider_views.ProviderAddView attribute)

 	(cfme.common.provider_views.ProviderDetailsView attribute)

 	(cfme.common.provider_views.ProviderEditView attribute)

 	(cfme.common.provider_views.ProviderNodesView attribute)

 	(cfme.common.provider_views.ProviderTimelinesView attribute)

 	(cfme.common.provider_views.ProvidersManagePoliciesView attribute)

 	(cfme.common.provider_views.ProvidersView attribute)

 	(cfme.common.vm_views.EditView attribute)

 	(cfme.common.vm_views.ManagePoliciesView attribute)

 	(cfme.common.vm_views.ManagementEngineView attribute)

 	(cfme.common.vm_views.PolicySimulationView attribute)

 	(cfme.common.vm_views.ProvisionView attribute)

 	(cfme.common.vm_views.RetirementView attribute)

 	(cfme.common.vm_views.RightSizeView attribute)

 	(cfme.common.vm_views.SetOwnershipView attribute)

 	(cfme.configure.about.AboutView attribute)

 	(cfme.configure.access_control.AddGroupView attribute)

 	(cfme.configure.access_control.AddRoleView attribute)

 	(cfme.configure.access_control.AddTenantView attribute)

 	(cfme.configure.access_control.AddUserView attribute)

 	(cfme.configure.access_control.AllGroupView attribute)

 	(cfme.configure.access_control.AllRolesView attribute)

 	(cfme.configure.access_control.AllTenantView attribute)

 	(cfme.configure.access_control.AllUserView attribute)

 	(cfme.configure.access_control.DetailsGroupView attribute)

 	(cfme.configure.access_control.DetailsRoleView attribute)

 	(cfme.configure.access_control.DetailsTenantView attribute)

 	(cfme.configure.access_control.DetailsUserView attribute)

 	(cfme.configure.access_control.EditGroupSequenceView attribute)

 	(cfme.configure.access_control.EditGroupView attribute)

 	(cfme.configure.access_control.EditRoleView attribute)

 	(cfme.configure.access_control.EditTagsUserView attribute)

 	(cfme.configure.access_control.EditTenantView attribute)

 	(cfme.configure.access_control.EditUserView attribute)

 	(cfme.configure.access_control.GroupEditTagsView attribute)

 	(cfme.configure.access_control.ParentDetailsTenantView attribute)

 	(cfme.configure.access_control.TenantQuotaView attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileAddView attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileAllView attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileDetailsView attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileEditView attribute)

 	(cfme.configure.configuration.region_settings.CANDUCollectionView attribute)

 	(cfme.configure.configuration.region_settings.CompanyCategoriesAddView attribute)

 	(cfme.configure.configuration.region_settings.CompanyCategoriesAllView attribute)

 	(cfme.configure.configuration.region_settings.CompanyCategoriesEditView attribute)

 	(cfme.configure.configuration.region_settings.CompanyTagsAddView attribute)

 	(cfme.configure.configuration.region_settings.CompanyTagsAllView attribute)

 	(cfme.configure.configuration.region_settings.MapTagsAddView attribute)

 	(cfme.configure.configuration.region_settings.MapTagsAllView attribute)

 	(cfme.configure.configuration.region_settings.RedHatUpdatesEditView attribute)

 	(cfme.configure.configuration.region_settings.RedHatUpdatesView attribute)

 	(cfme.configure.documentation.DocView attribute)

 	(cfme.configure.tasks.TasksView attribute)

 	(cfme.containers.container.ContainerAllView attribute)

 	(cfme.containers.node.NodeAllView attribute)

 	(cfme.containers.node.NodeDetailsView attribute)

 	(cfme.containers.node.NodeEditTagsForm attribute)

 	(cfme.containers.node.NodeManagePoliciesForm attribute)

 	(cfme.containers.node.NodeTimelinesForm attribute)

 	(cfme.containers.node.NodeUtilizationView attribute)

 	(cfme.containers.provider.AdHocMetricsView attribute)

 	(cfme.containers.provider.ContainerObjectAllBaseView attribute)

 	(cfme.containers.provider.ProviderDetailsView attribute)

 	(cfme.control.explorer.ControlExplorerView attribute)

 	(cfme.control.explorer.actions.ActionDetailsView attribute)

 	(cfme.control.explorer.actions.ActionsAllView attribute)

 	(cfme.control.explorer.actions.EditActionView attribute)

 	(cfme.control.explorer.actions.NewActionView attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfileDetailsView attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfilesAllView attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfilesEditAssignmentsView attribute)

 	(cfme.control.explorer.alert_profiles.EditAlertProfileView attribute)

 	(cfme.control.explorer.alert_profiles.NewAlertProfileView attribute)

 	(cfme.control.explorer.alerts.AlertDetailsView attribute)

 	(cfme.control.explorer.alerts.AlertsAllView attribute)

 	(cfme.control.explorer.alerts.EditAlertView attribute)

 	(cfme.control.explorer.alerts.NewAlertView attribute)

 	(cfme.control.explorer.conditions.ConditionDetailsView attribute)

 	(cfme.control.explorer.conditions.ConditionsAllView attribute)

 	(cfme.control.explorer.conditions.EditConditionView attribute)

 	(cfme.control.explorer.conditions.NewConditionView attribute)

 	(cfme.control.explorer.policies.ConditionDetailsView attribute)

 	(cfme.control.explorer.policies.EditEventView attribute)

 	(cfme.control.explorer.policies.EditPolicyConditionAssignments attribute)

 	(cfme.control.explorer.policies.EditPolicyEventAssignments attribute)

 	(cfme.control.explorer.policies.EditPolicyView attribute)

 	(cfme.control.explorer.policies.EventDetailsView attribute)

 	(cfme.control.explorer.policies.NewPolicyView attribute)

 	(cfme.control.explorer.policies.PoliciesAllView attribute)

 	(cfme.control.explorer.policies.PolicyDetailsView attribute)

 	(cfme.control.explorer.policy_profiles.EditPolicyProfileView attribute)

 	(cfme.control.explorer.policy_profiles.NewPolicyProfileView attribute)

 	(cfme.control.explorer.policy_profiles.PolicyProfileDetailsView attribute)

 	(cfme.control.explorer.policy_profiles.PolicyProfilesAllView attribute)

 	(cfme.control.import_export.ControlImportExportView attribute)

 	(cfme.control.log.ControlLogView attribute)

 	(cfme.control.simulation.ControlSimulationView attribute)

 	(cfme.dashboard.DashboardView attribute)

 	(cfme.dashboard.ParticularDashboardView attribute)

 	(cfme.infrastructure.cluster.ClusterAllView attribute)

 	(cfme.infrastructure.cluster.ClusterDetailsView attribute)

 	(cfme.infrastructure.cluster.ClusterTimelinesView attribute)

 	(cfme.infrastructure.datastore.DatastoreDetailsView attribute)

 	(cfme.infrastructure.datastore.DatastoresView attribute)

 	(cfme.infrastructure.datastore.HostAllDatastoresView attribute)

 	(cfme.infrastructure.datastore.RegisteredHostsView attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleAllForProviderView attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleAllView attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleComparisonView attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleDetailsView attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleEditTagsView attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleManagePoliciesView attribute)

 	(cfme.infrastructure.provider.ProviderClustersView attribute)

 	(cfme.infrastructure.provider.openstack_infra.ProviderRegisterNodesView attribute)

 	(cfme.infrastructure.provider.openstack_infra.ProviderScaleDownView attribute)

 	(cfme.infrastructure.provider.openstack_infra.ProviderScaleOutView attribute)

 	(cfme.infrastructure.pxe.PXECustomizationTemplateDetailsView attribute)

 	(cfme.infrastructure.pxe.PXECustomizationTemplateForm attribute)

 	(cfme.infrastructure.pxe.PXECustomizationTemplatesView attribute)

 	(cfme.infrastructure.pxe.PXEDatastoreDetailsView attribute)

 	(cfme.infrastructure.pxe.PXEDatastoreForm attribute)

 	(cfme.infrastructure.pxe.PXEDatastoresView attribute)

 	(cfme.infrastructure.pxe.PXEImageEditView attribute)

 	(cfme.infrastructure.pxe.PXEMainView attribute)

 	(cfme.infrastructure.pxe.PXEServerDetailsView attribute)

 	(cfme.infrastructure.pxe.PXEServerForm attribute)

 	(cfme.infrastructure.pxe.PXEServersView attribute)

 	(cfme.infrastructure.pxe.PXESystemImageTypeDetailsView attribute)

 	(cfme.infrastructure.pxe.PXESystemImageTypeForm attribute)

 	(cfme.infrastructure.pxe.PXESystemImageTypesView attribute)

 	(cfme.infrastructure.resource_pool.ResourcePoolAllView attribute)

 	(cfme.infrastructure.resource_pool.ResourcePoolDetailsView attribute)

 	(cfme.infrastructure.virtual_machines.InfraVmDetailsView attribute)

 	(cfme.infrastructure.virtual_machines.InfraVmReconfigureView attribute)

 	(cfme.infrastructure.virtual_machines.InfraVmTimelinesView attribute)

 	(cfme.infrastructure.virtual_machines.MigrateView attribute)

 	(cfme.infrastructure.virtual_machines.TemplatesOnlyAllView attribute)

 	(cfme.infrastructure.virtual_machines.VmTemplatesAllForProviderView attribute)

 	(cfme.infrastructure.virtual_machines.VmsOnlyAllView attribute)

 	(cfme.infrastructure.virtual_machines.VmsTemplatesAllView attribute)

 	(cfme.intelligence.chargeback.ChargebackView attribute)

 	(cfme.intelligence.chargeback.assignments.AssignmentsAllView attribute)

 	(cfme.intelligence.chargeback.assignments.AssignmentsView attribute)

 	(cfme.intelligence.chargeback.rates.AddComputeChargebackView attribute)

 	(cfme.intelligence.chargeback.rates.AddStorageChargebackView attribute)

 	(cfme.intelligence.chargeback.rates.EditComputeChargebackView attribute)

 	(cfme.intelligence.chargeback.rates.EditStorageChargebackView attribute)

 	(cfme.intelligence.chargeback.rates.RatesDetailView attribute)

 	(cfme.intelligence.chargeback.rates.RatesView attribute)

 	(cfme.intelligence.chargeback.rates.StorageChargebackView attribute)

 	(cfme.intelligence.reports.CloudIntelReportsView attribute)

 	(cfme.intelligence.reports.dashboards.DashboardAllGroupsView attribute)

 	(cfme.intelligence.reports.dashboards.DashboardDetailsView attribute)

 	(cfme.intelligence.reports.dashboards.DefaultDashboardDetailsView attribute)

 	(cfme.intelligence.reports.dashboards.EditDashboardView attribute)

 	(cfme.intelligence.reports.dashboards.EditDefaultDashboardView attribute)

 	(cfme.intelligence.reports.dashboards.NewDashboardView attribute)

 	(cfme.intelligence.reports.import_export.ImportExportCustomReportsView attribute)

 	(cfme.intelligence.reports.import_export.ImportExportWidgetsCommitView attribute)

 	(cfme.intelligence.reports.import_export.ImportExportWidgetsView attribute)

 	(cfme.intelligence.reports.menus.EditReportMenusView attribute)

 	(cfme.intelligence.reports.reports.AllCustomReportsView attribute)

 	(cfme.intelligence.reports.reports.AllReportsView attribute)

 	(cfme.intelligence.reports.reports.CannedReportView attribute)

 	(cfme.intelligence.reports.reports.CannedSavedReportView attribute)

 	(cfme.intelligence.reports.reports.CustomReportDetailsView attribute)

 	(cfme.intelligence.reports.reports.CustomSavedReportDetailsView attribute)

 	(cfme.intelligence.reports.reports.EditCustomReportView attribute)

 	(cfme.intelligence.reports.reports.NewCustomReportView attribute)

 	(cfme.intelligence.reports.saved.AllSavedReportsView attribute)

 	(cfme.intelligence.reports.saved.SavedReportDetailsView attribute)

 	(cfme.intelligence.reports.saved.SavedReportView attribute)

 	(cfme.intelligence.reports.schedules.EditScheduleView attribute)

 	(cfme.intelligence.reports.schedules.NewScheduleView attribute)

 	(cfme.intelligence.reports.schedules.ScheduleDetailsView attribute)

 	(cfme.intelligence.reports.schedules.SchedulesAllView attribute)

 	(cfme.intelligence.reports.widgets.AllDashboardWidgetsView attribute)

 	(cfme.intelligence.reports.widgets.BaseEditDashboardWidgetView attribute)

 	(cfme.intelligence.reports.widgets.BaseNewDashboardWidgetView attribute)

 	(cfme.intelligence.reports.widgets.DashboardWidgetDetailsView attribute)

 	(cfme.intelligence.reports.widgets.DashboardWidgetsView attribute)

 	(cfme.intelligence.rss.RSSView attribute)

 	(cfme.middleware.provider.middleware_views.AddDatasourceView attribute)

 	(cfme.middleware.provider.middleware_views.AddDeploymentView attribute)

 	(cfme.middleware.provider.middleware_views.AddJDBCDriverView attribute)

 	(cfme.middleware.provider.middleware_views.DatasourceAllView attribute)

 	(cfme.middleware.provider.middleware_views.DatasourceDetailsView attribute)

 	(cfme.middleware.provider.middleware_views.DeploymentAllView attribute)

 	(cfme.middleware.provider.middleware_views.DeploymentDetailsView attribute)

 	(cfme.middleware.provider.middleware_views.DomainAllView attribute)

 	(cfme.middleware.provider.middleware_views.DomainDetailsView attribute)

 	(cfme.middleware.provider.middleware_views.DomainServerGroupAllView attribute)

 	(cfme.middleware.provider.middleware_views.MessagingAllView attribute)

 	(cfme.middleware.provider.middleware_views.MessagingDetailsView attribute)

 	(cfme.middleware.provider.middleware_views.MiddlewareProviderTimelinesView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderDatasourceAllView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderDeploymentAllView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderDomainAllView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderDomainsAllView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderMessagingAllView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderServerAllView attribute)

 	(cfme.middleware.provider.middleware_views.ServerAllView attribute)

 	(cfme.middleware.provider.middleware_views.ServerDatasourceAllView attribute)

 	(cfme.middleware.provider.middleware_views.ServerDeploymentAllView attribute)

 	(cfme.middleware.provider.middleware_views.ServerDetailsView attribute)

 	(cfme.middleware.provider.middleware_views.ServerGroupDetailsView attribute)

 	(cfme.middleware.provider.middleware_views.ServerGroupServerAllView attribute)

 	(cfme.middleware.provider.middleware_views.ServerMessagingAllView attribute)

 	(cfme.networks.views.BalancerDetailsView attribute)

 	(cfme.networks.views.BalancerView attribute)

 	(cfme.networks.views.CloudNetworkDetailsView attribute)

 	(cfme.networks.views.CloudNetworkView attribute)

 	(cfme.networks.views.NetworkPortDetailsView attribute)

 	(cfme.networks.views.NetworkPortView attribute)

 	(cfme.networks.views.NetworkProviderDetailsView attribute)

 	(cfme.networks.views.NetworkProviderView attribute)

 	(cfme.networks.views.NetworkRouterDetailsView attribute)

 	(cfme.networks.views.NetworkRouterView attribute)

 	(cfme.networks.views.OneProviderBalancerView attribute)

 	(cfme.networks.views.OneProviderCloudNetworkView attribute)

 	(cfme.networks.views.OneProviderNetworkPortView attribute)

 	(cfme.networks.views.OneProviderNetworkRouterView attribute)

 	(cfme.networks.views.OneProviderSecurityGroupView attribute)

 	(cfme.networks.views.OneProviderSubnetView attribute)

 	(cfme.networks.views.SecurityGroupDetailsView attribute)

 	(cfme.networks.views.SecurityGroupView attribute)

 	(cfme.networks.views.SubnetDetailsView attribute)

 	(cfme.networks.views.SubnetView attribute)

 	(cfme.optimize.bottlenecks.BottlenecksTabsView attribute)

 	(cfme.services.catalogs.ServicesCatalogView attribute)

 	(cfme.services.catalogs.ansible_catalog_item.AddAnsibleCatalogItemView attribute)

 	(cfme.services.catalogs.ansible_catalog_item.DetailsAnsibleCatalogItemView attribute)

 	(cfme.services.catalogs.ansible_catalog_item.EditAnsibleCatalogItemView attribute)

 	(cfme.services.catalogs.ansible_catalog_item.SelectCatalogItemTypeView attribute)

 	(cfme.services.catalogs.catalog.AddCatalogView attribute)

 	(cfme.services.catalogs.catalog.CatalogsView attribute)

 	(cfme.services.catalogs.catalog.DetailsCatalogView attribute)

 	(cfme.services.catalogs.catalog.EditCatalogView attribute)

 	(cfme.services.catalogs.catalog_item.AddButtonGroupView attribute)

 	(cfme.services.catalogs.catalog_item.AddButtonView attribute)

 	(cfme.services.catalogs.catalog_item.AddCatalogBundleView attribute)

 	(cfme.services.catalogs.catalog_item.AddCatalogItemView attribute)

 	(cfme.services.catalogs.catalog_item.AllCatalogItemView attribute)

 	(cfme.services.catalogs.catalog_item.CatalogForm attribute)

 	(cfme.services.catalogs.catalog_item.DetailsCatalogItemView attribute)

 	(cfme.services.catalogs.catalog_item.EditCatalogBundleView attribute)

 	(cfme.services.catalogs.catalog_item.EditCatalogItemView attribute)

 	(cfme.services.catalogs.orchestration_template.AddDialogView attribute)

 	(cfme.services.catalogs.orchestration_template.AddTemplateView attribute)

 	(cfme.services.catalogs.orchestration_template.CopyTemplateView attribute)

 	(cfme.services.catalogs.orchestration_template.DetailsTemplateView attribute)

 	(cfme.services.catalogs.orchestration_template.EditTemplateView attribute)

 	(cfme.services.catalogs.orchestration_template.OrchestrationTemplatesView attribute)

 	(cfme.services.catalogs.orchestration_template.TemplateTypeView attribute)

 	(cfme.services.catalogs.service_catalogs.DetailsServiceCatalogView attribute)

 	(cfme.services.catalogs.service_catalogs.OrderServiceCatalogView attribute)

 	(cfme.services.catalogs.service_catalogs.ServiceCatalogsDefaultView attribute)

 	(cfme.services.catalogs.service_catalogs.ServiceCatalogsView attribute)

 	(cfme.services.dashboard.ssui.DashboardView attribute)

 	(cfme.services.dashboard.ssui.MyServicesView attribute)

 	(cfme.services.myservice.ssui.DetailsMyServiceView attribute)

 	(cfme.services.myservice.ssui.EditMyServiceView attribute)

 	(cfme.services.myservice.ssui.MyServicesView attribute)

 	(cfme.services.myservice.ui.EditMyServiceView attribute)

 	(cfme.services.myservice.ui.MyServiceDetailView attribute)

 	(cfme.services.myservice.ui.MyServicesView attribute)

 	(cfme.services.myservice.ui.ReconfigureServiceView attribute)

 	(cfme.services.myservice.ui.ServiceRetirementView attribute)

 	(cfme.services.myservice.ui.SetOwnershipView attribute)

 	(cfme.services.requests.RequestApprovalView attribute)

 	(cfme.services.requests.RequestCopyView attribute)

 	(cfme.services.requests.RequestDenialView attribute)

 	(cfme.services.requests.RequestDetailsView attribute)

 	(cfme.services.requests.RequestEditView attribute)

 	(cfme.services.requests.RequestProvisionView attribute)

 	(cfme.services.requests.RequestsView attribute)

 	(cfme.services.workloads.WorkloadsDefaultView attribute)

 	(cfme.services.workloads.WorkloadsTemplate attribute)

 	(cfme.services.workloads.WorkloadsVM attribute)

 	(cfme.storage.volume.VolumeAddView attribute)

 	(cfme.storage.volume.VolumeAllView attribute)

 	(cfme.storage.volume.VolumeDetailsView attribute)

 	IS_DISPLAYED (cfme.web_ui.form_buttons.FormButton.Button attribute)

 	is_displayed() (cfme.web_ui.Region method)

 	

 	(cfme.web_ui.topology.TopologyElement method)

 	(in module cfme.fixtures.pytest_selenium)

 	is_displayed_text() (in module cfme.fixtures.pytest_selenium)

 	is_downstream (cfme.utils.appliance.IPAppliance attribute)

 	is_editing() (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor method)

 	

 	(in module cfme.web_ui.expression_editor)

 	is_embedded_ansible_running (cfme.utils.appliance.IPAppliance attribute)

 	is_embedded_ensible_role_enabled (cfme.utils.appliance.IPAppliance attribute)

 	is_enabled (cfme.utils.appliance.db.ApplianceDB attribute)

 	

 	(cfme.web_ui.topology.TopologyDisplayNames attribute)

 	is_error() (in module cfme.web_ui.flash)

 	is_event_assigned() (cfme.control.explorer.policies.BasePolicy method)

 	is_evm_service_running() (cfme.utils.appliance.IPAppliance method)

 	IS_EXPANDABLE (cfme.web_ui.BootstrapTreeview attribute)

 	is_expandable() (cfme.web_ui.BootstrapTreeview class method)

 	IS_EXPANDED (cfme.web_ui.BootstrapTreeview attribute)

 	is_expanded() (cfme.web_ui.BootstrapTreeview class method)

 	is_finished() (cfme.services.requests.Request method)

 	is_finished_ui (cfme.services.requests.Request attribute)

 	is_greyed() (in module cfme.web_ui.toolbar)

 	is_hidden (cfme.web_ui.topology.TopologyElement attribute)

 	is_host_analysis_finished() (in module cfme.configure.tasks)

 	is_idle (cfme.utils.appliance.IPAppliance attribute)

 	is_immutable() (cfme.middleware.provider.Container method)

 	is_imported() (in module cfme.control.import_export)

 	is_in_series() (cfme.utils.version.Version method)

 	is_internal (cfme.utils.appliance.db.ApplianceDB attribute)

 	IS_LOADING (cfme.web_ui.BootstrapTreeview attribute)

 	is_loading() (cfme.web_ui.BootstrapTreeview class method)

 	is_miqqe_patch_candidate (cfme.utils.appliance.IPAppliance attribute)

 	is_nginx_running (cfme.utils.appliance.IPAppliance attribute)

 	is_on_chart_page (cfme.web_ui.utilization.LineChart attribute)

 	is_on_rhev (cfme.utils.appliance.Appliance attribute)

 	is_on_vsphere (cfme.utils.appliance.Appliance attribute)

 	is_online (cfme.utils.appliance.db.ApplianceDB attribute)

 	is_open (cfme.web_ui.AngularSelect attribute)

 	is_opened (cfme.dashboard.Kebab attribute)

 	

 	(cfme.utils.bz.BugWrapper attribute)

 	is_partition_extended (cfme.utils.appliance.db.ApplianceDB attribute)

 	is_patternfly (cfme.fixtures.pytest_selenium.Select attribute)

 	is_pingable() (in module cfme.utils.net)

 	is_power_on() (cfme.utils.ipmi.IPMI method)

 	is_pwr_option_available_in_cfme() (cfme.common.vm.VM method)

 	is_pwr_option_enabled() (in module cfme.infrastructure.virtual_machines)

 	is_pwr_option_visible() (in module cfme.infrastructure.virtual_machines)

 	is_rabbitmq_running (cfme.utils.appliance.IPAppliance attribute)

 	is_ready (cfme.utils.appliance.db.ApplianceDB attribute)

 	is_refreshed() (cfme.common.provider.BaseProvider method)

 	

 	(cfme.middleware.provider.hawkular.HawkularProvider method)

 	is_refreshed_db (cfme.middleware.provider.hawkular.HawkularProvider attribute)

 	is_registered() (cfme.configure.configuration.region_settings.RedHatUpdates method)

 	is_registering() (cfme.configure.configuration.region_settings.RedHatUpdates method)

 	is_registration_complete() (cfme.utils.appliance.IPAppliance method)

 	is_relationship_set() (cfme.infrastructure.virtual_machines.Vm.CfmeRelationship method)

 	is_reload_required() (cfme.middleware.server.MiddlewareServer method)

 	is_retired (cfme.common.vm.BaseVM attribute)

 	is_running (cfme.utils.appliance.Appliance attribute)

 	is_running() (cfme.middleware.domain.MiddlewareDomain method)

 	

 	(cfme.middleware.server.MiddlewareServer method)

 	is_running_in_db (cfme.middleware.domain.MiddlewareDomain attribute)

 	is_running_in_mgmt (cfme.middleware.domain.MiddlewareDomain attribute)

 	is_selected() (cfme.web_ui.BootstrapSwitch method)

 	

 	(cfme.web_ui.BootstrapTreeview class method)

 	(cfme.web_ui.OldCheckbox method)

 	(cfme.web_ui.listaccordion.ListAccordionLink method)

 	(in module cfme.web_ui.listaccordion)

 	is_ssh_running (cfme.utils.appliance.IPAppliance attribute)

 	is_starting() (cfme.middleware.server.MiddlewareServer method)

 	is_stopped() (cfme.middleware.server.MiddlewareServer method)

 	is_stopping() (cfme.middleware.server.MiddlewareServer method)

 	is_storage_enabled (cfme.utils.appliance.IPAppliance attribute)

 	is_subscribed() (cfme.configure.configuration.region_settings.RedHatUpdates method)

 	is_succeeded() (cfme.services.requests.Request method)

 	is_succeeded_ui (cfme.services.requests.Request attribute)

 	is_supervisord_running (cfme.utils.appliance.IPAppliance attribute)

 	is_suspended() (cfme.middleware.server.MiddlewareServer method)

 	is_tab_element_selected() (in module cfme.web_ui.tabstrip)

 	is_tab_selected() (in module cfme.web_ui.tabstrip)

 	is_task_finished() (in module cfme.configure.tasks)

 	is_vm (cfme.common.vm.BaseVM attribute)

 	is_vm_analysis_finished() (in module cfme.configure.tasks)

 	is_web_ui_running() (cfme.utils.appliance.IPAppliance method)

 	is_zoomed (cfme.dashboard.DashboardWidget attribute)

 	iso_date_only_format (cfme.utils.timeutil.parsetime attribute)

 	iso_with_utc_format (cfme.utils.timeutil.parsetime attribute)

 	ISODatastore (class in cfme.infrastructure.pxe)

 	ISODatastoreAdd (class in cfme.infrastructure.pxe)

 	ISODatastoreAll (class in cfme.infrastructure.pxe)

 	ISODatastoreDetails (class in cfme.infrastructure.pxe)

 	ITEM (cfme.dashboard.Kebab attribute)

 	ITEM_BY_NODEID (cfme.web_ui.BootstrapTreeview attribute)

 	ITEM_TITLE_LOCATOR (cfme.intelligence.reports.dashboards.DashboardDetailsView attribute)

 	ItemNotFound

 	ITEMS (cfme.dashboard.Kebab attribute)

 	items (cfme.dashboard.Kebab attribute)

 	items() (cfme.common.SummaryTable method)

 	

 	(cfme.utils.db.Db method)

 	items_for_export (cfme.intelligence.reports.import_export.ImportExportCommonForm attribute)

 	iterate_pairs() (in module cfme.utils)

J

 	

 	jdbc_driver_class (cfme.middleware.provider.middleware_views.AddJDBCDriverForm attribute)

 	jdbc_driver_name (cfme.middleware.provider.middleware_views.AddJDBCDriverForm attribute)

 	jdbc_module_name (cfme.middleware.provider.middleware_views.AddJDBCDriverForm attribute)

 	

 	JDBCDriverConfigNotFound

 	jndi_name (cfme.middleware.provider.middleware_views.AddDatasourceForm attribute)

K

 	

 	Kebab (class in cfme.dashboard)

 	key (cfme.services.catalogs.service_catalogs.OrderForm attribute)

 	key_name (cfme.services.catalogs.service_catalogs.OrderForm attribute)

 	key_ui_table_map (cfme.web_ui.utilization.LineChart attribute)

 	keygen() (in module cfme.utils.ssh)

 	KeyPair (class in cfme.cloud.keypairs)

 	KeyPairAddEntities (class in cfme.cloud.keypairs)

 	KeyPairAddForm (class in cfme.cloud.keypairs)

 	KeyPairAddView (class in cfme.cloud.keypairs)

 	KeyPairAllView (class in cfme.cloud.keypairs)

 	KeyPairCollection (class in cfme.cloud.keypairs)

 	KeyPairDetailsAccordion (class in cfme.cloud.keypairs)

 	KeyPairDetailsEntities (class in cfme.cloud.keypairs)

 	KeyPairDetailsToolbar (class in cfme.cloud.keypairs)

 	

 	KeyPairDetailsView (class in cfme.cloud.keypairs)

 	KeyPairNotFound

 	KeyPairToolbar (class in cfme.cloud.keypairs)

 	KeyPairView (class in cfme.cloud.keypairs)

 	keys (cfme.common.SummaryTable attribute)

 	keys() (cfme.utils.db.Db method)

 	keystone_v3_domain_id (cfme.common.provider_views.ProviderAddView attribute)

 	kill() (fixtures.parallelizer.ParallelSession method)

 	kill_server() (cfme.middleware.server.MiddlewareServer method)

 	klass (cfme.automate.explorer.instance.Instance attribute)

 	

 	(cfme.automate.explorer.method.Method attribute)

 	KubernetesProvider (class in cfme.containers.provider.kubernetes)

 	kwargify() (in module cfme.metaplugins.blockers)

 	kwargs (cfme.utils.appliance.plugin.AppliancePluginDescriptor attribute)

 	

 	(cfme.utils.blockers.Blocker attribute)

 	(markers.meta.Plugin attribute)

L

 	

 	label (cfme.automate.service_dialogs.DialogForm attribute)

 	Labelable (class in cfme.containers.provider)

 	LabelNotFoundException

 	last() (in module cfme.web_ui.paginator)

 	last_analysed (cfme.common.vm.BaseVM attribute)

 	last_collection (cfme.configure.configuration.ServerLogDepot attribute)

 	last_date (cfme.configure.configuration.DatabaseBackupSchedule attribute)

 	last_in_column (cfme.dashboard.DashboardWidget attribute)

 	last_log_collection (cfme.base.ui.DiagnosticsCollectLogsView attribute)

 	last_log_message (cfme.base.ui.DiagnosticsCollectLogsView attribute)

 	last_message (cfme.configure.configuration.ServerLogDepot attribute)

 	last_refresh_date() (cfme.common.provider.BaseProvider method)

 	latest() (cfme.utils.version.Version class method)

 	latest_template() (in module cfme.utils.trackerbot)

 	latest_version (cfme.utils.bz.Product attribute)

 	ldap_groups_for_user (cfme.configure.access_control.GroupForm attribute)

 	LDAPAuthSetting (class in cfme.configure.configuration)

 	LDAPSAuthSetting (class in cfme.configure.configuration)

 	lease_time (cfme.test_framework.sprout.plugin.SproutManager attribute)

 	

 	(cfme.test_framework.sprout.plugin.SproutProvisioningRequest attribute)

 	Legend (class in cfme.web_ui.utilization)

 	LEGENDS (cfme.web_ui.topology.Topology attribute)

 	legends (cfme.web_ui.topology.Topology attribute)

 	LEGENDS (cfme.web_ui.utilization.LineChart attribute)

 	legends (cfme.web_ui.utilization.LineChart attribute)

 	lifecycle (cfme.cloud.instance.image.ImageDetailsEntities attribute)

 	

 	(cfme.cloud.instance.InstanceDetailsToolbar attribute)

 	(cfme.cloud.instance.image.ImageDetailsToolbar attribute)

 	(cfme.cloud.instance.image.ImageToolbar attribute)

 	(cfme.cloud.stack.StackDetailsEntities attribute)

 	(cfme.cloud.stack.StackDetailsToolbar attribute)

 	(cfme.cloud.stack.StackSubpageToolbar attribute)

 	(cfme.cloud.stack.StackToolbar attribute)

 	(cfme.common.host_views.HostsToolbar attribute)

 	(cfme.common.vm_views.VMDetailsEntities attribute)

 	(cfme.common.vm_views.VMToolbar attribute)

 	(cfme.infrastructure.virtual_machines.InfraGenericDetailsToolbar attribute)

 	lifecycle_btn (cfme.services.myservice.ssui.DetailsMyServiceView attribute)

 	

 	(cfme.services.myservice.ui.MyServicesView attribute)

 	line_chart_render() (in module cfme.utils.perf_message_stats)

 	LineChart (class in cfme.web_ui.utilization)

 	LINES (cfme.web_ui.topology.Topology attribute)

 	lines() (cfme.web_ui.topology.Topology method)

 	lines_as_list() (cfme.utils.ssh.SSHTail method)

 	link (cfme.common.SummaryValue attribute)

 	link_config_files() (in module cfme.scripting.quickstart)

 	links (cfme.configure.documentation.DocView attribute)

 	LinksView (class in cfme.configure.documentation)

 	list_data_chart() (cfme.web_ui.utilization.LineChart method)

 	list_data_mgmt() (cfme.web_ui.utilization.LineChart method)

 	list_data_table() (cfme.web_ui.utilization.LineChart method)

 	list_entity (cfme.ansible.playbooks.PlaybookEntity attribute)

 	

 	(cfme.common.host_views.NonJSHostEntity attribute)

 	(cfme.common.vm_views.NonJSInstanceEntity attribute)

 	(cfme.infrastructure.deployment_roles.NonJSDepRoleEntity attribute)

 	(cfme.storage.volume.NonJSVolumeEntity attribute)

 	list_provider_keys() (in module cfme.utils.providers)

 	list_providers() (in module cfme.utils.providers)

 	list_providers_by_class() (in module cfme.utils.providers)

 	list_view_limit (cfme.configure.settings.Visual attribute)

 	ListAccordionLink (class in cfme.web_ui.listaccordion)

 	ListAccordionLinkNotFound

 	listen_to() (cfme.utils.events.EventListener method)

 	listeners (cfme.networks.balancer.Balancer attribute)

 	load() (cfme.common.SummaryTable method)

 	load_all_provider_images() (cfme.common.provider.CloudInfraProvider method)

 	load_all_provider_instances() (cfme.common.provider.CloudInfraProvider method)

 	load_all_provider_templates() (cfme.common.provider.CloudInfraProvider method)

 	load_all_provider_vms() (cfme.common.provider.CloudInfraProvider method)

 	

 	load_and_apply_filter() (in module cfme.web_ui.search)

 	load_appliances() (in module cfme.utils.appliance)

 	load_appliances_from_config() (in module cfme.utils.appliance)

 	load_chart_reference() (cfme.web_ui.utilization.LineChart method)

 	load_data_file() (in module cfme.utils.datafile)

 	load_details() (cfme.common.provider.BaseProvider method)

 	

 	(cfme.common.vm.BaseVM method)

 	(cfme.containers.container.Container method)

 	(cfme.containers.image.Image method)

 	(cfme.containers.image_registry.ImageRegistry method)

 	(cfme.containers.node.Node method)

 	(cfme.containers.pod.Pod method)

 	(cfme.containers.project.Project method)

 	(cfme.containers.provider.ContainersProvider method)

 	(cfme.containers.replicator.Replicator method)

 	(cfme.containers.route.Route method)

 	(cfme.containers.service.Service method)

 	(cfme.containers.template.Template method)

 	(cfme.containers.volume.Volume method)

 	(cfme.infrastructure.host.Host method)

 	(cfme.middleware.datasource.MiddlewareDatasource method)

 	(cfme.middleware.deployment.MiddlewareDeployment method)

 	(cfme.middleware.domain.MiddlewareDomain method)

 	(cfme.middleware.messaging.MiddlewareMessaging method)

 	(cfme.middleware.provider.hawkular.HawkularProvider method)

 	(cfme.middleware.server.MiddlewareServer method)

 	(cfme.middleware.server_group.MiddlewareServerGroup method)

 	load_filter() (in module cfme.web_ui.search)

 	load_from_yaml() (cfme.infrastructure.config_management.ConfigManager class method)

 	load_setuptools_entrypoints() (in module cfme.utils.providers)

 	load_timelines_page() (cfme.middleware.provider.hawkular.HawkularProvider method)

 	load_topology_page() (cfme.containers.topology.Topology class method)

 	

 	(cfme.middleware.provider.hawkular.HawkularProvider method)

 	(cfme.middleware.topology.MiddlewareTopology class method)

 	load_utilization_page() (cfme.web_ui.utilization.Utilization method)

 	local_time (cfme.utils.ftp.FTPFile attribute)

 	locate() (cfme.fixtures.pytest_selenium.Select method)

 	

 	(cfme.web_ui.AngularCalendarInput method)

 	(cfme.web_ui.AngularSelect method)

 	(cfme.web_ui.BootstrapTreeview method)

 	(cfme.web_ui.ButtonGroup method)

 	(cfme.web_ui.Calendar method)

 	(cfme.web_ui.ColorGroup method)

 	(cfme.web_ui.DHTMLSelect method)

 	(cfme.web_ui.InfoBlock.Member method)

 	(cfme.web_ui.Input method)

 	(cfme.web_ui.Quadicon method)

 	(cfme.web_ui.SplitTable method)

 	(cfme.web_ui.Table method)

 	(cfme.web_ui.Table.Row method)

 	(cfme.web_ui.Tree method)

 	(cfme.web_ui.form_buttons.FormButton method)

 	(cfme.web_ui.jstimelines.Object method)

 	(cfme.web_ui.listaccordion.ListAccordionLink method)

 	(in module cfme.web_ui.accordion)

 	(in module cfme.web_ui.listaccordion)

 	location (cfme.automate.explorer.method.MethodAddView attribute)

 	

 	(cfme.automate.explorer.method.MethodDetailsView attribute)

 	(cfme.automate.explorer.method.MethodEditView attribute)

 	locator (cfme.web_ui.ButtonGroup attribute)

 	locator_base (cfme.web_ui.ButtonGroup attribute)

 	lock() (cfme.automate.explorer.domain.Domain method)

 	locked (cfme.automate.explorer.domain.Domain attribute)

 	

 	(cfme.intelligence.reports.dashboards.DashboardFormCommon attribute)

 	log (cfme.utils.appliance.IPAppliance attribute)

 	log_depot_uri (cfme.base.ui.DiagnosticsCollectLogsView attribute)

 	log_in() (cfme.base.ui.LoginPage method)

 	log_message() (cfme.utils.appliance.implementations.ui.CFMENavigateStep method)

 	log_path (in module cfme.utils.path)

 	logged_in (cfme.base.login.BaseLoggedInPage attribute)

 	

 	(cfme.base.Server attribute)

 	(cfme.base.ssui.SSUIBaseLoggedInPage attribute)

 	(cfme.base.ui.LoginPage attribute)

 	logged_in() (in module cfme.base.ui)

 	logged_in_as_current_user (cfme.base.login.BaseLoggedInPage attribute)

 	

 	(cfme.base.ssui.SSUIBaseLoggedInPage attribute)

 	(cfme.base.ui.LoginPage attribute)

 	logged_in_as_user() (cfme.base.login.BaseLoggedInPage method)

 	

 	(cfme.base.ssui.SSUIBaseLoggedInPage method)

 	(cfme.base.ui.LoginPage method)

 	logged_out (cfme.base.login.BaseLoggedInPage attribute)

 	

 	(cfme.base.ssui.SSUIBaseLoggedInPage attribute)

 	(cfme.base.ui.LoginPage attribute)

 	LoggedIn (class in cfme.base.ssui)

 	

 	(class in cfme.base.ui)

 	logger (cfme.utils.appliance.plugin.AppliancePlugin attribute)

 	logger() (in module fixtures.log)

 	logger_wrap (class in cfme.utils.log)

 	LoggingableView (class in cfme.containers.provider)

 	login (cfme.base.Server attribute)

 	

 	(cfme.base.ssui.LoginPage attribute)

 	(cfme.base.ui.LoginPage attribute)

 	login() (in module cfme.base.ssui)

 	

 	(in module cfme.base.ui)

 	login_admin (cfme.base.Server attribute)

 	login_admin() (cfme.base.ui.LoginPage method)

 	

 	(in module cfme.base.ui)

 	login_page (cfme.configure.settings.Visual attribute)

 	LoginPage (class in cfme.base.ssui)

 	

 	(class in cfme.base.ui)

 	LoginScreen (class in cfme.base.ssui)

 	

 	(class in cfme.base.ui)

 	logout (cfme.base.Server attribute)

 	logout() (cfme.base.login.BaseLoggedInPage method)

 	

 	(cfme.base.ssui.SSUIBaseLoggedInPage method)

 	(in module cfme.base.ui)

 	LogValidator (class in cfme.utils.log_validator)

 	long_date_format (cfme.utils.timeutil.parsetime attribute)

 	long_description (cfme.configure.configuration.region_settings.CompanyCategoriesAddView attribute)

 	look_up (cfme.configure.settings.DefaultView attribute)

 	lookup_ldap_groups_chk (cfme.configure.access_control.GroupForm attribute)

 	loose (cfme.utils.bz.BugWrapper attribute)

 	

 	(cfme.utils.bz.Bugzilla attribute)

 	loosen_pgssl() (cfme.utils.appliance.db.ApplianceDB method)

 	lowest() (cfme.utils.version.Version class method)

 	ls() (cfme.utils.ftp.FTPClient method)

M

 	

 	mac_address (cfme.common.host_views.HostFormView attribute)

 	

 	(cfme.networks.network_port.NetworkPort attribute)

 	machine_credential (cfme.services.catalogs.service_catalogs.OrderForm attribute)

 	main() (in module cfme.scripting.quickstart)

 	

 	(in module cfme.scripting.runtest)

 	major_version (cfme.middleware.provider.middleware_views.AddJDBCDriverForm attribute)

 	MAKE_BUTTON (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor attribute)

 	make_file_handler() (in module cfme.utils.log)

 	manage_folder() (cfme.intelligence.reports.menus.ReportMenu method)

 	manage_policies_tree (cfme.common.PolicyProfileAssignable attribute)

 	manage_subfolder() (cfme.intelligence.reports.menus.ReportMenu method)

 	managed_known_providers (cfme.utils.appliance.IPAppliance attribute)

 	managed_provider_names (cfme.utils.appliance.IPAppliance attribute)

 	ManagementEngineView (class in cfme.common.vm_views)

 	ManagePolicies (class in cfme.cloud.instance)

 	

 	(class in cfme.cloud.provider)

 	(class in cfme.containers.node)

 	(class in cfme.infrastructure.provider)

 	ManagePoliciesFromDetails (class in cfme.cloud.provider)

 	

 	(class in cfme.infrastructure.provider)

 	ManagePoliciesView (class in cfme.common.vm_views)

 	manager (cfme.intelligence.reports.menus.EditReportMenusView attribute)

 	manager() (in module fixtures.ui_coverage)

 	ManyEntitiesFound

 	maptags (cfme.base.ui.RegionView attribute)

 	MapTags (class in cfme.configure.configuration.region_settings)

 	MapTagsAdd (class in cfme.configure.configuration.region_settings)

 	MapTagsAddView (class in cfme.configure.configuration.region_settings)

 	MapTagsAll (class in cfme.configure.configuration.region_settings)

 	MapTagsAllView (class in cfme.configure.configuration.region_settings)

 	MapTagsEdit (class in cfme.configure.configuration.region_settings)

 	MapTagsEditView (class in cfme.configure.configuration.region_settings)

 	mark_provider_template() (in module cfme.utils.trackerbot)

 	mark_vm_as_template() (in module cfme.rest.gen_data)

 	markers (module)

 	markers.composite (module)

 	markers.crud (module)

 	markers.env (module)

 	markers.env_markers (module)

 	markers.env_markers.provider (module)

 	markers.fixtureconf (module)

 	markers.manual (module)

 	markers.meta (module)

 	markers.polarion (module)

 	markers.requires (module)

 	markers.sauce (module)

 	markers.skipper (module)

 	markers.smoke (module)

 	markers.stream_excluder (module)

 	markers.uncollect (module)

 	markers.uses (module)

 	MarkFromMap (class in fixtures.node_annotate)

 	markup (fixtures.parallelizer.Outcome attribute)

 	match() (cfme.utils.events.EventAttr method)

 	match_location() (in module cfme.web_ui)

 	matches() (cfme.utils.events.Event method)

 	max_cpu_usage_rate_average (cfme.fixtures.vporizer.vpor_data_instance attribute)

 	max_mem_usage_absolute_average (cfme.fixtures.vporizer.vpor_data_instance attribute)

 	max_scans (cfme.base.ui.ZoneForm attribute)

 	maximized() (in module fixtures.maximized)

 	mem_size (cfme.infrastructure.virtual_machines.InfraVmReconfigureView attribute)

 	mem_size_mb (cfme.infrastructure.virtual_machines.VMHardware attribute)

 	mem_size_unit (cfme.infrastructure.virtual_machines.InfraVmReconfigureView attribute)

 	member() (cfme.web_ui.InfoBlock method)

 	memory (cfme.infrastructure.virtual_machines.InfraVmReconfigureView attribute)

 	memory_amount (cfme.control.explorer.actions.ActionFormCommon attribute)

 	memory_cb (cfme.configure.access_control.TenantQuotaForm attribute)

 	memory_txt (cfme.configure.access_control.TenantQuotaForm attribute)

 	menu_name (cfme.intelligence.reports.reports.CustomReportFormCommon attribute)

 	menu_shortcuts (cfme.intelligence.reports.widgets.menu_widgets.MenuWidgetFormCommon attribute)

 	MenuItemNotFound

 	MenuWidget (class in cfme.intelligence.reports.widgets.menu_widgets)

 	MenuWidgetFormCommon (class in cfme.intelligence.reports.widgets.menu_widgets)

 	merge() (fixtures.ui_coverage.CoverageManager method)

 	merkyl_inspector() (in module fixtures.merkyl)

 	MerkylInspector (class in fixtures.merkyl)

 	message (cfme.automate.buttons.ButtonDetailView attribute)

 	

 	(cfme.automate.buttons.ButtonFormCommon attribute)

 	(cfme.base.ui.AutomateSimulationView attribute)

 	(cfme.exceptions.CandidateNotFound attribute)

 	(cfme.test_framework.appliance_police.AppliancePoliceException attribute)

 	Message (class in cfme.web_ui.flash)

 	message() (fixtures.parallelizer.remote.SlaveManager method)

 	

 	(in module cfme.web_ui.flash)

 	messages_to_hourly_buckets() (in module cfme.utils.perf_message_stats)

 	messages_to_statistics_csv() (in module cfme.utils.perf_message_stats)

 	messaging (cfme.middleware.provider.middleware_views.MessagingDetailsAccordion attribute)

 	messaging() (cfme.middleware.messaging.MiddlewareMessaging method)

 	messaging_in_db (cfme.middleware.messaging.MiddlewareMessaging attribute)

 	messaging_in_mgmt (cfme.middleware.messaging.MiddlewareMessaging attribute)

 	messaging_in_rest (cfme.middleware.messaging.MiddlewareMessaging attribute)

 	MessagingAllToolbar (class in cfme.middleware.provider.middleware_views)

 	MessagingAllView (class in cfme.middleware.provider.middleware_views)

 	MessagingDetailsAccordion (class in cfme.middleware.provider.middleware_views)

 	MessagingDetailsEntities (class in cfme.middleware.provider.middleware_views)

 	MessagingDetailsToolbar (class in cfme.middleware.provider.middleware_views)

 	MessagingDetailsView (class in cfme.middleware.provider.middleware_views)

 	MessagingEntitiesView (class in cfme.middleware.provider.middleware_views)

 	messagings() (cfme.middleware.messaging.MiddlewareMessaging class method)

 	messagings_in_db() (cfme.middleware.messaging.MiddlewareMessaging class method)

 	messagings_in_mgmt() (cfme.middleware.messaging.MiddlewareMessaging class method)

 	MessagingView (class in cfme.middleware.provider.middleware_views)

 	meta() (in module markers.meta)

 	metadata (cfme.utils.db.Db attribute)

 	metas (markers.meta.Plugin attribute)

 	Method (class in cfme.automate.explorer.method)

 	MethodAddView (class in cfme.automate.explorer.method)

 	MethodCollection (class in cfme.automate.explorer.method)

 	MethodCopyView (class in cfme.automate.explorer.method)

 	MethodDetailsView (class in cfme.automate.explorer.method)

 	MethodEditView (class in cfme.automate.explorer.method)

 	methods (cfme.automate.explorer.klass.Class attribute)

 	

 	(cfme.automate.explorer.klass.ClassDetailsView attribute)

 	mgmt (cfme.common.provider.BaseProvider attribute)

 	

 	(cfme.containers.image.Image attribute)

 	(cfme.containers.image_registry.ImageRegistry attribute)

 	(cfme.containers.node.Node attribute)

 	(cfme.containers.pod.Pod attribute)

 	(cfme.containers.project.Project attribute)

 	(cfme.containers.replicator.Replicator attribute)

 	(cfme.containers.route.Route attribute)

 	(cfme.containers.service.Service attribute)

 	(cfme.containers.template.Template attribute)

 	(cfme.containers.volume.Volume attribute)

 	

 	mgmt_class (cfme.cloud.provider.azure.AzureProvider attribute)

 	

 	(cfme.cloud.provider.ec2.EC2Provider attribute)

 	(cfme.cloud.provider.gce.GCEProvider attribute)

 	(cfme.cloud.provider.openstack.OpenStackProvider attribute)

 	(cfme.containers.provider.kubernetes.KubernetesProvider attribute)

 	(cfme.containers.provider.openshift.OpenshiftProvider attribute)

 	(cfme.infrastructure.provider.openstack_infra.OpenstackInfraProvider attribute)

 	(cfme.infrastructure.provider.rhevm.RHEVMProvider attribute)

 	(cfme.infrastructure.provider.scvmm.SCVMMProvider attribute)

 	(cfme.infrastructure.provider.virtualcenter.VMwareProvider attribute)

 	(cfme.middleware.provider.hawkular.HawkularProvider attribute)

 	mgmt_event (cfme.control.explorer.alerts.AlertFormCommon attribute)

 	mgmt_event_send (cfme.control.explorer.alerts.AlertFormCommon attribute)

 	MgrAdd (class in cfme.infrastructure.config_management)

 	MgrAll (class in cfme.infrastructure.config_management)

 	MgrDetails (class in cfme.infrastructure.config_management)

 	MgrEdit (class in cfme.infrastructure.config_management)

 	MgrEditFromDetails (class in cfme.infrastructure.config_management)

 	middleware_evm_log_no_error() (in module fixtures.middleware_log)

 	middleware_resources_path (in module cfme.utils.path)

 	MiddlewareBase (class in cfme.middleware.provider)

 	MiddlewareDatasource (class in cfme.middleware.datasource)

 	MiddlewareDatasourceNotFound

 	MiddlewareDeployment (class in cfme.middleware.deployment)

 	MiddlewareDeploymentNotFound

 	MiddlewareDomain (class in cfme.middleware.domain)

 	MiddlewareDomainNotFound

 	MiddlewareMessaging (class in cfme.middleware.messaging)

 	MiddlewareMessagingNotFound

 	MiddlewareProvider (class in cfme.middleware.provider)

 	MiddlewareProviderAddView (class in cfme.common.provider_views)

 	MiddlewareProviderDetailsView (class in cfme.common.provider_views)

 	MiddlewareProviderEditView (class in cfme.common.provider_views)

 	MiddlewareProviderNotFound

 	MiddlewareProvidersView (class in cfme.common.provider_views)

 	MiddlewareProviderTimelinesView (class in cfme.middleware.provider.middleware_views)

 	MiddlewareServer (class in cfme.middleware.server)

 	MiddlewareServerAlertProfile (class in cfme.control.explorer.alert_profiles)

 	MiddlewareServerGroup (class in cfme.middleware.server_group)

 	MiddlewareServerGroupNotFound

 	MiddlewareServerNotFound

 	MiddlewareTopology (class in cfme.middleware.topology)

 	Migrate (class in cfme.cloud.instance.openstack)

 	migrate_vm() (cfme.infrastructure.virtual_machines.Vm method)

 	MigrateView (class in cfme.cloud.instance.openstack)

 	

 	(class in cfme.infrastructure.virtual_machines)

 	milestones (cfme.utils.bz.Product attribute)

 	minimize() (cfme.dashboard.DashboardWidget method)

 	minimized (cfme.dashboard.DashboardWidget attribute)

 	minor_version (cfme.middleware.provider.middleware_views.AddJDBCDriverForm attribute)

 	minute (cfme.intelligence.reports.schedules.SchedulesFormCommon attribute)

 	miq_event_definitions (cfme.utils.events.EventTool attribute)

 	MiqApi (class in cfme.utils.appliance)

 	MiqBrowser (class in cfme.utils.appliance.implementations.ui)

 	MiqBrowserPlugin (class in cfme.utils.appliance.implementations.ui)

 	MiqMsgBucket (class in cfme.utils.perf_message_stats)

 	MiqMsgLists (class in cfme.utils.perf_message_stats)

 	MiqMsgStat (class in cfme.utils.perf_message_stats)

 	miqqe_patch_applied (cfme.utils.appliance.IPAppliance attribute)

 	miqqe_version (cfme.utils.appliance.IPAppliance attribute)

 	MiqSSUIBrowser (class in cfme.utils.appliance.implementations.ssui)

 	MiqSSUIBrowserPlugin (class in cfme.utils.appliance.implementations.ssui)

 	MiqWorker (class in cfme.utils.perf_message_stats)

 	mkd() (cfme.utils.ftp.FTPClient method)

 	MN_10_MINUTE (cfme.web_ui.utilization.Option attribute)

 	MN_15_MINUTE (cfme.web_ui.utilization.Option attribute)

 	MN_30_MINUTE (cfme.web_ui.utilization.Option attribute)

 	MN_45_MINUTE (cfme.web_ui.utilization.Option attribute)

 	MN_60_MINUTE (cfme.web_ui.utilization.Option attribute)

 	modal (cfme.configure.about.AboutView attribute)

 	mode (cfme.services.catalogs.service_catalogs.OrderForm attribute)

 	mode_mapping (cfme.infrastructure.virtual_machines.Genealogy attribute)

 	modules_to_document (in module cfme.utils.apidoc)

 	monitor (cfme.containers.provider.LoggingableView attribute)

 	monitor_shutdown() (fixtures.parallelizer.ParallelSession method)

 	monitoring (cfme.cloud.availability_zone.AvailabilityZoneDetailsToolBar attribute)

 	

 	(cfme.cloud.instance.InstanceDetailsToolbar attribute)

 	(cfme.common.host_views.HostDetailsToolbar attribute)

 	(cfme.common.host_views.HostsToolbar attribute)

 	(cfme.common.provider_views.ProviderDetailsToolBar attribute)

 	(cfme.configure.documentation.LinksView attribute)

 	(cfme.infrastructure.cluster.ClusterDetailsToolbar attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleDetailsToolbar attribute)

 	(cfme.infrastructure.virtual_machines.InfraGenericDetailsToolbar attribute)

 	(cfme.middleware.provider.middleware_views.DatasourceDetailsToolbar attribute)

 	(cfme.middleware.provider.middleware_views.MessagingDetailsToolbar attribute)

 	(cfme.middleware.provider.middleware_views.ServerDetailsToolbar attribute)

 	(cfme.networks.views.NetworkProviderDetailsToolBar attribute)

 	monthly_charges (cfme.services.dashboard.Dashboard attribute)

 	monthly_charges() (in module cfme.services.dashboard.ssui)

 	move_bottom() (cfme.web_ui.UpDownSelect method)

 	move_down() (cfme.web_ui.UpDownSelect method)

 	move_from_button (cfme.intelligence.reports.ReportsMultiBoxSelect attribute)

 	

 	(cfme.services.catalogs.catalog.CatalogsMultiBoxSelect attribute)

 	move_into_button (cfme.intelligence.reports.ReportsMultiBoxSelect attribute)

 	

 	(cfme.services.catalogs.catalog.CatalogsMultiBoxSelect attribute)

 	move_to_element() (in module cfme.fixtures.pytest_selenium)

 	move_top() (cfme.web_ui.UpDownSelect method)

 	move_up() (cfme.web_ui.UpDownSelect method)

 	MultiBoxSelect (class in cfme.web_ui.multibox)

 	MultiFill (class in cfme.web_ui)

 	MULTIKEY_LOC (cfme.common.SummaryTable attribute)

 	MultipleResultsException

 	MultiSelect (class in cfme.web_ui)

 	my_company_tags (cfme.configure.access_control.GroupForm attribute)

 	my_ip_address (fixtures.pytest_store.Store attribute)

 	my_ip_address() (in module cfme.utils.net)

 	my_services (cfme.configure.settings.DefaultViewForm attribute)

 	MyOtherTasks (class in cfme.configure.tasks)

 	myservice (cfme.services.myservice.ui.MyServicesView attribute)

 	MyService (class in cfme.services.myservice)

 	MyServiceAll (class in cfme.services.myservice.ssui)

 	

 	(class in cfme.services.myservice.ui)

 	MyServiceDetails (class in cfme.services.myservice.ui)

 	MyServiceDetailsToolbar (class in cfme.services.myservice.ui)

 	MyServiceDetailView (class in cfme.services.myservice.ui)

 	MyServiceEdit (class in cfme.services.myservice.ssui)

 	

 	(class in cfme.services.myservice.ui)

 	MyServiceEditTags (class in cfme.services.myservice.ui)

 	MyServiceForm (class in cfme.services.dashboard.ssui)

 	MyServiceReconfigure (class in cfme.services.myservice.ui)

 	MyServiceSetOwnership (class in cfme.services.myservice.ui)

 	MyServiceSetRetirement (class in cfme.services.myservice.ui)

 	MyServicesView (class in cfme.services.dashboard.ssui)

 	

 	(class in cfme.services.myservice.ssui)

 	(class in cfme.services.myservice.ui)

 	mysetting (cfme.configure.settings.TimeProfileAddFormView attribute)

 	MySettings (class in cfme.base.ui)

 	MySettingsView (class in cfme.base.ui)

 	MyTasks (class in cfme.configure.tasks)

N

 	

 	name (cfme.ansible.credentials.CredentialFormView attribute)

 	

 	(cfme.ansible.repositories.RepositoryFormView attribute)

 	(cfme.automate.explorer.domain.DomainForm attribute)

 	(cfme.automate.explorer.instance.InstanceAddView attribute)

 	(cfme.automate.explorer.instance.InstanceEditView attribute)

 	(cfme.automate.explorer.klass.ClassForm attribute)

 	(cfme.automate.explorer.method.MethodAddView attribute)

 	(cfme.automate.explorer.method.MethodDetailsView attribute)

 	(cfme.automate.explorer.method.MethodEditView attribute)

 	(cfme.automate.explorer.namespace.NamespaceForm attribute)

 	(cfme.automate.provisioning_dialogs.ProvDiagForm attribute)

 	(cfme.base.ui.ZoneForm attribute)

 	(cfme.cloud.keypairs.KeyPairAddForm attribute)

 	(cfme.cloud.tenant.TenantAddForm attribute)

 	(cfme.cloud.tenant.TenantEditForm attribute)

 	(cfme.common.host_views.HostFormView attribute)

 	(cfme.common.provider.CANDUEndpoint attribute)

 	(cfme.common.provider.DefaultEndpoint attribute)

 	(cfme.common.provider.EventsEndpoint attribute)

 	(cfme.common.provider.SSHEndpoint attribute)

 	(cfme.common.provider_views.ProviderAddView attribute)

 	(cfme.configure.access_control.TenantForm attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileBaseAddForm attribute)

 	(cfme.configure.configuration.region_settings.CompanyCategoriesAddView attribute)

 	(cfme.containers.image_registry.ImageRegistry attribute)

 	(cfme.containers.provider.openshift.HawkularEndpoint attribute)

 	(cfme.infrastructure.pxe.PXECustomizationTemplateForm attribute)

 	(cfme.infrastructure.pxe.PXEServerForm attribute)

 	(cfme.infrastructure.pxe.PXESystemImageTypeForm attribute)

 	(cfme.intelligence.reports.dashboards.DashboardDetailsView attribute)

 	(cfme.intelligence.reports.dashboards.DashboardFormCommon attribute)

 	(cfme.intelligence.reports.dashboards.DefaultDashboard attribute)

 	(cfme.intelligence.reports.schedules.SchedulesFormCommon attribute)

 	(cfme.services.catalogs.ansible_catalog_item.AnsibleCatalogItemForm attribute)

 	(cfme.services.catalogs.catalog.CatalogForm attribute)

 	(cfme.services.catalogs.catalog_item.BasicInfoForm attribute)

 	(cfme.services.catalogs.orchestration_template.CopyTemplateForm attribute)

 	(cfme.services.catalogs.orchestration_template.DialogForm attribute)

 	(cfme.services.myservice.ssui.ServiceEditForm attribute)

 	(cfme.services.myservice.ui.ServiceEditForm attribute)

 	(cfme.utils.bz.Product attribute)

 	(cfme.web_ui.Quadicon attribute)

 	(cfme.web_ui.ScriptBox attribute)

 	(cfme.web_ui.topology.TopologyLegend attribute)

 	(cfme.web_ui.utilization.Legend attribute)

 	NAME (markers.env.BrowserEnvironmentMarker attribute)

 	

 	(markers.env.TCPEnvironmentMarker attribute)

 	(markers.env_markers.provider.ProviderEnvironmentMarker attribute)

 	name (markers.meta.Plugin attribute)

 	name_txt (cfme.configure.access_control.RoleForm attribute)

 	

 	(cfme.configure.access_control.UserForm attribute)

 	NamedLoggerAdapter (class in cfme.utils.log)

 	names (cfme.web_ui.Input attribute)

 	namespace (cfme.automate.explorer.common.CopyViewBase attribute)

 	

 	(cfme.automate.explorer.instance.Instance attribute)

 	(cfme.automate.explorer.klass.Class attribute)

 	(cfme.automate.explorer.method.Method attribute)

 	Namespace (class in cfme.automate.explorer.namespace)

 	NamespaceAddView (class in cfme.automate.explorer.namespace)

 	NamespaceCollection (class in cfme.automate.explorer.namespace)

 	NamespaceDetailsView (class in cfme.automate.explorer.namespace)

 	NamespaceEditView (class in cfme.automate.explorer.namespace)

 	NamespaceForm (class in cfme.automate.explorer.namespace)

 	namespaces (cfme.automate.explorer.domain.Domain attribute)

 	

 	(cfme.automate.explorer.domain.DomainDetailsView attribute)

 	(cfme.automate.explorer.namespace.Namespace attribute)

 	(cfme.automate.explorer.namespace.NamespaceDetailsView attribute)

 	nav (cfme.storage.volume.Volume attribute)

 	Navigatable (class in cfme.utils.appliance)

 	NavigatableMixin (class in cfme.utils.appliance)

 	navigate() (cfme.infrastructure.virtual_machines.Genealogy method)

 	

 	(cfme.infrastructure.virtual_machines.Vm.CfmeRelationship method)

 	(cfme.intelligence.reports.reports.CannedSavedReport method)

 	navigate_and_get_rows() (in module cfme.containers.provider)

 	navigation (cfme.base.login.BaseLoggedInPage attribute)

 	

 	(cfme.base.ssui.SSUIBaseLoggedInPage attribute)

 	NavigationError

 	net_check() (in module cfme.utils.net)

 	net_check_remote() (in module cfme.utils.net)

 	network (cfme.common.vm_views.BasicProvisionFormView attribute)

 	

 	(cfme.services.requests.RequestDetailsView attribute)

 	network_provider (cfme.networks.balancer.Balancer attribute)

 	

 	(cfme.networks.cloud_network.CloudNetwork attribute)

 	(cfme.networks.network_port.NetworkPort attribute)

 	(cfme.networks.network_router.NetworkRouter attribute)

 	(cfme.networks.security_group.SecurityGroup attribute)

 	(cfme.networks.subnet.Subnet attribute)

 	network_type (cfme.networks.cloud_network.CloudNetwork attribute)

 	

 	(cfme.networks.network_port.NetworkPort attribute)

 	NetworkPort (class in cfme.networks.network_port)

 	NetworkPortCollection (class in cfme.networks.network_port)

 	NetworkPortDetailsSideBar (class in cfme.networks.views)

 	NetworkPortDetailsToolBar (class in cfme.networks.views)

 	NetworkPortDetailsView (class in cfme.networks.views)

 	NetworkPortEntities (class in cfme.networks.views)

 	NetworkPortSideBar (class in cfme.networks.views)

 	NetworkPortToolBar (class in cfme.networks.views)

 	NetworkPortView (class in cfme.networks.views)

 	NetworkProvider (class in cfme.networks.provider)

 	NetworkProviderCollection (class in cfme.networks.provider)

 	NetworkProviderDetailsSideBar (class in cfme.networks.views)

 	NetworkProviderDetailsToolBar (class in cfme.networks.views)

 	NetworkProviderDetailsView (class in cfme.networks.views)

 	NetworkProviderEntities (class in cfme.networks.views)

 	NetworkProviderSideBar (class in cfme.networks.views)

 	NetworkProviderToolBar (class in cfme.networks.views)

 	NetworkProviderView (class in cfme.networks.views)

 	NetworkRouter (class in cfme.networks.network_router)

 	NetworkRouterCollection (class in cfme.networks.network_router)

 	NetworkRouterDetailsSideBar (class in cfme.networks.views)

 	NetworkRouterDetailsToolBar (class in cfme.networks.views)

 	NetworkRouterDetailsView (class in cfme.networks.views)

 	NetworkRouterEntities (class in cfme.networks.views)

 	NetworkRouterSideBar (class in cfme.networks.views)

 	NetworkRouterToolBar (class in cfme.networks.views)

 	NetworkRouterView (class in cfme.networks.views)

 	networks (cfme.networks.provider.NetworkProvider attribute)

 	New (class in cfme.cloud.provider)

 	new() (cfme.intelligence.reports.reports.CannedSavedReport class method)

 	new_credential() (in module cfme.fixtures.tag)

 	new_event() (cfme.utils.events.EventListener method)

 	new_name (cfme.automate.explorer.common.CopyViewBase attribute)

 	new_paginator() (in module cfme.web_ui.paginator)

 	new_password (cfme.base.ui.LoginPage attribute)

 	new_rest_api_instance() (cfme.utils.appliance.IPAppliance method)

 	NewActionView (class in cfme.control.explorer.actions)

 	NewAlertProfileView (class in cfme.control.explorer.alert_profiles)

 	NewAlertView (class in cfme.control.explorer.alerts)

 	NewButtonGroupView (class in cfme.automate.buttons)

 	NewButtonView (class in cfme.automate.buttons)

 	NewChartWidget (class in cfme.intelligence.reports.widgets.chart_widgets)

 	NewChartWidgetView (class in cfme.intelligence.reports.widgets.chart_widgets)

 	NewConditionView (class in cfme.control.explorer.conditions)

 	NewCustomReportView (class in cfme.intelligence.reports.reports)

 	NewDashboardView (class in cfme.intelligence.reports.dashboards)

 	NewHooks (class in cfme.test_framework.sprout.plugin)

 	NewMenuWidget (class in cfme.intelligence.reports.widgets.menu_widgets)

 	NewMenuWidgetView (class in cfme.intelligence.reports.widgets.menu_widgets)

 	NewPolicyProfileView (class in cfme.control.explorer.policy_profiles)

 	NewPolicyView (class in cfme.control.explorer.policies)

 	NewReportWidget (class in cfme.intelligence.reports.widgets.report_widgets)

 	NewReportWidgetView (class in cfme.intelligence.reports.widgets.report_widgets)

 	NewRSSWidget (class in cfme.intelligence.reports.widgets.rss_widgets)

 	NewRSSWidgetView (class in cfme.intelligence.reports.widgets.rss_widgets)

 	NewScheduleView (class in cfme.intelligence.reports.schedules)

 	next() (in module cfme.web_ui.paginator)

 	next_button (cfme.middleware.provider.middleware_views.AddDatasourceForm attribute)

 	nice_seconds() (in module cfme.utils.timeutil)

 	

 	no_expression_present() (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor method)

 	

 	(in module cfme.web_ui.expression_editor)

 	Node (class in cfme.containers.node)

 	node_checkbox (cfme.web_ui.CheckboxTree attribute)

 	node_checked() (cfme.web_ui.BootstrapTreeview method)

 	node_exist() (cfme.infrastructure.provider.openstack_infra.OpenstackInfraProvider method)

 	NodeAllView (class in cfme.containers.node)

 	NodeCollection (class in cfme.containers.node)

 	NodeDetailsView (class in cfme.containers.node)

 	NodeEditTagsForm (class in cfme.containers.node)

 	NodeManagePoliciesForm (class in cfme.containers.node)

 	NodeNotFound

 	nodes (cfme.containers.node.NodeView attribute)

 	NodesToolBar (class in cfme.common.provider_views)

 	NodeTimelinesForm (class in cfme.containers.node)

 	NodeUtilizationView (class in cfme.containers.node)

 	NodeView (class in cfme.containers.node)

 	NoElementsInsideValue

 	none (cfme.fixtures.pytest_selenium.Select attribute)

 	NonJSDepRoleEntity (class in cfme.infrastructure.deployment_roles)

 	NonJSHostEntity (class in cfme.common.host_views)

 	NonJSInstanceEntity (class in cfme.common.vm_views)

 	NonJSVolumeEntity (class in cfme.storage.volume)

 	NORMAL_ROWS (cfme.web_ui.CAndUGroupTable.States attribute)

 	normal_search() (in module cfme.web_ui.search)

 	normalize_space() (in module cfme.utils)

 	normalize_text() (in module cfme.utils)

 	normalized_suffix (cfme.utils.version.Version attribute)

 	NOT (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor attribute)

 	NOT_DIMMED (cfme.web_ui.form_buttons.FormButton.Button attribute)

 	NotAllCheckboxesFound

 	NotAllItemsClicked

 	notes (cfme.control.explorer.alert_profiles.AlertProfileFormCommon attribute)

 	

 	(cfme.control.explorer.conditions.ConditionFormCommon attribute)

 	(cfme.control.explorer.policies.PolicyFormCommon attribute)

 	(cfme.control.explorer.policy_profiles.PolicyProfileFormCommon attribute)

 	notification_frequency (cfme.control.explorer.alerts.AlertFormCommon attribute)

 	nth_frame_info() (in module cfme.utils.log)

 	ntp_server_1 (cfme.base.ui.ZoneForm attribute)

 	ntp_server_2 (cfme.base.ui.ZoneForm attribute)

 	ntp_server_3 (cfme.base.ui.ZoneForm attribute)

 	nuke_browser_after_test() (in module fixtures.browser)

 	num_cluster() (cfme.infrastructure.provider.InfraProvider method)

 	num_cluster_db (cfme.infrastructure.provider.InfraProvider attribute)

 	num_cluster_ui (cfme.infrastructure.provider.InfraProvider attribute)

 	num_container() (cfme.containers.provider.ContainersProvider method)

 	num_container_group() (cfme.containers.provider.ContainersProvider method)

 	num_container_group_ui (cfme.containers.provider.ContainersProvider attribute)

 	num_container_ui (cfme.containers.provider.ContainersProvider attribute)

 	num_datasource() (cfme.middleware.provider.hawkular.HawkularProvider method)

 	num_datasource_ui (cfme.middleware.provider.hawkular.HawkularProvider attribute)

 	num_datastore() (cfme.infrastructure.provider.InfraProvider method)

 	num_datastore_ui (cfme.infrastructure.provider.InfraProvider attribute)

 	num_deployment() (cfme.middleware.provider.hawkular.HawkularProvider method)

 	num_deployment_ui (cfme.middleware.provider.hawkular.HawkularProvider attribute)

 	num_disks (cfme.infrastructure.virtual_machines.VMConfiguration attribute)

 	num_domain() (cfme.middleware.provider.hawkular.HawkularProvider method)

 	num_domain_ui (cfme.middleware.provider.hawkular.HawkularProvider attribute)

 	num_host() (cfme.infrastructure.provider.InfraProvider method)

 	num_host_db (cfme.infrastructure.provider.InfraProvider attribute)

 	num_host_ui (cfme.infrastructure.provider.InfraProvider attribute)

 	num_image() (cfme.containers.provider.ContainersProvider method)

 	num_image_registry() (cfme.containers.provider.ContainersProvider method)

 	num_image_registry_ui (cfme.containers.provider.ContainersProvider attribute)

 	num_image_ui (cfme.containers.provider.ContainersProvider attribute)

 	num_legend() (cfme.web_ui.utilization.LineChart method)

 	num_messaging() (cfme.middleware.provider.hawkular.HawkularProvider method)

 	num_messaging_ui (cfme.middleware.provider.hawkular.HawkularProvider attribute)

 	num_node() (cfme.containers.provider.ContainersProvider method)

 	num_node_ui (cfme.containers.provider.ContainersProvider attribute)

 	num_pod() (cfme.containers.provider.ContainersProvider method)

 	num_pod_ui (cfme.containers.provider.ContainersProvider attribute)

 	num_project() (cfme.containers.provider.ContainersProvider method)

 	num_project_ui (cfme.containers.provider.ContainersProvider attribute)

 	num_replication_controller() (cfme.containers.provider.ContainersProvider method)

 	num_replication_controller_ui (cfme.containers.provider.ContainersProvider attribute)

 	num_route() (cfme.containers.provider.openshift.OpenshiftProvider method)

 	num_route_ui (cfme.containers.provider.openshift.OpenshiftProvider attribute)

 	num_server() (cfme.middleware.provider.hawkular.HawkularProvider method)

 	num_server_group() (cfme.middleware.provider.hawkular.HawkularProvider method)

 	num_server_ui (cfme.middleware.provider.hawkular.HawkularProvider attribute)

 	num_service() (cfme.containers.provider.ContainersProvider method)

 	num_service_ui (cfme.containers.provider.ContainersProvider attribute)

 	num_template() (cfme.common.provider.CloudInfraProvider method)

 	

 	(cfme.containers.provider.openshift.OpenshiftProvider method)

 	num_template_ui (cfme.common.provider.CloudInfraProvider attribute)

 	

 	(cfme.containers.provider.openshift.OpenshiftProvider attribute)

 	num_vm() (cfme.common.provider.CloudInfraProvider method)

 	num_vm_ui (cfme.common.provider.CloudInfraProvider attribute)

 	number (cfme.utils.units.Unit attribute)

O

 	

 	Object (class in cfme.web_ui.jstimelines)

 	OBJECT_TABLE (cfme.utils.events.EventTool attribute)

 	ObjectStore (class in cfme.storage.object_store)

 	OBSERVED_FIELD_MARKERS (cfme.utils.appliance.implementations.ui.MiqBrowserPlugin attribute)

 	observer_wait() (cfme.fixtures.pytest_selenium.Select method)

 	

 	(cfme.web_ui.Radio method)

 	OcpCli (class in cfme.utils.ocp_cli)

 	oid (cfme.control.snmp_form.SNMPTrapField attribute)

 	oid_loc (cfme.control.snmp_form.SNMPTrapField attribute)

 	old_select() (in module cfme.web_ui.toolbar)

 	OldCheckbox (class in cfme.web_ui)

 	ON_CURRENT_TAB (cfme.web_ui.form_buttons.FormButton.Button attribute)

 	on_details() (cfme.cloud.instance.Instance method)

 	one_of() (cfme.common.provider.BaseProvider method)

 	OneProviderBalancerView (class in cfme.networks.views)

 	OneProviderCloudNetworkView (class in cfme.networks.views)

 	OneProviderComponentsToolbar (class in cfme.networks.views)

 	OneProviderNetworkPortView (class in cfme.networks.views)

 	OneProviderNetworkRouterView (class in cfme.networks.views)

 	OneProviderSecurityGroupView (class in cfme.networks.views)

 	OneProviderSubnetView (class in cfme.networks.views)

 	onexception_printall() (in module cfme.web_ui.flash)

 	open() (cfme.dashboard.Kebab method)

 	

 	(cfme.web_ui.AngularSelect method)

 	open_browser() (cfme.utils.appliance.implementations.Implementation method)

 	open_console() (cfme.common.vm.BaseVM method)

 	open_details() (cfme.common.vm.BaseVM method)

 	open_edit() (cfme.common.vm.BaseVM method)

 	open_fresh() (cfme.utils.browser.BrowserManager method)

 	open_port() (in module cfme.scripting.setup_ansible)

 	open_sftp() (cfme.utils.ssh.SSHClient method)

 	open_states (cfme.utils.bz.Bugzilla attribute)

 	open_timelines() (cfme.common.vm.BaseVM method)

 	OpenCloudNetworks (class in cfme.networks.provider)

 	

 	(class in cfme.networks.subnet)

 	OpenCloudSubnets (class in cfme.networks.provider)

 	OpenFloatingIPs (class in cfme.networks.provider)

 	OpenNetworkBalancers (class in cfme.networks.provider)

 	OpenNetworkPorts (class in cfme.networks.provider)

 	

 	OpenNetworkRouters (class in cfme.networks.provider)

 	OpenSecurityGroups (class in cfme.networks.provider)

 	OpenshiftDefaultEndpoint (class in cfme.containers.provider.openshift)

 	OpenshiftProvider (class in cfme.containers.provider.openshift)

 	openstack_hardware (cfme.common.host_views.HostDetailsEntities attribute)

 	OpenStackInfraEndpointForm (class in cfme.infrastructure.provider.openstack_infra)

 	OpenstackInfraProvider (class in cfme.infrastructure.provider.openstack_infra)

 	OpenStackInstance (class in cfme.cloud.instance.openstack)

 	OpenstackNode (class in cfme.infrastructure.openstack_node)

 	OpenStackProvider (class in cfme.cloud.provider.openstack)

 	OpenTopologyFromDetails (class in cfme.networks.provider)

 	operating_ranges (cfme.infrastructure.virtual_machines.InfraVmSummaryView attribute)

 	operations (cfme.middleware.provider.middleware_views.DatasourceAllToolbar attribute)

 	

 	(cfme.middleware.provider.middleware_views.DeploymentAllToolbar attribute)

 	(cfme.middleware.provider.middleware_views.DeploymentDetailsToolbar attribute)

 	option (cfme.web_ui.utilization.LineChart attribute)

 	Option (class in cfme.web_ui.utilization)

 	OptionNotAvailable

 	options (cfme.web_ui.AngularSelect attribute)

 	

 	(cfme.web_ui.DHTMLSelect attribute)

 	OR (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor attribute)

 	orchestration_path (in module cfme.utils.path)

 	orchestration_templates (cfme.services.catalogs.ServicesCatalogView attribute)

 	orchestration_templates() (in module cfme.rest.gen_data)

 	OrchestrationTemplate (class in cfme.services.catalogs.orchestration_template)

 	OrchestrationTemplatesView (class in cfme.services.catalogs.orchestration_template)

 	order() (cfme.services.catalogs.service_catalogs.ServiceCatalogs method)

 	order_button (cfme.services.catalogs.service_catalogs.DetailsServiceCatalogView attribute)

 	order_catalog_item_in_ops_ui() (in module cfme.fixtures.service_fixtures)

 	OrderForm (class in cfme.services.catalogs.service_catalogs)

 	OrderServiceCatalogView (class in cfme.services.catalogs.service_catalogs)

 	orphaneddata (cfme.base.ui.RegionDiagnosticsView attribute)

 	os_type (cfme.services.catalogs.service_catalogs.OrderForm attribute)

 	os_version (cfme.utils.appliance.IPAppliance attribute)

 	Outcome (class in fixtures.parallelizer)

 	outputs (cfme.cloud.stack.StackOutputsEntities attribute)

 	override_existing (cfme.automate.explorer.common.CopyViewBase attribute)

 	override_source (cfme.automate.explorer.common.CopyViewBase attribute)

 	overwrite (cfme.intelligence.reports.import_export.ImportExportCustomReportsView attribute)

P

 	

 	page (cfme.web_ui.utilization.Utilization attribute)

 	page_controls_exist() (in module cfme.web_ui.paginator)

 	page_name (cfme.cloud.provider.CloudProvider attribute)

 	

 	(cfme.containers.provider.ContainersProvider attribute)

 	(cfme.infrastructure.provider.InfraProvider attribute)

 	(cfme.middleware.provider.MiddlewareProvider attribute)

 	(cfme.networks.balancer.Balancer attribute)

 	(cfme.networks.cloud_network.CloudNetwork attribute)

 	(cfme.networks.network_port.NetworkPort attribute)

 	(cfme.networks.network_router.NetworkRouter attribute)

 	(cfme.networks.provider.NetworkProvider attribute)

 	(cfme.networks.security_group.SecurityGroup attribute)

 	(cfme.networks.subnet.Subnet attribute)

 	paged_table (cfme.common.vm.BaseVM attribute)

 	PagedTable (class in cfme.web_ui)

 	pages() (in module cfme.web_ui.paginator)

 	paginated_rows() (cfme.web_ui.CAndUGroupTable method)

 	pagination (cfme.infrastructure.virtual_machines.VmsTemplatesAllView attribute)

 	paginator (cfme.ansible.playbooks.PlaybooksView attribute)

 	

 	(cfme.ansible.repositories.RepositoryAllView attribute)

 	(cfme.automate.provisioning_dialogs.ProvDiagAllEntities attribute)

 	(cfme.cloud.availability_zone.AvailabilityZoneAllView attribute)

 	(cfme.cloud.flavor.FlavorAllView attribute)

 	(cfme.cloud.stack.StackAllView attribute)

 	(cfme.cloud.tenant.TenantAllView attribute)

 	(cfme.common.host_views.HostsView attribute)

 	(cfme.configure.access_control.AllGroupView attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileAllView attribute)

 	(cfme.containers.node.NodeAllView attribute)

 	(cfme.infrastructure.resource_pool.ResourcePoolAllView attribute)

 	(cfme.intelligence.reports.reports.CustomSavedReportDetailsView attribute)

 	(cfme.intelligence.reports.saved.AllSavedReportsView attribute)

 	(cfme.intelligence.reports.schedules.SchedulesAllView attribute)

 	(cfme.services.requests.RequestsView attribute)

 	PaginatorException

 	pair (cfme.web_ui.InfoBlock.Member attribute)

 	pair_locator (cfme.web_ui.InfoBlock.Member attribute)

 	parallel_session (fixtures.pytest_store.Store attribute)

 	parallelizer_role (fixtures.pytest_store.Store attribute)

 	ParallelSession (class in fixtures.parallelizer)

 	PARAM_BY_DEFAULT (markers.env.EnvironmentMarker attribute)

 	ParamClassName (class in cfme.utils)

 	parameters (cfme.cloud.stack.StackParametersEntities attribute)

 	parametrize() (in module cfme.utils.testgen)

 	

 	(in module markers.env_markers.provider)

 	parent (cfme.automate.dialog_box.Box attribute)

 	

 	(cfme.automate.dialog_element.Element attribute)

 	(cfme.automate.dialog_tab.Tab attribute)

 	(cfme.automate.explorer.domain.Domain attribute)

 	(cfme.automate.explorer.instance.Instance attribute)

 	(cfme.automate.explorer.klass.Class attribute)

 	(cfme.automate.explorer.method.Method attribute)

 	(cfme.automate.explorer.namespace.Namespace attribute)

 	(cfme.automate.service_dialogs.Dialog attribute)

 	parent_path (cfme.configure.access_control.Tenant attribute)

 	parent_provider (cfme.networks.cloud_network.CloudNetwork attribute)

 	

 	(cfme.networks.subnet.Subnet attribute)

 	parent_tenant (cfme.configure.access_control.Tenant attribute)

 	parent_type (cfme.control.explorer.actions.ActionFormCommon attribute)

 	ParentDetailsTenantView (class in cfme.configure.access_control)

 	parents (cfme.web_ui.topology.TopologyElement attribute)

 	parse() (cfme.utils.blockers.Blocker class method)

 	

 	(cfme.utils.units.Unit class method)

 	(cfme.utils.version.Version method)

 	(in module fixtures.node_annotate)

 	parse_properties() (in module cfme.middleware.provider)

 	parse_template() (in module cfme.utils.trackerbot)

 	parsedate() (in module cfme.utils.version)

 	parsetime (class in cfme.utils.timeutil)

 	ParticularDashboardView (class in cfme.dashboard)

 	password (cfme.base.ssui.LoginPage attribute)

 	

 	(cfme.base.ui.DiagnosticsCollectLogsEditView attribute)

 	(cfme.base.ui.LoginPage attribute)

 	(cfme.base.ui.ZoneForm attribute)

 	(cfme.common.provider.DefaultEndpointForm attribute)

 	(cfme.configure.access_control.GroupForm attribute)

 	(cfme.configure.configuration.region_settings.RedHatUpdatesEditView attribute)

 	(cfme.infrastructure.pxe.PXEServerForm attribute)

 	(cfme.middleware.provider.middleware_views.AddDatasourceForm attribute)

 	password_txt (cfme.configure.access_control.UserForm attribute)

 	password_verify (cfme.configure.configuration.region_settings.RedHatUpdatesEditView attribute)

 	password_verify_txt (cfme.configure.access_control.UserForm attribute)

 	patch_file() (cfme.utils.ssh.SSHClient method)

 	patch_with_miqqe() (cfme.utils.appliance.IPAppliance method)

 	patches_path (in module cfme.utils.path)

 	path (cfme.utils.ftp.FTPDirectory attribute)

 	

 	(cfme.utils.ftp.FTPFile attribute)

 	PAUSE (cfme.cloud.instance.openstack.OpenStackInstance attribute)

 	perf_process_evm() (in module cfme.utils.perf_message_stats)

 	Perflog (class in cfme.utils.log)

 	perform_smartstate_analysis() (cfme.containers.image.Image method)

 	

 	(in module cfme.infrastructure.virtual_machines)

 	PF (cfme.web_ui.InfoBlock attribute)

 	pf_select() (in module cfme.web_ui.toolbar)

 	pick() (in module cfme.utils.version)

 	PickItemType (class in cfme.services.catalogs.ansible_catalog_item)

 	ping_connection() (in module cfme.utils.db)

 	ping_pool() (cfme.test_framework.sprout.plugin.SproutManager method)

 	pip_json_list() (in module cfme.scripting.quickstart)

 	pip_version_list_to_map() (in module cfme.scripting.quickstart)

 	platform_updates_available() (cfme.configure.configuration.region_settings.RedHatUpdates method)

 	Playbook (class in cfme.ansible.playbooks)

 	playbook_catalog_item (cfme.control.explorer.actions.RunAnsiblePlaybookFromView attribute)

 	PlaybookBaseView (class in cfme.ansible.playbooks)

 	PlaybookDetailsEntities (class in cfme.ansible.playbooks)

 	PlaybookDetailsView (class in cfme.ansible.playbooks)

 	PlaybookEntitiesView (class in cfme.ansible.playbooks)

 	PlaybookEntity (class in cfme.ansible.playbooks)

 	PlaybookGridIconEntity (class in cfme.ansible.playbooks)

 	PlaybookListEntity (class in cfme.ansible.playbooks)

 	playbooks (cfme.ansible.repositories.Repository attribute)

 	PlaybooksCollection (class in cfme.ansible.playbooks)

 	PlaybooksToolbar (class in cfme.ansible.playbooks)

 	PlaybooksView (class in cfme.ansible.playbooks)

 	PlaybookTileIconEntity (class in cfme.ansible.playbooks)

 	Plugin (class in markers.meta)

 	PluginContainer (class in markers.meta)

 	pluginmanager (fixtures.pytest_store.Store attribute)

 	PLURAL (cfme.containers.container.Container attribute)

 	

 	(cfme.containers.image.Image attribute)

 	(cfme.containers.image_registry.ImageRegistry attribute)

 	(cfme.containers.node.Node attribute)

 	(cfme.containers.pod.Pod attribute)

 	(cfme.containers.project.Project attribute)

 	(cfme.containers.provider.ContainersProvider attribute)

 	(cfme.containers.replicator.Replicator attribute)

 	(cfme.containers.route.Route attribute)

 	(cfme.containers.service.Service attribute)

 	(cfme.containers.template.Template attribute)

 	(cfme.containers.volume.Volume attribute)

 	plus_btn (cfme.automate.dialog_box.AddBoxView attribute)

 	

 	(cfme.automate.dialog_tab.AddTabView attribute)

 	(cfme.automate.service_dialogs.AddDialogView attribute)

 	(cfme.automate.service_dialogs.DialogForm attribute)

 	Pod (class in cfme.containers.pod)

 	PodAllView (class in cfme.containers.pod)

 	PodCompliancePolicy (class in cfme.control.explorer.policies)

 	PodCondition (class in cfme.control.explorer.conditions)

 	PodControlPolicy (class in cfme.control.explorer.policies)

 	pods_per_ready_status() (cfme.containers.provider.ContainersProvider method)

 	policies (cfme.common.host_views.HostManagePoliciesView attribute)

 	

 	(cfme.common.provider_views.ProvidersManagePoliciesView attribute)

 	(cfme.configure.documentation.LinksView attribute)

 	(cfme.control.explorer.ControlExplorerView attribute)

 	(cfme.control.explorer.policy_profiles.PolicyProfileFormCommon attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleManagePoliciesView attribute)

 	policies() (in module cfme.rest.gen_data)

 	PoliciesAllView (class in cfme.control.explorer.policies)

 	policy (cfme.cloud.availability_zone.AvailabilityZoneDetailsToolBar attribute)

 	

 	(cfme.cloud.availability_zone.AvailabilityZoneToolBar attribute)

 	(cfme.cloud.flavor.FlavorDetailsToolBar attribute)

 	(cfme.cloud.flavor.FlavorToolBar attribute)

 	(cfme.cloud.instance.InstanceDetailsToolbar attribute)

 	(cfme.cloud.instance.image.ImageDetailsToolbar attribute)

 	(cfme.cloud.instance.image.ImageToolbar attribute)

 	(cfme.cloud.keypairs.KeyPairDetailsToolbar attribute)

 	(cfme.cloud.keypairs.KeyPairToolbar attribute)

 	(cfme.cloud.stack.StackDetailsToolbar attribute)

 	(cfme.cloud.stack.StackSubpageToolbar attribute)

 	(cfme.cloud.stack.StackToolbar attribute)

 	(cfme.cloud.tenant.TenantDetailsToolbar attribute)

 	(cfme.cloud.tenant.TenantToolbar attribute)

 	(cfme.common.host_views.HostDetailsToolbar attribute)

 	(cfme.common.host_views.HostsToolbar attribute)

 	(cfme.common.provider_views.NodesToolBar attribute)

 	(cfme.common.provider_views.ProviderDetailsToolBar attribute)

 	(cfme.common.provider_views.ProviderToolBar attribute)

 	(cfme.common.vm_views.VMToolbar attribute)

 	(cfme.configure.access_control.AccessControlToolbar attribute)

 	(cfme.containers.provider.ContainerObjectAllBaseView attribute)

 	(cfme.infrastructure.cluster.ClusterDetailsToolbar attribute)

 	(cfme.infrastructure.cluster.ClusterToolbar attribute)

 	(cfme.infrastructure.datastore.DatastoreToolBar attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleDetailsToolbar attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleToolbar attribute)

 	(cfme.infrastructure.resource_pool.ResourcePoolDetailsToolbar attribute)

 	(cfme.infrastructure.resource_pool.ResourcePoolToolbar attribute)

 	(cfme.infrastructure.virtual_machines.InfraGenericDetailsToolbar attribute)

 	(cfme.middleware.provider.middleware_views.DatasourceAllToolbar attribute)

 	(cfme.middleware.provider.middleware_views.DatasourceDetailsToolbar attribute)

 	(cfme.middleware.provider.middleware_views.DeploymentAllToolbar attribute)

 	(cfme.middleware.provider.middleware_views.DeploymentDetailsToolbar attribute)

 	(cfme.middleware.provider.middleware_views.DomainDetailsToolbar attribute)

 	(cfme.middleware.provider.middleware_views.DomainToolbar attribute)

 	(cfme.middleware.provider.middleware_views.MessagingAllToolbar attribute)

 	(cfme.middleware.provider.middleware_views.MessagingDetailsToolbar attribute)

 	(cfme.middleware.provider.middleware_views.ServerDetailsToolbar attribute)

 	(cfme.middleware.provider.middleware_views.ServerGroupDetailsToolbar attribute)

 	(cfme.middleware.provider.middleware_views.ServerToolbar attribute)

 	(cfme.networks.views.BalancerToolBar attribute)

 	(cfme.networks.views.CloudNetworkDetailsToolBar attribute)

 	(cfme.networks.views.CloudNetworkToolBar attribute)

 	(cfme.networks.views.NetworkPortDetailsToolBar attribute)

 	(cfme.networks.views.NetworkPortToolBar attribute)

 	(cfme.networks.views.NetworkProviderToolBar attribute)

 	(cfme.networks.views.NetworkRouterDetailsToolBar attribute)

 	(cfme.networks.views.NetworkRouterToolBar attribute)

 	(cfme.networks.views.OneProviderComponentsToolbar attribute)

 	(cfme.networks.views.SecurityGroupDetailsToolBar attribute)

 	(cfme.networks.views.SecurityGroupToolBar attribute)

 	(cfme.networks.views.SubnetDetailsToolBar attribute)

 	(cfme.networks.views.SubnetToolBar attribute)

 	(cfme.services.catalogs.ServicesCatalogView attribute)

 	(cfme.storage.volume.VolumeDetailsToolbar attribute)

 	(cfme.storage.volume.VolumeToolbar attribute)

 	policy_btn (cfme.services.myservice.ssui.DetailsMyServiceView attribute)

 	

 	(cfme.services.myservice.ui.MyServicesView attribute)

 	policy_profiles (cfme.containers.node.NodeManagePoliciesForm attribute)

 	

 	(cfme.control.explorer.ControlExplorerView attribute)

 	(cfme.control.import_export.ControlImportExportView attribute)

 	PolicyAssignment (class in cfme.infrastructure.host)

 	PolicyConditionDetails (class in cfme.control.explorer.policies)

 	PolicyDetails (class in cfme.control.explorer.policies)

 	PolicyDetailsView (class in cfme.control.explorer.policies)

 	PolicyEdit (class in cfme.control.explorer.policies)

 	PolicyEventDetails (class in cfme.control.explorer.policies)

 	PolicyFormCommon (class in cfme.control.explorer.policies)

 	PolicyNew (class in cfme.control.explorer.policies)

 	PolicyProfile (class in cfme.control.explorer.policy_profiles)

 	PolicyProfileAssignable (class in cfme.common)

 	PolicyProfileDetails (class in cfme.control.explorer.policy_profiles)

 	PolicyProfileDetailsView (class in cfme.control.explorer.policy_profiles)

 	PolicyProfileEdit (class in cfme.control.explorer.policy_profiles)

 	PolicyProfileFormCommon (class in cfme.control.explorer.policy_profiles)

 	PolicyProfileNew (class in cfme.control.explorer.policy_profiles)

 	PolicyProfilesAllView (class in cfme.control.explorer.policy_profiles)

 	PolicySimulation (class in cfme.cloud.instance)

 	PolicySimulationView (class in cfme.common.vm_views)

 	poll() (fixtures.parallelizer.SlaveDetail method)

 	pool (cfme.test_framework.sprout.plugin.SproutManager attribute)

 	pop() (cfme.utils.appliance.ApplianceStack method)

 	port (cfme.test_framework.appliance_police.AppliancePoliceException attribute)

 	ports (cfme.networks.provider.NetworkProvider attribute)

 	post_jenkins_result() (in module cfme.utils.trackerbot)

 	post_navigate() (cfme.utils.appliance.implementations.ui.CFMENavigateStep method)

 	post_task_result() (in module cfme.utils.trackerbot)

 	postgres_version (cfme.utils.appliance.db.ApplianceDB attribute)

 	power (cfme.cloud.instance.InstanceDetailsToolbar attribute)

 	

 	(cfme.common.host_views.HostDetailsToolbar attribute)

 	(cfme.common.host_views.HostsToolbar attribute)

 	(cfme.common.provider_views.NodesToolBar attribute)

 	(cfme.common.vm_views.VMToolbar attribute)

 	(cfme.infrastructure.virtual_machines.InfraVmDetailsToolbar attribute)

 	(cfme.middleware.provider.middleware_views.DomainDetailsToolbar attribute)

 	(cfme.middleware.provider.middleware_views.ServerDetailsToolbar attribute)

 	(cfme.middleware.provider.middleware_views.ServerGroupDetailsToolbar attribute)

 	power_control_from_cfme() (cfme.cloud.instance.Instance method)

 	

 	(cfme.common.vm.VM method)

 	power_control_from_provider() (cfme.cloud.instance.azure.AzureInstance method)

 	

 	(cfme.cloud.instance.ec2.EC2Instance method)

 	(cfme.cloud.instance.gce.GCEInstance method)

 	(cfme.cloud.instance.openstack.OpenStackInstance method)

 	(cfme.common.vm.VM method)

 	(cfme.infrastructure.virtual_machines.Vm method)

 	power_management (cfme.cloud.instance.image.ImageDetailsEntities attribute)

 	

 	(cfme.common.vm_views.VMDetailsEntities attribute)

 	POWER_OFF (cfme.infrastructure.virtual_machines.Vm attribute)

 	power_off() (cfme.infrastructure.host.Host method)

 	

 	(cfme.utils.ipmi.IPMI method)

 	POWER_ON (cfme.cloud.instance.azure.AzureInstance attribute)

 	

 	(cfme.cloud.instance.ec2.EC2Instance attribute)

 	(cfme.cloud.instance.gce.GCEInstance attribute)

 	(cfme.cloud.instance.openstack.OpenStackInstance attribute)

 	(cfme.infrastructure.virtual_machines.Vm attribute)

 	power_on() (cfme.infrastructure.host.Host method)

 	

 	(cfme.utils.ipmi.IPMI method)

 	power_operation_form (cfme.middleware.provider.middleware_views.ServerDetailsView attribute)

 	

 	(cfme.middleware.provider.middleware_views.ServerGroupDetailsView attribute)

 	power_operations (cfme.services.myservice.ssui.DetailsMyServiceView attribute)

 	power_reset() (cfme.utils.ipmi.IPMI method)

 	PowerOperationForm (class in cfme.middleware.provider.middleware_views)

 	pr_obj() (in module cfme.utils.pretty)

 	pre_navigate() (cfme.utils.appliance.implementations.ssui.SSUINavigateStep method)

 	

 	(cfme.utils.appliance.implementations.ui.CFMENavigateStep method)

 	precompile_assets() (cfme.utils.appliance.IPAppliance method)

 	prefix (cfme.utils.units.Unit attribute)

 	PrefixAddingLoggerFilter (class in cfme.utils.log)

 	prepared_policies (cfme.control.explorer.policy_profiles.PolicyProfile attribute)

 	prerequisite (cfme.ansible.credentials.Add attribute)

 	

 	(cfme.ansible.credentials.AnsibleCredentials attribute)

 	(cfme.ansible.credentials.Details attribute)

 	(cfme.ansible.credentials.Edit attribute)

 	(cfme.ansible.playbooks.AnsiblePlaybooks attribute)

 	(cfme.ansible.playbooks.Details attribute)

 	(cfme.ansible.repositories.Add attribute)

 	(cfme.ansible.repositories.AnsibleRepositories attribute)

 	(cfme.ansible.repositories.Details attribute)

 	(cfme.ansible.repositories.Edit attribute)

 	(cfme.automate.AutomateCustomization attribute)

 	(cfme.automate.buttons.ButtonAll attribute)

 	(cfme.automate.buttons.ButtonDetails attribute)

 	(cfme.automate.buttons.ButtonEdit attribute)

 	(cfme.automate.buttons.ButtonGroupAll attribute)

 	(cfme.automate.buttons.ButtonGroupDetails attribute)

 	(cfme.automate.buttons.ButtonGroupEdit attribute)

 	(cfme.automate.buttons.ButtonGroupNew attribute)

 	(cfme.automate.buttons.ButtonGroupObjectType attribute)

 	(cfme.automate.buttons.ButtonNew attribute)

 	(cfme.automate.dialog_box.Add attribute)

 	(cfme.automate.dialog_element.Add attribute)

 	(cfme.automate.dialog_element.Edit attribute)

 	(cfme.automate.dialog_tab.Add attribute)

 	(cfme.automate.explorer.AutomateExplorer attribute)

 	(cfme.automate.explorer.domain.Add attribute)

 	(cfme.automate.explorer.domain.All attribute)

 	(cfme.automate.explorer.domain.Details attribute)

 	(cfme.automate.explorer.domain.Edit attribute)

 	(cfme.automate.explorer.domain.Priority attribute)

 	(cfme.automate.explorer.instance.Add attribute)

 	(cfme.automate.explorer.instance.Copy attribute)

 	(cfme.automate.explorer.instance.Details attribute)

 	(cfme.automate.explorer.instance.Edit attribute)

 	(cfme.automate.explorer.klass.Add attribute)

 	(cfme.automate.explorer.klass.Copy attribute)

 	(cfme.automate.explorer.klass.Details attribute)

 	(cfme.automate.explorer.klass.Edit attribute)

 	(cfme.automate.explorer.klass.EditSchema attribute)

 	(cfme.automate.explorer.method.Add attribute)

 	(cfme.automate.explorer.method.Copy attribute)

 	(cfme.automate.explorer.method.Details attribute)

 	(cfme.automate.explorer.method.Edit attribute)

 	(cfme.automate.explorer.namespace.Add attribute)

 	(cfme.automate.explorer.namespace.Details attribute)

 	(cfme.automate.explorer.namespace.Edit attribute)

 	(cfme.automate.provisioning_dialogs.Add attribute)

 	(cfme.automate.provisioning_dialogs.All attribute)

 	(cfme.automate.provisioning_dialogs.Details attribute)

 	(cfme.automate.provisioning_dialogs.Edit attribute)

 	(cfme.automate.service_dialogs.Add attribute)

 	(cfme.automate.service_dialogs.All attribute)

 	(cfme.automate.service_dialogs.Details attribute)

 	(cfme.automate.service_dialogs.Edit attribute)

 	(cfme.base.ssui.LoggedIn attribute)

 	(cfme.base.ui.About attribute)

 	(cfme.base.ui.Advanced attribute)

 	(cfme.base.ui.AuditLog attribute)

 	(cfme.base.ui.Authentication attribute)

 	(cfme.base.ui.AutomateImportExport attribute)

 	(cfme.base.ui.AutomateSimulation attribute)

 	(cfme.base.ui.CFMELog attribute)

 	(cfme.base.ui.Chargeback attribute)

 	(cfme.base.ui.Configuration attribute)

 	(cfme.base.ui.CustomLogos attribute)

 	(cfme.base.ui.Dashboard attribute)

 	(cfme.base.ui.Details attribute)

 	(cfme.base.ui.Diagnostics attribute)

 	(cfme.base.ui.DiagnosticsCollectLogs attribute)

 	(cfme.base.ui.DiagnosticsCollectLogsEdit attribute)

 	(cfme.base.ui.DiagnosticsCollectLogsEditSlave attribute)

 	(cfme.base.ui.DiagnosticsCollectLogsSlave attribute)

 	(cfme.base.ui.DiagnosticsDetails attribute)

 	(cfme.base.ui.DiagnosticsWorkers attribute)

 	(cfme.base.ui.Documentation attribute)

 	(cfme.base.ui.Import attribute)

 	(cfme.base.ui.ImportTags attribute)

 	(cfme.base.ui.LoggedIn attribute)

 	(cfme.base.ui.MySettings attribute)

 	(cfme.base.ui.ProductionLog attribute)

 	(cfme.base.ui.RSS attribute)

 	(cfme.base.ui.RegionDetails attribute)

 	(cfme.base.ui.RegionDiagnostics attribute)

 	(cfme.base.ui.RegionDiagnosticsDatabase attribute)

 	(cfme.base.ui.RegionDiagnosticsOrphanedData attribute)

 	(cfme.base.ui.RegionDiagnosticsReplication attribute)

 	(cfme.base.ui.RegionDiagnosticsRolesByServers attribute)

 	(cfme.base.ui.RegionDiagnosticsServers attribute)

 	(cfme.base.ui.RegionDiagnosticsServersByRoles attribute)

 	(cfme.base.ui.RegionDiagnosticsZones attribute)

 	(cfme.base.ui.RegionZones attribute)

 	(cfme.base.ui.ServerDetails attribute)

 	(cfme.base.ui.Tasks attribute)

 	(cfme.base.ui.Timelines attribute)

 	(cfme.base.ui.Utilization attribute)

 	(cfme.base.ui.Workers attribute)

 	(cfme.base.ui.ZoneAdd attribute)

 	(cfme.base.ui.ZoneCANDUGapCollection attribute)

 	(cfme.base.ui.ZoneDetails attribute)

 	(cfme.base.ui.ZoneDiagnostics attribute)

 	(cfme.base.ui.ZoneDiagnosticsCollectLogs attribute)

 	(cfme.base.ui.ZoneDiagnosticsCollectLogsEdit attribute)

 	(cfme.base.ui.ZoneDiagnosticsRolesByServers attribute)

 	(cfme.base.ui.ZoneDiagnosticsServers attribute)

 	(cfme.base.ui.ZoneDiagnosticsServersByRoles attribute)

 	(cfme.base.ui.ZoneEdit attribute)

 	(cfme.cloud.availability_zone.AvailabilityZoneAll attribute)

 	(cfme.cloud.availability_zone.AvailabilityZoneDetails attribute)

 	(cfme.cloud.availability_zone.AvailabilityZoneEditTags attribute)

 	(cfme.cloud.availability_zone.AvailabilityZoneTimelines attribute)

 	(cfme.cloud.flavor.FlavorAll attribute)

 	(cfme.cloud.flavor.FlavorDetails attribute)

 	(cfme.cloud.flavor.FlavorEditTags attribute)

 	(cfme.cloud.instance.All attribute)

 	(cfme.cloud.instance.AllForProvider attribute)

 	(cfme.cloud.instance.Details attribute)

 	(cfme.cloud.instance.Edit attribute)

 	(cfme.cloud.instance.EditManagementEngineRelationship attribute)

 	(cfme.cloud.instance.EditTags attribute)

 	(cfme.cloud.instance.ManagePolicies attribute)

 	(cfme.cloud.instance.PolicySimulation attribute)

 	(cfme.cloud.instance.Provision attribute)

 	(cfme.cloud.instance.SetOwnership attribute)

 	(cfme.cloud.instance.SetRetirement attribute)

 	(cfme.cloud.instance.Timelines attribute)

 	(cfme.cloud.instance.image.ImageAll attribute)

 	(cfme.cloud.instance.image.ImageAllForProvider attribute)

 	(cfme.cloud.instance.image.ImageDetails attribute)

 	(cfme.cloud.instance.image.ImageEdit attribute)

 	(cfme.cloud.instance.image.ImageEditTags attribute)

 	(cfme.cloud.instance.image.ImageManagePolicies attribute)

 	(cfme.cloud.instance.image.ImagePolicySimulation attribute)

 	(cfme.cloud.instance.image.ImageProvisionImage attribute)

 	(cfme.cloud.instance.image.ImageSetOwnership attribute)

 	(cfme.cloud.instance.openstack.AddFloatingIP attribute)

 	(cfme.cloud.instance.openstack.AttachVolume attribute)

 	(cfme.cloud.instance.openstack.DetachVolume attribute)

 	(cfme.cloud.instance.openstack.Evacuate attribute)

 	(cfme.cloud.instance.openstack.Migrate attribute)

 	(cfme.cloud.instance.openstack.Reconfigure attribute)

 	(cfme.cloud.instance.openstack.RemoveFloatingIP attribute)

 	(cfme.cloud.instance.openstack.RightSize attribute)

 	(cfme.cloud.keypairs.Add attribute)

 	(cfme.cloud.keypairs.CloudKeyPairs attribute)

 	(cfme.cloud.keypairs.Details attribute)

 	(cfme.cloud.keypairs.EditTagsFromDetails attribute)

 	(cfme.cloud.provider.All attribute)

 	(cfme.cloud.provider.Details attribute)

 	(cfme.cloud.provider.Discover attribute)

 	(cfme.cloud.provider.Edit attribute)

 	(cfme.cloud.provider.EditFromDetails attribute)

 	(cfme.cloud.provider.EditTags attribute)

 	(cfme.cloud.provider.EditTagsFromDetails attribute)

 	(cfme.cloud.provider.Images attribute)

 	(cfme.cloud.provider.Instances attribute)

 	(cfme.cloud.provider.ManagePolicies attribute)

 	(cfme.cloud.provider.ManagePoliciesFromDetails attribute)

 	(cfme.cloud.provider.New attribute)

 	(cfme.cloud.provider.Timelines attribute)

 	(cfme.cloud.stack.All attribute)

 	(cfme.cloud.stack.Details attribute)

 	(cfme.cloud.stack.EditTags attribute)

 	(cfme.cloud.stack.RelationshipOutputs attribute)

 	(cfme.cloud.stack.RelationshipParameters attribute)

 	(cfme.cloud.stack.RelationshipResources attribute)

 	(cfme.cloud.stack.RelationshipsSecurityGroups attribute)

 	(cfme.cloud.tenant.TenantAdd attribute)

 	(cfme.cloud.tenant.TenantAll attribute)

 	(cfme.cloud.tenant.TenantDetails attribute)

 	(cfme.cloud.tenant.TenantEdit attribute)

 	(cfme.cloud.tenant.TenantEditTags attribute)

 	(cfme.configure.access_control.EditGroupSequence attribute)

 	(cfme.configure.access_control.GroupAdd attribute)

 	(cfme.configure.access_control.GroupAll attribute)

 	(cfme.configure.access_control.GroupDetails attribute)

 	(cfme.configure.access_control.GroupEdit attribute)

 	(cfme.configure.access_control.GroupTagsEdit attribute)

 	(cfme.configure.access_control.RoleAdd attribute)

 	(cfme.configure.access_control.RoleAll attribute)

 	(cfme.configure.access_control.RoleDetails attribute)

 	(cfme.configure.access_control.RoleEdit attribute)

 	(cfme.configure.access_control.TenantAdd attribute)

 	(cfme.configure.access_control.TenantAll attribute)

 	(cfme.configure.access_control.TenantDetails attribute)

 	(cfme.configure.access_control.TenantEdit attribute)

 	(cfme.configure.access_control.TenantManageQuotas attribute)

 	(cfme.configure.access_control.UserAdd attribute)

 	(cfme.configure.access_control.UserAll attribute)

 	(cfme.configure.access_control.UserDetails attribute)

 	(cfme.configure.access_control.UserEdit attribute)

 	(cfme.configure.access_control.UserTagsEdit attribute)

 	(cfme.configure.configuration.CategoryAdd attribute)

 	(cfme.configure.configuration.CategoryAll attribute)

 	(cfme.configure.configuration.CategoryEdit attribute)

 	(cfme.configure.configuration.ScheduleAdd attribute)

 	(cfme.configure.configuration.ScheduleAll attribute)

 	(cfme.configure.configuration.ScheduleDetails attribute)

 	(cfme.configure.configuration.ScheduleEdit attribute)

 	(cfme.configure.configuration.TagsAdd attribute)

 	(cfme.configure.configuration.TagsAll attribute)

 	(cfme.configure.configuration.TagsEdit attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileAdd attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileAll attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileCopy attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileDetails attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileEdit attribute)

 	(cfme.configure.configuration.region_settings.CANDUCollectionDetails attribute)

 	(cfme.configure.configuration.region_settings.CategoryAdd attribute)

 	(cfme.configure.configuration.region_settings.CategoryAll attribute)

 	(cfme.configure.configuration.region_settings.CategoryEdit attribute)

 	(cfme.configure.configuration.region_settings.Details attribute)

 	(cfme.configure.configuration.region_settings.Edit attribute)

 	(cfme.configure.configuration.region_settings.MapTagsAdd attribute)

 	(cfme.configure.configuration.region_settings.MapTagsAll attribute)

 	(cfme.configure.configuration.region_settings.MapTagsEdit attribute)

 	(cfme.configure.configuration.region_settings.TagsAdd attribute)

 	(cfme.configure.configuration.region_settings.TagsAll attribute)

 	(cfme.configure.configuration.region_settings.TagsEdit attribute)

 	(cfme.configure.settings.DefaultFilterAll attribute)

 	(cfme.configure.settings.DefaultViewAll attribute)

 	(cfme.configure.settings.TimeprofileAll attribute)

 	(cfme.configure.settings.VisualAll attribute)

 	(cfme.configure.tasks.AllOtherTasks attribute)

 	(cfme.configure.tasks.AllTasks attribute)

 	(cfme.configure.tasks.MyOtherTasks attribute)

 	(cfme.configure.tasks.MyTasks attribute)

 	(cfme.containers.container.ContainerAll attribute)

 	(cfme.containers.container.ContainerDetails attribute)

 	(cfme.containers.container.ContainerEditTags attribute)

 	(cfme.containers.container.ContainerTimeLines attribute)

 	(cfme.containers.container.ContainerUtilization attribute)

 	(cfme.containers.image.All attribute)

 	(cfme.containers.image.Details attribute)

 	(cfme.containers.image_registry.ImageRegistryAll attribute)

 	(cfme.containers.image_registry.ImageRegistryDetails attribute)

 	(cfme.containers.image_registry.ImageRegistryEditTags attribute)

 	(cfme.containers.node.All attribute)

 	(cfme.containers.node.Details attribute)

 	(cfme.containers.node.EditTags attribute)

 	(cfme.containers.node.ManagePolicies attribute)

 	(cfme.containers.node.Timelines attribute)

 	(cfme.containers.node.Utilization attribute)

 	(cfme.containers.overview.All attribute)

 	(cfme.containers.pod.All attribute)

 	(cfme.containers.pod.Details attribute)

 	(cfme.containers.project.All attribute)

 	(cfme.containers.project.Details attribute)

 	(cfme.containers.provider.AdHocMain attribute)

 	(cfme.containers.provider.Add attribute)

 	(cfme.containers.provider.All attribute)

 	(cfme.containers.provider.Details attribute)

 	(cfme.containers.provider.Edit attribute)

 	(cfme.containers.provider.EditFromDetails attribute)

 	(cfme.containers.provider.EditTags attribute)

 	(cfme.containers.provider.EditTagsFromDetails attribute)

 	(cfme.containers.provider.TimelinesFromDetails attribute)

 	(cfme.containers.provider.TopologyFromDetails attribute)

 	(cfme.containers.replicator.All attribute)

 	(cfme.containers.replicator.Details attribute)

 	(cfme.containers.route.All attribute)

 	(cfme.containers.route.Details attribute)

 	(cfme.containers.service.All attribute)

 	(cfme.containers.service.Details attribute)

 	(cfme.containers.template.All attribute)

 	(cfme.containers.template.Details attribute)

 	(cfme.containers.topology.All attribute)

 	(cfme.containers.volume.All attribute)

 	(cfme.containers.volume.Details attribute)

 	(cfme.control.explorer.ControlExplorer attribute)

 	(cfme.control.explorer.actions.ActionDetails attribute)

 	(cfme.control.explorer.actions.ActionEdit attribute)

 	(cfme.control.explorer.actions.ActionNew attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfileDetails attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfileEdit attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfileEditAssignments attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfileNew attribute)

 	(cfme.control.explorer.alerts.AlertCopy attribute)

 	(cfme.control.explorer.alerts.AlertDetails attribute)

 	(cfme.control.explorer.alerts.AlertEdit attribute)

 	(cfme.control.explorer.alerts.AlertNew attribute)

 	(cfme.control.explorer.conditions.ConditionDetails attribute)

 	(cfme.control.explorer.conditions.ConditionEdit attribute)

 	(cfme.control.explorer.conditions.ConditionNew attribute)

 	(cfme.control.explorer.policies.PolicyConditionDetails attribute)

 	(cfme.control.explorer.policies.PolicyDetails attribute)

 	(cfme.control.explorer.policies.PolicyEdit attribute)

 	(cfme.control.explorer.policies.PolicyEventDetails attribute)

 	(cfme.control.explorer.policies.PolicyNew attribute)

 	(cfme.control.explorer.policy_profiles.PolicyProfileDetails attribute)

 	(cfme.control.explorer.policy_profiles.PolicyProfileEdit attribute)

 	(cfme.control.explorer.policy_profiles.PolicyProfileNew attribute)

 	(cfme.control.import_export.ControlImportExport attribute)

 	(cfme.control.log.ControlLog attribute)

 	(cfme.control.simulation.ControlSimulation attribute)

 	(cfme.dashboard.DashboardDetails attribute)

 	(cfme.infrastructure.cluster.All attribute)

 	(cfme.infrastructure.cluster.Details attribute)

 	(cfme.infrastructure.cluster.EditTagsFromDetails attribute)

 	(cfme.infrastructure.cluster.Timelines attribute)

 	(cfme.infrastructure.config_management.Details attribute)

 	(cfme.infrastructure.config_management.MgrAdd attribute)

 	(cfme.infrastructure.config_management.MgrAll attribute)

 	(cfme.infrastructure.config_management.MgrDetails attribute)

 	(cfme.infrastructure.config_management.MgrEdit attribute)

 	(cfme.infrastructure.config_management.MgrEditFromDetails attribute)

 	(cfme.infrastructure.config_management.SysAll attribute)

 	(cfme.infrastructure.config_management.SysEditTags attribute)

 	(cfme.infrastructure.config_management.SysProvision attribute)

 	(cfme.infrastructure.datastore.All attribute)

 	(cfme.infrastructure.datastore.Details attribute)

 	(cfme.infrastructure.datastore.EditTagsFromDetails attribute)

 	(cfme.infrastructure.deployment_roles.All attribute)

 	(cfme.infrastructure.deployment_roles.AllForProvider attribute)

 	(cfme.infrastructure.deployment_roles.Details attribute)

 	(cfme.infrastructure.deployment_roles.DetailsFromProvider attribute)

 	(cfme.infrastructure.host.Add attribute)

 	(cfme.infrastructure.host.All attribute)

 	(cfme.infrastructure.host.Details attribute)

 	(cfme.infrastructure.host.Discover attribute)

 	(cfme.infrastructure.host.Edit attribute)

 	(cfme.infrastructure.host.EditTagsFromDetails attribute)

 	(cfme.infrastructure.host.PolicyAssignment attribute)

 	(cfme.infrastructure.host.Provision attribute)

 	(cfme.infrastructure.host.Timelines attribute)

 	(cfme.infrastructure.networking.All attribute)

 	(cfme.infrastructure.provider.Add attribute)

 	(cfme.infrastructure.provider.All attribute)

 	(cfme.infrastructure.provider.Details attribute)

 	(cfme.infrastructure.provider.DetailsFromProvider attribute)

 	(cfme.infrastructure.provider.Discover attribute)

 	(cfme.infrastructure.provider.Edit attribute)

 	(cfme.infrastructure.provider.EditTags attribute)

 	(cfme.infrastructure.provider.EditTagsFromDetails attribute)

 	(cfme.infrastructure.provider.ManagePolicies attribute)

 	(cfme.infrastructure.provider.ManagePoliciesFromDetails attribute)

 	(cfme.infrastructure.provider.Timelines attribute)

 	(cfme.infrastructure.provider.openstack_infra.ProviderNodes attribute)

 	(cfme.infrastructure.provider.openstack_infra.ProviderRegisterNodes attribute)

 	(cfme.infrastructure.provider.openstack_infra.ProviderScaleDown attribute)

 	(cfme.infrastructure.provider.openstack_infra.ProviderScaleOut attribute)

 	(cfme.infrastructure.provider.virtualcenter.ProviderNodes attribute)

 	(cfme.infrastructure.pxe.CustomizationTemplateAdd attribute)

 	(cfme.infrastructure.pxe.CustomizationTemplateAll attribute)

 	(cfme.infrastructure.pxe.CustomizationTemplateDetails attribute)

 	(cfme.infrastructure.pxe.CustomizationTemplateEdit attribute)

 	(cfme.infrastructure.pxe.ISODatastoreAdd attribute)

 	(cfme.infrastructure.pxe.ISODatastoreAll attribute)

 	(cfme.infrastructure.pxe.ISODatastoreDetails attribute)

 	(cfme.infrastructure.pxe.PXEMainPage attribute)

 	(cfme.infrastructure.pxe.PXEServerAdd attribute)

 	(cfme.infrastructure.pxe.PXEServerAll attribute)

 	(cfme.infrastructure.pxe.PXEServerDetails attribute)

 	(cfme.infrastructure.pxe.PXEServerEdit attribute)

 	(cfme.infrastructure.pxe.SystemImageTypeAdd attribute)

 	(cfme.infrastructure.pxe.SystemImageTypeAll attribute)

 	(cfme.infrastructure.pxe.SystemImageTypeDetails attribute)

 	(cfme.infrastructure.pxe.SystemImageTypeEdit attribute)

 	(cfme.infrastructure.resource_pool.All attribute)

 	(cfme.infrastructure.resource_pool.Details attribute)

 	(cfme.infrastructure.resource_pool.EditTagsFromDetails attribute)

 	(cfme.infrastructure.virtual_machines.EditTagsFromDetails attribute)

 	(cfme.infrastructure.virtual_machines.ProvisionVM attribute)

 	(cfme.infrastructure.virtual_machines.SetRetirement attribute)

 	(cfme.infrastructure.virtual_machines.TemplatesAll attribute)

 	(cfme.infrastructure.virtual_machines.Timelines attribute)

 	(cfme.infrastructure.virtual_machines.VmAll attribute)

 	(cfme.infrastructure.virtual_machines.VmAllWithTemplates attribute)

 	(cfme.infrastructure.virtual_machines.VmAllWithTemplatesDetails attribute)

 	(cfme.infrastructure.virtual_machines.VmAllWithTemplatesForProvider attribute)

 	(cfme.infrastructure.virtual_machines.VmClone attribute)

 	(cfme.infrastructure.virtual_machines.VmDetails attribute)

 	(cfme.infrastructure.virtual_machines.VmEdit attribute)

 	(cfme.infrastructure.virtual_machines.VmEngineRelationship attribute)

 	(cfme.infrastructure.virtual_machines.VmMigrate attribute)

 	(cfme.infrastructure.virtual_machines.VmReconfigure attribute)

 	(cfme.intelligence.chargeback.IntelChargeback attribute)

 	(cfme.intelligence.chargeback.assignments.AssignAll attribute)

 	(cfme.intelligence.chargeback.assignments.AssignCompute attribute)

 	(cfme.intelligence.chargeback.assignments.AssignStorage attribute)

 	(cfme.intelligence.chargeback.rates.ComputeRateAll attribute)

 	(cfme.intelligence.chargeback.rates.ComputeRateDetails attribute)

 	(cfme.intelligence.chargeback.rates.ComputeRateEdit attribute)

 	(cfme.intelligence.chargeback.rates.ComputeRateNew attribute)

 	(cfme.intelligence.chargeback.rates.StorageRateAll attribute)

 	(cfme.intelligence.chargeback.rates.StorageRateDetails attribute)

 	(cfme.intelligence.chargeback.rates.StorageRateEdit attribute)

 	(cfme.intelligence.chargeback.rates.StorageRateNew attribute)

 	(cfme.intelligence.reports.CloudIntelReports attribute)

 	(cfme.intelligence.reports.dashboards.DashboardDetails attribute)

 	(cfme.intelligence.reports.dashboards.DashboardEdit attribute)

 	(cfme.intelligence.reports.dashboards.DashboardNew attribute)

 	(cfme.intelligence.reports.dashboards.DefaultDashboardDetails attribute)

 	(cfme.intelligence.reports.dashboards.DefaultDashboardEdit attribute)

 	(cfme.intelligence.reports.import_export.ImportExportCustomReports attribute)

 	(cfme.intelligence.reports.import_export.ImportExportWidgets attribute)

 	(cfme.intelligence.reports.menus.EditReportMenus attribute)

 	(cfme.intelligence.reports.reports.CannedReportInfo attribute)

 	(cfme.intelligence.reports.reports.CannedSavedReportDetails attribute)

 	(cfme.intelligence.reports.reports.CustomReportAll attribute)

 	(cfme.intelligence.reports.reports.CustomReportDetails attribute)

 	(cfme.intelligence.reports.reports.CustomReportEdit attribute)

 	(cfme.intelligence.reports.reports.CustomReportNew attribute)

 	(cfme.intelligence.reports.reports.CustomSavedReportDetails attribute)

 	(cfme.intelligence.reports.saved.ScheduleDetails attribute)

 	(cfme.intelligence.reports.schedules.ScheduleAll attribute)

 	(cfme.intelligence.reports.schedules.ScheduleDetails attribute)

 	(cfme.intelligence.reports.schedules.ScheduleEdit attribute)

 	(cfme.intelligence.reports.schedules.ScheduleNew attribute)

 	(cfme.intelligence.reports.widgets.BaseDashboardWidgetDetailsStep attribute)

 	(cfme.intelligence.reports.widgets.BaseNewDashboardWidgetStep attribute)

 	(cfme.middleware.datasource.All attribute)

 	(cfme.middleware.datasource.Details attribute)

 	(cfme.middleware.deployment.All attribute)

 	(cfme.middleware.deployment.Details attribute)

 	(cfme.middleware.domain.All attribute)

 	(cfme.middleware.domain.Details attribute)

 	(cfme.middleware.domain.DomainServerGroups attribute)

 	(cfme.middleware.messaging.All attribute)

 	(cfme.middleware.messaging.Details attribute)

 	(cfme.middleware.provider.Add attribute)

 	(cfme.middleware.provider.All attribute)

 	(cfme.middleware.provider.Details attribute)

 	(cfme.middleware.provider.Edit attribute)

 	(cfme.middleware.provider.EditFromDetails attribute)

 	(cfme.middleware.provider.EditTags attribute)

 	(cfme.middleware.provider.EditTagsFromDetails attribute)

 	(cfme.middleware.provider.ProviderDatasources attribute)

 	(cfme.middleware.provider.ProviderDeployments attribute)

 	(cfme.middleware.provider.ProviderDomains attribute)

 	(cfme.middleware.provider.ProviderMessagings attribute)

 	(cfme.middleware.provider.ProviderServers attribute)

 	(cfme.middleware.provider.Timelines attribute)

 	(cfme.middleware.provider.TopologyFromDetails attribute)

 	(cfme.middleware.server.AddDatasource attribute)

 	(cfme.middleware.server.AddDeployment attribute)

 	(cfme.middleware.server.AddJDBCDriver attribute)

 	(cfme.middleware.server.All attribute)

 	(cfme.middleware.server.Details attribute)

 	(cfme.middleware.server.ServerDatasources attribute)

 	(cfme.middleware.server.ServerDeployments attribute)

 	(cfme.middleware.server.ServerGroup attribute)

 	(cfme.middleware.server.ServerMessagings attribute)

 	(cfme.middleware.server_group.ServerGroupServers attribute)

 	(cfme.middleware.topology.All attribute)

 	(cfme.networks.balancer.All attribute)

 	(cfme.networks.balancer.Details attribute)

 	(cfme.networks.balancer.EditTags attribute)

 	(cfme.networks.cloud_network.All attribute)

 	(cfme.networks.cloud_network.Details attribute)

 	(cfme.networks.cloud_network.EditTags attribute)

 	(cfme.networks.network_port.All attribute)

 	(cfme.networks.network_port.Details attribute)

 	(cfme.networks.network_port.EditTags attribute)

 	(cfme.networks.network_router.All attribute)

 	(cfme.networks.network_router.Details attribute)

 	(cfme.networks.network_router.EditTags attribute)

 	(cfme.networks.provider.All attribute)

 	(cfme.networks.provider.Details attribute)

 	(cfme.networks.provider.EditTags attribute)

 	(cfme.networks.provider.OpenCloudNetworks attribute)

 	(cfme.networks.provider.OpenCloudSubnets attribute)

 	(cfme.networks.provider.OpenFloatingIPs attribute)

 	(cfme.networks.provider.OpenNetworkBalancers attribute)

 	(cfme.networks.provider.OpenNetworkPorts attribute)

 	(cfme.networks.provider.OpenNetworkRouters attribute)

 	(cfme.networks.provider.OpenSecurityGroups attribute)

 	(cfme.networks.provider.OpenTopologyFromDetails attribute)

 	(cfme.networks.security_group.All attribute)

 	(cfme.networks.security_group.Details attribute)

 	(cfme.networks.security_group.EditTags attribute)

 	(cfme.networks.subnet.All attribute)

 	(cfme.networks.subnet.EditTags attribute)

 	(cfme.networks.subnet.OpenCloudNetworks attribute)

 	(cfme.optimize.Bottlenecks attribute)

 	(cfme.optimize.bottlenecks.All attribute)

 	(cfme.optimize.utilization.All attribute)

 	(cfme.services.catalogs.ServicesCatalog attribute)

 	(cfme.services.catalogs.ansible_catalog_item.Add attribute)

 	(cfme.services.catalogs.ansible_catalog_item.All attribute)

 	(cfme.services.catalogs.ansible_catalog_item.Details attribute)

 	(cfme.services.catalogs.ansible_catalog_item.Edit attribute)

 	(cfme.services.catalogs.ansible_catalog_item.EditTags attribute)

 	(cfme.services.catalogs.ansible_catalog_item.PickItemType attribute)

 	(cfme.services.catalogs.catalog.Add attribute)

 	(cfme.services.catalogs.catalog.All attribute)

 	(cfme.services.catalogs.catalog.Details attribute)

 	(cfme.services.catalogs.catalog.Edit attribute)

 	(cfme.services.catalogs.catalog.EditTagsFromDetails attribute)

 	(cfme.services.catalogs.catalog_item.Add attribute)

 	(cfme.services.catalogs.catalog_item.AddButton attribute)

 	(cfme.services.catalogs.catalog_item.AddButtonGroup attribute)

 	(cfme.services.catalogs.catalog_item.All attribute)

 	(cfme.services.catalogs.catalog_item.BundleAdd attribute)

 	(cfme.services.catalogs.catalog_item.BundleAll attribute)

 	(cfme.services.catalogs.catalog_item.BundleDetails attribute)

 	(cfme.services.catalogs.catalog_item.BundleEdit attribute)

 	(cfme.services.catalogs.catalog_item.Details attribute)

 	(cfme.services.catalogs.catalog_item.Edit attribute)

 	(cfme.services.catalogs.catalog_item.EditTags attribute)

 	(cfme.services.catalogs.orchestration_template.AddDialog attribute)

 	(cfme.services.catalogs.orchestration_template.AddTemplate attribute)

 	(cfme.services.catalogs.orchestration_template.All attribute)

 	(cfme.services.catalogs.orchestration_template.CopyTemplate attribute)

 	(cfme.services.catalogs.orchestration_template.Details attribute)

 	(cfme.services.catalogs.orchestration_template.EditTagsFromDetails attribute)

 	(cfme.services.catalogs.orchestration_template.EditTemplate attribute)

 	(cfme.services.catalogs.orchestration_template.TemplateType attribute)

 	(cfme.services.catalogs.service_catalogs.ServiceCatalogDetails attribute)

 	(cfme.services.catalogs.service_catalogs.ServiceCatalogOrder attribute)

 	(cfme.services.catalogs.service_catalogs.ServiceCatalogsAll attribute)

 	(cfme.services.catalogs.service_catalogs.ServiceCatalogsDefault attribute)

 	(cfme.services.dashboard.ssui.CurrentServices attribute)

 	(cfme.services.dashboard.ssui.DashboardAll attribute)

 	(cfme.services.dashboard.ssui.RetiredServices attribute)

 	(cfme.services.dashboard.ssui.RetiringSoon attribute)

 	(cfme.services.dashboard.ssui.TotalServices attribute)

 	(cfme.services.myservice.ssui.Details attribute)

 	(cfme.services.myservice.ssui.MyServiceAll attribute)

 	(cfme.services.myservice.ssui.MyServiceEdit attribute)

 	(cfme.services.myservice.ui.MyServiceAll attribute)

 	(cfme.services.myservice.ui.MyServiceDetails attribute)

 	(cfme.services.myservice.ui.MyServiceEdit attribute)

 	(cfme.services.myservice.ui.MyServiceEditTags attribute)

 	(cfme.services.myservice.ui.MyServiceReconfigure attribute)

 	(cfme.services.myservice.ui.MyServiceSetOwnership attribute)

 	(cfme.services.myservice.ui.MyServiceSetRetirement attribute)

 	(cfme.services.requests.ApproveRequest attribute)

 	(cfme.services.requests.CopyRequest attribute)

 	(cfme.services.requests.DenyRequest attribute)

 	(cfme.services.requests.EditRequest attribute)

 	(cfme.services.requests.RequestAll attribute)

 	(cfme.services.requests.RequestDetails attribute)

 	(cfme.services.workloads.AllTemplates attribute)

 	(cfme.services.workloads.AllVMs attribute)

 	(cfme.services.workloads.WorkloadsDefault attribute)

 	(cfme.storage.object_store.All attribute)

 	(cfme.storage.object_store.Details attribute)

 	(cfme.storage.volume.VolumeAdd attribute)

 	(cfme.storage.volume.VolumeAll attribute)

 	(cfme.storage.volume.VolumeDetails attribute)

 	prerequisite() (cfme.base.ssui.LoginScreen method)

 	

 	(cfme.base.ui.LoginScreen method)

 	(cfme.middleware.server_group.Details method)

 	PRETTY (cfme.control.explorer.conditions.BaseCondition attribute)

 	

 	(cfme.control.explorer.conditions.ContainerImageCondition attribute)

 	(cfme.control.explorer.conditions.ContainerNodeCondition attribute)

 	(cfme.control.explorer.conditions.HostCondition attribute)

 	(cfme.control.explorer.conditions.PodCondition attribute)

 	(cfme.control.explorer.conditions.ProviderCondition attribute)

 	(cfme.control.explorer.conditions.ReplicatorCondition attribute)

 	(cfme.control.explorer.conditions.VMCondition attribute)

 	(cfme.control.explorer.policies.BasePolicy attribute)

 	(cfme.control.explorer.policies.ContainerImageCompliancePolicy attribute)

 	(cfme.control.explorer.policies.ContainerImageControlPolicy attribute)

 	(cfme.control.explorer.policies.ContainerNodeCompliancePolicy attribute)

 	(cfme.control.explorer.policies.ContainerNodeControlPolicy attribute)

 	(cfme.control.explorer.policies.HostCompliancePolicy attribute)

 	(cfme.control.explorer.policies.HostControlPolicy attribute)

 	(cfme.control.explorer.policies.PodCompliancePolicy attribute)

 	(cfme.control.explorer.policies.PodControlPolicy attribute)

 	(cfme.control.explorer.policies.ReplicatorCompliancePolicy attribute)

 	(cfme.control.explorer.policies.ReplicatorControlPolicy attribute)

 	(cfme.control.explorer.policies.VMCompliancePolicy attribute)

 	(cfme.control.explorer.policies.VMControlPolicy attribute)

 	Pretty (class in cfme.utils.pretty)

 	pretty_attr (cfme.infrastructure.config_management.ConfigManager attribute)

 	pretty_attrs (cfme.automate.provisioning_dialogs.ProvisioningDialog attribute)

 	

 	(cfme.base.Zone attribute)

 	(cfme.base.credential.Credential attribute)

 	(cfme.base.credential.ServiceAccountCredential attribute)

 	(cfme.base.credential.TokenCredential attribute)

 	(cfme.cloud.provider.CloudProvider attribute)

 	(cfme.cloud.stack.Stack attribute)

 	(cfme.common.vm.BaseVM attribute)

 	(cfme.common.vm_console.VMConsole attribute)

 	(cfme.configure.access_control.Group attribute)

 	(cfme.configure.access_control.Role attribute)

 	(cfme.configure.access_control.Tenant attribute)

 	(cfme.configure.access_control.User attribute)

 	(cfme.configure.configuration.AmazonAuthSetting attribute)

 	(cfme.configure.configuration.BasicInformation attribute)

 	(cfme.configure.configuration.Category attribute)

 	(cfme.configure.configuration.DatabaseAuthSetting attribute)

 	(cfme.configure.configuration.ExternalAuthSetting attribute)

 	(cfme.configure.configuration.LDAPAuthSetting attribute)

 	(cfme.configure.configuration.Schedule attribute)

 	(cfme.configure.configuration.Tag attribute)

 	(cfme.configure.configuration.VMwareConsoleSupport attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfile attribute)

 	(cfme.configure.configuration.region_settings.Category attribute)

 	(cfme.configure.configuration.region_settings.MapTags attribute)

 	(cfme.configure.configuration.region_settings.RedHatUpdates attribute)

 	(cfme.configure.configuration.region_settings.Tag attribute)

 	(cfme.configure.settings.DefaultFilter attribute)

 	(cfme.containers.provider.ContainersProvider attribute)

 	(cfme.control.explorer.alert_profiles.BaseAlertProfile attribute)

 	(cfme.control.explorer.alerts.Alert attribute)

 	(cfme.control.snmp_form.SNMPTrap attribute)

 	(cfme.control.snmp_form.SNMPTrapField attribute)

 	(cfme.control.snmp_form.SNMPTrapsField attribute)

 	(cfme.fixtures.pytest_selenium.ByText attribute)

 	(cfme.fixtures.pytest_selenium.ByValue attribute)

 	(cfme.fixtures.pytest_selenium.Select attribute)

 	(cfme.infrastructure.cluster.Cluster attribute)

 	(cfme.infrastructure.config_management.ConfigProfile attribute)

 	(cfme.infrastructure.config_management.ConfigSystem attribute)

 	(cfme.infrastructure.datastore.Datastore attribute)

 	(cfme.infrastructure.host.Host attribute)

 	(cfme.infrastructure.provider.InfraProvider attribute)

 	(cfme.infrastructure.pxe.CustomizationTemplate attribute)

 	(cfme.infrastructure.pxe.ISODatastore attribute)

 	(cfme.infrastructure.pxe.PXEServer attribute)

 	(cfme.infrastructure.pxe.SystemImageType attribute)

 	(cfme.infrastructure.resource_pool.ResourcePool attribute)

 	(cfme.infrastructure.virtual_machines.VMConfiguration attribute)

 	(cfme.intelligence.chargeback.rates.ComputeRate attribute)

 	(cfme.intelligence.chargeback.rates.StorageRate attribute)

 	(cfme.intelligence.reports.dashboards.Dashboard attribute)

 	(cfme.intelligence.reports.dashboards.DefaultDashboard attribute)

 	(cfme.intelligence.reports.reports.CustomSavedReport attribute)

 	(cfme.intelligence.reports.reports.SavedReportData attribute)

 	(cfme.intelligence.reports.schedules.Schedule attribute)

 	(cfme.intelligence.reports.widgets.BaseDashboardReportWidget attribute)

 	(cfme.intelligence.reports.widgets.chart_widgets.ChartWidget attribute)

 	(cfme.intelligence.reports.widgets.menu_widgets.MenuWidget attribute)

 	(cfme.intelligence.reports.widgets.report_widgets.ReportWidget attribute)

 	(cfme.intelligence.reports.widgets.rss_widgets.RSSFeedWidget attribute)

 	(cfme.utils.pretty.Pretty attribute)

 	(cfme.web_ui.AngularCalendarInput attribute)

 	(cfme.web_ui.AngularSelect attribute)

 	(cfme.web_ui.CheckboxSelect attribute)

 	(cfme.web_ui.DynamicTable attribute)

 	(cfme.web_ui.Form attribute)

 	(cfme.web_ui.InfoBlock attribute)

 	(cfme.web_ui.InfoBlock.Member attribute)

 	(cfme.web_ui.Input attribute)

 	(cfme.web_ui.Quadicon attribute)

 	(cfme.web_ui.Region attribute)

 	(cfme.web_ui.ScriptBox attribute)

 	(cfme.web_ui.ShowingInputs attribute)

 	(cfme.web_ui.Table attribute)

 	(cfme.web_ui.Table.Row attribute)

 	(cfme.web_ui.Tree attribute)

 	(cfme.web_ui.expression_editor.Expression attribute)

 	(cfme.web_ui.expression_editor_widgetastic.ExpressionEditor attribute)

 	(cfme.web_ui.flash.Message attribute)

 	(cfme.web_ui.form_buttons.FormButton attribute)

 	(cfme.web_ui.jstimelines.Object attribute)

 	(cfme.web_ui.listaccordion.ListAccordionLink attribute)

 	(cfme.web_ui.multibox.MultiBoxSelect attribute)

 	pretty_id() (cfme.containers.provider.ContainersTestItem method)

 	pretty_path() (cfme.web_ui.BootstrapTreeview class method)

 	pretty_repr() (in module cfme.utils.pretty)

 	previous() (in module cfme.web_ui.paginator)

 	PRIMARY (cfme.web_ui.form_buttons.FormButton attribute)

 	print_message() (fixtures.parallelizer.ParallelSession method)

 	

 	(fixtures.ui_coverage.CoverageManager method)

 	print_packages_diff() (in module cfme.scripting.quickstart)

 	print_version_diff() (in module cfme.scripting.quickstart)

 	Priority (class in cfme.automate.explorer.domain)

 	private_network (cfme.services.catalogs.service_catalogs.OrderForm attribute)

 	process (fixtures.parallelizer.SlaveDetail attribute)

 	process() (cfme.utils.log.NamedLoggerAdapter method)

 	process_credential_yaml_key() (cfme.common.provider.BaseProvider class method)

 	process_env_mark() (markers.env.EnvironmentMarker method)

 	

 	(markers.env_markers.provider.ProviderEnvironmentMarker method)

 	process_events() (cfme.utils.events.EventListener method)

 	process_field() (in module cfme.common)

 	process_id() (cfme.utils.events.EventTool method)

 	process_pytest_path() (in module cfme.utils)

 	process_running() (in module cfme.utils.video)

 	process_shell_output() (in module cfme.utils)

 	processed_browser_args() (cfme.utils.browser.BrowserFactory method)

 	

 	(cfme.utils.browser.WharfFactory method)

 	product (cfme.utils.bz.BugWrapper attribute)

 	Product (class in cfme.utils.bz)

 	product() (cfme.utils.bz.Bugzilla method)

 	product_features_tree (cfme.configure.access_control.RoleForm attribute)

 	product_name (cfme.utils.appliance.IPAppliance attribute)

 	product_url_regexp (cfme.utils.appliance.IPAppliance attribute)

 	

 	product_version (cfme.utils.appliance.implementations.ssui.MiqSSUIBrowser attribute)

 	

 	(cfme.utils.appliance.implementations.ui.MiqBrowser attribute)

 	product_version() (cfme.utils.version.Version method)

 	product_version_dispatch() (in module cfme.utils.version)

 	productionlog (cfme.base.ui.ServerDiagnosticsView attribute)

 	ProductionLog (class in cfme.base.ui)

 	products() (cfme.utils.bz.Bugzilla method)

 	profile_type (cfme.configure.configuration.analysis_profile.AnalysisProfileAddView attribute)

 	Project (class in cfme.configure.access_control)

 	

 	(class in cfme.containers.project)

 	project_id (cfme.common.provider_views.CloudProviderAddView attribute)

 	project_name (cfme.containers.container.Container attribute)

 	project_path (in module cfme.utils.path)

 	ProjectAllView (class in cfme.containers.project)

 	properties (cfme.ansible.credentials.CredentialDetailsView attribute)

 	

 	(cfme.ansible.playbooks.PlaybookDetailsEntities attribute)

 	(cfme.automate.explorer.klass.ClassDetailsView attribute)

 	(cfme.cloud.availability_zone.AvailabilityZoneDetailsAccordion attribute)

 	(cfme.cloud.flavor.FlavorDetailsAccordion attribute)

 	(cfme.cloud.flavor.FlavorDetailsEntities attribute)

 	(cfme.cloud.instance.image.ImageDetailsEntities attribute)

 	(cfme.cloud.keypairs.KeyPairDetailsAccordion attribute)

 	(cfme.cloud.keypairs.KeyPairDetailsEntities attribute)

 	(cfme.cloud.stack.StackDetailsAccordion attribute)

 	(cfme.cloud.stack.StackDetailsEntities attribute)

 	(cfme.cloud.tenant.TenantDetailsAccordion attribute)

 	(cfme.common.host_views.HostDetailsEntities attribute)

 	(cfme.common.vm_views.BasicProvisionFormView attribute)

 	(cfme.common.vm_views.VMDetailsEntities attribute)

 	(cfme.containers.node.NodeDetailsView attribute)

 	(cfme.infrastructure.cluster.ClusterDetailsAccordion attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleDetailsAccordion attribute)

 	(cfme.infrastructure.resource_pool.ResourcePoolDetailsAccordion attribute)

 	(cfme.infrastructure.resource_pool.ResourcePoolDetailsEntities attribute)

 	(cfme.middleware.provider.middleware_views.DatasourceDetailsAccordion attribute)

 	(cfme.middleware.provider.middleware_views.DatasourceDetailsEntities attribute)

 	(cfme.middleware.provider.middleware_views.DeploymentDetailsAccordion attribute)

 	(cfme.middleware.provider.middleware_views.DeploymentDetailsEntities attribute)

 	(cfme.middleware.provider.middleware_views.DomainDetailsAccordion attribute)

 	(cfme.middleware.provider.middleware_views.DomainDetailsEntities attribute)

 	(cfme.middleware.provider.middleware_views.MessagingDetailsAccordion attribute)

 	(cfme.middleware.provider.middleware_views.MessagingDetailsEntities attribute)

 	(cfme.middleware.provider.middleware_views.ServerDetailsAccordion attribute)

 	(cfme.middleware.provider.middleware_views.ServerDetailsEntities attribute)

 	(cfme.middleware.provider.middleware_views.ServerGroupDetailsAccordion attribute)

 	(cfme.middleware.provider.middleware_views.ServerGroupDetailsEntities attribute)

 	(cfme.networks.views.BalancerDetailsSideBar attribute)

 	(cfme.networks.views.CloudNetworkDetailsSideBar attribute)

 	(cfme.networks.views.NetworkPortDetailsSideBar attribute)

 	(cfme.networks.views.NetworkProviderDetailsSideBar attribute)

 	(cfme.networks.views.NetworkRouterDetailsSideBar attribute)

 	(cfme.networks.views.SecurityGroupDetailsSideBar attribute)

 	(cfme.networks.views.SubnetDetailsSideBar attribute)

 	(cfme.services.requests.RequestDetailsView attribute)

 	(cfme.storage.volume.VolumeDetailsAccordion attribute)

 	(cfme.storage.volume.VolumeDetailsEntities attribute)

 	property_tuples (cfme.common.Validatable attribute)

 	

 	(cfme.middleware.datasource.MiddlewareDatasource attribute)

 	(cfme.middleware.deployment.MiddlewareDeployment attribute)

 	(cfme.middleware.domain.MiddlewareDomain attribute)

 	(cfme.middleware.messaging.MiddlewareMessaging attribute)

 	(cfme.middleware.provider.MiddlewareProvider attribute)

 	(cfme.middleware.provider.hawkular.HawkularProvider attribute)

 	(cfme.middleware.server.MiddlewareServer attribute)

 	(cfme.middleware.server_group.MiddlewareServerGroup attribute)

 	(cfme.networks.provider.NetworkProvider attribute)

 	prov_type (cfme.common.provider_views.CloudProviderAddView attribute)

 	

 	(cfme.common.provider_views.ContainersProviderAddView attribute)

 	(cfme.common.provider_views.ProviderAddView attribute)

 	(cfme.common.provider_views.ProviderEditView attribute)

 	ProvDiagAddView (class in cfme.automate.provisioning_dialogs)

 	ProvDiagAllEntities (class in cfme.automate.provisioning_dialogs)

 	ProvDiagAllToolbar (class in cfme.automate.provisioning_dialogs)

 	ProvDiagAllView (class in cfme.automate.provisioning_dialogs)

 	ProvDiagDetailsEntities (class in cfme.automate.provisioning_dialogs)

 	ProvDiagDetailsView (class in cfme.automate.provisioning_dialogs)

 	ProvDiagEditView (class in cfme.automate.provisioning_dialogs)

 	ProvDiagForm (class in cfme.automate.provisioning_dialogs)

 	ProvDiagView (class in cfme.automate.provisioning_dialogs)

 	provide_node() (cfme.infrastructure.openstack_node.OpenstackNode method)

 	PROVIDER (cfme.automate.buttons.ButtonGroup attribute)

 	provider (cfme.cloud.keypairs.KeyPairAddForm attribute)

 	

 	(cfme.infrastructure.pxe.PXEDatastoreForm attribute)

 	(cfme.test_framework.sprout.plugin.SproutProvisioningRequest attribute)

 	(cfme.utils.appliance.Appliance attribute)

 	Provider (class in cfme.utils.trackerbot)

 	provider_allocation (fixtures.parallelizer.SlaveDetail attribute)

 	provider_credential_form() (in module cfme.base.credential)

 	provider_templates() (in module cfme.utils.trackerbot)

 	provider_types (cfme.cloud.provider.CloudProvider attribute)

 	

 	(cfme.containers.provider.ContainersProvider attribute)

 	(cfme.infrastructure.provider.InfraProvider attribute)

 	(cfme.middleware.provider.MiddlewareProvider attribute)

 	(cfme.networks.provider.NetworkProvider attribute)

 	provider_types() (in module cfme.common.provider)

 	ProviderAddView (class in cfme.common.provider_views)

 	ProviderAlertProfile (class in cfme.control.explorer.alert_profiles)

 	ProviderClustersView (class in cfme.infrastructure.provider)

 	ProviderCondition (class in cfme.control.explorer.conditions)

 	ProviderDatasourceAllView (class in cfme.middleware.provider.middleware_views)

 	ProviderDatasources (class in cfme.middleware.provider)

 	ProviderDeploymentAllView (class in cfme.middleware.provider.middleware_views)

 	ProviderDeployments (class in cfme.middleware.provider)

 	ProviderDetailsDashboardView (cfme.common.provider_views.ProviderDetailsView attribute)

 	ProviderDetailsSummaryView (cfme.common.provider_views.ProviderDetailsView attribute)

 	ProviderDetailsToolBar (class in cfme.common.provider_views)

 	ProviderDetailsView (class in cfme.common.provider_views)

 	

 	(class in cfme.containers.provider)

 	ProviderDomainAllView (class in cfme.middleware.provider.middleware_views)

 	ProviderDomains (class in cfme.middleware.provider)

 	ProviderDomainsAllView (class in cfme.middleware.provider.middleware_views)

 	ProviderEditView (class in cfme.common.provider_views)

 	ProviderEntitiesView (class in cfme.common.provider_views)

 	ProviderEnvironmentMarker (class in markers.env_markers.provider)

 	ProviderFilter (class in cfme.utils.providers)

 	ProviderHasNoKey

 	ProviderHasNoProperty

 	ProviderMessagingAllView (class in cfme.middleware.provider.middleware_views)

 	ProviderMessagings (class in cfme.middleware.provider)

 	ProviderNodes (class in cfme.infrastructure.provider.openstack_infra)

 	

 	(class in cfme.infrastructure.provider.virtualcenter)

 	ProviderNodesView (class in cfme.common.provider_views)

 	ProviderRegisterNodes (class in cfme.infrastructure.provider.openstack_infra)

 	ProviderRegisterNodesView (class in cfme.infrastructure.provider.openstack_infra)

 	providers (cfme.configure.documentation.LinksView attribute)

 	providers() (in module cfme.utils.testgen)

 	

 	(in module markers.env_markers.provider)

 	providers_by_class() (in module cfme.utils.testgen)

 	

 	(in module markers.env_markers.provider)

 	ProviderScaleDown (class in cfme.infrastructure.provider.openstack_infra)

 	ProviderScaleDownView (class in cfme.infrastructure.provider.openstack_infra)

 	ProviderScaleOut (class in cfme.infrastructure.provider.openstack_infra)

 	ProviderScaleOutView (class in cfme.infrastructure.provider.openstack_infra)

 	ProviderServerAllView (class in cfme.middleware.provider.middleware_views)

 	ProviderServers (class in cfme.middleware.provider)

 	ProviderSideBar (class in cfme.common.provider_views)

 	ProvidersManagePoliciesView (class in cfme.common.provider_views)

 	ProvidersView (class in cfme.common.provider_views)

 	ProviderTemplate (class in cfme.utils.trackerbot)

 	ProviderTimelinesView (class in cfme.common.provider_views)

 	ProviderToolBar (class in cfme.common.provider_views)

 	Provision (class in cfme.cloud.instance)

 	

 	(class in cfme.infrastructure.host)

 	provision_appliance() (in module cfme.utils.appliance)

 	provision_appliances() (cfme.test_framework.sprout.client.SproutClient method)

 	

 	(in module cfme.scripting.setup_env)

 	PROVISION_CANCEL (cfme.cloud.instance.Instance attribute)

 	provision_hour_buckets() (in module cfme.utils.perf_message_stats)

 	PROVISION_START (cfme.cloud.instance.Instance attribute)

 	provision_timeout (cfme.test_framework.sprout.plugin.SproutProvisioningRequest attribute)

 	provisioning (cfme.services.catalogs.ansible_catalog_item.AnsibleCatalogItemForm attribute)

 	

 	(cfme.services.catalogs.ansible_catalog_item.DetailsEntitiesAnsibleCatalogItemView attribute)

 	(cfme.services.myservice.ui.MyServiceDetailView attribute)

 	provisioning() (in module fixtures.provider)

 	provisioning_dialogs (cfme.automate.AutomateCustomizationView attribute)

 	ProvisioningDialog (class in cfme.automate.provisioning_dialogs)

 	ProvisionView (class in cfme.common.vm_views)

 	ProvisionVM (class in cfme.infrastructure.virtual_machines)

 	proxy_password (cfme.configure.configuration.region_settings.RedHatUpdatesEditView attribute)

 	proxy_password_verify (cfme.configure.configuration.region_settings.RedHatUpdatesEditView attribute)

 	proxy_url (cfme.configure.configuration.region_settings.RedHatUpdatesEditView attribute)

 	proxy_username (cfme.configure.configuration.region_settings.RedHatUpdatesEditView attribute)

 	public_fields() (in module cfme.utils.update)

 	public_key (cfme.cloud.keypairs.KeyPairAddForm attribute)

 	publish_to_template() (cfme.infrastructure.virtual_machines.Vm method)

 	pull_splitter_left() (in module cfme.web_ui.splitter)

 	pull_splitter_right() (in module cfme.web_ui.splitter)

 	pure_tree_path (cfme.automate.explorer.klass.Class attribute)

 	purge_module_apidoc() (in module cfme.utils.apidoc)

 	purpose (cfme.common.vm_views.BasicProvisionFormView attribute)

 	

 	(cfme.services.requests.RequestDetailsView attribute)

 	push() (cfme.utils.appliance.ApplianceStack method)

 	put_file() (cfme.utils.ssh.SSHClient method)

 	pwd() (cfme.utils.ftp.FTPClient method)

 	pxe_dir (cfme.infrastructure.pxe.PXEServerForm attribute)

 	pxe_servers() (in module cfme.utils.testgen)

 	PXECustomizationTemplateAddView (class in cfme.infrastructure.pxe)

 	PXECustomizationTemplateDetailsView (class in cfme.infrastructure.pxe)

 	PXECustomizationTemplateEditView (class in cfme.infrastructure.pxe)

 	PXECustomizationTemplateForm (class in cfme.infrastructure.pxe)

 	PXECustomizationTemplatesView (class in cfme.infrastructure.pxe)

 	PXEDatastoreAddView (class in cfme.infrastructure.pxe)

 	PXEDatastoreDetailsView (class in cfme.infrastructure.pxe)

 	PXEDatastoreEditView (class in cfme.infrastructure.pxe)

 	PXEDatastoreForm (class in cfme.infrastructure.pxe)

 	PXEDatastoresView (class in cfme.infrastructure.pxe)

 	PXEDetailsToolBar (class in cfme.infrastructure.pxe)

 	PXEImageEditView (class in cfme.infrastructure.pxe)

 	PXEMainPage (class in cfme.infrastructure.pxe)

 	PXEMainView (class in cfme.infrastructure.pxe)

 	PXEServer (class in cfme.infrastructure.pxe)

 	PXEServerAdd (class in cfme.infrastructure.pxe)

 	PXEServerAddView (class in cfme.infrastructure.pxe)

 	PXEServerAll (class in cfme.infrastructure.pxe)

 	PXEServerDetails (class in cfme.infrastructure.pxe)

 	PXEServerDetailsView (class in cfme.infrastructure.pxe)

 	PXEServerEdit (class in cfme.infrastructure.pxe)

 	PXEServerEditView (class in cfme.infrastructure.pxe)

 	PXEServerForm (class in cfme.infrastructure.pxe)

 	PXEServersView (class in cfme.infrastructure.pxe)

 	PXESideBar (class in cfme.infrastructure.pxe)

 	PXESystemImageTypeAddView (class in cfme.infrastructure.pxe)

 	PXESystemImageTypeDetailsView (class in cfme.infrastructure.pxe)

 	PXESystemImageTypeEditView (class in cfme.infrastructure.pxe)

 	PXESystemImageTypeForm (class in cfme.infrastructure.pxe)

 	PXESystemImageTypesView (class in cfme.infrastructure.pxe)

 	PXEToolBar (class in cfme.infrastructure.pxe)

 	pytest_addhooks() (in module cfme.test_framework.sprout.plugin)

 	

 	(in module fixtures.parallelizer)

 	pytest_addoption() (in module cfme.test_framework.pytest_plugin)

 	

 	(in module cfme.test_framework.sprout.plugin)

 	(in module fixtures.appliance_update)

 	(in module fixtures.artifactor_plugin)

 	(in module fixtures.blockers)

 	(in module fixtures.datafile)

 	(in module fixtures.dev_branch)

 	(in module fixtures.node_annotate)

 	(in module fixtures.page_screenshots)

 	(in module fixtures.portset)

 	(in module fixtures.prov_filter)

 	(in module fixtures.provider)

 	(in module fixtures.rbac)

 	(in module fixtures.templateloader)

 	(in module fixtures.ui_coverage)

 	(in module fixtures.xunit_tools)

 	(in module markers.composite)

 	(in module markers.manual)

 	(in module markers.meta)

 	(in module markers.sauce)

 	(in module markers.skipper)

 	(in module markers.smoke)

 	(in module markers.stream_excluder)

 	pytest_cmdline_main() (in module fixtures.ui_coverage)

 	pytest_collection_finish() (fixtures.parallelizer.remote.SlaveManager method)

 	

 	(fixtures.ui_coverage.UiCoveragePlugin method)

 	(in module cfme.test_framework.pytest_plugin)

 	pytest_collection_modifyitems() (in module fixtures.blockers)

 	

 	(in module fixtures.log)

 	(in module fixtures.nelson)

 	(in module fixtures.node_annotate)

 	(in module fixtures.xunit_tools)

 	(in module markers.composite)

 	(in module markers.manual)

 	(in module markers.meta)

 	(in module markers.skipper)

 	(in module markers.smoke)

 	(in module markers.stream_excluder)

 	(in module markers.uncollect)

 	pytest_configure() (fixtures.ui_coverage.UiCoveragePlugin method)

 	

 	(in module cfme.test_framework.pytest_plugin)

 	(in module cfme.test_framework.sprout.plugin)

 	(in module fixtures.artifactor_plugin)

 	(in module fixtures.node_annotate)

 	(in module fixtures.parallelizer)

 	(in module fixtures.portset)

 	(in module fixtures.prov_filter)

 	(in module fixtures.rbac)

 	(in module fixtures.templateloader)

 	(in module markers.crud)

 	(in module markers.fixtureconf)

 	(in module markers.manual)

 	(in module markers.meta)

 	(in module markers.polarion)

 	(in module markers.requires)

 	(in module markers.sauce)

 	(in module markers.skipper)

 	(in module markers.smoke)

 	(in module markers.stream_excluder)

 	pytest_exception_interact() (in module fixtures.browser)

 	

 	(in module fixtures.log)

 	pytest_generate_tests() (in module fixtures.rbac)

 	

 	(in module markers.env)

 	pytest_internalerror() (fixtures.parallelizer.remote.SlaveManager method)

 	

 	(in module cfme.fixtures.rdb)

 	pytest_itemcollected() (fixtures.node_annotate.MarkFromMap method)

 	

 	(in module markers.crud)

 	(in module markers.stream_excluder)

 	(in module markers.uses)

 	pytest_miq_node_shutdown() (cfme.test_framework.sprout.plugin.NewHooks method)

 	

 	(cfme.test_framework.sprout.plugin.ShutdownPlugin method)

 	pytest_namespace() (in module fixtures.browser)

 	

 	(in module fixtures.pytest_store)

 	pytest_parallel_configured() (in module fixtures.parallelizer.hooks)

 	pytest_plugin_registered() (in module fixtures.pytest_store)

 	pytest_pycollect_makeitem() (in module fixtures.nelson)

 	

 	(in module markers.meta)

 	pytest_pyfunc_call() (in module fixtures.rbac)

 	pytest_runtest_call() (in module cfme.fixtures.smtp)

 	

 	(in module fixtures.events)

 	(in module markers.meta)

 	pytest_runtest_logreport() (fixtures.parallelizer.remote.SlaveManager method)

 	

 	(in module fixtures.artifactor_plugin)

 	(in module fixtures.log)

 	(markers.smoke.SmokeTests method)

 	pytest_runtest_logstart() (fixtures.parallelizer.remote.SlaveManager method)

 	pytest_runtest_protocol() (in module fixtures.artifactor_plugin)

 	

 	(in module fixtures.soft_assert)

 	pytest_runtest_setup() (in module fixtures.browser)

 	

 	(in module fixtures.log)

 	(in module fixtures.video)

 	(in module markers.fixtureconf)

 	(in module markers.meta)

 	(in module markers.requires)

 	pytest_runtest_teardown() (in module fixtures.artifactor_plugin)

 	

 	(in module fixtures.qa_contact)

 	(in module fixtures.soft_assert)

 	(in module fixtures.video)

 	(in module markers.meta)

 	(markers.smoke.SmokeTests method)

 	pytest_runtestloop() (fixtures.parallelizer.ParallelSession method)

 	

 	(fixtures.parallelizer.remote.SlaveManager method)

 	pytest_sessionfinish() (fixtures.parallelizer.remote.SlaveManager method)

 	

 	(fixtures.ui_coverage.UiCoveragePlugin method)

 	(in module fixtures.browser)

 	(in module fixtures.datafile)

 	(in module fixtures.log)

 	(in module fixtures.ssh_client)

 	pytest_sessionstart() (fixtures.parallelizer.ParallelSession method)

 	

 	(fixtures.ui_coverage.UiCoveragePlugin method)

 	(in module fixtures.appliance_update)

 	(in module fixtures.dev_branch)

 	(in module fixtures.pytest_store)

 	(in module fixtures.version_file)

 	pytest_unconfigure() (in module fixtures.artifactor_plugin)

 	

 	(in module fixtures.video)

Q

 	

 	qa_whiteboard (cfme.utils.bz.BugWrapper attribute)

 	qtype (cfme.web_ui.Quadicon attribute)

 	quad_entity (cfme.common.host_views.NonJSHostEntity attribute)

 	

 	(cfme.common.vm_views.NonJSInstanceEntity attribute)

 	(cfme.infrastructure.deployment_roles.NonJSDepRoleEntity attribute)

 	(cfme.storage.volume.NonJSVolumeEntity attribute)

 	quad_icon (cfme.common.host_views.HostTileIconEntity attribute)

 	

 	(cfme.common.vm_views.InstanceTileIconEntity attribute)

 	(cfme.infrastructure.deployment_roles.DepRoleTileIconEntity attribute)

 	(cfme.storage.volume.VolumeTileIconEntity attribute)

 	quad_name (cfme.containers.provider.ContainersProvider attribute)

 	

 	(cfme.infrastructure.config_management.ConfigManager attribute)

 	(cfme.networks.balancer.Balancer attribute)

 	(cfme.networks.cloud_network.CloudNetwork attribute)

 	(cfme.networks.network_port.NetworkPort attribute)

 	(cfme.networks.network_router.NetworkRouter attribute)

 	(cfme.networks.provider.NetworkProvider attribute)

 	(cfme.networks.security_group.SecurityGroup attribute)

 	(cfme.networks.subnet.Subnet attribute)

 	Quadicon (class in cfme.web_ui)

 	QUADICON_TYPE (cfme.cloud.instance.image.Image attribute)

 	

 	(cfme.cloud.instance.Instance attribute)

 	(cfme.common.vm.BaseVM attribute)

 	quadicon_type (cfme.common.vm.BaseVM attribute)

 	QUADS (cfme.web_ui.Quadicon attribute)

 	

 	query() (cfme.utils.events.EventTool method)

 	query_miq_events() (cfme.utils.events.EventTool method)

 	queue() (cfme.intelligence.reports.reports.CustomReport method)

 	

 	(cfme.intelligence.reports.schedules.Schedule method)

 	queue_canned_report() (cfme.intelligence.reports.reports.CannedSavedReport class method)

 	queue_schedules() (cfme.intelligence.reports.schedules.ScheduleCollection method)

 	quit() (cfme.utils.browser.BrowserManager method)

 	

 	(in module cfme.utils.browser)

 	quit_browser() (cfme.utils.appliance.implementations.Implementation method)

 	quotas (cfme.cloud.tenant.TenantDetailsEntities attribute)

 	quote() (in module cfme.utils.quote)

R

 	

 	Radio (class in cfme.web_ui)

 	rails_root (in module fixtures.ui_coverage)

 	ram (cfme.test_framework.sprout.plugin.SproutProvisioningRequest attribute)

 	random() (in module cfme.fixtures.vporizer)

 	random_port() (in module cfme.utils.net)

 	random_string() (in module fixtures.randomness)

 	random_uuid_as_string() (in module fixtures.randomness)

 	random_vm_name() (in module cfme.utils.generators)

 	RANGE (cfme.web_ui.utilization.Option attribute)

 	rates (cfme.intelligence.chargeback.ChargebackView attribute)

 	rates() (in module cfme.rest.gen_data)

 	RatesDetailView (class in cfme.intelligence.chargeback.rates)

 	RatesView (class in cfme.intelligence.chargeback.rates)

 	raw_click() (in module cfme.fixtures.pytest_selenium)

 	raw_keys (cfme.common.SummaryTable attribute)

 	raw_lines() (cfme.utils.ssh.SSHTail method)

 	raw_string() (cfme.utils.ssh.SSHTail method)

 	RBACOperationBlocked

 	Rdb (class in cfme.fixtures.rdb)

 	rdb_catch() (in module cfme.fixtures.rdb)

 	rdb_handle_signal() (in module cfme.fixtures.rdb)

 	read() (cfme.common.vm_views.SelectTable method)

 	

 	(cfme.control.explorer.conditions.Expression method)

 	(cfme.services.catalogs.ansible_catalog_item.AnsibleExtraVariables method)

 	(cfme.web_ui.expression_editor_widgetastic.ExpressionEditor method)

 	read_content() (cfme.common.vm_views.SelectTable method)

 	read_contents() (cfme.web_ui.BootstrapTreeview method)

 	

 	(cfme.web_ui.Tree method)

 	read_env() (in module cfme.utils)

 	read_expression() (cfme.control.explorer.conditions.BaseCondition method)

 	read_repos() (cfme.utils.appliance.IPAppliance method)

 	read_scope() (cfme.control.explorer.conditions.BaseCondition method)

 	really_logout() (in module fixtures.rbac)

 	realm (cfme.infrastructure.provider.scvmm.SCVMMEndpointForm attribute)

 	reason (cfme.services.requests.RequestApprovalView attribute)

 	

 	(cfme.services.requests.RequestDenialView attribute)

 	reboot() (cfme.utils.appliance.IPAppliance method)

 	rec_end() (in module cfme.web_ui.paginator)

 	rec_offset() (in module cfme.web_ui.paginator)

 	rec_total() (in module cfme.web_ui.paginator)

 	recheck_auth_status() (cfme.middleware.provider.hawkular.HawkularProvider method)

 	Reconfigure (class in cfme.cloud.instance.openstack)

 	reconfigure() (cfme.infrastructure.virtual_machines.Vm method)

 	reconfigure_service (cfme.services.myservice.MyService attribute)

 	reconfigure_service() (in module cfme.services.myservice.ui)

 	ReconfigureServiceView (class in cfme.services.myservice.ui)

 	ReconfigureView (class in cfme.cloud.instance.openstack)

 	Recorder (class in cfme.utils.video)

 	recursively_delete() (cfme.utils.ftp.FTPClient method)

 	recv() (fixtures.parallelizer.ParallelSession method)

 	redhatupdates (cfme.base.ui.RegionView attribute)

 	RedHatUpdates (class in cfme.configure.configuration.region_settings)

 	RedHatUpdatesEditView (class in cfme.configure.configuration.region_settings)

 	RedHatUpdatesView (class in cfme.configure.configuration.region_settings)

 	rediscover() (cfme.common.vm.BaseVM method)

 	rediscover_if_analysis_data_present() (cfme.common.vm.BaseVM method)

 	REDO (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor attribute)

 	reflect_table() (cfme.utils.db.Db method)

 	refresh (cfme.configure.configuration.region_settings.RedHatUpdatesView attribute)

 	refresh() (cfme.ansible.repositories.Repository method)

 	

 	(cfme.configure.configuration.region_settings.RedHatUpdates method)

 	(cfme.dashboard.DashboardCollection method)

 	(cfme.infrastructure.host.Host method)

 	(cfme.infrastructure.pxe.ISODatastore method)

 	(cfme.infrastructure.pxe.PXEServer method)

 	(cfme.infrastructure.virtual_machines.Vm.Snapshot method)

 	(cfme.intelligence.reports.widgets.BaseDashboardReportWidget method)

 	(cfme.web_ui.topology.Topology method)

 	(in module cfme.fixtures.pytest_selenium)

 	(in module cfme.web_ui.accordion)

 	(in module cfme.web_ui.toolbar)

 	refresh_button (cfme.control.log.ControlLogView attribute)

 	refresh_provider_relationships() (cfme.common.provider.BaseProvider method)

 	

 	(cfme.networks.provider.NetworkProvider method)

 	refresh_provider_relationships_ui (cfme.common.provider.BaseProvider attribute)

 	refresh_relationships() (cfme.common.vm.BaseVM method)

 	

 	(cfme.infrastructure.config_management.ConfigManager method)

 	refresh_text (cfme.common.provider.CloudInfraProvider attribute)

 	

 	(cfme.middleware.provider.MiddlewareProvider attribute)

 	(cfme.networks.balancer.Balancer attribute)

 	(cfme.networks.provider.NetworkProvider attribute)

 	regex() (in module cfme.utils.error)

 	region (cfme.common.provider_views.CloudProviderAddView attribute)

 	Region (class in cfme.base)

 	

 	(class in cfme.web_ui)

 	RegionDetails (class in cfme.base.ui)

 	RegionDiagnostics (class in cfme.base.ui)

 	RegionDiagnosticsDatabase (class in cfme.base.ui)

 	RegionDiagnosticsOrphanedData (class in cfme.base.ui)

 	RegionDiagnosticsReplication (class in cfme.base.ui)

 	RegionDiagnosticsRolesByServers (class in cfme.base.ui)

 	RegionDiagnosticsServers (class in cfme.base.ui)

 	RegionDiagnosticsServersByRoles (class in cfme.base.ui)

 	RegionDiagnosticsView (class in cfme.base.ui)

 	RegionDiagnosticsZones (class in cfme.base.ui)

 	RegionView (class in cfme.base.ui)

 	RegionZones (class in cfme.base.ui)

 	register (cfme.configure.configuration.region_settings.RedHatUpdatesView attribute)

 	

 	(cfme.infrastructure.provider.openstack_infra.ProviderRegisterNodesView attribute)

 	register() (cfme.infrastructure.provider.openstack_infra.OpenstackInfraProvider method)

 	register_appliances() (cfme.configure.configuration.region_settings.RedHatUpdates method)

 	register_event() (in module fixtures.events)

 	register_to (cfme.configure.configuration.region_settings.RedHatUpdatesEditView attribute)

 	RegisteredHostsView (class in cfme.infrastructure.datastore)

 	registry_form_view (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor attribute)

 	relationship_form (cfme.infrastructure.virtual_machines.Vm.CfmeRelationship attribute)

 	RelationshipOutputs (class in cfme.cloud.stack)

 	RelationshipParameters (class in cfme.cloud.stack)

 	RelationshipResources (class in cfme.cloud.stack)

 	relationships (cfme.ansible.credentials.CredentialDetailsView attribute)

 	

 	(cfme.ansible.playbooks.PlaybookDetailsEntities attribute)

 	(cfme.cloud.availability_zone.AvailabilityZoneDetailsAccordion attribute)

 	(cfme.cloud.availability_zone.AvailabilityZoneDetailsEntities attribute)

 	(cfme.cloud.flavor.FlavorDetailsAccordion attribute)

 	(cfme.cloud.flavor.FlavorDetailsEntities attribute)

 	(cfme.cloud.instance.image.ImageDetailsEntities attribute)

 	(cfme.cloud.keypairs.KeyPairDetailsAccordion attribute)

 	(cfme.cloud.keypairs.KeyPairDetailsEntities attribute)

 	(cfme.cloud.stack.StackDetailsAccordion attribute)

 	(cfme.cloud.stack.StackDetailsEntities attribute)

 	(cfme.cloud.tenant.TenantDetailsAccordion attribute)

 	(cfme.cloud.tenant.TenantDetailsEntities attribute)

 	(cfme.common.host_views.HostDetailsEntities attribute)

 	(cfme.common.vm_views.VMDetailsEntities attribute)

 	(cfme.containers.node.NodeDetailsView attribute)

 	(cfme.infrastructure.cluster.ClusterDetailsAccordion attribute)

 	(cfme.infrastructure.cluster.ClusterDetailsEntities attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleDetailsAccordion attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleDetailsEntities attribute)

 	(cfme.infrastructure.resource_pool.ResourcePoolDetailsAccordion attribute)

 	(cfme.infrastructure.resource_pool.ResourcePoolDetailsEntities attribute)

 	(cfme.middleware.provider.middleware_views.DatasourceDetailsAccordion attribute)

 	(cfme.middleware.provider.middleware_views.DatasourceDetailsEntities attribute)

 	(cfme.middleware.provider.middleware_views.DeploymentDetailsAccordion attribute)

 	(cfme.middleware.provider.middleware_views.DeploymentDetailsEntities attribute)

 	(cfme.middleware.provider.middleware_views.DomainDetailsAccordion attribute)

 	(cfme.middleware.provider.middleware_views.DomainDetailsEntities attribute)

 	(cfme.middleware.provider.middleware_views.MessagingDetailsAccordion attribute)

 	(cfme.middleware.provider.middleware_views.MessagingDetailsEntities attribute)

 	(cfme.middleware.provider.middleware_views.ServerDetailsAccordion attribute)

 	(cfme.middleware.provider.middleware_views.ServerDetailsEntities attribute)

 	(cfme.middleware.provider.middleware_views.ServerGroupDetailsAccordion attribute)

 	(cfme.middleware.provider.middleware_views.ServerGroupDetailsEntities attribute)

 	(cfme.networks.views.BalancerDetailsSideBar attribute)

 	(cfme.networks.views.CloudNetworkDetailsSideBar attribute)

 	(cfme.networks.views.NetworkPortDetailsSideBar attribute)

 	(cfme.networks.views.NetworkProviderDetailsSideBar attribute)

 	(cfme.networks.views.NetworkRouterDetailsSideBar attribute)

 	(cfme.networks.views.SecurityGroupDetailsSideBar attribute)

 	(cfme.networks.views.SubnetDetailsSideBar attribute)

 	(cfme.storage.volume.VolumeDetailsAccordion attribute)

 	(cfme.storage.volume.VolumeDetailsEntities attribute)

 	RelationshipsSecurityGroups (class in cfme.cloud.stack)

 	release_flag (cfme.utils.bz.BugWrapper attribute)

 	releases (cfme.utils.bz.Product attribute)

 	reload (cfme.cloud.instance.image.ImageDetailsToolbar attribute)

 	

 	(cfme.cloud.instance.InstanceDetailsToolbar attribute)

 	(cfme.cloud.instance.image.ImageToolbar attribute)

 	(cfme.common.provider_views.ProviderDetailsToolBar attribute)

 	(cfme.common.vm_views.VMToolbar attribute)

 	(cfme.configure.tasks.TasksView attribute)

 	(cfme.infrastructure.pxe.PXEDetailsToolBar attribute)

 	(cfme.infrastructure.virtual_machines.InfraGenericDetailsToolbar attribute)

 	(cfme.services.myservice.ui.MyServiceDetailsToolbar attribute)

 	(cfme.services.myservice.ui.MyServicesView attribute)

 	(cfme.services.requests.RequestsToolbar attribute)

 	reload() (cfme.common.Summary method)

 	

 	(cfme.common.SummaryTable method)

 	(cfme.web_ui.timelines.Timelines method)

 	(cfme.web_ui.topology.Topology method)

 	(cfme.web_ui.utilization.Utilization method)

 	reload_button (cfme.intelligence.reports.reports.CustomReportDetailsView attribute)

 	

 	(cfme.intelligence.reports.widgets.DashboardWidgetDetailsView attribute)

 	reload_elements() (cfme.web_ui.topology.Topology method)

 	reload_server() (cfme.middleware.server.MiddlewareServer method)

 	reload_server_group() (cfme.middleware.server_group.MiddlewareServerGroup method)

 	REMOVE (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor attribute)

 	remove() (cfme.dashboard.DashboardWidget method)

 	

 	(cfme.web_ui.multibox.MultiBoxSelect method)

 	(in module cfme.infrastructure.virtual_machines)

 	remove_all() (cfme.web_ui.multibox.MultiBoxSelect method)

 	remove_all_pxe_servers() (in module cfme.infrastructure.pxe)

 	remove_email() (cfme.web_ui.EmailSelectForm method)

 	remove_from_list() (cfme.middleware.datasource.MiddlewareDatasource class method)

 	remove_label() (cfme.containers.provider.Labelable method)

 	REMOVE_MULTI (cfme.infrastructure.virtual_machines.Template attribute)

 	remove_request() (cfme.services.requests.Request method)

 	remove_rhev_direct_lun_disk() (cfme.utils.appliance.Appliance method)

 	REMOVE_SELECTED (cfme.common.vm.BaseVM attribute)

 	REMOVE_SINGLE (cfme.cloud.instance.Instance attribute)

 	

 	(cfme.common.vm.BaseVM attribute)

 	remove_tag (cfme.control.explorer.actions.ActionFormCommon attribute)

 	remove_tag() (cfme.common.Taggable method)

 	

 	(cfme.common.WidgetasticTaggable method)

 	(cfme.configure.access_control.Group method)

 	(cfme.configure.access_control.User method)

 	(in module cfme.web_ui.mixins)

 	remove_tags() (cfme.common.Taggable method)

 	

 	(cfme.common.WidgetasticTaggable method)

 	RemoveFloatingIP (class in cfme.cloud.instance.openstack)

 	RemoveFloatingIPView (class in cfme.cloud.instance.openstack)

 	rename() (cfme.utils.appliance.Appliance method)

 	rename_properties() (cfme.base.credential.FromConfigMixin static method)

 	reorder_elements() (cfme.automate.dialog_element.Element method)

 	repfilter (cfme.intelligence.reports.widgets.report_widgets.ReportWidgetFormCommon attribute)

 	replication (cfme.base.ui.RegionDiagnosticsView attribute)

 	Replicator (class in cfme.containers.replicator)

 	ReplicatorAllView (class in cfme.containers.replicator)

 	ReplicatorCompliancePolicy (class in cfme.control.explorer.policies)

 	ReplicatorCondition (class in cfme.control.explorer.conditions)

 	ReplicatorControlPolicy (class in cfme.control.explorer.policies)

 	repo (cfme.utils.blockers.GH attribute)

 	repo_default_name (cfme.configure.configuration.region_settings.RedHatUpdatesEditView attribute)

 	repo_name (cfme.configure.configuration.region_settings.RedHatUpdatesEditView attribute)

 	report (cfme.optimize.bottlenecks.BottlenecksTabsView attribute)

 	report_collection_diff() (in module fixtures.parallelizer)

 	report_fields (cfme.intelligence.reports.reports.CustomReportFormCommon attribute)

 	report_info (cfme.intelligence.reports.reports.CustomReportDetailsView attribute)

 	report_select (cfme.intelligence.reports.menus.EditReportMenusView attribute)

 	report_title (cfme.intelligence.reports.reports.CustomReportFormCommon attribute)

 	report_view_limit (cfme.configure.settings.Visual attribute)

 	reported (markers.smoke.SmokeTests attribute)

 	reporter() (in module fixtures.terminalreporter)

 	

 	(in module markers.smoke)

 	ReportMenu (class in cfme.intelligence.reports.menus)

 	reports (cfme.intelligence.chargeback.ChargebackView attribute)

 	

 	(cfme.intelligence.reports.CloudIntelReportsView attribute)

 	reports_table (cfme.intelligence.reports.reports.AllReportsView attribute)

 	reports_tree (cfme.intelligence.reports.menus.EditReportMenusView attribute)

 	ReportsMultiBoxSelect (class in cfme.intelligence.reports)

 	ReportWidget (class in cfme.intelligence.reports.widgets.report_widgets)

 	ReportWidgetFormCommon (class in cfme.intelligence.reports.widgets.report_widgets)

 	Repository (class in cfme.ansible.repositories)

 	repository_names_info (cfme.configure.configuration.region_settings.RedHatUpdatesView attribute)

 	RepositoryAddView (class in cfme.ansible.repositories)

 	RepositoryAllView (class in cfme.ansible.repositories)

 	RepositoryBaseView (class in cfme.ansible.repositories)

 	RepositoryCollection (class in cfme.ansible.repositories)

 	RepositoryDetailsView (class in cfme.ansible.repositories)

 	RepositoryEditView (class in cfme.ansible.repositories)

 	RepositoryFormView (class in cfme.ansible.repositories)

 	request (cfme.automate.buttons.ButtonDetailView attribute)

 	

 	(cfme.automate.buttons.ButtonFormCommon attribute)

 	(cfme.base.ui.AutomateSimulationView attribute)

 	(cfme.common.vm_views.BasicProvisionFormView attribute)

 	(cfme.services.catalogs.catalog_item.ButtonForm attribute)

 	(cfme.services.requests.RequestDetailsView attribute)

 	Request (class in cfme.services.requests)

 	request_appliances() (cfme.test_framework.sprout.plugin.SproutManager method)

 	request_check() (cfme.test_framework.sprout.plugin.SproutManager method)

 	

 	REQUEST_FINISHED_STATES (cfme.services.requests.Request attribute)

 	request_format (cfme.utils.timeutil.parsetime attribute)

 	request_pool() (cfme.test_framework.sprout.plugin.SproutManager method)

 	request_state (cfme.services.requests.Request attribute)

 	RequestAll (class in cfme.services.requests)

 	RequestApprovalView (class in cfme.services.requests)

 	RequestBasicView (class in cfme.services.requests)

 	RequestCollection (class in cfme.services.requests)

 	RequestCopyView (class in cfme.services.requests)

 	RequestDenialView (class in cfme.services.requests)

 	RequestDetails (class in cfme.services.requests)

 	RequestDetailsToolBar (class in cfme.services.requests)

 	RequestDetailsView (class in cfme.services.requests)

 	RequestEditView (class in cfme.services.requests)

 	RequestException

 	RequestProvisionView (class in cfme.services.requests)

 	RequestsToolbar (class in cfme.services.requests)

 	RequestsView (class in cfme.services.requests)

 	requirement_matches() (in module fixtures.node_annotate)

 	reset (cfme.base.ui.DiagnosticsCollectLogsEditView attribute)

 	

 	(cfme.common.provider_views.ProviderEditView attribute)

 	(cfme.common.provider_views.ProvidersManagePoliciesView attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileEditView attribute)

 	(cfme.configure.settings.VisualTabForm attribute)

 	(cfme.infrastructure.pxe.PXECustomizationTemplateEditView attribute)

 	(cfme.infrastructure.pxe.PXEDatastoreEditView attribute)

 	(cfme.infrastructure.pxe.PXEImageEditView attribute)

 	(cfme.infrastructure.pxe.PXEServerEditView attribute)

 	(cfme.infrastructure.pxe.PXESystemImageTypeEditView attribute)

 	RESET (cfme.infrastructure.virtual_machines.Vm attribute)

 	reset (cfme.services.catalogs.ansible_catalog_item.EditAnsibleCatalogItemView attribute)

 	reset() (cfme.dashboard.DashboardWidgetCollection method)

 	

 	(in module cfme.web_ui.paginator)

 	reset_all (cfme.base.ui.AutomateImportExportView attribute)

 	reset_automate_model() (cfme.utils.appliance.IPAppliance method)

 	reset_button (cfme.ansible.credentials.CredentialEditView attribute)

 	

 	(cfme.ansible.repositories.RepositoryEditView attribute)

 	(cfme.automate.buttons.EditButtonGroupView attribute)

 	(cfme.automate.buttons.EditButtonView attribute)

 	(cfme.automate.dialog_element.EditElementView attribute)

 	(cfme.automate.explorer.common.CopyViewBase attribute)

 	(cfme.automate.explorer.domain.DomainPriorityView attribute)

 	(cfme.automate.explorer.method.MethodEditView attribute)

 	(cfme.automate.service_dialogs.EditDialogView attribute)

 	(cfme.cloud.tenant.TenantAddForm attribute)

 	(cfme.cloud.tenant.TenantEditForm attribute)

 	(cfme.common.host_views.HostEditView attribute)

 	(cfme.common.host_views.HostManagePoliciesView attribute)

 	(cfme.configure.access_control.EditGroupSequenceView attribute)

 	(cfme.configure.access_control.EditGroupView attribute)

 	(cfme.configure.access_control.EditRoleView attribute)

 	(cfme.configure.access_control.EditTagsUserView attribute)

 	(cfme.configure.access_control.EditTenantView attribute)

 	(cfme.configure.access_control.EditUserView attribute)

 	(cfme.configure.access_control.GroupEditTagsView attribute)

 	(cfme.configure.access_control.TenantQuotaView attribute)

 	(cfme.configure.configuration.region_settings.CANDUCollectionView attribute)

 	(cfme.configure.configuration.region_settings.CompanyCategoriesEditView attribute)

 	(cfme.configure.configuration.region_settings.CompanyTagsEditView attribute)

 	(cfme.configure.configuration.region_settings.MapTagsEditView attribute)

 	(cfme.configure.configuration.region_settings.RedHatUpdatesEditView attribute)

 	(cfme.containers.node.NodeEditTagsForm attribute)

 	(cfme.containers.node.NodeManagePoliciesForm attribute)

 	(cfme.control.explorer.actions.EditActionView attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfilesEditAssignmentsView attribute)

 	(cfme.control.explorer.alerts.EditAlertView attribute)

 	(cfme.control.explorer.conditions.EditConditionView attribute)

 	(cfme.control.explorer.policies.EditEventView attribute)

 	(cfme.control.explorer.policies.EditPolicyView attribute)

 	(cfme.control.simulation.ControlSimulationView attribute)

 	(cfme.dashboard.DashboardView attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleEditTagsView attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleManagePoliciesView attribute)

 	(cfme.intelligence.chargeback.assignments.AssignmentsView attribute)

 	(cfme.intelligence.chargeback.rates.EditComputeChargebackView attribute)

 	(cfme.intelligence.reports.dashboards.EditDashboardView attribute)

 	(cfme.intelligence.reports.menus.EditReportMenusView attribute)

 	(cfme.intelligence.reports.schedules.EditScheduleView attribute)

 	(cfme.intelligence.reports.widgets.BaseEditDashboardWidgetView attribute)

 	(cfme.services.catalogs.catalog.EditCatalogView attribute)

 	(cfme.services.catalogs.catalog_item.EditCatalogBundleView attribute)

 	(cfme.services.catalogs.catalog_item.EditCatalogItemView attribute)

 	(cfme.services.catalogs.orchestration_template.EditTemplateView attribute)

 	(cfme.services.myservice.ssui.EditMyServiceView attribute)

 	(cfme.services.myservice.ui.EditMyServiceView attribute)

 	reset_events() (cfme.utils.events.EventListener method)

 	reset_filter() (cfme.web_ui.Filter method)

 	

 	(in module cfme.web_ui.search)

 	reset_matches() (cfme.utils.events.EventListener method)

 	reset_page() (cfme.infrastructure.virtual_machines.VmsOnlyAllView method)

 	

 	(cfme.infrastructure.virtual_machines.VmTemplatesAllForProviderView method)

 	(cfme.infrastructure.virtual_machines.VmsTemplatesAllView method)

 	reset_timer() (cfme.test_framework.sprout.plugin.SproutManager method)

 	reset_to_default() (cfme.intelligence.reports.menus.ReportMenu method)

 	reset_widgets() (cfme.dashboard.DashboardView method)

 	resetter() (cfme.cloud.instance.All method)

 	

 	(cfme.cloud.instance.AllForProvider method)

 	(cfme.cloud.instance.Details method)

 	(cfme.cloud.provider.All method)

 	(cfme.cloud.stack.All method)

 	(cfme.cloud.tenant.TenantAll method)

 	(cfme.cloud.tenant.TenantDetails method)

 	(cfme.containers.container.ContainerAll method)

 	(cfme.containers.image.All method)

 	(cfme.containers.image_registry.ImageRegistryAll method)

 	(cfme.containers.node.All method)

 	(cfme.containers.overview.All method)

 	(cfme.containers.pod.All method)

 	(cfme.containers.project.All method)

 	(cfme.containers.provider.All method)

 	(cfme.containers.provider.Details method)

 	(cfme.containers.replicator.All method)

 	(cfme.containers.route.All method)

 	(cfme.containers.service.All method)

 	(cfme.containers.template.All method)

 	(cfme.containers.volume.All method)

 	(cfme.infrastructure.cluster.All method)

 	(cfme.infrastructure.config_management.MgrAll method)

 	(cfme.infrastructure.config_management.SysAll method)

 	(cfme.infrastructure.datastore.All method)

 	(cfme.infrastructure.networking.All method)

 	(cfme.infrastructure.provider.All method)

 	(cfme.infrastructure.provider.Details method)

 	(cfme.infrastructure.resource_pool.All method)

 	(cfme.infrastructure.virtual_machines.VmAll method)

 	(cfme.infrastructure.virtual_machines.VmAllWithTemplates method)

 	(cfme.infrastructure.virtual_machines.VmAllWithTemplatesDetails method)

 	(cfme.infrastructure.virtual_machines.VmAllWithTemplatesForProvider method)

 	(cfme.infrastructure.virtual_machines.VmDetails method)

 	(cfme.middleware.datasource.All method)

 	(cfme.middleware.deployment.All method)

 	(cfme.middleware.domain.All method)

 	(cfme.middleware.messaging.All method)

 	(cfme.middleware.provider.All method)

 	(cfme.optimize.bottlenecks.All method)

 	(cfme.storage.object_store.All method)

 	(cfme.utils.appliance.implementations.ui.CFMENavigateStep method)

 	resolve_blocker() (cfme.utils.bz.Bugzilla method)

 	resolve_blockers() (in module cfme.metaplugins.blockers)

 	resolve_hostname() (in module cfme.utils.net)

 	resolve_ips() (in module cfme.utils.net)

 	resource_entity (cfme.configure.configuration.region_settings.MapTagsAddView attribute)

 	resource_group (cfme.services.catalogs.service_catalogs.OrderForm attribute)

 	resource_id (cfme.fixtures.vporizer.vpor_data_instance attribute)

 	resource_label (cfme.configure.configuration.region_settings.MapTagsAddView attribute)

 	resource_name (cfme.fixtures.vporizer.vpor_data_instance attribute)

 	resource_type (cfme.fixtures.vporizer.vpor_data_instance attribute)

 	ResourcePool (class in cfme.infrastructure.resource_pool)

 	ResourcePoolAllView (class in cfme.infrastructure.resource_pool)

 	ResourcePoolDetailsAccordion (class in cfme.infrastructure.resource_pool)

 	ResourcePoolDetailsEntities (class in cfme.infrastructure.resource_pool)

 	ResourcePoolDetailsToolbar (class in cfme.infrastructure.resource_pool)

 	ResourcePoolDetailsView (class in cfme.infrastructure.resource_pool)

 	ResourcePoolEntities (class in cfme.infrastructure.resource_pool)

 	ResourcePoolNotFound

 	ResourcePoolToolbar (class in cfme.infrastructure.resource_pool)

 	ResourcePoolView (class in cfme.infrastructure.resource_pool)

 	resources (cfme.cloud.stack.StackResourcesEntities attribute)

 	

 	(cfme.services.catalogs.catalog_item.CatalogBundleFormView attribute)

 	resources_path (in module cfme.utils.path)

 	rest (cfme.configure.documentation.LinksView attribute)

 	

 	(cfme.services.requests.Request attribute)

 	rest_api (cfme.utils.appliance.IPAppliance attribute)

 	rest_logger (cfme.utils.appliance.IPAppliance attribute)

 	RESTART (cfme.cloud.instance.azure.AzureInstance attribute)

 	

 	(cfme.cloud.instance.ec2.EC2Instance attribute)

 	(cfme.cloud.instance.gce.GCEInstance attribute)

 	(cfme.cloud.instance.openstack.OpenStackInstance attribute)

 	restart() (cfme.middleware.provider.Deployable method)

 	

 	(cfme.utils.appliance.services.SystemdService method)

 	restart_evm_service() (cfme.utils.appliance.IPAppliance method)

 	restart_server() (cfme.middleware.server.MiddlewareServer method)

 	restart_server_group() (cfme.middleware.server_group.MiddlewareServerGroup method)

 	restart_workers() (in module cfme.configure.configuration)

 	restore() (cfme.dashboard.DashboardWidget method)

 	

 	(cfme.utils.appliance.db.ApplianceDB method)

 	result_tree (cfme.base.ui.AutomateSimulationView attribute)

 	results_path (in module cfme.utils.path)

 	results_per_page() (in module cfme.web_ui.paginator)

 	resume_server() (cfme.middleware.server.MiddlewareServer method)

 	resume_server_group() (cfme.middleware.server_group.MiddlewareServerGroup method)

 	retire (cfme.services.myservice.MyService attribute)

 	retire() (cfme.common.vm.VM method)

 	

 	(in module cfme.services.myservice.ui)

 	RETIRE_DATE_FMT (cfme.common.vm.BaseVM attribute)

 	retire_form (cfme.common.vm.VM attribute)

 	retire_on_date (cfme.services.myservice.MyService attribute)

 	retire_on_date() (in module cfme.services.myservice.ui)

 	retire_stack() (cfme.cloud.stack.Stack method)

 	retired_service() (in module cfme.services.dashboard.ssui)

 	retired_services (cfme.services.dashboard.Dashboard attribute)

 	RetiredServices (class in cfme.services.dashboard.ssui)

 	retirement (cfme.services.catalogs.ansible_catalog_item.AnsibleCatalogItemForm attribute)

 	

 	(cfme.services.catalogs.ansible_catalog_item.DetailsEntitiesAnsibleCatalogItemView attribute)

 	(cfme.services.myservice.ui.MyServiceDetailView attribute)

 	retirement_date (cfme.common.vm.BaseVM attribute)

 	

 	(cfme.services.myservice.ui.ServiceRetirementForm attribute)

 	retirement_entry_point (cfme.services.catalogs.catalog_item.BasicInfoForm attribute)

 	retirement_warning (cfme.services.myservice.ui.ServiceRetirementForm attribute)

 	RetirementView (class in cfme.common.vm_views)

 	retiring_soon (cfme.services.dashboard.Dashboard attribute)

 	retiring_soon() (in module cfme.services.dashboard.ssui)

 	RetiringSoon (class in cfme.services.dashboard.ssui)

 	retr() (cfme.utils.ftp.FTPFile method)

 	retrbinary() (cfme.utils.ftp.FTPClient method)

 	retrieve_button (cfme.configure.access_control.GroupForm attribute)

 	revert_to() (cfme.infrastructure.virtual_machines.Vm.Snapshot method)

 	rhevm (cfme.common.provider_views.InfraProvidersDiscoverView attribute)

 	RHEVMEndpoint (class in cfme.infrastructure.provider.rhevm)

 	RHEVMEndpointForm (class in cfme.infrastructure.provider.rhevm)

 	RHEVMProvider (class in cfme.infrastructure.provider.rhevm)

 	rhn_default_url (cfme.configure.configuration.region_settings.RedHatUpdatesEditView attribute)

 	RHOSEndpoint (class in cfme.infrastructure.provider.openstack_infra)

 	RightSize (class in cfme.cloud.instance.openstack)

 	RightSizeView (class in cfme.common.vm_views)

 	rmd() (cfme.utils.ftp.FTPClient method)

 	Role (class in cfme.configure.access_control)

 	role() (in module cfme.fixtures.tag)

 	role_select (cfme.configure.access_control.GroupForm attribute)

 	RoleAdd (class in cfme.configure.access_control)

 	RoleAll (class in cfme.configure.access_control)

 	RoleDetails (class in cfme.configure.access_control)

 	RoleEdit (class in cfme.configure.access_control)

 	RoleForm (class in cfme.configure.access_control)

 	RoleNotFound

 	roles() (in module cfme.rest.gen_data)

 	rolesbyservers (cfme.base.ui.RegionDiagnosticsView attribute)

 	

 	(cfme.base.ui.ZoneDiagnosticsView attribute)

 	ROOT (cfme.control.explorer.conditions.Expression attribute)

 	

 	(cfme.dashboard.Kebab attribute)

 	(cfme.services.catalogs.ansible_catalog_item.BootstrapSelect attribute)

 	(cfme.web_ui.expression_editor_widgetastic.ExpressionEditor attribute)

 	root (cfme.web_ui.InfoBlock attribute)

 	root_el() (cfme.web_ui.Tree method)

 	ROOT_ITEMS (cfme.web_ui.BootstrapTreeview attribute)

 	ROOT_ITEMS_WITH_TEXT (cfme.web_ui.BootstrapTreeview attribute)

 	root_loc() (in module cfme.web_ui.toolbar)

 	root_volume() (in module cfme.scripting.tests.test_quickstart)

 	round_double() (in module cfme.web_ui.utilization)

 	Route (class in cfme.containers.route)

 	RouteAllView (class in cfme.containers.route)

 	routers (cfme.networks.provider.NetworkProvider attribute)

 	row_count (cfme.intelligence.reports.widgets.report_widgets.ReportWidgetFormCommon attribute)

 	row_count() (cfme.web_ui.Table method)

 	ROWS (cfme.common.SummaryTable attribute)

 	rows (cfme.intelligence.reports.reports.SavedReportData attribute)

 	

 	(cfme.intelligence.reports.widgets.rss_widgets.RSSWidgetFormCommon attribute)

 	ROWS (cfme.web_ui.DynamicTable attribute)

 	rows (cfme.web_ui.DynamicTable attribute)

 	rows() (cfme.web_ui.Table method)

 	rows_as_list() (cfme.web_ui.Table method)

 	rsa_keypair (cfme.infrastructure.provider.openstack_infra.OpenStackInfraEndpointForm attribute)

 	RSS (class in cfme.base.ui)

 	RSSFeedWidget (class in cfme.intelligence.reports.widgets.rss_widgets)

 	RSSView (class in cfme.intelligence.rss)

 	RSSWidgetFormCommon (class in cfme.intelligence.reports.widgets.rss_widgets)

 	run (cfme.intelligence.reports.schedules.SchedulesFormCommon attribute)

 	

 	(cfme.intelligence.reports.widgets.chart_widgets.ChartWidgetFormCommon attribute)

 	(cfme.intelligence.reports.widgets.report_widgets.ReportWidgetFormCommon attribute)

 	(cfme.intelligence.reports.widgets.rss_widgets.RSSWidgetFormCommon attribute)

 	run() (cfme.utils.events.EventListener method)

 	

 	(cfme.utils.smem_memory_monitor.SmemMemoryMonitor method)

 	run_ansible_playbook (cfme.control.explorer.actions.ActionFormCommon attribute)

 	run_command() (cfme.utils.ocp_cli.OcpCli method)

 	

 	(cfme.utils.ssh.SSHClient method)

 	(in module cfme.scripting.setup_ansible)

 	run_commands() (cfme.utils.appliance.ApplianceConsole method)

 	

 	(in module cfme.web_ui.expression_editor)

 	(in module cfme.web_ui.expression_editor_widgetastic)

 	run_introspection() (cfme.infrastructure.openstack_node.OpenstackNode method)

 	run_plugins() (in module markers.meta)

 	run_rails_command() (cfme.utils.ssh.SSHClient method)

 	run_rails_console() (cfme.utils.ssh.SSHClient method)

 	run_rake_command() (cfme.utils.ssh.SSHClient method)

 	run_smartstate_analysis() (cfme.infrastructure.cluster.Cluster method)

 	

 	(cfme.infrastructure.datastore.Datastore method)

 	(cfme.infrastructure.datastore.DatastoreCollection method)

 	(cfme.infrastructure.host.Host method)

 	run_tests (markers.smoke.SmokeTests attribute)

 	RunAnsiblePlaybookFromView (class in cfme.control.explorer.actions)

 	running (cfme.utils.appliance.services.SystemdService attribute)

 	runtest_logreport() (fixtures.parallelizer.TerminalDistReporter method)

 	runtest_logstart() (fixtures.parallelizer.TerminalDistReporter method)

 	runtime (cfme.test_framework.config.DeprecatedConfigWrapper attribute)

 	runtime_name (cfme.middleware.provider.middleware_views.AddDeploymentForm attribute)

S

 	

 	safe_string() (in module cfme.utils)

 	sample_dashboard (cfme.intelligence.reports.dashboards.DashboardFormCommon attribute)

 	SAMPLE_DASHBOARD_ROOT (cfme.intelligence.reports.dashboards.DashboardDetailsView attribute)

 	Satellite (class in cfme.infrastructure.config_management)

 	save (cfme.base.ui.DiagnosticsCollectLogsEditView attribute)

 	

 	(cfme.common.provider_views.ProviderEditView attribute)

 	(cfme.common.provider_views.ProvidersManagePoliciesView attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileEditView attribute)

 	(cfme.configure.settings.DefaultFilterForm attribute)

 	(cfme.configure.settings.DefaultViewForm attribute)

 	(cfme.configure.settings.VisualTabForm attribute)

 	(cfme.infrastructure.pxe.PXECustomizationTemplateEditView attribute)

 	(cfme.infrastructure.pxe.PXEDatastoreEditView attribute)

 	(cfme.infrastructure.pxe.PXEImageEditView attribute)

 	(cfme.infrastructure.pxe.PXEServerEditView attribute)

 	(cfme.infrastructure.pxe.PXESystemImageTypeEditView attribute)

 	(cfme.services.catalogs.ansible_catalog_item.EditAnsibleCatalogItemView attribute)

 	save_and_apply_filter() (in module cfme.web_ui.search)

 	save_button (cfme.ansible.credentials.CredentialEditView attribute)

 	

 	(cfme.ansible.repositories.RepositoryEditView attribute)

 	(cfme.automate.buttons.EditButtonGroupView attribute)

 	(cfme.automate.buttons.EditButtonView attribute)

 	(cfme.automate.dialog_element.EditElementView attribute)

 	(cfme.automate.explorer.domain.DomainEditView attribute)

 	(cfme.automate.explorer.domain.DomainPriorityView attribute)

 	(cfme.automate.explorer.instance.InstanceEditView attribute)

 	(cfme.automate.explorer.klass.ClassEditView attribute)

 	(cfme.automate.explorer.method.MethodEditView attribute)

 	(cfme.automate.explorer.namespace.NamespaceEditView attribute)

 	(cfme.automate.service_dialogs.EditDialogView attribute)

 	(cfme.base.ui.ZoneEditView attribute)

 	(cfme.cloud.tenant.TenantAddForm attribute)

 	(cfme.cloud.tenant.TenantEditForm attribute)

 	(cfme.common.host_views.HostEditView attribute)

 	(cfme.common.host_views.HostManagePoliciesView attribute)

 	(cfme.configure.access_control.EditGroupSequenceView attribute)

 	(cfme.configure.access_control.EditGroupView attribute)

 	(cfme.configure.access_control.EditRoleView attribute)

 	(cfme.configure.access_control.EditTagsUserView attribute)

 	(cfme.configure.access_control.EditTenantView attribute)

 	(cfme.configure.access_control.EditUserView attribute)

 	(cfme.configure.access_control.GroupEditTagsView attribute)

 	(cfme.configure.access_control.TenantQuotaView attribute)

 	(cfme.configure.configuration.region_settings.CANDUCollectionView attribute)

 	(cfme.configure.configuration.region_settings.CompanyCategoriesEditView attribute)

 	(cfme.configure.configuration.region_settings.CompanyTagsEditView attribute)

 	(cfme.configure.configuration.region_settings.MapTagsEditView attribute)

 	(cfme.configure.configuration.region_settings.RedHatUpdatesEditView attribute)

 	(cfme.configure.settings.TimeProfileAddForm attribute)

 	(cfme.containers.node.NodeEditTagsForm attribute)

 	(cfme.containers.node.NodeManagePoliciesForm attribute)

 	(cfme.control.explorer.actions.EditActionView attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfilesEditAssignmentsView attribute)

 	(cfme.control.explorer.alert_profiles.EditAlertProfileView attribute)

 	(cfme.control.explorer.alerts.EditAlertView attribute)

 	(cfme.control.explorer.conditions.EditConditionView attribute)

 	(cfme.control.explorer.policies.EditEventView attribute)

 	(cfme.control.explorer.policies.EditPolicyConditionAssignments attribute)

 	(cfme.control.explorer.policies.EditPolicyEventAssignments attribute)

 	(cfme.control.explorer.policies.EditPolicyView attribute)

 	(cfme.control.explorer.policy_profiles.EditPolicyProfileView attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleEditTagsView attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleManagePoliciesView attribute)

 	(cfme.intelligence.chargeback.assignments.AssignmentsView attribute)

 	(cfme.intelligence.chargeback.rates.EditComputeChargebackView attribute)

 	(cfme.intelligence.reports.dashboards.EditDashboardView attribute)

 	(cfme.intelligence.reports.menus.EditReportMenusView attribute)

 	(cfme.intelligence.reports.reports.EditCustomReportView attribute)

 	(cfme.intelligence.reports.schedules.EditScheduleView attribute)

 	(cfme.intelligence.reports.widgets.BaseEditDashboardWidgetView attribute)

 	(cfme.services.catalogs.catalog.CatalogForm attribute)

 	(cfme.services.catalogs.catalog.EditCatalogView attribute)

 	(cfme.services.catalogs.catalog_item.EditCatalogBundleView attribute)

 	(cfme.services.catalogs.catalog_item.EditCatalogItemView attribute)

 	(cfme.services.catalogs.orchestration_template.EditTemplateView attribute)

 	(cfme.services.myservice.ssui.EditMyServiceView attribute)

 	(cfme.services.myservice.ui.EditMyServiceView attribute)

 	(cfme.services.myservice.ui.ServiceRetirementView attribute)

 	(cfme.services.myservice.ui.SetOwnershipView attribute)

 	save_edit_button (cfme.configure.settings.TimeProfileAddForm attribute)

 	save_filter() (in module cfme.web_ui.search)

 	save_screenshot() (in module fixtures.rbac)

 	save_traceback_file() (in module fixtures.rbac)

 	SaveButton (class in cfme.configure.settings)

 	saved_report_title_format (cfme.utils.timeutil.parsetime attribute)

 	saved_reports (cfme.intelligence.reports.CloudIntelReportsView attribute)

 	

 	(cfme.intelligence.reports.reports.CustomReportDetailsView attribute)

 	SavedReport (class in cfme.intelligence.reports.saved)

 	SavedReportData (class in cfme.intelligence.reports.reports)

 	SavedReportDetailsView (class in cfme.intelligence.reports.saved)

 	SavedReportView (class in cfme.intelligence.reports.saved)

 	scale (cfme.infrastructure.provider.openstack_infra.ProviderScaleOutView attribute)

 	scale_down (cfme.infrastructure.provider.openstack_infra.ProviderScaleDownView attribute)

 	scale_down() (cfme.infrastructure.provider.openstack_infra.OpenstackInfraProvider method)

 	scale_out() (cfme.infrastructure.provider.openstack_infra.OpenstackInfraProvider method)

 	schedule (cfme.common.vm_views.BasicProvisionFormView attribute)

 	

 	(cfme.services.requests.RequestDetailsView attribute)

 	Schedule (class in cfme.configure.configuration)

 	

 	(class in cfme.intelligence.reports.schedules)

 	ScheduleAdd (class in cfme.configure.configuration)

 	ScheduleAll (class in cfme.configure.configuration)

 	

 	(class in cfme.intelligence.reports.schedules)

 	ScheduleCollection (class in cfme.intelligence.reports.schedules)

 	ScheduleDetails (class in cfme.configure.configuration)

 	

 	(class in cfme.intelligence.reports.saved)

 	(class in cfme.intelligence.reports.schedules)

 	ScheduleDetailsView (class in cfme.intelligence.reports.schedules)

 	ScheduleEdit (class in cfme.configure.configuration)

 	

 	(class in cfme.intelligence.reports.schedules)

 	ScheduleNew (class in cfme.intelligence.reports.schedules)

 	ScheduleNotFound

 	schedules (cfme.intelligence.reports.CloudIntelReportsView attribute)

 	schedules_table (cfme.intelligence.reports.schedules.SchedulesAllView attribute)

 	SchedulesAllView (class in cfme.intelligence.reports.schedules)

 	SchedulesFormCommon (class in cfme.intelligence.reports.schedules)

 	schema (cfme.automate.explorer.klass.Class attribute)

 	

 	(cfme.automate.explorer.klass.ClassDetailsView attribute)

 	(cfme.automate.explorer.klass.ClassSchemaEditView attribute)

 	schema_field_names (cfme.automate.explorer.klass.ClassSchema attribute)

 	scheme (cfme.utils.appliance.IPAppliance attribute)

 	scm_branch (cfme.ansible.repositories.RepositoryFormView attribute)

 	scm_credentials (cfme.ansible.repositories.RepositoryFormView attribute)

 	scope (cfme.configure.settings.TimeProfileAddForm attribute)

 	

 	(cfme.control.explorer.conditions.ConditionDetailsView attribute)

 	(cfme.control.explorer.conditions.ConditionFormCommon attribute)

 	(cfme.control.explorer.policies.PolicyFormCommon attribute)

 	ScreenShot (in module cfme.fixtures.pytest_selenium)

 	script (cfme.automate.explorer.method.MethodAddView attribute)

 	

 	(cfme.automate.explorer.method.MethodEditView attribute)

 	(cfme.infrastructure.pxe.PXECustomizationTemplateForm attribute)

 	ScriptBox (class in cfme.web_ui)

 	scripting (cfme.configure.documentation.LinksView attribute)

 	scripts_data_path (in module cfme.utils.path)

 	scripts_path (in module cfme.utils.path)

 	scvmm (cfme.common.provider_views.InfraProvidersDiscoverView attribute)

 	SCVMMEndpoint (class in cfme.infrastructure.provider.scvmm)

 	SCVMMEndpointForm (class in cfme.infrastructure.provider.scvmm)

 	SCVMMProvider (class in cfme.infrastructure.provider.scvmm)

 	seal_for_templatizing() (cfme.utils.appliance.IPAppliance method)

 	search (cfme.cloud.availability_zone.AvailabilityZoneEntities attribute)

 	

 	(cfme.cloud.flavor.FlavorEntities attribute)

 	(cfme.cloud.stack.StackEntities attribute)

 	(cfme.cloud.tenant.TenantEntities attribute)

 	(cfme.infrastructure.resource_pool.ResourcePoolEntities attribute)

 	(cfme.middleware.provider.middleware_views.DatasourceAllView attribute)

 	(cfme.middleware.provider.middleware_views.DatasourceEntitiesView attribute)

 	(cfme.middleware.provider.middleware_views.DeploymentAllView attribute)

 	(cfme.middleware.provider.middleware_views.DeploymentEntitiesView attribute)

 	(cfme.middleware.provider.middleware_views.DomainAllView attribute)

 	(cfme.middleware.provider.middleware_views.DomainEntitiesView attribute)

 	(cfme.middleware.provider.middleware_views.DomainServerGroupAllView attribute)

 	(cfme.middleware.provider.middleware_views.MessagingAllView attribute)

 	(cfme.middleware.provider.middleware_views.MessagingEntitiesView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderDatasourceAllView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderDeploymentAllView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderDomainAllView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderDomainsAllView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderMessagingAllView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderServerAllView attribute)

 	(cfme.middleware.provider.middleware_views.ServerAllView attribute)

 	(cfme.middleware.provider.middleware_views.ServerDatasourceAllView attribute)

 	(cfme.middleware.provider.middleware_views.ServerDeploymentAllView attribute)

 	(cfme.middleware.provider.middleware_views.ServerEntitiesView attribute)

 	(cfme.middleware.provider.middleware_views.ServerGroupEntitiesView attribute)

 	(cfme.middleware.provider.middleware_views.ServerGroupServerAllView attribute)

 	(cfme.middleware.provider.middleware_views.ServerMessagingAllView attribute)

 	(cfme.services.workloads.WorkloadsView attribute)

 	search() (cfme.utils.ftp.FTPDirectory method)

 	SEARCH_BOX (cfme.web_ui.topology.TopologySearchBox attribute)

 	SEARCH_CLEAR (cfme.web_ui.topology.TopologySearchBox attribute)

 	search_log() (fixtures.merkyl.MerkylInspector method)

 	SEARCH_SUBMIT (cfme.web_ui.topology.TopologySearchBox attribute)

 	sec_domain (cfme.middleware.provider.middleware_views.AddDatasourceForm attribute)

 	section_comparison_tree (cfme.infrastructure.virtual_machines.Genealogy attribute)

 	security (cfme.cloud.instance.image.ImageDetailsEntities attribute)

 	

 	(cfme.common.host_views.HostDetailsEntities attribute)

 	(cfme.common.vm_views.VMDetailsEntities attribute)

 	security_groups (cfme.cloud.stack.StackSecurityGroupsEntities attribute)

 	

 	(cfme.networks.provider.NetworkProvider attribute)

 	security_protocol (cfme.infrastructure.provider.scvmm.SCVMMEndpointForm attribute)

 	

 	(cfme.middleware.provider.hawkular.HawkularEndpointForm attribute)

 	SecurityGroup (class in cfme.networks.security_group)

 	SecurityGroupCollection (class in cfme.networks.security_group)

 	SecurityGroupDetailsSideBar (class in cfme.networks.views)

 	SecurityGroupDetailsToolBar (class in cfme.networks.views)

 	SecurityGroupDetailsView (class in cfme.networks.views)

 	SecurityGroupEntities (class in cfme.networks.views)

 	SecurityGroupSideBar (class in cfme.networks.views)

 	SecurityGroupToolBar (class in cfme.networks.views)

 	SecurityGroupView (class in cfme.networks.views)

 	select (cfme.web_ui.AngularSelect attribute)

 	Select (class in cfme.fixtures.pytest_selenium)

 	select() (cfme.configure.configuration.Schedule method)

 	

 	(cfme.dashboard.Kebab method)

 	(in module cfme.web_ui.listaccordion)

 	(in module cfme.web_ui.toolbar)

 	Select.Option (class in cfme.fixtures.pytest_selenium)

 	select_all() (cfme.web_ui.CheckboxSelect method)

 	

 	(cfme.web_ui.CheckboxTable method)

 	select_appliances() (cfme.configure.configuration.region_settings.RedHatUpdates method)

 	select_by_index() (cfme.web_ui.DHTMLSelect method)

 	select_by_text() (in module cfme.fixtures.pytest_selenium)

 	select_by_value() (cfme.fixtures.pytest_selenium.Select method)

 	

 	(cfme.web_ui.AngularSelect method)

 	(cfme.web_ui.DHTMLSelect method)

 	(in module cfme.fixtures.pytest_selenium)

 	select_by_visible_text() (cfme.fixtures.pytest_selenium.Select method)

 	

 	(cfme.web_ui.AngularSelect method)

 	(cfme.web_ui.DHTMLSelect method)

 	select_catalog (cfme.services.catalogs.catalog_item.BasicInfoForm attribute)

 	select_config_template (cfme.services.catalogs.catalog_item.BasicInfoForm attribute)

 	select_dhtml() (in module cfme.web_ui)

 	select_dialog (cfme.services.catalogs.catalog_item.BasicInfoForm attribute)

 	

 	(cfme.services.catalogs.catalog_item.ButtonForm attribute)

 	select_event_category() (cfme.web_ui.timelines.Timelines method)

 	select_expression_by_text() (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor method)

 	

 	(in module cfme.web_ui.expression_editor)

 	select_first_expression() (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor method)

 	

 	(in module cfme.web_ui.expression_editor)

 	select_first_quad() (cfme.web_ui.Quadicon static method)

 	select_group (cfme.services.myservice.ui.SetOwnershipForm attribute)

 	select_history_item() (in module cfme.web_ui.history)

 	select_instance_type (cfme.services.catalogs.service_catalogs.OrderForm attribute)

 	select_item_type (cfme.services.catalogs.catalog_item.CatalogForm attribute)

 	select_multiselect() (in module cfme.web_ui)

 	select_n_move() (in module cfme.web_ui.toolbar)

 	select_nth_history_item() (in module cfme.web_ui.history)

 	select_orch_template (cfme.services.catalogs.catalog_item.BasicInfoForm attribute)

 	select_owner (cfme.services.myservice.ui.SetOwnershipForm attribute)

 	select_provider (cfme.services.catalogs.catalog_item.BasicInfoForm attribute)

 	SELECT_RELATIVE (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor attribute)

 	select_resource (cfme.services.catalogs.catalog_item.BasicInfoForm attribute)

 	select_row() (cfme.web_ui.CheckboxTable method)

 	select_row_by_cells() (cfme.web_ui.CheckboxTable method)

 	select_rows() (cfme.web_ui.CheckboxTable method)

 	select_rows_by_cells() (cfme.web_ui.CheckboxTable method)

 	select_rows_by_indexes() (cfme.web_ui.CheckboxTable method)

 	select_security_group() (in module cfme.provisioning)

 	SELECT_SPECIFIC (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor attribute)

 	select_tab() (in module cfme.web_ui.tabstrip)

 	select_tag (cfme.configure.access_control.EditTagsUserView attribute)

 	

 	(cfme.configure.access_control.GroupEditTagsView attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleEditTagsView attribute)

 	select_value (cfme.configure.access_control.EditTagsUserView attribute)

 	

 	(cfme.configure.access_control.GroupEditTagsView attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleEditTagsView attribute)

 	SelectCatalogItemTypeView (class in cfme.services.catalogs.ansible_catalog_item)

 	selected_checkboxes (cfme.web_ui.CheckboxSelect attribute)

 	selected_filter (cfme.containers.provider.AdHocMetricsView attribute)

 	SELECTED_ITEM (cfme.web_ui.BootstrapTreeview attribute)

 	selected_item (cfme.web_ui.BootstrapTreeview attribute)

 	selected_items (cfme.intelligence.reports.dashboards.DashboardDetailsView attribute)

 	selected_values (cfme.web_ui.CheckboxSelect attribute)

 	selections (cfme.control.explorer.alert_profiles.AlertProfilesEditAssignmentsView attribute)

 	

 	(cfme.intelligence.chargeback.assignments.AssignmentsView attribute)

 	SelectItem (class in cfme.web_ui.multibox)

 	Selector (class in cfme.web_ui)

 	SelectTable (class in cfme.common.vm_views)

 	self_install() (in module cfme.scripting.quickstart)

 	send() (fixtures.parallelizer.ParallelSession method)

 	send_breakpoint_email() (in module cfme.fixtures.rdb)

 	send_csv (cfme.intelligence.reports.schedules.SchedulesFormCommon attribute)

 	send_ctrl_alt_delete() (cfme.common.vm_console.VMConsole method)

 	send_event() (fixtures.parallelizer.remote.SlaveManager method)

 	send_fullscreen() (cfme.common.vm_console.VMConsole method)

 	send_if_empty (cfme.intelligence.reports.schedules.SchedulesFormCommon attribute)

 	send_keys() (cfme.common.vm_console.VMConsole method)

 	

 	(in module cfme.fixtures.pytest_selenium)

 	send_pdf (cfme.intelligence.reports.schedules.SchedulesFormCommon attribute)

 	send_test_email() (cfme.configure.configuration.SMTPSettings class method)

 	send_tests() (fixtures.parallelizer.ParallelSession method)

 	send_txt (cfme.intelligence.reports.schedules.SchedulesFormCommon attribute)

 	serialize_report() (in module fixtures.parallelizer.remote)

 	series() (cfme.utils.version.Version method)

 	server (cfme.base.ui.ServerView attribute)

 	

 	(cfme.middleware.provider.middleware_views.ServerDetailsAccordion attribute)

 	(cfme.utils.appliance.IPAppliance attribute)

 	Server (class in cfme.base)

 	server() (cfme.middleware.server.MiddlewareServer method)

 	server_details_changed() (cfme.utils.appliance.IPAppliance method)

 	server_group (cfme.middleware.provider.middleware_views.ServerGroupDetailsAccordion attribute)

 	server_group() (cfme.middleware.server.MiddlewareServer method)

 	

 	(cfme.middleware.server_group.MiddlewareServerGroup method)

 	server_group_in_db (cfme.middleware.server_group.MiddlewareServerGroup attribute)

 	server_group_in_mgmt (cfme.middleware.server_group.MiddlewareServerGroup attribute)

 	server_group_in_rest (cfme.middleware.server_group.MiddlewareServerGroup attribute)

 	server_groups() (cfme.middleware.server_group.MiddlewareServerGroup class method)

 	server_groups_in_db() (cfme.middleware.server_group.MiddlewareServerGroup class method)

 	server_groups_in_mgmt() (cfme.middleware.server_group.MiddlewareServerGroup class method)

 	server_id() (cfme.utils.appliance.IPAppliance method)

 	server_in_db (cfme.middleware.server.MiddlewareServer attribute)

 	server_in_mgmt (cfme.middleware.server.MiddlewareServer attribute)

 	server_in_rest (cfme.middleware.server.MiddlewareServer attribute)

 	server_name() (cfme.utils.appliance.IPAppliance method)

 	server_region() (cfme.utils.appliance.IPAppliance method)

 	server_region_string() (cfme.utils.appliance.IPAppliance method)

 	server_roles (cfme.utils.appliance.IPAppliance attribute)

 	server_roles_disabled() (in module cfme.configure.configuration)

 	server_roles_enabled() (in module cfme.configure.configuration)

 	server_zone_id() (cfme.utils.appliance.IPAppliance method)

 	ServerAlertProfile (class in cfme.control.explorer.alert_profiles)

 	ServerAllView (class in cfme.middleware.provider.middleware_views)

 	ServerDatasourceAllView (class in cfme.middleware.provider.middleware_views)

 	ServerDatasources (class in cfme.middleware.server)

 	ServerDeploymentAllView (class in cfme.middleware.provider.middleware_views)

 	ServerDeployments (class in cfme.middleware.server)

 	ServerDetails (class in cfme.base.ui)

 	ServerDetailsAccordion (class in cfme.middleware.provider.middleware_views)

 	ServerDetailsEntities (class in cfme.middleware.provider.middleware_views)

 	ServerDetailsToolbar (class in cfme.middleware.provider.middleware_views)

 	ServerDetailsView (class in cfme.middleware.provider.middleware_views)

 	ServerDiagnosticsView (class in cfme.base.ui)

 	ServerEntitiesView (class in cfme.middleware.provider.middleware_views)

 	ServerGroup (class in cfme.middleware.server)

 	ServerGroupDetailsAccordion (class in cfme.middleware.provider.middleware_views)

 	ServerGroupDetailsEntities (class in cfme.middleware.provider.middleware_views)

 	ServerGroupDetailsToolbar (class in cfme.middleware.provider.middleware_views)

 	ServerGroupDetailsView (class in cfme.middleware.provider.middleware_views)

 	ServerGroupEntitiesView (class in cfme.middleware.provider.middleware_views)

 	ServerGroupServerAllView (class in cfme.middleware.provider.middleware_views)

 	ServerGroupServers (class in cfme.middleware.server_group)

 	ServerGroupToolbar (class in cfme.middleware.provider.middleware_views)

 	ServerGroupView (class in cfme.middleware.provider.middleware_views)

 	ServerLogDepot (class in cfme.configure.configuration)

 	ServerMessagingAllView (class in cfme.middleware.provider.middleware_views)

 	ServerMessagings (class in cfme.middleware.server)

 	servers (cfme.base.ui.RegionDiagnosticsView attribute)

 	

 	(cfme.base.ui.ZoneDiagnosticsView attribute)

 	(cfme.infrastructure.pxe.PXESideBar attribute)

 	servers() (cfme.middleware.server.MiddlewareServer class method)

 	servers_in_db() (cfme.middleware.server.MiddlewareServer class method)

 	servers_in_mgmt() (cfme.middleware.server.MiddlewareServer class method)

 	serversbyroles (cfme.base.ui.RegionDiagnosticsView attribute)

 	

 	(cfme.base.ui.ZoneDiagnosticsView attribute)

 	ServerToolbar (class in cfme.middleware.provider.middleware_views)

 	ServerView (class in cfme.base.ui)

 	

 	(class in cfme.middleware.provider.middleware_views)

 	SERVICE (cfme.automate.buttons.ButtonGroup attribute)

 	service (cfme.services.dashboard.ssui.MyServiceForm attribute)

 	

 	(cfme.services.myservice.ssui.MyServicesView attribute)

 	Service (class in cfme.containers.service)

 	service_account (cfme.cloud.provider.gce.GCEEndpointForm attribute)

 	service_catalog_obj() (in module cfme.rest.gen_data)

 	service_catalogs (cfme.services.catalogs.ServicesCatalogView attribute)

 	service_catalogs() (in module cfme.rest.gen_data)

 	service_data() (in module cfme.rest.gen_data)

 	service_dialogs (cfme.automate.AutomateCustomizationView attribute)

 	service_name (cfme.utils.appliance.db.ApplianceDB attribute)

 	service_templates() (in module cfme.rest.gen_data)

 	service_templates_rest() (in module cfme.rest.gen_data)

 	service_templates_ui() (in module cfme.rest.gen_data)

 	service_types (cfme.configure.configuration.region_settings.RedHatUpdates attribute)

 	ServiceAccountCredential (class in cfme.base.credential)

 	ServiceAllView (class in cfme.containers.service)

 	ServiceCatalogDetails (class in cfme.services.catalogs.service_catalogs)

 	ServiceCatalogOrder (class in cfme.services.catalogs.service_catalogs)

 	ServiceCatalogs (class in cfme.services.catalogs.service_catalogs)

 	ServiceCatalogsAll (class in cfme.services.catalogs.service_catalogs)

 	ServiceCatalogsDefault (class in cfme.services.catalogs.service_catalogs)

 	ServiceCatalogsDefaultView (class in cfme.services.catalogs.service_catalogs)

 	ServiceCatalogsView (class in cfme.services.catalogs.service_catalogs)

 	ServiceEditForm (class in cfme.services.myservice.ssui)

 	

 	(class in cfme.services.myservice.ui)

 	ServiceRetirementForm (class in cfme.services.myservice.ui)

 	ServiceRetirementView (class in cfme.services.myservice.ui)

 	services() (in module cfme.rest.gen_data)

 	ServicesCatalog (class in cfme.services.catalogs)

 	ServicesCatalogView (class in cfme.services.catalogs)

 	session (cfme.utils.db.Db attribute)

 	

 	(fixtures.pytest_store.Store attribute)

 	sessionmaker (cfme.utils.db.Db attribute)

 	set_active() (cfme.web_ui.topology.TopologyLegend method)

 	

 	(cfme.web_ui.utilization.Legend method)

 	set_angularjs_value() (in module cfme.fixtures.pytest_selenium)

 	set_async() (cfme.web_ui.multibox.MultiBoxSelect method)

 	set_attribute() (in module cfme.fixtures.pytest_selenium)

 	set_auth_mode() (in module cfme.configure.configuration)

 	set_by_value() (cfme.web_ui.utilization.Option method)

 	set_by_visible_text() (cfme.web_ui.utilization.Option method)

 	set_cap_and_util_all_via_rails() (cfme.utils.appliance.IPAppliance method)

 	set_cfme_server_relationship() (cfme.utils.appliance.IPAppliance method)

 	set_default_view() (cfme.configure.settings.DefaultView class method)

 	set_element_type() (cfme.automate.dialog_element.ElementCollection method)

 	set_filter() (cfme.containers.provider.AdHocMetricsView method)

 	set_full_refresh_threshold() (cfme.utils.appliance.IPAppliance method)

 	set_group_order() (cfme.configure.access_control.Group method)

 	set_hostname() (cfme.utils.appliance.ApplianceConsoleCli method)

 	set_initial_file_end() (cfme.utils.ssh.SSHTail method)

 	set_iso_image_type() (cfme.infrastructure.pxe.ISODatastore method)

 	set_label() (cfme.containers.provider.Labelable method)

 	set_last_record() (cfme.utils.events.EventListener method)

 	set_ntp_servers() (in module cfme.configure.configuration)

 	set_order() (cfme.automate.explorer.domain.DomainCollection method)

 	set_ownership (cfme.services.myservice.MyService attribute)

 	set_ownership() (cfme.cloud.instance.Instance method)

 	

 	(cfme.common.vm.BaseVM method)

 	(in module cfme.services.myservice.ui)

 	set_pglogical_replication() (cfme.utils.appliance.IPAppliance method)

 	set_provider_active() (in module cfme.utils.trackerbot)

 	set_pxe_image_type() (cfme.infrastructure.pxe.PXEServer method)

 	set_quota() (cfme.configure.access_control.Tenant method)

 	set_rails_loglevel() (in module cfme.utils.perf)

 	set_relationship() (cfme.infrastructure.virtual_machines.Vm.CfmeRelationship method)

 	set_replication_worker_host() (in module cfme.configure.configuration)

 	

 	set_retirement_date() (cfme.common.vm.VM method)

 	set_role_product_features() (cfme.configure.access_control.Role method)

 	set_rubyrep_replication() (cfme.utils.appliance.IPAppliance method)

 	set_server_roles() (in module cfme.configure.configuration)

 	set_session_timeout() (cfme.configure.configuration.AuthSetting class method)

 	

 	(cfme.utils.appliance.IPAppliance method)

 	(in module cfme.fixtures.base)

 	set_sync() (cfme.web_ui.multibox.MultiBoxSelect method)

 	set_test_name() (cfme.utils.smtp_collector_client.SMTPCollectorClient method)

 	set_text() (in module cfme.fixtures.pytest_selenium)

 	set_trace() (cfme.fixtures.rdb.Rdb method)

 	set_yaml_config() (cfme.utils.appliance.IPAppliance method)

 	SetOwnership (class in cfme.cloud.instance)

 	SetOwnershipForm (class in cfme.services.myservice.ui)

 	SetOwnershipView (class in cfme.common.vm_views)

 	

 	(class in cfme.services.myservice.ui)

 	SetRetirement (class in cfme.cloud.instance)

 	

 	(class in cfme.infrastructure.virtual_machines)

 	settings (cfme.base.login.BaseLoggedInPage attribute)

 	

 	(cfme.base.ssui.SSUIBaseLoggedInPage attribute)

 	settings_string (cfme.base.Region attribute)

 	SETUP (markers.meta.PluginContainer attribute)

 	setup() (cfme.common.provider.BaseProvider method)

 	

 	(cfme.configure.configuration.ExternalAuthSetting method)

 	(cfme.utils.appliance.db.ApplianceDB method)

 	(in module cfme.utils.apidoc)

 	(in module fixtures.nelson)

 	setup_all_provider_hosts_credentials() (in module cfme.utils.hosts)

 	setup_ansible() (in module cfme.scripting.setup_ansible)

 	setup_authmode_database() (in module cfme.configure.configuration)

 	setup_external_auth_ipa() (in module cfme.utils.ext_auth)

 	setup_external_auth_openldap() (in module cfme.utils.ext_auth)

 	setup_fail() (in module fixtures.parallelizer.parallelizer_tester)

 	setup_for_worker() (in module cfme.utils.log)

 	setup_host_creds() (in module cfme.utils.hosts)

 	setup_logger() (in module cfme.utils.log)

 	setup_one_by_class_or_skip() (in module fixtures.provider)

 	setup_one_or_skip() (in module fixtures.provider)

 	setup_only_one_provider() (in module fixtures.provider)

 	setup_or_skip() (in module fixtures.provider)

 	setup_perf_provider() (in module fixtures.provider)

 	setup_provider() (in module fixtures.provider)

 	setup_provider_clsscope() (in module fixtures.provider)

 	setup_provider_funcscope() (in module fixtures.provider)

 	setup_provider_modscope() (in module fixtures.provider)

 	setup_providers_hosts_credentials() (in module cfme.utils.hosts)

 	setup_repos() (in module cfme.scripting.setup_ansible)

 	setup_virtualenv() (in module cfme.scripting.quickstart)

 	sha256 (cfme.containers.image.Image attribute)

 	SHELVE (cfme.cloud.instance.openstack.OpenStackInstance attribute)

 	SHELVE_OFFLOAD (cfme.cloud.instance.openstack.OpenStackInstance attribute)

 	short_name (cfme.infrastructure.cluster.Cluster attribute)

 	show (cfme.automate.buttons.ButtonDetailView attribute)

 	show_in_console (cfme.configure.configuration.region_settings.CompanyCategoriesAddView attribute)

 	show_summary (cfme.cloud.stack.StackSubpageToolbar attribute)

 	show_update_password() (cfme.base.ui.LoginPage method)

 	ShowingInputs (class in cfme.web_ui)

 	shutdown() (fixtures.parallelizer.remote.SlaveManager method)

 	

 	(in module fixtures.artifactor_plugin)

 	shutdown_button (cfme.middleware.provider.middleware_views.PowerOperationForm attribute)

 	shutdown_domain() (cfme.middleware.domain.MiddlewareDomain method)

 	shutdown_server() (cfme.middleware.server.MiddlewareServer method)

 	ShutdownPlugin (class in cfme.test_framework.sprout.plugin)

 	sidebar (cfme.automate.provisioning_dialogs.ProvDiagView attribute)

 	

 	(cfme.cloud.availability_zone.AvailabilityZoneDetailsView attribute)

 	(cfme.cloud.flavor.FlavorDetailsView attribute)

 	(cfme.cloud.instance.InstanceAllView attribute)

 	(cfme.cloud.instance.InstanceDetailsView attribute)

 	(cfme.cloud.instance.InstanceProviderAllView attribute)

 	(cfme.cloud.instance.image.ImageAllView attribute)

 	(cfme.cloud.instance.image.ImageDetailsView attribute)

 	(cfme.cloud.instance.image.ImageProviderAllView attribute)

 	(cfme.cloud.keypairs.KeyPairDetailsView attribute)

 	(cfme.cloud.stack.StackDetailsView attribute)

 	(cfme.cloud.stack.StackOutputsView attribute)

 	(cfme.cloud.stack.StackParametersView attribute)

 	(cfme.cloud.stack.StackResourcesView attribute)

 	(cfme.cloud.stack.StackSecurityGroupsView attribute)

 	(cfme.cloud.tenant.TenantDetailsView attribute)

 	(cfme.common.host_views.HostsView attribute)

 	(cfme.common.provider_views.ProvidersView attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileAllView attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileDetailsView attribute)

 	(cfme.infrastructure.cluster.ClusterDetailsView attribute)

 	(cfme.infrastructure.datastore.DatastoreDetailsView attribute)

 	(cfme.infrastructure.datastore.DatastoresView attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleAllForProviderView attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleDetailsView attribute)

 	(cfme.infrastructure.pxe.PXEMainView attribute)

 	(cfme.infrastructure.resource_pool.ResourcePoolDetailsView attribute)

 	(cfme.infrastructure.virtual_machines.InfraVmDetailsView attribute)

 	(cfme.infrastructure.virtual_machines.TemplatesOnlyAllView attribute)

 	(cfme.infrastructure.virtual_machines.VmTemplatesAllForProviderView attribute)

 	(cfme.infrastructure.virtual_machines.VmsOnlyAllView attribute)

 	(cfme.infrastructure.virtual_machines.VmsTemplatesAllView attribute)

 	(cfme.middleware.provider.middleware_views.DatasourceDetailsView attribute)

 	(cfme.middleware.provider.middleware_views.DeploymentDetailsView attribute)

 	(cfme.middleware.provider.middleware_views.DomainDetailsView attribute)

 	(cfme.middleware.provider.middleware_views.MessagingDetailsView attribute)

 	(cfme.middleware.provider.middleware_views.ServerDetailsView attribute)

 	(cfme.middleware.provider.middleware_views.ServerGroupDetailsView attribute)

 	(cfme.networks.views.BalancerDetailsView attribute)

 	(cfme.networks.views.BalancerView attribute)

 	(cfme.networks.views.CloudNetworkDetailsView attribute)

 	(cfme.networks.views.CloudNetworkView attribute)

 	(cfme.networks.views.NetworkPortDetailsView attribute)

 	(cfme.networks.views.NetworkPortView attribute)

 	(cfme.networks.views.NetworkProviderDetailsView attribute)

 	(cfme.networks.views.NetworkProviderView attribute)

 	(cfme.networks.views.NetworkRouterDetailsView attribute)

 	(cfme.networks.views.NetworkRouterView attribute)

 	(cfme.networks.views.OneProviderBalancerView attribute)

 	(cfme.networks.views.OneProviderCloudNetworkView attribute)

 	(cfme.networks.views.OneProviderNetworkPortView attribute)

 	(cfme.networks.views.OneProviderNetworkRouterView attribute)

 	(cfme.networks.views.OneProviderSecurityGroupView attribute)

 	(cfme.networks.views.OneProviderSubnetView attribute)

 	(cfme.networks.views.SecurityGroupDetailsView attribute)

 	(cfme.networks.views.SecurityGroupView attribute)

 	(cfme.networks.views.SubnetDetailsView attribute)

 	(cfme.networks.views.SubnetView attribute)

 	(cfme.storage.volume.VolumeDetailsView attribute)

 	simple_user() (in module cfme.configure.access_control)

 	simulate() (in module cfme.automate.simulation)

 	since_date_or_version() (in module cfme.utils.version)

 	single_button() (in module cfme.web_ui.history)

 	single_button_present() (in module cfme.web_ui.history)

 	single_value (cfme.configure.configuration.region_settings.CompanyCategoriesAddView attribute)

 	size (cfme.storage.volume.VolumeAddForm attribute)

 	size_mb (cfme.infrastructure.virtual_machines.VMDisk attribute)

 	skip_and_log() (cfme.exceptions.FlashMessageException method)

 	skip_marks (in module markers.skipper)

 	skip_plugin() (in module cfme.metaplugins.skip)

 	slave_manager (fixtures.pytest_store.Store attribute)

 	slave_server_name() (cfme.utils.appliance.IPAppliance method)

 	slave_server_zone_id() (cfme.utils.appliance.IPAppliance method)

 	SlaveDetail (class in fixtures.parallelizer)

 	slaveid (cfme.utils.log.ArtifactorHandler attribute)

 	

 	(fixtures.pytest_store.Store attribute)

 	slaveid_generator (fixtures.parallelizer.SlaveDetail attribute)

 	SlaveManager (class in fixtures.parallelizer.remote)

 	small_template() (in module fixtures.provider)

 	small_template_modscope() (in module fixtures.provider)

 	smart_management (cfme.ansible.playbooks.PlaybookDetailsEntities attribute)

 	

 	(cfme.cloud.availability_zone.AvailabilityZoneDetailsEntities attribute)

 	(cfme.cloud.flavor.FlavorDetailsEntities attribute)

 	(cfme.cloud.instance.image.ImageDetailsEntities attribute)

 	(cfme.cloud.keypairs.KeyPairDetailsEntities attribute)

 	(cfme.cloud.stack.StackDetailsEntities attribute)

 	(cfme.cloud.tenant.TenantDetailsEntities attribute)

 	(cfme.common.host_views.HostDetailsEntities attribute)

 	(cfme.common.vm_views.VMDetailsEntities attribute)

 	(cfme.infrastructure.cluster.ClusterDetailsEntities attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleDetailsEntities attribute)

 	(cfme.infrastructure.resource_pool.ResourcePoolDetailsEntities attribute)

 	(cfme.middleware.provider.middleware_views.DatasourceDetailsEntities attribute)

 	(cfme.middleware.provider.middleware_views.DeploymentDetailsEntities attribute)

 	(cfme.middleware.provider.middleware_views.DomainDetailsEntities attribute)

 	(cfme.middleware.provider.middleware_views.MessagingDetailsEntities attribute)

 	(cfme.middleware.provider.middleware_views.ServerDetailsEntities attribute)

 	(cfme.middleware.provider.middleware_views.ServerGroupDetailsEntities attribute)

 	(cfme.services.catalogs.ansible_catalog_item.DetailsEntitiesAnsibleCatalogItemView attribute)

 	(cfme.storage.volume.VolumeDetailsEntities attribute)

 	smartproxy_ip (cfme.base.ui.ZoneForm attribute)

 	smartstate_scan() (cfme.common.vm.BaseVM method)

 	SmemMemoryMonitor (class in cfme.utils.smem_memory_monitor)

 	SmokeTests (class in markers.smoke)

 	smtp_settings (cfme.configure.configuration.SMTPSettings attribute)

 	smtp_test() (in module cfme.fixtures.smtp)

 	SMTPCollectorClient (class in cfme.utils.smtp_collector_client)

 	SMTPSettings (class in cfme.configure.configuration)

 	snapshot_age (cfme.control.explorer.actions.ActionFormCommon attribute)

 	snapshot_name (cfme.control.explorer.actions.ActionFormCommon attribute)

 	snapshot_tree (cfme.infrastructure.virtual_machines.Vm.Snapshot attribute)

 	snmp_trap (cfme.control.explorer.alerts.AlertFormCommon attribute)

 	snmp_trap_send (cfme.control.explorer.alerts.AlertFormCommon attribute)

 	SNMPForm (class in cfme.control.snmp_form)

 	SNMPHostsField (class in cfme.control.snmp_form)

 	SNMPTrap (class in cfme.control.snmp_form)

 	SNMPTrapField (class in cfme.control.snmp_form)

 	SNMPTrapsField (class in cfme.control.snmp_form)

 	sockets (cfme.infrastructure.virtual_machines.InfraVmReconfigureView attribute)

 	soft_assert() (in module fixtures.soft_assert)

 	soft_get() (in module cfme.utils.soft_get)

 	SOFT_REBOOT (cfme.cloud.instance.azure.AzureInstance attribute)

 	

 	(cfme.cloud.instance.ec2.EC2Instance attribute)

 	(cfme.cloud.instance.gce.GCEInstance attribute)

 	(cfme.cloud.instance.openstack.OpenStackInstance attribute)

 	SoftAssertionError

 	sort_by() (cfme.web_ui.SortTable method)

 	

 	(in module cfme.web_ui.paginator)

 	SORT_CELL (cfme.web_ui.SortTable attribute)

 	SORT_LINK (cfme.web_ui.SortTable attribute)

 	sort_order (cfme.web_ui.SortTable attribute)

 	sorted_by (cfme.web_ui.SortTable attribute)

 	SortTable (class in cfme.web_ui)

 	spawn_server() (in module fixtures.artifactor_plugin)

 	split_appliance_charts() (in module cfme.utils.perf_message_stats)

 	SplitCheckboxTable (class in cfme.web_ui)

 	SplitPagedTable (class in cfme.web_ui)

 	SplitTable (class in cfme.web_ui)

 	SproutClient (class in cfme.test_framework.sprout.client)

 	SproutException

 	SproutManager (class in cfme.test_framework.sprout.plugin)

 	SproutProvisioningRequest (class in cfme.test_framework.sprout.plugin)

 	SPTuple (in module cfme.utils.version)

 	ssh_client (cfme.utils.appliance.db.ApplianceDB attribute)

 	

 	(cfme.utils.appliance.IPAppliance attribute)

 	ssh_client_with_privatekey() (cfme.utils.appliance.IPAppliance method)

 	ssh_clients_to_close (fixtures.pytest_store.Store attribute)

 	ssh_location (cfme.services.catalogs.service_catalogs.OrderForm attribute)

 	SSHClient (class in cfme.utils.ssh)

 	SSHCredential (class in cfme.base.credential)

 	SSHEndpoint (class in cfme.common.provider)

 	SSHResult (class in cfme.utils.ssh)

 	SSHTail (class in cfme.utils.ssh)

 	SSUIBaseLoggedInPage (class in cfme.base.ssui)

 	SSUINavigateStep (class in cfme.utils.appliance.implementations.ssui)

 	Stack (class in cfme.cloud.stack)

 	stack_name (cfme.services.catalogs.service_catalogs.OrderForm attribute)

 	stack_timeout (cfme.services.catalogs.service_catalogs.OrderForm attribute)

 	StackAllView (class in cfme.cloud.stack)

 	StackCollection (class in cfme.cloud.stack)

 	StackDetailsAccordion (class in cfme.cloud.stack)

 	StackDetailsEntities (class in cfme.cloud.stack)

 	StackDetailsToolbar (class in cfme.cloud.stack)

 	StackDetailsView (class in cfme.cloud.stack)

 	StackEntities (class in cfme.cloud.stack)

 	StackNotFound

 	StackOutputsEntities (class in cfme.cloud.stack)

 	StackOutputsView (class in cfme.cloud.stack)

 	StackParametersEntities (class in cfme.cloud.stack)

 	StackParametersView (class in cfme.cloud.stack)

 	StackResourcesEntities (class in cfme.cloud.stack)

 	StackResourcesView (class in cfme.cloud.stack)

 	StackSecurityGroupsEntities (class in cfme.cloud.stack)

 	StackSecurityGroupsView (class in cfme.cloud.stack)

 	StackSubpageToolbar (class in cfme.cloud.stack)

 	StackToolbar (class in cfme.cloud.stack)

 	StackView (class in cfme.cloud.stack)

 	START (cfme.cloud.instance.azure.AzureInstance attribute)

 	

 	(cfme.cloud.instance.ec2.EC2Instance attribute)

 	(cfme.cloud.instance.gce.GCEInstance attribute)

 	(cfme.cloud.instance.openstack.OpenStackInstance attribute)

 	start (cfme.common.provider_views.CloudProvidersDiscoverView attribute)

 	

 	(cfme.common.provider_views.InfraProvidersDiscoverView attribute)

 	start() (cfme.utils.appliance.Appliance method)

 	

 	(cfme.utils.appliance.services.SystemdService method)

 	(cfme.utils.browser.BrowserManager method)

 	(cfme.utils.events.EventListener method)

 	(cfme.utils.log.Perflog method)

 	(cfme.utils.video.Recorder method)

 	(fixtures.parallelizer.SlaveDetail method)

 	(in module cfme.utils.browser)

 	start_button (cfme.common.host_views.HostDiscoverView attribute)

 	start_db_service() (cfme.utils.appliance.db.ApplianceDB method)

 	start_domain() (cfme.middleware.domain.MiddlewareDomain method)

 	start_evm_service() (cfme.utils.appliance.IPAppliance method)

 	start_server() (cfme.middleware.server.MiddlewareServer method)

 	start_server_group() (cfme.middleware.server_group.MiddlewareServerGroup method)

 	start_time (markers.smoke.SmokeTests attribute)

 	started (cfme.utils.events.EventListener attribute)

 	starting_date (cfme.intelligence.reports.schedules.SchedulesFormCommon attribute)

 	

 	(cfme.intelligence.reports.widgets.chart_widgets.ChartWidgetFormCommon attribute)

 	(cfme.intelligence.reports.widgets.report_widgets.ReportWidgetFormCommon attribute)

 	(cfme.intelligence.reports.widgets.rss_widgets.RSSWidgetFormCommon attribute)

 	starting_hour (cfme.intelligence.reports.widgets.chart_widgets.ChartWidgetFormCommon attribute)

 	

 	(cfme.intelligence.reports.widgets.report_widgets.ReportWidgetFormCommon attribute)

 	(cfme.intelligence.reports.widgets.rss_widgets.RSSWidgetFormCommon attribute)

 	starting_minute (cfme.intelligence.reports.widgets.chart_widgets.ChartWidgetFormCommon attribute)

 	

 	(cfme.intelligence.reports.widgets.report_widgets.ReportWidgetFormCommon attribute)

 	(cfme.intelligence.reports.widgets.rss_widgets.RSSWidgetFormCommon attribute)

 	STATE_ARCHIVED (cfme.cloud.instance.azure.AzureInstance attribute)

 	

 	(cfme.cloud.instance.ec2.EC2Instance attribute)

 	(cfme.cloud.instance.gce.GCEInstance attribute)

 	(cfme.cloud.instance.openstack.OpenStackInstance attribute)

 	STATE_ERROR (cfme.cloud.instance.openstack.OpenStackInstance attribute)

 	STATE_OFF (cfme.cloud.instance.azure.AzureInstance attribute)

 	

 	(cfme.cloud.instance.ec2.EC2Instance attribute)

 	(cfme.cloud.instance.gce.GCEInstance attribute)

 	(cfme.cloud.instance.openstack.OpenStackInstance attribute)

 	(cfme.infrastructure.virtual_machines.Vm attribute)

 	STATE_ON (cfme.cloud.instance.azure.AzureInstance attribute)

 	

 	(cfme.cloud.instance.ec2.EC2Instance attribute)

 	(cfme.cloud.instance.gce.GCEInstance attribute)

 	(cfme.cloud.instance.openstack.OpenStackInstance attribute)

 	(cfme.infrastructure.virtual_machines.Vm attribute)

 	STATE_PAUSED (cfme.cloud.instance.openstack.OpenStackInstance attribute)

 	STATE_REBOOTING (cfme.cloud.instance.openstack.OpenStackInstance attribute)

 	STATE_SHELVED (cfme.cloud.instance.openstack.OpenStackInstance attribute)

 	STATE_SHELVED_OFFLOAD (cfme.cloud.instance.openstack.OpenStackInstance attribute)

 	STATE_SUSPENDED (cfme.cloud.instance.azure.AzureInstance attribute)

 	

 	(cfme.cloud.instance.ec2.EC2Instance attribute)

 	(cfme.cloud.instance.gce.GCEInstance attribute)

 	(cfme.cloud.instance.openstack.OpenStackInstance attribute)

 	(cfme.infrastructure.virtual_machines.Vm attribute)

 	STATE_TERMINATED (cfme.cloud.instance.azure.AzureInstance attribute)

 	

 	(cfme.cloud.instance.ec2.EC2Instance attribute)

 	(cfme.cloud.instance.gce.GCEInstance attribute)

 	(cfme.cloud.instance.openstack.OpenStackInstance attribute)

 	STATE_UNKNOWN (cfme.cloud.instance.azure.AzureInstance attribute)

 	

 	(cfme.cloud.instance.ec2.EC2Instance attribute)

 	(cfme.cloud.instance.gce.GCEInstance attribute)

 	(cfme.cloud.instance.openstack.OpenStackInstance attribute)

 	STATS_TO_MATCH (cfme.cloud.provider.CloudProvider attribute)

 	

 	(cfme.common.provider.BaseProvider attribute)

 	(cfme.containers.provider.ContainersProvider attribute)

 	(cfme.containers.provider.openshift.OpenshiftProvider attribute)

 	(cfme.infrastructure.provider.InfraProvider attribute)

 	(cfme.infrastructure.provider.openstack_infra.OpenstackInfraProvider attribute)

 	(cfme.infrastructure.provider.scvmm.SCVMMProvider attribute)

 	(cfme.middleware.provider.MiddlewareProvider attribute)

 	(cfme.middleware.provider.hawkular.HawkularProvider attribute)

 	(cfme.networks.provider.NetworkProvider attribute)

 	status (cfme.services.requests.Request attribute)

 	

 	(cfme.utils.ssh.SSHClient attribute)

 	status() (cfme.web_ui.ButtonGroup method)

 	

 	(cfme.web_ui.ColorGroup method)

 	status_info (cfme.intelligence.reports.widgets.DashboardWidgetDetailsView attribute)

 	StatusBox (class in cfme.web_ui)

 	step() (cfme.ansible.credentials.Add method)

 	

 	(cfme.ansible.credentials.AnsibleCredentials method)

 	(cfme.ansible.credentials.Details method)

 	(cfme.ansible.credentials.Edit method)

 	(cfme.ansible.playbooks.AnsiblePlaybooks method)

 	(cfme.ansible.playbooks.Details method)

 	(cfme.ansible.repositories.Add method)

 	(cfme.ansible.repositories.AnsibleRepositories method)

 	(cfme.ansible.repositories.Details method)

 	(cfme.ansible.repositories.Edit method)

 	(cfme.automate.AutomateCustomization method)

 	(cfme.automate.buttons.ButtonAll method)

 	(cfme.automate.buttons.ButtonDetails method)

 	(cfme.automate.buttons.ButtonEdit method)

 	(cfme.automate.buttons.ButtonGroupAll method)

 	(cfme.automate.buttons.ButtonGroupDetails method)

 	(cfme.automate.buttons.ButtonGroupEdit method)

 	(cfme.automate.buttons.ButtonGroupNew method)

 	(cfme.automate.buttons.ButtonGroupObjectType method)

 	(cfme.automate.buttons.ButtonNew method)

 	(cfme.automate.dialog_box.Add method)

 	(cfme.automate.dialog_element.Add method)

 	(cfme.automate.dialog_tab.Add method)

 	(cfme.automate.explorer.AutomateExplorer method)

 	(cfme.automate.explorer.domain.Add method)

 	(cfme.automate.explorer.domain.All method)

 	(cfme.automate.explorer.domain.Details method)

 	(cfme.automate.explorer.domain.Edit method)

 	(cfme.automate.explorer.domain.Priority method)

 	(cfme.automate.explorer.instance.Add method)

 	(cfme.automate.explorer.instance.Copy method)

 	(cfme.automate.explorer.instance.Details method)

 	(cfme.automate.explorer.instance.Edit method)

 	(cfme.automate.explorer.klass.Add method)

 	(cfme.automate.explorer.klass.Copy method)

 	(cfme.automate.explorer.klass.Details method)

 	(cfme.automate.explorer.klass.Edit method)

 	(cfme.automate.explorer.klass.EditSchema method)

 	(cfme.automate.explorer.method.Add method)

 	(cfme.automate.explorer.method.Copy method)

 	(cfme.automate.explorer.method.Details method)

 	(cfme.automate.explorer.method.Edit method)

 	(cfme.automate.explorer.namespace.Add method)

 	(cfme.automate.explorer.namespace.Details method)

 	(cfme.automate.explorer.namespace.Edit method)

 	(cfme.automate.provisioning_dialogs.Add method)

 	(cfme.automate.provisioning_dialogs.All method)

 	(cfme.automate.provisioning_dialogs.Details method)

 	(cfme.automate.provisioning_dialogs.Edit method)

 	(cfme.automate.service_dialogs.Add method)

 	(cfme.automate.service_dialogs.All method)

 	(cfme.automate.service_dialogs.Details method)

 	(cfme.automate.service_dialogs.Edit method)

 	(cfme.base.ssui.LoggedIn method)

 	(cfme.base.ssui.LoginScreen method)

 	(cfme.base.ui.About method)

 	(cfme.base.ui.Advanced method)

 	(cfme.base.ui.AuditLog method)

 	(cfme.base.ui.Authentication method)

 	(cfme.base.ui.AutomateImportExport method)

 	(cfme.base.ui.AutomateSimulation method)

 	(cfme.base.ui.CFMELog method)

 	(cfme.base.ui.Chargeback method)

 	(cfme.base.ui.Configuration method)

 	(cfme.base.ui.CustomLogos method)

 	(cfme.base.ui.Dashboard method)

 	(cfme.base.ui.Details method)

 	(cfme.base.ui.Diagnostics method)

 	(cfme.base.ui.DiagnosticsCollectLogs method)

 	(cfme.base.ui.DiagnosticsCollectLogsEdit method)

 	(cfme.base.ui.DiagnosticsCollectLogsEditSlave method)

 	(cfme.base.ui.DiagnosticsCollectLogsSlave method)

 	(cfme.base.ui.DiagnosticsDetails method)

 	(cfme.base.ui.DiagnosticsWorkers method)

 	(cfme.base.ui.Documentation method)

 	(cfme.base.ui.Import method)

 	(cfme.base.ui.ImportTags method)

 	(cfme.base.ui.LoggedIn method)

 	(cfme.base.ui.LoginScreen method)

 	(cfme.base.ui.MySettings method)

 	(cfme.base.ui.ProductionLog method)

 	(cfme.base.ui.RSS method)

 	(cfme.base.ui.RegionDetails method)

 	(cfme.base.ui.RegionDiagnostics method)

 	(cfme.base.ui.RegionDiagnosticsDatabase method)

 	(cfme.base.ui.RegionDiagnosticsOrphanedData method)

 	(cfme.base.ui.RegionDiagnosticsReplication method)

 	(cfme.base.ui.RegionDiagnosticsRolesByServers method)

 	(cfme.base.ui.RegionDiagnosticsServers method)

 	(cfme.base.ui.RegionDiagnosticsServersByRoles method)

 	(cfme.base.ui.RegionDiagnosticsZones method)

 	(cfme.base.ui.RegionZones method)

 	(cfme.base.ui.ServerDetails method)

 	(cfme.base.ui.Tasks method)

 	(cfme.base.ui.Timelines method)

 	(cfme.base.ui.Utilization method)

 	(cfme.base.ui.Workers method)

 	(cfme.base.ui.ZoneAdd method)

 	(cfme.base.ui.ZoneCANDUGapCollection method)

 	(cfme.base.ui.ZoneDetails method)

 	(cfme.base.ui.ZoneDiagnostics method)

 	(cfme.base.ui.ZoneDiagnosticsCollectLogs method)

 	(cfme.base.ui.ZoneDiagnosticsCollectLogsEdit method)

 	(cfme.base.ui.ZoneDiagnosticsRolesByServers method)

 	(cfme.base.ui.ZoneDiagnosticsServers method)

 	(cfme.base.ui.ZoneDiagnosticsServersByRoles method)

 	(cfme.base.ui.ZoneEdit method)

 	(cfme.cloud.availability_zone.AvailabilityZoneAll method)

 	(cfme.cloud.availability_zone.AvailabilityZoneDetails method)

 	(cfme.cloud.availability_zone.AvailabilityZoneEditTags method)

 	(cfme.cloud.availability_zone.AvailabilityZoneTimelines method)

 	(cfme.cloud.flavor.FlavorAll method)

 	(cfme.cloud.flavor.FlavorDetails method)

 	(cfme.cloud.flavor.FlavorEditTags method)

 	(cfme.cloud.instance.All method)

 	(cfme.cloud.instance.AllForProvider method)

 	(cfme.cloud.instance.Details method)

 	(cfme.cloud.instance.Edit method)

 	(cfme.cloud.instance.EditManagementEngineRelationship method)

 	(cfme.cloud.instance.EditTags method)

 	(cfme.cloud.instance.ManagePolicies method)

 	(cfme.cloud.instance.PolicySimulation method)

 	(cfme.cloud.instance.Provision method)

 	(cfme.cloud.instance.SetOwnership method)

 	(cfme.cloud.instance.SetRetirement method)

 	(cfme.cloud.instance.Timelines method)

 	(cfme.cloud.instance.image.ImageAll method)

 	(cfme.cloud.instance.image.ImageAllForProvider method)

 	(cfme.cloud.instance.image.ImageDetails method)

 	(cfme.cloud.instance.image.ImageEdit method)

 	(cfme.cloud.instance.image.ImageEditTags method)

 	(cfme.cloud.instance.image.ImageManagePolicies method)

 	(cfme.cloud.instance.image.ImagePolicySimulation method)

 	(cfme.cloud.instance.image.ImageProvisionImage method)

 	(cfme.cloud.instance.image.ImageSetOwnership method)

 	(cfme.cloud.instance.openstack.AddFloatingIP method)

 	(cfme.cloud.instance.openstack.AttachVolume method)

 	(cfme.cloud.instance.openstack.DetachVolume method)

 	(cfme.cloud.instance.openstack.Evacuate method)

 	(cfme.cloud.instance.openstack.Migrate method)

 	(cfme.cloud.instance.openstack.Reconfigure method)

 	(cfme.cloud.instance.openstack.RemoveFloatingIP method)

 	(cfme.cloud.instance.openstack.RightSize method)

 	(cfme.cloud.keypairs.Add method)

 	(cfme.cloud.keypairs.CloudKeyPairs method)

 	(cfme.cloud.keypairs.Details method)

 	(cfme.cloud.keypairs.EditTagsFromDetails method)

 	(cfme.cloud.provider.All method)

 	(cfme.cloud.provider.Details method)

 	(cfme.cloud.provider.Discover method)

 	(cfme.cloud.provider.Edit method)

 	(cfme.cloud.provider.EditFromDetails method)

 	(cfme.cloud.provider.EditTags method)

 	(cfme.cloud.provider.EditTagsFromDetails method)

 	(cfme.cloud.provider.Images method)

 	(cfme.cloud.provider.Instances method)

 	(cfme.cloud.provider.ManagePolicies method)

 	(cfme.cloud.provider.ManagePoliciesFromDetails method)

 	(cfme.cloud.provider.New method)

 	(cfme.cloud.provider.Timelines method)

 	(cfme.cloud.stack.All method)

 	(cfme.cloud.stack.Details method)

 	(cfme.cloud.stack.EditTags method)

 	(cfme.cloud.stack.RelationshipOutputs method)

 	(cfme.cloud.stack.RelationshipParameters method)

 	(cfme.cloud.stack.RelationshipResources method)

 	(cfme.cloud.stack.RelationshipsSecurityGroups method)

 	(cfme.cloud.tenant.TenantAdd method)

 	(cfme.cloud.tenant.TenantAll method)

 	(cfme.cloud.tenant.TenantDetails method)

 	(cfme.cloud.tenant.TenantEdit method)

 	(cfme.cloud.tenant.TenantEditTags method)

 	(cfme.configure.access_control.EditGroupSequence method)

 	(cfme.configure.access_control.GroupAdd method)

 	(cfme.configure.access_control.GroupAll method)

 	(cfme.configure.access_control.GroupDetails method)

 	(cfme.configure.access_control.GroupEdit method)

 	(cfme.configure.access_control.GroupTagsEdit method)

 	(cfme.configure.access_control.RoleAdd method)

 	(cfme.configure.access_control.RoleAll method)

 	(cfme.configure.access_control.RoleDetails method)

 	(cfme.configure.access_control.RoleEdit method)

 	(cfme.configure.access_control.TenantAdd method)

 	(cfme.configure.access_control.TenantAll method)

 	(cfme.configure.access_control.TenantDetails method)

 	(cfme.configure.access_control.TenantEdit method)

 	(cfme.configure.access_control.TenantManageQuotas method)

 	(cfme.configure.access_control.UserAdd method)

 	(cfme.configure.access_control.UserAll method)

 	(cfme.configure.access_control.UserDetails method)

 	(cfme.configure.access_control.UserEdit method)

 	(cfme.configure.access_control.UserTagsEdit method)

 	(cfme.configure.configuration.CategoryAdd method)

 	(cfme.configure.configuration.CategoryAll method)

 	(cfme.configure.configuration.CategoryEdit method)

 	(cfme.configure.configuration.ScheduleAdd method)

 	(cfme.configure.configuration.ScheduleAll method)

 	(cfme.configure.configuration.ScheduleDetails method)

 	(cfme.configure.configuration.ScheduleEdit method)

 	(cfme.configure.configuration.TagsAdd method)

 	(cfme.configure.configuration.TagsAll method)

 	(cfme.configure.configuration.TagsEdit method)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileAdd method)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileAll method)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileCopy method)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileDetails method)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileEdit method)

 	(cfme.configure.configuration.region_settings.CANDUCollectionDetails method)

 	(cfme.configure.configuration.region_settings.CategoryAdd method)

 	(cfme.configure.configuration.region_settings.CategoryAll method)

 	(cfme.configure.configuration.region_settings.CategoryEdit method)

 	(cfme.configure.configuration.region_settings.Details method)

 	(cfme.configure.configuration.region_settings.Edit method)

 	(cfme.configure.configuration.region_settings.MapTagsAdd method)

 	(cfme.configure.configuration.region_settings.MapTagsAll method)

 	(cfme.configure.configuration.region_settings.MapTagsEdit method)

 	(cfme.configure.configuration.region_settings.TagsAdd method)

 	(cfme.configure.configuration.region_settings.TagsAll method)

 	(cfme.configure.configuration.region_settings.TagsEdit method)

 	(cfme.configure.settings.DefaultFilterAll method)

 	(cfme.configure.settings.DefaultViewAll method)

 	(cfme.configure.settings.TimeprofileAll method)

 	(cfme.configure.settings.VisualAll method)

 	(cfme.configure.tasks.AllOtherTasks method)

 	(cfme.configure.tasks.AllTasks method)

 	(cfme.configure.tasks.MyOtherTasks method)

 	(cfme.configure.tasks.MyTasks method)

 	(cfme.containers.container.ContainerAll method)

 	(cfme.containers.container.ContainerDetails method)

 	(cfme.containers.container.ContainerEditTags method)

 	(cfme.containers.container.ContainerTimeLines method)

 	(cfme.containers.container.ContainerUtilization method)

 	(cfme.containers.image.All method)

 	(cfme.containers.image.Details method)

 	(cfme.containers.image_registry.ImageRegistryAll method)

 	(cfme.containers.image_registry.ImageRegistryDetails method)

 	(cfme.containers.image_registry.ImageRegistryEditTags method)

 	(cfme.containers.node.All method)

 	(cfme.containers.node.Details method)

 	(cfme.containers.node.EditTags method)

 	(cfme.containers.node.ManagePolicies method)

 	(cfme.containers.node.Timelines method)

 	(cfme.containers.node.Utilization method)

 	(cfme.containers.overview.All method)

 	(cfme.containers.pod.All method)

 	(cfme.containers.pod.Details method)

 	(cfme.containers.project.All method)

 	(cfme.containers.project.Details method)

 	(cfme.containers.provider.AdHocMain method)

 	(cfme.containers.provider.Add method)

 	(cfme.containers.provider.All method)

 	(cfme.containers.provider.Details method)

 	(cfme.containers.provider.Edit method)

 	(cfme.containers.provider.EditFromDetails method)

 	(cfme.containers.provider.EditTags method)

 	(cfme.containers.provider.EditTagsFromDetails method)

 	(cfme.containers.provider.TimelinesFromDetails method)

 	(cfme.containers.provider.TopologyFromDetails method)

 	(cfme.containers.replicator.All method)

 	(cfme.containers.replicator.Details method)

 	(cfme.containers.route.All method)

 	(cfme.containers.route.Details method)

 	(cfme.containers.service.All method)

 	(cfme.containers.service.Details method)

 	(cfme.containers.template.All method)

 	(cfme.containers.template.Details method)

 	(cfme.containers.topology.All method)

 	(cfme.containers.volume.All method)

 	(cfme.containers.volume.Details method)

 	(cfme.control.explorer.ControlExplorer method)

 	(cfme.control.explorer.actions.ActionDetails method)

 	(cfme.control.explorer.actions.ActionEdit method)

 	(cfme.control.explorer.actions.ActionNew method)

 	(cfme.control.explorer.alert_profiles.AlertProfileDetails method)

 	(cfme.control.explorer.alert_profiles.AlertProfileEdit method)

 	(cfme.control.explorer.alert_profiles.AlertProfileEditAssignments method)

 	(cfme.control.explorer.alert_profiles.AlertProfileNew method)

 	(cfme.control.explorer.alerts.AlertCopy method)

 	(cfme.control.explorer.alerts.AlertDetails method)

 	(cfme.control.explorer.alerts.AlertEdit method)

 	(cfme.control.explorer.alerts.AlertNew method)

 	(cfme.control.explorer.conditions.ConditionDetails method)

 	(cfme.control.explorer.conditions.ConditionEdit method)

 	(cfme.control.explorer.conditions.ConditionNew method)

 	(cfme.control.explorer.policies.PolicyConditionDetails method)

 	(cfme.control.explorer.policies.PolicyDetails method)

 	(cfme.control.explorer.policies.PolicyEdit method)

 	(cfme.control.explorer.policies.PolicyEventDetails method)

 	(cfme.control.explorer.policies.PolicyNew method)

 	(cfme.control.explorer.policy_profiles.PolicyProfileDetails method)

 	(cfme.control.explorer.policy_profiles.PolicyProfileEdit method)

 	(cfme.control.explorer.policy_profiles.PolicyProfileNew method)

 	(cfme.control.import_export.ControlImportExport method)

 	(cfme.control.log.ControlLog method)

 	(cfme.control.simulation.ControlSimulation method)

 	(cfme.dashboard.DashboardDetails method)

 	(cfme.infrastructure.cluster.All method)

 	(cfme.infrastructure.cluster.Details method)

 	(cfme.infrastructure.cluster.EditTagsFromDetails method)

 	(cfme.infrastructure.cluster.Timelines method)

 	(cfme.infrastructure.config_management.Details method)

 	(cfme.infrastructure.config_management.MgrAdd method)

 	(cfme.infrastructure.config_management.MgrAll method)

 	(cfme.infrastructure.config_management.MgrDetails method)

 	(cfme.infrastructure.config_management.MgrEdit method)

 	(cfme.infrastructure.config_management.MgrEditFromDetails method)

 	(cfme.infrastructure.config_management.SysAll method)

 	(cfme.infrastructure.config_management.SysEditTags method)

 	(cfme.infrastructure.config_management.SysProvision method)

 	(cfme.infrastructure.datastore.All method)

 	(cfme.infrastructure.datastore.Details method)

 	(cfme.infrastructure.datastore.DetailsFromProvider method)

 	(cfme.infrastructure.datastore.EditTagsFromDetails method)

 	(cfme.infrastructure.deployment_roles.All method)

 	(cfme.infrastructure.deployment_roles.AllForProvider method)

 	(cfme.infrastructure.deployment_roles.Details method)

 	(cfme.infrastructure.deployment_roles.DetailsFromProvider method)

 	(cfme.infrastructure.host.Add method)

 	(cfme.infrastructure.host.All method)

 	(cfme.infrastructure.host.Details method)

 	(cfme.infrastructure.host.Discover method)

 	(cfme.infrastructure.host.Edit method)

 	(cfme.infrastructure.host.EditTagsFromDetails method)

 	(cfme.infrastructure.host.PolicyAssignment method)

 	(cfme.infrastructure.host.Provision method)

 	(cfme.infrastructure.host.Timelines method)

 	(cfme.infrastructure.networking.All method)

 	(cfme.infrastructure.provider.Add method)

 	(cfme.infrastructure.provider.All method)

 	(cfme.infrastructure.provider.Details method)

 	(cfme.infrastructure.provider.DetailsFromProvider method)

 	(cfme.infrastructure.provider.Discover method)

 	(cfme.infrastructure.provider.Edit method)

 	(cfme.infrastructure.provider.EditTags method)

 	(cfme.infrastructure.provider.EditTagsFromDetails method)

 	(cfme.infrastructure.provider.ManagePolicies method)

 	(cfme.infrastructure.provider.ManagePoliciesFromDetails method)

 	(cfme.infrastructure.provider.Timelines method)

 	(cfme.infrastructure.provider.openstack_infra.ProviderNodes method)

 	(cfme.infrastructure.provider.openstack_infra.ProviderRegisterNodes method)

 	(cfme.infrastructure.provider.openstack_infra.ProviderScaleDown method)

 	(cfme.infrastructure.provider.openstack_infra.ProviderScaleOut method)

 	(cfme.infrastructure.provider.virtualcenter.ProviderNodes method)

 	(cfme.infrastructure.pxe.CustomizationTemplateAdd method)

 	(cfme.infrastructure.pxe.CustomizationTemplateAll method)

 	(cfme.infrastructure.pxe.CustomizationTemplateDetails method)

 	(cfme.infrastructure.pxe.CustomizationTemplateEdit method)

 	(cfme.infrastructure.pxe.ISODatastoreAdd method)

 	(cfme.infrastructure.pxe.ISODatastoreAll method)

 	(cfme.infrastructure.pxe.ISODatastoreDetails method)

 	(cfme.infrastructure.pxe.PXEMainPage method)

 	(cfme.infrastructure.pxe.PXEServerAdd method)

 	(cfme.infrastructure.pxe.PXEServerAll method)

 	(cfme.infrastructure.pxe.PXEServerDetails method)

 	(cfme.infrastructure.pxe.PXEServerEdit method)

 	(cfme.infrastructure.pxe.SystemImageTypeAdd method)

 	(cfme.infrastructure.pxe.SystemImageTypeAll method)

 	(cfme.infrastructure.pxe.SystemImageTypeDetails method)

 	(cfme.infrastructure.pxe.SystemImageTypeEdit method)

 	(cfme.infrastructure.resource_pool.All method)

 	(cfme.infrastructure.resource_pool.Details method)

 	(cfme.infrastructure.resource_pool.EditTagsFromDetails method)

 	(cfme.infrastructure.virtual_machines.EditTagsFromDetails method)

 	(cfme.infrastructure.virtual_machines.ProvisionVM method)

 	(cfme.infrastructure.virtual_machines.SetRetirement method)

 	(cfme.infrastructure.virtual_machines.TemplatesAll method)

 	(cfme.infrastructure.virtual_machines.Timelines method)

 	(cfme.infrastructure.virtual_machines.VmAll method)

 	(cfme.infrastructure.virtual_machines.VmAllWithTemplates method)

 	(cfme.infrastructure.virtual_machines.VmAllWithTemplatesDetails method)

 	(cfme.infrastructure.virtual_machines.VmAllWithTemplatesForProvider method)

 	(cfme.infrastructure.virtual_machines.VmClone method)

 	(cfme.infrastructure.virtual_machines.VmDetails method)

 	(cfme.infrastructure.virtual_machines.VmEdit method)

 	(cfme.infrastructure.virtual_machines.VmEngineRelationship method)

 	(cfme.infrastructure.virtual_machines.VmMigrate method)

 	(cfme.infrastructure.virtual_machines.VmReconfigure method)

 	(cfme.intelligence.chargeback.IntelChargeback method)

 	(cfme.intelligence.chargeback.assignments.AssignAll method)

 	(cfme.intelligence.chargeback.assignments.AssignCompute method)

 	(cfme.intelligence.chargeback.assignments.AssignStorage method)

 	(cfme.intelligence.chargeback.rates.ComputeRateAll method)

 	(cfme.intelligence.chargeback.rates.ComputeRateDetails method)

 	(cfme.intelligence.chargeback.rates.ComputeRateEdit method)

 	(cfme.intelligence.chargeback.rates.ComputeRateNew method)

 	(cfme.intelligence.chargeback.rates.StorageRateAll method)

 	(cfme.intelligence.chargeback.rates.StorageRateDetails method)

 	(cfme.intelligence.chargeback.rates.StorageRateEdit method)

 	(cfme.intelligence.chargeback.rates.StorageRateNew method)

 	(cfme.intelligence.reports.CloudIntelReports method)

 	(cfme.intelligence.reports.dashboards.DashboardDetails method)

 	(cfme.intelligence.reports.dashboards.DashboardEdit method)

 	(cfme.intelligence.reports.dashboards.DashboardNew method)

 	(cfme.intelligence.reports.dashboards.DefaultDashboardDetails method)

 	(cfme.intelligence.reports.dashboards.DefaultDashboardEdit method)

 	(cfme.intelligence.reports.import_export.ImportExportCustomReports method)

 	(cfme.intelligence.reports.import_export.ImportExportWidgets method)

 	(cfme.intelligence.reports.menus.EditReportMenus method)

 	(cfme.intelligence.reports.reports.CannedReportInfo method)

 	(cfme.intelligence.reports.reports.CannedSavedReportDetails method)

 	(cfme.intelligence.reports.reports.CustomReportAll method)

 	(cfme.intelligence.reports.reports.CustomReportDetails method)

 	(cfme.intelligence.reports.reports.CustomReportEdit method)

 	(cfme.intelligence.reports.reports.CustomReportNew method)

 	(cfme.intelligence.reports.reports.CustomSavedReportDetails method)

 	(cfme.intelligence.reports.saved.ScheduleDetails method)

 	(cfme.intelligence.reports.schedules.ScheduleAll method)

 	(cfme.intelligence.reports.schedules.ScheduleDetails method)

 	(cfme.intelligence.reports.schedules.ScheduleEdit method)

 	(cfme.intelligence.reports.schedules.ScheduleNew method)

 	(cfme.intelligence.reports.widgets.BaseDashboardWidgetDetailsStep method)

 	(cfme.intelligence.reports.widgets.BaseEditDashboardWidgetStep method)

 	(cfme.intelligence.reports.widgets.BaseNewDashboardWidgetStep method)

 	(cfme.middleware.datasource.All method)

 	(cfme.middleware.datasource.Details method)

 	(cfme.middleware.deployment.All method)

 	(cfme.middleware.deployment.Details method)

 	(cfme.middleware.domain.All method)

 	(cfme.middleware.domain.Details method)

 	(cfme.middleware.domain.DomainServerGroups method)

 	(cfme.middleware.messaging.All method)

 	(cfme.middleware.messaging.Details method)

 	(cfme.middleware.provider.Add method)

 	(cfme.middleware.provider.All method)

 	(cfme.middleware.provider.Details method)

 	(cfme.middleware.provider.Edit method)

 	(cfme.middleware.provider.EditFromDetails method)

 	(cfme.middleware.provider.EditTags method)

 	(cfme.middleware.provider.EditTagsFromDetails method)

 	(cfme.middleware.provider.ProviderDatasources method)

 	(cfme.middleware.provider.ProviderDeployments method)

 	(cfme.middleware.provider.ProviderDomains method)

 	(cfme.middleware.provider.ProviderMessagings method)

 	(cfme.middleware.provider.ProviderServers method)

 	(cfme.middleware.provider.Timelines method)

 	(cfme.middleware.provider.TopologyFromDetails method)

 	(cfme.middleware.server.AddDatasource method)

 	(cfme.middleware.server.AddDeployment method)

 	(cfme.middleware.server.AddJDBCDriver method)

 	(cfme.middleware.server.All method)

 	(cfme.middleware.server.Details method)

 	(cfme.middleware.server.ServerDatasources method)

 	(cfme.middleware.server.ServerDeployments method)

 	(cfme.middleware.server.ServerGroup method)

 	(cfme.middleware.server.ServerMessagings method)

 	(cfme.middleware.server_group.Details method)

 	(cfme.middleware.server_group.ServerGroupServers method)

 	(cfme.middleware.topology.All method)

 	(cfme.networks.balancer.All method)

 	(cfme.networks.balancer.Details method)

 	(cfme.networks.balancer.EditTags method)

 	(cfme.networks.cloud_network.All method)

 	(cfme.networks.cloud_network.Details method)

 	(cfme.networks.cloud_network.EditTags method)

 	(cfme.networks.network_port.All method)

 	(cfme.networks.network_port.Details method)

 	(cfme.networks.network_port.EditTags method)

 	(cfme.networks.network_router.All method)

 	(cfme.networks.network_router.Details method)

 	(cfme.networks.network_router.EditTags method)

 	(cfme.networks.provider.All method)

 	(cfme.networks.provider.Details method)

 	(cfme.networks.provider.EditTags method)

 	(cfme.networks.provider.OpenCloudNetworks method)

 	(cfme.networks.provider.OpenCloudSubnets method)

 	(cfme.networks.provider.OpenFloatingIPs method)

 	(cfme.networks.provider.OpenNetworkBalancers method)

 	(cfme.networks.provider.OpenNetworkPorts method)

 	(cfme.networks.provider.OpenNetworkRouters method)

 	(cfme.networks.provider.OpenSecurityGroups method)

 	(cfme.networks.provider.OpenTopologyFromDetails method)

 	(cfme.networks.security_group.All method)

 	(cfme.networks.security_group.Details method)

 	(cfme.networks.security_group.EditTags method)

 	(cfme.networks.subnet.All method)

 	(cfme.networks.subnet.EditTags method)

 	(cfme.networks.subnet.OpenCloudNetworks method)

 	(cfme.optimize.Bottlenecks method)

 	(cfme.optimize.utilization.All method)

 	(cfme.services.catalogs.ServicesCatalog method)

 	(cfme.services.catalogs.ansible_catalog_item.Add method)

 	(cfme.services.catalogs.ansible_catalog_item.All method)

 	(cfme.services.catalogs.ansible_catalog_item.Details method)

 	(cfme.services.catalogs.ansible_catalog_item.Edit method)

 	(cfme.services.catalogs.ansible_catalog_item.EditTags method)

 	(cfme.services.catalogs.ansible_catalog_item.PickItemType method)

 	(cfme.services.catalogs.catalog.Add method)

 	(cfme.services.catalogs.catalog.All method)

 	(cfme.services.catalogs.catalog.Details method)

 	(cfme.services.catalogs.catalog.Edit method)

 	(cfme.services.catalogs.catalog.EditTagsFromDetails method)

 	(cfme.services.catalogs.catalog_item.Add method)

 	(cfme.services.catalogs.catalog_item.AddButton method)

 	(cfme.services.catalogs.catalog_item.AddButtonGroup method)

 	(cfme.services.catalogs.catalog_item.All method)

 	(cfme.services.catalogs.catalog_item.BundleAdd method)

 	(cfme.services.catalogs.catalog_item.BundleAll method)

 	(cfme.services.catalogs.catalog_item.BundleDetails method)

 	(cfme.services.catalogs.catalog_item.BundleEdit method)

 	(cfme.services.catalogs.catalog_item.Details method)

 	(cfme.services.catalogs.catalog_item.Edit method)

 	(cfme.services.catalogs.catalog_item.EditTags method)

 	(cfme.services.catalogs.orchestration_template.AddDialog method)

 	(cfme.services.catalogs.orchestration_template.AddTemplate method)

 	(cfme.services.catalogs.orchestration_template.All method)

 	(cfme.services.catalogs.orchestration_template.CopyTemplate method)

 	(cfme.services.catalogs.orchestration_template.Details method)

 	(cfme.services.catalogs.orchestration_template.EditTagsFromDetails method)

 	(cfme.services.catalogs.orchestration_template.EditTemplate method)

 	(cfme.services.catalogs.orchestration_template.TemplateType method)

 	(cfme.services.catalogs.service_catalogs.ServiceCatalogDetails method)

 	(cfme.services.catalogs.service_catalogs.ServiceCatalogOrder method)

 	(cfme.services.catalogs.service_catalogs.ServiceCatalogsAll method)

 	(cfme.services.catalogs.service_catalogs.ServiceCatalogsDefault method)

 	(cfme.services.dashboard.ssui.CurrentServices method)

 	(cfme.services.dashboard.ssui.DashboardAll method)

 	(cfme.services.dashboard.ssui.RetiredServices method)

 	(cfme.services.dashboard.ssui.RetiringSoon method)

 	(cfme.services.dashboard.ssui.TotalServices method)

 	(cfme.services.myservice.ssui.Details method)

 	(cfme.services.myservice.ssui.MyServiceAll method)

 	(cfme.services.myservice.ssui.MyServiceEdit method)

 	(cfme.services.myservice.ui.MyServiceAll method)

 	(cfme.services.myservice.ui.MyServiceDetails method)

 	(cfme.services.myservice.ui.MyServiceEdit method)

 	(cfme.services.myservice.ui.MyServiceEditTags method)

 	(cfme.services.myservice.ui.MyServiceReconfigure method)

 	(cfme.services.myservice.ui.MyServiceSetOwnership method)

 	(cfme.services.myservice.ui.MyServiceSetRetirement method)

 	(cfme.services.requests.ApproveRequest method)

 	(cfme.services.requests.CopyRequest method)

 	(cfme.services.requests.DenyRequest method)

 	(cfme.services.requests.EditRequest method)

 	(cfme.services.requests.RequestAll method)

 	(cfme.services.requests.RequestDetails method)

 	(cfme.services.workloads.AllTemplates method)

 	(cfme.services.workloads.AllVMs method)

 	(cfme.services.workloads.WorkloadsDefault method)

 	(cfme.storage.object_store.All method)

 	(cfme.storage.object_store.Details method)

 	(cfme.storage.volume.VolumeAdd method)

 	(cfme.storage.volume.VolumeAll method)

 	(cfme.storage.volume.VolumeDetails method)

 	STOP (cfme.cloud.instance.azure.AzureInstance attribute)

 	

 	(cfme.cloud.instance.ec2.EC2Instance attribute)

 	(cfme.cloud.instance.gce.GCEInstance attribute)

 	(cfme.cloud.instance.openstack.OpenStackInstance attribute)

 	stop() (cfme.utils.appliance.Appliance method)

 	

 	(cfme.utils.appliance.services.SystemdService method)

 	(cfme.utils.events.EventListener method)

 	(cfme.utils.log.Perflog method)

 	(cfme.utils.video.Recorder method)

 	stop_button (cfme.middleware.provider.middleware_views.PowerOperationForm attribute)

 	stop_db_service() (cfme.utils.appliance.db.ApplianceDB method)

 	stop_embedded_ansible() (in module cfme.scripting.setup_ansible)

 	stop_recording() (in module fixtures.video)

 	stop_server() (cfme.middleware.server.MiddlewareServer method)

 	stop_server_group() (cfme.middleware.server_group.MiddlewareServerGroup method)

 	storage_cb (cfme.configure.access_control.TenantQuotaForm attribute)

 	storage_txt (cfme.configure.access_control.TenantQuotaForm attribute)

 	storageassign() (cfme.intelligence.chargeback.assignments.Assign method)

 	StorageChargebackView (class in cfme.intelligence.chargeback.rates)

 	StorageManagerNotFound

 	StorageRate (class in cfme.intelligence.chargeback.rates)

 	StorageRateAll (class in cfme.intelligence.chargeback.rates)

 	StorageRateDetails (class in cfme.intelligence.chargeback.rates)

 	StorageRateEdit (class in cfme.intelligence.chargeback.rates)

 	StorageRateNew (class in cfme.intelligence.chargeback.rates)

 	storbinary() (cfme.utils.ftp.FTPClient method)

 	Store (class in fixtures.pytest_store)

 	stream (cfme.utils.trackerbot.TemplateInfo attribute)

 	stream() (cfme.utils.version.Version method)

 	string_name (cfme.cloud.provider.CloudProvider attribute)

 	

 	(cfme.containers.provider.ContainersProvider attribute)

 	(cfme.infrastructure.provider.InfraProvider attribute)

 	(cfme.middleware.provider.MiddlewareProvider attribute)

 	(cfme.networks.balancer.Balancer attribute)

 	(cfme.networks.cloud_network.CloudNetwork attribute)

 	(cfme.networks.network_port.NetworkPort attribute)

 	(cfme.networks.network_router.NetworkRouter attribute)

 	(cfme.networks.provider.NetworkProvider attribute)

 	(cfme.networks.security_group.SecurityGroup attribute)

 	(cfme.networks.subnet.Subnet attribute)

 	stripper() (in module fixtures.nelson)

 	styling (cfme.intelligence.reports.reports.CustomReportFormCommon attribute)

 	sub_loc() (in module cfme.web_ui.toolbar)

 	subfilter (cfme.intelligence.reports.widgets.report_widgets.ReportWidgetFormCommon attribute)

 	submit (cfme.automate.import_export.GitImportSelectorView attribute)

 	

 	(cfme.services.requests.RequestApprovalView attribute)

 	(cfme.services.requests.RequestDenialView attribute)

 	submit() (cfme.web_ui.topology.TopologySearchBox method)

 	submit_button (cfme.automate.service_dialogs.DialogForm attribute)

 	

 	(cfme.base.ui.AutomateSimulationView attribute)

 	(cfme.control.simulation.ControlSimulationView attribute)

 	(cfme.infrastructure.virtual_machines.InfraVmReconfigureView attribute)

 	(cfme.services.catalogs.service_catalogs.OrderServiceCatalogView attribute)

 	(cfme.services.myservice.ui.ReconfigureServiceView attribute)

 	submit_login() (cfme.base.ui.LoginPage method)

 	Subnet (class in cfme.networks.subnet)

 	SubnetCollection (class in cfme.networks.subnet)

 	SubnetDetailsSideBar (class in cfme.networks.views)

 	SubnetDetailsToolBar (class in cfme.networks.views)

 	SubnetDetailsView (class in cfme.networks.views)

 	SubnetEntities (class in cfme.networks.views)

 	subnets (cfme.networks.provider.NetworkProvider attribute)

 	SubnetSideBar (class in cfme.networks.views)

 	SubnetToolBar (class in cfme.networks.views)

 	SubnetView (class in cfme.networks.views)

 	subscription (cfme.common.provider_views.CloudProviderAddView attribute)

 	subtitle (cfme.control.log.ControlLogView attribute)

 	

 	(cfme.intelligence.reports.import_export.ImportExportCommonForm attribute)

 	success (cfme.utils.ssh.SSHResult attribute)

 	suffix_item_re (cfme.utils.version.Version attribute)

 	SUFFIXES (cfme.utils.version.Version attribute)

 	SUFFIXES_STR (cfme.utils.version.Version attribute)

 	summary (cfme.base.ui.ServerDiagnosticsView attribute)

 	

 	(cfme.common.SummaryMixin attribute)

 	(cfme.containers.container.ContainerAllView attribute)

 	(cfme.containers.provider.ContainerObjectAllBaseView attribute)

 	(cfme.intelligence.reports.reports.CustomReportFormCommon attribute)

 	(cfme.optimize.bottlenecks.BottlenecksTabsView attribute)

 	Summary (class in cfme.common)

 	summary_csv_measurement_dump() (in module cfme.utils.smem_memory_monitor)

 	summary_title() (in module cfme.web_ui)

 	SummaryMixin (class in cfme.common)

 	SummaryTable (class in cfme.common)

 	SummaryValue (class in cfme.common)

 	SUSPEND (cfme.cloud.instance.azure.AzureInstance attribute)

 	

 	(cfme.cloud.instance.openstack.OpenStackInstance attribute)

 	(cfme.infrastructure.virtual_machines.Vm attribute)

 	suspend_button (cfme.middleware.provider.middleware_views.PowerOperationForm attribute)

 	suspend_server() (cfme.middleware.server.MiddlewareServer method)

 	suspend_server_group() (cfme.middleware.server_group.MiddlewareServerGroup method)

 	swap (cfme.utils.appliance.IPAppliance attribute)

 	switch_to_appliance() (cfme.common.vm_console.VMConsole method)

 	switch_to_console() (cfme.common.vm_console.VMConsole method)

 	sync (cfme.web_ui.multibox.SelectItem attribute)

 	Sync (class in cfme.web_ui.multibox)

 	SysAll (class in cfme.infrastructure.config_management)

 	SysEditTags (class in cfme.infrastructure.config_management)

 	SysProvision (class in cfme.infrastructure.config_management)

 	system (cfme.automate.buttons.ButtonDetailView attribute)

 	

 	(cfme.automate.buttons.ButtonFormCommon attribute)

 	system_process (cfme.services.catalogs.catalog_item.ButtonForm attribute)

 	SYSTEM_PROVISION (cfme.automate.provisioning_dialogs.ProvisioningDialog attribute)

 	SystemdException

 	SystemdService (class in cfme.utils.appliance.services)

 	SystemImageType (class in cfme.infrastructure.pxe)

 	SystemImageTypeAdd (class in cfme.infrastructure.pxe)

 	SystemImageTypeAll (class in cfme.infrastructure.pxe)

 	SystemImageTypeDetails (class in cfme.infrastructure.pxe)

 	SystemImageTypeEdit (class in cfme.infrastructure.pxe)

 	systems (cfme.infrastructure.config_management.ConfigManager attribute)

 	

 	(cfme.infrastructure.config_management.ConfigProfile attribute)

T

 	

 	tab (cfme.automate.dialog_box.Box attribute)

 	

 	(cfme.configure.configuration.Schedule attribute)

 	Tab (class in cfme.automate.dialog_tab)

 	tab_desc (cfme.automate.dialog_tab.TabForm attribute)

 	tab_existing_driver (cfme.middleware.provider.middleware_views.AddDatasourceForm attribute)

 	tab_label (cfme.automate.dialog_tab.TabForm attribute)

 	tab_specify_driver (cfme.middleware.provider.middleware_views.AddDatasourceForm attribute)

 	tab_title (cfme.intelligence.reports.dashboards.DashboardDetailsView attribute)

 	

 	(cfme.intelligence.reports.dashboards.DashboardFormCommon attribute)

 	TabCollection (class in cfme.automate.dialog_tab)

 	TabForm (class in cfme.automate.dialog_tab)

 	table (cfme.automate.explorer.instance.InstanceDetailsView attribute)

 	

 	(cfme.automate.provisioning_dialogs.ProvDiagAllEntities attribute)

 	(cfme.base.ui.ZoneListView attribute)

 	(cfme.cloud.availability_zone.AvailabilityZoneEntities attribute)

 	(cfme.cloud.flavor.FlavorEntities attribute)

 	(cfme.cloud.stack.StackEntities attribute)

 	(cfme.cloud.tenant.TenantEntities attribute)

 	(cfme.common.provider_views.ContainersProvidersView attribute)

 	(cfme.configure.access_control.AllGroupView attribute)

 	(cfme.configure.access_control.AllRolesView attribute)

 	(cfme.configure.access_control.UsersEntities attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileDetailsEntities attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileEntities attribute)

 	(cfme.configure.configuration.region_settings.CompanyCategoriesAllView attribute)

 	(cfme.configure.configuration.region_settings.CompanyTagsAllView attribute)

 	(cfme.configure.configuration.region_settings.MapTagsAllView attribute)

 	(cfme.configure.settings.TimeProfileAddForm attribute)

 	(cfme.containers.node.NodeView attribute)

 	(cfme.containers.provider.ContainerObjectAllBaseView attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleComparisonEntities attribute)

 	(cfme.infrastructure.provider.openstack_infra.ProviderScaleDownView attribute)

 	(cfme.infrastructure.resource_pool.ResourcePoolEntities attribute)

 	(cfme.intelligence.reports.import_export.ImportExportWidgetsCommitView attribute)

 	(cfme.intelligence.reports.reports.CustomSavedReportDetailsView attribute)

 	(cfme.intelligence.reports.saved.AllSavedReportsView attribute)

 	(cfme.middleware.provider.middleware_views.DatasourceAllView attribute)

 	(cfme.middleware.provider.middleware_views.DatasourceEntitiesView attribute)

 	(cfme.middleware.provider.middleware_views.DeploymentAllView attribute)

 	(cfme.middleware.provider.middleware_views.DeploymentEntitiesView attribute)

 	(cfme.middleware.provider.middleware_views.DomainAllView attribute)

 	(cfme.middleware.provider.middleware_views.DomainEntitiesView attribute)

 	(cfme.middleware.provider.middleware_views.DomainServerGroupAllView attribute)

 	(cfme.middleware.provider.middleware_views.MessagingAllView attribute)

 	(cfme.middleware.provider.middleware_views.MessagingEntitiesView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderDatasourceAllView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderDeploymentAllView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderDomainAllView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderDomainsAllView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderMessagingAllView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderServerAllView attribute)

 	(cfme.middleware.provider.middleware_views.ServerAllView attribute)

 	(cfme.middleware.provider.middleware_views.ServerDatasourceAllView attribute)

 	(cfme.middleware.provider.middleware_views.ServerDeploymentAllView attribute)

 	(cfme.middleware.provider.middleware_views.ServerEntitiesView attribute)

 	(cfme.middleware.provider.middleware_views.ServerGroupEntitiesView attribute)

 	(cfme.middleware.provider.middleware_views.ServerGroupServerAllView attribute)

 	(cfme.middleware.provider.middleware_views.ServerMessagingAllView attribute)

 	(cfme.services.requests.RequestsView attribute)

 	Table (class in cfme.web_ui)

 	Table.Row (class in cfme.web_ui)

 	table_base (cfme.utils.db.Db attribute)

 	table_display_name (cfme.automate.explorer.domain.Domain attribute)

 	table_in_object() (in module cfme.web_ui)

 	table_names (cfme.utils.db.Db attribute)

 	table_title (cfme.common.TagPageView attribute)

 	tabs (cfme.automate.service_dialogs.Dialog attribute)

 	

 	(cfme.base.ui.MySettingsView attribute)

 	(cfme.configure.tasks.TasksView attribute)

 	TabStripForm (class in cfme.web_ui.tabstrip)

 	tag (cfme.automate.import_export.GitImportSelectorView attribute)

 	

 	(cfme.cloud.instance.image.ImageDetailsView attribute)

 	(cfme.configure.access_control.GroupForm attribute)

 	(cfme.containers.node.NodeEditTagsForm attribute)

 	(cfme.control.explorer.actions.ActionFormCommon attribute)

 	Tag (class in cfme.configure.configuration)

 	

 	(class in cfme.configure.configuration.region_settings)

 	tag() (cfme.infrastructure.config_management.ConfigSystem method)

 	

 	(in module cfme.fixtures.pytest_selenium)

 	(in module cfme.fixtures.tag)

 	tag_category (cfme.containers.node.NodeEditTagsForm attribute)

 	

 	(cfme.control.explorer.alert_profiles.AlertProfilesEditAssignmentsView attribute)

 	(cfme.intelligence.chargeback.assignments.AssignmentsView attribute)

 	tag_description (cfme.configure.configuration.region_settings.CompanyTagsAddView attribute)

 	tag_form_view (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor attribute)

 	tag_name (cfme.configure.configuration.region_settings.CompanyTagsAddView attribute)

 	tag_table (cfme.configure.access_control.EditTagsUserView attribute)

 	

 	(cfme.configure.access_control.GroupEditTagsView attribute)

 	TAG_TYPES (cfme.web_ui.form_buttons.FormButton.Button attribute)

 	Taggable (class in cfme.common)

 	taggable_type (cfme.middleware.datasource.MiddlewareDatasource attribute)

 	

 	(cfme.middleware.deployment.MiddlewareDeployment attribute)

 	(cfme.middleware.domain.MiddlewareDomain attribute)

 	(cfme.middleware.messaging.MiddlewareMessaging attribute)

 	(cfme.middleware.provider.MiddlewareProvider attribute)

 	(cfme.middleware.server.MiddlewareServer attribute)

 	(cfme.middleware.server_group.MiddlewareServerGroup attribute)

 	TagPageView (class in cfme.common)

 	tags (cfme.infrastructure.config_management.ConfigSystem attribute)

 	tags() (in module cfme.rest.gen_data)

 	TagsAdd (class in cfme.configure.configuration)

 	

 	(class in cfme.configure.configuration.region_settings)

 	TagsAll (class in cfme.configure.configuration)

 	

 	(class in cfme.configure.configuration.region_settings)

 	TagsEdit (class in cfme.configure.configuration)

 	

 	(class in cfme.configure.configuration.region_settings)

 	take_screenshot() (in module cfme.fixtures.pytest_selenium)

 	

 	(in module fixtures.screenshots)

 	target_object (cfme.base.ui.AutomateSimulationView attribute)

 	target_type (cfme.base.ui.AutomateSimulationView attribute)

 	task_status() (fixtures.artifactor_plugin.DummyClient method)

 	Tasks (class in cfme.base.ui)

 	

 	(class in cfme.configure.tasks)

 	TasksView (class in cfme.configure.tasks)

 	TCPEnvironmentMarker (class in markers.env)

 	TEARDOWN (markers.meta.PluginContainer attribute)

 	teardown_fail() (in module fixtures.parallelizer.parallelizer_tester)

 	temp_appliance_preconfig() (in module fixtures.appliance)

 	temp_appliance_preconfig_clsscope() (in module fixtures.appliance)

 	temp_appliance_preconfig_funcscope() (in module fixtures.appliance)

 	temp_appliance_preconfig_funcscope_upgrade() (in module fixtures.appliance)

 	temp_appliance_preconfig_modscope() (in module fixtures.appliance)

 	temp_appliance_unconfig() (in module fixtures.appliance)

 	temp_appliance_unconfig_clsscope() (in module fixtures.appliance)

 	temp_appliance_unconfig_funcscope() (in module fixtures.appliance)

 	temp_appliance_unconfig_modscope() (in module fixtures.appliance)

 	temp_appliances() (in module fixtures.appliance)

 	temp_appliances_unconfig() (in module fixtures.appliance)

 	temp_appliances_unconfig_clsscope() (in module fixtures.appliance)

 	temp_appliances_unconfig_funcscope() (in module fixtures.appliance)

 	temp_appliances_unconfig_modscope() (in module fixtures.appliance)

 	TEMPLATE (cfme.automate.buttons.ButtonGroup attribute)

 	Template (class in cfme.common.vm)

 	

 	(class in cfme.containers.template)

 	(class in cfme.infrastructure.virtual_machines)

 	(class in cfme.utils.trackerbot)

 	template() (in module fixtures.provider)

 	template_cb (cfme.configure.access_control.TenantQuotaForm attribute)

 	template_name (cfme.cloud.provider.CloudProvider attribute)

 	

 	(cfme.common.provider.CloudInfraProvider attribute)

 	template_path (in module cfme.utils.path)

 	template_quad (cfme.configure.settings.Visual attribute)

 	template_table (cfme.services.catalogs.catalog_item.AddCatalogItemView attribute)

 	template_txt (cfme.configure.access_control.TenantQuotaForm attribute)

 	template_type (cfme.services.catalogs.orchestration_template.TemplateForm attribute)

 	TemplateAllView (class in cfme.containers.template)

 	TemplateForm (class in cfme.services.catalogs.orchestration_template)

 	TemplateInfo (class in cfme.utils.trackerbot)

 	TemplateNotFound

 	templates (cfme.configure.settings.DefaultViewForm attribute)

 	

 	(cfme.infrastructure.pxe.PXESideBar attribute)

 	(cfme.infrastructure.virtual_machines.VmsTemplatesAccordion attribute)

 	(cfme.services.catalogs.orchestration_template.TemplateTypeView attribute)

 	(cfme.services.workloads.WorkloadsView attribute)

 	templates_destination_name (cfme.cloud.provider.CloudProvider attribute)

 	

 	(cfme.infrastructure.provider.InfraProvider attribute)

 	templates_to_test() (in module cfme.utils.trackerbot)

 	TemplatesAll (class in cfme.infrastructure.virtual_machines)

 	TemplatesImages (class in cfme.services.workloads)

 	TemplatesOnlyAllView (class in cfme.infrastructure.virtual_machines)

 	TemplatesToolbar (cfme.infrastructure.virtual_machines.InfraVmDetailsView attribute)

 	TemplateType (class in cfme.services.catalogs.orchestration_template)

 	TemplateTypeView (class in cfme.services.catalogs.orchestration_template)

 	templatize() (cfme.utils.appliance.Appliance method)

 	tenant (cfme.storage.volume.VolumeAddForm attribute)

 	Tenant (class in cfme.cloud.tenant)

 	

 	(class in cfme.configure.access_control)

 	tenant_id (cfme.common.provider_views.CloudProviderAddView attribute)

 	tenant_mapping (cfme.common.provider_views.CloudProviderAddView attribute)

 	TenantAdd (class in cfme.cloud.tenant)

 	

 	(class in cfme.configure.access_control)

 	TenantAddForm (class in cfme.cloud.tenant)

 	TenantAddView (class in cfme.cloud.tenant)

 	TenantAll (class in cfme.cloud.tenant)

 	

 	(class in cfme.configure.access_control)

 	TenantAllView (class in cfme.cloud.tenant)

 	TenantCollection (class in cfme.cloud.tenant)

 	TenantDetails (class in cfme.cloud.tenant)

 	

 	(class in cfme.configure.access_control)

 	TenantDetailsAccordion (class in cfme.cloud.tenant)

 	TenantDetailsEntities (class in cfme.cloud.tenant)

 	TenantDetailsToolbar (class in cfme.cloud.tenant)

 	TenantDetailsView (class in cfme.cloud.tenant)

 	TenantEdit (class in cfme.cloud.tenant)

 	

 	(class in cfme.configure.access_control)

 	TenantEditEntities (class in cfme.cloud.tenant)

 	TenantEditForm (class in cfme.cloud.tenant)

 	TenantEditTagEntities (class in cfme.cloud.tenant)

 	TenantEditTags (class in cfme.cloud.tenant)

 	TenantEditView (class in cfme.cloud.tenant)

 	TenantEntities (class in cfme.cloud.tenant)

 	TenantForm (class in cfme.configure.access_control)

 	TenantManageQuotas (class in cfme.configure.access_control)

 	TenantNotFound

 	TenantQuotaForm (class in cfme.configure.access_control)

 	TenantQuotaView (class in cfme.configure.access_control)

 	tenants() (in module cfme.rest.gen_data)

 	TenantToolbar (class in cfme.cloud.tenant)

 	TenantView (class in cfme.cloud.tenant)

 	TerminalDistReporter (class in fixtures.parallelizer)

 	terminaldistreporter (fixtures.pytest_store.Store attribute)

 	terminalreporter (fixtures.pytest_store.Store attribute)

 	TERMINATE (cfme.cloud.instance.azure.AzureInstance attribute)

 	

 	(cfme.cloud.instance.ec2.EC2Instance attribute)

 	(cfme.cloud.instance.gce.GCEInstance attribute)

 	(cfme.cloud.instance.openstack.OpenStackInstance attribute)

 	terminate() (fixtures.artifactor_plugin.DummyClient method)

 	test_fails() (in module fixtures.parallelizer.parallelizer_tester)

 	test_fails_setup() (in module fixtures.parallelizer.parallelizer_tester)

 	test_fails_teardown() (in module fixtures.parallelizer.parallelizer_tester)

 	test_passes() (in module fixtures.parallelizer.parallelizer_tester)

 	test_quickstart_run() (in module cfme.scripting.tests.test_quickstart)

 	

 	test_skipped() (in module fixtures.parallelizer.parallelizer_tester)

 	test_tracking (in module fixtures.log)

 	test_xfails() (in module fixtures.parallelizer.parallelizer_tester)

 	test_xpasses() (in module fixtures.parallelizer.parallelizer_tester)

 	testcase_record() (in module fixtures.xunit_tools)

 	testcases_gen() (in module fixtures.xunit_tools)

 	testresult_record() (in module fixtures.xunit_tools)

 	testrun_gen() (in module fixtures.xunit_tools)

 	tests (fixtures.parallelizer.SlaveDetail attribute)

 	text (cfme.automate.buttons.ButtonDetailView attribute)

 	

 	(cfme.automate.buttons.ButtonFormCommon attribute)

 	(cfme.automate.buttons.ButtonGroupDetailView attribute)

 	(cfme.automate.buttons.ButtonGroupFormCommon attribute)

 	(cfme.fixtures.pytest_selenium.Select.Option attribute)

 	(cfme.web_ui.InfoBlock.Member attribute)

 	(cfme.web_ui.multibox.SelectItem attribute)

 	text() (cfme.web_ui.InfoBlock class method)

 	

 	(cfme.web_ui.topology.TopologySearchBox method)

 	(in module cfme.fixtures.pytest_selenium)

 	text_area (cfme.automate.dialog_element.ElementForm attribute)

 	text_content() (in module cfme.fixtures.pytest_selenium)

 	text_list (cfme.control.explorer.conditions.Expression attribute)

 	text_sane() (in module cfme.fixtures.pytest_selenium)

 	text_value (cfme.common.SummaryValue attribute)

 	the_param() (in module fixtures.parallelizer.parallelizer_tester)

 	tier_matches() (in module fixtures.node_annotate)

 	tile_entity (cfme.ansible.playbooks.PlaybookEntity attribute)

 	

 	(cfme.common.host_views.NonJSHostEntity attribute)

 	(cfme.common.vm_views.NonJSInstanceEntity attribute)

 	(cfme.infrastructure.deployment_roles.NonJSDepRoleEntity attribute)

 	(cfme.storage.volume.NonJSVolumeEntity attribute)

 	tile_view_limit (cfme.configure.settings.Visual attribute)

 	time_next (cfme.dashboard.DashboardWidget attribute)

 	TIME_PROFILE (cfme.web_ui.utilization.Option attribute)

 	time_updated (cfme.dashboard.DashboardWidget attribute)

 	time_zone (cfme.intelligence.reports.schedules.SchedulesFormCommon attribute)

 	

 	(cfme.intelligence.reports.widgets.chart_widgets.ChartWidgetFormCommon attribute)

 	(cfme.intelligence.reports.widgets.report_widgets.ReportWidgetFormCommon attribute)

 	(cfme.intelligence.reports.widgets.rss_widgets.RSSWidgetFormCommon attribute)

 	TimedCommand (class in cfme.fixtures.cli)

 	

 	(class in cfme.scripting.setup_env)

 	timeline (cfme.intelligence.reports.reports.CustomReportFormCommon attribute)

 	timeline_event (cfme.control.explorer.alerts.AlertFormCommon attribute)

 	timelines (cfme.base.ui.ServerDiagnosticsView attribute)

 	

 	(cfme.common.TimelinesMixin attribute)

 	Timelines (class in cfme.base.ui)

 	

 	(class in cfme.cloud.instance)

 	(class in cfme.cloud.provider)

 	(class in cfme.containers.node)

 	(class in cfme.infrastructure.cluster)

 	(class in cfme.infrastructure.host)

 	(class in cfme.infrastructure.provider)

 	(class in cfme.infrastructure.virtual_machines)

 	(class in cfme.middleware.provider)

 	(class in cfme.web_ui.timelines)

 	TimelinesFromDetails (class in cfme.containers.provider)

 	TimelinesMixin (class in cfme.common)

 	timeout (cfme.fixtures.cli.TimedCommand attribute)

 	

 	(cfme.middleware.provider.middleware_views.PowerOperationForm attribute)

 	(cfme.scripting.setup_env.TimedCommand attribute)

 	(cfme.services.catalogs.service_catalogs.OrderForm attribute)

 	Timeprofile (class in cfme.configure.settings)

 	timeprofile_form (cfme.configure.settings.TimeProfileAddFormView attribute)

 	TimeprofileAddEntities (class in cfme.configure.settings)

 	TimeProfileAddForm (class in cfme.configure.settings)

 	TimeProfileAddFormView (class in cfme.configure.settings)

 	TimeprofileAll (class in cfme.configure.settings)

 	timer (cfme.test_framework.sprout.plugin.SproutManager attribute)

 	timezone (cfme.configure.settings.TimeProfileAddForm attribute)

 	

 	(cfme.configure.settings.Visual attribute)

 	timezone_check() (cfme.utils.appliance.ApplianceConsole method)

 	title (cfme.ansible.credentials.CredentialsBaseView attribute)

 	

 	(cfme.ansible.playbooks.PlaybookBaseView attribute)

 	(cfme.ansible.repositories.RepositoryBaseView attribute)

 	(cfme.automate.buttons.ButtonDetailView attribute)

 	(cfme.automate.buttons.ButtonGroupDetailView attribute)

 	(cfme.automate.buttons.ButtonGroupObjectTypeView attribute)

 	(cfme.automate.buttons.ButtonsAllView attribute)

 	(cfme.automate.buttons.EditButtonGroupView attribute)

 	(cfme.automate.buttons.EditButtonView attribute)

 	(cfme.automate.buttons.NewButtonGroupView attribute)

 	(cfme.automate.buttons.NewButtonView attribute)

 	(cfme.automate.dialog_element.DetailsDialogView attribute)

 	(cfme.automate.dialog_tab.DetailsTabView attribute)

 	(cfme.automate.explorer.common.CopyViewBase attribute)

 	(cfme.automate.explorer.domain.DomainDetailsView attribute)

 	(cfme.automate.explorer.domain.DomainForm attribute)

 	(cfme.automate.explorer.domain.DomainListView attribute)

 	(cfme.automate.explorer.domain.DomainPriorityView attribute)

 	(cfme.automate.explorer.instance.InstanceAddView attribute)

 	(cfme.automate.explorer.instance.InstanceDetailsView attribute)

 	(cfme.automate.explorer.instance.InstanceEditView attribute)

 	(cfme.automate.explorer.klass.ClassDetailsView attribute)

 	(cfme.automate.explorer.klass.ClassForm attribute)

 	(cfme.automate.explorer.method.MethodAddView attribute)

 	(cfme.automate.explorer.method.MethodDetailsView attribute)

 	(cfme.automate.explorer.method.MethodEditView attribute)

 	(cfme.automate.explorer.namespace.NamespaceDetailsView attribute)

 	(cfme.automate.explorer.namespace.NamespaceForm attribute)

 	(cfme.automate.provisioning_dialogs.ProvDiagAddView attribute)

 	(cfme.automate.provisioning_dialogs.ProvDiagAllEntities attribute)

 	(cfme.automate.provisioning_dialogs.ProvDiagDetailsEntities attribute)

 	(cfme.automate.provisioning_dialogs.ProvDiagEditView attribute)

 	(cfme.automate.service_dialogs.DetailsDialogView attribute)

 	(cfme.automate.service_dialogs.DialogForm attribute)

 	(cfme.automate.service_dialogs.DialogsView attribute)

 	(cfme.base.ui.AutomateImportExportBaseView attribute)

 	(cfme.base.ui.ConfigurationView attribute)

 	(cfme.base.ui.DiagnosticsCollectLogsView attribute)

 	(cfme.cloud.availability_zone.AvailabilityZoneDetailsEntities attribute)

 	(cfme.cloud.availability_zone.AvailabilityZoneEntities attribute)

 	(cfme.cloud.flavor.FlavorDetailsEntities attribute)

 	(cfme.cloud.flavor.FlavorEntities attribute)

 	(cfme.cloud.instance.image.ImageDetailsEntities attribute)

 	(cfme.cloud.keypairs.KeyPairAddEntities attribute)

 	(cfme.cloud.keypairs.KeyPairDetailsEntities attribute)

 	(cfme.cloud.stack.StackDetailsEntities attribute)

 	(cfme.cloud.stack.StackEntities attribute)

 	(cfme.cloud.stack.StackOutputsEntities attribute)

 	(cfme.cloud.stack.StackParametersEntities attribute)

 	(cfme.cloud.stack.StackResourcesEntities attribute)

 	(cfme.cloud.stack.StackSecurityGroupsEntities attribute)

 	(cfme.cloud.tenant.TenantDetailsEntities attribute)

 	(cfme.cloud.tenant.TenantEditEntities attribute)

 	(cfme.cloud.tenant.TenantEditTagEntities attribute)

 	(cfme.cloud.tenant.TenantEntities attribute)

 	(cfme.common.TagPageView attribute)

 	(cfme.common.host_views.ComputeInfrastructureHostsView attribute)

 	(cfme.common.host_views.HostFormView attribute)

 	(cfme.common.provider_views.CloudProvidersDiscoverView attribute)

 	(cfme.common.provider_views.InfraProvidersDiscoverView attribute)

 	(cfme.common.provider_views.ProviderAddView attribute)

 	(cfme.common.provider_views.ProviderDetailsView attribute)

 	(cfme.common.provider_views.ProviderNodesView attribute)

 	(cfme.common.vm_views.EditView attribute)

 	(cfme.common.vm_views.ProvisionView attribute)

 	(cfme.common.vm_views.RetirementView attribute)

 	(cfme.common.vm_views.VMDetailsEntities attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileAddView attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileDetailsEntities attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileEntities attribute)

 	(cfme.configure.configuration.region_settings.RedHatUpdatesEditView attribute)

 	(cfme.configure.configuration.region_settings.RedHatUpdatesView attribute)

 	(cfme.configure.documentation.DocView attribute)

 	(cfme.configure.settings.TimeprofileAddEntities attribute)

 	(cfme.control.explorer.actions.ActionDetailsView attribute)

 	(cfme.control.explorer.actions.ActionsAllView attribute)

 	(cfme.control.explorer.actions.EditActionView attribute)

 	(cfme.control.explorer.actions.NewActionView attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfileDetailsView attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfileFormCommon attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfilesAllView attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfilesEditAssignmentsView attribute)

 	(cfme.control.explorer.alerts.AlertDetailsView attribute)

 	(cfme.control.explorer.alerts.AlertsAllView attribute)

 	(cfme.control.explorer.alerts.EditAlertView attribute)

 	(cfme.control.explorer.alerts.NewAlertView attribute)

 	(cfme.control.explorer.conditions.ConditionDetailsView attribute)

 	(cfme.control.explorer.conditions.ConditionFormCommon attribute)

 	(cfme.control.explorer.conditions.ConditionsAllView attribute)

 	(cfme.control.explorer.conditions.EditConditionView attribute)

 	(cfme.control.explorer.policies.ConditionDetailsView attribute)

 	(cfme.control.explorer.policies.EditEventView attribute)

 	(cfme.control.explorer.policies.EditPolicyConditionAssignments attribute)

 	(cfme.control.explorer.policies.EditPolicyEventAssignments attribute)

 	(cfme.control.explorer.policies.EditPolicyView attribute)

 	(cfme.control.explorer.policies.EventDetailsView attribute)

 	(cfme.control.explorer.policies.NewPolicyView attribute)

 	(cfme.control.explorer.policies.PoliciesAllView attribute)

 	(cfme.control.explorer.policies.PolicyDetailsView attribute)

 	(cfme.control.explorer.policy_profiles.PolicyProfileDetailsView attribute)

 	(cfme.control.explorer.policy_profiles.PolicyProfileFormCommon attribute)

 	(cfme.control.explorer.policy_profiles.PolicyProfilesAllView attribute)

 	(cfme.control.log.ControlLogView attribute)

 	(cfme.infrastructure.cluster.ClusterDetailsEntities attribute)

 	(cfme.infrastructure.datastore.DatastoreDetailsView attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleEditTagsView attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleView attribute)

 	(cfme.infrastructure.pxe.PXECustomizationTemplateForm attribute)

 	(cfme.infrastructure.pxe.PXEDatastoreForm attribute)

 	(cfme.infrastructure.pxe.PXEImageEditView attribute)

 	(cfme.infrastructure.pxe.PXEMainView attribute)

 	(cfme.infrastructure.pxe.PXEServerForm attribute)

 	(cfme.infrastructure.pxe.PXESystemImageTypeForm attribute)

 	(cfme.infrastructure.resource_pool.ResourcePoolDetailsEntities attribute)

 	(cfme.infrastructure.resource_pool.ResourcePoolEntities attribute)

 	(cfme.infrastructure.virtual_machines.InfraVmDetailsView attribute)

 	(cfme.infrastructure.virtual_machines.InfraVmReconfigureView attribute)

 	(cfme.infrastructure.virtual_machines.MigrateView attribute)

 	(cfme.intelligence.chargeback.assignments.AssignmentsAllView attribute)

 	(cfme.intelligence.chargeback.assignments.AssignmentsView attribute)

 	(cfme.intelligence.chargeback.rates.AddComputeChargebackView attribute)

 	(cfme.intelligence.chargeback.rates.RatesDetailView attribute)

 	(cfme.intelligence.chargeback.rates.RatesView attribute)

 	(cfme.intelligence.reports.dashboards.DashboardAllGroupsView attribute)

 	(cfme.intelligence.reports.dashboards.DashboardDetailsView attribute)

 	(cfme.intelligence.reports.dashboards.DashboardFormCommon attribute)

 	(cfme.intelligence.reports.import_export.ImportExportCommonForm attribute)

 	(cfme.intelligence.reports.import_export.ImportExportWidgetsCommitView attribute)

 	(cfme.intelligence.reports.menus.EditReportMenusView attribute)

 	(cfme.intelligence.reports.reports.AllCustomReportsView attribute)

 	(cfme.intelligence.reports.reports.AllReportsView attribute)

 	(cfme.intelligence.reports.reports.CustomReportDetailsView attribute)

 	(cfme.intelligence.reports.reports.CustomReportFormCommon attribute)

 	(cfme.intelligence.reports.reports.CustomSavedReportDetailsView attribute)

 	(cfme.intelligence.reports.saved.AllSavedReportsView attribute)

 	(cfme.intelligence.reports.schedules.ScheduleDetailsView attribute)

 	(cfme.intelligence.reports.schedules.SchedulesAllView attribute)

 	(cfme.intelligence.reports.schedules.SchedulesFormCommon attribute)

 	(cfme.intelligence.reports.widgets.AllDashboardWidgetsView attribute)

 	TITLE (cfme.intelligence.reports.widgets.BaseDashboardReportWidget attribute)

 	title (cfme.intelligence.reports.widgets.BaseDashboardWidgetFormCommon attribute)

 	TITLE (cfme.intelligence.reports.widgets.chart_widgets.ChartWidget attribute)

 	title (cfme.intelligence.reports.widgets.DashboardWidgetDetailsView attribute)

 	TITLE (cfme.intelligence.reports.widgets.menu_widgets.MenuWidget attribute)

 	

 	(cfme.intelligence.reports.widgets.report_widgets.ReportWidget attribute)

 	(cfme.intelligence.reports.widgets.rss_widgets.RSSFeedWidget attribute)

 	title (cfme.middleware.provider.middleware_views.AddDatasourceForm attribute)

 	

 	(cfme.middleware.provider.middleware_views.AddDeploymentForm attribute)

 	(cfme.middleware.provider.middleware_views.AddJDBCDriverForm attribute)

 	(cfme.middleware.provider.middleware_views.DatasourceAllView attribute)

 	(cfme.middleware.provider.middleware_views.DatasourceDetailsEntities attribute)

 	(cfme.middleware.provider.middleware_views.DatasourceEntitiesView attribute)

 	(cfme.middleware.provider.middleware_views.DeploymentAllView attribute)

 	(cfme.middleware.provider.middleware_views.DeploymentDetailsEntities attribute)

 	(cfme.middleware.provider.middleware_views.DeploymentEntitiesView attribute)

 	(cfme.middleware.provider.middleware_views.DomainAllView attribute)

 	(cfme.middleware.provider.middleware_views.DomainDetailsEntities attribute)

 	(cfme.middleware.provider.middleware_views.DomainEntitiesView attribute)

 	(cfme.middleware.provider.middleware_views.DomainServerGroupAllView attribute)

 	(cfme.middleware.provider.middleware_views.MessagingAllView attribute)

 	(cfme.middleware.provider.middleware_views.MessagingDetailsEntities attribute)

 	(cfme.middleware.provider.middleware_views.MessagingEntitiesView attribute)

 	(cfme.middleware.provider.middleware_views.PowerOperationForm attribute)

 	(cfme.middleware.provider.middleware_views.ProviderDatasourceAllView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderDeploymentAllView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderDomainAllView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderDomainsAllView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderMessagingAllView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderServerAllView attribute)

 	(cfme.middleware.provider.middleware_views.ServerAllView attribute)

 	(cfme.middleware.provider.middleware_views.ServerDatasourceAllView attribute)

 	(cfme.middleware.provider.middleware_views.ServerDeploymentAllView attribute)

 	(cfme.middleware.provider.middleware_views.ServerDetailsEntities attribute)

 	(cfme.middleware.provider.middleware_views.ServerEntitiesView attribute)

 	(cfme.middleware.provider.middleware_views.ServerGroupDetailsEntities attribute)

 	(cfme.middleware.provider.middleware_views.ServerGroupEntitiesView attribute)

 	(cfme.middleware.provider.middleware_views.ServerGroupServerAllView attribute)

 	(cfme.middleware.provider.middleware_views.ServerMessagingAllView attribute)

 	(cfme.networks.views.BalancerDetailsView attribute)

 	(cfme.networks.views.CloudNetworkDetailsView attribute)

 	(cfme.networks.views.NetworkPortDetailsView attribute)

 	(cfme.networks.views.NetworkProviderDetailsView attribute)

 	(cfme.networks.views.NetworkRouterDetailsView attribute)

 	(cfme.networks.views.SecurityGroupDetailsView attribute)

 	(cfme.networks.views.SubnetDetailsView attribute)

 	(cfme.optimize.bottlenecks.BottlenecksTabsView attribute)

 	(cfme.services.catalogs.ansible_catalog_item.AnsibleCatalogItemForm attribute)

 	(cfme.services.catalogs.ansible_catalog_item.DetailsEntitiesAnsibleCatalogItemView attribute)

 	(cfme.services.catalogs.ansible_catalog_item.SelectCatalogItemTypeView attribute)

 	(cfme.services.catalogs.catalog.CatalogForm attribute)

 	(cfme.services.catalogs.catalog.CatalogsView attribute)

 	(cfme.services.catalogs.catalog.DetailsCatalogView attribute)

 	(cfme.services.catalogs.catalog_item.AllCatalogItemView attribute)

 	(cfme.services.catalogs.catalog_item.BasicInfoForm attribute)

 	(cfme.services.catalogs.catalog_item.ButtonForm attribute)

 	(cfme.services.catalogs.catalog_item.ButtonGroupForm attribute)

 	(cfme.services.catalogs.catalog_item.CatalogBundleFormView attribute)

 	(cfme.services.catalogs.catalog_item.DetailsCatalogItemView attribute)

 	(cfme.services.catalogs.orchestration_template.CopyTemplateForm attribute)

 	(cfme.services.catalogs.orchestration_template.DialogForm attribute)

 	(cfme.services.catalogs.orchestration_template.OrchestrationTemplatesView attribute)

 	(cfme.services.catalogs.service_catalogs.DetailsServiceCatalogView attribute)

 	(cfme.services.catalogs.service_catalogs.OrderForm attribute)

 	(cfme.services.catalogs.service_catalogs.ServiceCatalogsDefaultView attribute)

 	(cfme.services.catalogs.service_catalogs.ServiceCatalogsView attribute)

 	(cfme.services.dashboard.ssui.DashboardView attribute)

 	(cfme.services.dashboard.ssui.MyServicesView attribute)

 	(cfme.services.myservice.ssui.DetailsMyServiceView attribute)

 	(cfme.services.myservice.ssui.EditMyServiceView attribute)

 	(cfme.services.myservice.ssui.MyServicesView attribute)

 	(cfme.services.myservice.ssui.ServiceEditForm attribute)

 	(cfme.services.myservice.ui.EditMyServiceView attribute)

 	(cfme.services.myservice.ui.MyServiceDetailView attribute)

 	(cfme.services.myservice.ui.ReconfigureServiceView attribute)

 	(cfme.services.myservice.ui.ServiceEditForm attribute)

 	(cfme.services.myservice.ui.ServiceRetirementForm attribute)

 	(cfme.services.myservice.ui.ServiceRetirementView attribute)

 	(cfme.services.myservice.ui.SetOwnershipForm attribute)

 	(cfme.services.myservice.ui.SetOwnershipView attribute)

 	(cfme.services.requests.RequestBasicView attribute)

 	(cfme.services.workloads.WorkloadsDefaultView attribute)

 	(cfme.services.workloads.WorkloadsTemplate attribute)

 	(cfme.services.workloads.WorkloadsVM attribute)

 	(cfme.storage.volume.VolumeAddEntities attribute)

 	(cfme.storage.volume.VolumeDetailsEntities attribute)

 	(cfme.utils.appliance.implementations.ui.ErrorView attribute)

 	(cfme.web_ui.InfoBlock.Member attribute)

 	(cfme.web_ui.Region attribute)

 	title() (in module cfme.fixtures.pytest_selenium)

 	TITLE_TEXT (cfme.containers.image.ImageAllView attribute)

 	

 	(cfme.containers.image_registry.ImageRegistryAllView attribute)

 	(cfme.containers.node.NodeView attribute)

 	(cfme.containers.pod.PodAllView attribute)

 	(cfme.containers.project.ProjectAllView attribute)

 	(cfme.containers.replicator.ReplicatorAllView attribute)

 	(cfme.containers.route.RouteAllView attribute)

 	(cfme.containers.service.ServiceAllView attribute)

 	(cfme.containers.template.TemplateAllView attribute)

 	(cfme.containers.volume.VolumeAllView attribute)

 	to_american_date_only() (cfme.utils.timeutil.parsetime method)

 	to_american_minutes() (cfme.utils.timeutil.parsetime method)

 	to_american_minutes_with_utc() (cfme.utils.timeutil.parsetime method)

 	to_american_with_utc() (cfme.utils.timeutil.parsetime method)

 	to_domain_select (cfme.automate.explorer.common.CopyViewBase attribute)

 	to_domain_text (cfme.automate.explorer.common.CopyViewBase attribute)

 	to_emails (cfme.web_ui.EmailSelectForm attribute)

 	to_ip4 (cfme.common.host_views.HostDiscoverView attribute)

 	

 	(cfme.common.provider_views.InfraProvidersDiscoverView attribute)

 	to_iso_date() (cfme.utils.timeutil.parsetime method)

 	to_iso_with_utc() (cfme.utils.timeutil.parsetime method)

 	to_long_date_format() (cfme.utils.timeutil.parsetime method)

 	TO_OPEN_EDIT (cfme.cloud.instance.image.Image attribute)

 	

 	(cfme.cloud.instance.Instance attribute)

 	(cfme.common.vm.BaseVM attribute)

 	(cfme.infrastructure.virtual_machines.Vm attribute)

 	TO_OPEN_RECONFIGURE (cfme.infrastructure.virtual_machines.Vm attribute)

 	to_request_format() (cfme.utils.timeutil.parsetime method)

 	TO_RETIRE (cfme.cloud.instance.Instance attribute)

 	

 	(cfme.common.vm.VM attribute)

 	(cfme.infrastructure.virtual_machines.Vm attribute)

 	to_saved_report_title_format() (cfme.utils.timeutil.parsetime method)

 	to_string() (cfme.web_ui.utilization.Option method)

 	toggle_maintenance_mode() (cfme.infrastructure.openstack_node.OpenstackNode method)

 	TokenCredential (class in cfme.base.credential)

 	tol_check() (in module cfme.utils.stats)

 	toolbar (cfme.ansible.playbooks.PlaybooksView attribute)

 	

 	(cfme.automate.provisioning_dialogs.ProvDiagAllView attribute)

 	(cfme.automate.provisioning_dialogs.ProvDiagDetailsView attribute)

 	(cfme.cloud.availability_zone.AvailabilityZoneAllView attribute)

 	(cfme.cloud.availability_zone.AvailabilityZoneDetailsView attribute)

 	(cfme.cloud.flavor.FlavorAllView attribute)

 	(cfme.cloud.flavor.FlavorDetailsView attribute)

 	(cfme.cloud.instance.InstanceAllView attribute)

 	(cfme.cloud.instance.InstanceDetailsView attribute)

 	(cfme.cloud.instance.InstanceProviderAllView attribute)

 	(cfme.cloud.instance.image.ImageAllView attribute)

 	(cfme.cloud.instance.image.ImageDetailsView attribute)

 	(cfme.cloud.instance.image.ImageProviderAllView attribute)

 	(cfme.cloud.keypairs.KeyPairAllView attribute)

 	(cfme.cloud.keypairs.KeyPairDetailsView attribute)

 	(cfme.cloud.stack.StackAllView attribute)

 	(cfme.cloud.stack.StackDetailsView attribute)

 	(cfme.cloud.stack.StackOutputsView attribute)

 	(cfme.cloud.stack.StackParametersView attribute)

 	(cfme.cloud.stack.StackResourcesView attribute)

 	(cfme.cloud.stack.StackSecurityGroupsView attribute)

 	(cfme.cloud.tenant.TenantAllView attribute)

 	(cfme.cloud.tenant.TenantDetailsView attribute)

 	(cfme.common.host_views.HostDetailsView attribute)

 	(cfme.common.host_views.HostDriftAnalysis attribute)

 	(cfme.common.host_views.HostsView attribute)

 	(cfme.common.provider_views.ProviderDetailsView attribute)

 	(cfme.common.provider_views.ProviderNodesView attribute)

 	(cfme.common.provider_views.ProvidersView attribute)

 	(cfme.configure.access_control.AllGroupView attribute)

 	(cfme.configure.access_control.AllRolesView attribute)

 	(cfme.configure.access_control.AllTenantView attribute)

 	(cfme.configure.access_control.AllUserView attribute)

 	(cfme.configure.access_control.DetailsGroupView attribute)

 	(cfme.configure.access_control.DetailsRoleView attribute)

 	(cfme.configure.access_control.DetailsTenantView attribute)

 	(cfme.configure.access_control.DetailsUserView attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileAllView attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileDetailsView attribute)

 	(cfme.control.explorer.policies.EventDetailsView attribute)

 	(cfme.infrastructure.cluster.ClusterAllView attribute)

 	(cfme.infrastructure.cluster.ClusterDetailsView attribute)

 	(cfme.infrastructure.datastore.DatastoreDetailsView attribute)

 	(cfme.infrastructure.datastore.DatastoresView attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleAllForProviderView attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleAllView attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleComparisonView attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleDetailsView attribute)

 	(cfme.infrastructure.provider.ProviderClustersView attribute)

 	(cfme.infrastructure.pxe.PXECustomizationTemplateDetailsView attribute)

 	(cfme.infrastructure.pxe.PXEDatastoreDetailsView attribute)

 	(cfme.infrastructure.pxe.PXEMainView attribute)

 	(cfme.infrastructure.pxe.PXEServerDetailsView attribute)

 	(cfme.infrastructure.pxe.PXESystemImageTypeDetailsView attribute)

 	(cfme.infrastructure.resource_pool.ResourcePoolAllView attribute)

 	(cfme.infrastructure.resource_pool.ResourcePoolDetailsView attribute)

 	(cfme.infrastructure.virtual_machines.InfraVmDetailsView attribute)

 	(cfme.infrastructure.virtual_machines.TemplatesOnlyAllView attribute)

 	(cfme.infrastructure.virtual_machines.VmTemplatesAllForProviderView attribute)

 	(cfme.infrastructure.virtual_machines.VmsOnlyAllView attribute)

 	(cfme.infrastructure.virtual_machines.VmsTemplatesAllView attribute)

 	(cfme.middleware.provider.middleware_views.DatasourceAllView attribute)

 	(cfme.middleware.provider.middleware_views.DatasourceDetailsView attribute)

 	(cfme.middleware.provider.middleware_views.DeploymentAllView attribute)

 	(cfme.middleware.provider.middleware_views.DeploymentDetailsView attribute)

 	(cfme.middleware.provider.middleware_views.DomainAllView attribute)

 	(cfme.middleware.provider.middleware_views.DomainDetailsView attribute)

 	(cfme.middleware.provider.middleware_views.DomainServerGroupAllView attribute)

 	(cfme.middleware.provider.middleware_views.MessagingAllView attribute)

 	(cfme.middleware.provider.middleware_views.MessagingDetailsView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderDatasourceAllView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderDeploymentAllView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderDomainAllView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderDomainsAllView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderMessagingAllView attribute)

 	(cfme.middleware.provider.middleware_views.ProviderServerAllView attribute)

 	(cfme.middleware.provider.middleware_views.ServerAllView attribute)

 	(cfme.middleware.provider.middleware_views.ServerDatasourceAllView attribute)

 	(cfme.middleware.provider.middleware_views.ServerDeploymentAllView attribute)

 	(cfme.middleware.provider.middleware_views.ServerDetailsView attribute)

 	(cfme.middleware.provider.middleware_views.ServerGroupDetailsView attribute)

 	(cfme.middleware.provider.middleware_views.ServerGroupServerAllView attribute)

 	(cfme.middleware.provider.middleware_views.ServerMessagingAllView attribute)

 	(cfme.networks.views.BalancerDetailsView attribute)

 	(cfme.networks.views.BalancerView attribute)

 	(cfme.networks.views.CloudNetworkDetailsView attribute)

 	(cfme.networks.views.CloudNetworkView attribute)

 	(cfme.networks.views.NetworkPortDetailsView attribute)

 	(cfme.networks.views.NetworkPortView attribute)

 	(cfme.networks.views.NetworkProviderDetailsView attribute)

 	(cfme.networks.views.NetworkProviderView attribute)

 	(cfme.networks.views.NetworkRouterDetailsView attribute)

 	(cfme.networks.views.NetworkRouterView attribute)

 	(cfme.networks.views.OneProviderBalancerView attribute)

 	(cfme.networks.views.OneProviderCloudNetworkView attribute)

 	(cfme.networks.views.OneProviderNetworkPortView attribute)

 	(cfme.networks.views.OneProviderNetworkRouterView attribute)

 	(cfme.networks.views.OneProviderSecurityGroupView attribute)

 	(cfme.networks.views.OneProviderSubnetView attribute)

 	(cfme.networks.views.SecurityGroupDetailsView attribute)

 	(cfme.networks.views.SecurityGroupView attribute)

 	(cfme.networks.views.SubnetDetailsView attribute)

 	(cfme.networks.views.SubnetView attribute)

 	(cfme.services.myservice.ui.MyServiceDetailView attribute)

 	(cfme.services.requests.RequestBasicView attribute)

 	(cfme.services.requests.RequestDetailsView attribute)

 	(cfme.storage.volume.VolumeAllView attribute)

 	(cfme.storage.volume.VolumeDetailsView attribute)

 	ToolbarOptionGreyedOrUnavailable

 	top_to_appliance() (in module cfme.utils.perf_message_stats)

 	top_to_workers() (in module cfme.utils.perf_message_stats)

 	topology (cfme.common.TopologyMixin attribute)

 	Topology (class in cfme.containers.topology)

 	

 	(class in cfme.web_ui.topology)

 	TopologyDisplayNames (class in cfme.web_ui.topology)

 	TopologyElement (class in cfme.web_ui.topology)

 	TopologyFromDetails (class in cfme.containers.provider)

 	

 	(class in cfme.middleware.provider)

 	TopologyLegend (class in cfme.web_ui.topology)

 	TopologyLine (class in cfme.web_ui.topology)

 	TopologyMixin (class in cfme.common)

 	TopologySearchBox (class in cfme.web_ui.topology)

 	tot_time() (in module cfme.scripting.setup_env)

 	total_for_node (cfme.infrastructure.deployment_roles.DeploymentRoleDetailsEntities attribute)

 	total_for_vm (cfme.infrastructure.deployment_roles.DeploymentRoleDetailsEntities attribute)

 	total_request (cfme.services.dashboard.Dashboard attribute)

 	total_request() (in module cfme.services.dashboard.ssui)

 	total_service (cfme.services.dashboard.Dashboard attribute)

 	total_service() (in module cfme.services.dashboard.ssui)

 	total_snapshots (cfme.infrastructure.virtual_machines.Vm attribute)

 	totals_for_hosts (cfme.infrastructure.cluster.ClusterDetailsEntities attribute)

 	totals_for_vms (cfme.infrastructure.cluster.ClusterDetailsEntities attribute)

 	TotalServices (class in cfme.services.dashboard.ssui)

 	trace() (cfme.utils.log.TraceLogger method)

 	

 	(cfme.utils.log.TraceLoggerAdapter method)

 	(in module cfme.utils.tracer)

 	TraceLogger (class in cfme.utils.log)

 	TraceLoggerAdapter (class in cfme.utils.log)

 	trackerbot_add_provider_template() (in module cfme.utils.trackerbot)

 	tracking_events (cfme.utils.log.Perflog attribute)

 	transaction (cfme.utils.db.Db attribute)

 	tree (cfme.configure.settings.DefaultFilterForm attribute)

 	

 	(cfme.infrastructure.virtual_machines.Genealogy attribute)

 	(cfme.services.catalogs.catalog_item.BasicInfoForm attribute)

 	Tree (class in cfme.web_ui)

 	tree() (cfme.utils.ftp.FTPClient method)

 	

 	(in module cfme.web_ui.accordion)

 	tree_display_name (cfme.automate.explorer.domain.Domain attribute)

 	tree_id (cfme.web_ui.Tree attribute)

 	TREE_NODE (cfme.control.explorer.conditions.BaseCondition attribute)

 	

 	(cfme.control.explorer.conditions.ContainerImageCondition attribute)

 	(cfme.control.explorer.conditions.ContainerNodeCondition attribute)

 	(cfme.control.explorer.conditions.HostCondition attribute)

 	(cfme.control.explorer.conditions.PodCondition attribute)

 	(cfme.control.explorer.conditions.ProviderCondition attribute)

 	(cfme.control.explorer.conditions.ReplicatorCondition attribute)

 	(cfme.control.explorer.conditions.VMCondition attribute)

 	(cfme.control.explorer.policies.BasePolicy attribute)

 	(cfme.control.explorer.policies.ContainerImageCompliancePolicy attribute)

 	(cfme.control.explorer.policies.ContainerImageControlPolicy attribute)

 	(cfme.control.explorer.policies.ContainerNodeCompliancePolicy attribute)

 	(cfme.control.explorer.policies.ContainerNodeControlPolicy attribute)

 	(cfme.control.explorer.policies.HostCompliancePolicy attribute)

 	(cfme.control.explorer.policies.HostControlPolicy attribute)

 	(cfme.control.explorer.policies.PodCompliancePolicy attribute)

 	(cfme.control.explorer.policies.PodControlPolicy attribute)

 	(cfme.control.explorer.policies.ReplicatorCompliancePolicy attribute)

 	(cfme.control.explorer.policies.ReplicatorControlPolicy attribute)

 	(cfme.control.explorer.policies.VMCompliancePolicy attribute)

 	(cfme.control.explorer.policies.VMControlPolicy attribute)

 	tree_path (cfme.automate.dialog_box.Box attribute)

 	

 	(cfme.automate.dialog_box.BoxCollection attribute)

 	(cfme.automate.dialog_element.Element attribute)

 	(cfme.automate.dialog_element.ElementCollection attribute)

 	(cfme.automate.dialog_tab.Tab attribute)

 	(cfme.automate.dialog_tab.TabCollection attribute)

 	(cfme.automate.explorer.domain.Domain attribute)

 	(cfme.automate.explorer.domain.DomainCollection attribute)

 	(cfme.automate.explorer.instance.Instance attribute)

 	(cfme.automate.explorer.instance.InstanceCollection attribute)

 	(cfme.automate.explorer.klass.Class attribute)

 	(cfme.automate.explorer.klass.ClassCollection attribute)

 	(cfme.automate.explorer.method.Method attribute)

 	(cfme.automate.explorer.method.MethodCollection attribute)

 	(cfme.automate.explorer.namespace.Namespace attribute)

 	(cfme.automate.explorer.namespace.NamespaceCollection attribute)

 	(cfme.automate.service_dialogs.Dialog attribute)

 	(cfme.automate.service_dialogs.DialogCollection attribute)

 	(cfme.configure.access_control.Tenant attribute)

 	tree_path_name_only (cfme.automate.explorer.instance.Instance attribute)

 	

 	(cfme.automate.explorer.klass.Class attribute)

 	(cfme.automate.explorer.method.Method attribute)

 	TreeNotFound

 	TreeTypeUnknown

 	tries() (in module cfme.utils)

 	true_actions (cfme.control.explorer.policies.EditEventView attribute)

 	type (cfme.automate.buttons.ButtonDetailView attribute)

 	

 	(cfme.automate.import_export.GitImportSelectorView attribute)

 	(cfme.common.provider.BaseProvider attribute)

 	(cfme.control.explorer.actions.ActionDetailsView attribute)

 	TYPE (cfme.control.explorer.alert_profiles.BaseAlertProfile attribute)

 	

 	(cfme.control.explorer.alert_profiles.ClusterAlertProfile attribute)

 	(cfme.control.explorer.alert_profiles.DatastoreAlertProfile attribute)

 	(cfme.control.explorer.alert_profiles.HostAlertProfile attribute)

 	(cfme.control.explorer.alert_profiles.MiddlewareServerAlertProfile attribute)

 	(cfme.control.explorer.alert_profiles.ProviderAlertProfile attribute)

 	(cfme.control.explorer.alert_profiles.ServerAlertProfile attribute)

 	(cfme.control.explorer.alert_profiles.VMInstanceAlertProfile attribute)

 	(cfme.control.explorer.policies.BasePolicy attribute)

 	(cfme.control.explorer.policies.ContainerImageCompliancePolicy attribute)

 	(cfme.control.explorer.policies.ContainerImageControlPolicy attribute)

 	(cfme.control.explorer.policies.ContainerNodeCompliancePolicy attribute)

 	(cfme.control.explorer.policies.ContainerNodeControlPolicy attribute)

 	(cfme.control.explorer.policies.HostCompliancePolicy attribute)

 	(cfme.control.explorer.policies.HostControlPolicy attribute)

 	(cfme.control.explorer.policies.PodCompliancePolicy attribute)

 	(cfme.control.explorer.policies.PodControlPolicy attribute)

 	type (cfme.control.explorer.policies.PolicyDetailsView attribute)

 	TYPE (cfme.control.explorer.policies.ReplicatorCompliancePolicy attribute)

 	

 	(cfme.control.explorer.policies.ReplicatorControlPolicy attribute)

 	(cfme.control.explorer.policies.VMCompliancePolicy attribute)

 	(cfme.control.explorer.policies.VMControlPolicy attribute)

 	type (cfme.control.snmp_form.SNMPTrapField attribute)

 	

 	(cfme.infrastructure.config_management.AnsibleTower attribute)

 	(cfme.infrastructure.config_management.ConfigManager attribute)

 	(cfme.infrastructure.config_management.Satellite attribute)

 	(cfme.infrastructure.pxe.PXECustomizationTemplateForm attribute)

 	(cfme.infrastructure.pxe.PXEImageEditView attribute)

 	(cfme.infrastructure.pxe.PXESystemImageTypeForm attribute)

 	TYPE (cfme.intelligence.reports.widgets.BaseDashboardReportWidget attribute)

 	

 	(cfme.intelligence.reports.widgets.chart_widgets.ChartWidget attribute)

 	(cfme.intelligence.reports.widgets.menu_widgets.MenuWidget attribute)

 	(cfme.intelligence.reports.widgets.report_widgets.ReportWidget attribute)

 	(cfme.intelligence.reports.widgets.rss_widgets.RSSFeedWidget attribute)

 	type (cfme.intelligence.reports.widgets.rss_widgets.RSSWidgetFormCommon attribute)

 	

 	(cfme.web_ui.InfoBlock attribute)

 	TYPE_CONDITION (cfme.web_ui.form_buttons.FormButton.Button attribute)

 	type_loc (cfme.control.snmp_form.SNMPTrapField attribute)

 	type_name (cfme.cloud.provider.azure.AzureProvider attribute)

 	

 	(cfme.cloud.provider.ec2.EC2Provider attribute)

 	(cfme.cloud.provider.gce.GCEProvider attribute)

 	(cfme.cloud.provider.openstack.OpenStackProvider attribute)

 	(cfme.containers.provider.kubernetes.KubernetesProvider attribute)

 	(cfme.containers.provider.openshift.OpenshiftProvider attribute)

 	(cfme.infrastructure.provider.openstack_infra.OpenstackInfraProvider attribute)

 	(cfme.infrastructure.provider.rhevm.RHEVMProvider attribute)

 	(cfme.infrastructure.provider.scvmm.SCVMMProvider attribute)

 	(cfme.infrastructure.provider.virtualcenter.VMwareProvider attribute)

 	(cfme.middleware.provider.hawkular.HawkularProvider attribute)

U

 	

 	ui_port (cfme.utils.appliance.IPAppliance attribute)

 	ui_powerstates_available (cfme.cloud.instance.azure.AzureInstance attribute)

 	

 	(cfme.cloud.instance.ec2.EC2Instance attribute)

 	(cfme.cloud.instance.gce.GCEInstance attribute)

 	(cfme.cloud.instance.openstack.OpenStackInstance attribute)

 	ui_powerstates_unavailable (cfme.cloud.instance.azure.AzureInstance attribute)

 	

 	(cfme.cloud.instance.ec2.EC2Instance attribute)

 	(cfme.cloud.instance.gce.GCEInstance attribute)

 	(cfme.cloud.instance.openstack.OpenStackInstance attribute)

 	ui_worker_pid() (in module fixtures.perf)

 	UiCoveragePlugin (class in fixtures.ui_coverage)

 	UL (cfme.dashboard.Kebab attribute)

 	unassign_policy_profiles() (cfme.common.PolicyProfileAssignable method)

 	uncheck() (cfme.web_ui.BootstrapSwitch method)

 	

 	(cfme.web_ui.OldCheckbox method)

 	(in module cfme.fixtures.pytest_selenium)

 	uncheck_all() (in module cfme.web_ui.paginator)

 	uncheck_node() (cfme.web_ui.BootstrapTreeview method)

 	

 	(cfme.web_ui.CheckboxTree method)

 	uncollectif() (in module markers.uncollect)

 	undeploy() (cfme.middleware.provider.Deployable method)

 	UNDO (cfme.web_ui.expression_editor_widgetastic.ExpressionEditor attribute)

 	UnexpectedSuccessException

 	UnidentifiableTagType

 	uninstall_ipa_client() (cfme.utils.appliance.ApplianceConsoleCli method)

 	uninstall_vddk() (cfme.utils.appliance.IPAppliance method)

 	Unit (class in cfme.utils.units)

 	unit_name (cfme.utils.appliance.services.SystemdService attribute)

 	unit_type (cfme.utils.units.Unit attribute)

 	UnknownProvider

 	UnknownProviderType

 	unlock() (cfme.automate.explorer.domain.Domain method)

 	unregister() (cfme.utils.appliance.IPAppliance method)

 	unselect_all() (cfme.web_ui.CheckboxSelect method)

 	unselected_checkboxes (cfme.web_ui.CheckboxSelect attribute)

 	unselected_values (cfme.web_ui.CheckboxSelect attribute)

 	unserialize_report() (in module fixtures.parallelizer)

 	unset_attribute() (in module cfme.fixtures.pytest_selenium)

 	unset_ownership() (cfme.cloud.instance.Instance method)

 	

 	(cfme.common.vm.BaseVM method)

 	untag() (cfme.infrastructure.config_management.ConfigSystem method)

 	

 	(cfme.storage.object_store.ObjectStore method)

 	update (cfme.base.Zone attribute)

 	

 	(cfme.services.myservice.MyService attribute)

 	update() (cfme.ansible.credentials.Credential method)

 	

 	(cfme.ansible.repositories.Repository method)

 	(cfme.automate.buttons.Button method)

 	(cfme.automate.buttons.ButtonGroup method)

 	(cfme.automate.explorer.domain.Domain method)

 	(cfme.automate.explorer.instance.Instance method)

 	(cfme.automate.explorer.klass.Class method)

 	(cfme.automate.explorer.method.Method method)

 	(cfme.automate.explorer.namespace.Namespace method)

 	(cfme.automate.provisioning_dialogs.ProvisioningDialog method)

 	(cfme.automate.service_dialogs.Dialog method)

 	(cfme.cloud.instance.Instance method)

 	(cfme.cloud.tenant.Tenant method)

 	(cfme.common.provider.BaseProvider method)

 	(cfme.configure.access_control.Group method)

 	(cfme.configure.access_control.Role method)

 	(cfme.configure.access_control.Tenant method)

 	(cfme.configure.access_control.User method)

 	(cfme.configure.configuration.AmazonAuthSetting method)

 	(cfme.configure.configuration.BasicInformation method)

 	(cfme.configure.configuration.Category method)

 	(cfme.configure.configuration.DatabaseAuthSetting method)

 	(cfme.configure.configuration.DatabaseBackupSchedule method)

 	(cfme.configure.configuration.ExternalAuthSetting method)

 	(cfme.configure.configuration.LDAPAuthSetting method)

 	(cfme.configure.configuration.SMTPSettings method)

 	(cfme.configure.configuration.Schedule method)

 	(cfme.configure.configuration.Tag method)

 	(cfme.configure.configuration.VMwareConsoleSupport method)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfile method)

 	(cfme.configure.configuration.region_settings.Category method)

 	(cfme.configure.configuration.region_settings.MapTags method)

 	(cfme.configure.configuration.region_settings.Tag method)

 	(cfme.configure.settings.DefaultFilter method)

 	(cfme.configure.settings.Timeprofile method)

 	(cfme.control.explorer.actions.Action method)

 	(cfme.control.explorer.alert_profiles.BaseAlertProfile method)

 	(cfme.control.explorer.alerts.Alert method)

 	(cfme.control.explorer.conditions.BaseCondition method)

 	(cfme.control.explorer.policies.BasePolicy method)

 	(cfme.control.explorer.policy_profiles.PolicyProfile method)

 	(cfme.infrastructure.config_management.ConfigManager method)

 	(cfme.infrastructure.host.Host method)

 	(cfme.infrastructure.pxe.CustomizationTemplate method)

 	(cfme.infrastructure.pxe.PXEServer method)

 	(cfme.infrastructure.pxe.SystemImageType method)

 	(cfme.intelligence.chargeback.rates.ComputeRate method)

 	(cfme.intelligence.reports.dashboards.Dashboard method)

 	(cfme.intelligence.reports.dashboards.DefaultDashboard method)

 	(cfme.intelligence.reports.reports.CustomReport method)

 	(cfme.intelligence.reports.schedules.Schedule method)

 	(cfme.intelligence.reports.widgets.BaseDashboardReportWidget method)

 	(cfme.services.catalogs.ansible_catalog_item.AnsiblePlaybookCatalogItem method)

 	(cfme.services.catalogs.catalog.Catalog method)

 	(cfme.services.catalogs.catalog_item.CatalogBundle method)

 	(cfme.services.catalogs.catalog_item.CatalogItem method)

 	(cfme.services.catalogs.orchestration_template.OrchestrationTemplate method)

 	(cfme.services.requests.Request method)

 	(in module cfme.base.ui)

 	(in module cfme.services.myservice.ssui)

 	(in module cfme.services.myservice.ui)

 	(in module cfme.utils.update)

 	update_appliances() (cfme.configure.configuration.region_settings.RedHatUpdates method)

 	update_credentials_rest() (cfme.infrastructure.host.Host method)

 	update_guid() (cfme.utils.appliance.IPAppliance method)

 	update_on_launch (cfme.ansible.repositories.RepositoryFormView attribute)

 	update_password (cfme.base.Server attribute)

 	update_password() (cfme.base.ui.LoginPage method)

 	update_registration() (cfme.configure.configuration.region_settings.RedHatUpdates method)

 	update_rhel() (cfme.utils.appliance.IPAppliance method)

 	update_server_roles() (cfme.utils.appliance.IPAppliance method)

 	update_time_difference() (cfme.utils.ftp.FTPClient method)

 	update_ui (cfme.services.requests.Request attribute)

 	Updateable (class in cfme.utils.update)

 	

 	updates() (in module cfme.utils.update)

 	updates_table (cfme.configure.configuration.region_settings.RedHatUpdatesView attribute)

 	UpDownSelect (class in cfme.web_ui)

 	upload (cfme.services.catalogs.ansible_catalog_item.DetailsEntitiesAnsibleCatalogItemView attribute)

 	upload_button (cfme.control.import_export.ControlImportExportView attribute)

 	

 	(cfme.intelligence.reports.import_export.ImportExportCommonForm attribute)

 	upload_file (cfme.control.import_export.ControlImportExportView attribute)

 	

 	(cfme.intelligence.reports.import_export.ImportExportCommonForm attribute)

 	upload_license() (in module cfme.scripting.setup_ansible)

 	upstream_bug (cfme.utils.bz.BugWrapper attribute)

 	upstream_version (cfme.utils.bz.Bugzilla attribute)

 	uptime() (cfme.utils.ssh.SSHClient method)

 	uri (cfme.base.ui.DiagnosticsCollectLogsEditView attribute)

 	

 	(cfme.infrastructure.pxe.PXEServerForm attribute)

 	url (cfme.ansible.repositories.RepositoryFormView attribute)

 	

 	(cfme.configure.configuration.region_settings.RedHatUpdatesEditView attribute)

 	(cfme.intelligence.reports.widgets.rss_widgets.RSSWidgetFormCommon attribute)

 	(cfme.utils.appliance.IPAppliance attribute)

 	(cfme.utils.blockers.BZ attribute)

 	(cfme.utils.blockers.Blocker attribute)

 	(cfme.utils.blockers.GH attribute)

 	use_dev_branch() (cfme.utils.appliance.IPAppliance method)

 	use_proxy (cfme.configure.configuration.region_settings.RedHatUpdatesEditView attribute)

 	user (cfme.utils.appliance.IPAppliance attribute)

 	User (class in cfme.configure.access_control)

 	user_emails (cfme.web_ui.EmailSelectForm attribute)

 	user_group_select (cfme.configure.access_control.UserForm attribute)

 	user_image (cfme.services.catalogs.service_catalogs.OrderForm attribute)

 	user_restricted() (in module cfme.fixtures.tag)

 	user_to_look_up (cfme.configure.access_control.GroupForm attribute)

 	UserAdd (class in cfme.configure.access_control)

 	UserAll (class in cfme.configure.access_control)

 	UserDetails (class in cfme.configure.access_control)

 	UserEdit (class in cfme.configure.access_control)

 	UserForm (class in cfme.configure.access_control)

 	userid_txt (cfme.configure.access_control.UserForm attribute)

 	username (cfme.base.ssui.LoginPage attribute)

 	

 	(cfme.base.ui.DiagnosticsCollectLogsEditView attribute)

 	(cfme.base.ui.LoginPage attribute)

 	(cfme.base.ui.ZoneForm attribute)

 	(cfme.common.provider.DefaultEndpointForm attribute)

 	(cfme.configure.access_control.GroupForm attribute)

 	(cfme.configure.configuration.region_settings.RedHatUpdatesEditView attribute)

 	(cfme.infrastructure.pxe.PXEServerForm attribute)

 	(cfme.middleware.provider.middleware_views.AddDatasourceForm attribute)

 	(cfme.utils.ssh.SSHClient attribute)

 	users() (in module cfme.rest.gen_data)

 	UsersEntities (class in cfme.configure.access_control)

 	UserTagsEdit (class in cfme.configure.access_control)

 	uses_blockers() (in module markers.uses)

 	uses_cloud_providers() (in module markers.uses)

 	uses_db() (in module markers.uses)

 	uses_event_listener() (in module markers.uses)

 	uses_infra_providers() (in module markers.uses)

 	uses_providers() (in module markers.uses)

 	uses_pxe() (in module markers.uses)

 	uses_ssh() (in module markers.uses)

 	UsingSharedTables

 	utc_time() (cfme.utils.appliance.IPAppliance method)

 	utilization (cfme.base.ui.ServerDiagnosticsView attribute)

 	

 	(cfme.common.UtilizationMixin attribute)

 	Utilization (class in cfme.base.ui)

 	

 	(class in cfme.containers.node)

 	(class in cfme.optimize.utilization)

 	(class in cfme.web_ui.utilization)

 	UtilizationMixin (class in cfme.common)

V

 	

 	valid_credentials_state (cfme.networks.provider.NetworkProvider attribute)

 	Validatable (class in cfme.common)

 	validate (cfme.base.ui.DiagnosticsCollectLogsEditView attribute)

 	

 	(cfme.cloud.provider.gce.GCEEndpointForm attribute)

 	(cfme.common.provider.DefaultEndpointForm attribute)

 	(cfme.infrastructure.pxe.PXEServerForm attribute)

 	validate() (cfme.common.provider.BaseProvider method)

 	validate_button (cfme.automate.explorer.method.MethodAddView attribute)

 	

 	(cfme.automate.explorer.method.MethodEditView attribute)

 	(cfme.configure.configuration.region_settings.RedHatUpdatesEditView attribute)

 	validate_logs() (cfme.utils.log_validator.LogValidator method)

 	validate_node() (cfme.web_ui.BootstrapTreeview class method)

 	validate_properties() (cfme.common.Validatable method)

 	validate_stats() (cfme.common.provider.BaseProvider method)

 	validate_tags() (cfme.common.Validatable method)

 	validation_host (cfme.common.host_views.HostsEditView attribute)

 	value (cfme.common.SummaryValue attribute)

 	

 	(cfme.control.snmp_form.SNMPTrapField attribute)

 	(cfme.fixtures.pytest_selenium.Select.Option attribute)

 	(cfme.web_ui.multibox.SelectItem attribute)

 	value() (cfme.web_ui.StatusBox method)

 	

 	(in module cfme.fixtures.pytest_selenium)

 	value_loc (cfme.control.snmp_form.SNMPTrapField attribute)

 	value_of() (in module cfme.web_ui.utilization)

 	values (cfme.web_ui.DynamicTable.Row attribute)

 	values() (cfme.utils.db.Db method)

 	variable (cfme.services.catalogs.ansible_catalog_item.AnsibleExtraVariables attribute)

 	

 	(class in cfme.utils.varmeth)

 	variables_table (cfme.services.catalogs.ansible_catalog_item.AnsibleExtraVariables attribute)

 	variant() (cfme.utils.varmeth.variable method)

 	vcenter_attr_name (cfme.control.explorer.actions.ActionFormCommon attribute)

 	vcenter_attr_value (cfme.control.explorer.actions.ActionFormCommon attribute)

 	venv_call() (in module cfme.scripting.quickstart)

 	verify (cfme.base.ui.ZoneForm attribute)

 	verify_headers() (cfme.web_ui.Table method)

 	verify_password (cfme.base.ui.LoginPage attribute)

 	verify_rails_error() (in module cfme.web_ui.flash)

 	verify_vm_paused() (in module fixtures.virtual_machine)

 	verify_vm_running() (in module fixtures.virtual_machine)

 	verify_vm_stopped() (in module fixtures.virtual_machine)

 	verify_vm_suspended() (in module fixtures.virtual_machine)

 	verpick_message() (in module cfme.web_ui.flash)

 	version (cfme.common.provider.BaseProvider attribute)

 	

 	(cfme.test_framework.sprout.plugin.SproutProvisioningRequest attribute)

 	(cfme.utils.appliance.IPAppliance attribute)

 	Version (class in cfme.utils.version)

 	version_changes() (in module cfme.scripting.quickstart)

 	versions (cfme.utils.bz.Product attribute)

 	versions_match() (cfme.configure.configuration.region_settings.RedHatUpdates method)

 	ViaSSUI (class in cfme.utils.appliance.implementations.ssui)

 	ViaUI (class in cfme.utils.appliance.implementations.ui)

 	VIEW (cfme.ansible.credentials.Add attribute)

 	

 	(cfme.ansible.credentials.AnsibleCredentials attribute)

 	(cfme.ansible.credentials.Details attribute)

 	(cfme.ansible.credentials.Edit attribute)

 	(cfme.ansible.playbooks.AnsiblePlaybooks attribute)

 	(cfme.ansible.playbooks.Details attribute)

 	(cfme.ansible.repositories.Add attribute)

 	(cfme.ansible.repositories.AnsibleRepositories attribute)

 	(cfme.ansible.repositories.Details attribute)

 	(cfme.ansible.repositories.Edit attribute)

 	(cfme.automate.AutomateCustomization attribute)

 	(cfme.automate.buttons.ButtonAll attribute)

 	(cfme.automate.buttons.ButtonDetails attribute)

 	(cfme.automate.buttons.ButtonEdit attribute)

 	(cfme.automate.buttons.ButtonGroupAll attribute)

 	(cfme.automate.buttons.ButtonGroupDetails attribute)

 	(cfme.automate.buttons.ButtonGroupEdit attribute)

 	(cfme.automate.buttons.ButtonGroupNew attribute)

 	(cfme.automate.buttons.ButtonGroupObjectType attribute)

 	(cfme.automate.buttons.ButtonNew attribute)

 	(cfme.automate.dialog_box.Add attribute)

 	(cfme.automate.dialog_element.Add attribute)

 	(cfme.automate.dialog_element.Edit attribute)

 	(cfme.automate.dialog_tab.Add attribute)

 	(cfme.automate.explorer.AutomateExplorer attribute)

 	(cfme.automate.explorer.domain.Add attribute)

 	(cfme.automate.explorer.domain.All attribute)

 	(cfme.automate.explorer.domain.Details attribute)

 	(cfme.automate.explorer.domain.Edit attribute)

 	(cfme.automate.explorer.domain.Priority attribute)

 	(cfme.automate.explorer.instance.Add attribute)

 	(cfme.automate.explorer.instance.Copy attribute)

 	(cfme.automate.explorer.instance.Details attribute)

 	(cfme.automate.explorer.instance.Edit attribute)

 	(cfme.automate.explorer.klass.Add attribute)

 	(cfme.automate.explorer.klass.Copy attribute)

 	(cfme.automate.explorer.klass.Details attribute)

 	(cfme.automate.explorer.klass.Edit attribute)

 	(cfme.automate.explorer.klass.EditSchema attribute)

 	(cfme.automate.explorer.method.Add attribute)

 	(cfme.automate.explorer.method.Copy attribute)

 	(cfme.automate.explorer.method.Details attribute)

 	(cfme.automate.explorer.method.Edit attribute)

 	(cfme.automate.explorer.namespace.Add attribute)

 	(cfme.automate.explorer.namespace.Details attribute)

 	(cfme.automate.explorer.namespace.Edit attribute)

 	(cfme.automate.provisioning_dialogs.Add attribute)

 	(cfme.automate.provisioning_dialogs.All attribute)

 	(cfme.automate.provisioning_dialogs.Details attribute)

 	(cfme.automate.provisioning_dialogs.Edit attribute)

 	(cfme.automate.service_dialogs.Add attribute)

 	(cfme.automate.service_dialogs.All attribute)

 	(cfme.automate.service_dialogs.Details attribute)

 	(cfme.automate.service_dialogs.Edit attribute)

 	(cfme.base.ssui.LoggedIn attribute)

 	(cfme.base.ssui.LoginScreen attribute)

 	(cfme.base.ui.About attribute)

 	(cfme.base.ui.Advanced attribute)

 	(cfme.base.ui.AuditLog attribute)

 	(cfme.base.ui.Authentication attribute)

 	(cfme.base.ui.AutomateImportExport attribute)

 	(cfme.base.ui.AutomateSimulation attribute)

 	(cfme.base.ui.CFMELog attribute)

 	(cfme.base.ui.Chargeback attribute)

 	(cfme.base.ui.Configuration attribute)

 	(cfme.base.ui.CustomLogos attribute)

 	(cfme.base.ui.Dashboard attribute)

 	(cfme.base.ui.Details attribute)

 	(cfme.base.ui.Diagnostics attribute)

 	(cfme.base.ui.DiagnosticsCollectLogs attribute)

 	(cfme.base.ui.DiagnosticsCollectLogsEdit attribute)

 	(cfme.base.ui.DiagnosticsCollectLogsEditSlave attribute)

 	(cfme.base.ui.DiagnosticsCollectLogsSlave attribute)

 	(cfme.base.ui.DiagnosticsDetails attribute)

 	(cfme.base.ui.DiagnosticsWorkers attribute)

 	(cfme.base.ui.Documentation attribute)

 	(cfme.base.ui.Import attribute)

 	(cfme.base.ui.ImportTags attribute)

 	(cfme.base.ui.LoggedIn attribute)

 	(cfme.base.ui.LoginScreen attribute)

 	(cfme.base.ui.ProductionLog attribute)

 	(cfme.base.ui.RSS attribute)

 	(cfme.base.ui.RegionDetails attribute)

 	(cfme.base.ui.RegionDiagnostics attribute)

 	(cfme.base.ui.RegionDiagnosticsDatabase attribute)

 	(cfme.base.ui.RegionDiagnosticsOrphanedData attribute)

 	(cfme.base.ui.RegionDiagnosticsReplication attribute)

 	(cfme.base.ui.RegionDiagnosticsRolesByServers attribute)

 	(cfme.base.ui.RegionDiagnosticsServers attribute)

 	(cfme.base.ui.RegionDiagnosticsServersByRoles attribute)

 	(cfme.base.ui.RegionDiagnosticsZones attribute)

 	(cfme.base.ui.RegionZones attribute)

 	(cfme.base.ui.ServerDetails attribute)

 	(cfme.base.ui.Tasks attribute)

 	(cfme.base.ui.Timelines attribute)

 	(cfme.base.ui.Utilization attribute)

 	(cfme.base.ui.Workers attribute)

 	(cfme.base.ui.ZoneAdd attribute)

 	(cfme.base.ui.ZoneCANDUGapCollection attribute)

 	(cfme.base.ui.ZoneDetails attribute)

 	(cfme.base.ui.ZoneDiagnostics attribute)

 	(cfme.base.ui.ZoneDiagnosticsCollectLogs attribute)

 	(cfme.base.ui.ZoneDiagnosticsCollectLogsEdit attribute)

 	(cfme.base.ui.ZoneDiagnosticsRolesByServers attribute)

 	(cfme.base.ui.ZoneDiagnosticsServers attribute)

 	(cfme.base.ui.ZoneDiagnosticsServersByRoles attribute)

 	(cfme.base.ui.ZoneEdit attribute)

 	(cfme.cloud.availability_zone.AvailabilityZoneAll attribute)

 	(cfme.cloud.availability_zone.AvailabilityZoneDetails attribute)

 	(cfme.cloud.availability_zone.AvailabilityZoneEditTags attribute)

 	(cfme.cloud.availability_zone.AvailabilityZoneTimelines attribute)

 	(cfme.cloud.flavor.FlavorAll attribute)

 	(cfme.cloud.flavor.FlavorDetails attribute)

 	(cfme.cloud.flavor.FlavorEditTags attribute)

 	(cfme.cloud.instance.All attribute)

 	(cfme.cloud.instance.AllForProvider attribute)

 	(cfme.cloud.instance.Details attribute)

 	(cfme.cloud.instance.Edit attribute)

 	(cfme.cloud.instance.EditManagementEngineRelationship attribute)

 	(cfme.cloud.instance.EditTags attribute)

 	(cfme.cloud.instance.ManagePolicies attribute)

 	(cfme.cloud.instance.PolicySimulation attribute)

 	(cfme.cloud.instance.Provision attribute)

 	(cfme.cloud.instance.SetOwnership attribute)

 	(cfme.cloud.instance.SetRetirement attribute)

 	(cfme.cloud.instance.Timelines attribute)

 	(cfme.cloud.instance.image.ImageAll attribute)

 	(cfme.cloud.instance.image.ImageAllForProvider attribute)

 	(cfme.cloud.instance.image.ImageDetails attribute)

 	(cfme.cloud.instance.image.ImageEdit attribute)

 	(cfme.cloud.instance.image.ImageEditTags attribute)

 	(cfme.cloud.instance.image.ImageManagePolicies attribute)

 	(cfme.cloud.instance.image.ImagePolicySimulation attribute)

 	(cfme.cloud.instance.image.ImageProvisionImage attribute)

 	(cfme.cloud.instance.image.ImageSetOwnership attribute)

 	(cfme.cloud.instance.openstack.AddFloatingIP attribute)

 	(cfme.cloud.instance.openstack.AttachVolume attribute)

 	(cfme.cloud.instance.openstack.DetachVolume attribute)

 	(cfme.cloud.instance.openstack.Evacuate attribute)

 	(cfme.cloud.instance.openstack.Migrate attribute)

 	(cfme.cloud.instance.openstack.Reconfigure attribute)

 	(cfme.cloud.instance.openstack.RemoveFloatingIP attribute)

 	(cfme.cloud.instance.openstack.RightSize attribute)

 	(cfme.cloud.keypairs.Add attribute)

 	(cfme.cloud.keypairs.CloudKeyPairs attribute)

 	(cfme.cloud.keypairs.Details attribute)

 	(cfme.cloud.keypairs.EditTagsFromDetails attribute)

 	(cfme.cloud.provider.All attribute)

 	(cfme.cloud.provider.Details attribute)

 	(cfme.cloud.provider.Discover attribute)

 	(cfme.cloud.provider.Edit attribute)

 	(cfme.cloud.provider.EditFromDetails attribute)

 	(cfme.cloud.provider.EditTags attribute)

 	(cfme.cloud.provider.EditTagsFromDetails attribute)

 	(cfme.cloud.provider.ManagePolicies attribute)

 	(cfme.cloud.provider.ManagePoliciesFromDetails attribute)

 	(cfme.cloud.provider.New attribute)

 	(cfme.cloud.provider.Timelines attribute)

 	(cfme.cloud.stack.All attribute)

 	(cfme.cloud.stack.Details attribute)

 	(cfme.cloud.stack.EditTags attribute)

 	(cfme.cloud.stack.RelationshipOutputs attribute)

 	(cfme.cloud.stack.RelationshipParameters attribute)

 	(cfme.cloud.stack.RelationshipResources attribute)

 	(cfme.cloud.stack.RelationshipsSecurityGroups attribute)

 	(cfme.cloud.tenant.TenantAdd attribute)

 	(cfme.cloud.tenant.TenantAll attribute)

 	(cfme.cloud.tenant.TenantDetails attribute)

 	(cfme.cloud.tenant.TenantEdit attribute)

 	(cfme.cloud.tenant.TenantEditTags attribute)

 	(cfme.configure.access_control.EditGroupSequence attribute)

 	(cfme.configure.access_control.GroupAdd attribute)

 	(cfme.configure.access_control.GroupAll attribute)

 	(cfme.configure.access_control.GroupDetails attribute)

 	(cfme.configure.access_control.GroupEdit attribute)

 	(cfme.configure.access_control.GroupTagsEdit attribute)

 	(cfme.configure.access_control.RoleAdd attribute)

 	(cfme.configure.access_control.RoleAll attribute)

 	(cfme.configure.access_control.RoleDetails attribute)

 	(cfme.configure.access_control.RoleEdit attribute)

 	(cfme.configure.access_control.TenantAdd attribute)

 	(cfme.configure.access_control.TenantAll attribute)

 	(cfme.configure.access_control.TenantDetails attribute)

 	(cfme.configure.access_control.TenantEdit attribute)

 	(cfme.configure.access_control.TenantManageQuotas attribute)

 	(cfme.configure.access_control.UserAdd attribute)

 	(cfme.configure.access_control.UserAll attribute)

 	(cfme.configure.access_control.UserDetails attribute)

 	(cfme.configure.access_control.UserEdit attribute)

 	(cfme.configure.access_control.UserTagsEdit attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileAdd attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileAll attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileCopy attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileDetails attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileEdit attribute)

 	(cfme.configure.configuration.region_settings.CANDUCollectionDetails attribute)

 	(cfme.configure.configuration.region_settings.CategoryAdd attribute)

 	(cfme.configure.configuration.region_settings.CategoryAll attribute)

 	(cfme.configure.configuration.region_settings.CategoryEdit attribute)

 	(cfme.configure.configuration.region_settings.Details attribute)

 	(cfme.configure.configuration.region_settings.Edit attribute)

 	(cfme.configure.configuration.region_settings.MapTagsAdd attribute)

 	(cfme.configure.configuration.region_settings.MapTagsAll attribute)

 	(cfme.configure.configuration.region_settings.MapTagsEdit attribute)

 	(cfme.configure.configuration.region_settings.TagsAdd attribute)

 	(cfme.configure.configuration.region_settings.TagsAll attribute)

 	(cfme.configure.configuration.region_settings.TagsEdit attribute)

 	(cfme.configure.settings.DefaultFilterAll attribute)

 	(cfme.configure.settings.DefaultViewAll attribute)

 	(cfme.configure.settings.TimeprofileAll attribute)

 	(cfme.configure.settings.VisualAll attribute)

 	(cfme.configure.tasks.AllOtherTasks attribute)

 	(cfme.configure.tasks.AllTasks attribute)

 	(cfme.configure.tasks.MyOtherTasks attribute)

 	(cfme.configure.tasks.MyTasks attribute)

 	(cfme.containers.container.ContainerAll attribute)

 	(cfme.containers.image.All attribute)

 	(cfme.containers.image_registry.ImageRegistryAll attribute)

 	(cfme.containers.node.All attribute)

 	(cfme.containers.node.Details attribute)

 	(cfme.containers.node.EditTags attribute)

 	(cfme.containers.node.ManagePolicies attribute)

 	(cfme.containers.node.Timelines attribute)

 	(cfme.containers.node.Utilization attribute)

 	(cfme.containers.pod.All attribute)

 	(cfme.containers.project.All attribute)

 	(cfme.containers.provider.AdHocMain attribute)

 	(cfme.containers.provider.Add attribute)

 	(cfme.containers.provider.All attribute)

 	(cfme.containers.provider.Details attribute)

 	(cfme.containers.provider.Edit attribute)

 	(cfme.containers.replicator.All attribute)

 	(cfme.containers.route.All attribute)

 	(cfme.containers.service.All attribute)

 	(cfme.containers.template.All attribute)

 	(cfme.containers.volume.All attribute)

 	(cfme.control.explorer.ControlExplorer attribute)

 	(cfme.control.explorer.actions.ActionDetails attribute)

 	(cfme.control.explorer.actions.ActionEdit attribute)

 	(cfme.control.explorer.actions.ActionNew attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfileDetails attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfileEdit attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfileEditAssignments attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfileNew attribute)

 	(cfme.control.explorer.alerts.AlertCopy attribute)

 	(cfme.control.explorer.alerts.AlertDetails attribute)

 	(cfme.control.explorer.alerts.AlertEdit attribute)

 	(cfme.control.explorer.alerts.AlertNew attribute)

 	(cfme.control.explorer.conditions.ConditionDetails attribute)

 	(cfme.control.explorer.conditions.ConditionEdit attribute)

 	(cfme.control.explorer.conditions.ConditionNew attribute)

 	(cfme.control.explorer.policies.PolicyConditionDetails attribute)

 	(cfme.control.explorer.policies.PolicyDetails attribute)

 	(cfme.control.explorer.policies.PolicyEdit attribute)

 	(cfme.control.explorer.policies.PolicyEventDetails attribute)

 	(cfme.control.explorer.policies.PolicyNew attribute)

 	(cfme.control.explorer.policy_profiles.PolicyProfileDetails attribute)

 	(cfme.control.explorer.policy_profiles.PolicyProfileEdit attribute)

 	(cfme.control.explorer.policy_profiles.PolicyProfileNew attribute)

 	(cfme.control.import_export.ControlImportExport attribute)

 	(cfme.control.log.ControlLog attribute)

 	(cfme.control.simulation.ControlSimulation attribute)

 	(cfme.dashboard.DashboardDetails attribute)

 	(cfme.infrastructure.cluster.All attribute)

 	(cfme.infrastructure.cluster.Details attribute)

 	(cfme.infrastructure.cluster.EditTagsFromDetails attribute)

 	(cfme.infrastructure.cluster.Timelines attribute)

 	(cfme.infrastructure.datastore.All attribute)

 	(cfme.infrastructure.datastore.Details attribute)

 	(cfme.infrastructure.datastore.DetailsFromProvider attribute)

 	(cfme.infrastructure.datastore.EditTagsFromDetails attribute)

 	(cfme.infrastructure.deployment_roles.All attribute)

 	(cfme.infrastructure.deployment_roles.AllForProvider attribute)

 	(cfme.infrastructure.deployment_roles.Details attribute)

 	(cfme.infrastructure.deployment_roles.DetailsFromProvider attribute)

 	(cfme.infrastructure.host.Add attribute)

 	(cfme.infrastructure.host.All attribute)

 	(cfme.infrastructure.host.Details attribute)

 	(cfme.infrastructure.host.Discover attribute)

 	(cfme.infrastructure.host.Edit attribute)

 	(cfme.infrastructure.host.EditTagsFromDetails attribute)

 	(cfme.infrastructure.host.PolicyAssignment attribute)

 	(cfme.infrastructure.host.Timelines attribute)

 	(cfme.infrastructure.provider.Add attribute)

 	(cfme.infrastructure.provider.All attribute)

 	(cfme.infrastructure.provider.Details attribute)

 	(cfme.infrastructure.provider.DetailsFromProvider attribute)

 	(cfme.infrastructure.provider.Discover attribute)

 	(cfme.infrastructure.provider.Edit attribute)

 	(cfme.infrastructure.provider.EditTags attribute)

 	(cfme.infrastructure.provider.EditTagsFromDetails attribute)

 	(cfme.infrastructure.provider.ManagePolicies attribute)

 	(cfme.infrastructure.provider.ManagePoliciesFromDetails attribute)

 	(cfme.infrastructure.provider.Timelines attribute)

 	(cfme.infrastructure.provider.openstack_infra.ProviderNodes attribute)

 	(cfme.infrastructure.provider.openstack_infra.ProviderRegisterNodes attribute)

 	(cfme.infrastructure.provider.openstack_infra.ProviderScaleDown attribute)

 	(cfme.infrastructure.provider.openstack_infra.ProviderScaleOut attribute)

 	(cfme.infrastructure.provider.virtualcenter.ProviderNodes attribute)

 	(cfme.infrastructure.pxe.CustomizationTemplateAdd attribute)

 	(cfme.infrastructure.pxe.CustomizationTemplateAll attribute)

 	(cfme.infrastructure.pxe.CustomizationTemplateDetails attribute)

 	(cfme.infrastructure.pxe.CustomizationTemplateEdit attribute)

 	(cfme.infrastructure.pxe.ISODatastoreAdd attribute)

 	(cfme.infrastructure.pxe.ISODatastoreAll attribute)

 	(cfme.infrastructure.pxe.ISODatastoreDetails attribute)

 	(cfme.infrastructure.pxe.PXEServerAdd attribute)

 	(cfme.infrastructure.pxe.PXEServerAll attribute)

 	(cfme.infrastructure.pxe.PXEServerDetails attribute)

 	(cfme.infrastructure.pxe.PXEServerEdit attribute)

 	(cfme.infrastructure.pxe.SystemImageTypeAdd attribute)

 	(cfme.infrastructure.pxe.SystemImageTypeAll attribute)

 	(cfme.infrastructure.pxe.SystemImageTypeDetails attribute)

 	(cfme.infrastructure.pxe.SystemImageTypeEdit attribute)

 	(cfme.infrastructure.resource_pool.All attribute)

 	(cfme.infrastructure.resource_pool.Details attribute)

 	(cfme.infrastructure.resource_pool.EditTagsFromDetails attribute)

 	(cfme.infrastructure.virtual_machines.EditTagsFromDetails attribute)

 	(cfme.infrastructure.virtual_machines.ProvisionVM attribute)

 	(cfme.infrastructure.virtual_machines.SetRetirement attribute)

 	(cfme.infrastructure.virtual_machines.TemplatesAll attribute)

 	(cfme.infrastructure.virtual_machines.Timelines attribute)

 	(cfme.infrastructure.virtual_machines.VmAll attribute)

 	(cfme.infrastructure.virtual_machines.VmAllWithTemplates attribute)

 	(cfme.infrastructure.virtual_machines.VmAllWithTemplatesDetails attribute)

 	(cfme.infrastructure.virtual_machines.VmAllWithTemplatesForProvider attribute)

 	(cfme.infrastructure.virtual_machines.VmClone attribute)

 	(cfme.infrastructure.virtual_machines.VmDetails attribute)

 	(cfme.infrastructure.virtual_machines.VmEdit attribute)

 	(cfme.infrastructure.virtual_machines.VmEngineRelationship attribute)

 	(cfme.infrastructure.virtual_machines.VmMigrate attribute)

 	(cfme.infrastructure.virtual_machines.VmReconfigure attribute)

 	(cfme.intelligence.chargeback.IntelChargeback attribute)

 	(cfme.intelligence.chargeback.assignments.AssignAll attribute)

 	(cfme.intelligence.chargeback.assignments.AssignCompute attribute)

 	(cfme.intelligence.chargeback.assignments.AssignStorage attribute)

 	(cfme.intelligence.chargeback.rates.ComputeRateAll attribute)

 	(cfme.intelligence.chargeback.rates.ComputeRateDetails attribute)

 	(cfme.intelligence.chargeback.rates.ComputeRateEdit attribute)

 	(cfme.intelligence.chargeback.rates.ComputeRateNew attribute)

 	(cfme.intelligence.chargeback.rates.StorageRateAll attribute)

 	(cfme.intelligence.chargeback.rates.StorageRateDetails attribute)

 	(cfme.intelligence.chargeback.rates.StorageRateEdit attribute)

 	(cfme.intelligence.chargeback.rates.StorageRateNew attribute)

 	(cfme.intelligence.reports.CloudIntelReports attribute)

 	(cfme.intelligence.reports.dashboards.DashboardDetails attribute)

 	(cfme.intelligence.reports.dashboards.DashboardEdit attribute)

 	(cfme.intelligence.reports.dashboards.DashboardNew attribute)

 	(cfme.intelligence.reports.dashboards.DefaultDashboardDetails attribute)

 	(cfme.intelligence.reports.dashboards.DefaultDashboardEdit attribute)

 	(cfme.intelligence.reports.import_export.ImportExportCustomReports attribute)

 	(cfme.intelligence.reports.import_export.ImportExportWidgets attribute)

 	(cfme.intelligence.reports.menus.EditReportMenus attribute)

 	(cfme.intelligence.reports.reports.CannedReportInfo attribute)

 	(cfme.intelligence.reports.reports.CannedSavedReportDetails attribute)

 	(cfme.intelligence.reports.reports.CustomReportAll attribute)

 	(cfme.intelligence.reports.reports.CustomReportDetails attribute)

 	(cfme.intelligence.reports.reports.CustomReportEdit attribute)

 	(cfme.intelligence.reports.reports.CustomReportNew attribute)

 	(cfme.intelligence.reports.reports.CustomSavedReportDetails attribute)

 	(cfme.intelligence.reports.saved.ScheduleDetails attribute)

 	(cfme.intelligence.reports.schedules.ScheduleAll attribute)

 	(cfme.intelligence.reports.schedules.ScheduleDetails attribute)

 	(cfme.intelligence.reports.schedules.ScheduleEdit attribute)

 	(cfme.intelligence.reports.schedules.ScheduleNew attribute)

 	(cfme.intelligence.reports.widgets.BaseDashboardWidgetDetailsStep attribute)

 	(cfme.intelligence.reports.widgets.BaseNewDashboardWidgetStep attribute)

 	(cfme.intelligence.reports.widgets.chart_widgets.EditChartWidget attribute)

 	(cfme.intelligence.reports.widgets.chart_widgets.NewChartWidget attribute)

 	(cfme.intelligence.reports.widgets.menu_widgets.EditMenuWidget attribute)

 	(cfme.intelligence.reports.widgets.menu_widgets.NewMenuWidget attribute)

 	(cfme.intelligence.reports.widgets.report_widgets.EditReportWidget attribute)

 	(cfme.intelligence.reports.widgets.report_widgets.NewReportWidget attribute)

 	(cfme.intelligence.reports.widgets.rss_widgets.EditRSSWidget attribute)

 	(cfme.intelligence.reports.widgets.rss_widgets.NewRSSWidget attribute)

 	(cfme.middleware.datasource.All attribute)

 	(cfme.middleware.datasource.Details attribute)

 	(cfme.middleware.deployment.All attribute)

 	(cfme.middleware.deployment.Details attribute)

 	(cfme.middleware.domain.All attribute)

 	(cfme.middleware.domain.Details attribute)

 	(cfme.middleware.domain.DomainServerGroups attribute)

 	(cfme.middleware.messaging.All attribute)

 	(cfme.middleware.messaging.Details attribute)

 	(cfme.middleware.provider.Add attribute)

 	(cfme.middleware.provider.All attribute)

 	(cfme.middleware.provider.Details attribute)

 	(cfme.middleware.provider.Edit attribute)

 	(cfme.middleware.provider.EditFromDetails attribute)

 	(cfme.middleware.provider.EditTags attribute)

 	(cfme.middleware.provider.EditTagsFromDetails attribute)

 	(cfme.middleware.provider.ProviderDatasources attribute)

 	(cfme.middleware.provider.ProviderDeployments attribute)

 	(cfme.middleware.provider.ProviderDomains attribute)

 	(cfme.middleware.provider.ProviderMessagings attribute)

 	(cfme.middleware.provider.ProviderServers attribute)

 	(cfme.middleware.provider.Timelines attribute)

 	(cfme.middleware.server.AddDatasource attribute)

 	(cfme.middleware.server.AddDeployment attribute)

 	(cfme.middleware.server.AddJDBCDriver attribute)

 	(cfme.middleware.server.All attribute)

 	(cfme.middleware.server.Details attribute)

 	(cfme.middleware.server.ServerDatasources attribute)

 	(cfme.middleware.server.ServerDeployments attribute)

 	(cfme.middleware.server.ServerGroup attribute)

 	(cfme.middleware.server.ServerMessagings attribute)

 	(cfme.middleware.server_group.Details attribute)

 	(cfme.middleware.server_group.ServerGroupServers attribute)

 	(cfme.networks.balancer.All attribute)

 	(cfme.networks.balancer.Details attribute)

 	(cfme.networks.balancer.EditTags attribute)

 	(cfme.networks.cloud_network.All attribute)

 	(cfme.networks.cloud_network.Details attribute)

 	(cfme.networks.cloud_network.EditTags attribute)

 	(cfme.networks.network_port.All attribute)

 	(cfme.networks.network_port.Details attribute)

 	(cfme.networks.network_port.EditTags attribute)

 	(cfme.networks.network_router.All attribute)

 	(cfme.networks.network_router.Details attribute)

 	(cfme.networks.network_router.EditTags attribute)

 	(cfme.networks.provider.All attribute)

 	(cfme.networks.provider.Details attribute)

 	(cfme.networks.provider.EditTags attribute)

 	(cfme.networks.provider.OpenCloudNetworks attribute)

 	(cfme.networks.provider.OpenCloudSubnets attribute)

 	(cfme.networks.provider.OpenNetworkBalancers attribute)

 	(cfme.networks.provider.OpenNetworkPorts attribute)

 	(cfme.networks.provider.OpenNetworkRouters attribute)

 	(cfme.networks.provider.OpenSecurityGroups attribute)

 	(cfme.networks.security_group.All attribute)

 	(cfme.networks.security_group.Details attribute)

 	(cfme.networks.security_group.EditTags attribute)

 	(cfme.networks.subnet.All attribute)

 	(cfme.networks.subnet.EditTags attribute)

 	(cfme.networks.subnet.OpenCloudNetworks attribute)

 	(cfme.optimize.Bottlenecks attribute)

 	(cfme.optimize.bottlenecks.All attribute)

 	(cfme.services.catalogs.ServicesCatalog attribute)

 	(cfme.services.catalogs.ansible_catalog_item.Add attribute)

 	(cfme.services.catalogs.ansible_catalog_item.All attribute)

 	(cfme.services.catalogs.ansible_catalog_item.Details attribute)

 	(cfme.services.catalogs.ansible_catalog_item.Edit attribute)

 	(cfme.services.catalogs.ansible_catalog_item.EditTags attribute)

 	(cfme.services.catalogs.ansible_catalog_item.PickItemType attribute)

 	(cfme.services.catalogs.catalog.Add attribute)

 	(cfme.services.catalogs.catalog.All attribute)

 	(cfme.services.catalogs.catalog.Details attribute)

 	(cfme.services.catalogs.catalog.Edit attribute)

 	(cfme.services.catalogs.catalog.EditTagsFromDetails attribute)

 	(cfme.services.catalogs.catalog_item.Add attribute)

 	(cfme.services.catalogs.catalog_item.AddButton attribute)

 	(cfme.services.catalogs.catalog_item.AddButtonGroup attribute)

 	(cfme.services.catalogs.catalog_item.All attribute)

 	(cfme.services.catalogs.catalog_item.BundleAdd attribute)

 	(cfme.services.catalogs.catalog_item.BundleAll attribute)

 	(cfme.services.catalogs.catalog_item.BundleDetails attribute)

 	(cfme.services.catalogs.catalog_item.BundleEdit attribute)

 	(cfme.services.catalogs.catalog_item.Details attribute)

 	(cfme.services.catalogs.catalog_item.Edit attribute)

 	(cfme.services.catalogs.catalog_item.EditTags attribute)

 	(cfme.services.catalogs.orchestration_template.AddDialog attribute)

 	(cfme.services.catalogs.orchestration_template.AddTemplate attribute)

 	(cfme.services.catalogs.orchestration_template.All attribute)

 	(cfme.services.catalogs.orchestration_template.CopyTemplate attribute)

 	(cfme.services.catalogs.orchestration_template.Details attribute)

 	(cfme.services.catalogs.orchestration_template.EditTagsFromDetails attribute)

 	(cfme.services.catalogs.orchestration_template.EditTemplate attribute)

 	(cfme.services.catalogs.orchestration_template.TemplateType attribute)

 	(cfme.services.catalogs.service_catalogs.ServiceCatalogDetails attribute)

 	(cfme.services.catalogs.service_catalogs.ServiceCatalogOrder attribute)

 	(cfme.services.catalogs.service_catalogs.ServiceCatalogsAll attribute)

 	(cfme.services.catalogs.service_catalogs.ServiceCatalogsDefault attribute)

 	(cfme.services.dashboard.ssui.CurrentServices attribute)

 	(cfme.services.dashboard.ssui.DashboardAll attribute)

 	(cfme.services.dashboard.ssui.RetiredServices attribute)

 	(cfme.services.dashboard.ssui.RetiringSoon attribute)

 	(cfme.services.dashboard.ssui.TotalServices attribute)

 	(cfme.services.myservice.ssui.Details attribute)

 	(cfme.services.myservice.ssui.MyServiceAll attribute)

 	(cfme.services.myservice.ssui.MyServiceEdit attribute)

 	(cfme.services.myservice.ui.MyServiceAll attribute)

 	(cfme.services.myservice.ui.MyServiceDetails attribute)

 	(cfme.services.myservice.ui.MyServiceEdit attribute)

 	(cfme.services.myservice.ui.MyServiceEditTags attribute)

 	(cfme.services.myservice.ui.MyServiceReconfigure attribute)

 	(cfme.services.myservice.ui.MyServiceSetOwnership attribute)

 	(cfme.services.myservice.ui.MyServiceSetRetirement attribute)

 	(cfme.services.requests.ApproveRequest attribute)

 	(cfme.services.requests.CopyRequest attribute)

 	(cfme.services.requests.DenyRequest attribute)

 	(cfme.services.requests.EditRequest attribute)

 	(cfme.services.requests.RequestAll attribute)

 	(cfme.services.requests.RequestDetails attribute)

 	(cfme.services.workloads.AllTemplates attribute)

 	(cfme.services.workloads.AllVMs attribute)

 	(cfme.services.workloads.WorkloadsDefault attribute)

 	(cfme.storage.volume.VolumeAdd attribute)

 	(cfme.storage.volume.VolumeAll attribute)

 	(cfme.storage.volume.VolumeDetails attribute)

 	(cfme.utils.appliance.implementations.ssui.SSUINavigateStep attribute)

 	view (cfme.utils.appliance.implementations.ssui.SSUINavigateStep attribute)

 	VIEW (cfme.utils.appliance.implementations.ui.CFMENavigateStep attribute)

 	view (cfme.utils.appliance.implementations.ui.CFMENavigateStep attribute)

 	view_selector (cfme.ansible.playbooks.PlaybooksToolbar attribute)

 	

 	(cfme.cloud.availability_zone.AvailabilityZoneDetailsToolBar attribute)

 	(cfme.cloud.availability_zone.AvailabilityZoneToolBar attribute)

 	(cfme.cloud.flavor.FlavorToolBar attribute)

 	(cfme.cloud.instance.image.ImageToolbar attribute)

 	(cfme.cloud.keypairs.KeyPairToolbar attribute)

 	(cfme.cloud.stack.StackToolbar attribute)

 	(cfme.cloud.tenant.TenantToolbar attribute)

 	(cfme.common.host_views.HostsToolbar attribute)

 	(cfme.common.provider_views.NodesToolBar attribute)

 	(cfme.common.provider_views.ProviderDetailsToolBar attribute)

 	(cfme.common.provider_views.ProviderToolBar attribute)

 	(cfme.common.vm_views.VMToolbar attribute)

 	(cfme.infrastructure.cluster.ClusterToolbar attribute)

 	(cfme.infrastructure.datastore.DatastoreToolBar attribute)

 	(cfme.infrastructure.deployment_roles.DeploymentRoleToolbar attribute)

 	(cfme.infrastructure.resource_pool.ResourcePoolToolbar attribute)

 	(cfme.middleware.provider.middleware_views.DatasourceAllToolbar attribute)

 	(cfme.middleware.provider.middleware_views.DeploymentAllToolbar attribute)

 	(cfme.middleware.provider.middleware_views.DomainToolbar attribute)

 	(cfme.middleware.provider.middleware_views.MessagingAllToolbar attribute)

 	(cfme.middleware.provider.middleware_views.ServerGroupToolbar attribute)

 	(cfme.middleware.provider.middleware_views.ServerToolbar attribute)

 	(cfme.networks.views.BalancerToolBar attribute)

 	(cfme.networks.views.CloudNetworkToolBar attribute)

 	(cfme.networks.views.NetworkPortToolBar attribute)

 	(cfme.networks.views.NetworkProviderToolBar attribute)

 	(cfme.networks.views.NetworkRouterToolBar attribute)

 	(cfme.networks.views.OneProviderComponentsToolbar attribute)

 	(cfme.networks.views.SecurityGroupDetailsToolBar attribute)

 	(cfme.networks.views.SecurityGroupToolBar attribute)

 	(cfme.networks.views.SubnetToolBar attribute)

 	(cfme.storage.volume.VolumeToolbar attribute)

 	view_value_mapping (cfme.base.credential.Credential attribute)

 	

 	(cfme.base.credential.SSHCredential attribute)

 	(cfme.base.credential.ServiceAccountCredential attribute)

 	(cfme.base.credential.TokenCredential attribute)

 	(cfme.cloud.provider.CloudProvider attribute)

 	(cfme.cloud.provider.azure.AzureEndpoint attribute)

 	(cfme.cloud.provider.azure.AzureProvider attribute)

 	(cfme.cloud.provider.ec2.EC2Endpoint attribute)

 	(cfme.cloud.provider.ec2.EC2Provider attribute)

 	(cfme.cloud.provider.gce.GCEEndpoint attribute)

 	(cfme.cloud.provider.gce.GCEProvider attribute)

 	(cfme.cloud.provider.openstack.OpenStackProvider attribute)

 	(cfme.common.provider.CANDUEndpoint attribute)

 	(cfme.common.provider.DefaultEndpoint attribute)

 	(cfme.common.provider.EventsEndpoint attribute)

 	(cfme.common.provider.SSHEndpoint attribute)

 	(cfme.containers.provider.ContainersProvider attribute)

 	(cfme.containers.provider.ContainersProviderDefaultEndpoint attribute)

 	(cfme.containers.provider.openshift.HawkularEndpoint attribute)

 	(cfme.containers.provider.openshift.OpenshiftProvider attribute)

 	(cfme.infrastructure.provider.InfraProvider attribute)

 	(cfme.infrastructure.provider.openstack_infra.OpenstackInfraProvider attribute)

 	(cfme.infrastructure.provider.openstack_infra.RHOSEndpoint attribute)

 	(cfme.infrastructure.provider.rhevm.RHEVMEndpoint attribute)

 	(cfme.infrastructure.provider.rhevm.RHEVMProvider attribute)

 	(cfme.infrastructure.provider.scvmm.SCVMMEndpoint attribute)

 	(cfme.infrastructure.provider.scvmm.SCVMMProvider attribute)

 	(cfme.infrastructure.provider.virtualcenter.VMwareProvider attribute)

 	(cfme.middleware.provider.hawkular.HawkularEndpoint attribute)

 	(cfme.middleware.provider.hawkular.HawkularProvider attribute)

 	VirtualCenterEndpoint (class in cfme.infrastructure.provider.virtualcenter)

 	VirtualCenterEndpointForm (class in cfme.infrastructure.provider.virtualcenter)

 	visibility (cfme.intelligence.reports.widgets.BaseDashboardWidgetFormCommon attribute)

 	Visual (class in cfme.configure.settings)

 	VisualAll (class in cfme.configure.settings)

 	visualdisplay (cfme.configure.settings.VisualTabForm attribute)

 	visualitem (cfme.configure.settings.VisualTabForm attribute)

 	visualquadicons (cfme.configure.settings.VisualTabForm attribute)

 	visualstartpage (cfme.configure.settings.VisualTabForm attribute)

 	VisualTabForm (class in cfme.configure.settings)

 	VM (class in cfme.common.vm)

 	Vm (class in cfme.infrastructure.virtual_machines)

 	vm() (in module cfme.rest.gen_data)

 	Vm.CfmeRelationship (class in cfme.infrastructure.virtual_machines)

 	Vm.Snapshot (class in cfme.infrastructure.virtual_machines)

 	vm_cb (cfme.configure.access_control.TenantQuotaForm attribute)

 	vm_hosts (cfme.configure.documentation.LinksView attribute)

 	VM_INSTANCE (cfme.automate.buttons.ButtonGroup attribute)

 	VM_MIGRATE (cfme.automate.provisioning_dialogs.ProvisioningDialog attribute)

 	vm_name (cfme.cloud.provider.CloudProvider attribute)

 	

 	(cfme.common.provider.CloudInfraProvider attribute)

 	(cfme.infrastructure.provider.InfraProvider attribute)

 	(cfme.services.catalogs.service_catalogs.OrderForm attribute)

 	(cfme.utils.appliance.Appliance attribute)

 	vm_name() (in module cfme.fixtures.vm_name)

 	VM_OR_INSTANCE (cfme.infrastructure.pxe.SystemImageType attribute)

 	vm_password (cfme.services.catalogs.service_catalogs.OrderForm attribute)

 	VM_PROVISION (cfme.automate.provisioning_dialogs.ProvisioningDialog attribute)

 	vm_quad (cfme.configure.settings.Visual attribute)

 	vm_restriction_select (cfme.configure.access_control.RoleForm attribute)

 	

 	vm_selection (cfme.control.simulation.ControlSimulationView attribute)

 	vm_size (cfme.services.catalogs.service_catalogs.OrderForm attribute)

 	vm_txt (cfme.configure.access_control.TenantQuotaForm attribute)

 	VM_TYPE (cfme.cloud.instance.Instance attribute)

 	

 	(cfme.configure.configuration.analysis_profile.AnalysisProfile attribute)

 	(cfme.infrastructure.virtual_machines.Vm attribute)

 	vm_user (cfme.services.catalogs.service_catalogs.OrderForm attribute)

 	VmAll (class in cfme.infrastructure.virtual_machines)

 	VmAllWithTemplates (class in cfme.infrastructure.virtual_machines)

 	VmAllWithTemplatesDetails (class in cfme.infrastructure.virtual_machines)

 	VmAllWithTemplatesForProvider (class in cfme.infrastructure.virtual_machines)

 	VmClone (class in cfme.infrastructure.virtual_machines)

 	VMCompliancePolicy (class in cfme.control.explorer.policies)

 	VMCondition (class in cfme.control.explorer.conditions)

 	VMConfiguration (class in cfme.infrastructure.virtual_machines)

 	VMConsole (class in cfme.common.vm_console)

 	VMControlPolicy (class in cfme.control.explorer.policies)

 	VmDetails (class in cfme.infrastructure.virtual_machines)

 	VMDetailsEntities (class in cfme.common.vm_views)

 	VMDisk (class in cfme.infrastructure.virtual_machines)

 	VmEdit (class in cfme.infrastructure.virtual_machines)

 	VmEngineRelationship (class in cfme.infrastructure.virtual_machines)

 	VMEntities (class in cfme.common.vm_views)

 	VMHardware (class in cfme.infrastructure.virtual_machines)

 	VMInstanceAlertProfile (class in cfme.control.explorer.alert_profiles)

 	VmMigrate (class in cfme.infrastructure.virtual_machines)

 	VmNotFound

 	VmNotFoundViaIP

 	VmOrInstanceNotFound

 	VmReconfigure (class in cfme.infrastructure.virtual_machines)

 	vms (cfme.configure.settings.DefaultViewForm attribute)

 	

 	(cfme.infrastructure.virtual_machines.VmsTemplatesAccordion attribute)

 	(cfme.services.workloads.WorkloadsView attribute)

 	vms_and_templates (cfme.configure.access_control.GroupForm attribute)

 	vms_instances (cfme.configure.settings.DefaultViewForm attribute)

 	vmsafe (cfme.common.vm_views.VMDetailsEntities attribute)

 	VmsInstances (class in cfme.services.workloads)

 	VmsOnlyAllView (class in cfme.infrastructure.virtual_machines)

 	vmstemplates (cfme.infrastructure.virtual_machines.VmsTemplatesAccordion attribute)

 	VmsTemplatesAccordion (class in cfme.infrastructure.virtual_machines)

 	VmsTemplatesAllView (class in cfme.infrastructure.virtual_machines)

 	VmsToolbar (cfme.infrastructure.virtual_machines.InfraVmDetailsView attribute)

 	VmTemplatesAllForProviderView (class in cfme.infrastructure.virtual_machines)

 	VMToolbar (class in cfme.common.vm_views)

 	vmware (cfme.common.provider_views.InfraProvidersDiscoverView attribute)

 	vmware_console_form (cfme.configure.configuration.VMwareConsoleSupport attribute)

 	VMwareConsoleSupport (class in cfme.configure.configuration)

 	VMwareProvider (class in cfme.infrastructure.provider.virtualcenter)

 	vnc_end_port (cfme.common.provider_views.ProviderEditView attribute)

 	vnc_start_port (cfme.common.provider_views.ProviderEditView attribute)

 	Volume (class in cfme.containers.volume)

 	

 	(class in cfme.storage.volume)

 	volume_name (cfme.storage.volume.VolumeAddForm attribute)

 	VolumeAdd (class in cfme.storage.volume)

 	VolumeAddEntities (class in cfme.storage.volume)

 	VolumeAddForm (class in cfme.storage.volume)

 	VolumeAddView (class in cfme.storage.volume)

 	VolumeAll (class in cfme.storage.volume)

 	VolumeAllView (class in cfme.containers.volume)

 	

 	(class in cfme.storage.volume)

 	VolumeCollection (class in cfme.storage.volume)

 	VolumeDetails (class in cfme.storage.volume)

 	VolumeDetailsAccordion (class in cfme.storage.volume)

 	VolumeDetailsEntities (class in cfme.storage.volume)

 	VolumeDetailsToolbar (class in cfme.storage.volume)

 	VolumeDetailsView (class in cfme.storage.volume)

 	VolumeEntities (class in cfme.storage.volume)

 	VolumeEntity() (in module cfme.storage.volume)

 	VolumeListEntity (class in cfme.storage.volume)

 	VolumeNotFound

 	VolumeQuadIconEntity (class in cfme.storage.volume)

 	VolumeTileIconEntity (class in cfme.storage.volume)

 	VolumeToolbar (class in cfme.storage.volume)

 	VolumeView (class in cfme.storage.volume)

 	vpor_data_instance (class in cfme.fixtures.vporizer)

 	vporizer() (in module cfme.fixtures.vporizer)

W

 	

 	wait() (in module fixtures.parallelizer.parallelizer_tester)

 	wait_analysis_finished() (in module cfme.configure.tasks)

 	wait_candu_data_available() (cfme.common.vm.VM method)

 	wait_for() (cfme.utils.appliance.db.ApplianceDB method)

 	wait_for_a_host() (in module cfme.infrastructure.host)

 	wait_for_a_provider() (in module cfme.cloud.provider)

 	

 	(in module cfme.infrastructure.provider)

 	wait_for_ajax() (in module cfme.fixtures.pytest_selenium)

 	wait_for_appear() (cfme.cloud.tenant.Tenant method)

 	wait_for_connect() (cfme.common.vm_console.VMConsole method)

 	wait_for_delete() (cfme.common.provider.BaseProvider method)

 	

 	(cfme.common.vm.BaseVM method)

 	wait_for_disappear() (cfme.cloud.tenant.Tenant method)

 	

 	(cfme.infrastructure.cluster.Cluster method)

 	(cfme.storage.volume.Volume method)

 	wait_for_element() (in module cfme.fixtures.pytest_selenium)

 	wait_for_embedded_ansible() (cfme.utils.appliance.IPAppliance method)

 	wait_for_evm_service() (cfme.utils.appliance.IPAppliance method)

 	wait_for_exists() (cfme.cloud.stack.Stack method)

 	

 	(cfme.infrastructure.cluster.Cluster method)

 	(cfme.infrastructure.resource_pool.ResourcePool method)

 	wait_for_filter_option_to_load() (cfme.containers.provider.AdHocMetricsView method)

 	wait_for_host_address() (cfme.utils.appliance.IPAppliance method)

 	wait_for_host_delete() (in module cfme.infrastructure.host)

 	wait_for_host_state_change() (cfme.infrastructure.host.Host method)

 	wait_for_host_to_appear() (in module cfme.infrastructure.host)

 	wait_for_instance_state_change() (cfme.cloud.instance.Instance method)

 	wait_for_miq_server_workers_started() (cfme.utils.appliance.IPAppliance method)

 	wait_for_request() (cfme.services.requests.Request method)

 	wait_for_request_ui (cfme.services.requests.Request attribute)

 	wait_for_results_to_load() (cfme.containers.provider.AdHocMetricsView method)

 	wait_for_running() (cfme.utils.appliance.services.SystemdService method)

 	wait_for_ssh() (cfme.utils.appliance.IPAppliance method)

 	wait_for_text() (cfme.common.vm_console.VMConsole method)

 	wait_for_vm_state_change() (cfme.common.vm.VM method)

 	

 	(in module cfme.infrastructure.virtual_machines)

 	wait_for_web_ui() (cfme.utils.appliance.IPAppliance method)

 	wait_generated() (cfme.intelligence.reports.widgets.BaseDashboardReportWidget method)

 	wait_to_appear() (cfme.common.vm.BaseVM method)

 	

 	wait_to_disappear() (cfme.common.vm.BaseVM method)

 	wait_until() (in module cfme.fixtures.pytest_selenium)

 	WarningsDeduplicationFilter (class in cfme.utils.log)

 	WarningsRelpathFilter (class in cfme.utils.log)

 	Wharf (class in cfme.utils.browser)

 	WharfFactory (class in cfme.utils.browser)

 	widget_title (cfme.intelligence.reports.widgets.BaseDashboardWidgetFormCommon attribute)

 	widget_view (cfme.dashboard.DashboardWidget attribute)

 	widgetastic (cfme.utils.appliance.implementations.ssui.ViaSSUI attribute)

 	

 	(cfme.utils.appliance.implementations.ui.ViaUI attribute)

 	widgetastic_check_tag_visibility() (in module cfme.fixtures.tag)

 	WidgetasticTaggable (class in cfme.common)

 	widgets (cfme.dashboard.Dashboard attribute)

 	

 	(cfme.intelligence.reports.dashboards.DashboardFormCommon attribute)

 	widgets_generated() (in module fixtures.widgets)

 	window_loc (cfme.web_ui.jstimelines.Event attribute)

 	windows_images_dir (cfme.infrastructure.pxe.PXEServerForm attribute)

 	WithZoom (class in cfme.utils.browser)

 	WK_1_WEEK (cfme.web_ui.utilization.Option attribute)

 	WK_2_WEEK (cfme.web_ui.utilization.Option attribute)

 	WK_3_WEEK (cfme.web_ui.utilization.Option attribute)

 	WK_4_WEEK (cfme.web_ui.utilization.Option attribute)

 	word (fixtures.parallelizer.Outcome attribute)

 	workaround_missing_gemfile() (cfme.utils.appliance.IPAppliance method)

 	workaround_save_issue() (cfme.web_ui.ScriptBox method)

 	workers (cfme.base.ui.ServerDiagnosticsView attribute)

 	

 	(cfme.base.ui.ServerView attribute)

 	Workers (class in cfme.base.ui)

 	WorkloadsDefault (class in cfme.services.workloads)

 	WorkloadsDefaultView (class in cfme.services.workloads)

 	WorkloadsTemplate (class in cfme.services.workloads)

 	WorkloadsView (class in cfme.services.workloads)

 	WorkloadsVM (class in cfme.services.workloads)

 	write_line() (fixtures.pytest_store.Store method)

 	

 	(in module fixtures.pytest_store)

 	write_repofile() (cfme.utils.appliance.IPAppliance method)

X

 	

 	xa_ds (cfme.middleware.provider.middleware_views.AddDatasourceForm attribute)

 	

 	xpath_quote() (in module cfme.web_ui.toolbar)

Y

 	

 	yaml_data (cfme.infrastructure.config_management.ConfigManager attribute)

 	

 	yamls_volume() (in module cfme.scripting.tests.test_quickstart)

Z

 	

 	zip() (cfme.web_ui.ShowingInputs method)

 	zone (cfme.common.provider_views.ProviderAddView attribute)

 	

 	(cfme.networks.subnet.Subnet attribute)

 	Zone (class in cfme.base)

 	zone_description (cfme.utils.appliance.IPAppliance attribute)

 	ZoneAdd (class in cfme.base.ui)

 	ZoneAddView (class in cfme.base.ui)

 	ZoneCANDUGapCollection (class in cfme.base.ui)

 	ZoneCollection (class in cfme.base)

 	ZoneDetails (class in cfme.base.ui)

 	ZoneDetailsView (class in cfme.base.ui)

 	ZoneDiagnostics (class in cfme.base.ui)

 	ZoneDiagnosticsCollectLogs (class in cfme.base.ui)

 	ZoneDiagnosticsCollectLogsEdit (class in cfme.base.ui)

 	ZoneDiagnosticsCollectLogsView (class in cfme.base.ui)

 	

 	ZoneDiagnosticsRolesByServers (class in cfme.base.ui)

 	ZoneDiagnosticsServers (class in cfme.base.ui)

 	ZoneDiagnosticsServersByRoles (class in cfme.base.ui)

 	ZoneDiagnosticsView (class in cfme.base.ui)

 	ZoneEdit (class in cfme.base.ui)

 	ZoneEditView (class in cfme.base.ui)

 	ZoneForm (class in cfme.base.ui)

 	ZoneListView (class in cfme.base.ui)

 	ZoneNotFound

 	zones (cfme.base.ui.RegionDiagnosticsView attribute)

 	zoom() (cfme.dashboard.DashboardWidget method)

 	zoomed (cfme.dashboard.DashboardView attribute)

 	zoomed_name (cfme.dashboard.DashboardCollection attribute)

 	zstream (cfme.utils.bz.BugWrapper attribute)

 Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

 _modules/cfme/containers/topology.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.containers.topology

-*- coding: utf-8 -*-
from navmazing import NavigateToAttribute

from cfme.common import TopologyMixin
from cfme.utils.appliance.implementations.ui import CFMENavigateStep, navigator, navigate_to
from cfme.utils.appliance import Navigatable

[docs]class Topology(TopologyMixin, Navigatable):

 def __init__(self, appliance=None):
 Navigatable.__init__(self, appliance=appliance)

 @classmethod
[docs] def load_topology_page(cls):
 navigate_to(cls, 'All')

@navigator.register(Topology, 'All')
[docs]class All(CFMENavigateStep):
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self):
 self.prerequisite_view.navigation.select('Compute', 'Containers', 'Topology')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/containers/overview.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.containers.overview

-*- coding: utf-8 -*-
from functools import partial

from navmazing import NavigateToAttribute

from cfme.containers.provider import ContainersProvider
from cfme.web_ui import match_location, StatusBox
from cfme.utils.appliance.implementations.ui import CFMENavigateStep, navigator
from cfme.utils.appliance import Navigatable
from cfme.utils.wait import wait_for

match_page = partial(match_location, controller='container_dashboard', title='Container Dashboards')

[docs]class ContainersOverview(Navigatable):
 pass

@navigator.register(ContainersOverview, 'All')
[docs]class All(CFMENavigateStep):
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def am_i_here(self):
 return match_page()

[docs] def step(self):
 self.prerequisite_view.navigation.select('Compute', 'Containers', 'Overview')

[docs] def resetter(self):
 # We should wait ~2 seconds for the StatusBox population
 wait_for(lambda: StatusBox(ContainersProvider.PLURAL.split(' ')[-1]).value(),
 num_sec=10, delay=1)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/common.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.common

-*- coding: utf-8 -*-
from functools import partial
import re
from urlparse import urlparse
from widgetastic.exceptions import NoSuchElementException, RowNotFound
from widgetastic_patternfly import BootstrapSelect, Button
from widgetastic.widget import Table, Text, View
from widgetastic_manageiq import BaseNonInteractiveEntitiesView

from cached_property import cached_property
from cfme.base.login import BaseLoggedInPage
from cfme.configure.configuration import Category, Tag
from cfme.fixtures import pytest_selenium as sel
from cfme.web_ui import CheckboxTree, BootstrapTreeview, flash, form_buttons, mixins, toolbar
from cfme.web_ui.timelines import Timelines
from cfme.web_ui.topology import Topology
from cfme.web_ui.utilization import Utilization
from sqlalchemy.orm import aliased
from cfme.utils.appliance.implementations.ui import navigate_to
from cfme.utils import attributize_string, version, deferred_verpick
from cfme.utils.units import Unit
from cfme.utils.varmeth import variable
from cfme.utils.log import logger

pol_btn = partial(toolbar.select, "Policy")

[docs]class PolicyProfileAssignable(object):
 """This class can be inherited by anything that provider load_details method.

 It provides functionality to assign and unassign Policy Profiles
 """
 manage_policies_tree = deferred_verpick({
 version.LOWEST: CheckboxTree("//div[@id='protect_treebox']/ul"),
 "5.7": BootstrapTreeview("protectbox")
 })

 @property
 def assigned_policy_profiles(self):
 try:
 return self._assigned_policy_profiles
 except AttributeError:
 self._assigned_policy_profiles = set([])
 return self._assigned_policy_profiles

[docs] def assign_policy_profiles(self, *policy_profile_names):
 """ Assign Policy Profiles to this object.

 Args:
 policy_profile_names: :py:class:`str` with Policy Profile names. After Control/Explorer
 coverage goes in, PolicyProfile objects will be also passable.
 """
 map(self.assigned_policy_profiles.add, policy_profile_names)
 self._assign_unassign_policy_profiles(True, *policy_profile_names)

[docs] def unassign_policy_profiles(self, *policy_profile_names):
 """ Unssign Policy Profiles to this object.

 Args:
 policy_profile_names: :py:class:`str` with Policy Profile names. After Control/Explorer
 coverage goes in, PolicyProfile objects will be also passable.
 """
 for pp_name in policy_profile_names:
 try:
 self.assigned_policy_profiles.remove(pp_name)
 except KeyError:
 pass
 self._assign_unassign_policy_profiles(False, *policy_profile_names)

 def _assign_unassign_policy_profiles(self, assign, *policy_profile_names):
 """DRY function for managing policy profiles.

 See :py:func:`assign_policy_profiles` and :py:func:`assign_policy_profiles`

 Args:
 assign: Wheter to assign or unassign.
 policy_profile_names: :py:class:`str` with Policy Profile names.
 """
 self.load_details(refresh=True)
 pol_btn("Manage Policies")
 for policy_profile in policy_profile_names:
 if assign:
 self.manage_policies_tree.check_node(policy_profile)
 else:
 self.manage_policies_tree.uncheck_node(policy_profile)
 form_buttons.save()
 flash.assert_no_errors()

[docs]class Taggable(object):
 """This class can be inherited by anything that provider load_details method.

 It provides functionality to assign and unassign tags.
 """

[docs] def add_tag(self, tag, single_value=False):
 self.load_details(refresh=True)
 mixins.add_tag(tag, single_value=single_value, navigate=True)

[docs] def add_tags(self, tags):
 """Add list of tags

 Args:
 tags: List of ``Tag``
 """
 for tag in tags:
 self.add_tag(tag=tag)

[docs] def remove_tag(self, tag):
 self.load_details(refresh=True)
 mixins.remove_tag(tag)

[docs] def remove_tags(self, tags):
 """Remove list of tags

 Args:
 tags: List of ``Tag``
 """
 for tag in tags:
 self.remove_tag(tag=tag)

 @variable(alias='ui')
 def get_tags(self, tag="My Company Tags"):
 self.load_details(refresh=True)
 tags = []
 # Sample out put from UI, [u'Department: Accounting | Engineering', u'Location: London']
 for _tag in mixins.get_tags(tag=tag):
 if _tag == 'No {} have been assigned'.format(tag):
 return tags
 _tag = _tag.split(':', 1)
 if len(_tag) != 2:
 raise RuntimeError('Unknown format of tagging in UI [{}]'.format(_tag))
 if ' | ' in _tag[1]:
 for _sub_tag in _tag[1].split(' | '):
 tags.append(Tag(category=Category(display_name=tag[0], single_value=None),
 display_name=_sub_tag.strip()))
 else:
 tags.append(Tag(category=Category(display_name=_tag[0], single_value=None),
 display_name=_tag[1].strip()))
 return tags

 @get_tags.variant('db')
 def get_tags_db(self):
 """
 Gets tags detail from database
 Column order: `tag_id`, `db_id`, `category`, `tag_name`, `single_value`
 """
 # Some times object of db_id might changed in database, when we do CRUD operations,
 # do update now
 self.load_details(refresh=True)
 if not self.db_id or not self.taggable_type:
 raise KeyError("'db_id' and/or 'taggable_type' not set")
 t_cls1 = aliased(self.appliance.db.client['classifications'])
 t_cls2 = aliased(self.appliance.db.client['classifications'])
 t_tgg = aliased(self.appliance.db.client['taggings'])
 query = self.appliance.db.client.session.query(
 t_cls1.tag_id, t_tgg.taggable_id.label('db_id'),
 t_cls2.description.label('category'),
 t_cls1.description.label('tag_name'), t_cls1.single_value)\
 .join(t_cls2, t_cls1.parent_id == t_cls2.id)\
 .join(t_tgg, t_tgg.tag_id == t_cls1.tag_id)\
 .filter(t_tgg.taggable_id == self.db_id)\
 .filter(t_tgg.taggable_type == self.taggable_type)
 tags = []
 for tag in query.all():
 tags.append(Tag(category=Category(display_name=tag.category,
 single_value=tag.single_value),
 display_name=tag.tag_name))
 return tags

[docs]class TagPageView(BaseLoggedInPage):
 """Class represents common tag page in CFME UI"""
 title = Text('#explorer_title_text')
 table_title = Text('//div[@id="tab_div"]/h3')

 @View.nested
 class form(View): # noqa
 tags = Table("//div[@id='assignments_div']//table")
 tag_category = BootstrapSelect(id='tag_cat')
 tag_name = BootstrapSelect(id='tag_add')
 entities = View.nested(BaseNonInteractiveEntitiesView)
 save = Button('Save')
 reset = Button('Reset')
 cancel = Button('Cancel')

 @property
 def is_displayed(self):
 return (
 self.table_title.text == 'Tag Assignment' and
 self.form.tags.is_displayed
)

[docs]class WidgetasticTaggable(object):
 """
 This class can be inherited by any class that honors tagging.
 Class should have following

 * 'Details' navigation
 * 'Details' view should have entities.smart_management SummaryTable widget
 * 'EditTags' navigation
 * 'EditTags' view should have nested 'form' view with 'tags' table widget
 * Suggest using class cfme.common.TagPageView as view for 'EditTags' nav

 This class provides functionality to assign and unassigned tags for page models with
 standardized widgetastic views
 """

[docs] def add_tag(self, category=None, tag=None, cancel=False, reset=False):
 """ Add tag to tested item

 Args:
 category: category(str)
 tag: tag(str) or Tag object
 cancel: set True to cancel tag assigment
 reset: set True to reset already set up tag
 """
 view = navigate_to(self, 'EditTagsFromDetails')
 if isinstance(tag, Tag):
 category = tag.category.display_name
 tag = tag.display_name
 # Handle nested view.form and where the view contains form widgets
 try:
 updated = view.form.fill({
 "tag_category": '{} *'.format(category),
 "tag_name": tag
 })
 except NoSuchElementException:
 updated = view.form.fill({
 "tag_category": category,
 "tag_name": tag
 })
 # In case if field is not updated cancel the edition
 if not updated:
 cancel = True
 self._tags_action(view, cancel, reset)

[docs] def add_tags(self, tags):
 """Add multiple tags

 Args:
 tags: pass dict with category name as key, and tag as value,
 or pass list with tag objects
 """
 if isinstance(tags, dict):
 for category, tag in tags.items():
 self.add_tag(category=category, tag=tag)
 elif isinstance(tags, (list, tuple)):
 for tag in tags:
 self.add_tag(tag=tag)

[docs] def remove_tag(self, category=None, tag=None, cancel=False, reset=False):
 """ Remove tag of tested item

 Args:
 category: category(str)
 tag: tag(str) or Tag object
 cancel: set True to cancel tag deletion
 reset: set True to reset tag changes
 """
 view = navigate_to(self, 'EditTagsFromDetails')
 if isinstance(tag, Tag):
 category = tag.category.display_name
 tag = tag.display_name
 try:
 row = view.form.tags.row(category="{} *".format(category), assigned_value=tag)
 except RowNotFound:
 row = view.form.tags.row(category=category, assigned_value=tag)
 row[0].click()
 self._tags_action(view, cancel, reset)

[docs] def remove_tags(self, tags):
 """Remove multiple of tags

 Args:
 tags: pass dict with category name as key, and tag as value,
 or pass list with tag objects
 """
 if isinstance(tags, dict):
 for category, tag in tags.items():
 self.remove_tag(category=category, tag=tag)
 elif isinstance(tags, (list, tuple)):
 for tag in tags:
 self.remove_tag(tag=tag)

[docs] def get_tags(self, tenant="My Company Tags"):
 """ Get list of tags assigned to item

 Args:
 tenant: string, tags tenant, default is "My Company Tags"

 Returns:
 List of tags in format "Tag_category: Tag_name"
 """
 view = navigate_to(self, 'Details')
 # look for simple 'smart_management' widget first, then standard entities.smart_management
TODO remove this double check after classes updates to entities.smart_management implementation
 tag_table = getattr(view, 'smart_management', view.entities.smart_management)
 tags = tag_table.read()
 if isinstance(tags, dict):
 tags = tags[tenant]
 if tags == 'No {} have been assigned'.format(tenant):
 return []
 return filter(None, re.split(r'(.*?):\s*\s+\s?', tags))

 def _tags_action(self, view, cancel, reset):
 """ Actions on edit tags page

 Args:
 view: View to use these actions(tag view)
 cancel: Set True to cancel all changes, will redirect to details page
 reset: Set True to reset all changes, edit tag page should be opened
 """
 if reset:
 view.form.reset.click()
 view.flash.assert_message('All changes have been reset')
 if cancel:
 view.form.cancel.click()
 view.flash.assert_success_message('Tag Edit was cancelled by the user')
 if not reset and not cancel:
 view.form.save.click()
 view.flash.assert_success_message('Tag edits were successfully saved')

[docs]class SummaryMixin(object):
 """Use this mixin to have simple access to the Summary informations of an object.

 Requires that the class has ``load_details(refresh)`` method defined.

 All the names from the UI are "attributized".

 Sample usage:

 .. code-block:: python

 # You can retrieve the text value as it is in the UI
 provider.summary.properties.host_name.text_value # => 'hostname'
 # Or let it guess if it is a number and return float or int
 provider.summary.properties.aggregate_host_cpus.value # => 12
 # You can get the image address
 provider.summary.foo.bar.img # => value parsed by urlparse()
 # Or the onclick link
 provider.summary.foo.bar.link # => 'http://foo/bar'
 # Check if it is clickable
 assert provider.summary.xyz.qwer.clickable

 # You can iterate like it was a dictionary
 for table_name, table in provider.summary:
 # table_name contains title of the table
 for key, value in table:
 # key contains the left cell text, value contains the value holder
 print('{}: {}'.format(key, value.text_value))

 """
 @cached_property
 def summary(self):
 return Summary(self)

[docs]class Summary(object):
 """Summary container class. An entry point to the summary listing"""
 HEADERS = '//th[@align="left"]'

 def __init__(self, o):
 self._object = o
 self._keys = []
 self.reload()

 def __repr__(self):
 return "<Summary {}>".format(" ".join(self._keys))

[docs] def reload(self):
 for key in self._keys:
 try:
 delattr(self, key)
 except AttributeError:
 pass
 self._keys = []
 self._object.load_details(refresh=True)
 for header in sel.elements(self.HEADERS):
 header_text = sel.text_sane(header)
 header_id = attributize_string(header_text)
 table_object = SummaryTable(self._object, header_text, header)
 setattr(self, header_id, table_object)
 self._keys.append(header_id)

[docs] def __iter__(self):
 """This enables you to iterate through like it was a dictionary, just without .iteritems"""
 for key in self._keys:
 yield (key, getattr(self, key))

[docs] def groups(self):
 """Returns a dictionary of keys (table titles) and table objects."""
 return dict(iter(self))

 @property
 def group_names(self):
 """Returns names of the tables."""
 return self._keys

[docs]class SummaryTable(object):
 ROWS = '../../../tbody/tr'

 MULTIKEY_LOC = '../../../tbody/tr[1]/td/strong'

 def __init__(self, o, text, entry, skip_load=False):
 self._object = o
 self._text = text
 self._entry = entry
 self._raw_keys = []
 self._keys = []
 self._multitable = False
 if not skip_load:
 self.load()
 else:
 logger.warning(
 "Child SummaryTable created for {table_name}, "
 "this table wasn't initialized due to skip_load value".format(
 table_name=self._text))

 def __repr__(self):
 if self._multitable:
 return "<SummaryTable {main_table_name}:\n\t {sub_tables}>".format(
 main_table_name=self._text,
 sub_tables='\n\t'.join([repr(getattr(self, key)) for key in self._keys]))

 return "<SummaryTable {} {}>".format(
 repr(self._text),
 " ".join("{}={}".format(key, repr(getattr(self, key))) for key in self._keys))

[docs] def load(self):
 self._raw_keys = []
 self._keys = []
 key_values = []
 if sel.is_displayed(self.MULTIKEY_LOC, root=self._entry):
 logger.warning(
 "Parent SummaryTable created for {table_name}, "
 "it might create few un-initialized SummaryTable".format(
 table_name=self._text))
 self._multitable = True
 # get all table rows (include titles)
 table_rows = sel.elements(self.ROWS, root=self._entry)

 # parsing table titles
 table_titles = sel.elements('./td', root=table_rows[0])
 table_titles_text = [el.text.replace(" ", "_") for el in table_titles]

 # match each line values with the relevant title
 for row in table_rows[1:]:
 # creating mapping between title and row values
 row_mapping = dict(zip(table_titles_text,
 [el.text for el in sel.elements('./td', root=row)]))

 # set the value of the "name" column to be the key of the entire table,
 # if "name" is not available setting the most left element to be the key
 row_key = row_mapping.get("Name", row_mapping.keys()[0])

 # creating empty table to populate the row data as regular table
 table = SummaryTable(self._object,
 row_key,
 row, skip_load=True)
 # set the keys of the table to table object
 table._keys = row_mapping.keys()

 # add attr for each key
 for key in row_mapping.keys():
 setattr(table, key, row_mapping[key])

 # add the entire table to parent table keys
 self._keys.append(row_key)

 # add attr to parent table
 setattr(self, row_key, table)
 return

 for row in sel.elements(self.ROWS, root=self._entry):
 tds = sel.elements('./td', root=row)
 key = tds[0]
 klass = sel.get_attribute(key, 'class')
 if klass and 'label' in klass:
 # Ordinary field
 key_id = attributize_string(sel.text_sane(key))
 value = tuple(tds[1:])
 try:
 rowspan = int(sel.get_attribute(key, 'rowspan'))
 except (ValueError, TypeError):
 rowspan = None
 if rowspan:
 key_values.append((key, key_id, [value]))
 else:
 key_values.append((key, key_id, value))
 else:
 # value of last key_values should be extended
 key_values[-1][2].append(tuple(tds))
 for key, key_id, value in key_values:
 value_object = process_field(value)
 setattr(self, key_id, value_object)
 self._raw_keys.append(sel.text_sane(key))
 self._keys.append(key_id)

[docs] def reload(self):
 self._object.load_details(refresh=True)
 for key in self._keys:
 try:
 delattr(self, key)
 except AttributeError:
 pass
 return self.load()

 @property
 def raw_keys(self):
 return self._raw_keys

 @property
 def keys(self):
 return self._keys

 def __iter__(self):
 for key in self._keys:
 yield (key, getattr(self, key))

[docs] def items(self):
 return dict(iter(self))

[docs]class SummaryValue(object):
 def __init__(self, el):
 self._el = el

 def __repr__(self):
 return repr(self.text_value)

 @cached_property
 def img(self):
 try:
 img_o = sel.element('./img', root=self._el)
 return urlparse(sel.get_attribute(img_o, 'src').strip())
 except sel.NoSuchElementException:
 return None

 @cached_property
 def text_value(self):
 return sel.text_sane(self._el)

 @cached_property
 def value(self):
 # Try parsing a number
 try:
 return int(self.text_value)
 except (ValueError, TypeError):
 try:
 return float(self.text_value)
 except (ValueError, TypeError):
 try:
 return Unit.parse(self.text_value)
 except ValueError:
 return self.text_value

 @cached_property
 def link(self):
 if sel.get_attribute(sel.element('..', root=self._el), 'onclick'):
 return self._el
 else:
 return None

 @property
 def clickable(self):
 return self.link is not None

[docs] def click(self):
 """A convenience function to click the summary item."""
 return sel.click(self)

 def _custom_click_handler(self, wait_ajax):
 if not self.clickable:
 raise ValueError("Cannot click on {} because it is not clickable".format(repr(self)))
 try:
 return sel.click(self.link, wait_ajax, no_custom_handler=True)
 except sel.StaleElementReferenceException:
 raise RuntimeError('Couldnt click on {} because the page was left.'.format(repr(self)))

[docs]def process_field(values):
 if isinstance(values, list):
 return map(process_field, values)
 else:
 if len(values) == 1:
 return SummaryValue(values[0])
 else:
 return map(SummaryValue, values)

[docs]class Validatable(SummaryMixin):
 """Mixin for various validations. Requires the class to be also :py:class:`Taggable`.

 :var :py:attr:`property_tuples`: Tuples which first value is the provider class's attribute
 name, the second value is provider's UI summary page field key. Should have values in
 child classes.
 """
 property_tuples = []

[docs] def validate_properties(self):
 """Validation method which checks whether class attributes, which were used during creation
 of provider, are correctly displayed in Properties section of provider UI.

 The maps between class attribute and UI property is done via 'property_tuples' variable.

 Fails if some property does not match.
 """
 self.load_details(refresh=False)
 for property_tuple in self.property_tuples:
 expected_value = str(getattr(self, property_tuple[0], ''))
 shown_value = self.get_detail("Properties", property_tuple[1])
 assert expected_value == shown_value,\
 ("Property '{}' has wrong value, expected '{}' but was '{}'"
 .format(property_tuple, expected_value, shown_value))

[docs] def validate_tags(self, tag="My Company Tags", reference_tags=None):
 """Validation method which check tagging between UI and database.

 To use this method, `self`/`caller` should be extended with `Taggable` class

 Args:
 tag: tag name, default is `My Company Tags`
 reference_tags: If you want to compare user input with database, pass user input
 as `reference_tags`
 """
 if reference_tags and not isinstance(reference_tags, list):
 raise KeyError("'reference_tags' should be an instance of list")
 # Get tags from UI and DB
 tags_ui = self.get_tags(method='ui')
 tags_db = self.get_tags(method='db')
 # Verify tags
 assert len(tags_db) == len(tags_ui), \
 ("Tags count between DB and UI mismatch, expected '{}' but was '{}'"
 .format(tags_db, tags_ui))
 if len(tags_ui) > 0:
 tags_ui = sorted(tags_ui, key=lambda x: (x.category.display_name, x.display_name))
 tags_db = sorted(tags_db, key=lambda x: (x.category.display_name, x.display_name))
 for i in range(len(tags_db)):
 assert \
 tags_db[i].category.display_name == tags_ui[i].category.display_name,\
 ("Expected category '{}', but was '{}'".format(
 tags_db[i].category.display_name,
 tags_ui[i].category.display_name))
 assert tags_db[i].display_name == tags_ui[i].display_name, \
 ("Expected tag_name '{}', but was '{}'".format(tags_db[i].display_name,
 tags_ui[i].display_name))
 # if user passed reference tags, validate with database
 if reference_tags:
 for ref_tag in reference_tags:
 found = False
 for d_tag in tags_db:
 if ref_tag.category.display_name == d_tag.category.display_name \
 and ref_tag.display_name == d_tag.display_name:
 found = True
 assert ref_tag.category.single_value == d_tag.category.single_value, \
 ("'single_value' of '{}' did not match'"
 .format(ref_tag))
 assert found, ("Tag '{}' not found in database".format(ref_tag))

[docs]class TopologyMixin(object):
 """Use this mixin to have simple access to the Topology page.
 To use this `TopologyMixin` you have to implement `load_topology_page`
 function, which should take to topology page

 Sample usage:

 .. code-block:: python

 # You can retrieve the elements details as it is in the UI
 topology.elements # => 'hostname'
 # You can do actions on topology page
 topology.display_names.enable()
 topology.display_names.disable()
 topology.display_names.is_enabled
 # You can do actions on topology search box
 topology.search_box.text(text='hello')
 topology.search_box.text(text='hello', submit=False)
 topology.search_box.submit()
 topology.search_box.clear()
 # You can get legends and can perform actions
 topology.legends
 topology.pod.name
 topology.pod.is_active
 topology.pod.set_active()
 # You can get elements, element parents and children
 topology.elements
 topology.elements[0].parents
 topology.elements[0].children
 topology.elements[0].double_click()
 topology.elements[0].is_displayed()

 """
 @cached_property
 def topology(self):
 return Topology(self)

[docs]class TimelinesMixin(object):
 """Use this mixin to have simple access to the Timelines page.
 To use this `TimelinesMixin` you have to implement `load_timelines_page`
 function, which should take to timelines page

 Sample usage:

 .. code-block:: python

 # Change Timelines showing interval Select
 timelines.change_interval('Hourly')
 # Change Timelines showing event group Select
 timelines.select_event_category('Application')
 # Change Level of showed Timelines
 timelines.change_level('Detail')
 # Check whether timelines contain particular event
 # which is generated after provided datetime
 timelines.contains_event('hawkular_deployment.ok', before_test_date)

 """
 @cached_property
 def timelines(self):
 return Timelines(self)

[docs]class UtilizationMixin(object):
 """Use this mixin to have simple access to the Utilization information of an object.

 Requires that the class(page) has ``load_details(refresh)`` method
 and ``taggable_type`` should be defined.

 All the chart names from the UI are "attributized".

 Sample usage:
 .. code-block:: python

 # You can list available charts
 page.utilization.charts # => '['jvm_heap_usage_bytes','web_sessions','transactions']'
 # You can get the data from chart
 page.utilization.jvm_heap_usage_bytes.list_data_chart() # => returns data as list
 # You can get the data from table
 provider.utilization.jvm_heap_usage_bytes.list_data_table() # => returns data as list
 # You can get the data from wrapanapi
 page.utilization.jvm_heap_usage_bytes.list_data_mgmt() # => returns data as list
 # You can change chart option
 page.utilization.jvm_non_heap_usage_bytes.option.set_by_visible_text(op_interval='Daily')
 # You can list available ledgends
 page.utilization.jvm_non_heap_usage_bytes.legends
 # You can enable/disable legends
 page.utilization.jvm_non_heap_usage_bytes.committed.set_active(active=False) # => Disables
 page.utilization.jvm_non_heap_usage_bytes.committed.set_active(active=True) # => Enables
 """
 @cached_property
 def utilization(self):
 return Utilization(self)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/containers/service.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.containers.service

-*- coding: utf-8 -*-
import random
import itertools
from functools import partial
from cached_property import cached_property

from wrapanapi.containers.service import Service as ApiService

from cfme.common import SummaryMixin, Taggable
from cfme.fixtures import pytest_selenium as sel
from cfme.web_ui import toolbar as tb, match_location,\
 PagedTable, CheckboxTable
from cfme.containers.provider import details_page, Labelable,\
 ContainerObjectAllBaseView
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep,\
 navigate_to
from navmazing import NavigateToAttribute, NavigateToSibling

list_tbl = CheckboxTable(table_locator="//div[@id='list_grid']//table")
paged_tbl = PagedTable(table_locator="//div[@id='list_grid']//table")

match_page = partial(match_location, controller='container_service', title='Services')

[docs]class Service(Taggable, Labelable, SummaryMixin, Navigatable):

 PLURAL = 'Container Services'

 def __init__(self, name, project_name, provider, appliance=None):
 self.name = name
 self.provider = provider
 self.project_name = project_name
 Navigatable.__init__(self, appliance=appliance)

 @cached_property
 def mgmt(self):
 return ApiService(self.provider.mgmt, self.name, self.project_name)

[docs] def load_details(self, refresh=False):
 navigate_to(self, 'Details')
 if refresh:
 tb.refresh()

[docs] def click_element(self, *ident):
 self.load_details(refresh=True)
 return sel.click(details_page.infoblock.element(*ident))

[docs] def get_detail(self, *ident):
 """ Gets details from the details infoblock
 Args:
 *ident: An InfoBlock title, followed by the Key name, e.g. "Relationships", "Images"
 Returns: A string representing the contents of the InfoBlock's value.
 """
 self.load_details(refresh=True)
 return details_page.infoblock.text(*ident)

 @classmethod
[docs] def get_random_instances(cls, provider, count=1, appliance=None):
 """Generating random instances."""
 service_list = provider.mgmt.list_service()
 random.shuffle(service_list)
 return [cls(obj.name, obj.project_name, provider, appliance=appliance)
 for obj in itertools.islice(service_list, count)]

[docs]class ServiceAllView(ContainerObjectAllBaseView):
 TITLE_TEXT = "Container Services"

@navigator.register(Service, 'All')
[docs]class All(CFMENavigateStep):
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')
 VIEW = ServiceAllView

[docs] def step(self):
 self.prerequisite_view.navigation.select('Compute', 'Containers', 'Container Services')

[docs] def resetter(self):
 # Reset view and selection
 tb.select("List View")
 from cfme.web_ui import paginator
 paginator.check_all()
 paginator.uncheck_all()

@navigator.register(Service, 'Details')
[docs]class Details(CFMENavigateStep):
 prerequisite = NavigateToSibling('All')

[docs] def am_i_here(self):
 return match_page(summary='{} (Summary)'.format(self.obj.name))

[docs] def step(self):
 tb.select('List View')
 sel.click(paged_tbl.find_row_by_cell_on_all_pages({'Name': self.obj.name,
 'Project Name': self.obj.project_name}))

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/containers/replicator.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.containers.replicator

-*- coding: utf-8 -*-
import random
import itertools
from functools import partial
from cached_property import cached_property

from wrapanapi.containers.replicator import Replicator as ApiReplicator

from cfme.common import SummaryMixin, Taggable
from cfme.fixtures import pytest_selenium as sel
from cfme.web_ui import toolbar as tb, match_location,\
 PagedTable, CheckboxTable
from cfme.containers.provider import details_page, Labelable,\
 ContainerObjectAllBaseView
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep,\
 navigate_to
from navmazing import NavigateToAttribute, NavigateToSibling

list_tbl = CheckboxTable(table_locator="//div[@id='list_grid']//table")
paged_tbl = PagedTable(table_locator="//div[@id='list_grid']//table")

match_page = partial(match_location, controller='container_replicators', title='Replicators')

[docs]class Replicator(Taggable, Labelable, SummaryMixin, Navigatable):

 PLURAL = 'Replicators'

 def __init__(self, name, project_name, provider, appliance=None):
 self.name = name
 self.project_name = project_name
 self.provider = provider
 Navigatable.__init__(self, appliance=appliance)

 @cached_property
 def mgmt(self):
 return ApiReplicator(self.provider.mgmt, self.name, self.project_name)

[docs] def load_details(self, refresh=False):
 navigate_to(self, 'Details')
 if refresh:
 tb.refresh()

[docs] def click_element(self, *ident):
 self.load_details(refresh=True)
 return sel.click(details_page.infoblock.element(*ident))

[docs] def get_detail(self, *ident):
 """ Gets details from the details infoblock

 Args:
 *ident: An InfoBlock title, followed by the Key name, e.g. "Relationships", "Images"
 Returns: A string representing the contents of the InfoBlock's value.
 """
 self.load_details(refresh=True)
 return details_page.infoblock.text(*ident)

 @classmethod
[docs] def get_random_instances(cls, provider, count=1, appliance=None):
 """Generating random instances."""
 rc_list = provider.mgmt.list_replication_controller()
 random.shuffle(rc_list)
 return [cls(obj.name, obj.project_name, provider, appliance=appliance)
 for obj in itertools.islice(rc_list, count)]

[docs]class ReplicatorAllView(ContainerObjectAllBaseView):
 TITLE_TEXT = "Replicators"

@navigator.register(Replicator, 'All')
[docs]class All(CFMENavigateStep):
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')
 VIEW = ReplicatorAllView

[docs] def step(self):
 self.prerequisite_view.navigation.select('Compute', 'Containers', 'Replicators')

[docs] def resetter(self):
 # Reset view and selection
 tb.select("List View")
 from cfme.web_ui import paginator
 paginator.check_all()
 paginator.uncheck_all()

@navigator.register(Replicator, 'Details')
[docs]class Details(CFMENavigateStep):
 prerequisite = NavigateToSibling('All')

[docs] def am_i_here(self):
 return match_page(summary='{} (Summary)'.format(self.obj.name))

[docs] def step(self):
 tb.select('List View')
 sel.click(paged_tbl.find_row_by_cell_on_all_pages({'Name': self.obj.name,
 'Project Name': self.obj.project_name}))

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/containers/volume.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.containers.volume

-*- coding: utf-8 -*-
from functools import partial
import random
import itertools
from cached_property import cached_property

from navmazing import NavigateToSibling, NavigateToAttribute
from wrapanapi.containers.volume import Volume as ApiVolume

from cfme.common import SummaryMixin, Taggable
from cfme.containers.provider import navigate_and_get_rows,\
 ContainerObjectAllBaseView
from cfme.fixtures import pytest_selenium as sel
from cfme.web_ui import toolbar as tb, match_location, InfoBlock,\
 PagedTable, CheckboxTable
from cfme.utils.appliance.implementations.ui import CFMENavigateStep, navigator, navigate_to
from cfme.utils.appliance import Navigatable

list_tbl = CheckboxTable(table_locator="//div[@id='list_grid']//table")
paged_tbl = PagedTable(table_locator="//div[@id='list_grid']//table")

match_page = partial(match_location, controller='container_volume',
 title='Volumes')

[docs]class Volume(Taggable, SummaryMixin, Navigatable):

 PLURAL = 'Volumes'

 def __init__(self, name, provider, appliance=None):
 self.name = name
 self.provider = provider
 Navigatable.__init__(self, appliance=appliance)

 @cached_property
 def mgmt(self):
 return ApiVolume(self.provider.mgmt, self.name)

 # TODO: remove load_details and dynamic usage from cfme.common.Summary when nav is more complete
[docs] def load_details(self, refresh=False):
 navigate_to(self, 'Details')
 if refresh:
 tb.refresh()

[docs] def get_detail(self, *ident):
 """ Gets details from the details infoblock
 Args:
 *ident: Table name and Key name, e.g. "Relationships", "Volumes"
 Returns: A string representing the contents of the summary's value.
 """
 navigate_to(self, 'Details')
 return InfoBlock.text(*ident)

 @classmethod
[docs] def get_random_instances(cls, provider, count=1, appliance=None):
 """Generating random instances."""
 rows = navigate_and_get_rows(provider, cls, count=count, silent_failure=True)
 rows = filter(lambda r: r.provider == provider.name, rows)
 random.shuffle(rows)
 return [cls(row.name, row.provider, appliance=appliance)
 for row in itertools.islice(rows, count)]

[docs]class VolumeAllView(ContainerObjectAllBaseView):
 TITLE_TEXT = "Persistent Volumes"

@navigator.register(Volume, 'All')
[docs]class All(CFMENavigateStep):
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')
 VIEW = VolumeAllView

[docs] def step(self):
 self.prerequisite_view.navigation.select('Compute', 'Containers', 'Volumes')

[docs] def resetter(self):
 from cfme.web_ui import paginator
 tb.select('Grid View')
 paginator.check_all()
 paginator.uncheck_all()

@navigator.register(Volume, 'Details')
[docs]class Details(CFMENavigateStep):
 prerequisite = NavigateToSibling('All')

[docs] def am_i_here(self):
 return match_page(summary='{} (Summary)'.format(self.obj.name))

[docs] def step(self):
 tb.select('List View')
 sel.click(paged_tbl.find_row_by_cell_on_all_pages({'Name': self.obj.name}))

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/exceptions.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.exceptions

-*- coding: utf-8 -*-
"""Provides custom exceptions for the ``cfme`` module. """
import pytest
from cfme.utils.log import logger

[docs]class CFMEException(Exception):
 """Base class for exceptions in the CFME tree

 Used to easily catch errors of our own making, versus errors from external libraries.

 """
 pass

[docs]class ConsoleNotSupported(CFMEException):
 """Raised by functions in :py:mod:`cfme.configure.configuration` when an invalid
 console type is given"""
 def __init__(self, product_name, version):
 self.product_name = product_name
 self.version = version

 def __str__(self):
 return "Console not supported on current version: {} {}".format(
 self.product_name,
 self.version
)

[docs]class ConsoleTypeNotSupported(CFMEException):
 """Raised by functions in :py:mod:`cfme.configure.configuration` when an invalid
 console type is given"""
 def __init__(self, console_type):
 self.console_type = console_type

 def __str__(self):
 return "Console type not supported: {}".format(self.console_type)

[docs]class FlashMessageException(CFMEException):
 """Raised by functions in :py:mod:`cfme.web_ui.flash`"""

[docs] def skip_and_log(self, message="Skipping due to flash message"):
 logger.error("Flash message error: %s", str(self))
 pytest.skip("{}: {}".format(message, str(self)))

[docs]class CFMEExceptionOccured(CFMEException):
 """Raised by :py:func:`cfme.web_ui.cfme_exception.assert_no_cfme_exception` when there is
 a Rails exception currently on page."""
 pass

[docs]class ToolbarOptionGreyedOrUnavailable(CFMEException):
 """Raised when toolbar wants to click item that is greyed or unavailable"""
 pass

[docs]class AddProviderError(CFMEException):
 pass

[docs]class AuthModeUnknown(CFMEException):
 """
 Raised if an invalid authenctication mode is passed to
 :py:func:`cfme.configure.configuration.set_auth_mode`
 """
 pass

[docs]class AutomateImportError(CFMEException):
 """Raised by scripts dealing with Automate when importing automate XML fails"""
 pass

[docs]class BlockTypeUnknown(CFMEException):
 """
 Raised if the block type requested to :py:class:`cfme.web_ui.InfoBlock`.
 """
 pass

[docs]class CandidateNotFound(CFMEException):
 """
 Raised if there is no candidate found whilst trying to traverse a tree in
 :py:meth:`cfme.web_ui.Tree.click_path`.
 """
 def __init__(self, d):
 self.d = d

 @property
 def message(self):
 return ", ".join("{}: {}".format(k, v) for k, v in self.d.iteritems())

 def __str__(self):
 return self.message

[docs]class TreeNotFound(CFMEException):
 """
 Raised if the tree used for :py:meth:`cfme.web_ui.Tree.expand_path` cannot be found
 """
 pass

[docs]class ElementOrBlockNotFound(CFMEException):
 """
 Raised if an Element or a Block is not found whilst locating in
 :py:meth:`cfme.web_ui.InfoBlock`.
 """
 pass

[docs]class HostStatsNotContains(CFMEException):
 """
 Raised if the hosts information does not contain the specified key whilst running
 :py:meth:`cfme.cloud.provider.Provider.do_stats_match`.
 """
 pass

[docs]class NavigationError(CFMEException):
 """Raised when the pytest.sel.go_to function is unable to navigate to the requested page."""
 def __init__(self, page_name):
 self.page_name = page_name

 def __str__(self):
 return 'Unable to navigate to page "{}"'.format(self.page_name)
 pass

[docs]class CannotContinueWithNavigation(CFMEException):
 """Used when it is not possible to continue with navigation.

 Raising it will recycle the browser, therefore refresh the session. If you pass a string to
 the constructor, it will be written to the log.
 """
 pass

[docs]class NoElementsInsideValue(CFMEException):
 """
 Raised if the value part of key/value contains no elements during
 :py:meth:`cfme.web_ui.InfoBlock.get_el_or_els`.
 """
 pass

[docs]class NotAllItemsClicked(CFMEException):
 """
 Raised if not all the items could be clicked during :py:meth:`cfme.web_ui.Table.click_cell`.
 """
 def __init__(self, failed_clicks):
 self.failed_clicks = failed_clicks

 def __str__(self):
 return "Not all the required data elements were clicked [{}]".format(
 ",".join(self.failed_clicks))

[docs]class NotAllCheckboxesFound(CFMEException):
 """
 Raised if not all the checkboxes could be found during e.g.
 :py:meth:`cfme.web_ui.CheckboxTable.select_rows` and other methods of this class.
 """
 def __init__(self, failed_selects):
 self.failed_selects = failed_selects

 def __str__(self):
 return "Not all the required data elements were selected/deselected [{}]".format(
 ",".join(self.failed_selects))

[docs]class ProviderHasNoKey(CFMEException):
 """
 Raised if the :py:meth:`cfme.cloud.provider.Provider.get_mgmt_system` method is called
 but the Provider instance has no key.
 """
 pass

[docs]class ProviderHasNoProperty(CFMEException):
 """
 Raised if the provider does not have the property requested whilst running
 :py:meth:`cfme.cloud.provider.Provider.do_stats_match`.
 """
 pass

[docs]class ScheduleNotFound(CFMEException):
 """
 Raised if a schedule was not found in
 :py:meth:`cfme.configure.configuration.Schedule.delete_by_name`
 """
 pass

[docs]class RequestException(CFMEException):
 """
 Raised if a request was not found or multiple rows matched during _request functions in
 :py:mod:`cfme.services.requests`
 """
 pass

[docs]class TreeTypeUnknown(CFMEException):
 """
 Raised if the tree type is known whilst detection in :py:class:`cfme.web_ui.Tree`
 """
 pass

[docs]class UnidentifiableTagType(CFMEException):
 """
 Raised if a tag type is not identifiable when processing a form in
 :py:meth:`cfme.web_ui.Form.fill_fields`.
 """
 pass

[docs]class VmNotFoundViaIP(CFMEException):
 """
 Raised if a specific VM cannot be found.
 """
 pass

[docs]class VmOrInstanceNotFound(CFMEException):
 pass

[docs]class VmNotFound(VmOrInstanceNotFound):
 """
 Raised if a specific VM cannot be found.
 """
 pass

[docs]class InstanceNotFound(VmOrInstanceNotFound):
 """
 Raised if a specific instance cannot be found.
 """
 pass

[docs]class ImageNotFound(VmOrInstanceNotFound):
 """
 Raised if a specific image cannot be found
 """
 pass

[docs]class TenantNotFound(CFMEException):
 """
 Raised if a specific tenant cannot be found
 """
 pass

[docs]class TemplateNotFound(CFMEException):
 """
 Raised if a specific Template cannot be found.
 """
 pass

[docs]class ClusterNotFound(CFMEException):
 """Raised if a cluster is not found"""
 pass

[docs]class HostNotFound(CFMEException):
 """Raised if a specific host cannot be found in UI."""
 pass

[docs]class NodeNotFound(CFMEException):
 """Raised if a specific container node cannot be found in the UI"""
 pass

[docs]class StackNotFound(CFMEException):
 """
 Raised if a specific stack cannot be found.
 """
 pass

[docs]class FlavorNotFound(CFMEException):
 """
 Raised if a specific cloud flavor cannot be found in the UI
 """
 pass

[docs]class KeyPairNotFound(CFMEException):
 """
 Raised if a specific cloud key pair cannot be found in the UI
 """
 pass

[docs]class ResourcePoolNotFound(CFMEException):
 """
 Raised if a specific cloud key pair cannot be found in the UI
 """
 pass

[docs]class AvailabilityZoneNotFound(CFMEException):
 """
 Raised if a specific Cloud Availability Zone cannot be found.
 """
 pass

[docs]class VolumeNotFound(CFMEException):
 """
 Raised if a specific cloud volume cannot be found in the UI
 """
 pass

[docs]class OptionNotAvailable(CFMEException):
 """
 Raised if a specified option is not available.
 """
 pass

[docs]class ListAccordionLinkNotFound(CFMEException):
 """
 Raised when active link containing specific text could not be found in
 expended :py:mod:`cfme.web_ui.listaccordion` content section.
 """
 pass

[docs]class ZoneNotFound(CFMEException):
 """
 Raised when a specific Zone cannot be found in the method
 :py:mod:`cfme.configure.configuration`.
 """
 pass

[docs]class UnknownProviderType(CFMEException):
 """
 Raised when the passed provider or provider type is not known or usable in given context
 e.g. when getting a provider from yaml and the provider type doesn't match any of known types
 or when an infra provider is passed to the cloud's instance_factory method
 """
 pass

[docs]class AccordionItemNotFound(CFMEException):
 """Raised when it's not possible to locate and accordion item."""

[docs]class CannotScrollException(CFMEException):
 """Raised when even during the heaviest workarounds for scrolling failure comes."""

[docs]class StorageManagerNotFound(CFMEException):
 """Raised when a Storage Manager is not found"""
 pass

[docs]class CUCommandException(CFMEException):
 """Raised when one of the commands run to set up a CU VM fails """
 pass

[docs]class PaginatorException(CFMEException):
 """Raised by functions in :py:mod:`cfme.web_ui.paginator`"""

 pass

[docs]class MiddlewareProviderNotFound(CFMEException):
 """
 Raised if a specific Middleware Provider cannot be found.
 """
 pass

[docs]class MiddlewareServerNotFound(CFMEException):
 """
 Raised if a specific Middleware Server cannot be found.
 """
 pass

[docs]class MiddlewareServerGroupNotFound(CFMEException):
 """
 Raised if a specific Middleware Server Group cannot be found.
 """
 pass

[docs]class MiddlewareDomainNotFound(CFMEException):
 """
 Raised if a specific Middleware Domain cannot be found.
 """
 pass

[docs]class MiddlewareDatasourceNotFound(CFMEException):
 """
 Raised if a specific Middleware Datasource cannot be found.
 """
 pass

[docs]class MiddlewareDeploymentNotFound(CFMEException):
 """
 Raised if a specific Middleware Deployment cannot be found.
 """
 pass

[docs]class MiddlewareMessagingNotFound(CFMEException):
 """
 Raised if a specific Middleware Messaging cannot be found.
 """
 pass

[docs]class JDBCDriverConfigNotFound(CFMEException):
 """Raised when cdme_data.yaml file does not contain configuration of 'jdbc_drivers'."""

[docs]class DbAllocatorConfigNotFound(CFMEException):
 """Raised when cdme_data.yaml file does not contain configuration of 'db_allocator'."""

[docs]class LabelNotFoundException(Exception):
 "Raises when failed to remove label from object via cli"
 pass

[docs]class UsingSharedTables(CFMEException):
 """Raised if the :py:class:`cfme.web_ui.Table` suspects there is a use of shared tables."""

[docs]class MenuItemNotFound(CFMEException):
 """Raised during navigation of certain menu item was not found."""

[docs]class DestinationNotFound(CFMEException):
 """Raised during navigation where the navigator destination is not found"""

[docs]class ItemNotFound(CFMEException):
 """Raised when an item is not found in general."""

[docs]class ManyEntitiesFound(CFMEException):
 """Raised when one or no items were expected but several/many items were obtained instead."""

[docs]class RoleNotFound(CFMEException):
 """Raised when Deployment role not found"""

[docs]class RBACOperationBlocked(CFMEException):
 """
 Raised when a Role Based Access Control operation is blocked from execution due to invalid
 permissions. Also thrown when trying to perform actions CRUD operations on roles/groups/users
 that are CFME defaults
 """

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/automate.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.automate

-*- coding: utf-8 -*-
from navmazing import NavigateToSibling
from widgetastic.widget import View
from widgetastic_manageiq import Accordion, ManageIQTree
from widgetastic_patternfly import Dropdown

from cfme.base import Server
from cfme.base.login import BaseLoggedInPage
from cfme.base.ui import automate_menu_name
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep

[docs]class AutomateCustomizationView(BaseLoggedInPage):
 # TODO re-model this so it can be nested as a sidebar instead of inherited
 @property
 def in_customization(self):
 return (
 self.logged_in_as_current_user and
 self.navigation.currently_selected == automate_menu_name(
 self.context['object'].appliance) + ['Customization'])

 @property
 def is_displayed(self):
 return self.in_customization and self.configuration.is_displayed

 @View.nested
 class provisioning_dialogs(Accordion): # noqa
 ACCORDION_NAME = 'Provisioning Dialogs'

 tree = ManageIQTree()

 @View.nested
 class service_dialogs(Accordion): # noqa
 ACCORDION_NAME = 'Service Dialogs'

 tree = ManageIQTree()

 @View.nested
 class buttons(Accordion): # noqa
 tree = ManageIQTree()

 @View.nested
 class import_export(Accordion): # noqa
 ACCORDION_NAME = 'Import/Export'

 tree = ManageIQTree()

 configuration = Dropdown('Configuration')

@navigator.register(Server)
[docs]class AutomateCustomization(CFMENavigateStep):
 VIEW = AutomateCustomizationView
 prerequisite = NavigateToSibling('LoggedIn')

[docs] def step(self):
 self.view.navigation.select(*automate_menu_name(self.obj.appliance) + ['Customization'])

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/provisioning.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.provisioning

-*- coding: utf-8 -*-
from collections import OrderedDict

from cfme import web_ui as ui
from cfme.fixtures import pytest_selenium as sel
from cfme.infrastructure.virtual_machines import Vm
from cfme.services.requests import RequestCollection
from cfme.web_ui import AngularSelect, flash, form_buttons, tabstrip
from cfme.utils import version
from cfme.utils.appliance.implementations.ui import navigate_to
from cfme.utils.log import logger
from cfme.utils.wait import wait_for

submit_button = form_buttons.FormButton("Submit")

[docs]def select_security_group(sg):
 """TODO: Not even sure this is needed any more, but removal of it is not part of this PR"""
 sel.wait_for_ajax()
 sel.sleep(1)

TODO remove old form once all importers have moved to widget form
provisioning_form = tabstrip.TabStripForm(
 fields=[
 ('submit_button', form_buttons.FormButton("Submit")),
 ('submit_copy_button', form_buttons.FormButton("Submit this provisioning request")),
 ('cancel_button', form_buttons.cancel),
 ('host_submit_button', form_buttons.host_provision_submit),
 ('host_cancel_button', form_buttons.host_provision_cancel)
],
 tab_fields=OrderedDict([

 ('Request', [
 ('email', ui.Input('requester__owner_email')),
 ('first_name', ui.Input('requester__owner_first_name')),
 ('last_name', ui.Input('requester__owner_last_name')),
 ('notes', ui.Input('requester__request_notes')),
 ('manager_name', ui.Input('requester__owner_manager'))
]),

 ('Purpose', [
 ('apply_tags', {
 version.LOWEST: ui.CheckboxTree('//div[@id="all_tags_treebox"]//ul'),
 '5.7': ui.BootstrapTreeview('all_tags_treebox')})
]),

 ('Catalog', [
 # Cloud
 ('num_instances', AngularSelect('service__number_of_vms')),
 ('instance_name', '//input[@name="service__vm_name"]'),
 ('instance_description', ui.Input('service__vm_description')),

 # Infra
 ('vm_filter', AngularSelect('service__vm_filter')),
 ('num_vms', AngularSelect('service__number_of_vms')),
 ('vm_name', '//input[@name="service__vm_name"]'),
 ('vm_description', ui.Input('service__vm_description')),
 ('catalog_name', ui.Table('//div[@id="prov_vm_div"]/table')),
 ('provision_type', AngularSelect('service__provision_type')),
 ('linked_clone', ui.Input('service__linked_clone')),
 ('pxe_server', AngularSelect('service__pxe_server_id')),
 ('pxe_image', ui.Table('//div[@id="prov_pxe_img_div"]/table')),
 ('iso_file', ui.Table('//div[@id="prov_iso_img_div"]/table'))
]),

 ('Environment', [
 ('automatic_placement', ui.Input('environment__placement_auto')),

 # Cloud
 ('cloud_tenant', AngularSelect('environment__cloud_tenant')),
 ('availability_zone', AngularSelect('environment__placement_availability_zone')),
 ('virtual_private_cloud', AngularSelect('environment__cloud_network')),
 ('cloud_network', AngularSelect('environment__cloud_network')),
 ('cloud_subnet', AngularSelect('environment__cloud_subnet')),
 ('security_groups', AngularSelect('environment__security_groups')),
 ('resource_groups', AngularSelect('environment__resource_group')),
 ('public_ip_address', AngularSelect('environment__floating_ip_address')),

 # Infra
 ('provider_name', AngularSelect('environment__placement_ems_name')),
 ('datacenter', AngularSelect('environment__placement_dc_name')),
 ('cluster', AngularSelect('environment__placement_cluster_name')),
 ('resource_pool', AngularSelect('environment__placement_rp_name')),
 ('folder', AngularSelect('environment__placement_folder_name')),
 ('host_filter', AngularSelect('environment__host_filter')),
 ('host_name', ui.Table('//div[@id="prov_host_div"]/table')),
 ('datastore_create', '#environment__new_datastore_create'),
 ('datastore_filter', AngularSelect('environment__ds_filter')),
 ('datastore_name', ui.Table('//div[@id="prov_ds_div"]/table')),
]),
 ('Hardware', [
 ('num_sockets', AngularSelect('hardware__number_of_sockets')),
 ('cores_per_socket', AngularSelect('hardware__cores_per_socket')),
 ('num_cpus', AngularSelect('hardware__number_of_cpus')),
 ('memory', AngularSelect('hardware__vm_memory')),
 ('disk_format', ui.Radio('hardware__disk_format')),
 ('vm_limit_cpu', ui.Input('hardware__cpu_limit')),
 ('vm_limit_memory', ui.Input('hardware__memory_limit')),
 ('vm_reserve_cpu', ui.Input('hardware__cpu_reserve')),
 ('vm_reserve_memory', ui.Input('hardware__memory_reserve')),
]),

 # Infra
 ('Network', [
 ('vlan', AngularSelect('network__vlan')),
]),

 # Cloud
 ('Properties', [
 ('instance_type', AngularSelect('hardware__instance_type')),
 ('guest_keypair', AngularSelect('hardware__guest_access_key_pair',
 none={'5.4': "<None>",
 version.LOWEST: "<No Choices Available>"})),
 ('hardware_monitoring', AngularSelect('hardware__monitoring')),
 ('boot_disk_size', AngularSelect('hardware__boot_disk_size')),
 # GCE
 ('is_preemtible', {version.LOWEST: None,
 '5.7': ui.Input('hardware__is_preemptible')})
]),

 ('Customize', [
 # Common
 ('dns_servers', ui.Input('customize__dns_servers')),
 ('dns_suffixes', ui.Input('customize__dns_suffixes')),
 ('specification', AngularSelect('customize__sysprep_enabled')),
 ('customize_type', AngularSelect('customize__sysprep_enabled')),
 ('specification_name', ui.Table('//div[@id="prov_vc_div"]/table')),

 # Cloud
 ('computer_name', ui.Input('customize__linux_host_name')),
 ('domain_name', ui.Input('customize__linux_domain_name')),

 # Azure
 ('admin_username', ui.Input('customize__root_username')),
 ('admin_password', ui.Input('customize__root_password')),

 # Infra
 ('linux_host_name', ui.Input('customize__linux_host_name')),
 ('linux_domain_name', ui.Input('customize__linux_domain_name')),
 ('prov_host_name', ui.Input('customize__hostname')),
 ('ip_address', ui.Input('customize__ip_addr')),
 ('subnet_mask', ui.Input('customize__subnet_mask')),
 ('gateway', ui.Input('customize__gateway')),
 ('custom_template', ui.Table('//div[@id="prov_template_div"]/table')),
 ('root_password', ui.Input('customize__root_password')),
 ('vm_host_name', ui.Input('customize__hostname')),
]),
 ('Schedule', [
 # Common
 ('schedule_type', ui.Radio('schedule__schedule_type')),
 ('provision_date', ui.Calendar('miq_date_1')),
 ('provision_start_hour', AngularSelect('start_hour')),
 ('provision_start_min', AngularSelect('start_min')),
 ('power_on', ui.Input('schedule__vm_auto_start')),
 ('retirement', AngularSelect('schedule__retirement')),
 ('retirement_warning', AngularSelect('schedule__retirement_warn')),

 # Infra
 ('stateless', ui.Input('schedule__stateless')),
])
])
)

[docs]def do_vm_provisioning(appliance, template_name, provider, vm_name, provisioning_data, request,
 smtp_test, num_sec=1500, wait=True):
 # generate_tests makes sure these have values
 vm = Vm(name=vm_name, provider=provider, template_name=template_name)
 note = ('template {} to vm {} on provider {}'.format(template_name, vm_name, provider.key))
 provisioning_data.update({
 'request': {
 'email': 'template_provisioner@example.com',
 'first_name': 'Template',
 'last_name': 'Provisioner',
 'notes': note}})
 view = navigate_to(vm, 'Provision')
 view.form.fill_with(provisioning_data, on_change=view.form.submit_button)
 flash.assert_no_errors()
 if not wait:
 return

 # Provision Re important in this test
 logger.info('Waiting for cfme provision request for vm %s', vm_name)
 request_description = 'Provision from [{}] to [{}]'.format(template_name, vm_name)
 provision_request = RequestCollection(appliance).instantiate(request_description)
 provision_request.wait_for_request(method='ui')
 assert provision_request.is_succeeded(method='ui'), \
 "Provisioning failed with the message {}".format(provision_request.row.last_message.text)

 # Wait for the VM to appear on the provider backend before proceeding to ensure proper cleanup
 logger.info('Waiting for vm %s to appear on provider %s', vm_name, provider.key)
 wait_for(provider.mgmt.does_vm_exist, [vm_name], handle_exception=True, num_sec=600)

 if smtp_test:
 # Wait for e-mails to appear
 def verify():
 approval = dict(subject_like="%%Your Virtual Machine configuration was Approved%%")
 expected_text = "Your virtual machine request has Completed - VM:%%{}".format(vm_name)
 return (
 len(smtp_test.get_emails(**approval)) > 0 and
 len(smtp_test.get_emails(subject_like=expected_text)) > 0
)

 wait_for(verify, message="email receive check", delay=30)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/optimize.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.optimize

from navmazing import NavigateToSibling
from widgetastic.widget import View
from widgetastic_manageiq import Accordion, ManageIQTree

from cfme.base.login import BaseLoggedInPage
from cfme.base import Server
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep

[docs]class BottlenecksView(BaseLoggedInPage):
[docs] def in_explorer(self):
 return (
 self.logged_in_as_current_user and
 self.navigation.currently_selected == ['Optimize', 'Bottlenecks'])

 @View.nested
 class bottlenecks(Accordion): # noqa
 ACCORDION_NAME = "Bottlenecks"

 tree = ManageIQTree()

@navigator.register(Server)
[docs]class Bottlenecks(CFMENavigateStep):
 VIEW = BottlenecksView
 prerequisite = NavigateToSibling("LoggedIn")

[docs] def step(self):
 self.view.navigation.select("Optimize", "Bottlenecks")

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/nelson.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for fixtures.nelson

import os
import re
import base64
from textwrap import dedent
from types import FunctionType

from six import iteritems
from sphinx.ext.napoleon import _skip_member, Config
from sphinx.ext.napoleon import docstring
from sphinx.ext.napoleon.docstring import NumpyDocstring
import sphinx
import yaml

from cfme.utils.log import get_rel_path, logger

config = Config(napoleon_use_param=True, napoleon_use_rtype=True)

[docs]def get_meta(obj):
 doc = getattr(obj, '__doc__') or ''
 p = GoogleDocstring(stripper(doc), config)
 return p.metadata

[docs]def pytest_collection_modifyitems(items):
 output = {}
 for item in items:
 item_class = item.location[0]
 item_class = item_class[:item_class.rfind('.')].replace('/', '.')
 item_name = item.location[2]
 item_param = re.findall('\.*(\[.*\])', item_name)
 if item_param:
 item_name = item_name.replace(item_param[0], '')
 node_name = '{}.{}'.format(item_class, item_name)
 output[node_name] = {}
 output[node_name]['docstring'] = base64.b64encode(getattr(item.function, '__doc__') or '')
 output[node_name]['name'] = item_name

 # This is necessary to convert AttrDict in metadata, or even metadict(previously)
 # into serializable data as builtin doesn't contain instancemethod and gives us issues.
 doc_meta = {k: v for k, v in item._metadata.get('from_docs', {}).items()}
 output[node_name]['metadata'] = {'from_docs': doc_meta}

 with open('doc_data.yaml', 'w') as f:
 def dice_representer(dumper, data):
 return dumper.represent_scalar("chew", "me")
 import lya
 from yaml.representer import SafeRepresenter
 yaml.add_representer(lya.lya.AttrDict, SafeRepresenter.represent_dict)
 yaml.dump(output, f)

[docs]def pytest_pycollect_makeitem(collector, name, obj):
 """pytest hook that adds docstring metadata (if found) to a test's meta mark"""
 if not isinstance(obj, FunctionType) and not hasattr(obj, 'meta'):
 # This relies on the meta mark having already been applied to
 # all test functions before this hook is called
 return

 # __doc__ can be empty or nonexistent, make sure it's an empty string in that case
 metadata = get_meta(obj)

 if not hasattr(obj.meta, 'kwargs'):
 obj.meta.kwargs = dict()
 obj.meta.kwargs.update({
 'from_docs': metadata
 })
 if metadata:
 test_path = get_rel_path(collector.fspath)
 logger.debug('Parsed docstring metadata on {} in {}'.format(name, test_path))
 logger.trace('{} doc metadata: {}'.format(name, str(metadata)))

[docs]def stripper(docstring):
 """Slightly smarter :func:`dedent <python:textwrap.dedent>`

 It strips a docstring's first line indentation and dedents the rest

 """
 if docstring:
 lines = docstring.splitlines()
 return os.linesep.join([
 lines[0].strip(), dedent("\n".join(lines[1:]))
])
 else: # If docstring is a null string, GoogleDocstring will expect an iterable type
 return ''

[docs]class GoogleDocstring(docstring.GoogleDocstring):
 """Custom version of napoleon's GoogleDocstring that adds some special cases"""
 def __init__(self, *args, **kwargs):
 self.metadata = {}
 super(GoogleDocstring, self).__init__(*args, **kwargs)
 self._sections['usage'] = self._parse_usage_section
 self._sections['metadata'] = self._parse_metadata_section
 super(GoogleDocstring, self)._parse()

 def _parse(self):
 pass

 def _consume_usage_section(self):
 lines = self._dedent(self._consume_to_next_section())
 return lines

 def _consume_metadata_section(self):
 lines = self._dedent(self._consume_to_next_section())
 return lines

 def _parse_usage_section(self, section):
 b = ['.. rubric:: Usage:', '']
 c = ['.. code-block:: python', '']
 lines = self._consume_usage_section()
 lines = self._indent(lines, 3)
 return b + c + lines + ['']

 def _parse_metadata_section(self, section):
 lines = self._consume_metadata_section()
 if lines:
 self.metadata = yaml.load("\n".join(lines))
 return ['']

[docs]def setup(app):
 """Sphinx extension setup function.

 See Also:
 http://sphinx-doc.org/extensions.html

 """
 from sphinx.application import Sphinx
 if not isinstance(app, Sphinx):
 return # probably called by tests

 app.connect('autodoc-process-docstring', _process_docstring)
 app.connect('autodoc-skip-member', _skip_member)

 for name, (default, rebuild) in iteritems(Config._config_values):
 app.add_config_value(name, default, rebuild)
 return {'version': sphinx.__version__, 'parallel_read_safe': True}

def _process_docstring(app, what, name, obj, options, lines):
 result_lines = lines
 if app.config.napoleon_numpy_docstring:
 docstring = NumpyDocstring(result_lines, app.config, app, what, name,
 obj, options)
 result_lines = docstring.lines()
 if app.config.napoleon_google_docstring:
 docstring = GoogleDocstring(result_lines, app.config, app, what, name,
 obj, options)
 result_lines = docstring.lines()
 lines[:] = result_lines[:]

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/randomness.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for fixtures.randomness

-*- coding: utf-8 -*-
import fauxfactory
import pytest

@pytest.fixture # IGNORE:E1101
[docs]def random_uuid_as_string():
 """Creates a random uuid and returns is as a string"""
 return fauxfactory.gen_uuid()

@pytest.fixture
[docs]def random_string():
 """Generate a random string for use in tests"""
 return fauxfactory.gen_alphanumeric(8)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/ui_coverage.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for fixtures.ui_coverage

"""UI Coverage for a CFME/MIQ Appliance

Usage

``py.test --ui-coverage``

General Notes

simplecov can merge test results, but doesn't appear to like working in a
multi-process environment. Specifically, it clobbers its own results when running
simultaneously in multiple processes. To solve this, each process records its
output to its own directory (configured in coverage_hook). All of the
individual process' results are then manually merged (coverage_merger) into one
big json result, and handed back to simplecov which generates the compiled html
(for humans) and rcov (for jenkins) reports.

thing_toucher makes a best-effort pass at requiring all of the ruby files in
the rails root, as well as any external MIQ libs/utils outside of the rails
root (../lib and ../lib/util). This makes sure files that are never
required still show up in the coverage report.

Workflow Overview

Pre-testing (``pytest_configure`` hook):

1. Add ``Gemfile.dev.rb`` to the rails root, then run bundler to install simplecov
 and its dependencies.
2. Install and require the coverage hook (copy ``coverage_hook`` to config/, add
 require line to the end of ``config/boot.rb``)
3. Restart EVM (Rudely) to start running coverage on the appliance processes:
 ``killall -9 ruby; sysemctl start evmserverd``
4. TOUCH ALL THE THINGS (run ``thing_toucher.rb`` with the rails runner).
 Fork this process off and come back to it later

Post-testing (``pytest_unconfigure`` hook):

1. Poll ``thing_toucher`` to make sure it completed; block if needed.
2. Stop EVM, but nicely this time so the coverage atexit hooks run:
 ``systemctl stop evmserverd``
3. Run ``coverage_merger.rb`` with the rails runner, which compiles all the individual process
 reports and runs coverage again, additionally creating an rcov report
4. Pull the coverage dir back for parsing and archiving
5. For fun: Read the results from ``coverage/.last_run.json`` and print it to the test terminal/log

Post-testing (e.g. ci environment):
1. Use the generated rcov report with the ruby stats plugin to get a coverage graph
2. Zip up and archive the entire coverage dir for review

"""
import subprocess
from threading import Thread

import pytest
from py.error import ENOENT
from py.path import local

from fixtures.pytest_store import store
from cfme.utils import conf, version
from cfme.utils.log import create_sublogger
from cfme.utils.path import conf_path, log_path, scripts_data_path
from cfme.utils.quote import quote
from cfme.utils.wait import wait_for, TimedOutError

paths to all of the coverage-related files

on the appliance
#: Corresponds to Rails.root in the rails env
rails_root = local('/var/www/miq/vmdb')
#: coverage root, should match what's in the coverage hook and merger scripts
appliance_coverage_root = rails_root.join('coverage')

local
coverage_data = scripts_data_path.join('coverage')
gemfile = coverage_data.join('coverage_gem.rb')
bundler_d = rails_root.join('bundler.d')
coverage_hook_file_name = 'coverage_hook.rb'
coverage_hook = coverage_data.join(coverage_hook_file_name)
coverage_merger = coverage_data.join('coverage_merger.rb')
thing_toucher = coverage_data.join('thing_toucher.rb')
coverage_output_dir = log_path.join('coverage')
coverage_results_archive = coverage_output_dir.join('coverage-results.tgz')
coverage_appliance_conf = conf_path.join('.ui-coverage')

This is set in sessionfinish, and should be reliably readable
in post-yield sessionfinish hook wrappers and all hooks thereafter
ui_coverage_percent = None

def _thing_toucher_async(ssh_client):
 # for use in a subprocess to kick off the thing toucher
 result = ssh_client.run_rails_command('thing_toucher.rb', timeout=0)
 return result.rc == 0

[docs]def clean_coverage_dir():
 try:
 coverage_output_dir.remove(ignore_errors=True)
 except ENOENT:
 pass
 coverage_output_dir.ensure(dir=True)

[docs]def manager():
 return store.current_appliance.coverage

you probably don't want to instantiate this manually
instead, use the "manager" function above
[docs]class CoverageManager(object):
 def __init__(self, ipappliance):
 self.ipapp = ipappliance
 if store.slave_manager:
 sublogger_name = '{} coverage'.format(store.slave_manager.slaveid)
 else:
 sublogger_name = 'coverage'
 self.log = create_sublogger(sublogger_name)

 @property
 def collection_appliance(self):
 # if parallelized, this is decided in sessionstart and written to the conf
 if store.parallelizer_role == 'slave':
 from cfme.utils.appliance import IPAppliance
 return IPAppliance(conf['.ui-coverage']['collection_appliance'])
 else:
 # otherwise, coverage only happens on one appliance
 return store.current_appliance

[docs] def print_message(self, message):
 self.log.info(message)
 message = 'coverage: {}'.format(message)
 if store.slave_manager:
 store.slave_manager.message(message)
 elif store.parallel_session:
 store.parallel_session.print_message(message)
 else:
 store.terminalreporter.write_sep('-', message)

[docs] def install(self):
 self.print_message('installing')
 self._install_simplecov()
 self._install_coverage_hook()
 self.ipapp.restart_evm_service(rude=True)
 self._touch_all_the_things()
 self.ipapp.wait_for_web_ui()

[docs] def collect(self):
 self.print_message('collecting reports')
 self._stop_touching_all_the_things()
 self._collect_reports()
 self.ipapp.restart_evm_service(rude=False)

[docs] def merge(self):
 self.print_message('merging reports')
 try:
 self._retrieve_coverage_reports()
 # If the appliance runs out of memory, these can take *days* to complete,
 # so for now we'll just collect the raw coverage data and figure the merging
 # out later
 # Edit, 10-Feb-2016:
 # Currently, the reports are merged using the {stream}-reports job
 # which utilizes the 'jjb/scripts/stream_reporter.sh' script instead
 # self._merge_coverage_reports()
 # self._retrieve_merged_reports()
 except Exception as exc:
 self.log.error('Error merging coverage reports')
 self.log.exception(exc)
 self.print_message('merging reports failed, error has been logged')

 def _install_simplecov(self):
 self.log.info('Installing coverage gem on appliance')
 self.ipapp.ssh_client.put_file(gemfile.strpath, bundler_d.strpath)

 # gem install for more recent downstream builds
 def _gem_install():
 self.ipapp.ssh_client.run_command(
 'gem install --install-dir /opt/rh/cfme-gemset/ -v0.9.2 simplecov')

 # bundle install for old downstream and upstream builds
 def _bundle_install():
 self.ipapp.ssh_client.run_command('yum -y install git')
 self.ipapp.ssh_client.run_command('cd {}; bundle'.format(rails_root))
 version.pick({
 version.LOWEST: _bundle_install,
 '5.4': _gem_install,
 version.LATEST: _bundle_install,
 })()

 def _install_coverage_hook(self):
 # Clean appliance coverage dir
 self.ipapp.ssh_client.run_command('rm -rf {}'.format(
 appliance_coverage_root.strpath))
 # Decide which coverage hook file to use based on version
 # Put the coverage hook in the miq lib path
 self.ipapp.ssh_client.put_file(coverage_hook.strpath, rails_root.join(
 'lib', coverage_hook_file_name).strpath)
 replacements = {
 'require': r"require_relative '../lib/coverage_hook'",
 'config': rails_root.join('config').strpath
 }
 # grep/echo to try to add the require line only once
 # This goes in preinitializer after the miq lib path is set up,
 # which makes it so ruby can actually require the hook
 command_template = (
 'cd {config};'
 'grep -q "{require}" preinitializer.rb || echo -e "\\n{require}" >> preinitializer.rb'
)
 x, out = self.ipapp.ssh_client.run_command(command_template.format(**replacements))
 return x == 0

 def _touch_all_the_things(self):
 self.log.info('Establishing baseline coverage by requiring ALL THE THINGS')
 # send over the thing toucher
 self.ipapp.ssh_client.put_file(
 thing_toucher.strpath, rails_root.join(
 thing_toucher.basename).strpath
)
 # start it in an async thread so we can go on testing while this takes place
 t = Thread(target=_thing_toucher_async, args=[self.ipapp.ssh_client])
 t.daemon = True
 t.start()

 def _still_touching_all_the_things(self):
 return self.ipapp.ssh_client.run_command('pgrep -f thing_toucher.rb', timeout=10).rc == 0

 def _stop_touching_all_the_things(self):
 self.log.info('Waiting for baseline coverage generator to finish')
 # let the thing toucher finish touching all the things, it generally doesn't take more
 # than 10 minutes
 try:
 wait_for(self._still_touching_all_the_things, fail_condition=True, num_sec=600,
 message='check thing_toucher.rb on appliance')
 except TimedOutError:
 self.print_message("thing_toucher.rb timed out after 10mins; killing the process")
 self.ipapp.ssh_client.run_command("pkill -f thing_toucher")

 def _collect_reports(self):
 # restart evm to stop the proccesses and let the simplecov exit hook run
 self.ipapp.ssh_client.run_command('systemctl stop evmserverd')
 # collect back to the collection appliance if parallelized
 if store.current_appliance != self.collection_appliance:
 self.print_message('sending reports to {}'.format(self.collection_appliance.address))
 result = self.ipapp.ssh_client.run_command(
 'sshpass -p {passwd} '
 'scp -o StrictHostKeyChecking=no '
 '-r /var/www/miq/vmdb/coverage/* '
 '{addr}:/var/www/miq/vmdb/coverage/'.format(
 addr=self.collection_appliance.address,
 passwd=quote(self.ipapp.ssh_client._connect_kwargs['password'])),
 timeout=1800)
 if not result:
 self.print_message('There was an error sending reports: ' + str(result))

 def _retrieve_coverage_reports(self):
 # Before merging, archive and collect all the raw coverage results
 ssh_client = self.collection_appliance.ssh_client
 ssh_client.run_command('cd /var/www/miq/vmdb/;'
 'tar czf /tmp/ui-coverage-raw.tgz coverage/')
 ssh_client.get_file('/tmp/ui-coverage-raw.tgz', coverage_results_archive.strpath)

 def _upload_coverage_merger(self):
 ssh_client = self.collection_appliance.ssh_client
 ssh_client.put_file(coverage_merger.strpath, rails_root.strpath)

 def _merge_coverage_reports(self):
 # run the merger on the appliance to generate the simplecov report
 # This has been failing, presumably due to oom errors :(
 self._upload_coverage_merger()
 ssh_client = self.collection_appliance.ssh_client
 ssh_client.run_rails_command(coverage_merger.basename)

 def _retrieve_merged_reports(self):
 # Now bring the report back (tar it, get it, untar it)
 ssh_client = self.collection_appliance.ssh_client
 ssh_client.run_command('cd /var/www/miq/vmdb/coverage;'
 'tar czf /tmp/ui-coverage-results.tgz merged/')
 ssh_client.get_file('/tmp/ui-coverage-results.tgz', coverage_results_archive.strpath)
 subprocess.Popen(['/usr/bin/env', 'tar', '-xaf', coverage_results_archive.strpath,
 '-C', coverage_output_dir.strpath]).wait()

[docs]class UiCoveragePlugin(object):
[docs] def pytest_configure(self, config):
 # cleanup cruft from previous runs
 if store.parallelizer_role != 'slave':
 clean_coverage_dir()
 coverage_appliance_conf.check() and coverage_appliance_conf.remove()

[docs] def pytest_sessionstart(self, session):
 # master knows all the appliance URLs now, so name the first one as our
 # report recipient for merging at the end. Need to to write this out to a conf file
 # since all the slaves are going to use to to know where to ship their reports
 if store.parallelizer_role == 'master':
 collection_appliance_address = manager().collection_appliance.address
 conf.runtime['.ui-coverage']['collection_appliance'] = collection_appliance_address
 conf.save('.ui-coverage')

 @pytest.mark.hookwrapper
[docs] def pytest_collection_finish(self):
 yield
 # Install coverage after collection finishes
 if store.parallelizer_role != 'master':
 manager().install()

[docs] def pytest_sessionfinish(self, exitstatus):
 # Now master/standalone needs to move all the reports to an appliance for the source report
 if store.parallelizer_role != 'master':
 manager().collect()

 # for slaves, everything is done at this point
 if store.parallelizer_role == 'slave':
 return

 # on master/standalone, merge all the collected reports and bring them back
 manager().merge()

TODO
When the coverage reporting breaks out, we'll want to have this handy,
so I'm commenting it out instead of outright deleting it :)
try:
global ui_coverage_percent
last_run = json.load(log_path.join('coverage', 'merged', '.last_run.json').open())
ui_coverage_percent = last_run['result']['covered_percent']
style = {'bold': True}
if ui_coverage_percent > 40:
style['green'] = True
else:
style['red'] = True
store.write_line('UI Coverage Result: {}%'.format(ui_coverage_percent),
**style)
except Exception as ex:
logger.error('Error printing coverage report to terminal')
logger.exception(ex)

[docs]def pytest_addoption(parser):
 group = parser.getgroup('cfme')
 group.addoption('--ui-coverage', dest='ui_coverage', action='store_true', default=False,
 help="Enable setup and collection of ui coverage on an appliance")

[docs]def pytest_cmdline_main(config):
 # Only register the plugin worker if ui coverage is enabled
 if config.option.ui_coverage:
 config.pluginmanager.register(UiCoveragePlugin(), name="ui-coverage")

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/virtual_machine.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for fixtures.virtual_machine

""" Fixtures ensuring that a VM/instance is in the specified state for the test
"""

import pytest
from cfme.utils.log import logger
from cfme.utils.wait import wait_for

@pytest.fixture(scope="function")
[docs]def verify_vm_running(provider, vm_name):
 """ Ensures that the VM/instance is in running state for the test

 Uses calls to the actual provider api; it will start the vm if necessary.

 Args:
 provider: Provider class object
 vm_name: Name of the VM/instance
 """

 def _wait_for_vm_running():
 if provider.mgmt.is_vm_running(vm_name):
 return True
 elif provider.mgmt.is_vm_stopped(vm_name) or \
 provider.mgmt.can_suspend and provider.mgmt.is_vm_suspended(vm_name) or \
 provider.mgmt.can_pause and provider.mgmt.is_vm_paused(vm_name):
 provider.mgmt.start_vm(vm_name)

 logger.debug("Sleeping 15secs...(current state: {}, needed state: running)".format(
 provider.mgmt.vm_status(vm_name)
))
 return False

 return wait_for(_wait_for_vm_running, num_sec=360, delay=15)

@pytest.fixture(scope="function")
[docs]def verify_vm_stopped(provider, vm_name):
 """ Ensures that the VM/instance is stopped for the test

 Uses calls to the actual provider api; it will stop the vm if necessary.

 Args:
 provider: Provider class object
 vm_name: Name of the VM/instance
 """

 def _wait_for_vm_stopped():
 if provider.mgmt.is_vm_stopped(vm_name):
 return True
 elif provider.mgmt.is_vm_running(vm_name):
 provider.mgmt.stop_vm(vm_name)
 elif provider.mgmt.can_suspend and provider.mgmt.is_vm_suspended(vm_name) or \
 provider.mgmt.can_pause and provider.mgmt.is_vm_paused(vm_name):
 provider.mgmt.start_vm(vm_name)

 logger.debug("Sleeping 15secs...(current state: {}, needed state: stopped)".format(
 provider.mgmt.vm_status(vm_name)
))
 return False

 return wait_for(_wait_for_vm_stopped, num_sec=360, delay=15)

@pytest.fixture(scope="function")
[docs]def verify_vm_suspended(provider, vm_name):
 """ Ensures that the VM/instance is suspended for the test

 Uses calls to the actual provider api; it will suspend the vm if necessary.

 Args:
 provider.mgmt: Provider class object
 vm_name: Name of the VM/instance
 """

 def _wait_for_vm_suspended():
 if provider.mgmt.is_vm_suspended(vm_name):
 return True
 elif provider.mgmt.is_vm_running(vm_name):
 provider.mgmt.suspend_vm(vm_name)
 elif provider.mgmt.is_vm_stopped(vm_name) or \
 provider.mgmt.can_pause and provider.mgmt.is_vm_paused(vm_name):
 provider.mgmt.start_vm(vm_name)

 logger.debug("Sleeping 15secs...(current state: {}, needed state: suspended)".format(
 provider.mgmt.vm_status(vm_name)
))
 return False

 return wait_for(_wait_for_vm_suspended, num_sec=360, delay=15)

@pytest.fixture(scope="function")
[docs]def verify_vm_paused(provider, vm_name):
 """ Ensures that the VM/instance is paused for the test

 Uses calls to the actual provider api; it will pause the vm if necessary.

 Args:
 provider.mgmt: Provider class object
 vm_name: Name of the VM/instance
 """

 def _wait_for_vm_paused():
 if provider.mgmt.is_vm_paused(vm_name):
 return True
 elif provider.mgmt.is_vm_running(vm_name):
 provider.mgmt.pause_vm(vm_name)
 elif provider.mgmt.is_vm_stopped(vm_name) or \
 provider.mgmt.can_suspend and provider.mgmt.is_vm_suspended(vm_name):
 provider.mgmt.start_vm(vm_name)

 logger.debug("Sleeping 15secs...(current state: {}, needed state: paused)".format(
 provider.mgmt.vm_status(vm_name)
))
 return False

 return wait_for(_wait_for_vm_paused, num_sec=360, delay=15)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/node_annotate.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for fixtures.node_annotate

import py
import pytest
import csv
import yaml
import os

from operator import itemgetter
from cfme.utils.path import project_path
from cfme.utils.conf import cfme_data
from .pytest_store import store

[docs]class MarkFromMap(object):
 def __init__(self, mark_map):
 self.mark_map = mark_map

[docs] def pytest_itemcollected(self, item):
 mark = self.mark_map.get(item.nodeid)
 if mark is not None:
 # todo: warn when the applied marker differs from the data
 if not item.get_marker(mark.name):
 item.add_marker(mark)

 @classmethod
[docs] def from_parsed_list(cls, parsed, key, map_value):
 data = dict(map(itemgetter('id', key), parsed))
 mark_map = dict((k, map_value(v)) for k, v in data.items())
 return cls(mark_map)

[docs]def pytest_configure(config):
 path = cfme_data.get('cfme_annotations_path')
 if path:
 to_parse = project_path.join(path)
 parsed = parse(to_parse)
 if not parsed:
 store.terminalreporter.line(
 'no test annotation found in {}'.format(to_parse), yellow=True)
 else:
 store.terminalreporter.line('no test annotation found in {}'.format(path), yellow=True)
 parsed = []
 config.pluginmanager.register(MarkFromMap.from_parsed_list(
 parsed, 'tier', pytest.mark.tier))
 config.pluginmanager.register(MarkFromMap.from_parsed_list(
 parsed, 'requirement', pytest.mark.requirement))
 config.pluginmanager.register(MarkFromMap.from_parsed_list(parsed, 'type',
 pytest.mark.__getattr__))

[docs]def pytest_addoption(parser):
 group = parser.getgroup('cfme')
 group.addoption('--tier', type=int, action='append', help='only run tests of the given tiers')
 group.addoption('--requirement', type=str, action='append',
 help='only run tests of the given requirements')

[docs]def tier_matches(item, tiers):
 mark = item.get_marker('tier')
 if getattr(mark, 'args', None) is None:
 return False
 return mark.args[0] in tiers

[docs]def requirement_matches(item, requirements):
 mark = item.get_marker('requirement')
 if getattr(mark, 'args', None) is None:
 return False
 return mark.args[0] in requirements

[docs]def pytest_collection_modifyitems(config, items):
 tiers = config.getoption('tier')
 requirements = config.getoption('requirement')
 if not tiers and not requirements:
 return
 # TODO(rpfannsc) trim after pytest #1373 is done
 keep, discard = [], []

 for item in items:
 if tiers and not tier_matches(item, tiers):
 discard.append(item)
 continue
 elif requirements and not requirement_matches(item, requirements):
 discard.append(item)
 continue
 else:
 keep.append(item)

 items[:] = keep
 # TODO(rpfannsc) add a reason after pytest #1372 is fixed
 config.hook.pytest_deselected(items=discard)

[docs]def generate_nodeid(mapping):
 title = mapping['Title']
 caseid = mapping['Test Case ID']
 if not caseid:
 raise ValueError('incomplete entry')

 needle = title.find('[')
 attribute_part = title[:needle].replace('.', '::')

 parameter_part = title[needle:]
 if os.sep not in caseid:
 file_part = caseid[:-needle - 1].replace('.', os.sep)
 else:
 file_part = caseid

 return "{}.py::{}{}".format(file_part, attribute_part, parameter_part)

def _clean(mapping):
 mapping.pop('', '')
 try:
 return {
 'requirement': int(mapping['Requirement']),
 'tier': int(mapping['TestTier']),
 'id': generate_nodeid(mapping),
 'type': mapping['TestType'].lower(),
 }
 except (TypeError, ValueError):
 return None

[docs]def parse(path):
 if not path.check():
 return []
 with path.open() as fp:
 return filter(None, map(_clean, csv.DictReader(fp)))

if __name__ == '__main__':
 mapping_file = project_path.join(py.std.sys.argv[1])
 print(yaml.dump(parse(mapping_file), default_flow_style=False))

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/browser.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for fixtures.browser

import pytest
from py.error import ENOENT

import cfme.utils.browser
from cfme.fixtures.pytest_selenium import ensure_browser_open, take_screenshot
from fixtures.artifactor_plugin import fire_art_test_hook
from cfme.utils.datafile import template_env
from cfme.utils.path import log_path
from cfme.utils import browser as browser_module, safe_string
from cfme.utils.log import logger
browser_fixtures = {'browser'}

failed_test_tracking = {
 'tests': list(),
 'total_failed': 0,
 'total_errored': 0,
}

[docs]def pytest_namespace():
 # Return the contents of this file as the 'sel' namespace in pytest.
 from cfme.fixtures import pytest_selenium
 return {'sel': pytest_selenium}

[docs]def pytest_runtest_setup(item):
 if set(getattr(item, 'fixturenames', [])) & browser_fixtures:
 cfme.utils.browser.ensure_browser_open()

[docs]def pytest_exception_interact(node, call, report):
 from fixtures.pytest_store import store
 from httplib import BadStatusLine
 from socket import error
 import urllib2

 val = safe_string(call.excinfo.value.message).decode('utf-8', 'ignore')

 if isinstance(call.excinfo.value, (urllib2.URLError, BadStatusLine, error)):
 logger.error("internal Exception:\n %s", str(call.excinfo))
 from cfme.utils.browser import manager
 manager.start() # start will quit first and cycle wharf as well

 short_tb = '{}\n{}'.format(
 call.excinfo.type.__name__, val.encode('ascii', 'xmlcharrefreplace'))
 fire_art_test_hook(
 node, 'filedump',
 description="Traceback", contents=report.longreprtext, file_type="traceback",
 display_type="danger", display_glyph="align-justify", group_id="pytest-exception",
 slaveid=store.slaveid)
 fire_art_test_hook(
 node, 'filedump',
 description="Short traceback", contents=short_tb, file_type="short_tb",
 display_type="danger", display_glyph="align-justify", group_id="pytest-exception",
 slaveid=store.slaveid)

 # base64 encoded to go into a data uri, same for screenshots
 full_tb = report.longreprtext.encode('base64').strip()
 # errors are when exceptions are thrown outside of the test call phase
 report.when = getattr(report, 'when', 'setup')
 is_error = report.when != 'call'

 template_data = {
 'name': node.name,
 'file': node.fspath,
 'is_error': is_error,
 'fail_stage': report.when,
 'short_tb': short_tb,
 'full_tb': full_tb,
 }

 # Before trying to take a screenshot, we used to check if one of the browser_fixtures was
 # in this node's fixturenames, but that was too limited and preventing the capture of
 # screenshots. If removing that conditional now makes this too broad, we should consider
 # an isinstance(val, WebDriverException) check in addition to the browser fixture check that
 # exists here in commit 825ef50fd84a060b58d7e4dc316303a8b61b35d2

 screenshot = take_screenshot()
 template_data['screenshot'] = screenshot.png
 template_data['screenshot_error'] = screenshot.error
 if screenshot.png:
 fire_art_test_hook(
 node, 'filedump',
 description="Exception screenshot", file_type="screenshot", mode="wb",
 contents_base64=True, contents=template_data['screenshot'], display_glyph="camera",
 group_id="pytest-exception", slaveid=store.slaveid)
 if screenshot.error:
 fire_art_test_hook(
 node, 'filedump',
 description="Screenshot error", mode="w", contents_base64=False,
 contents=template_data['screenshot_error'], display_type="danger",
 group_id="pytest-exception", slaveid=store.slaveid)

 failed_test_tracking['tests'].append(template_data)
 if is_error:
 failed_test_tracking['total_errored'] += 1
 else:
 failed_test_tracking['total_failed'] += 1

[docs]def pytest_sessionfinish(session, exitstatus):
 failed_tests_template = template_env.get_template('failed_browser_tests.html')
 outfile = log_path.join('failed_browser_tests.html')

 # Clean out any old reports
 try:
 outfile.remove(ignore_errors=True)
 except ENOENT:
 pass

 # Generate a new one if needed
 if failed_test_tracking['tests']:
 failed_tests_report = failed_tests_template.render(**failed_test_tracking)
 outfile.write(failed_tests_report)

@pytest.fixture(scope='session')
[docs]def browser():
 return browser_module.browser

@pytest.yield_fixture(scope="function")
[docs]def nuke_browser_after_test():
 """Some more disruptive tests have to take this measure."""
 yield
 browser_module.quit()
 ensure_browser_open()

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/pytest_store.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for fixtures.pytest_store

"""Storage for pytest objects during test runs

The objects in the module will change during the course of a test run,
so they have been stashed into the 'store' namespace

Usage:

 # as pytest.store
 import pytest
 pytest.store.config, pytest.store.pluginmanager, pytest.store.session

 # imported directly (store is pytest.store)
 from fixtures.pytest_store import store
 store.config, store.pluginmanager, store.session

The availability of these objects varies during a test run, but
all should be available in the collection and testing phases of a test run.

"""
import fauxfactory
import os
import sys

import pytest # NOQA: import to trigger initial pluginmanager

from _pytest.terminal import TerminalReporter
from cached_property import cached_property
from py.io import TerminalWriter

from cfme.utils import diaper

[docs]class FlexibleTerminalReporter(TerminalReporter):
 """A TerminalReporter stand-in that pretends to work even without a py.test config."""
 def __init__(self, config=None, file=None):
 if config:
 # If we have a config, nothing more needs to be done
 return TerminalReporter.__init__(self, config, file)

 # Without a config, pretend to be a TerminalReporter
 # hook-related functions (logreport, collection, etc) will be outrigt broken,
 # but the line writers should still be usable
 if file is None:
 file = sys.stdout

 self._tw = self.writer = TerminalWriter(file)
 self.hasmarkup = self._tw.hasmarkup
 self.reportchars = ''
 self.currentfspath = None

[docs]class Store(object):
 """pytest object store

 If a property isn't available for any reason (including being accessed outside of a pytest run),
 it will be None.

 """

 @property
 def current_appliance(self):
 # layz import due to loops and loops and loops
 from cfme.utils import appliance
 # TODO: concieve a better way to detect/log import-time missuse
 # assert self.config is not None, 'current appliance not in scope'
 return appliance.current_appliance

 def __init__(self):
 #: The py.test config instance, None if not in py.test
 self.config = None

 #: The current py.test session, None if not in a py.test session
 self.session = None

 #: Parallelizer role, None if not running a parallelized session
 self.parallelizer_role = None

 # Stash of the "real" terminal reporter once we get it,
 # so we don't have to keep going through pluginmanager
 self._terminalreporter = None
 #: hack variable until we get a more sustainable solution
 self.ssh_clients_to_close = []

 self.uncollection_stats = {}

 @property
 def has_config(self):
 return self.config is not None

 @property
 def base_url(self):
 """ If there is a current appliance the base url of that appliance is returned
 else, the base_url from the config is returned."""
 return self.current_appliance.url

 def _maybe_get_plugin(self, name):
 """ returns the plugin if the pluginmanager is availiable and the plugin exists"""
 return self.pluginmanager and self.pluginmanager.getplugin(name)

 @property
 def in_pytest_session(self):
 return self.session is not None

 @property
 def fixturemanager(self):
 # "publicize" the fixturemanager
 return self.session and self.session._fixturemanager

 @property
 def capturemanager(self):
 return self._maybe_get_plugin('capturemanager')

 @property
 def pluginmanager(self):
 # Expose this directly on the store for convenience in getting/setting plugins
 return self.config and self.config.pluginmanager

 @property
 def terminalreporter(self):
 if self._terminalreporter is not None:
 return self._terminalreporter

 reporter = self._maybe_get_plugin('terminalreporter')
 if reporter and isinstance(reporter, TerminalReporter):
 self._terminalreporter = reporter
 return reporter

 return FlexibleTerminalReporter(self.config)

 @property
 def terminaldistreporter(self):
 return self._maybe_get_plugin('terminaldistreporter')

 @property
 def parallel_session(self):
 return self._maybe_get_plugin('parallel_session')

 @property
 def slave_manager(self):
 return self._maybe_get_plugin('slave_manager')

 @property
 def slaveid(self):
 return getattr(self.slave_manager, 'slaveid', None)

 @cached_property
 def my_ip_address(self):
 try:
 # Check the environment first
 return os.environ['CFME_MY_IP_ADDRESS']
 except KeyError:
 # Fall back to having an appliance tell us what it thinks our IP
 # address is
 return self.current_appliance.ssh_client.client_address()

[docs] def write_line(self, line, **kwargs):
 return write_line(line, **kwargs)

store = Store()

[docs]def pytest_namespace():
 # Expose the pytest store as pytest.store
 return {'store': store}

[docs]def pytest_plugin_registered(manager):
 # config will be set at the second call to this hook
 if store.config is None:
 store.config = manager.getplugin('pytestconfig')

[docs]def pytest_sessionstart(session):
 store.session = session

[docs]def write_line(line, **kwargs):
 """A write-line helper that should *always* write a line to the terminal

 It knows all of py.tests dirty tricks, including ones that we made, and works around them.

 Args:
 **kwargs: Normal kwargs for pytest line formatting, stripped from slave messages

 """
 if store.slave_manager:
 # We're a pytest slave! Write out the vnc info through the slave manager
 store.slave_manager.message(line, **kwargs)
 else:
 # If py.test is supressing stdout/err, turn that off for a moment
 with diaper:
 store.capturemanager.suspendcapture()

 # terminal reporter knows whether or not to write a newline based on currentfspath
 # so stash it, then use rewrite to blow away the line that printed the current
 # test name, then clear currentfspath so the test name is reprinted with the
 # write_ensure_prefix call. shenanigans!
 cfp = store.terminalreporter.currentfspath
 # carriage return, write spaces for the whole line, carriage return, write the new line
 store.terminalreporter.line('\r' + ' ' * store.terminalreporter._tw.fullwidth + '\r' + line,
 **kwargs)
 store.terminalreporter.currentfspath = fauxfactory.gen_alphanumeric(8)
 store.terminalreporter.write_ensure_prefix(cfp)

 # resume capturing
 with diaper:
 store.capturemanager.resumecapture()

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/video.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for fixtures.video

""" Provides video options

Yaml example:
 .. code-block:: yaml

 logging:
 video:
 enabled: True
 dir: video
 display: ":99"
 quality: 10
"""

import os
import os.path
import pytest
import re

from cfme.utils.conf import env
from cfme.utils.path import log_path
from cfme.utils.video import Recorder

vid_options = env.get('logging', {}).get('video')
recorder = None

[docs]def get_path_and_file_name(node):
 """Extract filename and location from the node.

 Args:
 node: py.test collection node to examine.
 Returns: 2-tuple `(path, filename)`
 """
 vid_name = re.sub(r"[^a-zA-Z0-9_.\-\[\]]", "_", node.name) # Limit only sane characters
 vid_name = re.sub(r"[/]", "_", vid_name) # To be sure this guy doesn't get in
 vid_name = re.sub(r"__+", "_", vid_name) # Squash _'s to limit the length
 return node.parent.name, vid_name

@pytest.mark.hookwrapper
[docs]def pytest_runtest_setup(item):
 global recorder
 if vid_options and vid_options['enabled']:
 vid_log_path = log_path.join(vid_options['dir'])
 vid_dir, vid_name = get_path_and_file_name(item)
 full_vid_path = vid_log_path.join(vid_dir)
 try:
 os.makedirs(full_vid_path.strpath)
 except OSError:
 pass
 vid_name = vid_name + ".ogv"
 recorder = Recorder(full_vid_path.join(vid_name).strpath)
 recorder.start()
 yield

[docs]def stop_recording():
 global recorder
 if recorder is not None:
 try:
 recorder.stop()
 finally:
 recorder = None

@pytest.mark.hookwrapper
[docs]def pytest_runtest_teardown(item, nextitem):
 yield
 stop_recording()

@pytest.mark.hookwrapper
[docs]def pytest_unconfigure(config):
 yield
 stop_recording()

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/parallelizer.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for fixtures.parallelizer

"""Parallel testing, supporting arbitrary collection ordering

The Workflow

- Master py.test process starts up, inspects config to decide how many slave to start, if at all

 - env['parallel_base_urls'] is inspected first
 - py.test config.option.appliances and the related --appliance cmdline flag are used
 if env['parallel_base_urls'] isn't set
 - if neither are set, no parallelization happens

- Slaves are started
- Master runs collection, blocks until slaves report their collections
- Slaves each run collection and submit them to the master, then block inside their runtest loop,
 waiting for tests to run
- Master diffs slave collections against its own; the test ids are verified to match
 across all nodes
- Master enters main runtest loop, uses a generator to build lists of test groups which are then
 sent to slaves, one group at a time
- For each phase of each test, the slave serializes test reports, which are then unserialized on
 the master and handed to the normal pytest reporting hooks, which is able to deal with test
 reports arriving out of order
- Before running the last test in a group, the slave will request more tests from the master

 - If more tests are received, they are run
 - If no tests are received, the slave will shut down after running its final test

- After all slaves are shut down, the master will do its end-of-session reporting as usual, and
 shut down

"""
from itertools import groupby

import difflib
import json
import os
import signal
import subprocess
from collections import defaultdict, deque, namedtuple
from datetime import datetime
from itertools import count

import attr

from threading import Thread
from time import sleep, time

import pytest
import zmq
from _pytest import runner

from fixtures import terminalreporter
from fixtures.parallelizer import remote
from fixtures.pytest_store import store
from cfme.utils import at_exit, conf
from cfme.utils.appliance import IPAppliance, load_appliances_from_config
from cfme.utils.log import create_sublogger
from cfme.utils.path import conf_path

Initialize slaveid to None, indicating this as the master process
slaves will set this to a unique string when they're initialized
conf.runtime['env']['slaveid'] = None

if not conf.runtime['env'].get('ts'):
 ts = str(time())
 conf.runtime['env']['ts'] = ts

[docs]def pytest_addhooks(pluginmanager):
 import hooks
 pluginmanager.add_hookspecs(hooks)

@pytest.mark.trylast
[docs]def pytest_configure(config):
 """Configures the parallel session, then fires pytest_parallel_configured."""
 reporter = terminalreporter.reporter()
 if not config.option.appliances:
 appliances = load_appliances_from_config(conf.env)
 reporter.write_line('Retrieved these appliances from the conf.env', red=True)
 else:
 appliance_config = {
 'appliances': [{'base_url': base_url} for base_url in config.option.appliances]}
 # Grab the possible globals from the conf.env
 for key, value in (
 (key, value)
 for key, value in conf.env.items()
 if key in IPAppliance.CONFIG_MAPPING and key not in IPAppliance.CONFIG_NONGLOBAL):
 appliance_config[key] = value
 appliances = load_appliances_from_config(appliance_config)
 reporter.write_line('Retrieved these appliances from the --appliance parameters', red=True)
 for appliance in appliances:
 reporter.write_line('* {!r}'.format(appliance), cyan=True)
 if len(appliances) > 1:
 session = ParallelSession(config, appliances)
 config.pluginmanager.register(session, "parallel_session")
 store.parallelizer_role = 'master'
 reporter.write_line(
 'As a parallelizer master kicking off parallel session for these {} appliances'.format(
 len(appliances)),
 green=True)
 config.hook.pytest_parallel_configured(parallel_session=session)
 else:
 reporter.write_line('No parallelization required', green=True)
 config.hook.pytest_parallel_configured(parallel_session=None)

[docs]def handle_end_session(signal, frame):
 # when signaled, end the current test session immediately
 if store.parallel_session:
 store.parallel_session.session_finished = True

signal.signal(signal.SIGQUIT, handle_end_session)

@attr.s(hash=False)
[docs]class SlaveDetail(object):

 slaveid_generator = ('slave{:02d}'.format(i) for i in count())

 appliance = attr.ib()
 id = attr.ib(default=attr.Factory(
 lambda: next(SlaveDetail.slaveid_generator)))
 forbid_restart = attr.ib(default=False, init=False)
 tests = attr.ib(default=attr.Factory(set), repr=False)
 process = attr.ib(default=None, repr=False)

 provider_allocation = attr.ib(default=attr.Factory(list), repr=False)

[docs] def start(self):
 if self.forbid_restart:
 return
 devnull = open(os.devnull, 'w')
 # worker output redirected to null; useful info comes via messages and logs
 self.process = subprocess.Popen(
 ['python', remote.__file__, self.id, self.appliance.as_json, conf.runtime['env']['ts']],
 stdout=devnull,
)
 at_exit(self.process.kill)

[docs] def poll(self):
 if self.process is not None:
 return self.process.poll()

[docs]class ParallelSession(object):
 def __init__(self, config, appliances):
 self.config = config
 self.session = None
 self.session_finished = False
 self.countfailures = 0
 self.collection = []
 self.sent_tests = 0
 self.log = create_sublogger('master')
 self.maxfail = config.getvalue("maxfail")
 self._failed_collection_errors = {}
 self.terminal = store.terminalreporter
 self.trdist = None
 self.slaves = {}
 self.test_groups = self._test_item_generator()

 self._pool = []
 from cfme.utils.conf import cfme_data
 self.provs = sorted(set(cfme_data['management_systems'].keys()),
 key=len, reverse=True)
 self.used_prov = set()

 self.failed_slave_test_groups = deque()
 self.slave_spawn_count = 0
 self.appliances = appliances

 # set up the ipc socket

 zmq_endpoint = 'ipc://{}'.format(
 config.cache.makedir('parallelize').join(str(os.getpid())))
 ctx = zmq.Context.instance()
 self.sock = ctx.socket(zmq.ROUTER)
 self.sock.bind(zmq_endpoint)

 # clean out old slave config if it exists
 slave_config = conf_path.join('slave_config.yaml')
 slave_config.check() and slave_config.remove()

 # write out the slave config
 conf.runtime['slave_config'] = {
 'args': self.config.args,
 'options': dict(# copy to avoid aliasing
 self.config.option.__dict__,
 use_sprout=False, # Slaves don't use sprout
),
 'zmq_endpoint': zmq_endpoint,
 }
 if hasattr(self, "slave_appliances_data"):
 conf.runtime['slave_config']["appliance_data"] = self.slave_appliances_data
 conf.save('slave_config')

 for appliance in self.appliances:
 slave_data = SlaveDetail(appliance=appliance)
 self.slaves[slave_data.id] = slave_data

 for slave in sorted(self.slaves):
 self.print_message("using appliance {}".format(self.slaves[slave].appliance.url),
 slave, green=True)

 def _slave_audit(self):
 # XXX: There is currently no mechanism to add or remove slave_urls, short of
 # firing up the debugger and doing it manually. This is making room for
 # planned future abilities to dynamically add and remove slaves via automation

 # check for unexpected slave shutdowns and redistribute tests
 for slave in self.slaves.values():
 returncode = slave.poll()
 if returncode:
 slave.process = None
 if returncode == -9:
 msg = '{} killed due to error, respawning'.format(slave.id)
 else:
 msg = '{} terminated unexpectedly with status {}, respawning'.format(
 slave.id, returncode)
 if slave.tests:
 failed_tests, slave.tests = slave.tests, set()
 num_failed_tests = len(failed_tests)
 self.sent_tests -= num_failed_tests
 msg += ' and redistributing {} tests'.format(num_failed_tests)
 self.failed_slave_test_groups.append(failed_tests)
 self.print_message(msg, purple=True)

 # If a slave was terminated for any reason, kill that slave
 # the terminated flag implies the appliance has died :(
 for slave in list(self.slaves.values()):
 if slave.forbid_restart:
 if slave.process is None:
 self.config.hook.pytest_miq_node_shutdown(
 config=self.config, nodeinfo=slave.appliance.url)
 del self.slaves[slave.id]
 else:
 # no hook call here, a future audit will handle the fallout
 self.print_message(
 "{}'s appliance has died, deactivating slave".format(slave.id))
 self.interrupt(slave)
 else:
 if slave.process is None:
 slave.start()
 self.slave_spawn_count += 1

[docs] def send(self, slave, event_data):
 """Send data to slave.

 ``event_data`` will be serialized as JSON, and so must be JSON serializable

 """
 event_json = json.dumps(event_data)
 self.sock.send_multipart([slave.id, '', event_json])

[docs] def recv(self):
 # poll the zmq socket, populate the recv queue deque with responses

 events = zmq.zmq_poll([(self.sock, zmq.POLLIN)], 50)
 if not events:
 return None, None, None
 slaveid, _, event_json = self.sock.recv_multipart(flags=zmq.NOBLOCK)
 event_data = json.loads(event_json)
 event_name = event_data.pop('_event_name')
 if slaveid not in self.slaves:
 self.log.error("message from terminated worker %s %s %s",
 slaveid, event_name, event_data)
 return None, None, None
 return self.slaves[slaveid], event_data, event_name

[docs] def print_message(self, message, prefix='master', **markup):
 """Print a message from a node to the py.test console

 Args:
 message: The message to print
 **markup: If set, overrides the default markup when printing the message

 """
 # differentiate master and slave messages by default
 prefix = getattr(prefix, 'id', prefix)
 if not markup:
 if prefix == 'master':
 markup = {'blue': True}
 else:
 markup = {'cyan': True}
 stamp = datetime.now().strftime("%Y%m%d %H:%M:%S")
 self.terminal.write_ensure_prefix(
 '({})[{}] '.format(prefix, stamp), message, **markup)

[docs] def ack(self, slave, event_name):
 """Acknowledge a slave's message"""
 self.send(slave, 'ack {}'.format(event_name))

[docs] def monitor_shutdown(self, slave):
 # non-daemon so slaves get every opportunity to shut down cleanly
 shutdown_thread = Thread(target=self._monitor_shutdown_t,
 args=(slave.id, slave.process))
 shutdown_thread.start()

 def _monitor_shutdown_t(self, slaveid, process):
 # a KeyError here means self.slaves got mangled, indicating a problem elsewhere
 if process is None:
 self.log.warning('Slave was missing when trying to monitor shutdown')

 def sleep_and_poll():
 start_time = time()

 # configure the polling logic
 polls = 0
 # how often to poll
 poll_sleep_time = .5
 # how often to report (calculated to be around once a minute based on poll_sleep_time)
 poll_report_modulo = 60 / poll_sleep_time
 # maximum time to wait
 poll_num_sec = 300

 while (time() - start_time) < poll_num_sec:
 polls += 1
 yield
 if polls % poll_report_modulo == 0:
 remaining_time = int(poll_num_sec - (time() - start_time))
 self.print_message(
 '{} still shutting down, '
 'will continue polling for {} seconds '
 .format(slaveid, remaining_time), blue=True)
 sleep(poll_sleep_time)

 # start the poll
 for poll in sleep_and_poll():
 ec = process.poll()
 if ec is None:
 continue
 else:
 if ec == 0:
 self.print_message('{} exited'.format(slaveid), green=True)
 else:
 self.print_message('{} died'.format(slaveid), red=True)
 break
 else:
 self.print_message('{} failed to shut down gracefully; killed'.format(slaveid),
 red=True)
 process.kill()

[docs] def interrupt(self, slave, **kwargs):
 """Nicely ask a slave to terminate"""
 slave.forbid_restart = True
 if slave.poll() is None:
 slave.process.send_signal(subprocess.signal.SIGINT)
 self.monitor_shutdown(slave, **kwargs)

[docs] def kill(self, slave, **kwargs):
 """Rudely kill a slave"""
 slave.forbid_restart = True
 if slave.poll() is None:
 slave.process.kill()
 self.monitor_shutdown(slave, **kwargs)

[docs] def send_tests(self, slave):
 """Send a slave a group of tests"""
 try:
 tests = list(self.failed_slave_test_groups.popleft())
 except IndexError:
 tests = self.get(slave)
 self.send(slave, tests)
 slave.tests.update(tests)
 collect_len = len(self.collection)
 tests_len = len(tests)
 self.sent_tests += tests_len
 if tests:
 self.print_message('sent {} tests to {} ({}/{}, {:.1f}%)'.format(
 tests_len, slave.id, self.sent_tests, collect_len,
 self.sent_tests * 100. / collect_len
))
 return tests

[docs] def pytest_sessionstart(self, session):
 """pytest sessionstart hook

 - sets up distributed terminal reporter
 - sets up zmp ipc socket for the slaves to use
 - writes pytest options and args to slave_config.yaml
 - starts the slaves
 - register atexit kill hooks to destroy slaves at the end if things go terribly wrong

 """
 # If reporter() gave us a fake terminal reporter in __init__, the real
 # terminal reporter is registered by now
 self.terminal = store.terminalreporter
 self.trdist = TerminalDistReporter(self.config, self.terminal)
 self.config.pluginmanager.register(self.trdist, "terminaldistreporter")
 self.session = session

[docs] def pytest_runtestloop(self):
 """pytest runtest loop

 - Disable the master terminal reporter hooks, so we can add our own handlers
 that include the slaveid in the output
 - Send tests to slaves when they ask
 - Log the starting of tests and test results, including slave id
 - Handle clean slave shutdown when they finish their runtest loops
 - Restore the master terminal reporter after testing so we get the final report

 """
 # Build master collection for slave diffing and distribution
 self.collection = [item.nodeid for item in self.session.items]

 # Fire up the workers after master collection is complete
 # master and the first slave share an appliance, this is a workaround to prevent a slave
 # from altering an appliance while master collection is still taking place
 for slave in self.slaves.values():
 slave.start()

 try:
 self.print_message("Waiting for {} slave collections".format(len(self.slaves)),
 red=True)

 # Turn off the terminal reporter to suppress the builtin logstart printing
 terminalreporter.disable()

 while True:
 # spawn/kill/replace slaves if needed
 self._slave_audit()

 if not self.slaves:
 # All slaves are killed or errored, we're done with tests
 self.print_message('all slaves have exited', yellow=True)
 self.session_finished = True

 if self.session_finished:
 break

 slave, event_data, event_name = self.recv()
 if event_name == 'message':
 message = event_data.pop('message')
 markup = event_data.pop('markup')
 # messages are special, handle them immediately
 self.print_message(message, slave, **markup)
 self.ack(slave, event_name)
 elif event_name == 'collectionfinish':
 slave_collection = event_data['node_ids']
 # compare slave collection to the master, all test ids must be the same
 self.log.debug('diffing {} collection'.format(slave.id))
 diff_err = report_collection_diff(
 slave.id, self.collection, slave_collection)
 if diff_err:
 self.print_message(
 'collection differs, respawning', slave.id,
 purple=True)
 self.print_message(diff_err, purple=True)
 self.log.error('{}'.format(diff_err))
 self.kill(slave)
 slave.start()
 else:
 self.ack(slave, event_name)
 elif event_name == 'need_tests':
 self.send_tests(slave)
 self.log.info('starting master test distribution')
 elif event_name == 'runtest_logstart':
 self.ack(slave, event_name)
 self.trdist.runtest_logstart(
 slave.id,
 event_data['nodeid'],
 event_data['location'])
 elif event_name == 'runtest_logreport':
 self.ack(slave, event_name)
 report = unserialize_report(event_data['report'])
 if report.when in ('call', 'teardown'):
 slave.tests.discard(report.nodeid)
 self.trdist.runtest_logreport(slave.id, report)
 elif event_name == 'internalerror':
 self.ack(slave, event_name)
 self.print_message(event_data['message'], slave, purple=True)
 self.kill(slave)
 elif event_name == 'shutdown':
 self.config.hook.pytest_miq_node_shutdown(
 config=self.config, nodeinfo=slave.appliance.url)
 self.ack(slave, event_name)
 del self.slaves[slave.id]
 self.monitor_shutdown(slave)

 # total slave spawn count * 3, to allow for each slave's initial spawn
 # and then each slave (on average) can fail two times
 if self.slave_spawn_count >= len(self.appliances) * 3:
 self.print_message(
 'too many slave respawns, exiting',
 red=True, bold=True)
 raise KeyboardInterrupt('Interrupted due to slave failures')
 except Exception as ex:
 self.log.error('Exception in runtest loop:')
 self.log.exception(ex)
 self.print_message(str(ex))
 raise
 finally:
 terminalreporter.enable()

 # Suppress other runtestloop calls
 return True

 def _test_item_generator(self):
 for tests in self._modscope_item_generator():
 yield tests

 def _modscope_item_generator(self):
 # breaks out tests by module, can work just about any way we want
 # as long as it yields lists of tests id from the master collection
 sent_tests = 0
 collection_len = len(self.collection)

 def get_fspart(nodeid):
 return nodeid.split('::')[0]

 for fspath, gen_moditems in groupby(self.collection, key=get_fspart):
 for tests in self._modscope_id_splitter(gen_moditems):
 sent_tests += len(tests)
 self.log.info('{} tests remaining to send'.format(
 collection_len - sent_tests))
 yield list(tests)

 def _modscope_id_splitter(self, module_items):
 # given a list of item ids from one test module, break up tests into groups with the same id
 parametrized_ids = defaultdict(list)
 for item in module_items:
 if '[' in item:
 # split on the leftmost bracket, then strip everything after the rightmight bracket
 # so 'test_module.py::test_name[parametrized_id]' becomes 'parametrized_id'
 parametrized_id = item.split('[')[1].rstrip(']')
 else:
 # splits failed, item has no parametrized id
 parametrized_id = 'no params'
 parametrized_ids[parametrized_id].append(item)

 for id, tests in parametrized_ids.items():
 if tests:
 self.log.info('sent tests with param {} {!r}'.format(id, tests))
 yield tests

[docs] def get(self, slave):

 def provs_of_tests(test_group):
 found = set()
 for test in test_group:
 found.update(pv for pv in self.provs
 if '[' in test and pv in test)
 return sorted(found)

 if not self._pool:
 for test_group in self.test_groups:
 self._pool.append(test_group)
 self.used_prov.update(provs_of_tests(test_group))
 if self.used_prov:
 self.ratio = float(len(self.slaves)) / len(self.used_prov)
 else:
 self.ratio = 0.0
 if not self._pool:
 return []
 appliance_num_limit = 1
 for idx, test_group in enumerate(self._pool):
 provs = provs_of_tests(test_group)
 if provs:
 prov = provs[0]
 if prov in slave.provider_allocation:
 # provider is already with the slave, so just return the tests
 self._pool.remove(test_group)
 return test_group
 else:
 if len(slave.provider_allocation) >= appliance_num_limit:
 continue
 else:
 # Adding provider to slave since there are not too many
 slave.provider_allocation.append(prov)
 self._pool.remove(test_group)
 return test_group
 else:
 # No providers - ie, not a provider parametrized test
 # or no params, so not parametrized at all
 self._pool.remove(test_group)
 return test_group

 # Here means no tests were able to be sent
 for test_group in self._pool:

 provs = provs_of_tests(test_group)
 if provs:
 prov = provs[0]
 # Already too many slaves with provider
 app = slave.appliance
 self.print_message(
 'cleansing appliance', slave, purple=True)
 try:
 app.delete_all_providers()
 except Exception as e:
 self.print_message(
 'cloud not cleanse', slave, red=True)
 self.print_message('error:', e, red=True)
 slave.provider_allocation = [prov]
 self._pool.remove(test_group)
 return test_group
 assert not self._pool, self._pool
 return []

[docs]def report_collection_diff(slaveid, from_collection, to_collection):
 """Report differences, if any exist, between master and a slave collection

 Raises RuntimeError if collections differ

 Note:

 This function will sort functions before comparing them.

 """
 from_collection, to_collection = sorted(from_collection), sorted(to_collection)
 if from_collection == to_collection:
 # Well, that was easy.
 return

 # diff the two, so we get some idea of what's wrong
 diff = difflib.unified_diff(
 from_collection,
 to_collection,
 fromfile='master',
 tofile=slaveid,
)

 # diff is a line generator, stringify it
 diff = '\n'.join([line.rstrip() for line in diff])
 return '{slaveid} diff:\n{diff}\n'.format(slaveid=slaveid, diff=diff)

[docs]class TerminalDistReporter(object):
 """Terminal Reporter for Distributed Testing

 trdist reporter exists to make sure we get good distributed logging during the runtest loop,
 which means the normal terminal reporter should be disabled during the loop

 This class is where we make sure the terminal reporter is made aware of whatever state it
 needs to report properly once we turn it back on after the runtest loop

 It has special versions of pytest reporting hooks that, where possible, try to include a
 slave ID. These hooks are called in :py:class:`ParallelSession`'s runtestloop hook.

 """
 def __init__(self, config, terminal):
 self.config = config
 self.tr = terminal
 self.outcomes = {}

[docs] def runtest_logstart(self, slaveid, nodeid, location):
 test = self.tr._locationline(nodeid, *location)
 prefix = '({}) {}'.format(slaveid, test)
 self.tr.write_ensure_prefix(prefix, 'running', blue=True)
 self.config.hook.pytest_runtest_logstart(nodeid=nodeid, location=location)

[docs] def runtest_logreport(self, slaveid, report):
 # Run all the normal logreport hooks
 self.config.hook.pytest_runtest_logreport(report=report)

 # Now do what the terminal reporter would normally do, but include parallelizer info
 outcome, letter, word = self.config.hook.pytest_report_teststatus(report=report)
 # Stash stats on the terminal reporter so it reports properly
 # after it's reenabled at the end of runtestloop
 self.tr.stats.setdefault(outcome, []).append(report)
 test = self.tr._locationline(report.nodeid, *report.location)

 prefix = '({}) {}'.format(slaveid, test)
 try:
 # for some reason, pytest_report_teststatus returns a word, markup tuple
 # when the word would be 'XPASS', so unpack it here if that's the case
 word, markup = word
 except (TypeError, ValueError):
 # word wasn't iterable or didn't have enough values, use it as-is
 pass

 if word in ('PASSED', 'xfail'):
 markup = {'green': True}
 elif word in ('ERROR', 'FAILED', 'XPASS'):
 markup = {'red': True}
 elif word:
 markup = {'yellow': True}

 # For every stage where we can report the outcome, stash it in the outcomes dict
 if word:
 self.outcomes[test] = Outcome(word, markup)

 # Then, when we get to the teardown report, print the last outcome
 # This prevents reportings a test as 'PASSED' if its teardown phase fails, for example
 if report.when == 'teardown':
 word, markup = self.outcomes.pop(test)
 self.tr.write_ensure_prefix(prefix, word, **markup)

Outcome = namedtuple('Outcome', ['word', 'markup'])

[docs]def unserialize_report(reportdict):
 """
 Generate a :py:class:`TestReport <pytest:_pytest.runner.TestReport>` from a serialized report
 """
 return runner.TestReport(**reportdict)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/appliance.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for fixtures.appliance

""" This module contains fixtures to use when you need a temporary appliance for testing.

In cases where you cannot run a certain test againts the primary appliance because of the test's
destructive potential (which could render all subsequent testing useless), you want to use
a temporary appliance parallel to the primary one.

For tests where all you need is a single preconfigured appliance to run a database restore on for
example, you will want to use the :py:func:`temp_appliance_preconfig` fixture.

For tests that require multiple unconfigured appliances (e.g. replication testing), there is
:py:func:`temp_appliances_unconfig`.
"""
from contextlib import contextmanager

import pytest

from cfme.utils.version import get_stream
from cfme.test_framework.sprout.client import SproutClient

@contextmanager
[docs]def temp_appliances(count=1, preconfigured=True, lease_time=180, stream=None):
 """ Provisions one or more appliances for testing

 Args:
 count: Number of appliances
 preconfigured: True if the appliance should be already configured, False otherwise
 lease_time: Lease time in minutes (3 hours by default)
 """
 apps = []
 request_id = None
 try:
 sprout_client = SproutClient.from_config()
 apps, request_id = sprout_client.provision_appliances(
 count=count, lease_time=lease_time, preconfigured=preconfigured)
 yield apps
 finally:
 for app in apps:
 app.ssh_client.close()
 if request_id:
 sprout_client.destroy_pool(request_id)

Single appliance, configured
@pytest.yield_fixture(scope="module")
[docs]def temp_appliance_preconfig(temp_appliance_preconfig_modscope):
 yield temp_appliance_preconfig_modscope

@pytest.yield_fixture(scope="module")
[docs]def temp_appliance_preconfig_modscope():
 with temp_appliances(preconfigured=True) as appliances:
 yield appliances[0]

@pytest.yield_fixture(scope="class")
[docs]def temp_appliance_preconfig_clsscope():
 with temp_appliances(preconfigured=True) as appliances:
 yield appliances[0]

@pytest.yield_fixture(scope="function")
[docs]def temp_appliance_preconfig_funcscope():
 with temp_appliances(preconfigured=True) as appliances:
 yield appliances[0]

@pytest.yield_fixture(scope="function")
[docs]def temp_appliance_preconfig_funcscope_upgrade(appliance):
 stream = (int(''.join([i for i in get_stream(appliance.version)
 if i.isdigit()])) - 1)
 with temp_appliances(preconfigured=True, stream=stream) as appliances:
 yield appliances[0]

Single appliance, unconfigured
@pytest.yield_fixture(scope="module")
[docs]def temp_appliance_unconfig(temp_appliance_unconfig_modscope):
 yield temp_appliance_unconfig_modscope

@pytest.yield_fixture(scope="module")
[docs]def temp_appliance_unconfig_modscope():
 with temp_appliances(preconfigured=False) as appliances:
 yield appliances[0]

@pytest.yield_fixture(scope="class")
[docs]def temp_appliance_unconfig_clsscope():
 with temp_appliances(preconfigured=False) as appliances:
 yield appliances[0]

@pytest.yield_fixture(scope="function")
[docs]def temp_appliance_unconfig_funcscope():
 with temp_appliances(preconfigured=False) as appliances:
 yield appliances[0]

Pair of appliances, unconfigured
@pytest.yield_fixture(scope="module")
[docs]def temp_appliances_unconfig(temp_appliances_unconfig_modscope):
 yield temp_appliances_unconfig_modscope

@pytest.yield_fixture(scope="module")
[docs]def temp_appliances_unconfig_modscope():
 with temp_appliances(count=2, preconfigured=False) as appliances:
 yield appliances

@pytest.yield_fixture(scope="class")
[docs]def temp_appliances_unconfig_clsscope():
 with temp_appliances(count=2, preconfigured=False) as appliances:
 yield appliances

@pytest.yield_fixture(scope="function")
[docs]def temp_appliances_unconfig_funcscope():
 with temp_appliances(count=2, preconfigured=False) as appliances:
 yield appliances

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/disable_forgery_protection.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for fixtures.disable_forgery_protection

from cfme.utils.log import logger
import pytest
from cfme.utils.ssh import SSHClient
import time

@pytest.yield_fixture(scope='session')
[docs]def disable_forgery_protection():
 starttime = time.time()
 ssh_client = SSHClient()
 logger.info('Turning off "allow_forgery_protection"')

 ssh_client.run_command(
 "sed -i \'s/allow_forgery_protection = true/allow_forgery_protection = false/\' "
 "/var/www/miq/vmdb/config/environments/production.rb")
 ssh_client.run_command("service evmserverd restart")

 ssh_client.close()
 timediff = time.time() - starttime
 logger.info('Turned off "allow_forgery_protection" in: {}'.format(timediff))

 yield

 starttime = time.time()
 ssh_client = SSHClient()
 logger.info('Turning on "allow_forgery_protection"')

 ssh_client.run_command(
 "sed -i \'s/allow_forgery_protection = false/allow_forgery_protection = true/\' "
 "/var/www/miq/vmdb/config/environments/production.rb")
 ssh_client.run_command("service evmserverd restart")

 ssh_client.close()
 timediff = time.time() - starttime
 logger.info('Turned on "allow_forgery_protection" in: {}'.format(timediff))

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/appliance_update.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for fixtures.appliance_update

-*- coding: utf-8 -*-
"""This module allows you to update an appliance with latest RHEL.

It has two uses:
1) If only ``--update-appliance`` is specified, it will use the YAML url.
2) If you also specify one or more ``--update-url``, it will use them instead.
"""
import pytest

[docs]def pytest_addoption(parser):
 group = parser.getgroup('cfme')
 group.addoption(
 '--update-appliance',
 dest='update_appliance', action='store_true', default=False,
 help="Enable updating an appliance before the first test is run.")
 group.addoption(
 '--update-url',
 dest='update_urls', action='append', default=[],
 help="URLs to update with. If none are passed, yaml key is used.")

[docs]def pytest_sessionstart(session):
 if pytest.store.parallelizer_role == 'master':
 return
 if not session.config.getoption("update_appliance"):
 return
 pytest.store.write_line("Initiating appliance update ...")
 urls = session.config.getoption("update_urls")
 pytest.store.current_appliance.update_rhel(*urls, reboot=True)
 pytest.store.write_line("Appliance update finished, waiting for UI ...")
 pytest.store.current_appliance.wait_for_web_ui()
 pytest.store.write_line("Appliance update finished ...")

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/version_file.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for fixtures.version_file

import pytest

from cfme.utils.path import log_path

[docs]def pytest_sessionstart():
 if pytest.store.parallelizer_role != 'slave':
 with log_path.join('appliance_version').open('w') as appliance_version:
 appliance_version.write(pytest.store.current_appliance.version.vstring)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/terminalreporter.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for fixtures.terminalreporter

FlexibleTerminalReporter is imported for backward compatibility;
it should be imported from pytest_store
from fixtures.pytest_store import store
from cfme.utils import diaper
from cfme.utils.log import logger

[docs]def reporter(config=None):
 """Return a py.test terminal reporter that will write to the console no matter what

 Only useful when trying to write to the console before or during a
 :py:func:`pytest_configure <pytest:_pytest.hookspec.pytest_configure>` hook.

 """
 # config arg is accepted, but no longer needed thanks to pytest_store, so it is ignored
 return store.terminalreporter

[docs]def disable():
 # Cloud be a FlexibleTerminalReporter, which is a subclass of TerminalReporter,
 # so match the type directly
 with diaper:
 store.pluginmanager.unregister(store.terminalreporter)
 logger.debug('terminalreporter disabled')

[docs]def enable():
 with diaper:
 store.pluginmanager.register(store.terminalreporter, 'terminalreporter')
 logger.debug('terminalreporter enabled')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/cfme_data.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for fixtures.cfme_data

import pytest

from cfme.utils import conf

@pytest.fixture(scope="session")
[docs]def cfme_data(request):
 return conf.cfme_data

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/merkyl.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for fixtures.merkyl

import pytest

from fixtures.artifactor_plugin import fire_art_test_hook

from cfme.utils.appliance import get_or_create_current_appliance

[docs]class MerkylInspector(object):
 def __init__(self, request):
 """ A simple adapter to aid in Merkyl Log Inspection during a test.

 This class is really only useful during a test and is designed to abstract
 away accessing the request object. The hooks which are fired can be done
 so during the test without this class/fixture, this is merely a convenience
 and does nothing special.
 """
 self.node = request.node
 self.ip = get_or_create_current_appliance().address

[docs] def get_log(self, log_name):
 """ A simple getter for log files.

 Returns the cached content of a particular log

 Args:
 log_name: Full path to the log file wishing to be received.
 """
 res = fire_art_test_hook(
 self.node, 'get_log_merkyl', ip=self.ip,
 filename=log_name, grab_result=True)
 return res['merkyl_content']

[docs] def add_log(self, log_name):
 """ Adds a log file to the merkyl process.

 This function adds a log file path to the merkyl process on the
 appliance. This is relevant only for the duration of the test. At
 the end of the test, the file is removed from the merkyl tracker.

 Note that this is a blocking call, ie, we ensure that the file
 is being logged by merkyl, before we continue. This is important
 and prevents the file_add operation being queued and processes
 which generate log information activating before the log is being
 monitored. This is achieved using the grab_result switch, but
 in fact, nothing will be received.

 It is worth noting that the file path must be "discoverable" by merkyl.
 This may mean editing the allowed_files prior to deploying merkyl.

 Args:
 log_name: Full path to the log file wishing to be monitored.

 """
 fire_art_test_hook(
 self.node, 'add_log_merkyl', ip=self.ip,
 filename=log_name, grab_result=True)

[docs] def search_log(self, needle, log_name):
 """ A simple search, test if needle is in cached log_contents.

 Does a simple search of needle in contents. Note that this does not
 trawl the previous contents of the file, but only looks at the log
 information which has been gathered since merkyl was tracking the file.
 """
 contents = self.get_log(log_name)
 if needle in contents:
 return True
 else:
 return False

@pytest.fixture(scope='function')
[docs]def merkyl_inspector(request):
 """ Provides a MerkylInspector instance.

 This fixture is used to gain access to a relevant MerkylInspector instance.

 Example usage is below:

 .. code-block:: python

 def test_test(merkyl_inspector):
 merkyl_inspector.add_log('/path/to/log/file')
 # Do something
 if merkyl_inspector.search_log('needle', '/path/to/log/file'):
 print(merkyl_inspector.get_log('/path/to/log/file'))
 """
 return MerkylInspector(request)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/rbac.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for fixtures.rbac

"""RBAC Role based parametrization and checking

The purpose of this fixture is to allow tests to be run within the context of multiple different
users, without the hastle or modifying the test. To this end, the RBAC module and fixture do not
require any modifications to the test body.

The RBAC fixture starts by receiving a list of roles and associated errors from the test metadata.
This data is in YAML format and an example can be seen below.

.. code-block:: yaml

 Metadata:
 test_flag: provision
 suite: infra_provisioning
 rbac:
 roles:
 default:
 evmgroup-super_administrator:
 evmgroup-administrator:
 evmgroup-operator: NoSuchElementException
 evmgroup-auditor: NoSuchElementException

Let's assume also we have a test that looks like the following::

 def test_rbac(rbac_role):
 if rbac_role != 'evmgroup-superadministrator' or rbac_role != 'evmgroup-operator':
 1 / 0

This metadata defines the roles to be tested, and associates with them the exceptions that are
expected for that particular test, or blank if no Exception is expected. In this way we can have
5 states of test result.

 * **Test Passed** - This was expected - We do nothing to this and exit early. In the example above
 evmgroup-super_administrator fulfills this, as it expects no Exception.
 * **Test Failed** - This was expected - We consume the Exception and change the result of the test
 to be a pass. In the example, this is fulfilled by evmgroup-auditor as it was expected to fail
 with the ZeroDivisionError.
 * **Test Failed** - This was unexpected - We consume the Exception and raise another informing that
 the test should have passed. In the example above, evmgroup-administrator satisfies this
 condition as it didn't expect a failure, but got one.
 * **Test Failed** - This was expected, but the wrong Exception appeared - We consume the Exception
 throw another stating that the Exception wasn't of the expected type. In the example above, the
 default user satifies this as it receives the ZeroDivisionError, but expects MonkeyError.
 * **Test Passed** - This was unexpected - We have Exception to consume, but we raise an Exception
 of our own as the test should have failed. In the example above, evmgroup-operator satisfies
 this as it should have received the ZeroDivisionError, but actually passes with no error.

When a test is configured to run against the RBAC suite, it will first parametrize the test with
the associated roles from the metadata. The test will then be wrapped and before it begins
we login as the *new* user. This process is also two fold. The ``pytest_store`` holds the current
user, and logging in is performed with whatever this user value is set to. So we first replace this
value with our new user. This ensures that if the browser fails during a navigation, we get
the opportunity to log in again with the *right* user. Once the user is set, we attempt to login.

When the test finishes, we set the user back to ``default`` before moving on to handling the outcome
of the test with the wrapped hook handler. This ensures that the next test will have the correct
user at login, even if the test fails horribly, and even if the inspection of the outcome should
fail.

To configure a test to use RBAC is simple. We simply need to add ``rbac_role`` to the list of
fixtures and the addition and the ldap configuration fixture also. Below is a complete
example of adding RBAC to a test.

.. code-block:: python

 import pytest

 def test_rbac(rbac_role):
 \"\"\" Tests provisioning from a template

 Metadata:
 rbac:
 roles:
 default:
 evmgroup-super_administrator:
 evmgroup-administrator:
 evmgroup-operator: NoSuchElementException
 evmgroup-auditor: NoSuchElementException
 \"\"\"
 if rbac_role != 'evmgroup-superadministrator' or rbac_role != 'evmgroup-operator':
 1 / 0

Exception matching is done with a simple string startswith match.

Currently there is no provision for skipping a role for a certain test, though this is easy to
implement. There is also no provision, for tests that have multiple parameters, to change the
expectation of the test, with relation to a parameter. For example, if there was a parameter
called *rhos* and one called *ec2* we could not change the expected exception to be different
depending on if the test was run against *rhos* or *ec2*.

"""
from cfme.utils.log import logger
from cfme.configure.access_control import User
from fixtures.pytest_store import store
from fixtures.artifactor_plugin import fire_art_test_hook
from cfme.fixtures.pytest_selenium import take_screenshot
import pytest
import traceback
from cfme.utils.appliance import current_appliance
from cfme.utils.browser import browser, ensure_browser_open
from cfme.utils import conf, testgen

enable_rbac = False

[docs]def save_traceback_file(node, contents):
 """A convenience function for artifactor file sending

 This function simply takes the nodes id and the contents of the file and processes
 them and sends them to artifactor

 Args:
 node: A pytest node
 contents: The contents of the traceback file
 """
 fire_art_test_hook(
 node, 'filedump',
 description="RBAC Traceback",
 contents=contents, file_type="rbac", group_id="RBAC", slaveid=store.slaveid)

[docs]def save_screenshot(node, ss, sse):
 if ss:
 fire_art_test_hook(
 node, 'filedump',
 description="RBAC Screenshot", file_type="rbac_screenshot", mode="wb",
 contents_base64=True, contents=ss, display_glyph="camera", group_id="RBAC",
 slaveid=store.slaveid)
 if sse:
 fire_art_test_hook(
 node, 'filedump',
 description="RBAC Screenshot error", file_type="rbac_screenshot_error", mode="w",
 contents_base64=False, contents=sse, display_type="danger", group_id="RBAC",
 slaveid=store.slaveid)

[docs]def really_logout():
 """A convenience function logging out

 This function simply ensures that we are logged out and that a new browser is loaded
 ready for use.
 """
 try:
 current_appliance.server.logout()
 except AttributeError:
 try:
 browser().quit()
 except AttributeError:
 ensure_browser_open()

@pytest.mark.hookwrapper
[docs]def pytest_pyfunc_call(pyfuncitem):
 """Inspects and consumes certain exceptions

 The guts of this function are explained above in the module documentation.

 Args:
 pyfuncitem: A pytest test item.
 """
 # do whatever you want before the next hook executes
 if not enable_rbac:
 yield
 return

 # Login as the "new" user to run the test under
 if 'rbac_role' in pyfuncitem.fixturenames:
 user = pyfuncitem._request.getfuncargvalue('rbac_role')
 really_logout()
 logger.info("setting user to {}".format(user))
 user_obj = User(username=conf.credentials[user]['username'],
 password=conf.credentials[user]['password'])

 # Actually perform the test. outcome is set to be a result object from the test
 with user_obj:
 outcome = yield

 screenshot, screenshot_error = take_screenshot()

 # Handle the Exception
 logger.error(pyfuncitem.location[0])
 loc = "{}/{}".format(pyfuncitem.location[0], pyfuncitem.location[2])
 # loc = loc[:min([loc.rfind('['), len(loc)])]
 logger.error(loc)
 # errors = [v for k, v in tests.iteritems() if loc.startswith(k)]
 errors = pyfuncitem.function.meta.kwargs['from_docs']['rbac']['roles']
 if errors:
 # errors = errors[0]
 user = pyfuncitem.funcargs['rbac_role']
 if errors[user]:
 if not outcome.excinfo:
 logger.error("RBAC: Test should fail!")
 raise Exception("RBAC: You should fail!")
 else:
 if outcome.excinfo[1].__repr__().startswith(errors[user]):
 logger.info("RBAC: Test failed as expected")
 outcome.force_result(True)
 else:
 contents = "".join(traceback.format_list(
 traceback.extract_tb(outcome.excinfo[2])))
 save_traceback_file(pyfuncitem, contents)
 save_screenshot(pyfuncitem, screenshot, screenshot_error)
 logger.error("RBAC: You blithering idiot, "
 "you failed with the wrong exception")
 raise Exception("RBAC: You should fail with {}!".format(errors[user]))
 else:
 if not outcome.excinfo:
 logger.info("RBAC: Test passed as expected")
 else:
 logger.error("RBAC: Test should have passed!")
 contents = "".join(traceback.format_list(
 traceback.extract_tb(outcome.excinfo[2])))
 save_traceback_file(pyfuncitem, contents)
 save_screenshot(pyfuncitem, screenshot, screenshot_error)
 raise Exception("RBAC: Test should have passed!")

@pytest.mark.hookwrapper
[docs]def pytest_generate_tests(metafunc):
 yield
 if 'rbac_role' in metafunc.fixturenames:
 if enable_rbac:
 try:
 meta_data = metafunc.function.meta
 roles = meta_data.kwargs['from_docs']['rbac']['roles'].keys()
 except:
 raise Exception("Test {} should have metadata describing RBAC roles")

 else:
 roles = ['default']
 testgen.parametrize(metafunc, 'rbac_role', roles)

[docs]def pytest_addoption(parser):
 # Create the cfme option group for use in other plugins
 parser.getgroup('cfme')
 parser.addoption("--rbac", action="store_true", default=False,
 help="enable rbac testing")

[docs]def pytest_configure(config):
 """ Filters the list of providers as part of pytest configuration. """
 global enable_rbac

 if config.getoption('rbac'):
 enable_rbac = True

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/version_info.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for fixtures.version_info

from cfme.utils.log import logger
import os
import time
from cfme.utils.path import results_path
from cfme.utils.ssh import SSHClient
from cfme.utils.smem_memory_monitor import test_ts
import glob
import pytest

[docs]def find_nth_pos(string, substring, n):
 """helper-method used in getting version info"""
 start = string.find(substring)
 while start >= 0 and n > 1:
 start = string.find(substring, start + 1)
 n -= 1
 return start

[docs]def get_system_versions(ssh_client):
 """get version information for the system"""
 starttime = time.time()
 system_dict = {}

 kernel_name = str((ssh_client.run_command('uname -s')[1]))[:-1]
 kernel_release = str((ssh_client.run_command('uname -r')[1]))[:-1]
 kernel_version = str((ssh_client.run_command('uname -v')[1]))[:-1]
 operating_system = str((ssh_client.run_command('cat /etc/system-release')[1]))[:-1]

 system_dict['kernel_name'] = kernel_name
 system_dict['kernel_release'] = kernel_release
 system_dict['kernel_version'] = kernel_version
 system_dict['operating_system'] = operating_system

 timediff = time.time() - starttime
 logger.info('Got version info in: {}'.format(timediff))
 return system_dict

[docs]def get_process_versions(ssh_client):
 """get version information for processes"""
 starttime = time.time()
 process_dict = {}

 ruby = str(ssh_client.run_command('ruby -v')[1])
 rubyv = ruby[ruby.find(' ') + 1:find_nth_pos(ruby, ".", 2) + 2]
 rails = str(ssh_client.run_command('rails -v')[1])
 railsv = rails[rails.find(' ') + 1:find_nth_pos(rails, ".", 2) + 2]
 postgres = str(ssh_client.run_command('postgres --version')[1])
 postgresv = postgres[postgres.find('.') - 1:-1]
 httpd = str(ssh_client.run_command('httpd -v')[1])
 httpdv = httpd[httpd.find('/') + 1: httpd.find(' ', httpd.find('/'))]

 process_dict['ruby'] = rubyv
 process_dict['rails'] = railsv
 process_dict['postgres'] = postgresv
 process_dict['httpd'] = httpdv

 timediff = time.time() - starttime
 logger.info('Got process version info in: {}'.format(timediff))
 return process_dict

[docs]def get_gem_versions(ssh_client):
 """get version information for gems"""
 starttime = time.time()
 gem_dict = {}
 gem_list = str(ssh_client.run_command('gem query --local')[1]).split('\n')

 for gem in gem_list:
 if gem == '':
 continue
 last_close = gem.rfind(')')
 last_open = gem.rfind('(')
 ver = gem[last_open + 1: last_close]
 name = gem[:last_open - 1]
 gem_dict[name] = ver

 timediff = time.time() - starttime
 logger.info('Got version info in: {}'.format(timediff))
 return gem_dict

[docs]def get_rpm_versions(ssh_client):
 """get version information for rpms"""
 starttime = time.time()

 rpm_list = str(ssh_client.run_command(
 "rpm -qa --queryformat='%{N}, %{V}-%{R}\n' | sort")[1]).split('\n') # noqa

 timediff = time.time() - starttime
 logger.info('Got version info in: {}'.format(timediff))
 return rpm_list

[docs]def generate_system_file(ssh_client, directory):
 starttime = time.time()
 system_info = get_system_versions(ssh_client)

 file_name = str(os.path.join(directory, 'system.csv'))
 with open(file_name, 'w') as csv_file:
 for key in sorted(system_info.keys(), key=lambda s: s.lower()):
 csv_file.write('{}, {} \n'.format(key, system_info[key]))

 timediff = time.time() - starttime
 logger.info('Generated system file in: {}'.format(timediff))

[docs]def generate_processes_file(ssh_client, directory):
 starttime = time.time()
 process_info = get_process_versions(ssh_client)

 file_name = str(os.path.join(directory, 'processes.csv'))
 with open(file_name, 'w') as csv_file:
 for key in sorted(process_info.keys(), key=lambda s: s.lower()):
 csv_file.write('{}, {} \n'.format(key, process_info[key]))

 timediff = time.time() - starttime
 logger.info('Generated processes file in: {}'.format(timediff))

[docs]def generate_gems_file(ssh_client, directory):
 starttime = time.time()
 gem_info = get_gem_versions(ssh_client)

 file_name = str(os.path.join(directory, 'gems.csv'))
 with open(file_name, 'w') as csv_file:
 for key in sorted(gem_info.keys(), key=lambda s: s.lower()):
 csv_file.write('{}, {} \n'.format(key, gem_info[key]))

 timediff = time.time() - starttime
 logger.info('Generated gems file in: {}'.format(timediff))

[docs]def generate_rpms_file(ssh_client, directory):
 starttime = time.time()
 rpm_info = get_rpm_versions(ssh_client)

 file_name = str(os.path.join(directory, 'rpms.csv'))
 with open(file_name, 'w') as csv_file:
 for key in rpm_info:
 csv_file.write('{}\n'.format(key))

 timediff = time.time() - starttime
 logger.info('Generated rpms file in: {}'.format(timediff))

@pytest.yield_fixture(scope='session')
[docs]def generate_version_files():
 yield
 starttime = time.time()
 ssh_client = SSHClient()
 relative_path = os.path.relpath(str(results_path), str(os.getcwd()))
 relative_string = relative_path + '/{}*'.format(test_ts)
 directory_list = glob.glob(relative_string)

 for directory in directory_list:
 module_path = os.path.join(directory, 'version_info')
 if os.path.exists(str(module_path)):
 return
 else:
 os.mkdir(str(module_path))
 generate_system_file(ssh_client, module_path)
 generate_processes_file(ssh_client, module_path)
 generate_gems_file(ssh_client, module_path)
 generate_rpms_file(ssh_client, module_path)

 timediff = time.time() - starttime
 logger.info('Generated all version files in {}'.format(timediff))
 ssh_client.close()

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/screenshots.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for fixtures.screenshots

-*- coding: utf-8 -*-
"""Taking screenshots inside tests!

If you want to take a screenshot inside your test, just do it like this:

.. code-block:: python

 def test_my_test(take_screenshot):
 # do something
 take_screenshot("Particular name for the screenshot")
 # do something else

"""
import fauxfactory
import pytest
from fixtures.pytest_store import store
from fixtures.artifactor_plugin import fire_art_test_hook
from cfme.utils.log import logger

@pytest.fixture(scope="function")
[docs]def take_screenshot(request):
 item = request.node

 def _take_screenshot(name):
 logger.info("Taking a screenshot named {}".format(name))
 ss, ss_error = pytest.sel.take_screenshot()
 g_id = fauxfactory.gen_alpha(length=6)
 if ss:
 fire_art_test_hook(
 item, 'filedump',
 description="Screenshot {}".format(name), file_type="screenshot", mode="wb",
 contents_base64=True, contents=ss, display_glyph="camera",
 group_id="fix-screenshot-{}".format(g_id), slaveid=store.slaveid)
 if ss_error:
 fire_art_test_hook(
 item, 'filedump',
 description="Screenshot error {}".format(name), mode="w", contents_base64=False,
 contents=ss_error, display_type="danger",
 group_id="fix-screenshot-{}".format(g_id), slaveid=store.slaveid)

 return _take_screenshot

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/portset.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for fixtures.portset

-*- coding: utf-8 -*-
import pytest
from cfme.utils import ports
from cfme.utils.log import logger

[docs]def pytest_addoption(parser):
 group = parser.getgroup('Port override')
 group.addoption('--port-db',
 action='store',
 default=None,
 dest='port_db',
 help="Override appliance's database port.")
 group.addoption('--port-ssh',
 action='store',
 default=None,
 dest='port_ssh',
 help="Override appliance's SSH port.")

@pytest.mark.tryfirst
[docs]def pytest_configure(config):
 # SSH
 port_ssh = config.getoption("port_ssh")
 if port_ssh is not None:
 logger.info("Overriding SSH port to {}.".format(str(port_ssh)))
 ports.SSH = int(port_ssh)
 # DB
 port_db = config.getoption("port_db")
 if port_db is not None:
 logger.info("Overriding DB port to {}.".format(str(port_db)))
 ports.DB = int(port_db)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/blockers.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for fixtures.blockers

-*- coding: utf-8 -*-
"""Collection of fixtures for simplified work with blockers.

You can use the :py:func:`blocker` fixture to retrieve any blocker
using blocker syntax (as described in :py:mod:`cfme.metaplugins.blockers`).
The :py:func:`bug` fixture is specific for bugzilla,
it accepts number argument and spits out the BUGZILLA BUG!
(a :py:class:`utils.bz.BugWrapper`, not a :py:class:`utils.blockers.BZ`!).
The :py:func:`blockers` retrieves list of all blockers
as specified in the meta marker.
All of them are converted to the :py:class:`utils.blockers.Blocker` instances
"""
import pytest

from fixtures.pytest_store import store
from cfme.utils.blockers import Blocker, BZ, GH

@pytest.fixture(scope="function")
[docs]def blocker(uses_blockers):
 """Return any blocker that matches the expression.

 Returns:
 Instance of :py:class:`utils.blockers.Blocker`
 """
 return lambda b, **kwargs: Blocker.parse(b, **kwargs)

@pytest.fixture(scope="function")
[docs]def blockers(uses_blockers, meta):
 """Returns list of all assigned blockers.

 Returns:
 List of :py:class:`utils.blockers.Blocker` instances.
 """
 result = []
 for blocker in meta.get("blockers", []):
 if isinstance(blocker, int):
 result.append(Blocker.parse("BZ#{}".format(blocker)))
 elif isinstance(blocker, Blocker):
 result.append(blocker)
 else:
 result.append(Blocker.parse(blocker))
 return result

@pytest.fixture(scope="function")
[docs]def bug(blocker):
 """Return bugzilla bug by its id.

 Returns:
 Instance of :py:class:`utils.bz.BugWrapper` or :py:class:`NoneType` if the bug is closed.
 """
 return lambda bug_id, **kwargs: blocker("BZ#{}".format(bug_id), **kwargs).bugzilla_bug

[docs]def pytest_addoption(parser):
 group = parser.getgroup('Blockers options')
 group.addoption('--list-blockers',
 action='store_true',
 default=False,
 dest='list_blockers',
 help='Specify to list the blockers (takes some time though).')

@pytest.mark.trylast
[docs]def pytest_collection_modifyitems(session, config, items):
 if not config.getvalue("list_blockers"):
 return
 store.terminalreporter.write("Loading blockers ...\n", bold=True)
 blocking = set([])
 for item in items:
 if "blockers" not in item._metadata:
 continue
 for blocker in item._metadata["blockers"]:
 if isinstance(blocker, int):
 # TODO: DRY
 blocker_object = Blocker.parse("BZ#{}".format(blocker))
 else:
 blocker_object = Blocker.parse(blocker)
 if blocker_object.blocks:
 blocking.add(blocker_object)
 if blocking:
 store.terminalreporter.write("Known blockers:\n", bold=True)
 for blocker in blocking:
 if isinstance(blocker, BZ):
 bug = blocker.bugzilla_bug
 store.terminalreporter.write("- #{} - {}\n".format(bug.id, bug.status))
 store.terminalreporter.write(" {}\n".format(bug.summary))
 store.terminalreporter.write(
 " {} -> {}\n".format(str(bug.version), str(bug.target_release)))
 store.terminalreporter.write(
 " https://bugzilla.redhat.com/show_bug.cgi?id={}\n\n".format(bug.id))
 elif isinstance(blocker, GH):
 bug = blocker.data
 store.terminalreporter.write("- {}\n".format(str(bug)))
 store.terminalreporter.write(" {}\n".format(bug.title))
 else:
 store.terminalreporter.write("- {}\n".format(str(blocker.data)))
 else:
 store.terminalreporter.write("No blockers detected!\n", bold=True)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/artifactor_plugin.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for fixtures.artifactor_plugin

"""An example config::

 artifactor:
 log_dir: /home/test/workspace/cfme_tests/artiout
 per_run: test #test, run, None
 reuse_dir: True
 squash_exceptions: False
 threaded: False
 server_address: 127.0.0.1
 server_port: 21212
 server_enabled: True
 plugins:

``log_dir`` is the destination for all artifacts

``per_run`` denotes if the test artifacts should be group by run, test, or None

``reuse_dir`` if this is False and Artifactor comes across a dir that has
already been used, it will die

"""
import atexit
import os

import diaper
import pytest

from artifactor import ArtifactorClient
from fixtures.pytest_store import write_line, store
from markers.polarion import extract_polarion_ids
from threading import RLock
from cfme.utils.appliance import get_or_create_current_appliance
from cfme.utils.blockers import BZ, Blocker
from cfme.utils.conf import env, credentials
from cfme.utils.log import logger
from cfme.utils.net import random_port, net_check
from cfme.utils.wait import wait_for
from cfme.utils import version

UNDER_TEST = False # set to true for artifactor using tests

Create a list of all our passwords for use with the sanitize request later in this module
words = []
for cred in credentials:
 word = credentials[cred].get('password')
 if word:
 words.append(word)

[docs]def get_test_idents(item):
 try:
 return item.location[2], item.location[0]
 except AttributeError:
 try:
 return item.fspath.strpath, None
 except AttributeError:
 return (None, None)

[docs]def get_name(obj):
 return getattr(obj, '_param_name', None) or getattr(obj, 'name', None) or str(obj)

[docs]class DummyClient(object):
[docs] def fire_hook(self, *args, **kwargs):
 return

[docs] def terminate(self):
 return

[docs] def task_status(self):
 return

 def __nonzero__(self):
 # DummyClient is always False,
 # so it's easy to see if we have an artiactor client
 return False

[docs]def get_client(art_config, pytest_config):
 if art_config and not UNDER_TEST:
 port = getattr(pytest_config.option, 'artifactor_port', None) or \
 art_config.get('server_port') or random_port()
 pytest_config.option.artifactor_port = port
 art_config['server_port'] = port
 return ArtifactorClient(
 art_config['server_address'], art_config['server_port'])
 else:
 return DummyClient()

[docs]def spawn_server(config, art_client):
 if store.slave_manager or UNDER_TEST:
 return None
 import subprocess
 cmd = ['miq-artifactor-server', '--port', str(art_client.port)]
 if config.getvalue('run_id'):
 cmd.append('--run-id')
 cmd.append(str(config.getvalue('run_id')))
 proc = subprocess.Popen(cmd)
 return proc

session_ver = None
session_build = None
session_stream = None

[docs]def pytest_addoption(parser):
 parser.addoption("--run-id", action="store", default=None,
 help="A run id to assist in logging")

@pytest.mark.tryfirst
[docs]def pytest_configure(config):
 art_client = get_client(
 art_config=env.get('artifactor', {}),
 pytest_config=config)

 # just in case
 if not store.slave_manager:
 with diaper:
 atexit.register(shutdown, config)

 if art_client:
 config._art_proc = spawn_server(config, art_client)
 wait_for(
 net_check,
 func_args=[art_client.port, '127.0.0.1'],
 func_kwargs={'force': True},
 num_sec=10, message="wait for artifactor to start")
 art_client.ready = True
 else:
 config._art_proc = None
 from cfme.utils.log import artifactor_handler
 artifactor_handler.artifactor = art_client
 if store.slave_manager:
 artifactor_handler.slaveid = store.slaveid
 config._art_client = art_client
 art_client.fire_hook('setup_merkyl', ip=get_or_create_current_appliance().address)

[docs]def fire_art_hook(config, hook, **hook_args):
 client = getattr(config, '_art_client', None)
 if client is None:
 assert UNDER_TEST, 'missing artifactor is only valid for inprocess tests'
 else:
 client.fire_hook(hook, **hook_args)

[docs]def fire_art_test_hook(node, hook, **hook_args):
 name, location = get_test_idents(node)
 fire_art_hook(
 node.config, hook,
 test_name=name,
 test_location=location,
 **hook_args)

@pytest.mark.hookwrapper
[docs]def pytest_runtest_protocol(item):
 global session_ver
 global session_build
 global session_stream

 if not session_ver:
 session_ver = str(version.current_version())
 session_build = store.current_appliance.build
 session_stream = store.current_appliance.version.stream()
 fire_art_hook(
 item.config, 'session_info',
 version=session_ver,
 build=session_build,
 stream=session_stream)

 tier = item.get_marker('tier')
 if tier:
 tier = tier.args[0]

 requirement = item.get_marker('requirement')
 if requirement:
 requirement = requirement.args[0]

 try:
 params = item.callspec.params
 param_dict = {p: get_name(v) for p, v in params.iteritems()}
 except:
 param_dict = {}
 ip = get_or_create_current_appliance().address
 # This pre_start_test hook is needed so that filedump is able to make get the test
 # object set up before the logger starts logging. As the logger fires a nested hook
 # to the filedumper, and we can't specify order inriggerlib.
 meta = item.get_marker('meta')
 if meta and 'blockers' in meta.kwargs:
 blocker_spec = meta.kwargs['blockers']
 blockers = []
 for blocker in blocker_spec:
 if isinstance(blocker, int):
 blockers.append(BZ(blocker).url)
 else:
 blockers.append(Blocker.parse(blocker).url)
 else:
 blockers = []
 fire_art_test_hook(
 item, 'pre_start_test',
 slaveid=store.slaveid, ip=ip)
 fire_art_test_hook(
 item, 'start_test',
 slaveid=store.slaveid, ip=ip,
 tier=tier, requirement=requirement, param_dict=param_dict, issues=blockers)
 yield

[docs]def pytest_runtest_teardown(item, nextitem):
 name, location = get_test_idents(item)
 app = get_or_create_current_appliance()
 ip = app.address
 fire_art_test_hook(
 item, 'finish_test',
 slaveid=store.slaveid, ip=ip, wait_for_task=True)
 fire_art_test_hook(item, 'sanitize', words=words)
 jenkins_data = {
 'build_url': os.environ.get('BUILD_URL'),
 'build_number': os.environ.get('BUILD_NUMBER'),
 'git_commit': os.environ.get('GIT_COMMIT'),
 'job_name': os.environ.get('JOB_NAME')
 }
 try:
 caps = app.browser.widgetastic.selenium.capabilities
 param_dict = {
 'browserName': caps['browserName'],
 'browserPlatform': caps['platform'],
 'browserVersion': caps['version']
 }
 except Exception as e:
 logger.error(e)
 param_dict = None

 fire_art_test_hook(
 item, 'ostriz_send', env_params=param_dict,
 slaveid=store.slaveid, polarion_ids=extract_polarion_ids(item), jenkins=jenkins_data)

[docs]def pytest_runtest_logreport(report):
 if store.slave_manager:
 return # each node does its own reporting
 config = pytest.config # tech debt
 name, location = get_test_idents(report)
 if hasattr(report, 'wasxfail'):
 xfail = True
 else:
 xfail = False

 if hasattr(report, 'skipped'):
 if report.skipped:
 fire_art_hook(
 config, 'filedump',
 test_location=location, test_name=name,
 description="Short traceback",
 contents=report.longreprtext,
 file_type="short_tb", group_id="skipped")
 fire_art_hook(
 config, 'report_test',
 test_location=location, test_name=name,
 test_xfail=xfail, test_when=report.when,
 test_outcome=report.outcome)
 fire_art_hook(config, 'build_report')

@pytest.mark.hookwrapper
[docs]def pytest_unconfigure(config):
 yield
 shutdown(config)

lock = RLock()

[docs]def shutdown(config):
 with lock:
 proc = config._art_proc
 if proc:
 if not store.slave_manager:
 write_line('collecting artifacts')
 fire_art_hook(config, 'finish_session')
 fire_art_hook(config, 'teardown_merkyl',
 ip=get_or_create_current_appliance().address)
 if not store.slave_manager:
 config._art_client.terminate()
 proc = config._art_proc
 if proc:
 proc.wait()

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/maximized.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for fixtures.maximized

"""
Created on Mar 4, 2013

@author: bcrochet
"""

import pytest

@pytest.fixture
[docs]def maximized():
 # Included for backward compatibility, will be going away
 pass

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/log.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for fixtures.log

import collections

import pytest

from cfme.utils import log

#: A dict of tests, and their state at various test phases
test_tracking = collections.defaultdict(dict)

Expose the cfme logger as a fixture for convenience
@pytest.fixture(scope='session')
[docs]def logger():
 return log.logger

@pytest.mark.hookwrapper
[docs]def pytest_runtest_setup(item):
 path, lineno, domaininfo = item.location
 logger().info(log.format_marker(_format_nodeid(item.nodeid), mark="-"),
 extra={'source_file': path, 'source_lineno': lineno})
 yield

[docs]def pytest_collection_modifyitems(session, config, items):
 logger().info(log.format_marker('Starting new test run', mark="="))
 expression = config.getvalue('keyword') or False
 expr_string = ', will filter with "{}"'.format(expression) if expression else ''
 logger().info('Collected {} items{}'.format(len(items), expr_string))

@pytest.mark.hookwrapper
[docs]def pytest_runtest_logreport(report):
 # e.g. test_tracking['test_name']['setup'] = 'passed'
 # test_tracking['test_name']['call'] = 'skipped'
 # test_tracking['test_name']['teardown'] = 'failed'
 yield
 test_tracking[_format_nodeid(report.nodeid, False)][report.when] = report.outcome
 if report.when == 'teardown':
 path, lineno, domaininfo = report.location
 test_status = _test_status(_format_nodeid(report.nodeid, False))
 if test_status == "failed":
 try:
 logger().info(
 "Managed providers: {}".format(
 ", ".join([
 prov.key for prov in
 pytest.store.current_appliance.managed_known_providers]))
)
 except KeyError as ex:
 if 'ext_management_systems' in ex.msg:
 logger().warning("Unable to query ext_management_systems table; DB issue")
 else:
 raise
 logger().info(log.format_marker('{} result: {}'.format(_format_nodeid(report.nodeid),
 test_status)),
 extra={'source_file': path, 'source_lineno': lineno})
 if report.outcome == "skipped":
 logger().info(log.format_marker(report.longreprtext))

[docs]def pytest_exception_interact(node, call, report):
 # Despite the name, call.excinfo is a py.code.ExceptionInfo object. Its traceback property
 # is similarly a py.code.TracebackEntry. The following lines, including "entry.lineno+1" are
 # based on the code there, which does unintuitive things with a traceback's line number.
 # This is the same code that powers py.test's output, so we gain py.test's magical ability
 # to get useful AssertionError output by doing it this way, which makes the voodoo worth it.
 entry = call.excinfo.traceback.getcrashentry()
 logger().error(call.excinfo.getrepr(),
 extra={'source_file': entry.path, 'source_lineno': entry.lineno + 1})

[docs]def pytest_sessionfinish(session, exitstatus):
 c = collections.Counter()
 for test in test_tracking:
 c[_test_status(test)] += 1
 # Prepend a total to the summary list
 results = ['total: {}'.format(sum(c.values()))] + map(
 lambda n: '{}: {}'.format(n[0], n[1]), c.items())
 # Then join it with commas
 summary = ', '.join(results)
 logger().info(log.format_marker('Finished test run', mark='='))
 logger().info(log.format_marker(str(summary), mark='='))

def _test_status(test_name):
 test_phase = test_tracking[test_name]
 # Test failure in setup or teardown is an error, which pytest doesn't report internally
 if 'failed' in (test_phase.get('setup', 'failed'), test_phase.get('teardown', 'failed')):
 return 'error'
 # A test can also be skipped
 elif 'skipped' in test_phase.get('setup', 'skipped'):
 return 'skipped'
 # Otherwise, report the call phase outcome (passed, skipped, or failed)
 else:
 return test_phase.get('call', 'skipped')

def _format_nodeid(nodeid, strip_filename=True):
 # Remove test class instances and filenames, replace with a dot to impersonate a method call
 nodeid = nodeid.replace('::()::', '.')
 # Trim double-colons to single
 nodeid = nodeid.replace('::', ':')
 # Strip filename (everything before and including the first colon)
 if strip_filename:
 try:
 return nodeid.split(':', 1)[1]
 except IndexError:
 # No colon to split on, return the whole nodeid
 return nodeid
 else:
 return nodeid

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/qa_contact.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for fixtures.qa_contact

from collections import defaultdict
import inspect
import subprocess
import re
import operator
from fixtures.artifactor_plugin import fire_art_test_hook
from fixtures.pytest_store import store

[docs]def dig_code(node):
 code_data = inspect.getsourcelines(node.function)
 lineno = code_data[1]
 offset = len(code_data[0])
 filename = inspect.getfile(node.function)
 line_param = '-L {},+{}'.format(lineno, offset)
 cmd_params = ['git', 'blame', line_param, filename, '--show-email']

 proc = subprocess.Popen(cmd_params, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
 proc.wait()
 lc_info = proc.stdout.readlines()
 contact_stats = defaultdict(int)
 for line in lc_info:
 contact = re.findall('.{8} \(\<(.*?)\> ', line)
 contact_stats[contact[0]] += 1
 sorted_x = sorted(contact_stats.items(), key=operator.itemgetter(1), reverse=True)
 results = []
 for item in sorted_x:
 percen = float(item[1]) / float(offset) * 100
 record = (item[0], percen)
 results.append(record)
 return results

[docs]def pytest_runtest_teardown(item, nextitem):
 qa_string = "Unknown,None"
 if hasattr(item, "_metadata") and item._metadata.get('owner') is not None:
 # The owner is specified in metadata
 qa_string = "{},from metadata"
 else:
 try:
 qa_arr = []
 results = dig_code(item)
 for idx in range(min(2, len(results))):
 qa_arr.append("{},{:.2f}%\n".format(results[idx][0], results[idx][1]))
 if qa_arr:
 qa_string = "".join(qa_arr)
 except:
 pass
 fire_art_test_hook(
 item,
 'filedump', description="QA Contact",
 contents=str(qa_string), file_type="qa_contact", group_id="qa-contact",
 slaveid=store.slaveid)

 # group_id is not used for qa contact now, but thinking into the future

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/xunit_tools.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for fixtures.xunit_tools

pylint: disable=broad-except

import re

from collections import defaultdict
from lxml import etree

import pytest

pylint: disable=no-name-in-module
from cfme.utils.conf import xunit, cfme_data
from cfme.utils.pytest_shortcuts import extract_fixtures_values

default_custom_fields = {
 "caseautomation": "automated",
 "caseimportance": "high",
 "caselevel": "component",
 "caseposneg": "positive",
 "testtype": "functional",
 "subtype1": "-",
 "subtype2": "-"
}

caselevels = {
 '0': 'component',
 '1': 'integration',
 '2': 'system',
 '3': 'acceptance'
}

blacklist = [
 'cfme/tests/containers/',
 'cfme/tests/middleware/',
 'cfme/tests/openstack/',
 'hawkular',
 r'\[.*rhos',
 r'\[.*rhev',
 r'\[.*rhv',
]
compiled_blacklist = re.compile('(' + ')|('.join(blacklist) + ')')

[docs]def pytest_addoption(parser):
 """Adds command line options."""
 group = parser.getgroup(
 "Polarion importers: options related to creation of XML files for Polarion importers")
 group.addoption("--generate-xmls", action="store_true", default=False,
 help="generate the xml files for import")
 group.addoption("--generate-legacy-xmls", action="store_true", default=False,
 help="generate the legacy xml files for import")
 group.addoption("--xmls-testrun-id",
 help="testrun id")
 group.addoption("--xmls-testrun-title",
 help="testrun title")
 group.addoption("--xmls-no-blacklist", action="store_true", default=False,
 help="don't filter testcases using the built-in blacklist")

[docs]def get_polarion_name(item):
 """Gets Polarion test case name out of the Node ID."""
 param_legacy = (item.nodeid[item.nodeid.find('::') + 2:]
 .replace('::()', '')
 .replace('::', '.'))
 param_strip = re.sub(r'\[.*\]', '', param_legacy)
 return (param_legacy, param_strip)

[docs]def testcase_record(
 test_name, description=None, parameters=None, custom_fields=None, linked_items=None):
 """Generates single testcase entry."""
 linked_items = linked_items or []
 custom_fields_update = custom_fields or {}
 custom_fields = default_custom_fields.copy()
 custom_fields.update(custom_fields_update)
 parameters = parameters or []
 testcase = etree.Element('testcase', id=test_name)
 title = etree.Element('title')
 title.text = test_name
 description_el = etree.Element('description')
 description_el.text = description or ""
 testcase.append(title)
 testcase.append(description_el)
 test_steps = etree.Element('test-steps')
 test_step = etree.Element('test-step')
 test_step_col = etree.Element('test-step-column', id="step")
 for param in parameters:
 param_el = etree.Element('parameter', name=param, scope="local")
 test_step_col.append(param_el)
 test_step.append(test_step_col)
 test_steps.append(test_step)
 testcase.append(test_steps)
 custom_fields_el = etree.Element('custom-fields')
 for tc_id, content in custom_fields.iteritems():
 custom_field = etree.Element('custom-field', id=tc_id, content=content)
 custom_fields_el.append(custom_field)
 testcase.append(custom_fields_el)
 if linked_items:
 work_items = etree.Element('linked-work-items')
 for work_item in linked_items:
 work_item_el = etree.Element('linked-work-item')
 work_item_el.attrib['workitem-id'] = work_item['id']
 work_item_el.attrib['role-id'] = work_item['role']
 work_items.append(work_item_el)
 testcase.append(work_items)
 return testcase

[docs]def get_testcase_data(tests, test_names, item, legacy=False):
 """Gets data for single testcase entry."""
 legacy_name, parametrized_name = get_polarion_name(item)
 name = legacy_name if legacy else parametrized_name
 if name in test_names:
 return

 work_items = []
 custom_fields = {}
 try:
 description = item.function.func_doc
 except Exception:
 description = ""
 try:
 requirement = item.get_marker('requirement').args[0]
 requirement_id = cfme_data['requirements'][requirement]
 work_items.append({'id': requirement_id, 'role': 'verifies'})
 except Exception:
 pass
 try:
 tier = item.get_marker('tier').args[0]
 tier_id = caselevels[str(tier)]
 custom_fields['caselevel'] = tier_id
 except Exception:
 pass

 param_list = extract_fixtures_values(item).keys() if not legacy else None

 manual = item.get_marker('manual')
 if not manual:
 # The master here should probably link the latest "commit" eventually
 automation_script = 'http://github.com/{0}/{1}/blob/master/{2}#L{3}'.format(
 xunit['gh_owner'],
 xunit['gh_repo'],
 item.location[0],
 item.function.func_code.co_firstlineno
)
 custom_fields['caseautomation'] = "automated"
 custom_fields['automation_script'] = automation_script
 description = '{0}

Test Source'.format(
 description, automation_script)
 else:
 custom_fields['caseautomation'] = "manualonly"
 description = '{}'.format(description)

 test_names.append(name)
 tests.append(dict(
 test_name=name,
 description=description,
 parameters=param_list,
 linked_items=work_items,
 custom_fields=custom_fields))

[docs]def testresult_record(test_name, parameters=None, result=None):
 """Generates single test result entry."""
 testcase = etree.Element('testcase', name=test_name)
 parameters = parameters or {}
 extra = None
 if result == "skipped" or not result:
 extra = etree.Element('skipped', message='Skipped', type='skipped')
 testcase.append(extra)
 elif result == "error":
 extra = etree.Element('error', message="Error", type='error')
 testcase.append(extra)
 elif result == "failed":
 extra = etree.Element('failure', message="Failed", type='failure')
 testcase.append(extra)
 properties = etree.Element('properties')
 testcase_id = etree.Element('property', name="polarion-testcase-id", value=test_name)
 properties.append(testcase_id)
 for param, value in parameters.iteritems():
 param_el = etree.Element(
 'property', name="polarion-parameter-{}".format(param), value=value)
 properties.append(param_el)
 testcase.append(properties)
 return testcase

[docs]def get_testresult_data(tests, test_names, item, legacy=False):
 """Gets data for single test result entry."""
 legacy_name, parametrized_name = get_polarion_name(item)
 if legacy:
 name = legacy_name
 if name in test_names:
 return
 param_dict = None
 test_names.append(name)
 else:
 name = parametrized_name
 try:
 params = item.callspec.params
 param_dict = {p: _get_name(v) for p, v in params.iteritems()}
 except Exception:
 param_dict = {}
 tests.append({'name': name, 'params': param_dict, 'result': None})

[docs]def testrun_gen(tests, filename, config, collectonly=True):
 """Generates content of the XML file used for test run import."""
 prop_dict = {
 'testrun-template-id': xunit.get('testrun_template_id'),
 'testrun-title': config.getoption('xmls_testrun_title') or xunit.get('testrun_title'),
 'testrun-id': config.getoption('xmls_testrun_id') or xunit.get('testrun_id'),
 'project-id': xunit['project_id'],
 'dry-run': xunit.get('dry_run', False),
 'testrun-status-id': xunit['testrun_status_id'],
 'lookup-method': xunit['lookup_method']
 }

 testsuites = etree.Element("testsuites")
 testsuite = etree.Element("testsuite")
 properties = etree.Element("properties")
 property_resp = etree.Element(
 'property', name='polarion-response-{}'.format(
 xunit['response']['id']), value=xunit['response']['value'])
 properties.append(property_resp)
 for prop_name, prop_value in prop_dict.iteritems():
 if prop_value is None:
 continue
 prop_el = etree.Element(
 'property', name="polarion-{}".format(prop_name), value=str(prop_value))
 properties.append(prop_el)
 testsuites.append(properties)
 testsuites.append(testsuite)

 no_tests = 0
 results_count = {
 'passed': 0,
 'skipped': 0,
 'failure': 0,
 'error': 0
 }
 for data in tests:
 no_tests += 1
 if collectonly:
 testsuite.append(testresult_record(data['name'], data.get('params')))
 results_count['skipped'] += 1
 else:
 testsuite.append(testresult_record(
 data['name'], data.get('params'), result=data.get('result')))
 results_count[data['result']] += 1
 testsuite.attrib['tests'] = str(no_tests)
 testsuite.attrib['failures'] = str(results_count['failure'])
 testsuite.attrib['skipped'] = str(results_count['skipped'])
 testsuite.attrib['errors'] = str(results_count['error'])
 testsuite.attrib['name'] = "cfme-tests"
 xml = etree.ElementTree(testsuites)
 xml.write(filename, pretty_print=True)

[docs]def testcases_gen(tests, filename):
 """Generates content of the XML file used for test cases import."""
 testcases = etree.Element("testcases")
 testcases.attrib['project-id'] = xunit['project_id']
 response_properties = etree.Element("response-properties")
 response_property = etree.Element(
 "response-property", name=xunit['response']['id'], value=xunit['response']['value'])
 response_properties.append(response_property)
 properties = etree.Element("properties")
 lookup = etree.Element("property", name="lookup-method", value="custom")
 properties.append(lookup)
 dry_run = etree.Element("property", name="dry-run", value=str(xunit.get("dry_run", "false")))
 properties.append(dry_run)
 testcases.append(response_properties)
 testcases.append(properties)

 for data in tests:
 testcases.append(testcase_record(**data))
 xml = etree.ElementTree(testcases)
 xml.write(filename, pretty_print=True)

def _get_name(obj):
 if hasattr(obj, '_param_name'):
 return getattr(obj, '_param_name')
 elif hasattr(obj, 'name'):
 return obj.name
 return str(obj)

[docs]def gen_duplicates_log(items):
 """Generates log file containing non-unique test cases names."""
 a = defaultdict(dict)
 ntr = []
 for item in items:
 a[item.location[0]][re.sub(r'\[.*\]', '', item.location[2])] = a[item.location[0]].get(
 re.sub(r'\[.*\]', '', item.location[2]), 0) + 1
 with open('duplicates.log', 'w') as f:
 for tests in a.itervalues():
 for test in tests:
 if test not in ntr:
 ntr.append(test)
 else:
 f.write("{}\n".format(test))

@pytest.mark.trylast
[docs]def pytest_collection_modifyitems(config, items):
 """Generates the XML files using collected items."""
 if not (config.getoption('generate_xmls') or config.getoption('generate_legacy_xmls')):
 return

 gen_duplicates_log(items)

 no_blacklist = config.getoption('xmls_no_blacklist')
 collectonly = config.getoption('--collect-only')
 # all "legacy" conditions can be removed once parametrization is finished
 legacy = config.getoption('generate_legacy_xmls')

 tc_names = []
 tc_data = []
 tr_names = []
 tr_data = []

 for item in items:
 if 'cfme/tests' not in item.nodeid:
 continue
 if not no_blacklist and compiled_blacklist.search(item.nodeid):
 continue
 get_testcase_data(tc_data, tc_names, item, legacy)
 get_testresult_data(tr_data, tr_names, item, legacy)

 testcases_gen(tc_data, 'test_case_import.xml')
 testrun_gen(tr_data, 'test_run_import.xml', config, collectonly=collectonly)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/provider.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for fixtures.provider

""" Fixtures to set up providers

Used to ensure that we have a provider set up on the appliance before running a test.

There are two ways to request a setup provider depending on what kind of test we create:

1. Test parametrized by provider (test is run once per each matching provider)
 For parametrized tests, provider is delivered by testgen. Testgen ensures that the requested
 provider is available as the ``provider`` parameter. It doesn't set the provider up, however, as
 it will only provide you with the appropriate provider CRUD object.
 To get the provider set up, we need to add one of the following fixtures to parameters as well:
 - ``setup_provider``
 - ``setup_provider_modscope``
 - ``setup_provider_clsscope``
 - ``setup_provider_funcscope`` (same as ``setup_provider``)

 This ensures that whatever is currently hiding under the ``provider`` parameter will be set up.

2. Test not parametrized by provider (test is run once and we just need some provider available)
 In this case, we don't really care about what sort of a provider we have available. Usually,
 we just want something to fill the UI with data so that we can test our provider non-specific
 functionality. For that, we can leverage one of the following fixtures:
 - ``infra_provider``
 - ``cloud_provider``
 - ``middleware_provider``
 - ``containers_provider``
 - ...and others

 If these don't really fit your needs, you can implement your own module-local ``a_provider``
 fixture using ``setup_one_by_class_or_skip`` or more adjustable ``setup_one_or_skip``.
 These functions do exactly what their names suggest - they setup one of the providers fitting
 given parameters or skip the test. All of these fixtures are (and should be) function scoped.
 Please keep that in mind when creating your module-local substitutes.

If setting up a provider fails, the issue is logged and an internal counter is incremented
as a result. If this counter reaches a predefined number of failures (see ``SETUP_FAIL_LIMIT``),
the failing provider will be added to the list of problematic providers and no further attempts
to set it up will be made.
"""
import pytest
import random
import six
from collections import defaultdict

from cfme.common.provider import BaseProvider, all_types
from fixtures.artifactor_plugin import fire_art_test_hook
from fixtures.pytest_store import store
from fixtures.templateloader import TEMPLATES
from cfme.utils.providers import ProviderFilter, list_providers
from cfme.utils.log import logger
from collections import Mapping

List of problematic providers that will be ignored
_problematic_providers = set()
Stores number of setup failures per provider
_setup_failures = defaultdict(lambda: 0)
Once limit is reached, no furter attempts at setting up a given provider are made
SETUP_FAIL_LIMIT = 3

[docs]def pytest_addoption(parser):
 # Create the cfme option group for use in other plugins
 parser.getgroup('cfme')
 parser.addoption("--provider-limit", action="store", default=1, type=int,
 help=(
 "Number of providers allowed to coexist on appliance. 0 means no limit. "
 "Use 1 or 2 when running on a single appliance, depending on HW configuration."))

def _artifactor_skip_providers(request, providers, skip_msg):
 skip_data = {
 'type': 'provider',
 'reason': ', '.join(p.key for p in providers),
 }
 fire_art_test_hook(request.node, 'skip_test', skip_data=skip_data)
 pytest.skip(skip_msg)

def _setup_provider_verbose(request, provider, appliance=None):
 if appliance is None:
 appliance = store.current_appliance
 try:
 if request.config.option.provider_limit > 0:
 existing_providers = [
 p for p in appliance.managed_known_providers if p.key != provider.key]
 random.shuffle(existing_providers)
 maximum_current_providers = request.config.option.provider_limit - 1
 if len(existing_providers) > maximum_current_providers:
 providers_to_remove = existing_providers[maximum_current_providers:]
 store.terminalreporter.write_line(
 'Removing extra providers: {}'.format(', '.join(
 [p.key for p in providers_to_remove])))
 for p in providers_to_remove:
 logger.info('removing provider %r', p.key)
 p.delete(cancel=False)
 # Decoupled wait for better performance
 for p in providers_to_remove:
 logger.info('waiting for provider %r to disappear', p.key)
 p.wait_for_delete()
 store.terminalreporter.write_line(
 "Trying to set up provider {}\n".format(provider.key), green=True)
 provider.setup()
 return True
 except Exception as e:
 logger.exception(e)
 _setup_failures[provider] += 1
 if _setup_failures[provider] >= SETUP_FAIL_LIMIT:
 _problematic_providers.add(provider)
 message = "Provider {} is now marked as problematic and won't be used again."\
 " {}: {}".format(provider.key, type(e).__name__, str(e))
 logger.warning(message)
 store.terminalreporter.write_line(message + "\n", red=True)
 if provider.exists:
 # Remove it in order to not explode on next calls
 provider.delete(cancel=False)
 provider.wait_for_delete()
 message = "Provider {} was deleted because it failed to set up.".format(
 provider.key)
 logger.warning(message)
 store.terminalreporter.write_line(message + "\n", red=True)
 return False

[docs]def setup_or_skip(request, provider):
 """ Sets up given provider or skips the test

 Note:
 If a provider fails to setup SETUP_FAIL_LIMIT times, it will be added to the list
 of problematic providers and won't be used by any test until the end of the test run.
 """
 if provider in _problematic_providers:
 skip_msg = "Provider {} had been marked as problematic".format(provider.key)
 _artifactor_skip_providers(request, [provider], skip_msg)

 if not _setup_provider_verbose(request, provider):
 _artifactor_skip_providers(
 request, [provider], "Unable to setup provider {}".format(provider.key))

[docs]def setup_one_or_skip(request, filters=None, use_global_filters=True):
 """ Sets up one of matching providers or skips the test

 Args:
 filters: List of :py:class:`ProviderFilter` or None
 request: Needed for logging a potential skip correctly in artifactor
 use_global_filters: Will apply global filters as well if `True`, will not otherwise
 """

 filters = filters or []
 providers = list_providers(filters=filters, use_global_filters=use_global_filters)

 # All providers filtered out?
 if not providers:
 global_providers = list_providers(filters=None, use_global_filters=use_global_filters)
 if not global_providers:
 # This can also mean that there simply are no providers in the yamls!
 pytest.skip("No provider matching global filters found")
 else:
 pytest.skip("No provider matching test-specific filters found")

 # Are all providers marked as problematic?
 if _problematic_providers.issuperset(providers):
 skip_msg = "All providers marked as problematic: {}".format([p.key for p in providers])
 _artifactor_skip_providers(request, providers, skip_msg)

 # If there is a provider already set up matching the user's requirements, reuse it
 for provider in providers:
 if provider.exists:
 return provider

 # If we have more than one provider, we create two separate groups of providers, preferred
 # and not preferred, that we shuffle separately and then join together
 if len(providers) > 1:
 only_preferred_filter = ProviderFilter(required_fields=[("do_not_prefer", True)],
 inverted=True)
 preferred_providers = list_providers(
 filters=filters + [only_preferred_filter], use_global_filters=use_global_filters)
 not_preferred_providers = [p for p in providers if p not in preferred_providers]
 random.shuffle(preferred_providers)
 random.shuffle(not_preferred_providers)
 providers = preferred_providers + not_preferred_providers

 # Try to set up one of matching providers
 non_existing = [prov for prov in providers if not prov.exists]
 for provider in non_existing:
 if _setup_provider_verbose(request, provider):
 return provider

 skip_msg = "Failed to set up any matching providers: {}", [p.key for p in providers]
 _artifactor_skip_providers(request, non_existing, skip_msg)

[docs]def setup_one_by_class_or_skip(request, prov_class, use_global_filters=True):
 pf = ProviderFilter(classes=[prov_class])
 return setup_one_or_skip(request, filters=[pf], use_global_filters=use_global_filters)

def _generate_provider_fixtures():
 """ Generate provider setup and clear fixtures based on what classes are available

 This will make fixtures like "cloud_provider" and "has_no_cloud_providers" available to tests.
 """
 for prov_type, prov_class in all_types().iteritems():
 def gen_setup_provider(prov_class):
 @pytest.fixture(scope='function')
 def _setup_provider(request):
 """ Sets up one of the matching providers """
 return setup_one_by_class_or_skip(request, prov_class)
 return _setup_provider
 fn_name = '{}_provider'.format(prov_type)
 globals()[fn_name] = gen_setup_provider(prov_class)

 def gen_has_no_providers(prov_class):
 @pytest.fixture(scope='function')
 def _has_no_providers():
 """ Clears all providers of given class from the appliance """
 prov_class.clear_providers()
 return _has_no_providers
 fn_name = 'has_no_{}_providers'.format(prov_type)
 globals()[fn_name] = gen_has_no_providers(prov_class)

Let's generate all the provider setup and clear fixtures within the scope of this module
_generate_provider_fixtures()

@pytest.fixture(scope="function")
[docs]def has_no_providers(request):
 BaseProvider.clear_providers()

@pytest.fixture(scope="module")
[docs]def has_no_providers_modscope(request):
 BaseProvider.clear_providers()

@pytest.fixture(scope="function")
[docs]def setup_only_one_provider(request, has_no_providers):
 return setup_one_or_skip(request)

@pytest.fixture(scope="function")
[docs]def setup_perf_provider(request, use_global_filters=True):
 pf = ProviderFilter(required_tags=['perf'])
 return setup_one_or_skip(request, filters=[pf], use_global_filters=use_global_filters)

When we want to setup a provider provided by testgen
--
@pytest.fixture(scope='function')
[docs]def setup_provider(request, provider):
 """Function-scoped fixture to set up a provider"""
 return setup_or_skip(request, provider)

@pytest.fixture(scope='module')
[docs]def setup_provider_modscope(request, provider):
 """Module-scoped fixture to set up a provider"""
 return setup_or_skip(request, provider)

@pytest.fixture(scope='class')
[docs]def setup_provider_clsscope(request, provider):
 """Module-scoped fixture to set up a provider"""
 return setup_or_skip(request, provider)

@pytest.fixture
[docs]def setup_provider_funcscope(request, provider):
 """Function-scoped fixture to set up a provider"""
 return setup_or_skip(request, provider)

@pytest.fixture(scope="function")
[docs]def template(template_location, provider):
 if template_location is not None:
 o = provider.data
 try:
 for field in template_location:
 o = o[field]
 except (IndexError, KeyError):
 logger.info("Cannot apply %r to %r in the template specification, ignoring.", field, o)
 else:
 if not isinstance(o, six.string_types):
 raise ValueError("{!r} is not a string! (for template)".format(o))
 if not TEMPLATES:
 # There is nothing in TEMPLATES, that means no trackerbot URL and no data pulled.
 # This should normally not constitute an issue so continue.
 return o
 templates = TEMPLATES.get(provider.key)
 if templates is not None:
 if o in templates:
 return o
 logger.info("Wanted template %s on %s but it is not there!", o, provider.key)
 pytest.skip('Template not available')

def _get_template(provider, template_type_name):
 template = provider.data.get(template_type_name)
 # if the template is None, try to get it from templates section on provider data
 # because additional templates are present in this section which are not present
 # under provider directly
 if not template:
 template = provider.data.templates.get(template_type_name)
 if isinstance(template, Mapping):
 template_name = template.get("name")
 else:
 template_name = template
 if template_name:
 if not TEMPLATES:
 # Same as couple of lines above
 return template
 templates = TEMPLATES.get(provider.key)
 # If template is type string then return template else template_name
 # since template could be AttrDict and returning it would fail provisioning
 # _get_template should always return template name of type string
 if templates and template_name in templates and isinstance(template, six.string_types):
 return template
 return template_name
 else:
 pytest.skip('No {} for provider {}'.format(template_type_name, provider.key))
 logger.info("Wanted template %s on %s but it is not there!", template, provider.key)
 pytest.skip('Template not available')

@pytest.fixture(scope="function")
[docs]def small_template(provider):
 return _get_template(provider, 'small_template')

@pytest.fixture(scope="module")
[docs]def small_template_modscope(provider):
 return _get_template(provider, 'small_template')

@pytest.fixture(scope="function")
[docs]def full_template(provider):
 return _get_template(provider, 'full_template')

@pytest.fixture(scope="module")
[docs]def full_template_modscope(provider):
 return _get_template(provider, 'full_template')

@pytest.fixture(scope="function")
[docs]def big_template(provider):
 return _get_template(provider, 'big_template')

@pytest.fixture(scope="module")
[docs]def big_template_modscope(provider):
 return _get_template(provider, 'big_template')

@pytest.fixture(scope="function")
[docs]def provisioning(provider):
 return provider.data['provisioning']

@pytest.fixture(scope="function")
[docs]def console_template(provider):
 return _get_template(provider, 'console_template')

@pytest.fixture(scope="module")
[docs]def console_template_modscope(provider):
 return _get_template(provider, 'console_template')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/soft_assert.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for fixtures.soft_assert

"""Soft assert context manager and assert function

A "soft assert" is an assertion that, if it fails, does not fail the entire test.
Soft assertions can be mixed with normal assertions as needed, and will be automatically
collected/reported after a test runs.

Functionality Overview

1. If :py:func:`soft_assert` is used by a test, that test's call phase is wrapped in
 a context manager. Entering that context sets up a thread-local store for failed assertions.
2. Inside the test, :py:func:`soft_assert` is a function with access to the thread-local store
 of failed assertions, allowing it to store failed assertions during a test run.
3. After a test runs, the context manager wrapping the test's call phase exits, which inspects the
 thread-local store of failed assertions, raising a
 :py:class:`custom AssertionError <SoftAssertionError>` if any are found.

No effort is made to clear the thread-local store; rather it's explicitly overwritten with an empty
list by the context manager. Because the store is a :py:func:`list <python:list>`, failed assertions
will be reported in the order that they failed.

"""
from contextlib import contextmanager
from threading import local
from functools import partial

import fauxfactory
import pytest

from fixtures.artifactor_plugin import fire_art_test_hook
from cfme.utils.log import nth_frame_info
from cfme.utils.path import get_rel_path
import sys
import traceback
import cfme.utils

Use a thread-local store for failed soft asserts, making it thread-safe
in parallel testing and shared among the functions in this module.
_thread_locals = local()

@pytest.mark.hookwrapper(tryfirst=True)
[docs]def pytest_runtest_protocol(item, nextitem):
 if 'soft_assert' in item.fixturenames:
 with _soft_assert_cm():
 yield
 else:
 yield

@pytest.mark.hookwrapper(tryfirst=True)
[docs]def pytest_runtest_teardown(item, nextitem):
 """
 pytest hook to handle :py:func:`soft_assert` fixture for case
 when soft_assert is used in another fixture like register_event
 """
 try:
 yield
 finally:
 if 'soft_assert' in item.fixturenames:
 if _thread_locals.caught_asserts:
 raise SoftAssertionError(_thread_locals.caught_asserts)

[docs]class SoftAssertionError(AssertionError):
 """exception class containing failed assertions

 Functions like :py:class:`AssertionError <python:exceptions.AssertionError>`, but
 also stores the failed soft exceptions that it represents in order to properly
 display them when cast as :py:func:`str <python:str>`

 Args:
 failed_assertions: List of collected assertion failure messages
 where: Where the SoftAssert context was entered, can be omitted

 Attributes:
 failed_assertions: ``failed_assertions`` handed to the initializer,
 useful in cases where inspecting the failed soft assertions is desired.

 """
 def __init__(self, failed_assertions):
 self.failed_assertions = failed_assertions
 super(SoftAssertionError, self).__init__(str(self))

 def __str__(self):
 failmsgs = ['']

 for failed_assert in self.failed_assertions:
 failmsgs.append(failed_assert)
 return '\n'.join(failmsgs)

@contextmanager
def _soft_assert_cm():
 """soft assert context manager

 * clears the thread-local caught asserts before a test run
 * inspects the thread-local caught asserts after a test run, raising an error if needed

 """
 _thread_locals.caught_asserts = []
 yield _thread_locals.caught_asserts

[docs]def handle_assert_artifacts(request, fail_message=None):
 if not fail_message:
 short_tb = '{}'.format(sys.exc_info()[1])
 short_tb = short_tb.encode('base64')
 var_tb = traceback.format_tb(sys.exc_info()[2])
 full_tb = "".join(var_tb)
 full_tb = full_tb.encode('base64')

 else:
 short_tb = full_tb = fail_message.encode('base64')

 try:
 ss = cfme.utils.browser.browser().get_screenshot_as_base64()
 ss_error = None
 except Exception as b_ex:
 ss = None
 if str(b_ex):
 ss_error = '{}: {}'.format(type(b_ex).__name__, str(b_ex))
 else:
 ss_error = type(b_ex).__name__
 if ss_error:
 ss_error = ss_error.encode('base64')

 # A simple id to match the artifacts together
 sa_id = "softassert-{}".format(fauxfactory.gen_alpha(length=3).upper())
 from fixtures.pytest_store import store
 node = request.node

 fire_art_test_hook(
 node, 'filedump',
 description="Soft Assert Traceback", contents=full_tb,
 file_type="soft_traceback", display_type="danger", display_glyph="align-justify",
 contents_base64=True, group_id=sa_id, slaveid=store.slaveid)
 fire_art_test_hook(
 node, 'filedump',
 description="Soft Assert Short Traceback", contents=short_tb,
 file_type="soft_short_tb", display_type="danger", display_glyph="align-justify",
 contents_base64=True, group_id=sa_id, slaveid=store.slaveid)
 if ss is not None:
 fire_art_test_hook(
 node, 'filedump',
 description="Soft Assert Exception screenshot",
 file_type="screenshot", mode="wb", contents_base64=True, contents=ss,
 display_glyph="camera", group_id=sa_id, slaveid=store.slaveid)
 if ss_error is not None:
 fire_art_test_hook(
 node, 'filedump',
 description="Soft Assert Screenshot error", mode="w",
 contents_base64=True, contents=ss_error, display_type="danger", group_id=sa_id,
 slaveid=store.slaveid)

@contextmanager
def _catch_assert_cm(request):
 """assert catching context manager

 * Catches a single AssertionError, and turns it into a soft assert

 """
 try:
 yield
 except AssertionError as ex:

 handle_assert_artifacts(request)

 caught_assert = _annotate_failure(str(ex))
 _thread_locals.caught_asserts.append(caught_assert)

Some helper functions for creating or interacting with the caught asserts
def _get_caught_asserts():
 return _thread_locals.caught_asserts

def _clear_caught_asserts():
 # delete all items of the caught_asserts list
 del _thread_locals.caught_asserts[:]

def _annotate_failure(fail_message=''):
 # frames
 # 0: call to nth_frame_info
 # 1: _annotate_failure (this function)
 # 2: _annotate_failure caller (soft assert func or CM)
 # 3: failed assertion
 frameinfo = nth_frame_info(3)
 if not fail_message:
 fail_message = str(frameinfo.code_context[0]).strip()

 filename = get_rel_path(frameinfo.filename)
 path = '{}:{!r}'.format(filename, frameinfo.lineno)
 return '{} ({})'.format(fail_message, path)

@pytest.fixture
[docs]def soft_assert(request):
 """soft assert fixture, used to defer AssertionError to the end of a test run

 Usage:

 # contents of test_soft_assert.py, for example
 def test_uses_soft_assert(soft_assert):
 soft_assert(True)
 soft_assert(False, 'failure message')

 # soft_assert.catch_assert will intercept AssertionError
 # and turn it into a soft assert
 with soft_assert.catch_assert():
 assert None

 # Soft asserts can be cleared at any point within a test:
 soft_assert.clear_asserts()

 # If more in-depth interaction is desired with the caught_asserts, the list of failure
 # messages can be retrieved. This will return the directly mutable caught_asserts list:
 caught_asserts = soft_assert.caught_asserts()

 The test above will report two soft assertion failures, with the following message::

 SoftAssertionError:
 failure message (test_soft_assert.py:3)
 soft_assert(None) (test_soft_assert.py:8)

 """
 def soft_assert_func(expr, fail_message=''):
 if not expr:
 handle_assert_artifacts(request, fail_message=fail_message)
 caught_assert = _annotate_failure(fail_message)
 _thread_locals.caught_asserts.append(caught_assert)
 return bool(expr)
 # stash helper functions on soft_assert for easy access
 soft_assert_func.catch_assert = partial(_catch_assert_cm, request)
 soft_assert_func.caught_asserts = _get_caught_asserts
 soft_assert_func.clear_asserts = _clear_caught_asserts
 return soft_assert_func

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/events.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for fixtures.events

-*- coding: utf-8 -*-
"""Event testing fixture.

The idea of this fixture is to pass some "expected" events to
:py:class:`utils.events.EventListener` and check whether all expected events are received
at the test end.

register_event fixture accepts attributes for one expected event

simple example:

.. code-block:: python

 register_event(target_type='VmOrTemplate', target_name=vm_crud.name, event_type='vm_create')

more complex example:

.. code-block:: python

 def add_cmp(_, y):
 data = yaml.load(y)
 return data['resourceId'].endswith(nsg_name) and data['status']['value'] == 'Accepted' and \
 data['subStatus']['value'] == 'Created'

 fd_add_attr = {'full_data': 'will be ignored',
 'cmp_func': add_cmp}

 # add network security group event
 register_event(fd_add_attr, source='AZURE',
 event_type='networkSecurityGroups_write_EndRequest')

 def rm_cmp(_, y):
 data = yaml.load(y)
 return data['resourceId'].endswith(nsg_name) and data['status']['value'] == 'Succeeded' \
 and len(data['subStatus']['value']) == 0

 fd_rm_attr = {'full_data': 'will be ignored',
 'cmp_func': rm_cmp}

 # remove network security group event
 register_event(fd_rm_attr, source=provider.type.upper(),
 event_type='networkSecurityGroups_delete_EndRequest')

Expected events are defined by set of event attributes which should match to the same event
attributes in event_streams db table except one fake attribute - target_name which is resolved into
certain object's id.

Default match algorithm is ==. Event also accepts match function in order to change default
match type.
"""
import logging
import pytest

from cfme.utils.log import setup_logger
from cfme.utils.wait import wait_for, TimedOutError

xxx better logger name
logger = setup_logger(logging.getLogger('events'))

@pytest.hookimpl(hookwrapper=True)
[docs]def pytest_runtest_call(item):
 try:
 yield
 finally:
 if "register_event" in item.funcargnames:
 event_listener = item.funcargs["register_event"]
 soft_assert = item.funcargs["soft_assert"]

 try:
 logger.info('Checking the events to come.')
 wait_for(event_listener.check_expected_events,
 delay=5,
 num_sec=180,
 handle_exception=True)
 except TimedOutError:
 logger.info('checking collected events')
 for event in event_listener.got_events:
 soft_assert(len(event['matched_events']),
 "Event {} did not come!".format(event['event']))
 else:
 logger.info('Seems like all events have arrived!')

@pytest.yield_fixture(scope="function")
[docs]def register_event(request, uses_event_listener, soft_assert, appliance):
 """register_event(list of event attributes)
 Event registration fixture.

 This fixture is used to notify the testing system that some event
 should have occurred during execution of the test case using it.
 It does not register anything by itself.

 Args:
 event attribute 1
 ...
 event attribute N

 Returns: None

 Usage:

 def test_something(foo, bar, register_event, appliance):
 register_event(target_type = 'VmOrTemplate', target_name = vm.name,
 event_type = 'vm_create')
 """
 event_listener = appliance.event_listener()
 event_listener.reset_events()
 event_listener.start()
 event_listener.set_last_record()
 yield event_listener

 event_listener.stop()
 event_listener.reset_events()

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/fixtureconf.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for fixtures.fixtureconf

import pytest

@pytest.fixture
[docs]def fixtureconf(request):
 """Provides easy access to the fixtureconf dict in fixtures"""
 return request.node._fixtureconf

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/github/MainClass.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for github.MainClass

-*- coding: utf-8 -*-

Copyrights and license
#
Copyright 2013 AKFish <akfish@gmail.com>
Copyright 2013 Ed Jackson <ed.jackson@gmail.com>
Copyright 2013 Jonathan J Hunt <hunt@braincorporation.com>
Copyright 2013 Peter Golm <golm.peter@gmail.com>
Copyright 2013 Vincent Jacques <vincent@vincent-jacques.net>
#
This file is part of PyGithub.
http://pygithub.github.io/PyGithub/v1/index.html
#
PyGithub is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.
#
PyGithub is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details.
#
You should have received a copy of the GNU Lesser General Public License
along with PyGithub. If not, see <http://www.gnu.org/licenses/>.
#
##

import urllib
import pickle
import time
import sys
from httplib import HTTPSConnection
import jwt

from Requester import Requester, json
import AuthenticatedUser
import NamedUser
import Organization
import Gist
import github.PaginatedList
import Repository
import Installation
import Legacy
import github.GithubObject
import HookDescription
import GitignoreTemplate
import Status
import StatusMessage
import RateLimit
import InstallationAuthorization
import GithubException

atLeastPython3 = sys.hexversion >= 0x03000000

DEFAULT_BASE_URL = "https://api.github.com"
DEFAULT_TIMEOUT = 10
DEFAULT_PER_PAGE = 30

class Github(object):
 """
 This is the main class you instanciate to access the Github API v3. Optional parameters allow different authentication methods.
 """

 def __init__(self, login_or_token=None, password=None, base_url=DEFAULT_BASE_URL, timeout=DEFAULT_TIMEOUT, client_id=None, client_secret=None, user_agent='PyGithub/Python', per_page=DEFAULT_PER_PAGE, api_preview=False):
 """
 :param login_or_token: string
 :param password: string
 :param base_url: string
 :param timeout: integer
 :param client_id: string
 :param client_secret: string
 :param user_agent: string
 :param per_page: int
 """

 assert login_or_token is None or isinstance(login_or_token, (str, unicode)), login_or_token
 assert password is None or isinstance(password, (str, unicode)), password
 assert isinstance(base_url, (str, unicode)), base_url
 assert isinstance(timeout, (int, long)), timeout
 assert client_id is None or isinstance(client_id, (str, unicode)), client_id
 assert client_secret is None or isinstance(client_secret, (str, unicode)), client_secret
 assert user_agent is None or isinstance(user_agent, (str, unicode)), user_agent
 assert isinstance(api_preview, (bool))
 self.__requester = Requester(login_or_token, password, base_url, timeout, client_id, client_secret, user_agent, per_page, api_preview)

 def __get_FIX_REPO_GET_GIT_REF(self):
 """
 :type: bool
 """
 return self.__requester.FIX_REPO_GET_GIT_REF

 def __set_FIX_REPO_GET_GIT_REF(self, value):
 self.__requester.FIX_REPO_GET_GIT_REF = value

 FIX_REPO_GET_GIT_REF = property(__get_FIX_REPO_GET_GIT_REF, __set_FIX_REPO_GET_GIT_REF)

 def __get_per_page(self):
 """
 :type: int
 """
 return self.__requester.per_page

 def __set_per_page(self, value):
 self.__requester.per_page = value

 # v2: Remove this property? Why should it be necessary to read/modify it after construction
 per_page = property(__get_per_page, __set_per_page)

 # v2: Provide a unified way to access values of headers of last response
 # v2: (and add/keep ad hoc properties for specific useful headers like rate limiting, oauth scopes, etc.)
 # v2: Return an instance of a class: using a tuple did not allow to add a field "resettime"
 @property
 def rate_limiting(self):
 """
 First value is requests remaining, second value is request limit.
 :type: (int, int)
 """
 remaining, limit = self.__requester.rate_limiting
 if limit < 0:
 self.get_rate_limit()
 return self.__requester.rate_limiting

 @property
 def rate_limiting_resettime(self):
 """
 Unix timestamp indicating when rate limiting will reset.
 :type: int
 """
 if self.__requester.rate_limiting_resettime == 0:
 self.get_rate_limit()
 return self.__requester.rate_limiting_resettime

 def get_rate_limit(self):
 """
 Don't forget you can access the rate limit returned in headers of last Github API v3 response, by :attr:`github.MainClass.Github.rate_limiting` and :attr:`github.MainClass.Github.rate_limiting_resettime`.

 :calls: `GET /rate_limit <http://developer.github.com/v3/rate_limit>`_
 :rtype: :class:`github.RateLimit.RateLimit`
 """
 headers, attributes = self.__requester.requestJsonAndCheck(
 'GET',
 '/rate_limit'
)
 return RateLimit.RateLimit(self.__requester, headers, attributes, True)

 @property
 def oauth_scopes(self):
 """
 :type: list of string
 """
 return self.__requester.oauth_scopes

 def get_user(self, login=github.GithubObject.NotSet):
 """
 :calls: `GET /users/:user <http://developer.github.com/v3/users>`_ or `GET /user <http://developer.github.com/v3/users>`_
 :param login: string
 :rtype: :class:`github.NamedUser.NamedUser`
 """
 assert login is github.GithubObject.NotSet or isinstance(login, (str, unicode)), login
 if login is github.GithubObject.NotSet:
 return AuthenticatedUser.AuthenticatedUser(self.__requester, {}, {"url": "/user"}, completed=False)
 else:
 headers, data = self.__requester.requestJsonAndCheck(
 "GET",
 "/users/" + login
)
 return github.NamedUser.NamedUser(self.__requester, headers, data, completed=True)

 def get_users(self, since=github.GithubObject.NotSet):
 """
 :calls: `GET /users <http://developer.github.com/v3/users>`_
 :param since: integer
 :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.NamedUser.NamedUser`
 """
 assert since is github.GithubObject.NotSet or isinstance(since, (int, long)), since
 url_parameters = dict()
 if since is not github.GithubObject.NotSet:
 url_parameters["since"] = since
 return github.PaginatedList.PaginatedList(
 github.NamedUser.NamedUser,
 self.__requester,
 "/users",
 url_parameters
)

 def get_organization(self, login):
 """
 :calls: `GET /orgs/:org <http://developer.github.com/v3/orgs>`_
 :param login: string
 :rtype: :class:`github.Organization.Organization`
 """
 assert isinstance(login, (str, unicode)), login
 headers, data = self.__requester.requestJsonAndCheck(
 "GET",
 "/orgs/" + login
)
 return github.Organization.Organization(self.__requester, headers, data, completed=True)

 def get_repo(self, full_name_or_id, lazy=True):
 """
 :calls: `GET /repos/:owner/:repo <http://developer.github.com/v3/repos>`_ or `GET /repositories/:id <http://developer.github.com/v3/repos>`_
 :rtype: :class:`github.Repository.Repository`
 """
 assert isinstance(full_name_or_id, (str, unicode, int, long)), full_name_or_id
 url_base = "/repositories/" if isinstance(full_name_or_id, int) or isinstance(full_name_or_id, long) else "/repos/"
 url = "%s%s" % (url_base, full_name_or_id)
 if lazy:
 return Repository.Repository(self.__requester, {}, {"url": url}, completed=False)
 headers, data = self.__requester.requestJsonAndCheck(
 "GET",
 "%s%s" % (url_base, full_name_or_id)
)
 return Repository.Repository(self.__requester, headers, data, completed=True)

 def get_repos(self, since=github.GithubObject.NotSet):
 """
 :calls: `GET /repositories <http://developer.github.com/v3/repos/#list-all-public-repositories>`_
 :param since: integer
 :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Repository.Repository`
 """
 assert since is github.GithubObject.NotSet or isinstance(since, (int, long)), since
 url_parameters = dict()
 if since is not github.GithubObject.NotSet:
 url_parameters["since"] = since
 return github.PaginatedList.PaginatedList(
 github.Repository.Repository,
 self.__requester,
 "/repositories",
 url_parameters
)

 def get_gist(self, id):
 """
 :calls: `GET /gists/:id <http://developer.github.com/v3/gists>`_
 :param id: string
 :rtype: :class:`github.Gist.Gist`
 """
 assert isinstance(id, (str, unicode)), id
 headers, data = self.__requester.requestJsonAndCheck(
 "GET",
 "/gists/" + id
)
 return github.Gist.Gist(self.__requester, headers, data, completed=True)

 def get_gists(self):
 """
 :calls: `GET /gists/public <http://developer.github.com/v3/gists>`_
 :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Gist.Gist`
 """
 return github.PaginatedList.PaginatedList(
 github.Gist.Gist,
 self.__requester,
 "/gists/public",
 None
)

 def legacy_search_repos(self, keyword, language=github.GithubObject.NotSet):
 """
 :calls: `GET /legacy/repos/search/:keyword <http://developer.github.com/v3/search/legacy>`_
 :param keyword: string
 :param language: string
 :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Repository.Repository`
 """
 assert isinstance(keyword, (str, unicode)), keyword
 assert language is github.GithubObject.NotSet or isinstance(language, (str, unicode)), language
 args = {} if language is github.GithubObject.NotSet else {"language": language}
 return Legacy.PaginatedList(
 "/legacy/repos/search/" + urllib.quote_plus(keyword, safe='/%:><'),
 args,
 self.__requester,
 "repositories",
 Legacy.convertRepo,
 github.Repository.Repository,
)

 def legacy_search_users(self, keyword):
 """
 :calls: `GET /legacy/user/search/:keyword <http://developer.github.com/v3/search/legacy>`_
 :param keyword: string
 :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.NamedUser.NamedUser`
 """
 assert isinstance(keyword, (str, unicode)), keyword
 return Legacy.PaginatedList(
 "/legacy/user/search/" + urllib.quote_plus(keyword, safe='/%:><'),
 {},
 self.__requester,
 "users",
 Legacy.convertUser,
 github.NamedUser.NamedUser,
)

 def legacy_search_user_by_email(self, email):
 """
 :calls: `GET /legacy/user/email/:email <http://developer.github.com/v3/search/legacy>`_
 :param email: string
 :rtype: :class:`github.NamedUser.NamedUser`
 """
 assert isinstance(email, (str, unicode)), email
 headers, data = self.__requester.requestJsonAndCheck(
 "GET",
 "/legacy/user/email/" + email
)
 return github.NamedUser.NamedUser(self.__requester, headers, Legacy.convertUser(data["user"]), completed=False)

 def search_repositories(self, query, sort=github.GithubObject.NotSet, order=github.GithubObject.NotSet, **qualifiers):
 """
 :calls: `GET /search/repositories <http://developer.github.com/v3/search>`_
 :param query: string
 :param sort: string ('stars', 'forks', 'updated')
 :param order: string ('asc', 'desc')
 :param qualifiers: keyword dict query qualifiers
 :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Repository.Repository`
 """
 assert isinstance(query, (str, unicode)), query
 url_parameters = dict()
 if sort is not github.GithubObject.NotSet: # pragma no branch (Should be covered)
 assert sort in ('stars', 'forks', 'updated'), sort
 url_parameters["sort"] = sort
 if order is not github.GithubObject.NotSet: # pragma no branch (Should be covered)
 assert order in ('asc', 'desc'), order
 url_parameters["order"] = order

 query_chunks = []
 if query: # pragma no branch (Should be covered)
 query_chunks.append(query)

 for qualifier, value in qualifiers.items():
 query_chunks.append("%s:%s" % (qualifier, value))

 url_parameters["q"] = ' '.join(query_chunks)
 assert url_parameters["q"], "need at least one qualifier"

 return github.PaginatedList.PaginatedList(
 github.Repository.Repository,
 self.__requester,
 "/search/repositories",
 url_parameters
)

 def search_users(self, query, sort=github.GithubObject.NotSet, order=github.GithubObject.NotSet, **qualifiers):
 """
 :calls: `GET /search/users <http://developer.github.com/v3/search>`_
 :param query: string
 :param sort: string ('followers', 'repositories', 'joined')
 :param order: string ('asc', 'desc')
 :param qualifiers: keyword dict query qualifiers
 :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.NamedUser.NamedUser`
 """
 assert isinstance(query, (str, unicode)), query
 url_parameters = dict()
 if sort is not github.GithubObject.NotSet:
 assert sort in ('followers', 'repositories', 'joined'), sort
 url_parameters["sort"] = sort
 if order is not github.GithubObject.NotSet:
 assert order in ('asc', 'desc'), order
 url_parameters["order"] = order

 query_chunks = []
 if query:
 query_chunks.append(query)

 for qualifier, value in qualifiers.items():
 query_chunks.append("%s:%s" % (qualifier, value))

 url_parameters["q"] = ' '.join(query_chunks)
 assert url_parameters["q"], "need at least one qualifier"

 return github.PaginatedList.PaginatedList(
 github.NamedUser.NamedUser,
 self.__requester,
 "/search/users",
 url_parameters
)

 def search_issues(self, query, sort=github.GithubObject.NotSet, order=github.GithubObject.NotSet, **qualifiers):
 """
 :calls: `GET /search/issues <http://developer.github.com/v3/search>`_
 :param query: string
 :param sort: string ('comments', 'created', 'updated')
 :param order: string ('asc', 'desc')
 :param qualifiers: keyword dict query qualifiers
 :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Issue.Issue`
 """
 assert isinstance(query, (str, unicode)), query
 url_parameters = dict()
 if sort is not github.GithubObject.NotSet:
 assert sort in ('comments', 'created', 'updated'), sort
 url_parameters["sort"] = sort
 if order is not github.GithubObject.NotSet:
 assert order in ('asc', 'desc'), order
 url_parameters["order"] = order

 query_chunks = []
 if query: # pragma no branch (Should be covered)
 query_chunks.append(query)

 for qualifier, value in qualifiers.items():
 query_chunks.append("%s:%s" % (qualifier, value))

 url_parameters["q"] = ' '.join(query_chunks)
 assert url_parameters["q"], "need at least one qualifier"

 return github.PaginatedList.PaginatedList(
 github.Issue.Issue,
 self.__requester,
 "/search/issues",
 url_parameters
)

 def search_code(self, query, sort=github.GithubObject.NotSet, order=github.GithubObject.NotSet, **qualifiers):
 """
 :calls: `GET /search/code <http://developer.github.com/v3/search>`_
 :param query: string
 :param sort: string ('indexed')
 :param order: string ('asc', 'desc')
 :param qualifiers: keyword dict query qualifiers
 :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.ContentFile.ContentFile`
 """
 assert isinstance(query, (str, unicode)), query
 url_parameters = dict()
 if sort is not github.GithubObject.NotSet: # pragma no branch (Should be covered)
 assert sort in ('indexed',), sort
 url_parameters["sort"] = sort
 if order is not github.GithubObject.NotSet: # pragma no branch (Should be covered)
 assert order in ('asc', 'desc'), order
 url_parameters["order"] = order

 query_chunks = []
 if query: # pragma no branch (Should be covered)
 query_chunks.append(query)

 for qualifier, value in qualifiers.items():
 query_chunks.append("%s:%s" % (qualifier, value))

 url_parameters["q"] = ' '.join(query_chunks)
 assert url_parameters["q"], "need at least one qualifier"

 return github.PaginatedList.PaginatedList(
 github.ContentFile.ContentFile,
 self.__requester,
 "/search/code",
 url_parameters
)

 def render_markdown(self, text, context=github.GithubObject.NotSet):
 """
 :calls: `POST /markdown <http://developer.github.com/v3/markdown>`_
 :param text: string
 :param context: :class:`github.Repository.Repository`
 :rtype: string
 """
 assert isinstance(text, (str, unicode)), text
 assert context is github.GithubObject.NotSet or isinstance(context, github.Repository.Repository), context
 post_parameters = {
 "text": text
 }
 if context is not github.GithubObject.NotSet:
 post_parameters["mode"] = "gfm"
 post_parameters["context"] = context._identity
 status, headers, data = self.__requester.requestJson(
 "POST",
 "/markdown",
 input=post_parameters
)
 return data

 def get_hook(self, name):
 """
 :calls: `GET /hooks/:name <http://developer.github.com/v3/repos/hooks/>`_
 :param name: string
 :rtype: :class:`github.HookDescription.HookDescription`
 """
 assert isinstance(name, (str, unicode)), name
 headers, attributes = self.__requester.requestJsonAndCheck(
 "GET",
 "/hooks/" + name
)
 return HookDescription.HookDescription(self.__requester, headers, attributes, completed=True)

 def get_hooks(self):
 """
 :calls: `GET /hooks <http://developer.github.com/v3/repos/hooks/>`_
 :rtype: list of :class:`github.HookDescription.HookDescription`
 """
 headers, data = self.__requester.requestJsonAndCheck(
 "GET",
 "/hooks"
)
 return [HookDescription.HookDescription(self.__requester, headers, attributes, completed=True) for attributes in data]

 def get_gitignore_templates(self):
 """
 :calls: `GET /gitignore/templates <http://developer.github.com/v3/gitignore>`_
 :rtype: list of string
 """
 headers, data = self.__requester.requestJsonAndCheck(
 "GET",
 "/gitignore/templates"
)
 return data

 def get_gitignore_template(self, name):
 """
 :calls: `GET /gitignore/templates/:name <http://developer.github.com/v3/gitignore>`_
 :rtype: :class:`github.GitignoreTemplate.GitignoreTemplate`
 """
 assert isinstance(name, (str, unicode)), name
 headers, attributes = self.__requester.requestJsonAndCheck(
 "GET",
 "/gitignore/templates/" + name
)
 return GitignoreTemplate.GitignoreTemplate(self.__requester, headers, attributes, completed=True)

 def get_emojis(self):
 """
 :calls: `GET /emojis <http://developer.github.com/v3/emojis/>`_
 :rtype: dictionary of type => url for emoji`
 """
 headers, attributes = self.__requester.requestJsonAndCheck(
 "GET",
 "/emojis"
)
 return attributes

 def create_from_raw_data(self, klass, raw_data, headers={}):
 """
 Creates an object from raw_data previously obtained by :attr:`github.GithubObject.GithubObject.raw_data`,
 and optionaly headers previously obtained by :attr:`github.GithubObject.GithubObject.raw_headers`.

 :param klass: the class of the object to create
 :param raw_data: dict
 :param headers: dict
 :rtype: instance of class ``klass``
 """
 return klass(self.__requester, headers, raw_data, completed=True)

 def dump(self, obj, file, protocol=0):
 """
 Dumps (pickles) a PyGithub object to a file-like object.
 Some effort is made to not pickle sensitive informations like the Github credentials used in the :class:`Github` instance.
 But NO EFFORT is made to remove sensitive information from the object's attributes.

 :param obj: the object to pickle
 :param file: the file-like object to pickle to
 :param protocol: the `pickling protocol <http://docs.python.org/2.7/library/pickle.html#data-stream-format>`_
 """
 pickle.dump((obj.__class__, obj.raw_data, obj.raw_headers), file, protocol)

 def load(self, f):
 """
 Loads (unpickles) a PyGithub object from a file-like object.

 :param f: the file-like object to unpickle from
 :return: the unpickled object
 """
 return self.create_from_raw_data(*pickle.load(f))

 def get_api_status(self):
 """
 This doesn't work with a Github Enterprise installation, because it always targets https://status.github.com.

 :calls: `GET /api/status.json <https://status.github.com/api>`_
 :rtype: :class:`github.Status.Status`
 """
 headers, attributes = self.__requester.requestJsonAndCheck(
 "GET",
 "/api/status.json",
 cnx="status"
)
 return Status.Status(self.__requester, headers, attributes, completed=True)

 def get_last_api_status_message(self):
 """
 This doesn't work with a Github Enterprise installation, because it always targets https://status.github.com.

 :calls: `GET /api/last-message.json <https://status.github.com/api>`_
 :rtype: :class:`github.StatusMessage.StatusMessage`
 """
 headers, attributes = self.__requester.requestJsonAndCheck(
 "GET",
 "/api/last-message.json",
 cnx="status"
)
 return StatusMessage.StatusMessage(self.__requester, headers, attributes, completed=True)

 def get_api_status_messages(self):
 """
 This doesn't work with a Github Enterprise installation, because it always targets https://status.github.com.

 :calls: `GET /api/messages.json <https://status.github.com/api>`_
 :rtype: list of :class:`github.StatusMessage.StatusMessage`
 """
 headers, data = self.__requester.requestJsonAndCheck(
 "GET",
 "/api/messages.json",
 cnx="status"
)
 return [StatusMessage.StatusMessage(self.__requester, headers, attributes, completed=True) for attributes in data]

 def get_installation(self, id):
 """

 :param id:
 :return:
 """
 return Installation.Installation(self.__requester, headers={}, attributes={"id": id}, completed=True)

class GithubIntegration(object):
 """
 Main class to obtain tokens for a GitHub integration.
 """

 def __init__(self, integration_id, private_key):
 """
 :param integration_id: int
 :param private_key: string
 """
 self.integration_id = integration_id
 self.private_key = private_key

 def create_jwt(self):
 """
 Creates a signed JWT, valid for 60 seconds.
 :return:
 """
 now = int(time.time())
 payload = {
 "iat": now,
 "exp": now + 60,
 "iss": self.integration_id
 }
 return jwt.encode(
 payload,
 key=self.private_key,
 algorithm="RS256"
)

 def get_access_token(self, installation_id, user_id=None):
 """
 Get an access token for the given installation id.
 POSTs https://api.github.com/installations/<installation_id>/access_tokens
 :param user_id: int
 :param installation_id: int
 :return: :class:`github.InstallationAuthorization.InstallationAuthorization`
 """
 body = None
 if user_id:
 body = json.dumps({"user_id": user_id})
 conn = HTTPSConnection("api.github.com")
 conn.request(
 method="POST",
 url="/installations/{}/access_tokens".format(installation_id),
 headers={
 "Authorization": "Bearer {}".format(self.create_jwt()),
 "Accept": "application/vnd.github.machine-man-preview+json",
 "User-Agent": "PyGithub/Python"
 },
 body=body
)
 response = conn.getresponse()
 response_text = response.read()

 if atLeastPython3:
 response_text = response_text.decode('utf-8')

 conn.close()
 if response.status == 201:
 data = json.loads(response_text)
 return InstallationAuthorization.InstallationAuthorization(
 requester=None, # not required, this is a NonCompletableGithubObject
 headers={}, # not required, this is a NonCompletableGithubObject
 attributes=data,
 completed=True
)
 elif response.status == 403:
 raise GithubException.BadCredentialsException(
 status=response.status,
 data=response_text
)
 elif response.status == 404:
 raise GithubException.UnknownObjectException(
 status=response.status,
 data=response_text
)
 raise GithubException.GithubException(
 status=response.status,
 data=response_text
)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/dashboard.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.dashboard

-*- coding: utf-8 -*-
import re

from cached_property import cached_property
from navmazing import NavigateToAttribute
from cfme.utils.appliance import BaseCollection, BaseEntity
from cfme.utils.timeutil import parsetime
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to
from cfme.utils.wait import wait_for

from widgetastic.utils import ParametrizedLocator, ParametrizedString, Parameter
from widgetastic.widget import ParametrizedView, Text, View, Widget, ConditionalSwitchableView
from widgetastic.xpath import quote
from widgetastic_patternfly import Button, Dropdown, Tab
from widgetastic_manageiq import Table

from .base.login import BaseLoggedInPage

TODO: Move this into widgetastic_patternfly
[docs]class Kebab(Widget):
 """The so-called "kebab" widget of Patternfly.

 <http://www.patternfly.org/pattern-library/widgets/#kebabs>

 Args:
 button_id: id of the button tag inside the kebab. If not specified, first kebab available
 will be used

 """
 ROOT = ParametrizedLocator('{@locator}')
 UL = './ul[contains(@class, "dropdown-menu")]'
 BUTTON = './button'
 ITEM = './ul/li/a[normalize-space(.)={}]'
 ITEMS = './ul/li/a'

 def __init__(self, parent, button_id=None, logger=None):
 super(Kebab, self).__init__(parent, logger=logger)
 if button_id is not None:
 self.locator = (
 './/div[contains(@class, "dropdown-kebab-pf") and ./button[@id={}]]'.format(
 quote(button_id)))
 else:
 self.locator = './/div[contains(@class, "dropdown-kebab-pf") and ./button][1]'

 @property
 def is_opened(self):
 """Returns opened state of the kebab."""
 return self.browser.is_displayed(self.UL)

 @property
 def items(self):
 """Lists all items in the kebab.

 Returns:
 :py:class:`list` of :py:class:`str`
 """
 return [self.browser.text(item) for item in self.browser.elements(self.ITEMS)]

[docs] def open(self):
 """Open the kebab"""
 if not self.is_opened:
 self.browser.click(self.BUTTON)

[docs] def close(self):
 """Close the kebab"""
 if self.is_opened:
 self.browser.click(self.BUTTON)

[docs] def select(self, item, close=True):
 """Select a specific item from the kebab.

 Args:
 item: Item to be selected.
 close: Whether to close the kebab after selection. If the item is a link, you may want
 to set this to ``False``
 """
 try:
 self.open()
 self.browser.click(self.ITEM.format(quote(item)))
 finally:
 if close:
 self.close()

[docs]class DashboardView(BaseLoggedInPage):
 """View that represents the Intelligence/Dashboard."""
 reset_button = Button(title="Reset Dashboard Widgets to the defaults")

[docs] def reset_widgets(self, cancel=False):
 """Clicks the reset button to reset widgets and handles the alert."""
 self.browser.click(self.reset_button, ignore_ajax=True)
 self.browser.handle_alert(cancel=cancel, wait=10.0)
 self.browser.plugin.ensure_page_safe()

 add_widget = Dropdown('Add a widget')

 @View.nested
 class zoomed(View): # noqa
 """Represents the zoomed modal panel"""
 title = Text('.//div[@id="lightbox-panel"]//h2[contains(@class, "card-pf-title")]')
 close = Text('.//div[@id="lightbox-panel"]//a[normalize-space(@title)="Close"]')

[docs] def ensure_zoom_closed(self):
 if self.zoomed.title.is_displayed:
 self.zoomed.close.click()

 @ParametrizedView.nested
 class dashboards(Tab, ParametrizedView): # noqa
 PARAMETERS = ('title',)
 ALL_LOCATOR = './/ul[contains(@class, "nav-tabs-pf")]/li/a'
 COLUMN_LOCATOR = '//div[@id="col{}"]//h2'

 tab_name = Parameter('title')

 @classmethod
 def all(cls, browser):
 return [(browser.text(e),) for e in browser.elements(cls.ALL_LOCATOR)]

 def column_widget_names(self, column_index):
 """Returns names of widgets in column specified.

 Args:
 column_index: Position of the column. Numbered from 1!

 Returns:
 :py:class:`list` of :py:class:`str`
 """
 return [
 self.browser.text(e)
 for e
 in self.browser.elements(self.COLUMN_LOCATOR.format(column_index))]

 @ParametrizedView.nested
 class widgets(ParametrizedView): # noqa
 PARAMETERS = ('title',)
 ALL_LOCATOR = '//div[starts-with(@id, "w_")]//h2[contains(@class, "card-pf-title")]'
 BLANK_SLATE = './/div[contains(@class, "blank-slate-pf")]//h1'
 CHART = './div/div/div[starts-with(@id, "miq_widgetchart_")]'
 RSS = './div/div[contains(@class, "rss_widget")]'
 RSS_TABLE = './div[./div[contains(@class, "rss_widget")]]/div/table'
 TABLE = './div/table|./div/div/table'
 MC = (
 './div/div[contains(@class, "mc")]/*[1]|./div/div[starts-with(@id, "dd_w") '
 'and contains(@id, "_box")]/*[1]')
 ROOT = ParametrizedLocator(
 './/div[starts-with(@id, "w_") and .//h2[contains(@class, "card-pf-title")'
 ' and normalize-space(.)={title|quote}]]')

 title = Text('.//h2[contains(@class, "card-pf-title")]')
 menu = Kebab(button_id=ParametrizedString('btn_{@widget_id}'))

 contents = ConditionalSwitchableView(reference='content_type')

 # Unsupported reading yet
 contents.register(None, default=True, widget=Widget())
 contents.register('chart', widget=Widget())

 # Reading supported
 contents.register('table', widget=Table(TABLE))
 contents.register('rss', widget=Table(RSS_TABLE))

 footer = Text('.//div[contains(@class, "card-pf-footer")]')

 @property
 def column(self):
 """Returns the column position of this widget. Numbered from 1!"""
 parent = self.browser.element('..')
 try:
 parent_id = self.browser.get_attribute('id', parent).strip()
 return int(re.sub(r'^col(\d+)$', '\\1', parent_id))
 except (ValueError, TypeError, AttributeError):
 raise ValueError('Could not get the column index of widget')

 @property
 def minimized(self):
 return not self.browser.is_displayed(self.MC)

 @cached_property
 def widget_id(self):
 id_attr = self.browser.get_attribute('id', self)
 return int(id_attr.rsplit('_', 1)[-1])

 @cached_property
 def content_type(self):
 if self.browser.elements(self.BLANK_SLATE):
 # No data yet
 return None
 elif self.browser.elements(self.RSS):
 return 'rss'
 elif self.browser.is_displayed(self.CHART):
 return 'chart'
 elif self.browser.is_displayed(self.TABLE):
 return 'table'
 else:
 return None

 @property
 def blank(self):
 return bool(self.browser.elements(self.BLANK_SLATE))

 @classmethod
 def all(cls, browser):
 return [(browser.text(e),) for e in browser.elements(cls.ALL_LOCATOR)]

 @property
 def is_displayed(self):
 return (
 self.logged_in_as_current_user and
 self.navigation.currently_selected == ['Cloud Intel', 'Dashboard'])

[docs]class ParticularDashboardView(DashboardView):
 @property
 def is_displayed(self):
 return (
 super(ParticularDashboardView, self).is_displayed and
 self.dashboards(title=self.obj.name).is_active)

[docs]class DashboardCollection(BaseCollection):
 """Represents the Dashboard page and can jump around various dashboards present."""

 def __init__(self, appliance):
 self.appliance = appliance

 @property
 def default(self):
 """Returns an instance of the ``Default Dashboard``"""
 return self.instantiate('Default Dashboard')

[docs] def instantiate(self, name):
 return Dashboard(collection=self, name=name)

[docs] def all(self):
 view = navigate_to(self.appliance.server, 'Dashboard')
 result = []
 # TODO: Idiomatize the following line
 for (dashboard_name,) in view.dashboards.view_class.all(view.browser):
 result.append(self.instantiate(dashboard_name))
 return result

[docs] def refresh(self):
 """Refreshes the dashboard view by forcibly clicking the navigation again."""
 view = navigate_to(self.appliance.server, 'Dashboard')
 view.navigation.select('Cloud Intel', 'Dashboard')

 @property
 def zoomed_name(self):
 """Grabs the name of the currently zoomed widget."""
 view = navigate_to(self.appliance.server, 'Dashboard')
 if not view.zoomed.is_displayed:
 return None
 return view.zoomed.title.text

[docs] def close_zoom(self):
 """Closes any zoomed widget."""
 navigate_to(self.appliance.server, 'Dashboard').ensure_zoom_closed()

[docs]class Dashboard(BaseEntity):
 def __init__(self, collection, name):
 self.collection = collection
 self.appliance = self.collection.appliance
 self.name = name

 @property
 def dashboard_view(self):
 """Returns a view pointed at a particular dashboard."""
 return navigate_to(self, 'Details').dashboards(title=self.name)

 @cached_property
 def widgets(self):
 return DashboardWidgetCollection(self.appliance, self)

[docs] def drag_and_drop(self, dragged_widget_or_name, dropped_widget_or_name):
 """Drags and drops widgets onto each other."""
 if isinstance(dragged_widget_or_name, DashboardWidget):
 dragged_widget_or_name = dragged_widget_or_name.name
 if isinstance(dropped_widget_or_name, DashboardWidget):
 dropped_widget_object = dropped_widget_or_name
 dropped_widget_or_name = dropped_widget_or_name.name
 else:
 dropped_widget_object = self.widgets.instantiate(dropped_widget_or_name)
 view = self.dashboard_view
 first_widget = view.widgets(title=dragged_widget_or_name).title
 if dropped_widget_object.last_in_column:
 # Different behaviour
 dropped_widget = view.widgets(title=dropped_widget_or_name)
 middle = view.browser.middle_of(dropped_widget)
 position = view.browser.location_of(dropped_widget)
 size = view.browser.size_of(dropped_widget)

 drop_x = middle.x
 drop_y = position.x + size.height + 10
 view.browser.drag_and_drop_to(first_widget, to_x=drop_x, to_y=drop_y)
 else:
 second_widget = view.widgets(title=dropped_widget_or_name).footer
 view.browser.drag_and_drop(first_widget, second_widget)
 view.browser.plugin.ensure_page_safe()

@navigator.register(Dashboard, 'Details')
[docs]class DashboardDetails(CFMENavigateStep):
 VIEW = ParticularDashboardView
 prerequisite = NavigateToAttribute('appliance.server', 'Dashboard')

[docs] def step(self):
 self.prerequisite_view.dashboards(title=self.obj.name).select()

[docs]class DashboardWidgetCollection(BaseCollection):
 def __init__(self, appliance, dashboard):
 self.appliance = appliance
 self.dashboard = dashboard

 @property
 def dashboard_view(self):
 return self.dashboard.dashboard_view

[docs] def instantiate(self, name):
 return DashboardWidget(self, name)

[docs] def all(self, content_type=None): # widgets
 view = self.dashboard_view
 result = []
 # TODO: Idiomatize the following line
 for (widget_name,) in view.widgets.view_class.all(view.browser):
 w = self.instantiate(widget_name)
 if content_type is None or w.content_type == content_type:
 result.append(self.instantiate(widget_name))
 return result

[docs] def reset(self, cancel=False):
 """Clicks the Reset widgets button."""
 navigate_to(self.dashboard, 'Details').reset_widgets()

[docs]class DashboardWidget(BaseEntity):
 """Represents a single UI dashboard widget.

 Args:
 name: Name of the widget as displayed in the title.
 widget_collection: The widget collection linked to a dashboard
 """
 def __init__(self, collection, name):
 self.collection = collection
 self.appliance = self.collection.appliance
 self.name = name

 @property
 def dashboard(self):
 return self.collection.dashboard

 @property
 def widget_view(self):
 """Returns a view of the particular widget."""
 return self.dashboard.dashboard_view.widgets(title=self.name)

 @property
 def last_in_column(self):
 """Returns whether this widget is the last in its column"""
 try:
 return (
 self.widget_view.parent.column_widget_names(self.widget_view.column)[-1] ==
 self.name)
 except IndexError:
 return False

 @property
 def footer(self):
 """Return parsed footer value"""
 self.close_zoom()
 cleaned = [
 x.strip()
 for x
 in self.widget_view.footer.text.encode("utf-8").strip().split("|")
]
 result = {}
 for item in cleaned:
 name, time = item.split(" ", 1)
 time = time.strip()
 if time.lower() == "never":
 result[name.strip().lower()] = None
 else:
 try:
 result[name.strip().lower()] = parsetime.from_american_minutes(time.strip())
 except ValueError:
 result[name.strip().lower()] = parsetime.from_long_date_format(time.strip())
 return result

 @property
 def time_updated(self):
 """Returns a datetime when the widget was last updated."""
 return self.footer["updated"]

 @property
 def time_next(self):
 """Returns a datetime when the widget will be updated."""
 return self.footer["next"]

 @property
 def minimized(self):
 """Returns whether the widget is minimized or not."""
 self.close_zoom()
 return self.widget_view.minimized

 @property
 def blank(self):
 """Returns whether the widget has not been generated before."""
 self.close_zoom()
 return self.widget_view.blank

 @property
 def content_type(self):
 """Returns the type of content of this widget"""
 self.close_zoom()
 return self.widget_view.content_type

 @property
 def contents(self):
 """Returns the WT widget with contents of this dashboard widget."""
 self.close_zoom()
 return self.widget_view.contents

[docs] def minimize(self):
 """Minimize this widget."""
 self.close_zoom()
 view = self.widget_view
 if 'Maximize' not in view.menu.items and 'Minimize' not in view.menu.items:
 raise ValueError('The widget {} cannot be maximized or minimized'.format(self.name))
 if 'Minimize' in view.menu.items:
 view.menu.select('Minimize')

[docs] def restore(self):
 """Maximize this widget."""
 self.close_zoom()
 view = self.widget_view
 view.parent.parent.ensure_zoom_closed()
 if 'Maximize' not in view.menu.items and 'Minimize' not in view.menu.items:
 raise ValueError('The widget {} cannot be maximized or minimized'.format(self.name))
 if 'Maximize' in view.menu.items:
 view.menu.select('Maximize')

[docs] def remove(self):
 """Remove this widget."""
 self.close_zoom()
 view = self.widget_view
 view.menu.select('Remove Widget')

 @property
 def is_zoomed(self):
 """Returns whether this widget is zoomed now."""
 view = self.create_view(DashboardView)
 return view.zoomed.title.is_displayed and view.zoomed.title == self.name

[docs] def zoom(self):
 """Zoom this widget in."""
 if not self.is_zoomed:
 self.close_zoom()
 view = self.widget_view
 view.menu.select('Zoom in', close=False)
 wait_for(lambda: self.is_zoomed, delay=0.2, timeout=10)

 @property
 def can_zoom(self):
 """Returns whether this widget can be zoomed."""
 self.close_zoom()
 view = self.widget_view
 return 'Zoom in' in view.menu.items

[docs] def close_zoom(self):
 """Close zoom. Works theoretically for any widget, it is just exposed here."""
 view = self.create_view(DashboardView)
 if view.is_displayed:
 view.ensure_zoom_closed()

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/parallelizer/remote.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		fixtures.parallelizer »

 Source code for fixtures.parallelizer.remote

import signal

import zmq
from py.path import local
import cfme.utils

SLAVEID = None

[docs]class SlaveManager(object):
 """SlaveManager which coordinates with the master process for parallel testing"""
 def __init__(self, config, slaveid, base_url, zmq_endpoint):
 self.config = config
 self.session = None
 self.collection = None
 self.slaveid = conf.runtime['env']['slaveid'] = slaveid
 self.base_url = conf.runtime['env']['base_url'] = base_url
 self.log = cfme.utils.log.logger
 conf.clear()
 # Override the logger in utils.log

 ctx = zmq.Context.instance()
 self.sock = ctx.socket(zmq.REQ)
 self.sock.set_hwm(1)
 self.sock.setsockopt_string(zmq.IDENTITY, u'{}'.format(self.slaveid))
 self.sock.connect(zmq_endpoint)

 self.messages = {}

 self.quit_signaled = False

[docs] def send_event(self, name, **kwargs):
 kwargs['_event_name'] = name
 self.log.trace("sending {} {!r}".format(name, kwargs))
 self.sock.send_json(kwargs)
 recv = self.sock.recv_json()
 if recv == 'die':
 self.log.info('Slave instructed to die by master; shutting down')
 raise SystemExit()
 else:
 self.log.trace('received "{!r}" from master'.format(recv))
 if recv != 'ack':
 return recv

[docs] def message(self, message, **kwargs):
 """Send a message to the master, which should get printed to the console"""
 self.send_event('message', message=message, markup=kwargs) # message!

[docs] def pytest_collection_finish(self, session):
 """pytest collection hook

 - Sends collected tests to the master for comparison

 """
 self.log.debug('collection finished')
 self.session = session
 self.collection = {item.nodeid: item for item in session.items}
 terminalreporter.disable()
 self.send_event("collectionfinish", node_ids=self.collection.keys())

[docs] def pytest_runtest_logstart(self, nodeid, location):
 """pytest runtest logstart hook

 - sends logstart notice to the master

 """
 self.send_event("runtest_logstart", nodeid=nodeid, location=location)

[docs] def pytest_runtest_logreport(self, report):
 """pytest runtest logreport hook

 - sends serialized log reports to the master

 """
 self.send_event("runtest_logreport", report=serialize_report(report))

[docs] def pytest_internalerror(self, excrepr):
 """pytest internal error hook

 - logs full traceback
 - reports short traceback to the py.test console

 """
 msg = 'INTERNALERROR> {}'.format(str(excrepr))
 self.log.error(msg)
 # Only send the last line (exc type/message) to keep the pytest log clean
 short_tb = 'INTERNALERROR> {}'.format(msg.strip().splitlines()[-1])
 self.send_event("internalerror", message=short_tb)

[docs] def pytest_runtestloop(self, session):
 """pytest runtest loop

 - iterates over and runs tests in the order received from the master

 """
 self.log.info("entering runtest loop")
 for item, nextitem in self._test_generator():
 if self.config.option.collectonly:
 self.message('{}'.format(item.nodeid))
 pass
 else:
 self.config.hook.pytest_runtest_protocol(item=item, nextitem=nextitem)
 if self.quit_signaled:
 break
 return True

[docs] def pytest_sessionfinish(self):
 self.shutdown()

[docs] def handle_quit(self):
 self.message('shutting down after the current test due to QUIT signal')
 self.quit_signaled = True

[docs] def shutdown(self):
 self.message('shutting down')
 self.send_event('shutdown')
 self.quit_signaled = True

 def _test_generator(self):
 node_iter = self._iter_nodes()
 run_node = next(node_iter)

 for next_node in node_iter:
 yield run_node, next_node
 run_node = next_node
 yield run_node, None

 def _iter_nodes(self):
 while True:
 node_ids = self.send_event('need_tests')
 if not node_ids:
 break
 for nodeid in node_ids:
 # TODO: take non-unique node ids into account
 yield self.collection[nodeid]

[docs]def serialize_report(rep):
 """
 Get a :py:class:`TestReport <pytest:_pytest.runner.TestReport>` ready to send to the master
 """
 d = rep.__dict__.copy()
 if hasattr(rep.longrepr, 'toterminal'):
 d['longrepr'] = str(rep.longrepr)
 else:
 d['longrepr'] = rep.longrepr
 for name in d:
 if isinstance(d[name], local):
 d[name] = str(d[name])
 elif name == "result":
 d[name] = None
 return d

def _init_config(slave_options, slave_args):
 # Create a pytest Config based on options/args parsed in the master
 # This is a slightly modified form of _pytest.config.Config.fromdictargs
 # yaml is able to pack up the entire CmdOptions call from pytest, so
 # we can just set config.option to what was passed from the master in the slave_config yaml
 import pytest # NOQA
 from _pytest.config import get_config
 config = get_config()
 config.args = slave_args
 config._preparse(config.args, addopts=False)
 config.option = slave_options
 # The master handles the result log, slaves shouldn't also write to it
 config.option['resultlog'] = None
 # Unset appliances to prevent the slaves from starting distributes tests :)
 config.option.appliances = []
 config.pluginmanager.set_blocked('fixtures.parallelizer')
 for pluginarg in config.option.plugins:
 config.pluginmanager.consider_pluginarg(pluginarg)
 return config

if __name__ == '__main__':
 import argparse
 parser = argparse.ArgumentParser()
 parser.add_argument('slaveid', help='The name of this slave')
 parser.add_argument('appliance_json', help='The json data about the used appliance')
 parser.add_argument('ts', help='The timestap to use for collections')
 args = parser.parse_args()

 from cfme.utils.appliance import IPAppliance, stack
 appliance = IPAppliance.from_json(args.appliance_json)
 stack.push(appliance)

 # overwrite the default logger before anything else is imported,
 # to get our best chance at having everything import the replaced logger
 import cfme.utils.log
 cfme.utils.log.setup_for_worker(args.slaveid)

 from fixtures import terminalreporter
 from fixtures.pytest_store import store
 from cfme.utils import conf

 conf.runtime['env']['slaveid'] = args.slaveid
 conf.runtime['env']['ts'] = args.ts
 store.parallelizer_role = 'slave'

 slave_args = conf.slave_config.pop('args')
 slave_options = conf.slave_config.pop('options')
 ip_address = appliance.address
 appliance_data = conf.slave_config.get("appliance_data", {})
 if ip_address in appliance_data:
 template_name, provider_name = appliance_data[ip_address]
 conf.runtime["cfme_data"]["basic_info"]["appliance_template"] = template_name
 conf.runtime["cfme_data"]["basic_info"]["appliances_provider"] = provider_name
 config = _init_config(slave_options, slave_args)
 slave_manager = SlaveManager(config, args.slaveid, appliance.url,
 conf.slave_config['zmq_endpoint'])
 config.pluginmanager.register(slave_manager, 'slave_manager')
 config.hook.pytest_cmdline_main(config=config)
 signal.signal(signal.SIGQUIT, slave_manager.handle_quit)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/parallelizer/hooks.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		fixtures.parallelizer »

 Source code for fixtures.parallelizer.hooks

"""parallelizer hooks

Custom hooks to help keep runtime ordering straight with regard to the parallelizer's state

"""

[docs]def pytest_parallel_configured(parallel_session):
 """called after the parallel session is configured

 This is *always* called, whether running parallel or not.

 If running standalone, ``parallel_session`` will be None.

 """

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/base.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.base

import sentaku

from cfme.utils.appliance import Navigatable
from cfme.utils.pretty import Pretty

[docs]class Server(Navigatable, sentaku.modeling.ElementMixin):
 def __init__(self, appliance, zone=None, name="EVM", sid=1):
 Navigatable.__init__(self, appliance=appliance)
 self.zone = zone or appliance.server.zone
 self.name = name
 self.sid = sid
 self.zone.servers.add(self)
 self.parent = self.appliance.context

 address = sentaku.ContextualMethod()
 login = sentaku.ContextualMethod()
 login_admin = sentaku.ContextualMethod()
 logout = sentaku.ContextualMethod()
 update_password = sentaku.ContextualMethod()
 logged_in = sentaku.ContextualMethod()
 current_full_name = sentaku.ContextualMethod()
 current_username = sentaku.ContextualMethod()

[docs]class ZoneCollection(Navigatable, sentaku.modeling.ElementMixin):

 create = sentaku.ContextualMethod()

 def __init__(self, appliance, region=None):
 self.appliance = appliance
 self.region = region or appliance.server.zone.region
 self.parent = self.appliance.context

[docs]class Zone(Pretty, Navigatable, sentaku.modeling.ElementMixin):
 """ Configure/Configuration/Region/Zones functionality

 Create/Read/Update/Delete functionality.
 """
 pretty_attrs = ['name', 'description', 'smartproxy_ip', 'ntp_servers',
 'max_scans', 'user']

 exists = sentaku.ContextualProperty()
 update = sentaku.ContextualMethod()
 delete = sentaku.ContextualMethod()

 def __init__(self, appliance, region=None,
 name=None, description=None, smartproxy_ip=None, ntp_servers=None, max_scans=None,
 user=None):
 self.appliance = appliance
 self.servers = set()
 self.region = region or self.appliance.server.zone.region
 self.name = name or "default"
 self.description = description or "Default Zone"
 self.region.zones.add(self)

 self.smartproxy_ip = smartproxy_ip
 self.ntp_servers = ntp_servers
 self.max_scans = max_scans
 self.user = user
 self.parent = self.appliance.context

[docs]class Region(Navigatable, sentaku.modeling.ElementMixin):
 def __init__(self, appliance, number=0):
 self.appliance = appliance
 self.zones = set()
 self.number = number
 self.parent = self.appliance.context

 @property
 def settings_string(self):
 return "{} Region: Region {} [{}]".format(
 self.appliance.product_name, self.number, self.number)

from . import ui, ssui # NOQA last for import cycles
sentaku.register_external_implementations_in(ui, ssui)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.utils

-*- coding: utf-8 -*-
import atexit
import re
import subprocess
import os
import diaper for backward compatibility
import diaper
from cached_property import cached_property
from functools import partial
from werkzeug.local import LocalProxy

on_rtd = os.environ.get('READTHEDOCS') == 'True'

[docs]class FakeObject(object):
 def __init__(self, **kwargs):
 self.__dict__ = kwargs

[docs]def fakeobject_or_object(obj, attr, default=None):
 if isinstance(obj, basestring):
 return FakeObject(**{attr: obj})
 elif not obj:
 return FakeObject(**{attr: default})
 else:
 return obj

[docs]def clear_property_cache(obj, *names):
 """
 clear a cached property regardess of if it was cached priority
 """
 if isinstance(obj, LocalProxy):
 obj = obj._get_current_object()
 for name in names:
 assert isinstance(getattr(type(obj), name), cached_property)
 obj.__dict__.pop(name, None)

class _classproperty(property):
 """Subclass property to make classmethod properties possible"""
 def __get__(self, cls, owner):
 return self.fget.__get__(None, owner)()

[docs]def classproperty(f):
 """Enables properties for whole classes:

 Usage:

 >>> class Foo(object):
 ... @classproperty
 ... def bar(cls):
 ... return "bar"
 ...
 >>> print(Foo.bar)
 baz
 """
 return _classproperty(classmethod(f))

[docs]def at_exit(f, *args, **kwargs):
 """Diaper-protected atexit handler registering. Same syntax as atexit.register()"""
 return atexit.register(lambda: diaper(f, *args, **kwargs))

def _prenormalize_text(text):
 """Makes the text lowercase and removes all characters that are not digits, alphas, or spaces"""
 # _'s represent spaces so convert those to spaces too
 return re.sub(r"[^a-z0-9]", "", text.strip().lower().replace('_', ' '))

def _replace_spaces_with(text, delim):
 """Contracts spaces into one character and replaces it with a custom character."""
 return re.sub(r"\s+", delim, text)

[docs]def normalize_text(text):
 """Converts a string to a lowercase string containing only letters, digits and spaces.

 The space is always one character long if it is present.
 """
 return _replace_spaces_with(_prenormalize_text(text), ' ')

[docs]def attributize_string(text):
 """Converts a string to a lowercase string containing only letters, digits and underscores.

 Usable for eg. generating object key names.
 The underscore is always one character long if it is present.
 """
 return _replace_spaces_with(_prenormalize_text(text), '_')

[docs]def normalize_space(text):
 """Works in accordance with the XPath's normalize-space() operator.

 `Description <https://developer.mozilla.org/en-US/docs/Web/XPath/Functions/normalize-space>`_:

 *The normalize-space function strips leading and trailing white-space from a string,
 replaces sequences of whitespace characters by a single space, and returns the resulting
 string.*
 """
 return _replace_spaces_with(text.strip(), ' ')

[docs]def tries(num_tries, exceptions, f, *args, **kwargs):
 """ Tries to call the function multiple times if specific exceptions occur.

 Args:
 num_tries: How many times to try if exception is raised
 exceptions: Tuple (or just single one) of exceptions that should be treated as repeat.
 f: Callable to be called.
 *args: Arguments to be passed through to the callable
 **kwargs: Keyword arguments to be passed through to the callable

 Returns:
 What ``f`` returns.

 Raises:
 What ``f`` raises if the try count is exceeded.
 """
 tries = 0
 while tries < num_tries:
 tries += 1
 try:
 return f(*args, **kwargs)
 except exceptions as e:
 pass
 else:
 raise e

There are some environment variables that get smuggled in anyway.
If there is yet another one that will be possibly smuggled in, update this entry.
READ_ENV_UNWANTED = {'SHLVL', '_', 'PWD'}

[docs]def read_env(file):
 """Given a :py:class:`py.path.Local` file name, return a dict of exported shell vars and their
 values.

 Args:
 file: A :py:class:`py.path.Local` instance.

 Note:
 This will only include shell variables that are exported from the file being parsed

 Returns:
 A :py:class:`dict` of key/value pairs. If the file does not exist or bash could not
 parse the file, this dict will be empty.
 """
 env_vars = {}
 if file.check():
 # parse the file with bash, since it's pretty good at it, and dump the env
 # Use env -i to clean up the env (except the very few variables provider by bash itself)
 command = ['env', '-i', 'bash', '-c', 'source {} && env'.format(file.strpath)]
 proc = subprocess.Popen(command, stdout=subprocess.PIPE, bufsize=1)

 # filter out the remaining unwanted things
 for line in iter(proc.stdout.readline, b''):
 try:
 key, value = line.split("=", 1)
 except ValueError:
 continue
 if key not in READ_ENV_UNWANTED:
 try:
 value = int(value.strip())
 except (ValueError, TypeError):
 value = value.strip()
 env_vars[key] = value
 stdout, stderr = proc.communicate()
 return env_vars

[docs]class deferred_verpick(object):
 """descriptor that version-picks on Access

 Useful for verpicked constants in classes
 """

 def __init__(self, version_pick):
 self.version_pick = version_pick

 def __get__(self, obj, cls):
 # TODO: remove the need to trigger for classes
 # so we can use the class level for documentation of version picks
 from cfme.utils.version import Version, pick as _version_pick
 if on_rtd:
 if self.version_pick:
 latest = max(self.version_pick, key=Version)
 return self.version_pick[latest]
 else:
 raise LookupError("Nothing to pick from")
 else:
 return _version_pick(self.version_pick)

[docs]def safe_string(o):
 """This will make string out of ANYTHING without having to worry about the stupid Unicode errors

 This function tries to make str/unicode out of ``o`` unless it already is one of those and then
 it processes it so in the end there is a harmless ascii string.

 Args:
 o: Anything.
 """
 if not isinstance(o, basestring):
 if hasattr(o, "__unicode__"):
 o = unicode(o)
 else:
 o = str(o)
 if isinstance(o, str):
 o = o.decode('utf-8', "ignore")
 if isinstance(o, unicode):
 o = o.encode("ascii", "xmlcharrefreplace")
 return o

[docs]def process_pytest_path(path):
 # Processes the path elements with regards to []
 path = path.lstrip("/")
 if len(path) == 0:
 return []
 try:
 seg_end = path.index("/")
 except ValueError:
 seg_end = None
 try:
 param_start = path.index("[")
 except ValueError:
 param_start = None
 try:
 param_end = path.index("]")
 except ValueError:
 param_end = None
 if seg_end is None:
 # Definitely a final segment
 return [path]
 else:
 if (param_start is not None and param_end is not None and seg_end > param_start and
 seg_end < param_end):
 # The / inside []
 segment = path[:param_end + 1]
 rest = path[param_end + 1:]
 return [segment] + process_pytest_path(rest)
 else:
 # The / that is not inside []
 segment = path[:seg_end]
 rest = path[seg_end + 1:]
 return [segment] + process_pytest_path(rest)

[docs]def process_shell_output(value):
 """This function allows you to unify the behaviour when you putput some values to stdout.

 You can check the code of the function how exactly does it behave for the particular types of
 variables. If no output is expected, it returns None.

 Args:
 value: Value to be outputted.

 Returns:
 A tuple consisting of returncode and the output to be printed.
 """
 result_lines = []
 exit = 0
 if isinstance(value, (list, tuple, set)):
 for entry in sorted(value):
 result_lines.append(entry)
 elif isinstance(value, dict):
 for key, value in value.iteritems():
 result_lines.append('{}={}'.format(key, value))
 elif isinstance(value, str):
 result_lines.append(value)
 elif isinstance(value, bool):
 # 'True' result becomes flipped exit 0, and vice versa for False
 exit = int(not value)
 else:
 # Unknown type, print it
 result_lines.append(str(value))

 return exit, '\n'.join(result_lines) if result_lines else None

[docs]def iterate_pairs(iterable):
 """Iterates over iterable, always taking two items at time.

 Eg. ``[1, 2, 3, 4, 5, 6]`` will yield ``(1, 2)``, then ``(3, 4)`` ...

 Must have even number of items.

 Args:
 iterable: An iterable with even number of items to be iterated over.
 """
 if len(iterable) % 2 != 0:
 raise ValueError('Iterable must have even number of items.')
 it = iter(iterable)
 for i in it:
 yield i, next(it)

[docs]def icastmap(t, i, *args, **kwargs):
 """Works like the map() but is made specially to map classes on iterables. A generator version.

 This function only applies the ``t`` to the item of ``i`` if it is not of that type.

 Args:
 t: The class that you want all the yielded items to be type of.
 i: Iterable with items to be cast.

 Returns:
 A generator.
 """
 for item in i:
 if isinstance(item, t):
 yield item
 else:
 yield t(item, *args, **kwargs)

[docs]def castmap(t, i, *args, **kwargs):
 """Works like the map() but is made specially to map classes on iterables.

 This function only applies the ``t`` to the item of ``i`` if it is not of that type.

 Args:
 t: The class that you want all theitems in the list to be type of.
 i: Iterable with items to be cast.

 Returns:
 A list.
 """
 return list(icastmap(t, i, *args, **kwargs))

[docs]class InstanceClassMethod(object):
 """ Decorator-descriptor that enables you to use any method both as class and instance one

 Usage:

 .. code-block:: python

 class SomeClass(object):
 @InstanceClassMethod
 def a_method(self):
 the_instance_variant()

 @a_method.classmethod
 def a_method(cls):
 the_class_variant()

 i = SomeClass()
 i.a_method()
 SomeClass.a_method()
 # Both are possible

 If you don't pass ``classmethod`` the "instance" method, the one that was passed first will
 be called for both kinds of invocation.
 """
 def __init__(self, instance_or_class_method):
 self.instance_or_class_method = instance_or_class_method
 self.class_method = None

[docs] def classmethod(self, class_method):
 self.class_method = class_method
 return self

 def __get__(self, o, t):
 if o is None:
 # classmethod
 return partial(self.class_method or self.instance_or_class_method, t)
 else:
 # instancemethod
 return partial(self.instance_or_class_method, o)

[docs]class ParamClassName(object):
 """ ParamClassName is a Descriptor to help when using classes and instances as parameters

 Note: This descriptor is a hack until collections are implemented everywhere

 Usage:

 .. code-block:: python

 class Provider(object):
 _param_name = ParamClassName('name')

 def __init__(self, name):
 self.name = name

 When accessing the ``_param_name`` on the class object it will return the ``__name__`` of the
 class by default. When accessing the ``_param_name`` on an instance of the class, it will return
 the attribute that is passed in.
 """

 def __init__(self, instance_attr, class_attr='__name__'):
 self.instance_attr = instance_attr
 self.class_attr = class_attr

 def __get__(self, instance, owner):
 if instance:
 return getattr(instance, self.instance_attr)
 else:
 return getattr(owner, self.class_attr)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/web_ui.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.web_ui

"""Provides a number of objects to help with managing certain elements in the CFME UI.

 Specifically there are two categories of objects, organizational and elemental.

* **Organizational**

 * :py:class:`Region`
 * :py:mod:`cfme.web_ui.menu`

* **Elemental**

 * :py:class:`AngularCalendarInput`
 * :py:class:`AngularSelect`
 * :py:class:`ButtonGroup`
 * :py:class:`Calendar`
 * :py:class:`ColorGroup`
 * :py:class:`CheckboxTable`
 * :py:class:`CheckboxSelect`
 * :py:class:`DHTMLSelect`
 * :py:class:`DriftGrid`
 * :py:class:`DynamicTable`
 * :py:class:`EmailSelectForm`
 * :py:class:`Filter`
 * :py:class:`Form`
 * :py:class:`InfoBlock`
 * :py:class:`Input`
 * :py:class:`MultiFill`
 * :py:class:`Quadicon`
 * :py:class:`Radio`
 * :py:class:`ScriptBox`
 * :py:class:`Select`
 * :py:class:`ShowingInputs`
 * :py:class:`SplitCheckboxTable`
 * :py:class:`SplitTable`
 * :py:class:`StatusBox`
 * :py:class:`Table`
 * :py:class:`Tree`
 * :py:mod:`cfme.web_ui.accordion`
 * :py:mod:`cfme.web_ui.cfme_exception`
 * :py:mod:`cfme.web_ui.expression_editor`
 * :py:mod:`cfme.web_ui.flash`
 * :py:mod:`cfme.web_ui.form_buttons`
 * :py:mod:`cfme.web_ui.jstimelines`
 * :py:mod:`cfme.web_ui.listaccordion`
 * :py:mod:`cfme.web_ui.menu`
 * :py:mod:`cfme.web_ui.mixins`
 * :py:mod:`cfme.web_ui.paginator`
 * :py:mod:`cfme.web_ui.search`
 * :py:mod:`cfme.web_ui.tabstrip`
 * :py:mod:`cfme.web_ui.toolbar`

"""

import atexit
import os
import re
import time
import types
from datetime import date
from collections import Sequence, Mapping, Callable, Iterable
from tempfile import NamedTemporaryFile
from xml.sax.saxutils import quoteattr, unescape

from cached_property import cached_property
from selenium.common import exceptions as sel_exceptions
from selenium.common.exceptions import NoSuchElementException
from selenium.webdriver.remote.file_detector import LocalFileDetector
from multimethods import multimethod, multidispatch, Anything
from widgetastic.xpath import quote

import cfme.fixtures.pytest_selenium as sel
from cfme import exceptions, js
from cfme.fixtures.pytest_selenium import browser
For backward compatibility with code that pulls in Select from web_ui instead of sel
from cfme.fixtures.pytest_selenium import Select
from cfme.utils import attributize_string, castmap, normalize_space, version
from cfme.utils.log import logger
from cfme.utils.pretty import Pretty
from wait_for import TimedOutError, wait_for

[docs]class Selector(object):
 """
 Special Selector object allowing object resolution on attr access

 The Selector is a simple class which allows a 'super' widget to support multiple
 implementations. This is achieved by the use of a ``decide`` method which accesses
 attrs of the object set by the ``__init__`` of the child class. These attributes
 are then used to decide which type of object is on a page. In some cases, this can
 avoid a version pick if the information used to instantiate both old and new implementations
 can be identical. This is most noteably if using an "id" which remains constant from
 implementation to implementation.

 As an example, imagine the normal "checkbox" is replaced wit ha fancy new web 2.0
 checkbox. Both have an "input" element, and give it the same "id". When the decide method is
 invoked, the "id" is inspected and used to determine if it is an old or a new style widget.
 We then set a hidden attribute of the super widget and proxy all further attr requests to
 that object.

 This means that in order for things to behave as expect ALL implementations must also expose
 the same "public" API.
 """

 def __init__(self):
 self._obj = None

 def __getattr__(self, name):
 if not self._obj:
 self._obj = self.decide()
 return getattr(self._obj, name)

[docs] def decide(self):
 raise Exception('This widget does not have a "decide" method which is mandatory')

[docs]class Region(Pretty):
 """
 Base class for all UI regions/pages

 Args:
 locators: A dict of locator objects for the given region
 title: A string containing the title of the page,
 or a versioned dict of page title strings
 identifying_loc: Single locator key from locators used by :py:meth:`Region.is_displayed`
 to check if the region is currently visible

 Usage:

 page = Region(locators={
 'configuration_button': (By.CSS_SELECTOR, "div.dhx_toolbar_btn[title='Configuration']"),
 'discover_button': (By.CSS_SELECTOR,
 "tr[title='Discover Cloud Providers']>td.td_btn_txt>" "div.btn_sel_text")
 },
 title='Cloud Providers',
 identifying_loc='discover_button'
)

 The elements can then accessed like so::

 page.configuration_button

 Locator attributes will return the locator tuple for that particular element,
 and can be passed on to other functions, such as :py:func:`element` and :py:func:`click`.

 Note:

 When specifying a region title, omit the "Cloudforms Management Engine: " or "ManageIQ: "
 prefix. They are included on every page, and different for the two versions of the
 appliance, and :py:meth:`is_displayed` strips them off before checking for equality.

 """
 pretty_attrs = ['title']

 def __getattr__(self, name):
 if hasattr(self, 'locators') and name in self.locators:
 locator = self.locators[name]
 if isinstance(locator, dict):
 return version.pick(locator)
 else:
 return locator
 else:
 raise AttributeError("Region has no attribute named " + name)

 def __init__(self, locators=None, title=None, identifying_loc=None, **kwargs):
 self.locators = locators
 self.identifying_loc = identifying_loc
 self._title = title
 self.infoblock = InfoBlock # Legacy support

 @property
 def title(self):
 # support title being a versioned dict
 if isinstance(self._title, dict):
 self._title = version.pick(self._title)
 return self._title

[docs] def is_displayed(self):
 """
 Checks to see if the region is currently displayed.

 Returns: A boolean describing if the region is currently displayed
 """
 if not self.identifying_loc and not self.title:
 logger.warning("Region doesn't have an identifying locator or title, "
 "can't determine if current page.")
 return True

 # All page titles have a prefix; strip it off
 window_title = browser_title()

 if self.identifying_loc and sel.is_displayed(
 self.locators[self.identifying_loc], _no_deeper=True):
 ident_match = True
 else:
 if not self.title:
 logger.info('Identifying locator for region not found')
 else:
 logger.info('Identifying locator for region %s not found', self.title)
 ident_match = False

 if self.title is None:
 # If we don't have a title we can't match it, and some Regions are multi-page
 # so we can't have a title set.
 title_match = True
 elif self.title and window_title == self.title:
 title_match = True
 else:
 logger.info("Title %s doesn't match expected title %s", window_title, self.title)
 title_match = False
 return title_match and ident_match

[docs]def get_context_current_page():
 """
 Returns the current page name

 Returns: A string containing the current page name
 """
 url = browser().current_url()
 stripped = url.lstrip('https://')
 return stripped[stripped.find('/'):stripped.rfind('?')]

[docs]class CachedTableHeaders(object):
 """the internal cache of headers

 This allows columns to be moved and the Table updated. The :py:attr:`headers` stores
 the header cache element and the list of headers are stored in _headers. The
 attribute header_indexes is then created, before finally creating the items
 attribute.
 """
 def __init__(self, table):
 self.headers = sel.elements('td | th', root=table.header_row)
 self.indexes = {
 attributize_string(cell.text): index
 for index, cell in enumerate(self.headers)}

[docs]class Table(Pretty):
 """
 Helper class for Table/List objects

 Turns CFME custom Table/Lists into iterable objects using a generator.

 Args:
 table_locator: locator pointing to a table element with child thead and tbody elements
 representing that table's header and body row containers
 header_offset: In the case of a padding table row above the header, the row offset
 can be used to skip rows in ``<thead>`` to locate the correct header row. This offset
 is 1-indexed, not 0-indexed, so an offset of 1 is the first child row element
 body_offset: In the case of a padding table row above the body rows, the row offset
 can be used to skip rows in ``<ttbody>`` to locate the correct header row. This offset
 is 1-indexed, not 0-indexed, so an offset of 1 is the first child row element
 hidden_locator: If the table can disappear, you probably want ot set this param as it
 instructs the table that if it cannot find the table on the page but the element
 represented by ``hidden_locator`` is visible, it assumes no data and returns no rows.

 Attributes:
 header_indexes: A dict of header names related to their int index as a column.

 Usage:

 table = Table('//div[@id="prov_pxe_img_div"]//table')

 The HTML code for the table looks something like this::

 <div id="prov_pxe_img_div">
 <table>
 <thead>
 <tr>
 <th>Name</th>
 <th>Animal</th>
 <th>Size</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>John</td>
 <td>Monkey</td>
 <td>Small</td>
 </tr>
 <tr>
 <td>Mike</td>
 <td>Tiger</td>
 <td>Large</td>
 </tr>
 </tbody>
 </table>
 </div>

 We can now click on an element in the list like so, by providing the column
 name and the value that we are searching for::

 table.click_cell('name', 'Mike')

 We can also perform the same, by using the index of the column, like so::

 table.click_cell(1, 'Tiger')

 Additionally, the rows of a table can be iterated over, and that row's columns can be accessed
 by name or index (left to right, 0-index)::

 for row in table.rows()
 # Get the first cell in the row
 row[0]
 # Get the row's contents for the column with header 'Row Name'
 # All of these will work, though the first is preferred
 row.row_name, row['row_name'], row['Row Name']

 When doing bulk opererations, such as selecting rows in a table based on their content,
 the ``*_by_cells`` methods are able to find matching row much more quickly than iterating,
 as the work can be done with fewer selenium calls.

 * :py:meth:`find_rows_by_cells`
 * :py:meth:`find_row_by_cells`
 * :py:meth:`click_rows_by_cells`
 * :py:meth:`click_row_by_cells`

 Note:

 A table is defined by the containers of the header and data areas, and offsets to them.
 This allows a table to include one or more padding rows above the header row. In
 the example above, there is no padding row, as our offset values are set to 0.

 """

 pretty_attrs = ['_loc']

 def __init__(self, table_locator, header_offset=0, body_offset=0, hidden_locator=None):
 self._headers = None
 self._header_indexes = None
 self._loc = table_locator
 self.header_offset = int(header_offset)
 self.body_offset = int(body_offset)
 self.hidden_locator = hidden_locator

 @property
 def header_row(self):
 """Property representing the ``<tr>`` element that contains header cells"""
 # thead/tr containing header data
 # xpath is 1-indexed, so we need to add 1 to the offset to get the correct row
 return sel.element('./thead/tr[{}]'.format(self.header_offset + 1), root=sel.element(self))

 @property
 def body(self):
 """Property representing the ``<tbody>`` element that contains body rows"""
 # tbody containing body rows
 return sel.element('./tbody', root=sel.element(self))

 @cached_property
 def _headers_cache(self):
 return CachedTableHeaders(self)

[docs] def verify_headers(self):
 """Verifies whether the headers in the table correspond with the cached ones."""
 current_headers = CachedTableHeaders(self)
 cached_headers = self._headers_cache
 if current_headers.indexes != cached_headers.indexes:
 raise exceptions.UsingSharedTables(
 ('{cn} suspects that you are using shared tables! '
 'That means you are using one {cn} instance to represent different UI tables. '
 'This is not possible due to the header caching, but also wrong from the '
 'design point of view. Please, create separate instances of {cn} for EACH table '
 'in the user interface.').format(cn=type(self).__name__))

 def _update_cache(self):
 """refresh the cache in case we know its stale"""
 try:
 del self._headers_cache
 except AttributeError:
 pass # it's not cached, dont try to be eager
 else:
 self._headers_cache

 @property
 def headers(self):
 """List of ``<td>`` or ``<th>`` elements in :py:attr:`header_row`

 """
 return self._headers_cache.headers

 @property
 def header_indexes(self):
 """Dictionary of header name: column index for this table's rows

 Derived from :py:attr:`headers`

 """
 return self._headers_cache.indexes

[docs] def locate(self):
 return sel.move_to_element(self._loc)

 @property
 def _root_loc(self):
 return self.locate()

[docs] def rows(self):
 """A generator method holding the Row objects

 This generator yields Row objects starting at the first data row.

 Yields:
 :py:class:`Table.Row` object corresponding to the next row in the table.
 """
 try:
 index = self.body_offset
 row_elements = sel.elements('./tr', root=self.body)
 for row_element in row_elements[index:]:
 yield self.create_row_from_element(row_element)
 except (exceptions.CannotScrollException, NoSuchElementException):
 if self.hidden_locator is None:
 # No hiding is documented here, so just explode
 raise
 elif not sel.is_displayed(self.hidden_locator):
 # Hiding is documented but the element that signalizes that it is all right is not
 # present so explode too.
 raise
 else:
 # The table is not present but there is something that signalizes it is all right
 # but no data.
 return

[docs] def rows_as_list(self):
 """Returns rows as list"""
 return [i for i in self.rows()]

[docs] def row_count(self):
 """Returns row count"""
 return len(self.rows_as_list())

[docs] def find_row(self, header, value):
 """
 Finds a row in the Table by iterating through each visible item.

 Args:
 header: A string or int, describing which column to inspect.
 value: The value to be compared when trying to identify the correct row
 to return.

 Returns:
 :py:class:`Table.Row` containing the requested cell, else ``None``.

 """
 return self.find_row_by_cells({header: value})

[docs] def find_cell(self, header, value):
 """
 Finds an item in the Table by iterating through each visible item,
 this work used to be done by the :py:meth::`click_cell` method but
 has not been abstracted out to be called separately.

 Args:
 header: A string or int, describing which column to inspect.
 value: The value to be compared when trying to identify the correct cell
 to click.

 Returns: WebElement of the element if item was found, else ``None``.

 """
 matching_cell_rows = self.find_rows_by_cells({header: value})
 try:
 if isinstance(header, basestring):
 return getattr(matching_cell_rows[0], header)
 else:
 return matching_cell_rows[0][header]
 except IndexError:
 return None

[docs] def find_rows_by_cells(self, cells, partial_check=False):
 """A fast row finder, based on cell content.

 If you pass a regexp as a value, then it will be used with its ``.match()`` method.

 Args:
 cells: A dict of ``header: value`` pairs or a sequence of
 nested ``(header, value)`` pairs.
 partial_check: If to use the ``in`` operator rather than ``==``.

 Returns: A list of containing :py:class:`Table.Row` objects whose contents
 match all of the header: value pairs in ``cells``

 """
 # accept dicts or supertuples
 cells = dict(cells)
 cell_text_loc = (
 './/td/descendant-or-self::*[contains(normalize-space(text()), "{}")]/ancestor::tr[1]')
 matching_rows_list = list()
 for value in cells.values():
 # Get all td elements that contain the value text
 matching_elements = sel.elements(cell_text_loc.format(value),
 root=sel.move_to_element(self._root_loc))
 if matching_elements:
 matching_rows_list.append(set(matching_elements))

 # Now, find the common row elements that matched all the input cells
 # (though not yet matching values to headers)
 if not matching_rows_list:
 # If none matched, short out
 return []

 rows_elements = list(reduce(lambda set1, set2: set1 & set2, matching_rows_list))

 # Convert them to rows
 # This is slow, which is why we do it after reducing the row element pile,
 # and not when building matching_rows_list, but it makes comparing header
 # names and expected values easy
 rows = [self.create_row_from_element(element) for element in rows_elements]

 # Only include rows where the expected values are in the right columns
 matching_rows = list()

 def matching_row_filter(heading, value):
 text = normalize_space(row[heading].text)
 if isinstance(value, re._pattern_type):
 return value.match(text) is not None
 elif partial_check:
 return value in text
 else:
 return text == value

 for row in rows:
 if all(matching_row_filter(*cell) for cell in cells.items()):
 matching_rows.append(row)

 return matching_rows

[docs] def find_row_by_cells(self, cells, partial_check=False):
 """Find the first row containing cells

 Args:
 cells: See :py:meth:`Table.find_rows_by_cells`

 Returns: The first matching row found, or None if no matching row was found

 """
 try:
 rows = self.find_rows_by_cells(cells, partial_check=partial_check)
 return rows[0]
 except IndexError:
 return None

[docs] def click_rows_by_cells(self, cells, click_column=None, partial_check=False):
 """Click the cell at ``click_column`` in the rows matched by ``cells``

 Args:
 cells: See :py:meth:`Table.find_rows_by_cells`
 click_column: Which column in the row to click, defaults to None,
 which will attempt to click the row element

 Note:
 The value of click_column can be a string or an int, and will be passed directly to
 the item accessor (``__getitem__``) for :py:class:`Table.Row`

 """
 rows = self.find_rows_by_cells(cells, partial_check=partial_check)
 if click_column is not None:
 rows = [row[click_column] for row in rows]

 for row in rows:
 if row is None:
 self.verify_headers() # Suspected shared table use
 sel.click(row)

[docs] def click_row_by_cells(self, cells, click_column=None, partial_check=False):
 """Click the cell at ``click_column`` in the first row matched by ``cells``

 Args:
 cells: See :py:meth:`Table.find_rows_by_cells`
 click_column: See :py:meth:`Table.click_rows_by_cells`

 """
 row = self.find_row_by_cells(cells, partial_check=partial_check)
 if row is None:
 raise NameError('No row matching {} found'.format(repr(cells)))
 elif click_column is not None:
 row = row[click_column]

 if row is None:
 self.verify_headers() # Suspected shared table use
 sel.click(row)

[docs] def create_row_from_element(self, row_element):
 """Given a row element in this table, create a :py:class:`Table.Row`

 Args:
 row_element: A table row (``<tr>``) WebElement representing a row in this table.

 Returns: A :py:class:`Table.Row` for ``row_element``

 """
 return Table.Row(row_element, self)

[docs] def click_cells(self, cell_map):
 """Submits multiple cells to be clicked on

 Args:
 cell_map: A mapping of header names and values, representing cells to click.
 As an example, ``{'name': ['wing', 'nut']}, {'age': ['12']}`` would click on
 the cells which had ``wing`` and ``nut`` in the name column and ``12`` in
 the age column. The yaml example for this would be as follows::

 list_items:
 name:
 - wing
 - nut
 age:
 - 12

 Raises:
 NotAllItemsClicked: If some cells were unable to be found.

 """
 failed_clicks = []
 for header, values in cell_map.items():
 if isinstance(values, basestring):
 values = [values]
 for value in values:
 res = self.click_cell(header, value)
 if not res:
 failed_clicks.append("{}:{}".format(header, value))
 if failed_clicks:
 raise exceptions.NotAllItemsClicked(failed_clicks)

[docs] def click_cell(self, header, value):
 """Clicks on a cell defined in the row.

 Uses the header identifier and a value to determine which cell to click on.

 Args:
 header: A string or int, describing which column to inspect.
 value: The value to be compared when trying to identify the correct cell
 to click the cell in.

 Returns: ``True`` if item was found and clicked, else ``False``.

 """
 cell = self.find_cell(header, value)
 if cell:
 sel.click(cell)
 return True
 else:
 # This *might* lead to the shared table. So be safe here.
 self.verify_headers()
 return False

[docs] class Row(Pretty):
 """An object representing a row in a Table.

 The Row object returns a dymanically addressable attribute space so that
 the tables headers are automatically generated.

 Args:
 row_element: A table row ``WebElement``
 parent_table: :py:class:`Table` containing ``row_element``

 Notes:
 Attributes are dynamically generated. The index/key accessor is more flexible
 than the attr accessor, as it can operate on int indices and header names.

 """
 pretty_attrs = ['row_element', 'table']

 def __init__(self, row_element, parent_table):
 self.table = parent_table
 self.row_element = row_element

 @property
 def columns(self):
 """A list of WebElements corresponding to the ``<td>`` elements in this row"""
 return sel.elements('./td', root=self.row_element)

[docs] def __getattr__(self, name):
 """
 Returns Row element by header name
 """
 try:
 return self.columns[self.table.header_indexes[attributize_string(name)]]
 except (KeyError, IndexError):
 # Suspected shared table use
 self.table.verify_headers()
 # If it did not fail at that time, reraise
 raise

[docs] def __getitem__(self, index):
 """
 Returns Row element by header index or name
 """
 try:
 return self.columns[index]
 except TypeError:
 # Index isn't an int, assume it's a string
 return getattr(self, attributize_string(index))
 except IndexError:
 # Suspected shared table use
 self.table.verify_headers()
 # If it did not fail at that time, reraise
 raise

 def __str__(self):
 return ", ".join(["'{}'".format(el.text) for el in self.columns])

 def __eq__(self, other):
 if isinstance(other, type(self)):
 # Selenium elements support equality checks, so we can, too.
 return self.row_element == other.row_element
 else:
 return id(self) == id(other)

[docs] def locate(self):
 # table.create_row_from_element(row_instance) might actually work...
 return sel.move_to_element(self.row_element)

[docs]class CAndUGroupTable(Table):
 """Type of tables used in C&U, not tested in others.

 Provides ``.groups()`` generator which yields group objects. A group objects consists of the
 rows that are located in the group plus the summary informations. THe main principle is that
 all the rows inside group are stored in group object's ``.rows`` and when the script encounters
 the end of the group, it will store the summary data after the data rows as attributes, so eg.
 ``Totals:`` will become ``group.totals``. All the rows are represented as dictionaries.
 """
[docs] class States:
 NORMAL_ROWS = 0
 GROUP_SUMMARY = 1

[docs] class Group(object):
 def __init__(self, group_id, headers, rows, info_rows):
 self.id = group_id
 self.rows = [dict(zip(headers, row)) for row in rows]
 info_headers = headers[1:]
 for info_row in info_rows:
 name = info_row[0]
 rest = info_row[1:]
 data = dict(zip(info_headers, rest))
 group_attr = attributize_string(name)
 setattr(self, group_attr, data)

 def __repr__(self):
 return '<CAndUGroupTable.Group {}'.format(repr(self.id))

[docs] def paginated_rows(self):
 from cfme.web_ui import paginator
 for page in paginator.pages():
 for row in self.rows():
 yield row

[docs] def find_group(self, group_id):
 """Finds a group by its group ID (the string that is alone on the line)"""
 for group in self.groups():
 if group.id == group_id:
 return group_id
 else:
 raise KeyError('Group {} not found'.format(group_id))

[docs] def groups(self):
 headers = map(sel.text, self.headers)
 headers_length = len(headers)
 rows = self.paginated_rows()
 current_group_rows = []
 current_group_summary_rows = []
 current_group_id = None
 state = self.States.NORMAL_ROWS
 while True:
 try:
 row = rows.next()
 except StopIteration:
 if state == self.States.GROUP_SUMMARY:
 row = None
 else:
 break
 if state == self.States.NORMAL_ROWS:
 if len(row.columns) == headers_length:
 current_group_rows.append(tuple(map(sel.text, row.columns)))
 else:
 # Transition to the group summary
 current_group_id = sel.text(row.columns[0]).strip()
 state = self.States.GROUP_SUMMARY
 elif state == self.States.GROUP_SUMMARY:
 # row is None == we are at the end of the table so a slightly different behaviour
 if row is not None:
 fc_length = len(sel.text(row.columns[0]).strip())
 if row is None or fc_length == 0:
 # Done with group
 yield self.Group(
 current_group_id, headers, current_group_rows, current_group_summary_rows)
 current_group_rows = []
 current_group_summary_rows = []
 current_group_id = None
 state = self.States.NORMAL_ROWS
 else:
 current_group_summary_rows.append(tuple(map(sel.text, row.columns)))
 else:
 raise RuntimeError('This should never happen')

 if current_group_id is not None or current_group_rows or current_group_summary_rows:
 raise ValueError(
 'GroupTable could not be parsed properly: {} {} {}'.format(
 current_group_id, repr(current_group_rows), repr(current_group_summary_rows)))

[docs]class SplitTable(Table):
 """:py:class:`Table` that supports the header and body rows being in separate tables

 Args:
 header_data: A tuple, containing an element locator and an offset value.
 These point to the container of the header row. The offset is used in case
 there is a padding row above the header, or in the case that the header
 and the body are contained inside the same table element.
 body_data: A tuple, containing an element locator and an offset value.
 These point to the container of the body rows. The offset is used in case
 there is a padding row above the body rows, or in the case that the header
 and the body are contained inside the same table element.

 Usage:

 table = SplitTable(header_data=('//div[@id="header_table"]//table/tbody', 0),
 body_data=('//div[@id="body_table"]//table/tbody', 1))

 The HTML code for a split table looks something like this::

 <div id="prov_pxe_img_div">
 <table id="header_table">
 <tbody>
 <tr>
 <td>Name</td>
 <td>Animal</td>
 <td>Size</td>
 </tr>
 </tbody>
 </table>
 <table id="body_table">
 <tbody>
 <tr>
 <td>Useless</td>
 <td>Padding</td>
 <td>Row</td>
 </tr>
 <tr>
 <td>John</td>
 <td>Monkey</td>
 <td>Small</td>
 </tr>
 <tr>
 <td>Mike</td>
 <td>Tiger</td>
 <td>Large</td>
 </tr>
 </tbody>
 </table>
 </div>

 Note the use of the offset to skip the "Useless Padding Row" in ``body_data``. Most split
 tables require an offset for both the heading and body rows.

 """
 def __init__(self, header_data, body_data):

 self._header_loc, header_offset = header_data
 self._body_loc, body_offset = body_data
 self.header_offset = int(header_offset)
 self.body_offset = int(body_offset)

 @property
 def _root_loc(self):
 return self._body_loc

 @property
 def header_row(self):
 """Property representing the ``<tr>`` element that contains header cells"""
 # thead/tr containing header data
 # xpath is 1-indexed, so we need to add 1 to the offset to get the correct row
 return sel.element(
 'tr[{}]'.format(self.header_offset + 1), root=sel.element(self._header_loc))

 @property
 def body(self):
 """Property representing the element that contains body rows"""
 # tbody containing body rows
 return sel.element(self._body_loc)

[docs] def locate(self):
 # Use the header locator as the overall table locator
 return sel.move_to_element(self._header_loc)

[docs]class SortTable(Table):
 """This table is the same as :py:class:`Table`, but with added sorting functionality."""
 SORT_CELL = './th[./div/i[contains(@class, "fa-sort")] or contains(@class, "sorting_")]'
 SORT_LINK = './th/a[normalize-space(.)={}]'

 @property
 def _sort_by_cell(self):
 try:
 return sel.element(self.SORT_CELL, root=self.header_row)
 except NoSuchElementException:
 return None

 @property
 def sorted_by(self):
 """Return column name what is used for sorting now.
 """
 cell = self._sort_by_cell
 if cell is None:
 return None
 return sel.text("./a", root=cell).encode("utf-8")

 @property
 def sort_order(self):
 """Return order.

 Returns: 'ascending' or 'descending'
 """
 cell = self._sort_by_cell
 if cell is None:
 return None
 try:
 # Newer type
 el = sel.element('./div/i[contains(@class, "fa-sort")]', root=cell)
 except NoSuchElementException:
 # Older type
 el = cell
 cls = sel.get_attribute(el, "class")
 if "fa-sort-asc" in cls or 'sorting_asc' in cls:
 return "ascending"
 elif "fa-sort-desc" in cls or 'sorting_desc' in cls:
 return "descending"
 else:
 return None

[docs] def click_header_cell(self, text):
 """Clicks on the header to change sorting conditions.

 Args:
 text: Header cell text.
 """
 sel.click(sel.element(self.SORT_LINK.format(quoteattr(text)), root=self.header_row))

[docs] def sort_by(self, header, order):
 """Sorts the table by given conditions

 Args:
 header: Text of the header cell to use for sorting.
 order: ascending or descending
 """
 order = order.lower().strip()
 if header != self.sorted_by:
 # Change column to order by
 self.click_header_cell(header)
 if self.sorted_by != header:
 raise Exception(
 "Detected malfunction in table ordering (wanted {}, got {})".format(
 header, self.sorted_by))
 if order != self.sort_order:
 # Change direction
 self.click_header_cell(header)
 if self.sort_order != order:
 raise Exception("Detected malfunction in table ordering (wanted {}, got {})".format(
 order, self.sort_order))

[docs]class CheckboxTable(Table):
 """:py:class:`Table` with support for checkboxes

 Args:
 table_locator: See :py:class:`cfme.web_ui.Table`
 header_checkbox_locator: Locator of header checkbox (default `None`)
 Specify in case the header checkbox is not part of the header row
 body_checkbox_locator: Locator for checkboxes in body rows
 header_offset: See :py:class:`cfme.web_ui.Table`
 body_offset: See :py:class:`cfme.web_ui.Table`
 """
 _checkbox_loc = ".//input[@type='checkbox']"

 def __init__(self, table_locator, header_offset=0, body_offset=0,
 header_checkbox_locator=None, body_checkbox_locator=None):
 super(CheckboxTable, self).__init__(table_locator, header_offset, body_offset)
 if body_checkbox_locator:
 self._checkbox_loc = body_checkbox_locator
 self._header_checkbox_loc = header_checkbox_locator

 @property
 def header_checkbox(self):
 """Checkbox used to select/deselect all rows"""
 if self._header_checkbox_loc is not None:
 return sel.element(self._header_checkbox_loc)
 else:
 return sel.element(self._checkbox_loc, root=self.header_row)

[docs] def select_all(self):
 """Select all rows using the header checkbox or one by one if not present"""
 if self._header_checkbox_loc is None:
 for row in self.rows():
 self._set_row_checkbox(row, True)
 else:
 sel.uncheck(self.header_checkbox)
 sel.check(self.header_checkbox)

[docs] def deselect_all(self):
 """Deselect all rows using the header checkbox or one by one if not present"""
 if self._header_checkbox_loc is None:
 for row in self.rows():
 self._set_row_checkbox(row, False)
 else:
 sel.check(self.header_checkbox)
 sel.uncheck(self.header_checkbox)

 def _set_row_checkbox(self, row, set_to=False):
 row_checkbox = sel.element(self._checkbox_loc, root=row.locate())
 sel.checkbox(row_checkbox, set_to)

 def _set_row(self, header, value, set_to=False):
 """ Internal method used to select/deselect a row by column header and cell value

 Args:
 header: See :py:meth:`Table.find_row`
 value: See :py:meth:`Table.find_row`
 set_to: Select if `True`, deselect if `False`
 """
 row = self.find_row(header, value)
 if row:
 self._set_row_checkbox(row, set_to)
 return True
 else:
 return False

[docs] def select_rows_by_indexes(self, *indexes):
 """Select rows specified by row indexes (starting with 0)
 """
 for i, row in enumerate(self.rows()):
 if i in indexes:
 self._set_row_checkbox(row, True)

[docs] def deselect_rows_by_indexes(self, *indexes):
 """Deselect rows specified by row indexes (starting with 0)
 """
 for i, row in enumerate(self.rows()):
 if i in indexes:
 self._set_row_checkbox(row, False)

[docs] def select_row(self, header, value):
 """Select a single row specified by column header and cell value

 Args:
 header: See :py:meth:`Table.find_row`
 value: See :py:meth:`Table.find_row`

 Returns: `True` if successful, `False` otherwise
 """
 return self._set_row(header, value, True)

[docs] def deselect_row(self, header, value):
 """Deselect a single row specified by column header and cell value

 Args:
 header: See :py:meth:`Table.find_row`
 value: See :py:meth:`Table.find_row`

 Returns: `True` if successful, `False` otherwise
 """
 return self._set_row(header, value, False)

 def _set_rows(self, cell_map, set_to=False):
 """ Internal method used to select/deselect multiple rows

 Args:
 cell_map: See :py:meth:`Table.click_cells`
 set_to: Select if `True`, deselect if `False`
 """
 failed_selects = []
 for header, values in cell_map.items():
 if isinstance(values, basestring):
 values = [values]
 for value in values:
 res = self._set_row(header, value, set_to)
 if not res:
 failed_selects.append("{}:{}".format(header, value))
 if failed_selects:
 raise exceptions.NotAllCheckboxesFound(failed_selects)

[docs] def select_rows(self, cell_map):
 """Select multiple rows

 Args:
 cell_map: See :py:meth:`Table.click_cells`

 Raises:
 NotAllCheckboxesFound: If some cells were unable to be found
 """
 self._set_rows(cell_map, True)

[docs] def deselect_rows(self, cell_map):
 """Deselect multiple rows

 Args:
 cell_map: See :py:meth:`Table.click_cells`

 Raises:
 NotAllCheckboxesFound: If some cells were unable to be found
 """
 self._set_rows(cell_map, False)

 def _set_row_by_cells(self, cells, set_to=False, partial_check=False):
 row = self.find_row_by_cells(cells, partial_check=partial_check)
 if row:
 self._set_row_checkbox(row, set_to)
 else:
 raise sel_exceptions.NoSuchElementException()

[docs] def select_row_by_cells(self, cells, partial_check=False):
 """Select the first row matched by ``cells``

 Args:
 cells: See :py:meth:`Table.find_rows_by_cells`

 """
 self._set_row_by_cells(cells, True, partial_check)

[docs] def deselect_row_by_cells(self, cells, partial_check=False):
 """Deselect the first row matched by ``cells``

 Args:
 cells: See :py:meth:`Table.find_rows_by_cells`

 """
 self._set_row_by_cells(cells, False, partial_check)

 def _set_rows_by_cells(self, cells, set_to=False, partial_check=False):
 rows = self.find_rows_by_cells(cells)
 for row in rows:
 self._set_row_checkbox(row, set_to)

[docs] def select_rows_by_cells(self, cells, partial_check=False):
 """Select the rows matched by ``cells``

 Args:
 cells: See :py:meth:`Table.find_rows_by_cells`
 """
 self._set_rows_by_cells(cells, True, partial_check)

[docs] def deselect_rows_by_cells(self, cells, partial_check=False):
 """Deselect the rows matched by ``cells``

 Args:
 cells: See :py:meth:`Table.find_rows_by_cells`
 """
 self._set_rows_by_cells(cells, False, partial_check)

[docs]class SplitCheckboxTable(SplitTable, CheckboxTable):
 """:py:class:`SplitTable` with support for checkboxes

 Args:
 header_data: See :py:class:`cfme.web_ui.SplitTable`
 body_data: See :py:class:`cfme.web_ui.SplitTable`
 header_checkbox_locator: See :py:class:`cfme.web_ui.CheckboxTable`
 body_checkbox_locator: See :py:class:`cfme.web_ui.CheckboxTable`
 header_offset: See :py:class:`cfme.web_ui.Table`
 body_offset: See :py:class:`cfme.web_ui.Table`
 """
 _checkbox_loc = './/img[contains(@src, "item_chk")]'

 def __init__(self, header_data, body_data,
 header_checkbox_locator=None, body_checkbox_locator=None):
 # To limit multiple inheritance surprises, explicitly call out to SplitTable's __init__
 SplitTable.__init__(self, header_data, body_data)

 # ...then set up CheckboxTable's locators here
 self._header_checkbox_loc = header_checkbox_locator
 if body_checkbox_locator:
 self._checkbox_loc = body_checkbox_locator

[docs]class PagedTable(Table):
 """:py:class:`Table` with support for paginator

 Args:
 table_locator: See :py:class:`cfme.web_ui.Table`
 header_checkbox_locator: Locator of header checkbox (default `None`)
 Specify in case the header checkbox is not part of the header row
 body_checkbox_locator: Locator for checkboxes in body rows
 header_offset: See :py:class:`cfme.web_ui.Table`
 body_offset: See :py:class:`cfme.web_ui.Table`
 """
[docs] def find_row_on_all_pages(self, header, value):
 from cfme.web_ui import paginator
 for _ in paginator.pages():
 sel.wait_for_element(self)
 row = self.find_row(header, value)
 if row is not None:
 return row

[docs] def find_row_by_cell_on_all_pages(self, cells):
 """Find the first row containing cells on all pages

 Args:
 cells: See :py:meth:`Table.find_rows_by_cells`

 Returns: The first matching row found on any page

 """
 from cfme.web_ui import paginator
 for _ in paginator.pages():
 sel.wait_for_element(self)
 row = self.find_row_by_cells(cells)
 if row is not None:
 return row

[docs]class SplitPagedTable(SplitTable, PagedTable):
 """:py:class:`SplitTable` with support for paginator

 Args:
 header_data: See :py:class:`cfme.web_ui.SplitTable`
 body_data: See :py:class:`cfme.web_ui.SplitTable`
 header_offset: See :py:class:`cfme.web_ui.Table`
 body_offset: See :py:class:`cfme.web_ui.Table`
 """
 def __init__(self, header_data, body_data):
 # To limit multiple inheritance surprises, explicitly call out to SplitTable's __init__
 SplitTable.__init__(self, header_data, body_data)

[docs]def table_in_object(table_title):
 """If you want to point to tables inside object view, this is what you want to use.

 Works both on down- and upstream.

 Args:
 table_title: Text in `p` element preceeding the table
 Returns: XPath locator for the desired table.
 """
 return ("//table[(preceding-sibling::p[1] | preceding-sibling::h3[1])[normalize-space(.)={}]]"
 .format(quoteattr(table_title)))

@multimethod(lambda loc, value: (sel.tag(loc), sel.get_attribute(loc, 'type')))
def fill_tag(loc, value):
 """ Return a tuple of function to do the filling, and a value to log."""
 raise NotImplementedError("Don't know how to fill {} into this type: {}".format(value, loc))

@fill_tag.method(("select", Anything))
[docs]def fill_select_tag(select, value):
 return (sel.select, value)

@fill_tag.method((Anything, 'text'))
@fill_tag.method((Anything, 'textarea'))
[docs]def fill_text(textbox, val):
 return (sel.set_text, val)

@fill_tag.method((Anything, 'number'))
[docs]def fill_number(bmbox, val):
 return (sel.set_text, val)

@fill_tag.method((Anything, 'password'))
[docs]def fill_password(pwbox, password):
 return (sel.set_text, "********")

@fill_tag.method(('a', Anything))
@fill_tag.method(('img', Anything))
@fill_tag.method((Anything, 'image'))
@fill_tag.method((Anything, 'submit'))
[docs]def fill_click(el, val):
 """Click only when given a truthy value"""
 def click_if(e, v):
 if v:
 sel.click(e)
 return (click_if, val)

@fill_tag.method((Anything, 'file'))
[docs]def fill_file(fd, val):
 return (sel.send_keys, val)

@fill_tag.method((Anything, 'checkbox'))
[docs]def fill_checkbox(cb, val):
 return (sel.checkbox, bool(val))

@multidispatch
def fill(loc, content, **kwargs):
 """
 Fills in a UI component with the given content.

 Usage:
 fill(textbox, "text to fill")
 fill(myform, [... data to fill ...])
 fill(radio, "choice to select")

 Returns: True if any UI action was taken, False otherwise

 """
 action, logval = fill_tag(loc, content)
 if hasattr(loc, 'name'):
 ident = loc.name
 else:
 ident = loc
 logger.debug(' Filling in [%s], with value %s', ident, logval)
 prev_state = action(loc, content)
 sel.detect_observed_field(loc)
 return prev_state

@fill.method((Mapping, Anything))
def _version_pick(m, a, **kwargs):
 return fill(version.pick(m), a, **kwargs)

@fill.method((Table, Mapping))
def _sd_fill_table(table, cells):
 """ How to fill a table with a value (by selecting the value as cells in the table)
 See Table.click_cells
 """
 table._update_cache()
 logger.debug(' Clicking Table cell')
 table.click_cells(cells)
 return bool(cells)

@fill.method((CheckboxTable, object))
def _sd_fill_checkboxtable(table, cells):
 """ How to fill a checkboxtable with a value (by selecting the right rows)
 See CheckboxTable.select_by_cells
 """
 table._update_cache()
 logger.debug(' Selecting CheckboxTable row')
 table.select_rows(cells)
 return bool(cells)

@fill.method((Callable, object))
[docs]def fill_callable(f, val):
 """Fill in a Callable by just calling it with the value, allow for arbitrary actions"""
 return f(val)

@fill.method((Select, types.NoneType))
@fill.method((Select, object))
[docs]def fill_select(slist, val):
 logger.debug(' Filling in {} with value {}'.format(str(slist), val))
 prev_sel = sel.select(slist, val)
 slist.observer_wait()
 return prev_sel

[docs]class Calendar(Pretty):
 """A CFME calendar form field

 Calendar fields are readonly, and managed by the dxhtmlCalendar widget. A Calendar field
 will accept any object that can be coerced into a string, but the value may not match the format
 expected by dhtmlxCalendar or CFME. For best results, either a ``datetime.date`` or
 ``datetime.datetime`` object should be used to create a valid date field.

 Args:
 name: "name" property of the readonly calendar field.

 Usage:

 calendar = web_ui.Calendar("miq_date_1")
 web_ui.fill(calendar, date(2000, 1, 1))
 web_ui.fill(calendar, '1/1/2001')

 """
 def __init__(self, name):
 self.name = name

[docs] def locate(self):
 return sel.move_to_element(Input(self.name))

@fill.method((Calendar, object))
def _sd_fill_date(calendar, value):
 input = sel.element(calendar)
 if isinstance(value, date):
 date_str = '{}/{}/{}'.format(value.month, value.day, value.year)
 else:
 date_str = str(value)

 # need to write to a readonly field: resort to evil
 if sel.get_attribute(input, 'ng-model') is not None:
 sel.set_angularjs_value(input, date_str)
 else:
 sel.set_attribute(input, "value", date_str)
 # Now when we set the value, we need to simulate a change event.
 if sel.get_attribute(input, "data-date-autoclose"):
 # New one
 script = "$(\"#{}\").trigger('changeDate');"
 else:
 # Old one
 script = (
 "if(typeof $j == 'undefined') {var jq = $;} else {var jq = $j;} "
 "jq(\"#{}\").change();")
 try:
 sel.execute_script(script.format(calendar.name))
 except sel_exceptions.WebDriverException as e:
 logger.warning(
 "An exception was raised during handling of the Cal #{}'s change event:\n{}"
 .format(calendar.name, str(e)))
 sel.wait_for_ajax()

 return True

@fill.method((object, types.NoneType))
@fill.method((types.NoneType, object))
def _sd_fill_none(*args, **kwargs):
 """ Ignore a NoneType """
 pass

[docs]class Form(Region):
 """
 A class for interacting with Form elements on pages.

 The Form class takes a set of locators and binds them together to create a
 unified Form object. This Form object has a defined field order so that the
 user does not have to worry about which order the information is provided.
 This enables the data to be provided as a dict meaning it can be passed directly
 from yamls. It inherits the base Region class, meaning that locators can still be
 referenced in the same way a Region's locators can. You can also add one more field which will
 be a :py:class:`dict` of metadata, determining mostly field validity. See :py:meth:`field_valid`

 Args:
 fields: A list of field name/locator tuples. The argument not only defines
 the order of the elements but also which elements comprise part of the form.
 identifying_loc: A locator which should be present if the form is visible.

 Usage:

 provider_form = web_ui.Form(
 fields=[
 ('type_select', "//*[@id='server_emstype']"),
 ('name_text', "//*[@id='name']"),
 ('hostname_text', "//*[@id='hostname']"),
 ('ipaddress_text', "//*[@id='ipaddress']"),
 ('amazon_region_select', "//*[@id='hostname']"),
 ('api_port', "//*[@id='port']"),
])

 Forms can then be filled in like so.::

 provider_info = {
 'type_select': "OpenStack",
 'name_text': "RHOS-01",
 'hostname_text': "RHOS-01",
 'ipaddress_text': "10.0.0.0",
 'api_port': "5000",
 }
 web_ui.fill(provider_form, provider_info)

 Note:
 Using supertuples in a list, although ordered due to the properties of a List,
 will not overide the field order defined in the Form.
 """

 pretty_attrs = ['fields']

 def __init__(self, fields=None, identifying_loc=None):
 self.metadata = {}
 self.locators = {}
 fields_seen = set()
 for field in fields:
 try:
 if field[0] in fields_seen:
 raise ValueError('You cannot have duplicate field names in a Form ({})'.format(
 field[0]))
 self.locators[field[0]] = field[1]
 if len(field) == 3:
 self.metadata[field[0]] = field[2]
 fields_seen.add(field[0])
 except IndexError:
 raise ValueError("fields= can be 2- or 3-tuples only! (name, loc[, metadata])")

 self.fields = fields
 self.identifying_loc = identifying_loc

[docs] def field_valid(self, field_name):
 """Add the validity constraints here."""
 if field_name not in self.metadata:
 return True
 metadata = self.metadata[field_name]
 if "removed_since" in metadata:
 removed_since = metadata["removed_since"]
 return version.current_version() < removed_since
 if "appeared_in" in metadata:
 appeared_in = metadata["appeared_in"]
 return version.current_version() >= appeared_in

 return True

[docs] def fill(self, fill_data):
 fill(self, fill_data)

@fill.method((Form, Sequence))
def _fill_form_list(form, values, action=None, action_always=False):
 """Fills in field elements on forms

 Takes a set of values in dict or supertuple format and locates form elements,
 in the correct order, and fills them in.

 Note:
 Currently supports, text, textarea, select, checkbox, radio, password, a
 and Table objects/elements.

 Args:
 values: a dict or supertuple formatted set of data where
 each key is the name of the form locator from the page model. Some
 objects/elements, such as :py:class:`Table` objects, support providing
 multiple values to be clicked on in a single call.
 action: a locator which will be clicked when the form filling is complete

 action_always: if True, perform the action even if none of the
 values to be filled in required any UI
 interaction (eg, text boxes already had the
 text to be filled in, checkbox already checked,
 etc)

 """
 logger.info('Beginning to fill in form...')
 sel.wait_for_ajax()
 values = list(val for key in form.fields for val in values if val[0] == key[0])
 res = []
 for field, value in values:
 if value is not None and form.field_valid(field):
 loc = form.locators[field]
 try:
 sel.wait_for_element(loc, timeout=10)
 except TypeError:
 # TypeError - when loc is not resolvable to an element, elements() will yell
 # vvv An alternate scenario when element is not resolvable, just wait a bit.
 time.sleep(1)
 except TimedOutError:
 logger.warning("This element [{}] couldn't be waited for".format(loc))
 logger.trace(' Dispatching fill for %s', field)
 fill_prev = fill(loc, value) # re-dispatch to fill for each item
 res.append(fill_prev != value) # note whether anything changed
 elif value is None and isinstance(form.locators[field], Select):
 fill_prev = fill(form.locators[field], None)
 res.append(fill_prev != value)
 else:
 res.append(False)

 if action and (any(res) or action_always): # only perform action if something changed
 logger.debug(' Invoking end of form action')
 fill(action, True) # re-dispatch with truthy value
 logger.debug('Finished filling in form')
 return any(res) or action_always

@fill.method((object, Mapping))
def _fill_form_dict(form, values, **kwargs):
 """Fill in a dict by converting it to a list"""
 return _fill_form_list(form, values.items(), **kwargs)

[docs]class Input(Pretty):
 """Class designed to handle things about ``<input>`` tags that have name attr in one place.

 Also applies on ``textarea``, which is basically input with multiple lines (if it has name).

 Args:
 *names: Possible values (or) of the ``name`` attribute.

 Keywords:
 use_id: Whether to use ``id`` instead of ``name``. Useful if there is some input that does
 not have ``name`` attribute present.
 """
 pretty_attrs = ['_names', '_use_id']

 def __init__(self, *names, **kwargs):
 self._names = names
 self._use_id = kwargs.pop("use_id", False)

 @property
 def names(self):
 if len(self._names) == 1 and isinstance(self._names[0], dict):
 return (version.pick(self._names[0]),)
 else:
 return self._names

 def _generate_attr(self, name):
 return "@{}={}".format("id" if self._use_id else "name", quoteattr(name))

[docs] def locate(self):
 # If the end of the locator is changed, modify also the choice in Radio!!!
 return '//*[(self::input or self::textarea) and ({})]'.format(
 " or ".join(self._generate_attr(name) for name in self.names)
)

 @property
 def angular_help_block(self):
 """Returns the first visible angular helper text (like 'Required')."""
 loc = (
 '{0}/following-sibling::span[not(contains(@class, "ng-hide"))]'
 '| {0}/following-sibling::div/span[not(contains(@class, "ng-hide"))]'
 .format(self.locate()))
 try:
 return sel.text(loc).strip()
 except NoSuchElementException:
 return None

 def __add__(self, string):
 return self.locate() + string

 def __radd__(self, string):
 return string + self.locate()

[docs]class FileInput(Input):
 """A file input handling widget.

 Accepts a string. If the string is a file, then it is put in the input. Otherwise a temporary
 file is generated and that one is fed to the file input.
 """
 pass

@fill.method((FileInput, Anything))
def _fill_file_input(i, a):
 # TODO Upgrade selenium to 3.0.1+, this breaks in chrome at send_keys()
 # https://github.com/SeleniumHQ/selenium/issues/2906

 # Engage the selenium's file detector so we can reliably transfer the file to the browser
 with browser().file_detector_context(LocalFileDetector):
 # We need a raw element so we can send_keys to it
 input_el = sel.element(i.locate())
 if browser().file_detector.is_local_file(a) is None:
 # Create a temp file
 f = NamedTemporaryFile()
 f.write(str(a))
 f.flush()
 input_el.send_keys(os.path.abspath(f.name))
 atexit.register(f.close)
 else:
 # It already is a file ...
 input_el.send_keys(a)
 # Since we used raw selenium element, wait for ajax here ...
 sel.wait_for_ajax()

[docs]class Radio(Input):
 """ A class for Radio button groups

 Radio allows the usage of HTML radio elements without resorting to previous
 practice of iterating over elements to find the value. The name of the radio
 group is passed and then when choices are required, the locator is built.

 Args:
 name: The HTML elements ``name`` attribute that identifies a group of radio
 buttons.

 Usage:

 radio = Radio("schedule__schedule_type")

 A specific radio element can then be returned by running the following::

 el = radio.choice('immediately')
 click(el)

 The :py:class:`Radio` object can be reused over and over with repeated calls to
 the :py:func:`Radio.choice` method.
 """
[docs] def choice(self, val):
 """ Returns the locator for a choice

 Args:
 val: A string representing the ``value`` attribute of the specific radio
 element.

 Returns: A string containing the XPATH of the specific radio element.

 """
 # Ugly, but working - all the conditions are in parentheses
 return re.sub(r"\]$", " and @value={}]".format(quoteattr(val)), self.locate())

[docs] def observer_wait(self, val):
 sel.detect_observed_field(self.choice(val))

@fill.method((Radio, object))
def _fill_radio(radio, value):
 """How to fill a radio button group (by selecting the given value)"""
 logger.debug(' Filling in Radio{} with value "{}"'.format(tuple(radio.names), value))
 sel.click(radio.choice(value))
 radio.observer_wait(value)

[docs]class BootstrapTreeview(object):
 """A class representing the Bootstrap treeview used in newer builds.

 Implements ``expand_path``, ``click_path``, ``read_contents``. All are implemented in manner
 very similar to the original :py:class:`Tree`.

 Args:
 tree_id: Id of the tree, the closest div to the root ``ul`` element.
 """
 ROOT_ITEMS = './ul/li[not(./span[contains(@class, "indent")])]'
 ROOT_ITEMS_WITH_TEXT = (
 './ul/li[not(./span[contains(@class, "indent")]) and contains(normalize-space(.), {text})]')
 SELECTED_ITEM = './ul/li[contains(@class, "node-selected")]'
 CHILD_ITEMS = (
 './ul/li[starts-with(@data-nodeid, {id})'
 ' and count(./span[contains(@class, "indent")])={indent}]')
 CHILD_ITEMS_TEXT = (
 './ul/li[starts-with(@data-nodeid, {id})'
 ' and contains(normalize-space(.), {text})'
 ' and count(./span[contains(@class, "indent")])={indent}]')
 ITEM_BY_NODEID = './ul/li[@data-nodeid={}]'
 IS_EXPANDABLE = './span[contains(@class, "expand-icon")]'
 IS_EXPANDED = './span[contains(@class, "expand-icon") and contains(@class, "fa-angle-down")]'
 IS_CHECKABLE = './span[contains(@class, "check-icon")]'
 IS_CHECKED = './span[contains(@class, "check-icon") and contains(@class, "fa-check-square-o")]'
 IS_LOADING = './span[contains(@class, "expand-icon") and contains(@class, "fa-spinner")]'
 INDENT = './span[contains(@class, "indent")]'

 def __init__(self, tree_id):
 self.tree_id = tree_id

 @classmethod
[docs] def image_getter(cls, item):
 """Look up the image that is hidden in the style tag

 Returns:
 The name of the image without the hash, path and extension.
 """
 try:
 image_node = sel.element('./span[contains(@class, "node-image")]', root=item)
 except NoSuchElementException:
 return None
 style = sel.get_attribute(image_node, 'style')
 image_href = re.search(r'url\("([^"]+)"\)', style).groups()[0]
 return re.search(r'/([^/]+)-[0-9a-f]+\.png$', image_href).groups()[0]

[docs] def locate(self):
 return '#{}'.format(self.tree_id)

 @property
 def selected_item(self):
 return sel.element(self.SELECTED_ITEM, root=self)

 @classmethod
[docs] def indents(cls, item):
 return len(sel.elements(cls.INDENT, root=item))

 @classmethod
[docs] def is_expandable(cls, item):
 return bool(sel.elements(cls.IS_EXPANDABLE, root=item))

 @classmethod
[docs] def is_expanded(cls, item):
 return bool(sel.elements(cls.IS_EXPANDED, root=item))

 @classmethod
[docs] def is_checkable(cls, item):
 return bool(sel.elements(cls.IS_CHECKABLE, root=item))

 @classmethod
[docs] def is_checked(cls, item):
 return bool(sel.elements(cls.IS_CHECKED, root=item))

 @classmethod
[docs] def is_loading(cls, item):
 return bool(sel.elements(cls.IS_LOADING, root=item))

 @classmethod
[docs] def is_collapsed(cls, item):
 return not cls.is_expanded(item)

 @classmethod
[docs] def is_selected(cls, item):
 return 'node-selected' in sel.classes(item)

 @classmethod
[docs] def get_nodeid(cls, item):
 return sel.get_attribute(item, 'data-nodeid')

 @classmethod
[docs] def get_expand_arrow(cls, item):
 return sel.element(cls.IS_EXPANDABLE, root=item)

[docs] def child_items(self, item=None):
 if item is not None:
 nodeid = unescape(quoteattr(self.get_nodeid(item) + '.'))
 node_indents = self.indents(item) + 1
 return sel.elements(self.CHILD_ITEMS.format(id=nodeid, indent=node_indents), root=self)
 else:
 return sel.elements(self.ROOT_ITEMS, root=self)

[docs] def child_items_with_text(self, item, text):
 text = unescape(quoteattr(text))
 if item is not None:
 nodeid = unescape(quoteattr(self.get_nodeid(item) + '.'))
 node_indents = self.indents(item) + 1
 return sel.elements(
 self.CHILD_ITEMS_TEXT.format(id=nodeid, text=text, indent=node_indents), root=self)
 else:
 return sel.elements(self.ROOT_ITEMS_WITH_TEXT.format(text=text), root=self)

[docs] def get_item_by_nodeid(self, nodeid):
 nodeid_q = unescape(quoteattr(nodeid))
 try:
 return sel.element(self.ITEM_BY_NODEID.format(nodeid_q), root=self)
 except NoSuchElementException:
 raise exceptions.CandidateNotFound({
 'message':
 'Could not find the item with nodeid {} in Boostrap tree {}'.format(
 nodeid,
 self.tree_id),
 'path': '',
 'cause': ''})

[docs] def expand_node(self, nodeid):
 """Expands a node given its nodeid. Must be visible

 Args:
 nodeid: ``nodeId`` of the node

 Returns:
 ``True`` if it was possible to expand the node, otherwise ``False``.
 """
 logger.trace('Expanding node %s on tree %s', nodeid, self.tree_id)
 node = self.get_item_by_nodeid(nodeid)
 if not self.is_expandable(node):
 return False
 if self.is_collapsed(node):
 arrow = self.get_expand_arrow(node)
 sel.click(arrow)
 time.sleep(0.1)
 wait_for(
 lambda: not self.is_loading(self.get_item_by_nodeid(nodeid)),
 delay=0.2, num_sec=30)
 wait_for(
 lambda: self.is_expanded(self.get_item_by_nodeid(nodeid)),
 delay=0.2, num_sec=10)
 return True

[docs] def collapse_node(self, nodeid):
 """Collapses a node given its nodeid. Must be visible

 Args:
 nodeid: ``nodeId`` of the node

 Returns:
 ``True`` if it was possible to expand the node, otherwise ``False``.
 """
 logger.trace('Collapsing node %s on tree %s', nodeid, self.tree_id)
 node = self.get_item_by_nodeid(nodeid)
 if not self.is_expandable(node):
 return False
 if self.is_expanded(node):
 arrow = self.get_expand_arrow(node)
 sel.click(arrow)
 time.sleep(0.1)
 wait_for(
 lambda: self.is_collapsed(self.get_item_by_nodeid(nodeid)),
 delay=0.2, num_sec=10)
 return True

 @classmethod
 def _process_step(cls, step):
 """Steps can be plain strings or tuples when matching images"""
 if isinstance(step, dict):
 # Version pick and call again ...
 return cls._process_step(version.pick(step))
 if isinstance(step, tuple):
 image = step[0]
 step = step[1]
 else:
 image = None
 if not isinstance(step, (basestring, re._pattern_type)):
 step = str(step)
 return image, step

 @staticmethod
 def _repr_step(image, step):
 if isinstance(step, re._pattern_type):
 # Make it look like r'pattern'
 step_repr = 'r' + re.sub(r'^[^"\']', '', repr(step.pattern))
 else:
 step_repr = step
 if image is None:
 return step_repr
 else:
 return '{}[{}]'.format(step_repr, image)

 @classmethod
[docs] def pretty_path(cls, path):
 return '/'.join(cls._repr_step(*cls._process_step(step)) for step in path)

 @classmethod
[docs] def validate_node(cls, node, matcher, image):
 text = sel.text(node)
 if isinstance(matcher, re._pattern_type):
 match = matcher.match(text) is not None
 else:
 match = matcher == text
 if not match:
 return False
 if image is not None and cls.image_getter(node) != image:
 return False
 return True

[docs] def expand_path(self, *path, **kwargs):
 """Expands given path and returns the leaf node.

 The path items can be plain strings. In that case, exact string matching happens. Path items
 can also be compiled regexps, where the ``match`` method is used to determine if the node
 is the one we want. And finally, the path items can be 2-tuples, where the second item can
 be the string or regular expression and the first item is the image to be matched using
 :py:meth:`image_getter` method.

 Args:
 *path: The path (explained above)

 Returns:
 The leaf WebElement.

 Raises:
 :py:class:`exceptions.CandidateNotFound` when the node is not found in the tree.
 """
 sel.wait_for_ajax()
 logger.info('Expanding path %s on tree %s', self.pretty_path(path), self.tree_id)
 node = None
 steps_tried = []

 for step in path:
 steps_tried.append(step)
 image, step = self._process_step(step)
 if node is not None and not self.expand_node(self.get_nodeid(node)):
 raise exceptions.CandidateNotFound({
 'message':
 'Could not find the item {} in Boostrap tree {}'.format(
 self.pretty_path(steps_tried),
 self.tree_id),
 'path': path,
 'cause': 'Could not expand the {} node'.format(self._repr_step(image, step))})
 if isinstance(step, basestring):
 # To speed up the search when having a string to match, pick up items with that text
 child_items = self.child_items_with_text(node, step)
 else:
 # Otherwise we need to go through all of them.
 child_items = self.child_items(node)
 for child_item in child_items:
 if self.validate_node(child_item, step, image):
 node = child_item
 break
 else:
 try:
 cause = 'Was not found in {}'.format(
 self._repr_step(*self._process_step(steps_tried[-2])))
 except IndexError:
 # There is only one item, probably root?
 cause = 'Could not find {}'.format(
 self._repr_step(*self._process_step(steps_tried[0])))
 raise exceptions.CandidateNotFound({
 'message':
 'Could not find the item {} in Boostrap tree {}'.format(
 self.pretty_path(steps_tried),
 self.tree_id),
 'path': path,
 'cause': cause})

 return node

[docs] def click_path(self, *path, **kwargs):
 """Expands the path and clicks the leaf node.

 See :py:meth:`expand_path` for more informations about synopsis.
 """
 node = self.expand_path(*path, **kwargs)
 sel.click(node)
 return node

[docs] def read_contents(self, nodeid=None, include_images=False, collapse_after_read=False):
 if nodeid is not None:
 item = self.get_item_by_nodeid(nodeid)
 self.expand_node(nodeid)
 else:
 item = None
 result = []

 for child_item in self.child_items(item):
 result.append(
 self.read_contents(
 nodeid=self.get_nodeid(child_item),
 include_images=include_images,
 collapse_after_read=collapse_after_read))

 if collapse_after_read and nodeid is not None:
 self.collapse_node(nodeid)

 if include_images and item is not None:
 this_item = (self.image_getter(item), sel.text(item))
 elif item is not None:
 this_item = sel.text(item)
 else:
 this_item = None
 if result and this_item is not None:
 return [this_item, result]
 elif result:
 return result
 else:
 return this_item

[docs] def check_uncheck_node(self, check, *path, **kwargs):
 leaf = self.expand_path(*path, **kwargs)
 if not self.is_checkable(leaf):
 raise TypeError('Item with path {} in {} is not checkable'.format(
 self.pretty_path(path), self.tree_id))
 checked = self.is_checked(leaf)
 if checked != check:
 sel.click(sel.element(self.IS_CHECKABLE, root=leaf))

[docs] def check_node(self, *path, **kwargs):
 """Expands the passed path and checks a checkbox that is located at the node."""
 return self.check_uncheck_node(True, *path, **kwargs)

[docs] def uncheck_node(self, *path, **kwargs):
 """Expands the passed path and unchecks a checkbox that is located at the node."""
 return self.check_uncheck_node(False, *path, **kwargs)

[docs] def node_checked(self, *path, **kwargs):
 """Check if a checkbox is checked on the node in that path."""
 leaf = self.expand_path(*path, **kwargs)
 if not self.is_checkable(leaf):
 return False
 return self.is_checked(leaf)

[docs] def find_path_to(self, target, exact=False):
 """ Method used to look up the exact path to an item we know only by its regexp or partial
 description.

 Expands whole tree during the execution.

 Args:
 target: Item searched for. Can be regexp made by
 :py:func:`re.compile <python:re.compile>`,
 otherwise it is taken as a string for `in` matching.
 exact: Useful in string matching. If set to True, it matches the exact string.
 Default is False.
 Returns: :py:class:`list` with path to that item.
 """
 if not isinstance(target, re._pattern_type):
 if exact:
 target = re.compile(r"^{}$".format(re.escape(str(target))))
 else:
 target = re.compile(r".*?{}.*?".format(re.escape(str(target))))

 def _find_in_tree(t, p=None):
 if t is None:
 return
 if p is None:
 p = []
 for item in t:
 if isinstance(item, list):
 if target.match(item[0]) is None:
 subtree = _find_in_tree(item[1], p + [item[0]])
 if subtree is not None:
 return subtree
 else:
 return p + [item[0]]
 else:
 if target.match(item) is not None:
 return p + [item]
 else:
 return

 result = _find_in_tree(self.read_contents())
 if result is None:
 raise NameError("{} not found in tree".format(target.pattern))
 else:
 return result

@fill.method((BootstrapTreeview, Sequence))
def _fill_bstree_seq(tree, values):
 if not values:
 return None
 try:
 if isinstance(values[0], types.StringTypes):
 tree.click_path(*values)
 elif isinstance(values[0], Iterable):
 for check in values:
 tree.check_uncheck_node(check[1], *check[0])
 except IndexError:
 tree.click_path(*values)

[docs]class Tree(Pretty):
 """ A class directed at CFME Tree elements

 The Tree class aims to deal with all kinds of CFME trees

 Args:
 locator: This is a locator object pointing to the ```` element which contains the rest
 of the table.

 Returns: A :py:class:`Tree` object.

 A Tree object is set up by using a locator which contains the node elements. This element
 will usually be a ```` in the case of a Dynatree.

 Usage:

 tree = web_ui.Tree((By.XPATH, '//table//tr[@title="Datastore"]/../..'))

 The path can then be navigated to return the last object in the path list, like so::

 tree.click_path('Automation', 'VM Lifecycle Management (VMLifecycle)',
 'VM Migrate (Migrate)')

 Each path element will be expanded along the way, but will not be clicked.

 When used in a :py:class:`Form`, a list of path tuples is expected in the form fill data.
 The paths will be passed individually to :py:meth:`Tree.check_node`::

 form = Form(fields=[
 ('tree_field', List(locator)),
])

 form_fill_data = {
 'tree_field': [
 ('Tree Node', 'Value'),
 ('Tree Node', 'Branch Node', 'Value'),
]
]

 Note: Dynatrees, rely on a ```` setup. We class a ```` as a node.

 """
 pretty_attrs = ['locator']

 def __init__(self, locator):
 self.locator = locator

 @cached_property
 def tree_id(self):
 if isinstance(self.locator, basestring) and re.match(r"^[a-zA-Z0-9_-]+$", self.locator):
 return self.locator
 else:
 el = sel.element(self.locator)
 tag = sel.tag(el)
 tree_id = None
 if tag == "ul":
 try:
 parent = sel.element("..", root=el)
 id_attr = sel.get_attribute(parent, "id")
 if id_attr:
 tree_id = id_attr
 except sel.NoSuchElementException:
 pass
 elif tag == "div":
 tree_id = sel.get_attribute(el, "id") or None
 else:
 raise ValueError("Unknown element ({}) passed to the Tree!".format(tag))

 if tree_id is None:
 raise ValueError("Could not retrieve the id for Tree {}".format(repr(tree_id)))
 else:
 return tree_id

[docs] def locate(self):
 return "#{}".format(self.tree_id)

[docs] def root_el(self):
 return sel.element(self)

 def _get_tag(self):
 if getattr(self, 'tag', None) is None:
 self.tag = sel.tag(self)
 return self.tag

[docs] def read_contents(self, by_id=False):
 result = False
 while result is False:
 sel.wait_for_ajax()
 result = sel.execute_script(
 "{} return read_tree(arguments[0], arguments[1]);".format(js.read_tree),
 self.locate(),
 by_id)
 return result

[docs] def expand_path(self, *path, **kwargs):
 """ Exposes a path.

 Args:
 *path: The path as multiple positional string arguments denoting the course to take.

 Keywords:
 by_id: Whether to match ids instead of text.

 Returns: The leaf web element.

 """
 by_id = kwargs.pop("by_id", False)
 result = False

 # Ensure we pass str to the javascript. This handles objects that represent themselves
 # using __str__ and generally, you should only pass str because that is what makes sense
 path = castmap(str, path)

 # We sometimes have to wait for ajax. In that case, JS function returns false
 # Then we repeat and wait. It does not seem completely possible to wait for the data in JS
 # as it runs on one thread it appears. So this way it will try to drill multiple times
 # each time deeper and deeper :)
 while result is False:
 sel.wait_for_ajax()
 try:
 result = sel.execute_script(
 "{} return find_leaf(arguments[0],arguments[1],arguments[2]);".format(
 js.find_leaf),
 self.locate(),
 path,
 by_id)
 except sel.WebDriverException as e:
 text = str(e)
 match = re.search(r"TREEITEM /(.*?)/ NOT FOUND IN THE TREE", text)
 if match is not None:
 item = match.groups()[0]
 raise exceptions.CandidateNotFound(
 {'message': "{}: could not be found in the tree.".format(item),
 'path': path,
 'cause': e})
 match = re.search(r"^CANNOT FIND TREE /(.*?)/$", text)
 if match is not None:
 tree_id = match.groups()[0]
 raise exceptions.TreeNotFound(
 "Tree {} / {} not found.".format(tree_id, self.locator))
 # Otherwise ...
 raise
 return result

[docs] def click_path(self, *path, **kwargs):
 """ Exposes a path and then clicks it.

 Args:
 *path: The path as multiple positional string arguments denoting the course to take.

 Keywords:
 by_id: Whether to match ids instead of text.

 Returns: The leaf web element.

 """
 # Ensure we pass str to the javascript. This handles objects that represent themselves
 # using __str__ and generally, you should only pass str because that is what makes sense
 path = castmap(str, path)

 leaf = self.expand_path(*path, **kwargs)
 logger.info("Path %r yielded menuitem %r", path, sel.text(leaf))
 if leaf is not None:
 sel.wait_for_ajax()
 sel.click(leaf)
 return leaf

 @classmethod
[docs] def browse(cls, tree, *path):
 """Browse through tree via path.

 If node not found, raises exception.
 If the browsing reached leaf(str), returns True if also the step was last, otherwise False.
 If the result of the path is a subtree, it is returned.

 Args:
 tree: List with tree.
 *path: Path to browse.
 """
 # Ensure we pass str to the javascript. This handles objects that represent themselves
 # using __str__ and generally, you should only pass str because that is what makes sense
 path = castmap(str, path)

 current = tree
 for i, step in enumerate(path, start=1):
 for node in current:
 if isinstance(node, list):
 if node[0] == step:
 current = node[1]
 break
 else:
 if node == step:
 return i == len(path)
 else:
 raise Exception("Could not find node {}".format(step))
 return current

 @classmethod
[docs] def flatten_level(cls, tree):
 """Extracts just node names from current tree (top).

 It makes:

 .. code-block:: python

 ["asd", "fgh", ("ijk", [...]), ("lmn", [...])]

 to

 .. code-block:: python

 ["asd", "fgh", "ijk", "lmn"]

 Useful for checking of contents of current tree level
 """
 return map(lambda item: item[0] if isinstance(item, list) else item, tree)

[docs] def find_path_to(self, target, exact=False):
 """ Method used to look up the exact path to an item we know only by its regexp or partial
 description.

 Expands whole tree during the execution.

 Args:
 target: Item searched for. Can be regexp made by
 :py:func:`re.compile <python:re.compile>`,
 otherwise it is taken as a string for `in` matching.
 exact: Useful in string matching. If set to True, it matches the exact string.
 Default is False.
 Returns: :py:class:`list` with path to that item.
 """
 if not isinstance(target, re._pattern_type):
 if exact:
 target = re.compile(r"^{}$".format(re.escape(str(target))))
 else:
 target = re.compile(r".*?{}.*?".format(re.escape(str(target))))

 def _find_in_tree(t, p=None):
 if p is None:
 p = []
 for item in t:
 if isinstance(item, list):
 if target.match(item[0]) is None:
 subtree = _find_in_tree(item[1], p + [item[0]])
 if subtree is not None:
 return subtree
 else:
 return p + [item[0]]
 else:
 if target.match(item) is not None:
 return p + [item]
 else:
 return None

 result = _find_in_tree(self.read_contents())
 if result is None:
 raise NameError("{} not found in tree".format(target.pattern))
 else:
 return result

[docs]class CheckboxTree(Tree):
 """Tree that has a checkbox on each node, adds methods to check/uncheck them"""

 node_checkbox = "../span[@class='dynatree-checkbox']"

 def _is_checked(self, leaf):
 return 'dynatree-selected' in \
 sel.get_attribute(sel.element("..", root=leaf), 'class')

 def _check_uncheck_node(self, path, check=False):
 """ Checks or unchecks a node.

 Args:
 *path: The path as multiple positional string arguments denoting the course to take.
 check: If ``True``, the node is checked, ``False`` the node is unchecked.
 """
 leaf = self.expand_path(*path)
 cb = sel.element(self.node_checkbox, root=leaf)
 if check is not self._is_checked(leaf):
 sel.click(cb)

[docs] def check_node(self, *path):
 """ Convenience function to check a node

 Args:
 *path: The path as multiple positional string arguments denoting the course to take.
 """
 self._check_uncheck_node(path, check=True)

[docs] def uncheck_node(self, *path):
 """ Convenience function to uncheck a node

 Args:
 *path: The path as multiple positional string arguments denoting the course to take.
 """
 self._check_uncheck_node(path, check=False)

@fill.method((Tree, Sequence))
def _fill_tree_seq(tree, values):
 tree.click_path(*values)

@sel.select.method((CheckboxTree, Sequence))
@fill.method((CheckboxTree, Sequence))
def _select_chkboxtree_seq(cbtree, values):
 """values should be a list of tuple pairs, where the first item is the
 path to select, and the second is whether to check or uncheck.

 Usage:

 select(cbtree, [(['Foo', 'Bar'], False),
 (['Baz'], True)])
 """
 for (path, to_select) in values:
 if to_select:
 cbtree.check_node(*path)
 else:
 cbtree.uncheck_node(*path)

[docs]class InfoBlock(Pretty):
 DETAIL = "detail"
 FORM = "form"
 PF = "patternfly"
 _TITLE_CACHE = {}

 pretty_attrs = ["title"]

 def __new__(cls, title, detail=None):
 # Caching
 if title not in cls._TITLE_CACHE:
 cls._TITLE_CACHE[title] = super(InfoBlock, cls).__new__(cls)
 cls._TITLE_CACHE[title].__init__(title)
 instance = cls._TITLE_CACHE[title]
 if detail is None:
 return instance
 else:
 return instance.member(detail)

 def __init__(self, title):
 if all(map(lambda a: hasattr(self, a), ["title", "_type", "_member_cache"])):
 return
 self.title = title
 self._type = None
 self._member_cache = {}

 @property
 def type(self):
 if self._type is None:
 self.root # To retrieve it
 return self._type

 @property
 def root(self):
 possible_locators = [
 # Detail type
 '//table//th[contains(normalize-space(.), "{}")]/../../../..'.format(
 self.title),
 # Form type
 (
 '//*[p[@class="legend"][contains(normalize-space(.), "{}")] and table/tbody/tr/td['
 'contains(@class, "key")]]'.format(self.title)
),
 # Newer Form type (master.20150311020845_547fd06 onwards)
 (
 '//*[h3[contains(normalize-space(.), "{}")] and table/tbody/tr/td['
 'contains(@class, "key")]]'.format(self.title)
),
 # Newer Form type used in AC tagging:
 (
 '//h3[contains(normalize-space(.), "{}")]/following-sibling::div/table/tbody/tr/td['
 'contains(@class, "key")]/../../../..'.format(self.title)
),
 # The root element must contain table element because listaccordions were caught by the
 # locator. It used to be fieldset but it seems it can be really anything
 # And here comes a new one, this time no table. (eg. 5.5.0.7 Configuration/About)
 (
 '//*[h3[contains(normalize-space(.), "{}")] and '
 'div[contains(@class, "form-horizontal")]/div/label]'.format(self.title)
)
]
 found = sel.elements("|".join(possible_locators))
 if not found:
 raise exceptions.BlockTypeUnknown("The block type requested is unknown")
 root_el = found[0]
 if sel.elements("./table/tbody/tr/td[contains(@class, 'key')]", root=root_el):
 self._type = self.FORM
 elif sel.elements("./div[contains(@class, 'form-horizontal')]/div/label", root=root_el):
 self._type = self.PF
 else:
 self._type = self.DETAIL
 return root_el

[docs] def member(self, name):
 if name not in self._member_cache:
 self._member_cache[name] = self.Member(self, name)
 return self._member_cache[name]

[docs] def by_member_icon(self, icon):
 """In case you want to find the item by icon in the value field (like OS infra diff.)"""
 if self._type == self.PF:
 raise NotImplementedError(
 "I haven't implemented icons+patternfly infoblock yet, so fix me if you see this.")
 l = ".//table/tbody/tr/td[2]/img[contains(@src, {})]/../../td[1]".format(quoteattr(icon))
 return self.member(sel.text(l))

[docs] def __call__(self, member):
 """A present for @smyers"""
 return self.member(member)

 ##
 #
 # Shortcuts for old-style access
 #
 @classmethod
[docs] def text(cls, *args, **kwargs):
 return cls(*args, **kwargs).text

 @classmethod
[docs] def element(cls, *args, **kwargs):
 return cls(*args, **kwargs).element

 @classmethod
[docs] def elements(cls, *args, **kwargs):
 return cls(*args, **kwargs).elements

 @classmethod
[docs] def icon_href(cls, *args, **kwargs):
 return cls(*args, **kwargs).icon_href

 @classmethod
[docs] def container(cls, args, **kwargs):
 try:
 return sel.element(cls(*args, **kwargs).container)
 except sel_exceptions.NoSuchElementException:
 raise exceptions.ElementOrBlockNotFound(
 "Either the element of the block could not be found")

[docs] class Member(Pretty):
 pretty_attrs = "name", "ib"

 def __init__(self, ib, name):
 self.ib = ib
 self.name = name

 @property
 def pair_locator(self):
 if self.ib.type == InfoBlock.DETAIL:
 return './/table/tbody/tr/td[1][@class="label"][normalize-space(.)="{}"]/..'.format(
 self.name)
 elif self.ib.type == InfoBlock.FORM:
 return './/table/tbody/tr/td[1][@class="key"][normalize-space(.)="{}"]/..'.format(
 self.name)
 elif self.ib.type == InfoBlock.PF:
 return (
 './div[contains(@class, "form-horizontal")]'
 '/div[label[normalize-space(.)="{}"]]/div'.format(self.name))

 @property
 def pair(self):
 return sel.element(self.pair_locator, root=self.ib.root)

 @property
 def container(self):
 if self.ib.type == InfoBlock.PF:
 # Because we get the element directly, not the two tds
 return self.pair
 else:
 return sel.element("./td[2]", root=self.pair)

[docs] def locate(self):
 return self.container

 @property
 def elements(self):
 return sel.elements("./*", root=self.container)

 @property
 def element(self):
 return self.elements[0]

 @property
 def text(self):
 return sel.text(self.container).encode("utf-8").strip()

 @property
 def icon_href(self):
 try:
 return sel.get_attribute(sel.element("./img", root=self.container), "src")
 except sel_exceptions.NoSuchElementException:
 return None

 @property
 def title(self):
 return sel.get_attribute(self.pair, "title") or None

@fill.method((InfoBlock, Sequence))
def _ib_seq(ib, i):
 for item in i:
 sel.click(ib.member(item))

@fill.method((InfoBlock, basestring))
def _ib_str(ib, s):
 fill([s])

@fill.method((InfoBlock.Member, bool))
def _ib_m_seq(member, b):
 if b:
 sel.click(member)

[docs]class Quadicon(Pretty):
 """
 Represents a single quadruple icon in the CFME UI.

 A Quadicon contains multiple quadrants. These are accessed via attributes.
 The qtype is currently one of the following and determines which attribute names
 are present. They are mapped internally and can be reassigned easily if the UI changes.

 A Quadicon is used by defining the name of the icon and the type. After that, it can be used
 to obtain the locator of the Quadicon, or query its quadrants, via attributes.

 Args:
 name: The label of the icon.
 qtype: The type of the quad icon. By default it is ``None``, therefore plain quad without any
 retrievable data usable for selecting/clicking.

 Usage:

 qi = web_ui.Quadicon('hostname.local', 'host')
 qi.creds
 click(qi)

 .. rubric:: Known Quadicon Types and Attributes

 * **host** - *from the infra/host page* - has quads:

 * a. **no_vm** - Number of VMs
 * b. **state** - The current state of the host
 * c. **vendor** - The vendor of the host
 * d. **creds** - If the creds are valid

 * **infra_prov** - *from the infra/providers page* - has quads:

 * a. **no_host** - Number of hosts
 * b. *Blank*
 * c. **vendor** - The vendor of the provider
 * d. **creds** - If the creds are valid

 * **vm** - *from the infra/virtual_machines page* - has quads:

 * a. **os** - The OS of the vm
 * b. **state** - The current state of the vm
 * c. **vendor** - The vendor of the vm's host
 * d. **no_snapshot** - The number of snapshots
 * g. **policy** - The state of the policy

 * **cloud_prov** - *from the cloud/providers page* - has quads:

 * a. **no_instance** - Number of instances
 * b. **no_image** - Number of machine images
 * c. **vendor** - The vendor of the provider
 * d. **creds** - If the creds are valid

 * **instance** - *from the cloud/instances page* - has quads:

 * a. **os** - The OS of the instance
 * b. **state** - The current state of the instance
 * c. **vendor** - The vendor of the instance's host
 * d. **no_snapshot** - The number of snapshots
 * g. **policy** - The state of the policy

 * **datastore** - *from the infra/datastores page* - has quads:

 * a. **type** - File system type
 * b. **no_vm** - Number of VMs
 * c. **no_host** - Number of hosts
 * d. **avail_space** - Available space

 * **cluster** - *from the infra/cluster page* - has no quads
 * **resource_pool** - *from the infra/resource_pool page* - has no quads
 * **stack** - *from the clouds/stacks page* - has no quads

 Returns: A :py:class:`Quadicon` object.
 """

 pretty_attrs = ['_name', '_qtype']

 QUADS = {
 "host": {
 "no_vm": ("a", 'txt'),
 "state": ("b", 'img'),
 "vendor": ("c", 'img'),
 "creds": ("d", 'img'),
 },
 "infra_prov": {
 "no_host": ("a", 'txt'),
 "vendor": ("c", 'img'),
 "creds": ("d", 'img'),
 },
 "vm": {
 "os": ("a", 'img'),
 "state": ("b", 'img'),
 "vendor": ("c", 'img'),
 "no_snapshot": ("d", 'txt'),
 "policy": ("g", 'img'),
 },
 "cloud_prov": {
 "no_vm": ("a", 'txt'),
 "no_image": ("b", 'txt'),
 "vendor": ("b", 'img'),
 "creds": ("d", 'img'),
 },
 "instance": {
 "os": ("a", 'img'),
 "state": ("b", 'img'),
 "vendor": ("c", 'img'),
 "no_snapshot": ("d", 'txt'),
 "policy": ("g", 'img'),
 },
 "stack": {},
 "datastore": {
 "type": ("a", 'img'),
 "no_vm": ("b", 'txt'),
 "no_host": ("c", 'txt'),
 "avail_space": ("d", 'img'),
 },
 "cluster": {},
 "resource_pool": {},
 "template": {
 "os": ("a", 'img'),
 "state": ("b", 'img'),
 "vendor": ("c", 'img'),
 "no_snapshot": ("d", 'txt'),
 },
 "image": {
 "os": ("a", 'img'),
 "state": ("b", 'img'),
 "vendor": ("c", 'img'),
 "no_snapshot": ("d", 'txt'),
 },
 "middleware": {}, # Middleware quads have no fields
 "object_store": {},
 None: {}, # If you just want to find the quad and not mess with data
 }

 def __init__(self, name, qtype=None):
 self._name = name
 self.qtype = qtype

 def __repr__(self):
 return '{}({!r}, {!r})'.format(type(self).__name__, self._name, self.qtype)

 @property
 def qtype(self):
 return self._qtype

 @qtype.setter
 def qtype(self, value):
 assert value in self.QUADS
 self._qtype = value

 @property
 def _quad_data(self):
 return self.QUADS[self.qtype]

[docs] def checkbox(self):
 """ Returns: a locator for the internal checkbox for the quadicon"""
 return "//input[@type='checkbox' and ../../..//a[{}]]".format(self.a_cond)

 @property
 def exists(self):
 try:
 self.locate()
 return True
 except sel.NoSuchElementException:
 return False

 @property
 def a_cond(self):
 if self.qtype == "middleware":
 return "contains(normalize-space(@title), {name})"\
 .format(name=quoteattr('Name: {}'.format(self._name)))
 else:
 return "@title={name} or @data-original-title={name}".format(name=quoteattr(self._name))

[docs] def locate(self):
 """ Returns: a locator for the quadicon anchor"""
 try:
 return sel.move_to_element(
 'div/a',
 root="//div[contains(@id, 'quadicon') and ../../..//a[{}]]".format(self.a_cond))
 except sel.NoSuchElementException:
 quads = sel.elements("//div[contains(@id, 'quadicon')]/../../../tr/td/a")
 if not quads:
 raise sel.NoSuchElementException("Quadicon {} not found. No quads present".format(
 self._name))
 else:
 quad_names = [self._get_title(quad) for quad in quads]
 raise sel.NoSuchElementException(
 "Quadicon {} not found. These quads are present:\n{}".format(
 self._name, ", ".join(quad_names)))

 def _locate_quadrant(self, corner):
 """ Returns: a locator for the specific quadrant"""
 return "//div[contains(@class, {}) and ../../../..//a[{}]]".format(
 quoteattr("{}72".format(corner)), self.a_cond)

[docs] def __getattr__(self, name):
 """ Queries the quadrants by name

 Args:
 name: The name of the quadrant identifier, as defined above.
 Returns: A string containing a representation of what is in the quadrant.
 """
 if name in self._quad_data:
 corner, rtype = self._quad_data[name]
 locator = self._locate_quadrant(corner)
 # We have to have a try/except here as some quadrants
 # do not exist if they have no data, e.g. current_state in a host
 # with no credentials.
 try:
 el = sel.element(locator)
 except sel_exceptions.NoSuchElementException:
 return None
 if rtype == 'txt':
 return el.text
 if rtype == 'img':
 try:
 img_el = sel.element(
 './/img|.//div[contains(@style, "background-image")]',
 root=el)
 except sel_exceptions.NoSuchElementException:
 raise NoSuchElementException(
 ('Could not find the image field in quadrant {} of {!r}. '
 'This may be an error or a UI change.').format(corner, self))
 tag = sel.tag(img_el)
 if tag == 'img':
 img_name = sel.get_attribute(img_el, 'src')
 elif tag == 'div':
 style = sel.get_attribute(img_el, 'style')
 match = re.search(r'background-image:\s*url\("([^"]+)"\)', style)
 if not match:
 raise ValueError(
 'Could not find the image url in style {!r} of {!r} quadrant {}'.format(
 style, self, corner))
 img_name = match.groups()[0]
 else:
 raise ValueError(
 'Unknown tag <{}> when parsing quadicon {!r}, quadrant {}'.format(
 tag, self, corner))
 path, filename = os.path.split(img_name)
 root, ext = os.path.splitext(filename)
 return root
 else:
 return object.__getattribute__(self, name)

 def __str__(self):
 return self.locate()

 @classmethod
 def _get_title(cls, el):
 title = sel.get_attribute(el, "title")
 if title is not None:
 return title
 else:
 return sel.get_attribute(el, "data-original-title")

 @classmethod
[docs] def all(cls, qtype=None, this_page=False):
 """Allows iteration over Quadicons.

 Args:
 qtype: Quadicon type. Refer to the constructor for reference.
 this_page: Whether to look for Quadicons only on current page (do not list pages).
 Returns: :py:class:`list` of :py:class:`Quadicon`
 """
 from cfme.web_ui import paginator # Prevent circular imports
 if this_page:
 pages = (None,) # Single, current page. Since we dont care about the value, using None
 else:
 pages = paginator.pages()
 for page in pages:
 for href in sel.elements("//div[contains(@id, 'quadicon')]/../../../tr/td/a"):
 yield cls(cls._get_title(href), qtype)

 @classmethod
[docs] def first(cls, qtype=None):
 return cls(cls.get_first_quad_title(), qtype=qtype)

 @staticmethod
[docs] def select_first_quad():
 fill("//div[contains(@id, 'quadicon')]/../..//input", True)

 @staticmethod
[docs] def get_first_quad_title():
 first_quad = "//div[contains(@id, 'quadicon')]/../../../tr/td/a"
 title = sel.get_attribute(first_quad, "title")
 if title:
 return title
 else:
 return sel.get_attribute(first_quad, "data-original-title") or "" # To ensure str

 @classmethod
[docs] def any_present(cls):
 try:
 cls.get_first_quad_title()
 except NoSuchElementException:
 return False
 except AttributeError:
 # This is needed so that if there is no browser, we fail nicely, this in turn is
 # needed to make the docs not error.
 return False
 else:
 return True

 @property
 def name(self):
 """ Returns name of the quadicon."""
 return self._name

 @property
 def check_for_single_quadrant_icon(self):
 """ Checks if the quad icon is a single quadrant icon."""
 for quadrant_name in self._quad_data.iterkeys():
 # These quadrant will be displayed if it is a regular quad
 quadrant_id = self._quad_data[quadrant_name][0] # It is a tuple
 if sel.is_displayed(self._locate_quadrant(quadrant_id)):
 return False
 return sel.is_displayed(self._locate_quadrant("e")) # Image has only 'e'

 @property
 def href(self):
 return self.locate().get_attribute('href')

[docs]class DHTMLSelect(Select):
 """
 A special Select object for CFME's icon enhanced DHTMLx Select elements.

 Args:
 loc: A locator.

 Returns a :py:class:`cfme.web_ui.DHTMLSelect` object.

 """

 @staticmethod
 def _log(meth, val=None):
 if val:
 val_string = " with value {}".format(val)
 logger.debug('Filling in DHTMLSelect using (%s)%s', meth, val_string)

 def _get_select_name(self):
 """ Get's the name reference of the element from its hidden attribute.
 """

 root_el = sel.element(self)
 el = sel.element("div/input[2]", root=root_el)
 name = sel.get_attribute(el, 'name')
 return name

 @property
 def all_selected_options(self):
 """ Returns all selected options.

 Note: Since the DHTML select can only have one option selected at a time, we
 simple return the first element (the only element).

 Returns: A Web element.

 """
 return [self.first_selected_option]

 @property
 def first_selected_option(self):
 """ Returns the first selected option in the DHTML select

 Note: In a DHTML select, there is only one option selectable at a time.

 Returns: A webelement.
 """
 name = self._get_select_name()
 return browser().execute_script(
 'return {}.getOptionByIndex({}}.getSelectedIndex()).content'.format(name, name))

 @property
 def options(self):
 """ Returns a list of options of the select as webelements.

 Returns: A list of Webelements.
 """
 name = self._get_select_name()
 return browser().execute_script('return {}.DOMlist.children'.format(name))

[docs] def select_by_index(self, index, _cascade=None):
 """ Selects an option by index.

 Args:
 index: The select element's option by index.
 """
 name = self._get_select_name()
 if index is not None:
 if not _cascade:
 self._log('index', index)
 browser().execute_script('{}.selectOption({})'.format(name, index))

[docs] def select_by_visible_text(self, text):
 """ Selects an option by visible text.

 Args:
 text: The select element option's visible text.
 """
 name = self._get_select_name()
 if text is not None:
 self._log('visible_text', text)
 value = browser().execute_script(
 'return {}.getOptionByLabel("{}").value'.format(name, text))
 self.select_by_value(value, _cascade=True)

[docs] def select_by_value(self, value, _cascade=None):
 """ Selects an option by value.

 Args:
 value: The select element's option value.
 """
 name = self._get_select_name()
 if value is not None:
 if not _cascade:
 self._log('value', value)
 index = browser().execute_script('return {}.getIndexByValue("{}")'.format(name, value))
 self.select_by_index(index, _cascade=True)

[docs] def locate(self):
 return sel.move_to_element(self._loc)

@sel.select.method((DHTMLSelect, basestring))
[docs]def select_dhtml(dhtml, s):
 dhtml.select_by_visible_text(s)

[docs]class Filter(Form):
 """ Filters requests pages

 This class inherits Form as its base and adds a few methods to assist in filtering
 request pages.

 Usage:
 f = Filter(fields=[
 ('type', Select('//select[@id="type_choice"]')),
 ('approved', Input("state_choice__approved")),
 ('denied', Input"state_choice__denied")),
 ('pending_approval', Input("state_choice__pending_approval")),
 ('date', Select('//select[@id="time_period"]')),
 ('reason', Input("reason_text")),
])

 f.apply_filter(type="VM Clone", approved=False,
 pending_approval=False, date="Last 24 Hours", reason="Just Because")
 """

 buttons = {
 'default_off': '//div[@id="buttons_off"]/li/a/img[@alt="Set filters to default"]',
 'default_on': '//div[@id="buttons_on"]/li/a/img[@alt="Set filters to default"]',
 'apply': '//div[@id="buttons_on"]//a[@title="Apply the selected filters"]',
 'reset': '//div[@id="buttons_on"]//a[@title="Reset filter changes"]'
 }

[docs] def default_filter(self):
 """ Method to reset the filter back to defaults.
 """
 sel.click(self.buttons['default_off'])
 sel.click(self.buttons['default_on'])

[docs] def reset_filter(self):
 """ Method to reset the changes to the filter since last applying.
 """
 sel.click(self.buttons['reset'])

[docs] def apply_filter(self, **kwargs):
 """ Method to apply a filter.

 First resets the filter to default and then applies the filter.

 Args:
 **kwargs: A dictionary of form elements to fill and their values.
 """
 self.default_filter()
 self.fill(kwargs)
 sel.click(self.buttons['apply'])

[docs]class MultiSelect(Region):
 """Represents a UI widget where there are two select boxes, one with
 possible selections, and another with selected items. Has two
 arrow buttons to move items between the two"""

 def __init__(self,
 available_select=None,
 selected_select=None,
 select_arrow=None,
 deselect_arrow=None):
 self.available_select = available_select
 self.selected_select = selected_select
 self.select_arrow = select_arrow
 self.deselect_arrow = deselect_arrow

@sel.select.method((MultiSelect, Sequence))
[docs]def select_multiselect(ms, values):
 sel.select(ms.available_select, values)
 sel.click(ms.select_arrow)

@fill.method((MultiSelect, Sequence))
[docs]def fill_multiselect(ms, items):
 sel.select(ms, items)

[docs]class UpDownSelect(Region):
 """Multiselect with two arrows (up/down) next to it. Eg. in AE/Domain priority selection.

 Args:
 select_loc: Locator for the select box (without Select element wrapping)
 up_loc: Locator of the Move Up arrow.
 down_loc: Locator with Move Down arrow.
 """
 def __init__(self, select_loc, up_loc, down_loc):
 super(UpDownSelect, self).__init__(locators=dict(
 select=Select(select_loc, multi=True),
 up=up_loc,
 down=down_loc,
))

[docs] def get_items(self):
 return map(lambda el: el.text.encode("utf-8"), self.select.options)

[docs] def move_up(self, item):
 item = str(item)
 assert item in self.get_items()
 self.select.deselect_all()
 sel.select(self.select, item)
 sel.click(self.up)

[docs] def move_down(self, item):
 item = str(item)
 assert item in self.get_items()
 self.select.deselect_all()
 sel.select(self.select, item)
 sel.click(self.down)

[docs] def move_top(self, item):
 item = str(item)
 assert item in self.get_items()
 self.select.deselect_all()
 while item != self.get_items()[0]:
 sel.select(self.select, item)
 sel.click(self.up)

[docs] def move_bottom(self, item):
 item = str(item)
 assert item in self.get_items()
 self.select.deselect_all()
 while item != self.get_items()[-1]:
 sel.select(self.select, item)
 sel.click(self.down)

@fill.method((UpDownSelect, Sequence))
def _fill_uds_seq(uds, seq):
 seq = map(str, seq)
 for item in reversed(seq): # reversed because every new item at top pushes others down
 uds.move_top(item)

[docs]class ScriptBox(Pretty):
 """Represents a script box as is present on the customization templates pages.
 This box has to be activated before keys can be sent. Since this can't be done
 until the box element is visible, and some dropdowns change the element, it must
 be activated "inline".

 Args:
 """

 pretty_attrs = ['locator']

 def __init__(self, name=None, ta_locator="//textarea[contains(@id, 'method_data')]"):
 self._name = name
 self.ta_loc = ta_locator

 @property
 def name(self):
 if not self._name:
 self._name = version.pick({
 version.LOWEST: 'miqEditor',
 '5.5': 'ManageIQ.editor'})
 return self._name

[docs] def get_value(self):
 script = sel.execute_script('return {}.getValue();'.format(self.name))
 script = script.replace('\\"', '"').replace("\\n", "\n")
 return script

[docs] def workaround_save_issue(self):
 # We need to fire off the handlers manually in some cases ...
 sel.execute_script(
 "{}._handlers.change.map(function(handler) {{ handler() }});".format(self.name))
 sel.wait_for_ajax()

@fill.method((ScriptBox, Anything))
[docs]def fill_scriptbox(sb, script):
 """This function now clears and sets the ScriptBox.
 """
 logger.info("Filling ScriptBox {} with\n{}".format(sb.name, script))
 sel.execute_script('{}.setValue(arguments[0]);'.format(sb.name), script)
 sel.wait_for_ajax()
 sel.execute_script('{}.save();'.format(sb.name))
 sel.wait_for_ajax()

[docs]class CheckboxSelect(Pretty):
 """Class used for filling those bunches of checkboxes I (@mfalesni) always hated to search for.

 Can fill by values, text or both. To search the text for the checkbox, you have 2 choices:

 * If the text can be got from parent's tag (like `<div><input type="checkbox">blablabla</div>`
 where blablabla is the checkbox's description looked up), you can leave the
 `text_access_func` unfilled.
 * If there is more complicated layout and you don't mind a bit slower operation, you can pass
 the text_access_func, which should be like `lambda checkbox_el: get_text_of(checkbox_el)`.
 The checkbox `WebElement` is passed to it and the description text is the expected output
 of the function.

 Args:
 search_root: Root element for checkbox search
 text_access_func: Function returning descriptive text about passed CB element.
 """

 pretty_attrs = ['_root']

 def __init__(self, search_root, text_access_func=None):
 self._root = search_root
 self._access_func = text_access_func

 @property
 def checkboxes(self):
 """All checkboxes."""
 return set(sel.elements(".//input[@type='checkbox']", root=sel.element(self._root)))

 @property
 def selected_checkboxes(self):
 """Only selected checkboxes."""
 return {cb for cb in self.checkboxes if cb.is_selected()}

 @property
 def selected_values(self):
 """Only selected checkboxes' values."""
 return {sel.get_attribute(cb, "value") for cb in self.selected_checkboxes}

 @property
 def unselected_checkboxes(self):
 """Only unselected checkboxes."""
 return {cb for cb in self.checkboxes if not cb.is_selected()}

 @property
 def unselected_values(self):
 """Only unselected checkboxes' values."""
 return {sel.get_attribute(cb, "value") for cb in self.unselected_checkboxes}

[docs] def checkbox_by_id(self, id):
 """Find checkbox's WebElement by id."""
 return sel.element(
 ".//input[@type='checkbox' and @id='{}']".format(id), root=sel.element(self._root)
)

[docs] def select_all(self):
 """Selects all checkboxes."""
 for cb in self.unselected_checkboxes:
 sel.check(cb)

[docs] def unselect_all(self):
 """Unselects all checkboxes."""
 for cb in self.selected_checkboxes:
 sel.uncheck(cb)

[docs] def checkbox_by_text(self, text):
 """Returns checkbox's WebElement by searched by its text."""
 if self._access_func is not None:
 for cb in self.checkboxes:
 txt = self._access_func(cb)
 if txt == text:
 return cb
 else:
 raise NameError("Checkbox with text {} not found!".format(text))
 else:
 # Has to be only single
 return sel.element(
 ".//*[contains(., '{}')]/input[@type='checkbox']".format(text),
 root=sel.element(self._root)
)

[docs] def check(self, values):
 """Checking function.

 Args:
 values: Dictionary with key=CB name, value=bool with status.

 Look in the function to see.
 """
 for name, value in values.iteritems():
 if isinstance(name, sel.ByText):
 sel.checkbox(self.checkbox_by_text(str(name)), value)
 else:
 sel.checkbox(self.checkbox_by_id(name), value)

@fill.method((CheckboxSelect, bool))
[docs]def fill_cb_select_bool(select, all_state):
 if all_state is True:
 return select.select_all()
 else:
 return select.unselect_all()

@fill.method((CheckboxSelect, list))
@fill.method((CheckboxSelect, set))
[docs]def fill_cb_select_set(select, names):
 return select.check({k: True for k in names})

@fill.method((CheckboxSelect, Mapping))
[docs]def fill_cb_select_dictlist(select, dictlist):
 return select.check(dictlist)

@fill.method((CheckboxSelect, basestring))
@fill.method((CheckboxSelect, sel.ByText))
[docs]def fill_cb_select_string(select, cb):
 return fill(select, {cb})

[docs]class ShowingInputs(Pretty):
 """This class abstracts out as a container of inputs, that appear after preceeding was filled.

 Args:
 *locators: In-order-of-display specification of locators.
 Keywords:
 min_values: How many values are required (Default: 0)
 """
 pretty_attrs = ['locators', 'min_values']

 def __init__(self, *locators, **kwargs):
 self._locators = locators
 self._min = kwargs.get("min_values", 0)

[docs] def zip(self, with_values):
 if len(with_values) < self._min:
 raise ValueError("Not enough values provided ({}, expected {})".format(
 len(with_values), self._min)
)
 if len(with_values) > len(self._locators):
 raise ValueError("Too many values provided!")
 return zip(self._locators, with_values)

[docs] def __getitem__(self, i):
 """To delegate access to the separate locators"""
 return self._locators[i]

@fill.method((ShowingInputs, Sequence))
def _fill_showing_inputs_seq(si, i):
 for loc, val in si.zip(i):
 fill(loc, val)

@fill.method((ShowingInputs, basestring))
def _fill_showing_inputs_str(si, s):
 fill(si, [s])

[docs]class MultiFill(object):
 """Class designed to fill the same value to multiple fields

 Args:
 *fields: The fields where the value will be mirrored
 """
 def __init__(self, *fields):
 self.fields = fields

@fill.method((MultiFill, object))
def _fill_multi_obj(mf, o):
 for field in mf.fields:
 fill(field, o)

[docs]class DriftGrid(Pretty):
 """ Class representing the table (grid) specific to host drift analysis comparison page
 """

 def __init__(self, loc="//div[@id='compare-grid']"):
 self.loc = loc

[docs] def get_cell(self, row_text, col_index):
 """ Finds cell element of the grid specified by column index and row text

 Args:
 row_text: Title text of the cell's row
 col_index: Column index of the cell, starting with 0 for 1st data-containing column

 Note:
 `col_index` of 0 is used for the 2nd actual column in the drift grid, because
 the 1st column does not contain headers, only row descriptions.

 Returns:
 Selenium element of the cell.
 """
 self.expand_all_sections()
 cell_loc = ".//th[contains(normalize-space(.), '{}')]/../td[{}]".format(row_text,
 col_index + 1)
 cell = sel.element(cell_loc, root=self.loc)
 return cell

[docs] def cell_indicates_change(self, row_text, col_index):
 """ Finds out if a cell, specified by column index and row text, indicates change

 Args:
 row_text: Title text of the cell's row
 col_index: Column index of the cell

 Note:
 `col_index` of 0 is used for the 2nd actual column in the drift grid, because
 the 1st column does not contain headers, only row descriptions.

 Returns:
 ``True`` if there is a change present, ``False`` otherwise
 """
 cell = self.get_cell(row_text, col_index)

 # Cell either contains an image
 try:
 cell_img = sel.element(".//i | .//img", root=cell)
 return sel.get_attribute(cell_img, "title") == 'Changed from previous'
 # or text
 except NoSuchElementException:
 if 'color: rgb(33, 160, 236)' in sel.get_attribute(cell, 'style'):
 return True
 return False

[docs] def expand_all_sections(self):
 """ Expands all sections to make the row elements found therein available
 """
 while True:
 # We need to do this one by one because the DOM changes on every expansion
 try:
 el = sel.element(
 './/div/span[contains(@class, "toggle") and contains(@class, "expand")]',
 root=self.loc)
 sel.click(el)
 except NoSuchElementException:
 break

[docs]class ButtonGroup(object):
 def __init__(self, key, fieldset=None):
 """ A ButtonGroup is a set of buttons next to each other, as is used on the DefaultViews
 page.

 Args:
 key: The name of the key field text before the button group.
 """
 self.key = key
 self.fieldset = fieldset

 @property
 def _icon_tag(self):
 if version.current_version() >= 5.6:
 return 'i'
 else:
 return 'img'

 @property
 def _state_attr(self):
 if version.current_version() >= 5.6:
 return 'title'
 else:
 return 'alt'

 @property
 def locator(self):
 attr = re.sub(r"&", "&", quoteattr(self.key)) # We don't need it in xpath
 path = './/label[contains(@class, "control-label") and ' \
 'normalize-space(.)={}]/..'.format(attr)
 if self.fieldset:
 fieldset = quoteattr(self.fieldset)
 path = '//fieldset[./h3[normalize-space(.)={}]]/'.format(fieldset) + path
 return path

[docs] def locate(self):
 """ Moves to the element """
 # Use the header locator as the overall table locator
 return sel.move_to_element(self.locator)

 @property
 def locator_base(self):
 if version.current_version() < "5.5":
 return self.locator + "/td[2]"
 else:
 return self.locator + "/div"

 @property
 def active(self):
 """ Returns the alt tag text of the active button in thr group. """
 loc = sel.element(self.locator_base + '/ul/li[@class="active"]/{}'.format(self._icon_tag))
 return loc.get_attribute(self._state_attr)

[docs] def status(self, alt):
 """ Returns the status of the button identified by the Alt Text of the image. """
 active_loc = self.locator_base + '/ul/li/{}[@{}="{}"]'.format(
 self._icon_tag, self._state_attr, alt)
 try:
 sel.element(active_loc)
 return True
 except NoSuchElementException:
 pass
 inactive_loc = self.locator_base + '/ul/li/a/{}[@alt="{}"]'.format(self._icon_tag, alt)
 try:
 sel.element(inactive_loc)
 return False
 except NoSuchElementException:
 pass

[docs] def choose(self, alt):
 """ Sets the ButtonGroup to select the button identified by the alt text. """
 if not self.status(alt):
 inactive_loc = self.locator_base + '/ul/li/a/{}[@alt="{}"]'.format(self._icon_tag, alt)
 sel.click(inactive_loc)

@fill.method((ButtonGroup, basestring))
def _fill_showing_button_group(tb, s):
 tb.choose(s)

[docs]class ColorGroup(object):

 def __init__(self, key):
 """ A ColourGroup is a set of colour buttons next to each other, as is used on the DefaultViews
 page.

 Args:
 key: The name of the key field text before the button group.
 """
 self.key = key
 self.locator = '//td[@class="key" and text()="{}"]/..'.format(self.key)

[docs] def locate(self):
 """ Moves to the element """
 # Use the header locator as the overall table locator
 return sel.move_to_element(self.locator)

 @property
 def active(self):
 """ Returns the alt tag text of the active button in thr group. """
 loc = sel.element(self.locator + '/td[2]/div[contains(@title, "selected")]')
 color = re.search('The (.*?) theme', loc.get_attribute('title')).groups()[0]
 return color

[docs] def status(self, color):
 """ Returns the status of the color button identified by the Title Text of the image. """
 active_loc = self.locator + '/td[2]/div[contains(@title, "{}")' \
 'and contains(@title, "selected")]'.format(color)
 try:
 sel.element(active_loc)
 return True
 except NoSuchElementException:
 pass
 inactive_loc = self.locator + '/td[2]/div[contains(@title, "{}")' \
 'and contains(@title, "Click")]'.format(color)
 try:
 sel.element(inactive_loc)
 return False
 except NoSuchElementException:
 pass

[docs] def choose(self, color):
 """ Sets the ColorGroup to select the button identified by the title text. """
 if not self.status(color):
 inactive_loc = self.locator + '/td[2]/div[contains(@title, "{}")' \
 'and contains(@title, "Click")]'.format(color)
 sel.click(inactive_loc)

@fill.method((ColorGroup, basestring))
def _fill_showing_color_group(tb, s):
 tb.choose(s)

[docs]class DynamicTable(Pretty):
 """A table that can add or remove the rows.

 """
 pretty_attrs = "root_loc", "default_row_item"
 ROWS = ".//tbody/tr[not(contains(@id, 'new_tr'))]"
 DELETE_ALL = {
 version.LOWEST: ".//tbody/tr/td/img[@alt='Delete']",
 '5.6': './/tbody/tr/td/button/i[contains(@class, "minus")]'
 }

 def __init__(self, root_loc, default_row_item=None):
 self.root_loc = root_loc
 self.default_row_item = default_row_item

 @property
 def rows(self):
 return map(lambda r_el: self.Row(self, r_el), sel.elements(self.ROWS, root=self.root_loc))

 @cached_property
 def header_names(self):
 return map(sel.text, sel.elements(".//thead/tr/th", root=self.root_loc))

[docs] def click_add(self):
 sel.click(sel.element(
 ".//tbody/tr[@id='new_tr']/td//img | .//tbody/tr[@id='new_tr']/td//i |"
 " ./tbody/tr[@id='new_tr']/td/button",
 root=self.root_loc))

[docs] def click_save(self):
 if version.current_version() < "5.6":
 sel.click(sel.element(
 ".//tbody/tr[@id='new_tr']/td//input[@type='image']", root=self.root_loc))
 else:
 # 5.6+ uses the same button.
 self.click_add()

[docs] def delete_row(self, by):
 pass

[docs] def clear(self):
 while True:
 buttons = sel.elements(self.DELETE_ALL)
 if not buttons:
 break
 sel.click(buttons[0])

[docs] def add_row(self, data):
 self.click_add()
 editing_row = self.Row(self, ".//tbody/tr[@id='new_tr']")
 fill(editing_row, data)
 self.click_save()

[docs] class Row(object):
 def __init__(self, table, root):
 self.table = table
 self.root = root

 @property
 def values(self):
 cells = sel.elements("./td", root=self.root)
 return dict(zip(self.table.header_names, map(sel.text, cells)))

 @property
 def inputs(self):
 result = []
 for cell in sel.elements("./td", root=self.root):
 inputs = sel.elements("./input", root=cell)
 if not inputs:
 result.append(None)
 else:
 result.append(inputs[0])
 return result

 @property
 def inputs_for_filling(self):
 return dict(zip(self.table.header_names, self.inputs))

@fill.method((DynamicTable.Row, Mapping))
def _fill_dt_row_map(dtr, m):
 for name, input in dtr.inputs_for_filling.iteritems():
 fill(input, m.get(name))

@fill.method((DynamicTable.Row, Anything))
def _fill_dt_row_other(dtr, anything):
 mapping_fields = [name for name in dtr.table.header_names if name.strip()]
 if isinstance(anything, (list, tuple)) and len(anything) == len(mapping_fields):
 # Create the dict and fill by dict
 fill(dtr, dict(zip(mapping_fields, anything)))
 else:
 # Use the default field
 if dtr.table.default_row_item is None:
 raise Exception("Cannot fill table row with anything when we dont know the def. field")
 fill(dtr, {dtr.table.default_row_item: anything})

@fill.method((DynamicTable, list))
def _fill_dt_list(dt, l, clear_before=False):
 if clear_before:
 dt.clear()
 for item in l:
 dt.add_row(item)

@fill.method((DynamicTable, Anything))
def _fill_dt_anything(dt, anything, **kwargs):
 fill(dt, [anything], **kwargs)

fill.prefer((DynamicTable, Anything), (object, Mapping))
fill.prefer((DynamicTable.Row, Anything), (object, Mapping))
fill.prefer((Select, types.NoneType), (object, types.NoneType))
fill.prefer((DHTMLSelect, types.NoneType), (object, types.NoneType))
fill.prefer((object, types.NoneType), (Select, object))

[docs]class AngularSelect(Pretty):
 BUTTON = "//button[@data-id='{}']"

 pretty_attrs = ['_loc', 'none', 'multi', 'exact']

 def __init__(self, loc, none=None, multi=False, exact=False):
 self.none = none
 if isinstance(loc, AngularSelect):
 self._loc = loc._loc
 else:
 self._loc = self.BUTTON.format(loc)
 self.multi = multi
 self.exact = exact

[docs] def locate(self):
 return sel.move_to_element(self._loc)

 @property
 def select(self):
 return Select('select#{}'.format(self.did), multi=self.multi)

 @property
 def did(self):
 return sel.element(self._loc).get_attribute('data-id')

 @property
 def is_broken(self):
 return sel.is_displayed(self) and sel.is_displayed(self.select)

 @property
 def is_open(self):
 el = sel.element(self._loc)
 return el.get_attribute('aria-expanded') == "true"

[docs] def open(self):
 sel.click(self._loc)

[docs] def select_by_visible_text(self, text):
 if not self.is_open:
 self.open()
 if self.exact:
 new_loc = self._loc + '/../div/ul/li/a[normalize-space(.)={}]'.format(
 unescape(quoteattr(text)))
 else:
 new_loc = self._loc + '/../div/ul/li/a[contains(normalize-space(.), {})]'.format(
 unescape(quoteattr(text)))
 e = sel.element(new_loc)
 sel.execute_script("arguments[0].scrollIntoView();", e)
 sel.click(new_loc)

[docs] def select_by_value(self, value):
 value = str(value) # Because what we read from the page is a string
 options_map = [a.value for a in self.select.all_options]
 index = options_map.index(value)
 if not self.is_open:
 self.open()
 new_loc = self._loc + '/../div/ul/li[@data-original-index={}]'.format(index)
 e = sel.element(new_loc)
 sel.execute_script("arguments[0].scrollIntoView();", e)
 sel.click(new_loc)

 @property
 def all_options(self):
 return self.select.all_options

 @property
 def classes(self):
 """Combines class from the button and from select."""
 return sel.classes(self) | sel.classes("select#{}".format(self.did))

 @property
 def options(self):
 return self.select.options

 @property
 def first_selected_option(self):
 new_loc = self._loc + '/span'
 e = sel.element(new_loc)
 text = e.text
 for option in self.all_options:
 if option.text == text:
 return option
 return None

 @property
 def first_selected_option_text(self):
 new_loc = self._loc + '/span'
 e = sel.element(new_loc)
 text = e.text
 return text

@fill.method((AngularSelect, sel.ByText))
@fill.method((AngularSelect, basestring))
def _fill_angular_string(obj, s):
 if s:
 obj.select_by_visible_text(s)
 else:
 return

@fill.method((AngularSelect, sel.ByValue))
def _fill_angular_value(obj, s):
 if s.value:
 obj.select_by_value(s.value)
 else:
 return

@fill.method((AngularSelect, list))
def _fill_angular_list(obj, l):
 for i in l:
 fill(obj, i)

[docs]class AngularCalendarInput(Pretty):
 pretty_attrs = "input_name", "click_away_element"

 def __init__(self, input_name, click_away_element):
 self.input_name = input_name
 self.click_away_element = click_away_element

 @property
 def input(self):
 return Input(self.input_name, use_id=True)

 @property
 def clear_button(self):
 return sel.element("../a/img", root=self.input)

[docs] def locate(self):
 return self.input.locate()

[docs] def fill(self, value):
 if isinstance(value, date):
 value = '{}/{}/{}'.format(value.month, value.day, value.year)
 else:
 value = str(value)
 try:
 sel.click(self.input)
 sel.set_text(self.input, value)
 finally:
 # To ensure the calendar itself is closed
 sel.click(self.click_away_element)

[docs] def clear(self):
 if sel.text(self.input).strip():
 sel.click(self.clear_button)

@fill.method((AngularCalendarInput, Anything))
def _fill_angular_calendar_input(obj, a):
 return obj.fill(a)

[docs]class EmailSelectForm(Pretty):
 """Class encapsulating the e-mail selector, eg. in Control/Alarms editing."""
 fields = Region(locators=dict(
 from_address=Input('from'),
 user_emails={
 version.LOWEST: Select("//select[@id='user_email']"),
 "5.5": AngularSelect("user_email")},
 manual_input=Input('email'),
 add_email_manually={
 version.LOWEST: "(//img | //i)[@title='Add' and contains(@onclick, 'add_email')]",
 "5.5": "//div[@alt='Add']/i"}
))

 @property
 def to_emails(self):
 """Returns list of e-mails that are selected"""
 return [
 sel.text(el)
 for el
 in sel.elements("//a[contains(@href, 'remove_email')]")
]

 @property
 def user_emails(self):
 """Returns list of e-mail that users inside CFME have so that they can be selected"""
 try:
 return [
 sel.get_attribute(el, "value")
 for el
 in self.fields.user_emails.options
 if len(sel.get_attribute(el, "value").strip()) > 0
]
 except NoSuchElementException: # It disappears when empty
 return []

[docs] def remove_email(self, email):
 """Remove specified e-mail

 Args:
 email: E-mail to remove
 """
 if email in self.to_emails:
 sel.click("//a[contains(@href, 'remove_email')][normalize-space(.)='{}']".format(email))
 return email not in self.to_emails
 else:
 return True

 @to_emails.setter
 def to_emails(self, emails):
 """Function for filling e-mails

 Args:
 emails: List of e-mails that should be filled. Any existing e-mails that are not in this
 variable will be deleted.
 """
 if isinstance(emails, basestring):
 emails = [emails]
 # Delete e-mails that have nothing to do here
 for email in self.to_emails:
 if email not in emails:
 assert self.remove_email(email), "Could not remove e-mail '{}'".format(email)
 # Add new
 for email in emails:
 if email in self.to_emails:
 continue
 if email in self.user_emails:
 sel.select(self.fields.user_emails, sel.ByValue(email))
 else:
 fill(self.fields.manual_input, email)
 sel.click(self.fields.add_email_manually)
 assert email in self.to_emails, "Adding e-mail '{}' manually failed!".format(email)

@fill.method((EmailSelectForm, basestring))
@fill.method((EmailSelectForm, list))
@fill.method((EmailSelectForm, set))
@fill.method((EmailSelectForm, tuple))
[docs]def fill_email_select_form(form, emails):
 form.to_emails = emails

[docs]class BootstrapSwitch(object):
 def __init__(self, input_id):
 """A Bootstrap On/Off switch

 Args:
 input_id: The HTML ID of the input element associated with the checkbox
 """
 self.input_id = input_id
 self.loc_container = "//input[@id={}]/..".format(quoteattr(self.input_id))
 self.on_off = "{}/span[contains(@class, 'bootstrap-switch-handle-{}')]".format(
 self.loc_container, '{}')

[docs] def fill(self, val):
 """Convenience function"""
 if val:
 self.check()
 else:
 self.uncheck()

[docs] def check(self):
 """Checks the bootstrap box"""
 el = sel.element(self.on_off.format("off"))
 sel.click(el)

[docs] def uncheck(self):
 """Unchecks the bootstrap box"""
 el = sel.element(self.on_off.format("on"))
 sel.click(el)

[docs] def is_selected(self):
 if sel.is_displayed("//div[contains(@class, 'bootstrap-switch-on')]{}"
 .format(self.loc_container)):
 return True
 else:
 return False

 @property
 def angular_help_block(self):
 """Returns the first visible angular helper text (like 'Required')."""
 loc = ("{}/../../../../..//div[contains(@class, 'form-group has-error')]"
 .format(self.loc_container))
 try:
 return sel.text(loc).strip()
 except NoSuchElementException:
 return None

@fill.method((BootstrapSwitch, bool))
[docs]def fill_bootstrap_switch(bs, val):
 bs.fill(val)

[docs]class OldCheckbox(object):
 def __init__(self, input_id):
 """An original HTML checkbox element

 Args:
 input_id: The HTML ID of the input element associated with the checkbox
 """
 self.input_id = input_id
 self.locator = "//input[@id={}]".format(quoteattr(input_id))

[docs] def fill(self, val):
 """
 Checks or unchecks

 Args:
 value: The value the checkbox should represent as a bool (or None to do nothing)

 Returns: Previous state of the checkbox
 """

 if val is not None:
 selected = self.is_selected()

 if selected is not val:
 logger.debug("Setting checkbox {} to {}".format(str(self.locator), str(val)))
 sel.click(self._el)
 return selected

[docs] def check(self):
 """Convenience function"""
 self.fill(True)

[docs] def uncheck(self):
 """Convenience function"""
 self.fill(False)

 def _el(self):
 return sel.move_to_element(self.locator)

[docs] def is_selected(self):
 return self._el().is_selected()

@fill.method((OldCheckbox, bool))
[docs]def fill_oldcheckbox_switch(ob, val):
 ob.fill(val)

[docs]class CFMECheckbox(Selector):
 def __init__(self, input_id):
 self.input_id = input_id
 super(CFMECheckbox, self).__init__()

[docs] def decide(self):
 ref_loc = "//input[@id={}]/../span" \
 "[contains(@class, 'bootstrap-switch-label')]".format(quoteattr(self.input_id))
 if sel.is_displayed(ref_loc):
 return BootstrapSwitch(self.input_id)
 else:
 return OldCheckbox(self.input_id)

@fill.method((CFMECheckbox, bool))
[docs]def fill_cfmecheckbox_switch(ob, val):
 ob.fill(val)

[docs]def breadcrumbs():
 """Returns a list of breadcrumbs names if names==True else return as elements.

 Returns:
 :py:class:`list` of breadcrumbs if they are present, :py:class:`NoneType` otherwise.
 """
 elems = sel.elements('//ol[contains(@class, "breadcrumb")]/li')
 return elems if elems else None

[docs]def breadcrumbs_names():
 elems = breadcrumbs()
 if elems:
 return map(sel.text_sane, elems)

SUMMARY_TITLE_LOCATORS = [
 '//h1'
]

SUMMARY_TITLE_LOCATORS = '|'.join(SUMMARY_TITLE_LOCATORS)

[docs]def summary_title():
 """Returns a title of the page.

 Returns:
 :py:class:`str` if present, :py:class:`NoneType` otherwise.
 """
 try:
 return sel.text_sane(SUMMARY_TITLE_LOCATORS)
 except sel.NoSuchElementException:
 return None

[docs]def browser_title():
 """Returns a title of the page.

 Returns:
 :py:class:`str` if present, :py:class:`NoneType` otherwise.
 """
 try:
 return browser().title.split(': ', 1)[1]
 except IndexError:
 return None

[docs]def controller_name():
 """Returns a title of the page.

 Returns:
 :py:class:`str` if present, :py:class:`NoneType` otherwise.
 """
 return sel.execute_script('return ManageIQ.controller;')

[docs]def match_location(controller=None, title=None, summary=None):
 """Does exact match of passed data

 Returns:
 :py:class:`bool`
 """
 result = []
 if controller:
 result.append(controller_name() == controller)
 if title:
 result.append(browser_title() == title)
 if summary:
 result.append((summary_title() == summary) or
 (sel.is_displayed('//h3[normalize-space(.) = {}]'.format(quote(summary)))))

 return all(result)

[docs]class StatusBox(object):
 """ Status box as seen in containers overview page

 Status box modelling.

 Args:
 name: The name of the status box as it appears in CFME, e.g. 'Nodes'

 Returns: A StatusBox instance.

 """
 def __init__(self, name):
 self.name = name

[docs] def value(self):
 if "_" in self.name:
 self.name = self.name.split('_', 1)[-1]
 elem_text = sel.text(
 "//span[contains(@class,'card-pf-aggregate-status-count')]"
 "/../../../../../div[contains(@status, 'objectStatus.{}')]".format(self.name.lower()))
 match = re.search(r'\d+', elem_text)
 return int(match.group())

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/perf.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for fixtures.perf

"""Fixtures specifically for performance tests."""
from cfme.utils.perf import set_rails_loglevel
from cfme.utils.perf import get_worker_pid
import pytest

@pytest.yield_fixture(scope='session')
[docs]def cfme_log_level_rails_debug():
 set_rails_loglevel('debug')
 yield
 set_rails_loglevel('info')

@pytest.yield_fixture(scope='module')
[docs]def ui_worker_pid():
 yield get_worker_pid('MiqUiWorker')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/parallelizer/parallelizer_tester.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		fixtures.parallelizer »

 Source code for fixtures.parallelizer.parallelizer_tester

"""parallelizer tester

Useful to make sure tests are being parallelized properly, and then reported correctly.

This file is named specially to prevent being picked up by py.test's default collector, and should
not be run during a normal test run.

"""
import random
from time import sleep

import pytest

uncommment this to slow things down, if desired
pytestmark= pytest.mark.usefixtures("wait")

num_copies = 20

@pytest.fixture(
 params=xrange(10, 10 * num_copies),
 autouse=True,
 scope='module',
)
[docs]def the_param():
 pass

@pytest.fixture
[docs]def wait():
 # Add some randomness to make sure reports are getting mixed up like they would in a "real" run
 sleep(random.random() * 5)

@pytest.fixture
[docs]def setup_fail():
 raise Exception('I failed to setup!')

@pytest.yield_fixture
[docs]def teardown_fail():
 yield
 raise Exception('I failed to teardown!')

[docs]def test_passes():
 pass

[docs]def test_fails():
 raise Exception('I failed!')

@pytest.mark.xfail
[docs]def test_xfails():
 raise Exception('I failed!')

@pytest.mark.xfail
[docs]def test_xpasses():
 pass

[docs]def test_fails_setup(setup_fail):
 pass

[docs]def test_fails_teardown(teardown_fail):
 pass

@pytest.mark.skipif('True')
[docs]def test_skipped():
 pass

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/templateloader.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for fixtures.templateloader

-*- coding: utf-8 -*-
"""Preloads all templates on all providers that were selected for testing. Useful for test collect.
"""
import pytest
from fixtures.pytest_store import store
from cfme.utils import trackerbot
from cfme.utils.providers import list_provider_keys

TEMPLATES = {}

@pytest.mark.tryfirst
[docs]def pytest_addoption(parser):
 # Create the cfme option group for use in other plugins
 parser.addoption("--use-template-cache", dest="use_template_cache", action="store_true",
 default=False, help="Use a cached version of the templates and not redownload them")

[docs]def pytest_configure(config):
 if store.parallelizer_role == 'master' or trackerbot.conf.get('url') is None:
 return

 # A further optimization here is to make the calls to trackerbot per provider
 # and perhaps only pull the providers that are needed, however that will need
 # to ensure that the tests that just randomly use providers adhere to the filters
 # which may be too tricky right now.

 count = 0

 if not config.getoption('use_template_cache'):
 store.terminalreporter.line("Loading templates from trackerbot...", green=True)
 provider_templates = trackerbot.provider_templates(trackerbot.api())
 for provider in list_provider_keys():
 TEMPLATES[provider] = provider_templates.get(provider, [])
 config.cache.set('miq-trackerbot/{}'.format(provider), TEMPLATES[provider])
 count += len(TEMPLATES[provider])
 else:
 store.terminalreporter.line("Using templates from cache...", green=True)
 provider_templates = None
 for provider in list_provider_keys():
 templates = config.cache.get('miq-trackerbot/{}'.format(provider), None)
 if templates is None:
 store.terminalreporter.line(
 "Loading templates for {} from source as not in cache".format(
 provider), green=True)
 if not provider_templates:
 provider_templates = trackerbot.provider_templates(trackerbot.api())
 templates = provider_templates.get(provider, [])
 config.cache.set('miq-trackerbot/{}'.format(provider), templates)
 count += len(templates)
 TEMPLATES[provider] = templates
 store.terminalreporter.line(" Loaded {} templates successfully!".format(count), green=True)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/base/ui.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.base »

 Source code for cfme.base.ui

from __future__ import absolute_import
import time
from selenium.webdriver.common.keys import Keys

import re
from navmazing import NavigateToSibling, NavigateToAttribute

from widgetastic_manageiq import (ManageIQTree, Checkbox, AttributeValueForm, SummaryFormItem,
 TimelinesView)
from widgetastic_patternfly import (Accordion, Input, Button, Dropdown,
 FlashMessages, BootstrapSelect, Tab)
from widgetastic.utils import Version, VersionPick
from widgetastic.widget import View, Table, Text, Image, FileInput

from cfme.base.login import BaseLoggedInPage
from cfme.base.credential import Credential
from cfme.configure.about import AboutView
from cfme.configure.documentation import DocView
from cfme.configure.tasks import TasksView
from cfme.dashboard import DashboardView
from cfme.intelligence.rss import RSSView
from cfme.exceptions import ZoneNotFound, DestinationNotFound
from cfme.intelligence.chargeback import ChargebackView

from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, ViaUI, navigate_to
from . import Server, Region, Zone, ZoneCollection

from cfme.utils import conf
from cfme.utils.log import logger

@Server.address.external_implementation_for(ViaUI)
[docs]def address(self):
 logger.info("USING UI ADDRESS")
 return 'https://{}/'.format(self.appliance.address)

[docs]class LoginPage(View):
 flash = FlashMessages(
 VersionPick({
 Version.lowest(): 'div#flash_text_div',
 '5.8': '//div[@class="flash_text_div"]'
 })
)

 class details(View): # noqa
 region = Text('.//p[normalize-space(text())="Region:"]/span')
 zone = Text('.//p[normalize-space(text())="Zone:"]/span')
 appliance = Text('.//p[normalize-space(text())="Appliance:"]/span')

 change_password = Text('.//a[normalize-space(.)="Update password"]')
 back = Text('.//a[normalize-space(.)="Back"]')
 username = Input(name='user_name')
 password = Input(name='user_password')
 new_password = Input(name='user_new_password')
 verify_password = Input(name='user_verify_password')
 login = Button('Login')

[docs] def show_update_password(self):
 if not self.new_password.is_displayed:
 self.change_password.click()

[docs] def hide_update_password(self):
 if self.new_password.is_displayed:
 self.back.click()

[docs] def login_admin(self, **kwargs):
 username = conf.credentials['default']['username']
 password = conf.credentials['default']['password']
 cred = Credential(principal=username, secret=password)
 from cfme.configure.access_control import User
 user = User(credential=cred, name='Administrator')
 return self.log_in(user, **kwargs)

[docs] def submit_login(self, method='click_on_login'):
 if method == 'click_on_login':
 self.login.click()
 elif method == 'press_enter_after_password':
 self.browser.send_keys(Keys.ENTER, self.password)
 elif method == '_js_auth_fn':
 self.browser.execute_script('miqAjaxAuth();')
 else:
 raise ValueError('Unknown method {}'.format(method))
 if self.flash.is_displayed:
 self.flash.assert_no_error()

[docs] def log_in(self, user, method='click_on_login'):
 self.fill({
 'username': user.credential.principal,
 'password': user.credential.secret,
 })
 self.submit_login(method)
 logged_in_view = self.browser.create_view(BaseLoggedInPage)
 if logged_in_view.logged_in:
 if user.name is None:
 name = logged_in_view.current_fullname
 self.logger.info(
 'setting the appliance.user.name to %r because it was not specified', name)
 user.name = name
 self.extra.appliance.user = user

[docs] def update_password(
 self, username, password, new_password, verify_password=None,
 method='click_on_login'):
 self.show_update_password()
 self.fill({
 'username': username,
 'password': password,
 'new_password': new_password,
 'verify_password': verify_password if verify_password is not None else new_password
 })
 self.submit_login(method)

[docs] def logged_in_as_user(self, user):
 return False

 @property
 def logged_in_as_current_user(self):
 return False

 @property
 def current_username(self):
 return None

 @property
 def current_fullname(self):
 return None

 @property
 def logged_in(self):
 return not self.logged_out

 @property
 def logged_out(self):
 return self.username.is_displayed and self.password.is_displayed and self.login.is_displayed

 @property
 def is_displayed(self):
 return self.logged_out

@Server.logged_in.external_implementation_for(ViaUI)
[docs]def logged_in(self):
 return self.appliance.browser.create_view(BaseLoggedInPage).logged_in

LOGIN_METHODS = ['click_on_login', 'press_enter_after_password', '_js_auth_fn']

@Server.login.external_implementation_for(ViaUI)
[docs]def login(self, user=None, submit_method=LOGIN_METHODS[-1]):
 """
 Login to CFME with the given username and password.
 Optionally, submit_method can be press_enter_after_password
 to use the enter key to login, rather than clicking the button.
 Args:
 user: The username to fill in the username field.
 password: The password to fill in the password field.
 submit_method: A function to call after the username and password have been input.
 Raises:
 RuntimeError: If the login fails, ie. if a flash message appears
 """
 # Circular import
 if not user:
 username = conf.credentials['default']['username']
 password = conf.credentials['default']['password']
 cred = Credential(principal=username, secret=password)
 from cfme.configure.access_control import User
 user = User(credential=cred, name='Administrator')

 logged_in_view = self.appliance.browser.create_view(BaseLoggedInPage)

 if not logged_in_view.logged_in_as_user(user):
 if logged_in_view.logged_in:
 logged_in_view.logout()

 from cfme.utils.appliance.implementations.ui import navigate_to
 login_view = navigate_to(self.appliance.server, 'LoginScreen')

 time.sleep(1)

 logger.debug('Logging in as user %s', user.credential.principal)
 login_view.flush_widget_cache()

 login_view.log_in(user, method=submit_method)
 logged_in_view.flush_widget_cache()
 user.name = logged_in_view.current_fullname
 try:
 assert logged_in_view.logged_in_as_user
 self.appliance.user = user
 except AssertionError:
 login_view.flash.assert_no_error()

@Server.login_admin.external_implementation_for(ViaUI)
[docs]def login_admin(self, **kwargs):
 """
 Convenience function to log into CFME using the admin credentials from the yamls.
 Args:
 kwargs: A dict of keyword arguments to supply to the :py:meth:`login` method.
 """
 username = conf.credentials['default']['username']
 password = conf.credentials['default']['password']
 cred = Credential(principal=username, secret=password)
 from cfme.configure.access_control import User
 user = User(credential=cred)
 user.name = 'Administrator'
 self.login(user, **kwargs)

@Server.logout.external_implementation_for(ViaUI)
[docs]def logout(self):
 """
 Logs out of CFME.
 """
 logged_in_view = self.appliance.browser.create_view(BaseLoggedInPage)
 if logged_in_view.logged_in:
 logged_in_view.logout()
 self.appliance.user = None

@Server.current_full_name.external_implementation_for(ViaUI)
[docs]def current_full_name(self):
 """ Returns the current username.
 Returns: the current username.
 """
 logged_in_view = self.appliance.browser.create_view(BaseLoggedInPage)
 if logged_in_view.logged_in:
 return logged_in_view.current_fullname
 else:
 return None

[docs]def automate_menu_name(appliance):
 if appliance.version < '5.8':
 return ['Automate']
 else:
 return ['Automation', 'Automate']

SERVER NAVS

@navigator.register(Server)
[docs]class LoginScreen(CFMENavigateStep):
 VIEW = LoginPage

[docs] def prerequisite(self):
 from cfme.utils.browser import ensure_browser_open
 ensure_browser_open(self.obj.appliance.server.address())

[docs] def step(self):
 # Can be either blank or logged in
 from cfme.utils import browser
 logged_in_view = self.create_view(BaseLoggedInPage)
 if logged_in_view.logged_in:
 logged_in_view.logout()
 if not self.view.is_displayed:
 # Something is wrong
 del self.view # In order to unbind the browser
 browser.quit()
 browser.ensure_browser_open(self.obj.appliance.server.address())
 if not self.view.is_displayed:
 raise Exception('Could not open the login screen')

@navigator.register(Server)
[docs]class LoggedIn(CFMENavigateStep):
 VIEW = BaseLoggedInPage
 prerequisite = NavigateToSibling('LoginScreen')

[docs] def step(self):
 user = self.obj.appliance.user
 self.prerequisite_view.log_in(user)

[docs]class ConfigurationView(BaseLoggedInPage):
 flash = FlashMessages(
 './/div[starts-with(@id, "flash_text_div") or starts-with(@class, "flash_text_div")]')
 title = Text('#explorer_title_text')

 @View.nested
 class accordions(View): # noqa

 @View.nested
 class settings(Accordion): # noqa
 ACCORDION_NAME = "Settings"
 INDIRECT = True
 tree = ManageIQTree()

 @View.nested
 class accesscontrol(Accordion): # noqa
 ACCORDION_NAME = "Access Control"
 tree = ManageIQTree()

 @View.nested
 class diagnostics(Accordion): # noqa
 ACCORDION_NAME = "Diagnostics"
 tree = ManageIQTree()

 @View.nested
 class database(Accordion): # noqa
 ACCORDION_NAME = "Database"
 tree = ManageIQTree()

 @property
 def in_configuration(self):
 return (
 self.accordions.settings.is_displayed and
 self.accordions.accesscontrol.is_displayed and
 self.accordions.diagnostics.is_displayed and
 self.accordions.database.is_displayed)

 @property
 def is_displayed(self):
 # TODO: We will need a better ID of this location when we have user permissions in effect
 return self.in_configuration

@navigator.register(Server)
[docs]class Configuration(CFMENavigateStep):
 VIEW = ConfigurationView
 prerequisite = NavigateToSibling('LoggedIn')

[docs] def step(self):
 if self.obj.appliance.version > '5.7':
 self.prerequisite_view.settings.select_item('Configuration')
 self.prerequisite_view.browser.handle_alert(wait=2, cancel=False, squash=True)
 else:
 self.prerequisite_view.navigation.select('Settings', 'Configuration')

[docs]class MySettingsView(BaseLoggedInPage):

 @View.nested
 class tabs(View): # noqa

 @View.nested
 class visual_all(Tab): # noqa
 TAB_NAME = "Visual"

 @View.nested
 class default_views(Tab): # noqa
 TAB_NAME = "Default Views"

 @View.nested
 class default_filter(Tab): # noqa
 TAB_NAME = "Default Filters"

 @View.nested
 class time_profile(Tab): # noqa
 TAB_NAME = "Time Profiles"

 @property
 def is_displayed(self):
 return (
 self.tabs.visual_all.is_displayed and
 self.tabs.default_views.is_displayed and
 self.tabs.default_filter.is_displayed and
 self.time_profile.is_displayed)

@navigator.register(Server)
[docs]class MySettings(CFMENavigateStep):
 prerequisite = NavigateToSibling('LoggedIn')

[docs] def step(self):
 if self.obj.appliance.version > '5.7':
 self.prerequisite_view.settings.select_item('My Settings')
 else:
 self.prerequisite_view.navigation.select('Settings', 'My Settings')

@navigator.register(Server)
[docs]class About(CFMENavigateStep):
 VIEW = AboutView
 prerequisite = NavigateToSibling('LoggedIn')

[docs] def step(self):
 self.prerequisite_view.help.select_item('About')

@navigator.register(Server)
[docs]class RSS(CFMENavigateStep):
 VIEW = RSSView
 prerequisite = NavigateToSibling('LoggedIn')

[docs] def step(self):
 self.view.navigation.select('Cloud Intel', 'RSS')

@navigator.register(Server)
[docs]class Documentation(CFMENavigateStep):
 VIEW = DocView
 prerequisite = NavigateToSibling('LoggedIn')

[docs] def step(self):
 self.prerequisite_view.help.select_item('Documentation')

@navigator.register(Server)
[docs]class Tasks(CFMENavigateStep):
 VIEW = TasksView
 prerequisite = NavigateToSibling('LoggedIn')

[docs] def step(self):
 if self.obj.appliance.version > '5.7':
 self.prerequisite_view.settings.select_item('Tasks')
 else:
 self.prerequisite_view.navigation.select('Settings', 'Tasks')

@navigator.register(Server)
[docs]class Dashboard(CFMENavigateStep):
 VIEW = DashboardView
 prerequisite = NavigateToSibling('LoggedIn')

[docs] def step(self):
 self.prerequisite_view.navigation.select('Cloud Intel', 'Dashboard')

@navigator.register(Server)
[docs]class Chargeback(CFMENavigateStep):
 VIEW = ChargebackView
 prerequisite = NavigateToSibling('LoggedIn')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.navigation.select('Cloud Intel', 'Chargeback')

[docs]class ServerView(ConfigurationView):
 @View.nested
 class server(Tab): # noqa
 TAB_NAME = "Server"

 @View.nested
 class authentication(Tab): # noqa
 TAB_NAME = "Authentication"

 @View.nested
 class workers(Tab): # noqa
 TAB_NAME = "Workers"

 @View.nested
 class customlogos(Tab): # noqa
 TAB_NAME = "Custom Logos"

 @View.nested
 class advanced(Tab): # noqa
 TAB_NAME = "Advanced"

 @property
 def is_displayed(self):
 if not self.in_configuration:
 return False
 if not self.view.accordions.settings.is_displayed:
 return False
 return self.view.accordions.settings.tree.currently_selected == [
 self.context['object'].zone.region.settings_string,
 "Zones",
 "Zone: {} (current)".format(self.context['object'].zone.description),
 "Server: {} [{}] (current)".format(self.context['object'].name,
 self.context['object'].sid)]

@navigator.register(Server)
[docs]class Details(CFMENavigateStep):
 VIEW = ServerView
 prerequisite = NavigateToSibling('Configuration')

[docs] def step(self):
 self.prerequisite_view.accordions.settings.tree.click_path(
 self.obj.zone.region.settings_string,
 "Zones",
 "Zone: {} (current)".format(self.obj.zone.description),
 "Server: {} [{}] (current)".format(self.obj.name,
 self.obj.sid))

@navigator.register(Server, 'Server')
[docs]class ServerDetails(CFMENavigateStep):
 VIEW = ServerView
 prerequisite = NavigateToSibling('Details')

[docs] def am_i_here(self):
 return (
 self.view.is_displayed and self.view.server.is_displayed and self.view.server.is_active)

[docs] def step(self):
 self.prerequisite_view.server.select()

@navigator.register(Server)
[docs]class Authentication(CFMENavigateStep):
 VIEW = ServerView
 prerequisite = NavigateToSibling('Details')

[docs] def am_i_here(self):
 return (
 self.view.is_displayed and self.view.authentication.is_displayed and
 self.view.authentication.is_active)

[docs] def step(self):
 self.prerequisite_view.authentication.select()

@navigator.register(Server)
[docs]class Workers(CFMENavigateStep):
 VIEW = ServerView
 prerequisite = NavigateToSibling('Details')

[docs] def am_i_here(self):
 return (
 self.view.is_displayed and self.view.workers.is_displayed and
 self.view.workers.is_active)

[docs] def step(self):
 self.prerequisite_view.workers.select()

@navigator.register(Server)
[docs]class CustomLogos(CFMENavigateStep):
 VIEW = ServerView
 prerequisite = NavigateToSibling('Details')

[docs] def am_i_here(self):
 return (
 self.view.is_displayed and self.view.custom_logos.is_displayed and
 self.view.custom_logos.is_active)

[docs] def step(self):
 self.prerequisite_view.customlogos.select()

@navigator.register(Server)
[docs]class Advanced(CFMENavigateStep):
 VIEW = ServerView
 prerequisite = NavigateToSibling('Details')

[docs] def am_i_here(self):
 return (
 self.view.is_displayed and self.view.advanced.is_displayed and
 self.view.advanced.is_active)

[docs] def step(self):
 self.prerequisite_view.advanced.select()

[docs]class ServerDiagnosticsView(ConfigurationView):
 @View.nested
 class summary(Tab): # noqa
 TAB_NAME = "Summary"

 @View.nested
 class workers(Tab): # noqa
 TAB_NAME = "Workers"

 @View.nested
 class collectlogs(Tab): # noqa
 TAB_NAME = "Collect Logs"

 @View.nested
 class cfmelog(Tab): # noqa
 TAB_NAME = "CFME Log"

 @View.nested
 class auditlog(Tab): # noqa
 TAB_NAME = "Audit Log"

 @View.nested
 class productionlog(Tab): # noqa
 TAB_NAME = "Production Log"

 @View.nested
 class utilization(Tab): # noqa
 TAB_NAME = "Utilization"

 @View.nested
 class timelines(Tab, TimelinesView): # noqa
 TAB_NAME = "Timelines"

 configuration = Dropdown('Configuration')

 @property
 def is_displayed(self):
 return self.prerequisite_view.accordions.diagnostics.tree.currently_selected == [
 self.context['object'].zone.region.settings_string,
 "Zone: {} (current)".format(self.context['object'].zone.description),
 "Server: {} [{}] (current)".format(
 self.context['object'].name, self.context['object'].sid)]

@navigator.register(Server)
[docs]class Diagnostics(CFMENavigateStep):
 VIEW = ServerDiagnosticsView
 prerequisite = NavigateToSibling('Configuration')

[docs] def step(self):
 self.prerequisite_view.accordions.diagnostics.tree.click_path(
 self.obj.zone.region.settings_string,
 "Zone: {} (current)".format(self.obj.zone.description),
 "Server: {} [{}] (current)".format(
 self.obj.name, self.obj.sid))

@navigator.register(Server)
[docs]class DiagnosticsDetails(CFMENavigateStep):
 VIEW = ServerDiagnosticsView
 prerequisite = NavigateToSibling('Diagnostics')

[docs] def am_i_here(self):
 return (
 self.view.is_displayed and self.view.summary.is_displayed and
 self.view.summary.is_active)

[docs] def step(self):
 self.prerequisite_view.summary.select()

@navigator.register(Server)
[docs]class DiagnosticsWorkers(CFMENavigateStep):
 VIEW = ServerDiagnosticsView
 prerequisite = NavigateToSibling('Diagnostics')

[docs] def am_i_here(self):
 return (
 self.view.is_displayed and self.view.workers.is_displayed and
 self.view.workers.is_active)

[docs] def step(self):
 self.prerequisite_view.workers.select()

[docs]class DiagnosticsCollectLogsView(ServerDiagnosticsView):
 title = Text('#explorer_title_text')

 edit = Button(title="Edit the Log Depot settings for the selected Server")
 collect = Dropdown(VersionPick({Version.lowest(): 'Collect Logs',
 '5.7': 'Collect'}))

 log_depot_uri = SummaryFormItem('Basic Info', 'Log Depot URI')
 last_log_collection = SummaryFormItem('Basic Info', 'Last Log Collection')
 last_log_message = SummaryFormItem('Basic Info', 'Last Message')

 @property
 def is_displayed(self):
 return (
 super(DiagnosticsCollectLogsView, self).is_displayed and
 self.collectlogs.is_displayed and
 self.collectlogs.is_active and
 self.title.text == 'Diagnostics Server "{} [{}]" (current)'.format(
 self.context['object'].name, self.context['object'].sid))

[docs]class ZoneDiagnosticsCollectLogsView(DiagnosticsCollectLogsView):
 edit = Button(title="Edit the Log Depot settings for the selected Zone")

 @property
 def is_displayed(self):
 return (
 self.collectlogs.is_displayed and
 self.collectlogs.is_active and
 self.title.text == 'Diagnostics Zone "{}" (current)'.format(
 self.context['object'].description))

@navigator.register(Server, "DiagnosticsCollectLogs")
[docs]class DiagnosticsCollectLogs(CFMENavigateStep):
 VIEW = DiagnosticsCollectLogsView
 prerequisite = NavigateToSibling('Diagnostics')

[docs] def step(self):
 self.prerequisite_view.collectlogs.select()

@navigator.register(Server, "DiagnosticsCollectLogsSlave")
[docs]class DiagnosticsCollectLogsSlave(CFMENavigateStep):
 VIEW = DiagnosticsCollectLogsView
 prerequisite = NavigateToSibling('Diagnostics')

[docs] def step(self):
 self.prerequisite_view.accordions.diagnostics.tree.click_path(
 self.appliance.server_region_string(),
 "Zone: {} (current)".format(self.appliance.zone_description),
 "Server: {} [{}]".format(self.appliance.slave_server_name(),
 self.appliance.slave_server_zone_id()))
 self.prerequisite_view.collectlogs.select()

[docs]class DiagnosticsCollectLogsEditView(DiagnosticsCollectLogsView):

 @property
 def is_displayed(self):
 return super(DiagnosticsCollectLogsView, self).is_displayed and self.protocol.is_displayed

 depot_type = BootstrapSelect('log_protocol')
 depot_name = Input('depot_name')
 uri = Input('uri')
 username = Input(name='log_userid')
 password = Input(name='log_password')
 confirm_password = Input(name='log_verify')
 validate = Button('Validate')

 save = Button('Save')
 reset = Button('Reset')
 cancel = Button('Cancel')

@navigator.register(Server, "DiagnosticsCollectLogsEdit")
[docs]class DiagnosticsCollectLogsEdit(CFMENavigateStep):
 VIEW = DiagnosticsCollectLogsEditView
 prerequisite = NavigateToSibling('DiagnosticsCollectLogs')

[docs] def step(self):
 self.prerequisite_view.edit.click()

@navigator.register(Server, "DiagnosticsCollectLogsEditSlave")
[docs]class DiagnosticsCollectLogsEditSlave(CFMENavigateStep):
 VIEW = DiagnosticsCollectLogsEditView
 prerequisite = NavigateToSibling('DiagnosticsCollectLogsSlave')

[docs] def step(self):
 self.prerequisite_view.edit.click()

@navigator.register(Server)
[docs]class CFMELog(CFMENavigateStep):
 VIEW = ServerDiagnosticsView
 prerequisite = NavigateToSibling('Diagnostics')

[docs] def am_i_here(self):
 return (
 self.view.is_displayed and self.view.cfmelog.is_displayed and
 self.view.cfmelog.is_active)

[docs] def step(self):
 self.prerequisite_view.cfmelog.select()

@navigator.register(Server)
[docs]class AuditLog(CFMENavigateStep):
 VIEW = ServerDiagnosticsView
 prerequisite = NavigateToSibling('Diagnostics')

[docs] def am_i_here(self):
 return (
 self.view.is_displayed and self.view.auditlog.is_displayed and
 self.view.auditlog.is_active)

[docs] def step(self):
 self.prerequisite_view.auditlog.select()

@navigator.register(Server)
[docs]class ProductionLog(CFMENavigateStep):
 VIEW = ServerDiagnosticsView
 prerequisite = NavigateToSibling('Diagnostics')

[docs] def am_i_here(self):
 return (
 self.view.is_displayed and self.view.productionlog.is_displayed and
 self.view.productionlog.is_active)

[docs] def step(self):
 self.prerequisite_view.productionlog.select()

@navigator.register(Server)
[docs]class Utilization(CFMENavigateStep):
 VIEW = ServerDiagnosticsView
 prerequisite = NavigateToSibling('Diagnostics')

[docs] def am_i_here(self):
 return (
 self.view.is_displayed and self.view.utilization.is_displayed and
 self.view.utilization.is_active)

[docs] def step(self):
 self.prerequisite_view.utilization.select()

@navigator.register(Server)
[docs]class Timelines(CFMENavigateStep):
 VIEW = ServerDiagnosticsView
 prerequisite = NavigateToSibling('Diagnostics')

[docs] def am_i_here(self):
 return (
 self.view.is_displayed and self.view.timelines.is_displayed and
 self.view.timelines.is_active)

[docs] def step(self):
 self.prerequisite_view.timelines.select()

REGION NAVS

[docs]class RegionView(ConfigurationView):
 @View.nested
 class details(Tab): # noqa
 TAB_NAME = "Details"

 @View.nested
 class canducollection(Tab): # noqa
 TAB_NAME = "C & U Collection"

 @View.nested
 class companycategories(Tab): # noqa
 TAB_NAME = "My Company Categories"

 @View.nested
 class companytags(Tab): # noqa
 TAB_NAME = "My Company Tags"

 @View.nested
 class redhatupdates(Tab): # noqa
 TAB_NAME = "Red Hat Updates"

 @View.nested
 class imports(Tab): # noqa
 TAB_NAME = "Import"

 @View.nested
 class importtags(Tab): # noqa
 TAB_NAME = "Import Tags"

 @View.nested
 class maptags(Tab): # noqa
 TAB_NAME = "Map Tags"

 @property
 def is_displayed(self):
 return self.accordions.settings.tree.currently_selected == [self.obj.settings_string]

@navigator.register(Region, 'Details')
[docs]class RegionDetails(CFMENavigateStep):
 VIEW = RegionView
 prerequisite = NavigateToAttribute('appliance.server', 'Configuration')

[docs] def step(self):
 # TODO: This string can now probably be built up with the relevant server, zone,
 # region objects
 self.prerequisite_view.accordions.settings.tree.click_path(self.obj.settings_string)
 self.view.details.select()

@navigator.register(Region)
[docs]class ImportTags(CFMENavigateStep):
 VIEW = RegionView
 prerequisite = NavigateToSibling('Details')

[docs] def am_i_here(self):
 return False

[docs] def step(self):
 self.prerequisite_view.importtags.select()

@navigator.register(Region)
[docs]class Import(CFMENavigateStep):
 VIEW = RegionView
 prerequisite = NavigateToSibling('Details')

[docs] def am_i_here(self):
 return False

[docs] def step(self):
 self.prerequisite_view.imports.select()

[docs]class ZoneListView(ConfigurationView):
 configuration = Dropdown('Configuration')
 table = Table('//div[@id="settings_list"]/table')

 @property
 def is_displayed(self):
 return (
 self.accordions.settings.is_opened and
 self.accordions.settings.tree.currently_selected == [
 self.context['object'].settings_string, 'Zones'] and
 self.title.text == 'Settings Zones' and
 self.table.is_displayed)

@navigator.register(Region, 'Zones')
[docs]class RegionZones(CFMENavigateStep):
 VIEW = ZoneListView
 prerequisite = NavigateToAttribute('appliance.server', 'Configuration')

[docs] def step(self):
 self.prerequisite_view.accordions.settings.tree.click_path(
 self.obj.settings_string, 'Zones')
 if not self.view.is_displayed:
 # Zones is too smart and does not reload upon clicking, this helps
 self.prerequisite_view.accordions.accesscontrol.open()
 self.prerequisite_view.accordions.settings.tree.click_path(
 self.obj.settings_string, 'Zones')

[docs]class RegionDiagnosticsView(ConfigurationView):
 @View.nested
 class zones(Tab): # noqa
 TAB_NAME = "Zones"

 @View.nested
 class rolesbyservers(Tab): # noqa
 TAB_NAME = "Roles by Servers"

 @View.nested
 class replication(Tab): # noqa
 TAB_NAME = "Replication"

 @View.nested
 class serversbyroles(Tab): # noqa
 TAB_NAME = "Servers by Roles"

 @View.nested
 class servers(Tab): # noqa
 TAB_NAME = "Servers"

 @View.nested
 class database(Tab): # noqa
 TAB_NAME = "Database"

 @View.nested
 class orphaneddata(Tab): # noqa
 TAB_NAME = "Orphaned Data"

 @property
 def is_displayed(self):
 return (
 self.accordions.diagnostics.is_opened and
 self.accordions.diagnostics.tree.currently_selected == [
 self.context['object'].settings_string] and
 self.title.text.startswith('Diagnostics Region '))

@navigator.register(Region, 'Diagnostics')
[docs]class RegionDiagnostics(CFMENavigateStep):
 VIEW = RegionDiagnosticsView
 prerequisite = NavigateToAttribute('appliance.server', 'Configuration')

[docs] def step(self):
 self.prerequisite_view.accordions.diagnostics.tree.click_path(self.obj.settings_string)

@navigator.register(Region, 'DiagnosticsZones')
[docs]class RegionDiagnosticsZones(CFMENavigateStep):
 VIEW = RegionDiagnosticsView
 prerequisite = NavigateToSibling('Diagnostics')

[docs] def am_i_here(self):
 return False

[docs] def step(self):
 self.prerequisite_view.zones.select()

@navigator.register(Region, 'RolesByServers')
[docs]class RegionDiagnosticsRolesByServers(CFMENavigateStep):
 VIEW = RegionDiagnosticsView
 prerequisite = NavigateToSibling('Diagnostics')

[docs] def am_i_here(self):
 return False

[docs] def step(self):
 self.prerequisite_view.rolesbyservers.select()

@navigator.register(Region, 'Replication')
[docs]class RegionDiagnosticsReplication(CFMENavigateStep):
 VIEW = RegionDiagnosticsView
 prerequisite = NavigateToSibling('Diagnostics')

[docs] def am_i_here(self):
 return False

[docs] def step(self):
 if self.obj.appliance.version < '5.7':
 self.prerequisite_view.replication.select()
 else:
 raise DestinationNotFound('Replication destination is absent in 5.7')

@navigator.register(Region, 'ServersByRoles')
[docs]class RegionDiagnosticsServersByRoles(CFMENavigateStep):
 VIEW = RegionDiagnosticsView
 prerequisite = NavigateToSibling('Diagnostics')

[docs] def am_i_here(self):
 return False

[docs] def step(self):
 self.prerequisite_view.serversbyroles.select()

@navigator.register(Region, 'Servers')
[docs]class RegionDiagnosticsServers(CFMENavigateStep):
 VIEW = RegionDiagnosticsView
 prerequisite = NavigateToSibling('Diagnostics')

[docs] def am_i_here(self):
 return False

[docs] def step(self):
 self.prerequisite_view.servers.select()

@navigator.register(Region, 'Database')
[docs]class RegionDiagnosticsDatabase(CFMENavigateStep):
 VIEW = RegionDiagnosticsView
 prerequisite = NavigateToSibling('Diagnostics')

[docs] def am_i_here(self):
 return False

[docs] def step(self):
 self.prerequisite_view.database.select()

@navigator.register(Region, 'OrphanedData')
[docs]class RegionDiagnosticsOrphanedData(CFMENavigateStep):
 VIEW = RegionDiagnosticsView
 prerequisite = NavigateToSibling('Diagnostics')

[docs] def am_i_here(self):
 return False

[docs] def step(self):
 self.prerequisite_view.orphaneddata.select()

ZONE NAVS

[docs]class ZoneForm(ConfigurationView):
 name = Input(name='name')
 description = Input(name='description')
 smartproxy_ip = Input(name='proxy_server_ip')
 ntp_server_1 = Input(name='ntp_server_1')
 ntp_server_2 = Input(name='ntp_server_2')
 ntp_server_3 = Input(name='ntp_server_3')
 max_scans = BootstrapSelect("max_scans")
 username = Input(name='userid')
 password = Input(name='password')
 verify = Input(name='verify')

 cancel_button = Button('Cancel')

Zone Details
[docs]class ZoneDetailsView(ConfigurationView):
 configuration = Dropdown('Configuration')

 @property
 def is_displayed(self):
 return self.title.text.startswith(
 'Settings Zone "{}"'.format(self.context['object'].description))

@navigator.register(Zone, 'Details')
[docs]class ZoneDetails(CFMENavigateStep):
 VIEW = ZoneDetailsView

 prerequisite = NavigateToAttribute('appliance.server.zone.region', 'Zones')

[docs] def step(self):
 rows = self.prerequisite_view.table.rows((1, re.compile(r'Zone\s?\:\s?{}'.format(
 self.obj.description))))
 for row in rows:
 row.click()
 break
 else:
 raise ZoneNotFound(
 "No unique Zones with the description '{}'".format(self.obj.description))

Zone Add
[docs]class ZoneAddView(ZoneForm):
 add_button = Button('Add')

 @property
 def is_displayed(self):
 return self.title.text == 'Adding a new Zone'

@navigator.register(ZoneCollection, 'Add')
[docs]class ZoneAdd(CFMENavigateStep):
 VIEW = ZoneAddView
 prerequisite = NavigateToAttribute('appliance.server.zone.region', 'Zones')

[docs] def step(self):
 self.prerequisite_view.configuration.item_select("Add a new Zone")

Zone Edit
[docs]class ZoneEditView(ZoneForm):
 save_button = Button('Save')

 @property
 def is_displayed(self):
 return self.title.text == 'Editing Zone "{}"'.format(self.context['object'].description)

@navigator.register(Zone, 'Edit')
[docs]class ZoneEdit(CFMENavigateStep):
 VIEW = ZoneEditView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.configuration.item_select("Edit this Zone")

Zone Diags
[docs]class ZoneDiagnosticsView(ConfigurationView):
 @View.nested
 class rolesbyservers(Tab): # noqa
 TAB_NAME = "Roles by Servers"

 @View.nested
 class serversbyroles(Tab): # noqa
 TAB_NAME = "Servers by Roles"

 @View.nested
 class servers(Tab): # noqa
 TAB_NAME = "Servers"

 @View.nested
 class collectlogs(Tab): # noqa
 TAB_NAME = "Collect Logs"

 @View.nested
 class candugapcollection(Tab): # noqa
 TAB_NAME = "C & U Gap Collection"

 @property
 def is_displayed(self):
 return (
 self.title.text == 'Diagnostics Zone "{}" (current)'.format(
 self.context['object'].description))

@navigator.register(Zone, 'Diagnostics')
[docs]class ZoneDiagnostics(CFMENavigateStep):
 VIEW = ZoneDiagnosticsView
 prerequisite = NavigateToAttribute('appliance.server', 'Configuration')

[docs] def step(self):
 self.prerequisite_view.accordions.diagnostics.tree.click_path(
 self.obj.region.settings_string,
 "Zone: {} (current)".format(self.obj.description))

@navigator.register(Zone, 'RolesByServers')
[docs]class ZoneDiagnosticsRolesByServers(CFMENavigateStep):
 VIEW = ZoneDiagnosticsView
 prerequisite = NavigateToSibling('Diagnostics')

[docs] def step(self):
 self.prerequisite_view.rolesbyservers.select()

@navigator.register(Zone, 'ServersByRoles')
[docs]class ZoneDiagnosticsServersByRoles(CFMENavigateStep):
 VIEW = ZoneDiagnosticsView
 prerequisite = NavigateToSibling('Diagnostics')

[docs] def step(self):
 self.prerequisite_view.serversbyroles.select()

@navigator.register(Zone, 'Servers')
[docs]class ZoneDiagnosticsServers(CFMENavigateStep):
 VIEW = ZoneDiagnosticsView
 prerequisite = NavigateToSibling('Diagnostics')

[docs] def step(self):
 self.prerequisite_view.servers.select()

@navigator.register(Zone, 'DiagnosticsCollectLogs')
[docs]class ZoneDiagnosticsCollectLogs(CFMENavigateStep):
 VIEW = ZoneDiagnosticsCollectLogsView
 prerequisite = NavigateToSibling('Diagnostics')

[docs] def step(self):
 self.prerequisite_view.collectlogs.select()

@navigator.register(Zone, 'DiagnosticsCollectLogsEdit')
[docs]class ZoneDiagnosticsCollectLogsEdit(CFMENavigateStep):
 VIEW = DiagnosticsCollectLogsEditView
 prerequisite = NavigateToSibling('DiagnosticsCollectLogs')

[docs] def step(self):
 self.prerequisite_view.edit.click()

@navigator.register(Zone, 'CANDUGapCollection')
[docs]class ZoneCANDUGapCollection(CFMENavigateStep):
 VIEW = ZoneDiagnosticsView
 prerequisite = NavigateToSibling('Diagnostics')

[docs] def step(self):
 self.prerequisite_view.candugapcollection.select()

@Zone.exists.external_getter_implemented_for(ViaUI)
[docs]def exists(self):
 try:
 navigate_to(self, 'Details')
 return True
 except ZoneNotFound:
 return False

@Zone.update.external_implementation_for(ViaUI)
[docs]def update(self, updates):
 view = navigate_to(self, 'Edit')
 changed = view.fill(updates)
 if changed:
 view.save_button.click()
 else:
 view.cancel_button.click()
 view = self.create_view(ZoneDetailsView)
 # assert view.is_displayed
 view.flash.assert_no_error()
 if changed:
 view.flash.assert_message(
 'Zone "{}" was saved'.format(updates.get('name', self.name)))
 else:
 view.flash.assert_message(
 'Edit of Zone "{}" was cancelled by the user'.format(self.name))

@Zone.delete.external_implementation_for(ViaUI)
[docs]def delete(self, cancel=False):
 """ Delete the Zone represented by this object.

 Args:
 cancel: Whether to click on the cancel button in the pop-up.
 """
 view = navigate_to(self, 'Details')
 view.configuration.item_select('Delete this Zone', handle_alert=not cancel)
 if not cancel:
 view.flash.assert_message('Zone "{}": Delete successful'.format(self.name))

@ZoneCollection.create.external_implementation_for(ViaUI)
[docs]def create(self, name=None, description=None, smartproxy_ip=None, ntp_servers=None,
 max_scans=None, user=None, cancel=False):
 add_page = navigate_to(self, 'Add')
 if not ntp_servers:
 ntp_servers = []
 fill_dict = {
 k: v
 for k, v in {
 'name': name,
 'description': description,
 'smartproxy_ip': smartproxy_ip,
 'ntp_server_1': ntp_servers[0] if len(ntp_servers) > 0 else None,
 'ntp_server_2': ntp_servers[1] if len(ntp_servers) > 1 else None,
 'ntp_server_3': ntp_servers[2] if len(ntp_servers) > 2 else None,
 'max_scans': max_scans,
 'user': user.principal if user else None,
 'password': user.secret if user else None,
 'verify': user.secret if user else None
 }.items()
 if v is not None}

 add_page.fill(fill_dict)
 if cancel:
 add_page.cancel_button.click()
 add_page.flash.assert_no_error()
 add_page.flash.assert_message('Add of new Zone was cancelled by the user')
 return None
 else:
 add_page.add_button.click()
 add_page.flash.assert_no_error()
 add_page.flash.assert_message('Zone "{}" was added'.format(name))
 return Zone(appliance=self.appliance, region=self.region,
 name=name, description=description, smartproxy_ip=smartproxy_ip,
 ntp_servers=ntp_servers, max_scans=max_scans, user=user)

AUTOMATE
[docs]class AutomateSimulationView(BaseLoggedInPage):
 @property
 def is_displayed(self):
 from cfme.automate import automate_menu_name
 return (
 self.logged_in_as_current_user and
 self.navigation.currently_selected == automate_menu_name(
 self.context['object'].appliance) + ['Simulation'])

 instance = BootstrapSelect('instance_name')
 message = Input(name='object_message')
 request = Input(name='object_request')
 target_type = BootstrapSelect('target_class')
 target_object = BootstrapSelect('target_id')
 execute_methods = Checkbox(name='readonly')
 avp = AttributeValueForm('attribute_', 'value_')

 submit_button = Button(title='Submit Automation Simulation with the specified options')

 result_tree = ManageIQTree(tree_id='ae_simulation_treebox')

@navigator.register(Server)
[docs]class AutomateSimulation(CFMENavigateStep):
 VIEW = AutomateSimulationView
 prerequisite = NavigateToSibling('LoggedIn')

[docs] def step(self):
 from cfme.automate import automate_menu_name
 self.prerequisite_view.navigation.select(
 *automate_menu_name(self.obj.appliance) + ['Simulation'])

[docs]class AutomateImportExportBaseView(BaseLoggedInPage):
 flash = FlashMessages('div.import-flash-message')
 title = Text('.//div[@id="main-content"]//h1')

 @property
 def in_import_export(self):
 from cfme.automate import automate_menu_name
 return (
 self.logged_in_as_current_user and
 self.navigation.currently_selected == automate_menu_name(
 self.context['object'].appliance) + ['Import / Export'] and
 self.title.text == 'Import / Export')

 @property
 def is_displayed(self):
 return self.in_import_export

[docs]class AutomateImportExportView(AutomateImportExportBaseView):
 class import_file(View): # noqa
 file = FileInput(name='upload_file')
 upload = Button('Upload')

 class import_git(View): # noqa
 ROOT = './/form[@id="retrieve-git-datastore-form"]'

 url = Input(name='git_url')
 username = Input(name='git_username')
 password = Input(name='git_password')
 verify_ssl = Checkbox(name='git_verify_ssl')
 submit = Button(id='git-url-import')

 export_all = Image('.//input[@title="Export all classes and instances"]')
 reset_all = Image('.//img[starts-with(@alt, "Reset all components in the following domains:")]')

 @property
 def is_displayed(self):
 return self.in_import_export and self.export_all.is_displayed

@navigator.register(Server)
[docs]class AutomateImportExport(CFMENavigateStep):
 VIEW = AutomateImportExportView
 prerequisite = NavigateToSibling('LoggedIn')

[docs] def step(self):
 from cfme.automate import automate_menu_name
 self.prerequisite_view.navigation.select(
 *automate_menu_name(self.obj.appliance) + ['Import / Export'])

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/scripting/disable_bytecode.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.scripting.disable_bytecode

#!/usr/bin/env python2
from __future__ import print_function
from os import path
import distutils

DISABLE_BYTECODE_USERCUSTOMIZE = "import sys\nsys.dont_write_bytecode = True\n"

[docs]def ensure_file_contains(target, content):
 if path.exists(target):
 with open(target) as fp:
 if content not in fp.read():
 print('{target!r} has unexpected content'.format(target=target))
 print('please open the file and add the following:')
 print(content)
 print("# end")
 else:
 with open(target, 'w') as fp:
 fp.write(content)

if __name__ == '__main__':
 site_packages = distutils.sysconfig_get_python_lib()
 target = path.join(site_packages, 'usercustomize.py')
 ensure_file_contains(target, content=DISABLE_BYTECODE_USERCUSTOMIZE)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/scripting/runtest.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.scripting.runtest

import sys
import os
from . import quickstart
QUICKSTART_DONE = 'MIQ_RUNTEST_QUICKSTART_DONE'

[docs]def main():
 if QUICKSTART_DONE not in os.environ:
 quickstart.main(quickstart.parser.parse_args(
 ['--mk-virtualenv', sys.prefix]))
 os.environ[QUICKSTART_DONE] = QUICKSTART_DONE
 os.execl(sys.executable, sys.executable, *sys.argv)
 else:
 import pytest
 pytest.main()

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/scripting/setup_env.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.scripting.setup_env

import click
import re
from cfme.test_framework.sprout.client import SproutClient
from collections import namedtuple
from cfme.utils.conf import credentials, cfme_data
from wait_for import wait_for

TimedCommand = namedtuple('TimedCommand', ['command', 'timeout'])
pwd = credentials['database']['password']

[docs]def tot_time(string):
 """Takes the lease string and converts it to minutes to pass to sprout"""
 mtch = re.match('^((?P<days>\d+)+d)?\s?((?P<hours>\d+)+h)?\s?((?P<minutes>\d+)+m)?\s?', string)
 tot = int(mtch.group('days') or 0) * 24 * 60
 tot += int(mtch.group('hours') or 0) * 60
 tot += int(mtch.group('minutes')or 0)
 return tot

[docs]def provision_appliances(count, cfme_version, provider, lease_time):
 sprout_client = SproutClient.from_config()
 apps, request_id = sprout_client.provision_appliances(version=str(cfme_version),
 count=count, preconfigured=False, lease_time=lease_time, provider=provider)
 return apps

@click.group(help='Commands to set up appliance environments with version arg and lease option')
def main():
 """Main setup-env group"""
 pass

@main.command('distributed', help='Sets up distributed environment')
@click.option('--cfme-version', required=True)
@click.option('--provider', default=None, help='Specify sprout provider')
@click.option('--lease', default='3h', help='Set pool lease time, example: 1d4h30m')
def setup_distributed_env(cfme_version, provider, lease):
 lease_time = tot_time(lease)
 """multi appliance single region configuration (distributed setup, 1st appliance has
 a local database and workers, 2nd appliance has workers pointing at 1st appliance)"""
 print("Provisioning and configuring distributed environment")
 apps = provision_appliances(count=2, cfme_version=cfme_version, provider=provider,
 lease_time=lease_time)
 opt = '5' if cfme_version >= "5.8" else '8'
 ip0 = apps[0].address
 ip1 = apps[1].address
 port = (ip0, '') if cfme_version >= "5.8" else (ip0,)
 command_set0 = ('ap', '', opt, '1', '1', 'y', '1', 'n', '1', pwd,
 TimedCommand(pwd, 360), '')
 apps[0].appliance_console.run_commands(command_set0)
 apps[0].wait_for_evm_service()
 apps[0].wait_for_web_ui()
 print("VMDB appliance provisioned and configured {}".format(ip0))
 command_set1 = ('ap', '', opt, '2', ip0, '', pwd, '', '3') + port + ('', '',
 pwd, TimedCommand(pwd, 360), '')
 apps[1].appliance_console.run_commands(command_set1)
 apps[1].wait_for_evm_service()
 apps[1].wait_for_web_ui()
 print("Non-VMDB appliance provisioned and configured {}".format(ip1))
 print("Appliance pool lease time is {}".format(lease))

@main.command('ha', help='Sets up high availability environment')
@click.option('--cfme-version', required=True)
@click.option('--provider', default=cfme_data.get('basic_info', {}).get('ha_provider'),
 help='Specify sprout provider, must not be RHOS')
@click.option('--lease', default='3h', help='set pool lease time, example: 1d4h30m')
def setup_ha_env(cfme_version, provider, lease):
 lease_time = tot_time(lease)
 """multi appliance setup consisting of dedicated primary and standy databases with a single
 UI appliance."""
 print("Provisioning and configuring HA environment")
 apps = provision_appliances(count=3, cfme_version=cfme_version, provider=provider,
 lease_time=lease_time)
 ip0 = apps[0].address
 ip1 = apps[1].address
 ip2 = apps[2].address
 opt = '5' if cfme_version >= "5.8" else '8'
 rep = '6' if cfme_version >= "5.8" else '9'
 mon = '9' if cfme_version >= "5.8" else '12'
 port = (ip0, '') if cfme_version >= "5.8" else (ip0,)
 command_set0 = ('ap', '', opt, '1', '1', '1', 'y', pwd, TimedCommand(pwd, 360), '')
 apps[0].appliance_console.run_commands(command_set0)
 wait_for(lambda: apps[0].db.is_dedicated_active)
 print("Dedicated database provisioned and configured {}".format(ip0))
 command_set1 = ('ap', '', opt, '1', '2', '1', 'y') + port + ('', '', pwd,
 TimedCommand(pwd, 360), '')
 apps[1].appliance_console.run_commands(command_set1)
 apps[1].wait_for_evm_service()
 apps[1].wait_for_web_ui()
 print("Non-VMDB appliance provisioned and region created {}".format(ip1))
 command_set2 = ('ap', '', rep, '1', '1', '', '', pwd, pwd, ip0, 'y', '')
 apps[0].appliance_console.run_commands(command_set2)
 print("Primary HA node configured {}".format(ip0))
 command_set3 = ('ap', '', rep, '2', '1', '2', '', '', pwd, pwd, ip0, ip2, 'y',
 TimedCommand('y', 15), '')
 apps[2].appliance_console.run_commands(command_set3)
 print("Secondary HA node provision and configured {}".format(ip2))
 command_set4 = ('ap', '', mon, '1', '')
 apps[1].appliance_console.run_commands(command_set4)
 print("HA configuration complete")
 print("Appliance pool lease time is {}".format(lease))

@main.command('replicated', help='Sets up replicated environment')
@click.option('--cfme-version', required=True)
@click.option('--provider', default=None, help='Specify sprout provider')
@click.option('--lease', default='3h', help='set pool lease time, example: 1d4h30m')
def setup_replication_env(cfme_version, provider, lease):
 lease_time = tot_time(lease)
 """Multi appliance setup with multi region and replication from remote to global"""
 print("Provisioning and configuring replicated environment")
 apps = provision_appliances(count=2, cfme_version=cfme_version, provider=provider,
 lease_time=lease_time)
 ip0 = apps[0].address
 ip1 = apps[1].address
 opt = '5' if cfme_version >= "5.8" else '8'
 command_set0 = ('ap', '', opt, '1', '1', 'y', '1', 'n', '99', pwd,
 TimedCommand(pwd, 360), '')
 apps[0].appliance_console.run_commands(command_set0)
 apps[0].wait_for_evm_service()
 apps[0].wait_for_web_ui()
 print("Global region appliance provisioned and configured {}".format(ip0))
 command_set1 = ('ap', '', opt, '2', ip0, '', pwd, '', '1', 'y', '1', 'n', '1', pwd,
 TimedCommand(pwd, 360), '')
 apps[1].appliance_console.run_commands(command_set1)
 apps[1].wait_for_evm_service()
 apps[1].wait_for_web_ui()
 print("Remote region appliance provisioned and configured {}".format(ip1))
 print("Setup - Replication on remote appliance")
 apps[1].set_pglogical_replication(replication_type=':remote')
 print("Setup - Replication on global appliance")
 apps[0].set_pglogical_replication(replication_type=':global')
 apps[0].add_pglogical_replication_subscription(apps[1].address)
 print("Done!")
 print("Appliance pool lease time is {}".format(lease))

if __name__ == "__main__":
 main()

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/scripting/appliance.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.scripting.appliance

#!/usr/bin/env python2
-*- coding: utf-8 -*-
"""Script to encrypt config files.

Usage:

 scripts/encrypt_conf.py confname1 confname2 ... confnameN
 scripts/encrypt_conf.py credentials
"""
import click
from cached_property import cached_property
from functools import partial
from .setup_ansible import setup_ansible

[docs]def get_appliance(appliance_ip):
 """Checks an appliance is not None and if so, loads the appropriate things"""
 from cfme.utils.appliance import IPAppliance, get_or_create_current_appliance
 if not appliance_ip:
 app = get_or_create_current_appliance()
 else:
 app = IPAppliance(appliance_ip)
 return app

@click.group(help='Helper commands for appliances')
def main():
 """Main appliance group"""
 pass

@main.command('reboot', help='Reboots the appliance')
@click.argument('appliance_ip', default=None, required=False)
@click.option('--wait-for-ui', is_flag=True, default=True)
def reboot_appliance(appliance_ip, wait_for_ui):
 """Reboots an appliance"""
 app = get_appliance(appliance_ip)
 app.reboot(wait_for_ui)

@main.command('setup_ansible', help='Setups embedded ansible on an appliance')
@click.argument('appliance_ip', default=None, required=False)
@click.option('--license', required=True, type=click.Path(exists=True))
def setup_embedded_ansible(appliance_ip, license):
 """Setups embedded ansible on an appliance"""
 app = get_appliance(appliance_ip)
 if not app.is_downstream:
 setup_ansible(app, license)
 else:
 print("It can be done only against upstream appliances.")

Useful Properties
methods_to_install = [
 'is_db_enabled',
 'managed_provider_names',
 'miqqe_version',
 'os_version',
 'swap',
 'miqqe_patch_applied']

[docs]def fn(method, *args, **kwargs):
 """Helper to access the right properties"""
 from cfme.utils.appliance import IPAppliance
 appliance_ip = kwargs.get('appliance_ip', None)
 app = get_appliance(appliance_ip)
 descriptor = getattr(IPAppliance, method)
 if isinstance(descriptor, (cached_property, property)):
 out = getattr(app, method)
 else:
 out = getattr(app, method)(*args, **kwargs)
 if out is not None:
 print(out)

for method in methods_to_install:
 command = click.Command(
 method.replace('_', '-'),
 short_help='Returns the {} property'.format(method),
 callback=partial(fn, method), params=[
 click.Argument(['appliance_ip'], default=None, required=False)])
 main.add_command(command)

if __name__ == "__main__":
 main()

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/scripting/setup_ansible.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.scripting.setup_ansible

-*- coding: utf-8 -*-
import requests

from cfme.utils import ports
from cfme.utils.net import net_check
from cfme.utils.wait import wait_for

ANSIBLE_TOWER_REPO_PATH = "/etc/yum.repos.d/ansible-tower.repo"
ANSIBLE_TOWER_REPO_CONTENT = """EOF
[ansible-tower]
name=Ansible Tower Repository - $releasever $basearch
baseurl=http://releases.ansible.com/ansible-tower/rpm/epel-7-\$basearch
enabled=1
gpgcheck=0
EOF"""
JLASKA_RABBITMQ_REPO_PATH = "/etc/yum.repos.d/jlaska-rabbitmq.repo"
JLASKA_RABBITMQ_REPO_CONTENT = """EOF
[jlaska-rabbitmq]
name=Copr repo for rabbitmq owned by jlaska
baseurl=https://copr-be.cloud.fedoraproject.org/results/jlaska/rabbitmq/epel-7-\$basearch/
skip_if_unavailable=True
gpgcheck=1
gpgkey=https://copr-be.cloud.fedoraproject.org/results/jlaska/rabbitmq/pubkey.gpg
enabled=1
enabled_metadata=1
EOF"""
PGDG_94_CENTOS_REPO_PATH = "/etc/yum.repos.d/pgdg-94-centos.repo"
PGDG_94_CENTOS_REPO_CONTENT = """EOF
[pgdg94]
name=PostgreSQL 9.4 $releasever - $basearch
baseurl=http://download.postgresql.org/pub/repos/yum/9.4/redhat/rhel-\$releasever-\$basearch
enabled=1
gpgcheck=0
EOF"""
REPOS = [
 (ANSIBLE_TOWER_REPO_PATH, ANSIBLE_TOWER_REPO_CONTENT),
 (JLASKA_RABBITMQ_REPO_PATH, JLASKA_RABBITMQ_REPO_CONTENT),
 (PGDG_94_CENTOS_REPO_PATH, PGDG_94_CENTOS_REPO_CONTENT)
]

[docs]def run_command(app, command):
 print(command)
 app.ssh_client.run_command(command)

[docs]def setup_repos(app):
 print("Starting configuring repos")
 for path, content in REPOS:
 run_command(app, "cat > {path} << {content}".format(path=path, content=content))

[docs]def install_packages(app):
 print("Starting to install packages")
 run_command(app, "yum -y install ansible-tower-setup ansible-tower-server")
 run_command(app, "install -o awx -g awx -m 0755 -d /var/log/tower")
 run_command(app, "install -o awx -g awx -m 0644 /dev/null /var/log/tower/callback_receiver.log")
 run_command(app, "install -o awx -g awx -m 0644 /dev/null /var/log/tower/fact_receiver.log")
 run_command(app, "install -o awx -g awx -m 0644 /dev/null /var/log/tower/task_system.log")
 run_command(app, "install -o awx -g awx -m 0644 /dev/null /var/log/tower/tower.log")
 run_command(app,
 "install -o awx -g awx -m 0644 /dev/null /var/log/tower/tower_rbac_migrations.log")
 run_command(app,
 "install -o awx -g awx -m 0644 /dev/null /var/log/tower/tower_system_track_migrations.log")
 run_command(app,
 "install -o awx -g awx -m 0644 /dev/null "
 "/var/log/tower/tower_system_tracking_migrations.log")

[docs]def get_ansible_password(app):
 print("Getting embedded ansible password. It can take a long time.")
 app.ssh_client.run_rails_command("'EmbeddedAnsible.start'")
 return app.ssh_client.run_rails_command(
 "'puts MiqDatabase.first.ansible_admin_authentication.password'").output.rstrip()

[docs]def open_port(app):
 run_command(app, "firewall-cmd --zone manageiq --add-port {}/tcp".format(ports.TOWER))
 print("Waiting until port {} will be opened".format(ports.TOWER))
 wait_for(
 net_check,
 [ports.TOWER, app.address],
 {"force": True},
 num_sec=600,
 delay=5
)

[docs]def upload_license(app, license_path):
 password = get_ansible_password(app)
 print("Password is {}".format(password))
 open_port(app)
 print("Sending license file to embedded ansible")
 r = requests.post(
 'https://{addr}:{port}/api/v1/config/'.format(addr=app.address, port=ports.TOWER),
 headers={"Content-Type": "application/json"},
 data=open(license_path, "rb"),
 auth=("admin", password),
 verify=False
)
 if r.status_code == 200:
 print("The license has been accepted.")
 else:
 print("Error occured: '{}'".format(r.json()["detail"]))

[docs]def stop_embedded_ansible(app):
 print("Stopping embedded ansible")
 app.ssh_client.run_rails_command("'EmbeddedAnsible.stop'")

[docs]def setup_ansible(app, license_path):
 setup_repos(app)
 install_packages(app)
 upload_license(app, license_path)
 stop_embedded_ansible(app)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/scripting/quickstart.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.scripting.quickstart

from __future__ import print_function

import os
import sys
import argparse
import subprocess
import json
import hashlib

try:
 import distro
except ImportError:
 sys.path.insert(0, os.path.join(
 os.path.dirname(os.path.dirname(
 os.path.dirname(__file__))),
 'requirements', 'quickstart',
 'distro-1.0.4-py2.py3-none-any.whl'))
 import distro

parser = argparse.ArgumentParser()
parser.add_argument("--mk-virtualenv", default="../cfme_venv")
parser.add_argument("--system-site-packages", action="store_true")
parser.add_argument("--config-path", default="../cfme-qe-yamls/complete/")

DISTRO_DATA = distro.linux_distribution()[:2]
IS_SCRIPT = sys.argv[0] == __file__
CWD = os.getcwd() # we expect to be in the workdir
IS_ROOT = os.getuid() == 0
REDHAT_BASED = os.path.isfile('/etc/redhat-release')
CREATED = object()
REQUIREMENT_FILE = 'requirements/frozen.txt'
HAS_DNF = os.path.exists('/usr/bin/dnf')
IN_VIRTUALENV = getattr(sys, 'real_prefix', None) is not None

PRISTINE_ENV = dict(os.environ)

REDHAT_PACKAGES_OLD = (
 " python-virtualenv gcc postgresql-devel libxml2-devel"
 " libxslt-devel zeromq3-devel libcurl-devel"
 " redhat-rpm-config gcc-c++ openssl-devel"
 " libffi-devel python-devel tesseract"
 " freetype-devel")

REDHAT_PACKAGES_F25 = (
 " python2-virtualenv gcc postgresql-devel libxml2-devel"
 " libxslt-devel zeromq3-devel libcurl-devel"
 " redhat-rpm-config gcc-c++ openssl-devel"
 " libffi-devel python2-devel tesseract"
 " freetype-devel")

REDHAT_PACKAGES_F26 = (
 " python2-virtualenv gcc postgresql-devel libxml2-devel"
 " libxslt-devel zeromq-devel libcurl-devel"
 " redhat-rpm-config gcc-c++ openssl-devel"
 " libffi-devel python2-devel tesseract"
 " freetype-devel")

if REDHAT_BASED:
 os.environ['PYCURL_SSL_LIBRARY'] = 'nss'
 if DISTRO_DATA == ("Fedora", "25"):
 REDHAT_PACKAGES = REDHAT_PACKAGES_F25
 elif DISTRO_DATA == ("Fedora", "26"):
 REDHAT_PACKAGES = REDHAT_PACKAGES_F26
 else:
 REDHAT_PACKAGES = REDHAT_PACKAGES_OLD

 if HAS_DNF:
 INSTALL_COMMAND = 'dnf install -y'
 else:
 INSTALL_COMMAND = 'yum install -y'
 if not IS_ROOT:
 INSTALL_COMMAND = 'sudo ' + INSTALL_COMMAND

[docs]def command_text(command, shell):
 if shell:
 return command
 else:
 command = [repr(x) if ' ' in x else x for x in command]
 return ' '.join(command)

[docs]def call_or_exit(command, shell=False, **kw):
 try:
 print('QS $', command_text(command, shell))
 res = subprocess.call(command, shell=shell, **kw)
 except Exception as e:
 print(repr(e))
 sys.exit(1)
 else:
 if res:
 print("call failed with", res)
 sys.exit(res)

[docs]def pip_json_list(venv):
 os.environ.pop('PYTHONHOME', None)
 proc = subprocess.Popen([
 os.path.join(venv, 'bin/pip'),
 'list', '--format=json',
], stdout=subprocess.PIPE)
 return json.load(proc.stdout)

[docs]def install_system_packages():
 if REDHAT_BASED:
 call_or_exit(INSTALL_COMMAND + REDHAT_PACKAGES, shell=True)
 else:
 print("WARNING: unknown distribution,",
 "please ensure you have the required packages installed")
 print("INFO: on redhat based systems this is the equivalend of:")
 print("$ dnf install -y", REDHAT_PACKAGES_OLD)

[docs]def setup_virtualenv(target, use_site):
 if os.path.isdir(target):
 print("INFO: Virtualenv", target, "already exists, skipping creation")
 return CREATED
 add = ['--system-site-packages'] if use_site else []

 call_or_exit(['virtualenv', target] + add)
 venv_call(target,
 'pip', 'install', '-U',
 # setuptools_scm and docutils installation prevents
 # missbehaved packages from failing
 'pip', 'wheel', 'setuptools_scm', 'docutils')

[docs]def venv_call(venv_path, command, *args, **kwargs):
 # pop PYTHONHOME to avoid nested environments
 os.environ.pop('PYTHONHOME', None)
 call_or_exit([
 os.path.join(venv_path, 'bin', command),
] + list(args), **kwargs)

[docs]def hash_file(path):
 content_hash = hashlib.sha1()
 with open(path, 'rb') as fp:
 content_hash.update(fp.read())
 return content_hash.hexdigest()

[docs]def install_requirements(venv_path, quiet=False):

 remember_file = os.path.join(venv_path, '.cfme_requirements_hash')
 current_hash = hash_file(REQUIREMENT_FILE)
 if os.path.isfile(remember_file):
 with open(remember_file, 'r') as fp:
 last_hash = fp.read()
 elif os.path.exists(remember_file):
 sys.exit("ERROR: {} is required to be a file".format(remember_file))
 else:
 last_hash = None
 if last_hash == current_hash:
 print("INFO: skipping requirement installation as frozen ones didn't change")
 print(" to enforce please invoke pip manually")
 return

 elif last_hash is not None:
 current_packages = pip_json_list(venv_path)
 print("INFO:", REQUIREMENT_FILE, 'changed, updating virtualenv')

 venv_call(
 venv_path,
 'pip', 'install',
 '-r', REQUIREMENT_FILE,
 '--no-binary', 'pycurl',
 *(['-q'] if quiet else []))

 with open(remember_file, 'w') as fp:
 fp.write(current_hash)

 if last_hash is not None:
 updated_packages = pip_json_list(venv_path)
 print_packages_diff(old=current_packages, new=updated_packages)

[docs]def pip_version_list_to_map(version_list):
 res = {}
 for item in version_list:
 try:
 res[item['name']] = item['version']
 except KeyError:
 pass
 return res

[docs]def print_packages_diff(old, new):
 old_versions = pip_version_list_to_map(old)
 new_versions = pip_version_list_to_map(new)
 print_version_diff(old_versions, new_versions)

[docs]def version_changes(old, new):
 names = sorted(set(old) & set(new))
 for name in names:
 initial = old.get(name, 'missing')
 afterwards = new.get(name, 'removed')
 if initial != afterwards:
 yield name, initial, afterwards

[docs]def print_version_diff(old, new):
 changes = list(version_changes(old, new))
 if changes:
 print("INFO: changed versions"),
 for name, old, new in changes:
 print(" ", name, old, '->', new)

[docs]def self_install(venv_path):
 venv_call(venv_path, 'pip', 'install', '-q', '-e', '.')

[docs]def disable_bytecode(venv_path):
 venv_call(venv_path, 'python', '-m', 'cfme.scripting.disable_bytecode')

[docs]def link_config_files(src, dest):
 if not os.path.isdir(src):
 print("WARNING: not linking config files,", src, "missing")
 return

 bad_elements = False

 for element in os.listdir(src):
 if element.endswith(('.yaml', '.eyaml')):
 if element.endswith('.eyaml') and not os.path.exists('.yaml_key'):
 print(
 "WARNING:", element, "is encrypted, "
 "please remember follow the documentation on yaml keys")
 target = os.path.join(dest, element)
 source = os.path.relpath(os.path.join(src, element), dest)
 # the following is fragile
 if os.path.islink(target):
 if os.readlink(target) != source:
 print("WARNING:", target, "does not point to", source)
 print(" please verify this is intended")
 elif os.path.isfile(target):
 print('ERROR: You have', element, 'copied into your conf/ folder. Remove it.')
 bad_elements = True
 else:
 os.symlink(source, target)

 if bad_elements:
 exit(1)

[docs]def ensure_pycurl_works(venv_path):
 venv_call(venv_path, 'python', '-c', 'import curl', env=PRISTINE_ENV)

[docs]def main(args):
 if not IN_VIRTUALENV:
 # invoked from outside, its ok to be slow
 install_system_packages()
 else:
 print("INFO: skipping installation of system packages from inside of virtualenv")
 venv_state = setup_virtualenv(
 args.mk_virtualenv, args.system_site_packages)
 install_requirements(args.mk_virtualenv, quiet=(venv_state is CREATED))
 disable_bytecode(args.mk_virtualenv)
 self_install(args.mk_virtualenv)
 link_config_files(args.config_path, 'conf')
 ensure_pycurl_works(args.mk_virtualenv)
 if not IN_VIRTUALENV:
 print("INFO: please remember to activate the virtualenv via")
 print(" .", os.path.join(args.mk_virtualenv, 'bin/activate'))

if IS_SCRIPT:
 main(parser.parse_args())

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/infrastructure/datastore.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.infrastructure.datastore

""" A model of an Infrastructure Datastore in CFME
"""
from navmazing import NavigateToAttribute, NavigateToSibling
from widgetastic.widget import View, Text
from cfme.exceptions import ItemNotFound
from widgetastic_manageiq import (ManageIQTree, SummaryTable, ItemsToolBarViewSelector,
 BaseEntitiesView)
from widgetastic_patternfly import Dropdown, Accordion, FlashMessages

from cfme.base.login import BaseLoggedInPage
from cfme.common import TagPageView, WidgetasticTaggable
from cfme.common.host_views import HostsView
from cfme.utils.appliance import BaseCollection, BaseEntity
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to
from cfme.utils.pretty import Pretty
from cfme.utils.wait import wait_for

[docs]class DatastoreToolBar(View):
 """
 represents datastore toolbar and its controls
 """
 configuration = Dropdown(text='Configuration')
 policy = Dropdown(text='Policy')
 download = Dropdown(text='Download')
 view_selector = View.nested(ItemsToolBarViewSelector)

[docs]class DatastoreSideBar(View):
 """
 represents left side bar. it usually contains navigation, filters, etc
 """
 @View.nested
 class datastores(Accordion): # noqa
 ACCORDION_NAME = "Datastores"
 tree = ManageIQTree()

 @View.nested
 class clusters(Accordion): # noqa
 ACCORDION_NAME = "Datastore Clusters"
 tree = ManageIQTree()

[docs]class DatastoreEntities(BaseEntitiesView):
 """
 represents central view where all QuadIcons, etc are displayed
 """
 pass

[docs]class DatastoresView(BaseLoggedInPage):
 """
 represents whole All Datastores page
 """
 flash = FlashMessages('.//div[@id="flash_msg_div"]/div[@id="flash_text_div" or '
 'contains(@class, "flash_text_div")]')
 toolbar = View.nested(DatastoreToolBar)
 sidebar = View.nested(DatastoreSideBar)
 including_entities = View.include(DatastoreEntities, use_parent=True)

 @property
 def is_displayed(self):
 return (super(BaseLoggedInPage, self).is_displayed and
 self.navigation.currently_selected == ['Compute', 'Infrastructure',
 'Datastores'] and
 self.entities.title.text == 'All Datastores')

[docs]class HostAllDatastoresView(DatastoresView):

 @property
 def is_displayed(self):
 return (
 self.logged_in_as_current_user and
 self.navigation.currently_selected == ["Compute", "Infrastructure", "Hosts"] and
 self.entities.title.text == "{} (All Datastores)".format(self.context["object"].name)
)

[docs]class DatastoreDetailsView(BaseLoggedInPage):
 """
 represents Datastore Details page
 """
 title = Text('//div[@id="main-content"]//h1')
 flash = FlashMessages('.//div[@id="flash_msg_div"]/div[@id="flash_text_div" or '
 'contains(@class, "flash_text_div")]')
 toolbar = View.nested(DatastoreToolBar)
 sidebar = View.nested(DatastoreSideBar)

 @View.nested
 class contents(View): # noqa
 """
 represents Details page when it is switched to Summary aka Tables view
 """
 properties = SummaryTable(title="Properties")
 registered_vms = SummaryTable(title="Information for Registered VMs")
 relationships = SummaryTable(title="Relationships")
 content = SummaryTable(title="Content")
 smart_management = SummaryTable(title="Smart Management")

 @property
 def is_displayed(self):
 return (super(BaseLoggedInPage, self).is_displayed and
 self.navigation.currently_selected == ['Compute', 'Infrastructure',
 'Datastores'] and
 self.title.text == 'Datastore "{name}"'.format(name=self.context['object'].name))

[docs]class RegisteredHostsView(HostsView):
 """
 represents Hosts related to some datastore
 """
 @property
 def is_displayed(self):
 # todo: to define correct check
 return False

[docs]class DatastoreCollection(BaseCollection):
 """Collection class for `cfme.infrastructure.datastore.Datastore`"""

 def __init__(self, appliance):
 self.appliance = appliance

[docs] def instantiate(self, name, provider, type=None):
 return Datastore(self, name, provider, type=type)

[docs] def delete(self, *datastores):
 """
 Note:
 Datastores must have 0 hosts and 0 VMs for this to work.
 """
 datastores = list(datastores)
 checked_datastores = list()
 view = navigate_to(self, 'All')

 for datastore in datastores:
 try:
 view.entities.get_entity(by_name=datastore.name, surf_pages=True).check()
 checked_datastores.append(datastore)
 except ItemNotFound:
 raise ValueError('Could not find datastore {} in the UI'.format(datastore.name))

 if set(datastores) == set(checked_datastores):
 view.toolbar.configuration.item_select('Remove Datastores', handle_alert=True)
 view.entities.flash.assert_success_message(
 'Delete initiated for Datastore from the CFME Database')

 for datastore in datastores:
 wait_for(lambda: not datastore.exists, num_sec=600, delay=30,
 message='Wait for Datastore to be deleted')

[docs] def run_smartstate_analysis(self, *datastores):
 datastores = list(datastores)

 checked_datastores = list()

 view = navigate_to(self, 'All')

 for datastore in datastores:
 try:
 view.entities.get_entity(by_name=datastore.name, surf_pages=True).check()
 checked_datastores.append(datastore)
 except ItemNotFound:
 raise ValueError('Could not find datastore {} in the UI'.format(datastore.name))

 view.toolbar.configuration.item_select('Perform SmartState Analysis', handle_alert=True)
 for datastore in datastores:
 view.flash.assert_success_message(
 '"{}": scan successfully initiated'.format(datastore.name))

[docs]class Datastore(Pretty, BaseEntity, WidgetasticTaggable):
 """ Model of an infrastructure datastore in cfme

 Args:
 name: Name of the datastore.
 provider: provider this datastore is attached to.
 """
 pretty_attrs = ['name', 'provider_key']

 def __init__(self, collection, name, provider, type=None):
 self.name = name
 self.type = type
 self.provider = provider
 self.collection = collection
 self.appliance = self.collection.appliance

[docs] def delete(self, cancel=True):
 """
 Deletes a datastore from CFME

 Args:
 cancel: Whether to cancel the deletion, defaults to True

 Note:
 Datastore must have 0 hosts and 0 VMs for this to work.
 """
 # BZ 1467989 - this button is never getting enabled
 view = navigate_to(self, 'Details')
 wait_for(lambda: view.toolbar.configuration.item_enabled('Remove Datastore'),
 fail_condition=False, num_sec=10)
 view.toolbar.configuration.item_select('Remove Datastore', handle_alert=not cancel)
 view.flash.assert_success_message('Delete initiated for Datastore from the CFME Database')

[docs] def get_hosts(self):
 """ Returns names of hosts (from quadicons) that use this datastore

 Returns: List of strings with names or `[]` if no hosts found.
 """
 view = navigate_to(self, 'Details')
 view.contents.relationships.click_at('Hosts')
 hosts_view = view.browser.create_view(RegisteredHostsView)
 return hosts_view.entities.get_all()

[docs] def get_vms(self):
 """ Returns names of VMs (from quadicons) that use this datastore

 Returns: List of strings with names or `[]` if no vms found.
 """
 view = navigate_to(self, 'Details')
 if 'VMs' in view.contents.relationships.fields:
 view.contents.relationships.click_at('VMs')
 else:
 view.contents.relationships.click_at('Managed VMs')
 # todo: to replace with correct view
 vms_view = view.browser.create_view(DatastoresView)
 return [vm.name for vm in vms_view.entities.get_all()]

[docs] def delete_all_attached_vms(self):
 view = navigate_to(self, 'Details')
 view.contents.relationships.click_at('Managed VMs')
 # todo: to replace with correct view
 vms_view = view.browser.create_view(DatastoresView)
 for entity in vms_view.entities.get_all():
 entity.check()
 view.toolbar.configuration.item_select("Remove selected items", handle_alert=True)
 wait_for(lambda: bool(len(vms_view.entities.get_all())), fail_condition=True,
 message="Wait datastore vms to disappear", num_sec=1000,
 fail_func=self.browser.refresh)

[docs] def delete_all_attached_hosts(self):
 view = navigate_to(self, 'Details')
 view.contents.relationships.click_at('Hosts')
 hosts_view = view.browser.create_view(RegisteredHostsView)
 for entity in hosts_view.entities.get_all():
 entity.check()
 view.toolbar.configuration.item_select("Remove items", handle_alert=True)
 wait_for(lambda: bool(len(hosts_view.entities.get_all())), fail_condition=True,
 message="Wait datastore hosts to disappear", num_sec=1000,
 fail_func=self.browser.refresh)

 @property
 def exists(self):
 try:
 view = navigate_to(self, 'Details')
 return view.is_displayed
 except ItemNotFound:
 return False

[docs] def run_smartstate_analysis(self):
 """ Runs smartstate analysis on this host

 Note:
 The host must have valid credentials already set up for this to work.
 """
 view = navigate_to(self, 'Details')
 wait_for(lambda: view.toolbar.configuration.item_enabled('Perform SmartState Analysis'),
 fail_condition=False, num_sec=10)
 view.toolbar.configuration.item_select('Perform SmartState Analysis', handle_alert=True)
 view.flash.assert_success_message(('"{}": scan successfully '
 'initiated'.format(self.name)))

@navigator.register(DatastoreCollection, 'All')
[docs]class All(CFMENavigateStep):
 VIEW = DatastoresView
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self):
 self.prerequisite_view.navigation.select('Compute', 'Infrastructure', 'Datastores')

[docs] def resetter(self):
 """
 resets page to default state when user navigates to All Datastores destination
 """
 # Reset view and selection
 self.view.sidebar.datastores.tree.click_path('All Datastores')
 tb = self.view.toolbar
 if tb.view_selector.is_displayed and 'Grid View' not in tb.view_selector.selected:
 tb.view_selector.select("Grid View")
 paginator = self.view.entities.paginator
 if paginator.exists:
 paginator.check_all()
 paginator.uncheck_all()

@navigator.register(Datastore, 'Details')
[docs]class Details(CFMENavigateStep):
 VIEW = DatastoreDetailsView
 prerequisite = NavigateToAttribute('collection', 'All')

[docs] def step(self):
 self.prerequisite_view.entities.get_entity(by_name=self.obj.name, surf_pages=True).click()

@navigator.register(Datastore, 'DetailsFromProvider')
[docs]class DetailsFromProvider(CFMENavigateStep):
 VIEW = DatastoreDetailsView

[docs] def step(self):
 prov_view = navigate_to(self.obj.provider, 'Details')
 prov_view.contents.relationships.click_at('Datastores')

@navigator.register(Datastore, 'EditTagsFromDetails')
[docs]class EditTagsFromDetails(CFMENavigateStep):
 VIEW = TagPageView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.toolbar.policy.item_select('Edit Tags')

[docs]def get_all_datastores():
 """Returns names (from quadicons) of all datastores"""
 view = navigate_to(Datastore, 'All')
 return [ds.name for ds in view.entities.get_all()]

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/scripting/tests/test_quickstart.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.scripting.tests.test_quickstart

using subprocess because its a better docker api
than the docker-py 1.10 we hard depend on
import subprocess
from cfme.utils import path
import pytest

IMAGE_SPEC = [
 ('fedora:23', 'python3'),
 ('fedora:24', 'python3'),
 ('fedora:25', 'python3'),
 ('centos:7', 'python2'),
]

@pytest.fixture(autouse=True)
[docs]def check_docker():
 try:
 subprocess.call("docker info", shell=True)
 except Exception:
 pytest.xfail('docker missing - testing quickstart needs docker')

@pytest.fixture
[docs]def root_volume():
 return path.project_path

@pytest.fixture
[docs]def yamls_volume():
 volume = path.project_path.join('../cfme-qe-yamls')
 if not volume.check(dir=1):
 pytest.xfail('qe yaml data not at the expected location')
 return volume

@pytest.mark.parametrize('image, python', IMAGE_SPEC)
@pytest.mark.long_running
[docs]def test_quickstart_run(image, python, root_volume, yamls_volume):
 subprocess.check_call(
 "docker run "
 "--volume {root_volume}:/cfme/cfme_tests "
 "--volume {yamls_volume}:/cfme/cfme-qe-yamls "
 "--tty -w /cfme/cfme_tests "
 ""
 "{image} "
 "bash -c '"
 "{python} -m cfme.scripting.quickstart && "
 "{python} -m cfme.scripting.quickstart'"

 .format(**locals()),
 shell=True)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/infrastructure/pxe.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.infrastructure.pxe

-*- coding: utf-8 -*-
""" A model of a PXE Server in CFME
"""
from navmazing import NavigateToSibling, NavigateToAttribute
from selenium.common.exceptions import NoSuchElementException
from widgetastic.widget import View, Text, Checkbox
from widgetastic_manageiq import ManageIQTree, Input, ScriptBox, SummaryTable, Table
from widgetastic_patternfly import Dropdown, Accordion, FlashMessages, BootstrapSelect, Button

from cfme.base.login import BaseLoggedInPage
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to
from cfme.utils import conf
from cfme.utils.datafile import load_data_file
from cfme.utils.path import project_path
from cfme.utils.update import Updateable
from cfme.utils.wait import wait_for
from cfme.utils.pretty import Pretty
from cfme.utils.varmeth import variable

[docs]class PXEToolBar(View):
 """
 represents PXE toolbar and its controls
 """
 # todo: add back button later
 configuration = Dropdown(text='Configuration')

[docs]class PXESideBar(View):
 """
 represents left side bar. it usually contains navigation, filters, etc
 """
 @View.nested
 class servers(Accordion): # noqa
 ACCORDION_NAME = "PXE Servers"
 tree = ManageIQTree()

 @View.nested
 class templates(Accordion): # noqa
 ACCORDION_NAME = "Customization Templates"
 tree = ManageIQTree()

 @View.nested
 class image_types(Accordion): # noqa
 ACCORDION_NAME = "System Image Types"
 tree = ManageIQTree()

 @View.nested
 class datastores(Accordion): # noqa
 ACCORDION_NAME = "ISO Datastores"
 tree = ManageIQTree()

[docs]class PXEMainView(BaseLoggedInPage):
 """
 represents whole All PXE Servers page
 """
 flash = FlashMessages('.//div[@id="flash_msg_div"]/div[@id="flash_text_div" or '
 'contains(@class, "flash_text_div")]')
 toolbar = View.nested(PXEToolBar)
 sidebar = View.nested(PXESideBar)
 title = Text('//div[@id="main-content"]//h1')
 entities = Table(locator='.//div[@id="records_div"]/table')

 @property
 def is_displayed(self):
 return self.navigation.currently_selected == ['Compute', 'Infrastructure', 'PXE']

[docs]class PXEServersView(PXEMainView):
 """
 represents whole All PXE Servers page
 """
 @property
 def is_displayed(self):
 return (super(PXEServersView, self).is_displayed and
 self.title.text == 'All PXE Servers')

[docs]class PXEDetailsToolBar(PXEToolBar):
 """
 represents the toolbar which appears when any pxe entity is clicked
 """
 reload = Button(title='Reload current display')

[docs]class PXEServerDetailsView(PXEMainView):
 """
 represents Server Details view
 """
 toolbar = View.nested(PXEDetailsToolBar)

 @View.nested
 class entities(View): # noqa
 basic_information = SummaryTable(title="Basic Information")
 pxe_image_menus = SummaryTable(title='PXE Image Menus')

 @property
 def is_displayed(self):
 return False

[docs]class PXEServerForm(View):
 title = Text('//div[@id="main-content"]//h1')
 flash = FlashMessages('.//div[@id="flash_msg_div"]/div[@id="flash_text_div" or '
 'contains(@class, "flash_text_div")]')
 # common fields
 name = Input(id='name')
 depot_type = BootstrapSelect(id='log_protocol')
 access_url = Input(id='access_url')
 pxe_dir = Input(id='pxe_directory')
 windows_images_dir = Input(id='windows_images_directory')
 customization_dir = Input(id='customization_directory')
 filename = Input(id='pxemenu_0')

 uri = Input(id='uri') # both NFS and Samba

 # Samba only
 username = Input(id='log_userid')
 password = Input(id='log_password')
 confirm_password = Input(id='log_verify')
 validate = Button('Validate the credentials by logging into the Server')

 @property
 def is_displayed(self):
 return False

[docs]class PXEServerAddView(PXEServerForm):
 """
 represents Add New PXE Server view
 """
 add = Button('Add')
 cancel = Button('Cancel')

[docs]class PXEServerEditView(PXEServerForm):
 """
 represents PXE Server Edit view
 """
 save = Button('Save')
 reset = Button('Reset')
 cancel = Button('Cancel')

[docs]class PXEImageEditView(View):
 """
 it can be found when some image is clicked in PXE Server Tree
 """
 title = Text('//div[@id="main-content"]//h1')
 flash = FlashMessages('.//div[@id="flash_msg_div"]/div[@id="flash_text_div" or '
 'contains(@class, "flash_text_div")]')
 default_for_windows = Checkbox(id='default_for_windows')
 type = BootstrapSelect(id='image_typ')

 save = Button('Save')
 reset = Button('Reset')
 cancel = Button('Cancel')

 @property
 def is_displayed(self):
 return False

[docs]class PXEServer(Updateable, Pretty, Navigatable):
 """Model of a PXE Server object in CFME

 Args:
 name: Name of PXE server.
 depot_type: Depot type, either Samba or Network File System.
 uri: The Depot URI.
 userid: The Samba username.
 password: The Samba password.
 access_url: HTTP access path for PXE server.
 pxe_dir: The PXE dir for accessing configuration.
 windows_dir: Windows source directory.
 customize_dir: Customization directory for templates.
 menu_filename: Menu filename for iPXE/syslinux menu.
 """
 pretty_attrs = ['name', 'uri', 'access_url']

 def __init__(self, name=None, depot_type=None, uri=None, userid=None, password=None,
 access_url=None, pxe_dir=None, windows_dir=None, customize_dir=None,
 menu_filename=None, appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.name = name
 self.depot_type = depot_type
 self.uri = uri
 self.userid = userid
 # todo: turn into Credentials class
 self.password = password
 self.access_url = access_url
 self.pxe_dir = pxe_dir
 self.windows_dir = windows_dir
 self.customize_dir = customize_dir
 self.menu_filename = menu_filename

[docs] def create(self, cancel=False, refresh=True, refresh_timeout=120):
 """
 Creates a PXE server object

 Args:
 cancel (boolean): Whether to cancel out of the creation. The cancel is done
 after all the information present in the PXE Server has been filled in the UI.
 refresh (boolean): Whether to run the refresh operation on the PXE server after
 the add has been completed.
 """
 view = navigate_to(self, 'Add')
 view.fill({'name': self.name,
 'depot_type': self.depot_type,
 'access_url': self.access_url,
 'pxe_dir': self.pxe_dir,
 'windows_images_dir': self.windows_dir,
 'customization_dir': self.customize_dir,
 'filename': self.menu_filename,
 'uri': self.uri,
 # Samba only
 'username': self.userid,
 'password': self.password,
 'confirm_password': self.password})
 if self.depot_type == 'Samba' and self.userid and self.password:
 view.validate.click()

 main_view = self.create_view(PXEServersView)
 if cancel:
 view.cancel.click()
 main_view.flash.assert_success_message('Add of new PXE Server '
 'was cancelled by the user')
 else:
 view.add.click()
 main_view.flash.assert_success_message('PXE Server "{}" was added'.format(self.name))
 if refresh:
 self.refresh(timeout=refresh_timeout)

 @variable(alias="db")
 def exists(self):
 """
 Checks if the PXE server already exists
 """
 dbs = self.appliance.db.client
 candidates = list(dbs.session.query(dbs["pxe_servers"]))
 return self.name in [s.name for s in candidates]

 @exists.variant('ui')
 def exists_ui(self):
 """
 Checks if the PXE server already exists
 """
 try:
 navigate_to(self, 'Details')
 return True
 except NoSuchElementException:
 return False

[docs] def update(self, updates, cancel=False):
 """
 Updates a PXE server in the UI. Better to use utils.update.update context
 manager than call this directly.

 Args:
 updates (dict): fields that are changing.
 cancel (boolean): whether to cancel out of the update.
 """

 view = navigate_to(self, 'Edit')
 view.fill(updates)
 if updates.get('userid') or updates.get('password'):
 view.validate.click()

 name = updates.get('name') or self.name
 main_view = self.create_view(PXEServersView, override=updates)
 if cancel:
 view.cancel.click()
 main_view.flash.assert_success_message('Edit of PXE Server "{}" was '
 'cancelled by the user'.format(name))
 else:
 view.save.click()
 main_view.flash.assert_success_message('PXE Server "{}" was saved'.format(name))

[docs] def delete(self, cancel=True):
 """
 Deletes a PXE server from CFME

 Args:
 cancel: Whether to cancel the deletion, defaults to True
 """
 view = navigate_to(self, 'Details')
 view.toolbar.configuration.item_select('Remove this PXE Server', handle_alert=not cancel)
 if not cancel:
 main_view = self.create_view(PXEServersView)
 main_view.flash.assert_success_message('PXE Server "{}": '
 'Delete successful'.format(self.name))
 else:
 navigate_to(self, 'Details')

[docs] def refresh(self, wait=True, timeout=120):
 """ Refreshes the PXE relationships and waits for it to be updated
 """
 view = navigate_to(self, 'Details')
 last_time = view.entities.basic_information.get_text_of('Last Refreshed On')
 view.toolbar.configuration.item_select('Refresh Relationships', handle_alert=True)
 view.flash.assert_success_message('PXE Server "{}": Refresh Relationships '
 'successfully initiated'.format(self.name))
 if wait:
 basic_info = view.entities.basic_information
 wait_for(lambda lt: lt != basic_info.get_text_of('Last Refreshed On'),
 func_args=[last_time], fail_func=view.toolbar.reload.click, num_sec=timeout,
 message="pxe refresh")

 @variable(alias='db')
 def get_pxe_image_type(self, image_name):
 pxe_i = self.appliance.db.client["pxe_images"]
 pxe_s = self.appliance.db.client["pxe_servers"]
 pxe_t = self.appliance.db.client["pxe_image_types"]
 hosts = list(self.appliance.db.client.session.query(pxe_t.name)
 .join(pxe_i, pxe_i.pxe_image_type_id == pxe_t.id)
 .join(pxe_s, pxe_i.pxe_server_id == pxe_s.id)
 .filter(pxe_s.name == self.name)
 .filter(pxe_i.name == image_name))
 if hosts:
 return hosts[0][0]
 else:
 return None

 @get_pxe_image_type.variant('ui')
 def get_pxe_image_type_ui(self, image_name):
 view = navigate_to(self, 'Details')
 view.sidebar.servers.tree.click_path('All PXE Servers', self.name,
 'PXE Images', image_name)
 details_view = self.create_view(PXESystemImageTypeDetailsView)
 return details_view.entities.basic_information.get_text_of('Type')

[docs] def set_pxe_image_type(self, image_name, image_type):
 """
 Function to set the image type of a PXE image
 """
 # todo: maybe create appropriate navmazing destinations instead ?
 if self.get_pxe_image_type(image_name) != image_type:
 view = navigate_to(self, 'Details')
 view.sidebar.servers.tree.click_path('All PXE Servers', self.name,
 'PXE Images', image_name)
 details_view = self.create_view(PXESystemImageTypeDetailsView)
 details_view.toolbar.configuration.item_select('Edit this PXE Image')
 edit_view = self.create_view(PXEImageEditView)
 edit_view.fill({'type': image_type})
 edit_view.save.click()

@navigator.register(PXEServer, 'All')
[docs]class PXEServerAll(CFMENavigateStep):
 VIEW = PXEServersView
 prerequisite = NavigateToSibling('PXEMainPage')

[docs] def step(self):
 self.view.sidebar.servers.tree.click_path('All PXE Servers')

@navigator.register(PXEServer, 'Add')
[docs]class PXEServerAdd(CFMENavigateStep):
 VIEW = PXEServerAddView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.toolbar.configuration.item_select('Add a New PXE Server')

@navigator.register(PXEServer, 'Details')
[docs]class PXEServerDetails(CFMENavigateStep):
 VIEW = PXEServerDetailsView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.sidebar.servers.tree.click_path('All PXE Servers', self.obj.name)

@navigator.register(PXEServer, 'Edit')
[docs]class PXEServerEdit(CFMENavigateStep):
 VIEW = PXEServerEditView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.toolbar.configuration.item_select('Edit this PXE Server')

[docs]class PXECustomizationTemplatesView(PXEMainView):
 """
 represents Customization Template Groups page
 """
 entities = Table(locator='.//div[@id="template_folders_div"]/table')

 @property
 def is_displayed(self):
 return (super(PXECustomizationTemplatesView, self).is_displayed and
 self.title.text == 'All Customization Templates - System Image Types')

[docs]class PXECustomizationTemplateDetailsView(PXEMainView):
 """
 represents some certain Customization Template Details page
 """
 toolbar = View.nested(PXEDetailsToolBar)

 @View.nested
 class entities(View): # noqa
 basic_information = SummaryTable(title="Basic Information")
 script = ScriptBox(locator='//textarea[contains(@id, "script_data")]')

 @property
 def is_displayed(self):
 if getattr(self.context['object'], 'name'):
 title = 'Customization Template "{name}"'.format(self.context['object'].name)
 return (super(PXECustomizationTemplateDetailsView, self).is_displayed and
 self.entities.title.text == title)
 else:
 return False

[docs]class PXECustomizationTemplateForm(View):
 title = Text('//div[@id="main-content"]//h1')
 flash = FlashMessages('.//div[@id="flash_msg_div"]/div[@id="flash_text_div" or '
 'contains(@class, "flash_text_div")]')
 name = Input(id='name')
 description = Input(id='description')
 image_type = BootstrapSelect(id='img_typ')
 type = BootstrapSelect(id='typ')
 script = ScriptBox(locator='//textarea[contains(@id, "script_data")]')

 @property
 def is_displayed(self):
 return False

[docs]class PXECustomizationTemplateAddView(PXECustomizationTemplateForm):
 add = Button('Add')
 cancel = Button('Cancel')

[docs]class PXECustomizationTemplateEditView(PXECustomizationTemplateForm):
 save = Button('Save')
 reset = Button('Reset')
 cancel = Button('Cancel')

[docs]class CustomizationTemplate(Updateable, Pretty, Navigatable):
 """ Model of a Customization Template in CFME

 Args:
 name: The name of the template.
 description: Template description.
 image_type: Image type name, must be one of an existing System Image Type.
 script_type: Script type, either Kickstart, Cloudinit or Sysprep.
 script_data: The scripts data.
 """
 pretty_attrs = ['name', 'image_type']

 def __init__(self, name=None, description=None, image_type=None, script_type=None,
 script_data=None, appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.name = name
 self.description = description
 self.image_type = image_type
 self.script_type = script_type
 self.script_data = script_data

[docs] def create(self, cancel=False):
 """
 Creates a Customization Template object

 Args:
 cancel (boolean): Whether to cancel out of the creation. The cancel is done
 after all the information present in the CT has been filled in the UI.
 """
 view = navigate_to(self, 'Add')

 view.fill({'name': self.name,
 'description': self.description,
 'image_type': self.image_type,
 'type': self.script_type,
 'script': self.script_data})
 main_view = self.create_view(PXECustomizationTemplatesView)

 if cancel:
 view.cancel.click()
 msg = 'Add of new Customization Template was cancelled by the user'
 else:
 view.add.click()
 msg = 'Customization Template "{}" was saved'.format(self.name)
 main_view.flash.assert_success_message(msg)

 @variable(alias='db')
 def exists(self):
 """
 Checks if the Customization template already exists
 """
 dbs = self.appliance.db.client
 candidates = list(dbs.session.query(dbs["customization_templates"]))
 return self.name in [s.name for s in candidates]

 @exists.variant('ui')
 def exists_ui(self):
 """
 Checks if the Customization template already exists
 """
 try:
 navigate_to(self, 'Details')
 return True
 except NoSuchElementException:
 return False

[docs] def update(self, updates, cancel=False):
 """
 Updates a Customization Template server in the UI. Better to use utils.update.update
 context manager than call this directly.

 Args:
 updates (dict): fields that are changing.
 cancel (boolean): whether to cancel out of the update.
 """
 view = navigate_to(self, 'Edit')
 view.fill(updates)
 main_view = self.create_view(PXECustomizationTemplatesView, override=updates)
 name = updates.get('name') or self.name

 if cancel:
 view.cancel.click()
 msg = 'Edit of Customization Template "{}" was cancelled by the user'.format(name)
 else:
 view.save.click()
 msg = 'Customization Template "{}" was saved'.format(name)
 main_view.flash.assert_success_message(msg)

[docs] def delete(self, cancel=True):
 """
 Deletes a Customization Template server from CFME

 Args:
 cancel: Whether to cancel the deletion, defaults to True
 """
 view = navigate_to(self, 'Details')
 view.toolbar.configuration.item_select('Remove this Customization Template',
 handle_alert=cancel)
 if not cancel:
 main_view = self.create_view(PXECustomizationTemplatesView)
 msg = 'Customization Template "{}": Delete successful'.format(self.description)
 main_view.flash.assert_success_message(msg)
 else:
 navigate_to(self, 'Details')

@navigator.register(CustomizationTemplate, 'All')
[docs]class CustomizationTemplateAll(CFMENavigateStep):
 VIEW = PXECustomizationTemplatesView
 prerequisite = NavigateToSibling('PXEMainPage')

[docs] def step(self):
 self.view.sidebar.templates.tree.click_path(('All Customization Templates - '
 'System Image Types'))

@navigator.register(CustomizationTemplate, 'Add')
[docs]class CustomizationTemplateAdd(CFMENavigateStep):
 VIEW = PXECustomizationTemplateAddView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.toolbar.configuration.item_select('Add a New Customization Template')

@navigator.register(CustomizationTemplate, 'Details')
[docs]class CustomizationTemplateDetails(CFMENavigateStep):
 VIEW = PXECustomizationTemplateDetailsView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 tree = self.view.sidebar.templates.tree
 tree.click_path('All Customization Templates - System Image Types', self.obj.image_type,
 self.obj.name)

@navigator.register(CustomizationTemplate, 'Edit')
[docs]class CustomizationTemplateEdit(CFMENavigateStep):
 VIEW = PXECustomizationTemplateEditView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.toolbar.configuration.item_select('Edit this Customization Template')

[docs]class PXESystemImageTypesView(PXEMainView):
 """
 represents whole All System Image Types page
 """

 @property
 def is_displayed(self):
 return (super(PXESystemImageTypesView, self).is_displayed and
 self.title.text == 'All System Image Types')

[docs]class PXESystemImageTypeDetailsView(PXEMainView):
 toolbar = View.nested(PXEDetailsToolBar)

 @View.nested
 class entities(View): # noqa
 basic_information = SummaryTable(title="Basic Information")

 @property
 def is_displayed(self):
 return False

[docs]class PXESystemImageTypeForm(View):
 title = Text('//div[@id="main-content"]//h1')
 flash = FlashMessages('.//div[@id="flash_msg_div"]/div[@id="flash_text_div" or '
 'contains(@class, "flash_text_div")]')
 name = Input(id='name')
 type = BootstrapSelect(id='provision_type')

 @property
 def is_displayed(self):
 return False

[docs]class PXESystemImageTypeAddView(PXESystemImageTypeForm):
 add = Button('Add')
 cancel = Button('Cancel')

[docs]class PXESystemImageTypeEditView(PXESystemImageTypeForm):
 save = Button('Save')
 reset = Button('Reset')
 cancel = Button('Cancel')

[docs]class SystemImageType(Updateable, Pretty, Navigatable):
 """Model of a System Image Type in CFME.

 Args:
 name: The name of the System Image Type.
 provision_type: The provision type, either Vm or Host.
 """
 pretty_attrs = ['name', 'provision_type']
 VM_OR_INSTANCE = "VM and Instance"
 HOST_OR_NODE = "Host / Node"

 def __init__(self, name=None, provision_type=None, appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.name = name
 self.provision_type = provision_type

[docs] def create(self, cancel=False):
 """
 Creates a System Image Type object

 Args:
 cancel (boolean): Whether to cancel out of the creation. The cancel is done
 after all the information present in the SIT has been filled in the UI.
 """
 view = navigate_to(self, 'Add')
 view.fill({'name': self.name, 'type': self.provision_type})
 main_view = self.create_view(PXESystemImageTypesView)
 if cancel:
 view.cancel.click()
 msg = 'Add of new System Image Type was cancelled by the user'
 else:
 view.add.click()
 msg = 'System Image Type "{}" was added'.format(self.name)
 main_view.flash.assert_success_message(msg)

[docs] def update(self, updates, cancel=False):
 """
 Updates a System Image Type in the UI. Better to use utils.update.update context
 manager than call this directly.

 Args:
 updates (dict): fields that are changing.
 cancel (boolean): whether to cancel out of the update.
 """

 view = navigate_to(self, 'Edit')
 view.fill({'name': updates.get('name'), 'type': updates.get('provision_type')})
 if cancel:
 view.cancel.click()
 else:
 view.save.click()

 # No flash message

[docs] def delete(self, cancel=True):
 """
 Deletes a System Image Type from CFME

 Args:
 cancel: Whether to cancel the deletion, defaults to True
 """
 view = navigate_to(self, 'Details')
 view.toolbar.configuration.item_select('Remove this System Image Type',
 handle_alert=not cancel)
 if not cancel:
 main_view = self.create_view(PXESystemImageTypesView)
 msg = 'System Image Type "{}": Delete successful'.format(self.name)
 main_view.flash.assert_success_message(msg)
 else:
 navigate_to(self, 'Details')

@navigator.register(SystemImageType, 'All')
[docs]class SystemImageTypeAll(CFMENavigateStep):
 VIEW = PXESystemImageTypesView
 prerequisite = NavigateToSibling('PXEMainPage')

[docs] def step(self):
 self.view.sidebar.image_types.tree.click_path('All System Image Types')

@navigator.register(SystemImageType, 'Add')
[docs]class SystemImageTypeAdd(CFMENavigateStep):
 VIEW = PXESystemImageTypeAddView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.toolbar.configuration.item_select('Add a new System Image Type')

@navigator.register(SystemImageType, 'Details')
[docs]class SystemImageTypeDetails(CFMENavigateStep):
 VIEW = PXESystemImageTypeDetailsView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.sidebar.image_types.tree.click_path('All System Image Types',
 self.obj.name)

@navigator.register(SystemImageType, 'Edit')
[docs]class SystemImageTypeEdit(CFMENavigateStep):
 VIEW = PXESystemImageTypeEditView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.toolbar.configuration.item_select('Edit this System Image Type')

[docs]class PXEDatastoresView(PXEMainView):
 """
 represents whole All ISO Datastores page
 """

 @property
 def is_displayed(self):
 return (super(PXEDatastoresView, self).is_displayed and
 self.title.text == 'All ISO Datastores')

[docs]class PXEDatastoreDetailsView(PXEMainView):
 toolbar = View.nested(PXEDetailsToolBar)

 @View.nested
 class entities(View): # noqa
 basic_information = SummaryTable(title="Basic Information")

 @property
 def is_displayed(self):
 return False

[docs]class PXEDatastoreForm(View):
 title = Text('//div[@id="main-content"]//h1')
 flash = FlashMessages('.//div[@id="flash_msg_div"]/div[@id="flash_text_div" or '
 'contains(@class, "flash_text_div")]')
 provider = BootstrapSelect(id='ems_id')

 @property
 def is_displayed(self):
 return False

[docs]class PXEDatastoreAddView(PXEDatastoreForm):
 add = Button('Add')
 cancel = Button('Cancel')

[docs]class PXEDatastoreEditView(PXEDatastoreForm):
 save = Button('Save')
 reset = Button('Reset')
 cancel = Button('Cancel')

[docs]class ISODatastore(Updateable, Pretty, Navigatable):
 """Model of a PXE Server object in CFME

 Args:
 provider: Provider name.
 """
 pretty_attrs = ['provider']

 def __init__(self, provider=None, appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.provider = provider

[docs] def create(self, cancel=False, refresh=True, refresh_timeout=120):
 """
 Creates an ISO datastore object

 Args:
 cancel (boolean): Whether to cancel out of the creation. The cancel is done
 after all the information present in the ISO datastore has been filled in the UI.
 refresh (boolean): Whether to run the refresh operation on the ISO datastore after
 the add has been completed.
 """
 view = navigate_to(self, 'Add')
 view.fill({'provider': self.provider})
 main_view = self.create_view(PXEDatastoresView)
 if cancel:
 view.cancel.click()
 msg = 'Add of new ISO Datastore was cancelled by the user'
 else:
 view.add.click()
 msg = 'ISO Datastore "{}" was added'.format(self.provider)
 main_view.flash.assert_success_message(msg)

 if refresh:
 self.refresh(timeout=refresh_timeout)

 @variable(alias='db')
 def exists(self):
 """
 Checks if the ISO Datastore already exists via db
 """
 iso = self.appliance.db.client['iso_datastores']
 ems = self.appliance.db.client['ext_management_systems']
 name = self.provider
 iso_ds = list(self.appliance.db.client.session.query(iso.id)
 .join(ems, iso.ems_id == ems.id)
 .filter(ems.name == name))
 if iso_ds:
 return True
 else:
 return False

 @exists.variant('ui')
 def exists_ui(self):
 """
 Checks if the ISO Datastore already exists via UI
 """
 try:
 navigate_to(self, 'Details')
 return True
 except NoSuchElementException:
 return False

[docs] def delete(self, cancel=True):
 """
 Deletes an ISO Datastore from CFME

 Args:
 cancel: Whether to cancel the deletion, defaults to True
 """

 view = navigate_to(self, 'Details')
 view.toolbar.configuration.item_select('Remove this ISO Datastore', handle_alert=not cancel)
 if not cancel:
 main_view = self.create_view(PXEDatastoresView)
 msg = 'ISO Datastore "{}": Delete successful'.format(self.provider)
 main_view.flash.assert_success_message(msg)
 else:
 navigate_to(self, 'Details')

[docs] def refresh(self, wait=True, timeout=120):
 """ Refreshes the PXE relationships and waits for it to be updated
 """
 view = navigate_to(self, 'Details')
 basic_info = view.entities.basic_information
 last_time = basic_info.get_text_of('Last Refreshed On')
 view.toolbar.configuration.item_select('Refresh Relationships', handle_alert=True)
 view.flash.assert_success_message(('ISO Datastore "{}": Refresh Relationships successfully '
 'initiated'.format(self.provider)))
 if wait:
 wait_for(lambda lt: lt != basic_info.get_text_of('Last Refreshed On'),
 func_args=[last_time], fail_func=view.toolbar.reload.click, num_sec=timeout,
 message="iso refresh")

[docs] def set_iso_image_type(self, image_name, image_type):
 """
 Function to set the image type of a PXE image
 """
 view = navigate_to(self, 'All')
 view.sidebar.datastores.tree.click_path('All ISO Datastores', self.provider,
 'ISO Images', image_name)
 view.toolbar.configuration.item_select('Edit this ISO Image')
 view.fill({'image_type': image_type})
 # Click save if enabled else click Cancel
 if view.save.active:
 view.save.click()
 else:
 view.cancel.click()

@navigator.register(ISODatastore, 'All')
[docs]class ISODatastoreAll(CFMENavigateStep):
 VIEW = PXEDatastoresView
 prerequisite = NavigateToSibling('PXEMainPage')

[docs] def step(self):
 self.view.sidebar.datastores.tree.click_path("All ISO Datastores")

@navigator.register(ISODatastore, 'Add')
[docs]class ISODatastoreAdd(CFMENavigateStep):
 VIEW = PXEDatastoreAddView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.toolbar.configuration.item_select('Add a New ISO Datastore')

@navigator.register(ISODatastore, 'Details')
[docs]class ISODatastoreDetails(CFMENavigateStep):
 VIEW = PXEDatastoreDetailsView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.view.sidebar.datastores.tree.click_path("All ISO Datastores", self.obj.provider)

@navigator.register(PXEServer, 'PXEMainPage')
@navigator.register(CustomizationTemplate, 'PXEMainPage')
@navigator.register(SystemImageType, 'PXEMainPage')
@navigator.register(ISODatastore, 'PXEMainPage')
[docs]class PXEMainPage(CFMENavigateStep):
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self):
 self.prerequisite_view.navigation.select('Compute', 'Infrastructure', 'PXE')

[docs]def get_template_from_config(template_config_name):
 """
 Convenience function to grab the details for a template from the yamls.
 """

 template_config = conf.cfme_data.get('customization_templates', {})[template_config_name]

 script_data = load_data_file(str(project_path.join(template_config['script_file'])),
 replacements=template_config['replacements'])

 script_data = script_data.read()

 return CustomizationTemplate(name=template_config['name'],
 description=template_config['description'],
 image_type=template_config['image_type'],
 script_type=template_config['script_type'],
 script_data=script_data)

[docs]def get_pxe_server_from_config(pxe_config_name):
 """
 Convenience function to grab the details for a pxe server fomr the yamls.
 """

 pxe_config = conf.cfme_data.get('pxe_servers', {})[pxe_config_name]

 return PXEServer(name=pxe_config['name'],
 depot_type=pxe_config['depot_type'],
 uri=pxe_config['uri'],
 userid=pxe_config.get('userid') or None,
 password=pxe_config.get('password') or None,
 access_url=pxe_config['access_url'],
 pxe_dir=pxe_config['pxe_dir'],
 windows_dir=pxe_config['windows_dir'],
 customize_dir=pxe_config['customize_dir'],
 menu_filename=pxe_config['menu_filename'])

[docs]def remove_all_pxe_servers():
 """
 Convenience function to remove all PXE servers
 """
 view = navigate_to(PXEServer, 'All')
 if view.entities.is_displayed:
 for entity in view.entities.rows():
 entity[0].check()
 view.toolbar.configuration.item_select('Remove PXE Servers', handle_alert=True)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/configure/configuration.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.configure.configuration

-*- coding: utf-8 -*-
from navmazing import NavigateToAttribute, NavigateToSibling, NavigateToObject

from contextlib import contextmanager
from fixtures.pytest_store import store
from functools import partial

from cfme.base.ui import Server, Region, Zone
from cfme.exceptions import (
 AuthModeUnknown,
 ConsoleNotSupported,
 ConsoleTypeNotSupported,
 ScheduleNotFound)
import cfme.fixtures.pytest_selenium as sel
import cfme.web_ui.tabstrip as tabs
import cfme.web_ui.toolbar as tb
from cfme.web_ui import (
 AngularSelect, Calendar, CFMECheckbox, Form, InfoBlock, Input,
 Region as UIRegion, Select, Table, accordion, fill, flash, form_buttons)
from cfme.web_ui.form_buttons import change_stored_password
from cfme.utils import version, conf
from cfme.utils.appliance import Navigatable, current_appliance
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to
from cfme.utils.blockers import BZ
from cfme.utils.log import logger
from cfme.utils.pretty import Pretty
from cfme.utils.timeutil import parsetime
from cfme.utils.update import Updateable
from cfme.utils.wait import wait_for, TimedOutError

access_tree = partial(accordion.tree, "Access Control")
database_tree = partial(accordion.tree, "Database")
settings_tree = partial(accordion.tree, "Settings")
diagnostics_tree = partial(accordion.tree, "Diagnostics")

replication_worker = Form(
 fields=[
 ('database', Input("replication_worker_dbname")),
 ('port', Input("replication_worker_port")),
 ('username', Input("replication_worker_username")),
 ('password', Input("replication_worker_password")),
 ('password_verify', Input("replication_worker_verify")),
 ('host', Input("replication_worker_host")),
]
)

replication_process = UIRegion(locators={
 "status": InfoBlock("Replication Process", "Status"),
 "current_backlog": InfoBlock("Replication Process", "Current Backlog"),
})

server_roles = Form(
 fields=[
 # TODO embedded_ansible is only present in CFME 5.8 (MIQ Fine+)
 ('embedded_ansible', CFMECheckbox("server_roles_embedded_ansible")),
 ('ems_metrics_coordinator', CFMECheckbox("server_roles_ems_metrics_coordinator")),
 ('ems_operations', CFMECheckbox("server_roles_ems_operations")),
 ('ems_metrics_collector', CFMECheckbox("server_roles_ems_metrics_collector")),
 ('reporting', CFMECheckbox("server_roles_reporting")),
 ('ems_metrics_processor', CFMECheckbox("server_roles_ems_metrics_processor")),
 ('scheduler', CFMECheckbox("server_roles_scheduler")),
 ('smartproxy', CFMECheckbox("server_roles_smartproxy")),
 ('database_operations', CFMECheckbox("server_roles_database_operations")),
 ('smartstate', CFMECheckbox("server_roles_smartstate")),
 ('event', CFMECheckbox("server_roles_event")),
 ('user_interface', CFMECheckbox("server_roles_user_interface")),
 ('web_services', CFMECheckbox("server_roles_web_services")),
 ('ems_inventory', CFMECheckbox("server_roles_ems_inventory")),
 ('notifier', CFMECheckbox("server_roles_notifier")),
 ('automate', CFMECheckbox("server_roles_automate")),
 ('rhn_mirror', CFMECheckbox("server_roles_rhn_mirror")),
 ('database_synchronization', CFMECheckbox("server_roles_database_synchronization")),
 ('git_owner', CFMECheckbox("server_roles_git_owner")),
 ('websocket', CFMECheckbox("server_roles_websocket")),
 ('cockpit_ws', CFMECheckbox("server_roles_cockpit_ws")),
 # STORAGE OPTIONS
 ("storage_metrics_processor", CFMECheckbox("server_roles_storage_metrics_processor")),
 ("storage_metrics_collector", CFMECheckbox("server_roles_storage_metrics_collector")),
 ("storage_metrics_coordinator", CFMECheckbox("server_roles_storage_metrics_coordinator")),
 ("storage_inventory", CFMECheckbox("server_roles_storage_inventory")),
 ("vmdb_storage_bridge", CFMECheckbox("server_roles_vmdb_storage_bridge")),

]
)

ntp_servers = Form(
 fields=[
 ('ntp_server_1', Input("ntp_server_1")),
 ('ntp_server_2', Input("ntp_server_2")),
 ('ntp_server_3', Input("ntp_server_3")),
]
)

depot_types = dict(
 anon_ftp="Anonymous FTP",
 ftp="FTP",
 nfs="NFS",
 smb="Samba",
 dropbox="Red Hat Dropbox",
)

db_configuration = Form(
 fields=[
 ('type', Select("select#production_dbtype")),
 ('hostname', Input("production_host")),
 ('database', Input("production_database")),
 ('username', Input("production_username")),
 ('password', Input("production_password")),
 ('password_verify', Input("production_verify")),
]
)

category_form = Form(
 fields=[
 ('new_tr', "//tr[@id='new_tr']"),
 ('name', Input("name")),
 ('display_name', Input("description")),
 ('description', Input("example_text")),
 ('show_in_console', CFMECheckbox("show")),
 ('single_value', CFMECheckbox("single_value")),
 ('capture_candu', CFMECheckbox("perf_by_tag"))
])

tag_form = Form(
 fields=[
 ('category', {
 version.LOWEST: Select("select#classification_name"),
 '5.5': AngularSelect('classification_name')}),
 ('name', Input("entry[name]")),
 ('display_name', Input("entry[description]")),
 ('add', {
 version.LOWEST: Input("accept"),
 '5.6': '//button[normalize-space(.)="Add"]'
 }),
 ('new', {
 version.LOWEST: "//span[@class='glyphicon glyphicon-plus']",
 '5.6': '//button[normalize-space(.)="Add"]'
 }),
 ('save', '//button[normalize-space(.)="Save"]'),
])

records_table = Table("//div[@id='records_div']/table")
category_table = Table("//div[@id='settings_co_categories']/table")
classification_table = Table("//div[@id='classification_entries_div']/table")

[docs]class ServerLogDepot(Pretty, Navigatable):
 """ This class represents the 'Collect logs' for the server.

 Usage:

 log_credentials = configure.ServerLogDepot("anon_ftp",
 depot_name=fauxfactory.gen_alphanumeric(),
 uri=fauxfactory.gen_alphanumeric())
 log_credentials.create()
 log_credentials.clear()

 """

 def __init__(self, depot_type, depot_name=None, uri=None, username=None, password=None,
 zone_collect=False, second_server_collect=False, appliance=None):
 self.depot_name = depot_name
 self.uri = uri
 self.username = username
 self.password = password
 self.depot_type = depot_types[depot_type]
 self.zone_collect = zone_collect
 self.second_server_collect = second_server_collect
 Navigatable.__init__(self, appliance=appliance)

 self.obj_type = Zone(self.appliance) if self.zone_collect else self.appliance.server

[docs] def create(self, cancel=False):
 self.clear()
 if self.second_server_collect and not self.zone_collect:
 view = navigate_to(self.appliance.server, 'DiagnosticsCollectLogsEditSlave')
 else:
 view = navigate_to(self.obj_type, 'DiagnosticsCollectLogsEdit')
 view.fill({'depot_type': self.depot_type})
 if self.depot_type != 'Red Hat Dropbox':
 view.fill({'depot_name': self.depot_name,
 'uri': self.uri})
 if self.depot_type in ['FTP', 'Samba']:
 view.fill({'username': self.username,
 'password': self.password,
 'confirm_password': self.password})
 view.validate.click()
 view.flash.assert_success_message("Log Depot Settings were validated")
 if cancel:
 view.cancel.click()
 view.flash.assert_success_message("Edit Log Depot settings was cancelled by the user")
 else:
 view.save.click()
 view.flash.assert_success_message("Log Depot Settings were saved")

 @property
 def last_collection(self):
 if self.second_server_collect and not self.zone_collect:
 view = navigate_to(self.appliance.server, 'DiagnosticsCollectLogsSlave')
 else:
 view = navigate_to(self.obj_type, 'DiagnosticsCollectLogs')
 text = view.last_log_collection.text
 if text.lower() == "never":
 return None
 else:
 try:
 return parsetime.from_american_with_utc(text)
 except ValueError:
 return parsetime.from_iso_with_utc(text)

 @property
 def last_message(self):
 if self.second_server_collect:
 view = navigate_to(self.appliance.server, 'DiagnosticsCollectLogsSlave')
 else:
 view = navigate_to(self.appliance.server, 'DiagnosticsCollectLogs')
 return view.last_log_message.text

 @property
 def is_cleared(self):
 if self.second_server_collect and not self.zone_collect:
 view = navigate_to(self.appliance.server, 'DiagnosticsCollectLogsSlave')
 else:
 view = navigate_to(self.obj_type, 'DiagnosticsCollectLogs')
 return view.log_depot_uri.text == "N/A"

[docs] def clear(self):
 """ Set depot type to "No Depot"

 """
 if not self.is_cleared:
 if self.second_server_collect and not self.zone_collect:
 view = navigate_to(self.appliance.server, 'DiagnosticsCollectLogsEditSlave')
 else:
 view = navigate_to(self.obj_type, 'DiagnosticsCollectLogsEdit')
 if BZ.bugzilla.get_bug(1436326).is_opened:
 wait_for(lambda: view.depot_type.selected_option != '<No Depot>', num_sec=5)
 view.depot_type.fill('<No Depot>')
 view.save.click()
 view.flash.assert_success_message("Log Depot Settings were saved")

 def _collect(self, selection):
 """ Initiate and wait for collection to finish.

 Args:
 selection: The item in Collect menu ('Collect all logs' or 'Collect current logs')
 """

 if self.second_server_collect and not self.zone_collect:
 view = navigate_to(self.appliance.server, 'DiagnosticsCollectLogsSlave')
 else:
 view = navigate_to(self.obj_type, 'DiagnosticsCollectLogs')
 last_collection = self.last_collection
 # Initiate the collection
 tb.select("Collect", selection)
 if self.zone_collect:
 message = "Zone {}".format(self.obj_type.name)
 elif self.second_server_collect:
 message = "MiqServer {} [{}]".format(
 self.appliance.slave_server_name(), self.appliance.slave_server_zone_id())
 else:
 message = "MiqServer {} [{}]".format(
 self.appliance.server_name(), self.appliance.server_zone_id())
 view.flash.assert_success_message(
 "Log collection for {} {} has been initiated".
 format(self.appliance.product_name, message))

 def _refresh():
 """ The page has no refresh button, so we'll switch between tabs.

 Why this? Selenium's refresh() is way too slow. This is much faster.

 """
 if self.zone_collect:
 navigate_to(self.obj_type, 'Servers')
 else:
 navigate_to(self.obj_type, 'Workers')
 if self.second_server_collect:
 navigate_to(self.appliance.server, 'DiagnosticsCollectLogsSlave')
 else:
 navigate_to(self.appliance.server, 'DiagnosticsCollectLogs')

 # Wait for start
 if last_collection is not None:
 # How does this work?
 # The time is updated just after the collection has started
 # If the Text is Never, we will not wait as there is nothing in the last message.
 wait_for(
 lambda: self.last_collection > last_collection,
 num_sec=90,
 fail_func=_refresh,
 message="wait_for_log_collection_start"
)
 # Wait for finish
 wait_for(
 lambda: "were successfully collected" in self.last_message,
 num_sec=4 * 60,
 fail_func=_refresh,
 message="wait_for_log_collection_finish"
)

[docs] def collect_all(self):
 """ Initiate and wait for collection of all logs to finish.

 """
 self._collect("Collect all logs")

[docs] def collect_current(self):
 """ Initiate and wait for collection of the current log to finish.

 """
 self._collect("Collect current logs")

[docs]class BasicInformation(Updateable, Pretty, Navigatable):
 """ This class represents the "Basic Info" section of the Configuration page.

 Args:
 company_name: Company name.
 appliance_name: Appliance name.
 appliance_zone: Appliance Zone.
 time_zone: Time Zone.

 Usage:

 basic_info = BasicInformation(company_name="ACME Inc.")
 basic_info.update()

 """
 basic_information = Form(
 fields=[
 ('company_name', Input("server_company")),
 ('appliance_name', Input("server_name")),
 ('appliance_zone', Select("select#server_zone")),
 ('time_zone', Select("select#server_timezone")),
]
)
 pretty_attrs = ['company_name', 'appliance_name', 'appliance_zone', 'time_zone', 'appliance']

 def __init__(
 self, company_name=None, appliance_name=None, appliance_zone=None, time_zone=None,
 appliance=None):
 assert (company_name or appliance_name or appliance_zone or time_zone), \
 "You must provide at least one param!"
 self.company_name = company_name
 self.appliance_name = appliance_name
 self.appliance_zone = appliance_zone
 self.time_zone = time_zone
 Navigatable.__init__(self, appliance=appliance)

[docs] def update(self):
 """ Navigate to a correct page, change details and save.

 """
 # TODO: These should move as functions of the server and don't need to be classes
 navigate_to(current_appliance.server, 'Server')
 fill(self.basic_information, self, action=form_buttons.save)
 self.appliance.server_details_changed()

[docs]class VMwareConsoleSupport(Updateable, Pretty, Navigatable):
 """
 This class represents the "VMware Console Support" section of the Configuration page.
 Note this is to support CFME 5.8 and beyond functionality.

 Args:
 console_type: One of the following strings 'VMware VMRC Plugin', 'VNC' or 'VMware WebMKS'

 Usage:

 vmware_console_support = VMwareConsoleSupport(console_type="VNC")
 vmware_console_support.update()

 """
 vmware_console_form = Form(
 fields=[
 ('console_type', AngularSelect("console_type")),
]
)
 pretty_attrs = ['console_type']

 CONSOLE_TYPES = ['VNC', 'VMware VMRC Plugin', 'VMware WebMKS']

 def __init__(self, console_type, appliance=None):
 if console_type not in VMwareConsoleSupport.CONSOLE_TYPES:
 raise ConsoleTypeNotSupported(console_type)

 if appliance.version < '5.8':
 raise ConsoleNotSupported(
 product_name=appliance.product_name,
 version=appliance.version
)

 self.console_type = console_type
 Navigatable.__init__(self, appliance=appliance)

[docs] def update(self):
 """ Navigate to a correct page, change details and save.

 """
 # TODO: These should move as functions of the server and don't need to be classes
 logger.info("Updating VMware Console form")
 navigate_to(current_appliance.server, 'Server')
 fill(self.vmware_console_form, self, action=form_buttons.save)
 self.appliance.server_details_changed()

[docs]class SMTPSettings(Updateable):
 """ SMTP settings on the main page.

 Args:
 host: SMTP Server host name
 port: SMTP Server port
 domain: E-mail domain
 start_tls: Whether use StartTLS
 ssl_verify: SSL Verification
 auth: Authentication type
 username: User name
 password: User password
 from_email: E-mail address to be used as the "From:"
 test_email: Destination of the test-email.

 Usage:

 smtp = SMTPSettings(
 host="smtp.acme.com",
 start_tls=True,
 auth="login",
 username="mailer",
 password="secret"
)
 smtp.update()

 Note: TODO: send a test-email, if that will be needed.

 """
 smtp_settings = Form(
 fields=[
 ('host', Input("smtp_host")),
 ('port', Input("smtp_port")),
 ('domain', Input("smtp_domain")),
 ('start_tls', Input("smtp_enable_starttls_auto")),
 ('ssl_verify', AngularSelect("smtp_openssl_verify_mode")),
 ('auth', AngularSelect("smtp_authentication")),
 ('username', Input("smtp_user_name")),
 ('password', Input("smtp_password")),
 ('from_email', Input("smtp_from")),
 ('to_email', Input("smtp_test_to")),
]
)

 buttons = UIRegion(
 locators=dict(
 test="|".join([
 "//img[@alt='Send test email']",
 "//button[@alt='Send test email']",
 "//a[@title='Send test email']",
])
)
)

 def __init__(self,
 host=None,
 port=None,
 domain=None,
 start_tls=None,
 ssl_verify=None,
 auth=None,
 username=None,
 password=None,
 from_email=None,
 test_email=None):
 self.details = dict(
 host=host,
 port=port,
 domain=domain,
 start_tls=start_tls,
 ssl_verify=ssl_verify,
 auth=auth,
 username=username,
 password=password,
 from_email=from_email,
 test_email=test_email
)

[docs] def update(self):
 navigate_to(current_appliance.server, 'Server')
 fill(self.smtp_settings, self.details, action=form_buttons.save)

 @classmethod
[docs] def send_test_email(cls, to_address):
 """ Send a testing e-mail on specified address. Needs configured SMTP.

 Args:
 to_address: Destination address.
 """
 navigate_to(current_appliance.server, 'Server')
 fill(cls.smtp_settings, dict(to_email=to_address), action=cls.buttons.test)

[docs]class AuthSetting(Updateable, Pretty):
 form = Form(fields=[
 ("timeout_h", {
 version.LOWEST: Select("select#session_timeout_hours"),
 '5.5': AngularSelect('session_timeout_hours')}),
 ("timeout_m", {
 version.LOWEST: Select("select#session_timeout_mins"),
 '5.5': AngularSelect('session_timeout_mins')}),
])

 @classmethod
[docs] def set_session_timeout(cls, hours=None, minutes=None):
 """Sets the session timeout of the appliance."""
 navigate_to(current_appliance.server, 'Authentication')
 logger.info(
 "Setting authentication timeout to %s hours and %s minutes.", hours, minutes)
 fill(cls.form, {"timeout_h": hours, "timeout_m": minutes}, action=form_buttons.save)
 flash.assert_no_errors()
 flash.assert_message_contain("Authentication settings saved")

[docs]class DatabaseAuthSetting(AuthSetting):
 """ Authentication settings for DB internal database.

 Args:
 timeout_h: Timeout in hours
 timeout_m: Timeout in minutes

 Usage:

 dbauth = DatabaseAuthSetting()
 dbauth.update()

 """

 form = Form(fields=[
 ("timeout_h", {
 version.LOWEST: Select("select#session_timeout_hours"),
 '5.5': AngularSelect('session_timeout_hours')}),
 ("timeout_m", {
 version.LOWEST: Select("select#session_timeout_mins"),
 '5.5': AngularSelect('session_timeout_mins')}),
 ("auth_mode", {
 version.LOWEST: Select("select#authentication_mode"),
 '5.5': AngularSelect('authentication_mode')})
])
 pretty_attrs = ['timeout_h', 'timeout_m']

 def __init__(self, timeout_h=None, timeout_m=None):
 self.timeout_h = timeout_h
 self.timeout_m = timeout_m
 self.auth_mode = "Database"

[docs] def update(self, updates=None):
 navigate_to(current_appliance.server, 'Authentication')
 fill(self.form, updates if updates is not None else self, action=form_buttons.save)

[docs]class ExternalAuthSetting(AuthSetting):
 """ Authentication settings for authentication via httpd.

 Args:
 timeout_h: Timeout in hours
 timeout_m: Timeout in minutes
 get_groups: Get user groups from external auth source.

 Usage:

 dbauth = ExternalAuthSetting(get_groups=True)
 dbauth.update()

 """

 form = Form(fields=[
 ("timeout_h", {
 version.LOWEST: Select("select#session_timeout_hours"),
 '5.5': AngularSelect('session_timeout_hours')}),
 ("timeout_m", {
 version.LOWEST: Select("select#session_timeout_mins"),
 '5.5': AngularSelect('session_timeout_mins')}),
 ("auth_mode", {
 version.LOWEST: Select("select#authentication_mode"),
 '5.5': AngularSelect('authentication_mode')}),
 ("get_groups", Input("httpd_role")),
])
 pretty_attrs = ['timeout_h', 'timeout_m', 'get_groups']

 def __init__(self, get_groups=False, timeout_h="1", timeout_m="0"):
 self.timeout_h = timeout_h
 self.timeout_m = timeout_m
 self.auth_mode = "External (httpd)"
 self.get_groups = get_groups

[docs] def setup(self):
 navigate_to(current_appliance.server, 'Authentication')
 fill(self.form, self, action=form_buttons.save)

[docs] def update(self, updates=None):
 navigate_to(current_appliance.server, 'Authentication')
 fill(self.form, updates if updates is not None else self, action=form_buttons.save)

[docs]class AmazonAuthSetting(AuthSetting):
 """ Authentication settings via Amazon.

 Args:
 access_key: Amazon access key
 secret_key: Amazon secret key
 get_groups: Whether to get groups from the auth provider (default `False`)
 timeout_h: Timeout in hours
 timeout_m: Timeout in minutes

 Usage:

 amiauth = AmazonAuthSetting("AJSHDGVJAG", "IUBDIUWQBQW")
 amiauth.update()

 """

 form = Form(fields=[
 ("timeout_h", {
 version.LOWEST: Select("select#session_timeout_hours"),
 '5.5': AngularSelect('session_timeout_hours')}),
 ("timeout_m", {
 version.LOWEST: Select("select#session_timeout_mins"),
 '5.5': AngularSelect('session_timeout_mins')}),
 ("auth_mode", {
 version.LOWEST: Select("select#authentication_mode"),
 '5.5': AngularSelect('authentication_mode')}),
 ("access_key", Input("authentication_amazon_key")),
 ("secret_key", Input("authentication_amazon_secret")),
 ("get_groups", Input("amazon_role")),
])
 pretty_attrs = ['access_key', 'secret_key', 'get_groups', 'timeout_h', 'timeout_m']

 def __init__(self, access_key, secret_key, get_groups=False, timeout_h=None, timeout_m=None):
 self.access_key = access_key
 self.secret_key = secret_key
 self.get_groups = get_groups
 self.timeout_h = timeout_h
 self.timeout_m = timeout_m
 self.auth_mode = "Amazon"

[docs] def update(self, updates=None):
 navigate_to(current_appliance.server, 'Authentication')
 fill(self.form, updates if updates is not None else self, action=form_buttons.save)

[docs]class LDAPAuthSetting(AuthSetting):
 """ Authentication via LDAP

 Args:
 hosts: List of LDAP servers (max 3).
 user_type: "userprincipalname", "mail", ...
 user_suffix: User suffix.
 base_dn: Base DN.
 bind_dn: Bind DN.
 bind_password: Bind Password.
 get_groups: Get user groups from LDAP.
 get_roles: Get roles from home forest.
 follow_referrals: Follow Referrals.
 port: LDAP connection port.
 timeout_h: Timeout in hours
 timeout_m: Timeout in minutes

 Usage:

 ldapauth = LDAPAuthSetting(
 ["host1", "host2"],
 "mail",
 "user.acme.com"
)
 ldapauth.update()

 """
 form = Form(fields=[
 ("timeout_h", {
 version.LOWEST: Select("select#session_timeout_hours"),
 '5.5': AngularSelect('session_timeout_hours')}),
 ("timeout_m", {
 version.LOWEST: Select("select#session_timeout_mins"),
 '5.5': AngularSelect('session_timeout_mins')}),
 ("auth_mode", {
 version.LOWEST: Select("select#authentication_mode"),
 '5.5': AngularSelect('authentication_mode')}),
 ("ldaphost_1", Input("authentication_ldaphost_1")),
 ("ldaphost_2", Input("authentication_ldaphost_2")),
 ("ldaphost_3", Input("authentication_ldaphost_3")),
 ("port", Input("authentication_ldapport")),
 ("user_type", {
 version.LOWEST: Select("select#authentication_user_type"),
 "5.5": AngularSelect("authentication_user_type")}),
 ("user_suffix", Input("authentication_user_suffix")),
 ("get_groups", Input("ldap_role")),
 ("get_roles", Input("get_direct_groups")),
 ("default_groups", {
 version.LOWEST: Select("select#authentication_default_group_for_users"),
 '5.5': AngularSelect('authentication_default_group_for_users')}),
 ("get_direct_groups", Input("get_direct_groups")),
 ("follow_referrals", Input("follow_referrals")),
 ("base_dn", Input("authentication_basedn")),
 ("bind_dn", Input("authentication_bind_dn")),
 ("bind_password", Input("authentication_bind_pwd")),
])

 AUTH_MODE = "LDAP"
 pretty_attrs = ['hosts', 'user_type', 'user_suffix', 'base_dn', 'bind_dn', 'bind_password']

 def __init__(self,
 hosts,
 user_type,
 user_suffix,
 base_dn=None,
 bind_dn=None,
 bind_password=None,
 get_groups=False,
 get_roles=False,
 follow_referrals=False,
 port=None,
 timeout_h=None,
 timeout_m=None,
):
 self.user_type = sel.ByValue(user_type)
 self.user_suffix = user_suffix
 self.base_dn = base_dn
 self.bind_dn = bind_dn
 self.bind_password = bind_password
 self.get_groups = get_groups
 self.get_roles = get_roles
 self.follow_referrals = follow_referrals
 self.port = port
 self.timeout_h = timeout_h
 self.timeout_m = timeout_m
 self.auth_mode = self.AUTH_MODE
 self.ldaphost_1 = None
 self.ldaphost_2 = None
 self.ldaphost_3 = None
 assert len(hosts) <= 3, "You can specify only 3 LDAP hosts"
 for enum, host in enumerate(hosts):
 setattr(self, "ldaphost_{}".format(enum + 1), host)

[docs] def update(self, updates=None):
 navigate_to(current_appliance.server, 'Authentication')
 fill(self.form, updates if updates is not None else self, action=form_buttons.save)

[docs]class LDAPSAuthSetting(LDAPAuthSetting):
 """ Authentication via LDAPS

 Args:
 hosts: List of LDAPS servers (max 3).
 user_type: "userprincipalname", "mail", ...
 user_suffix: User suffix.
 base_dn: Base DN.
 bind_dn: Bind DN.
 bind_password: Bind Password.
 get_groups: Get user groups from LDAP.
 get_roles: Get roles from home forest.
 follow_referrals: Follow Referrals.
 port: LDAPS connection port.
 timeout_h: Timeout in hours
 timeout_m: Timeout in minutes

 Usage:

 ldapauth = LDAPSAuthSetting(
 ["host1", "host2"],
 "mail",
 "user.acme.com"
)
 ldapauth.update()

 """
 AUTH_MODE = "LDAPS"

[docs]class Schedule(Pretty, Navigatable):
 """ Configure/Configuration/Region/Schedules functionality

 Create, Update, Delete functionality.

 Args:
 name: Schedule's name.
 description: Schedule description.
 active: Whether the schedule should be active (default `True`)
 action: Action type
 filter_type: Filtering type
 filter_value: If a more specific `filter_type` is selected, here is the place to choose
 hostnames, machines and so ...
 run_type: Once, Hourly, Daily, ...
 run_every: If `run_type` is not Once, then you can specify how often it should be run.
 time_zone: Time zone selection.
 start_date: Specify start date (mm/dd/yyyy or datetime.datetime()).
 start_hour: Starting hour
 start_min: Starting minute.

 Usage:

 schedule = Schedule(
 "My very schedule",
 "Some description here.",
 action="Datastore Analysis",
 filter_type="All Datastores for Host",
 filter_value="datastore.intra.acme.com",
 run_type="Hourly",
 run_every="2 Hours"
)
 schedule.create()
 schedule.disable()
 schedule.enable()
 schedule.delete()
 # Or
 Schedule.enable_by_names("One schedule", "Other schedule")
 # And so.

 Note: TODO: Maybe the row handling might go into Table class?

 """
 tab = {"Hourly": "timer_hours",
 "Daily": "timer_days",
 "Weekly": "timer_weeks",
 "Monthly": "timer_months"}

 form = Form(fields=[
 ("name", Input("name")),
 ("description", Input("description")),
 ("active", Input("enabled")),
 ("action", {
 version.LOWEST: Select("select#action_typ"),
 '5.5': AngularSelect('action_typ')}),
 ("filter_type", {
 version.LOWEST: Select("select#filter_typ"),
 '5.5': AngularSelect('filter_typ')}),
 ("filter_value", {
 version.LOWEST: Select("select#filter_value"),
 '5.5': AngularSelect('filter_value')}),
 ("timer_type", {
 version.LOWEST: Select("select#timer_typ"),
 '5.5': AngularSelect('timer_typ')}),
 ("timer_hours", Select("select#timer_hours")),
 ("timer_days", Select("select#timer_days")),
 ("timer_weeks", Select("select#timer_weekss")), # Not a typo!
 ("timer_months", Select("select#timer_months")),
 ("timer_value", AngularSelect('timer_value'), {"appeared_in": "5.5"}),
 ("time_zone", {
 version.LOWEST: Select("select#time_zone"),
 '5.5': AngularSelect('time_zone')}),
 ("start_date", Calendar("miq_angular_date_1")),
 ("start_hour", {
 version.LOWEST: Select("select#start_hour"),
 '5.5': AngularSelect('start_hour')}),
 ("start_min", {
 version.LOWEST: Select("select#start_min"),
 '5.5': AngularSelect('start_min')}),
])

 pretty_attrs = ['name', 'description', 'run_type', 'run_every',
 'start_date', 'start_hour', 'start_min']

 def __init__(self, name, description, active=True, action=None, filter_type=None,
 filter_value=None, run_type="Once", run_every=None, time_zone=None,
 start_date=None, start_hour=None, start_min=None, appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.details = dict(
 name=name,
 description=description,
 active=active,
 action=action,
 filter_type=filter_type,
 filter_value=filter_value,
 time_zone=sel.ByValue(time_zone),
 start_date=start_date,
 start_hour=start_hour,
 start_min=start_min,
)

 if run_type == "Once":
 self.details["timer_type"] = "Once"
 else:
 field = version.pick({
 version.LOWEST: self.tab[run_type],
 '5.5': 'timer_value'})
 self.details["timer_type"] = run_type
 self.details[field] = run_every

[docs] def create(self, cancel=False):
 """ Create a new schedule from the informations stored in the object.

 Args:
 cancel: Whether to click on the cancel button to interrupt the creation.
 """
 navigate_to(self, 'Add')

 if cancel:
 action = form_buttons.cancel
 else:
 action = form_buttons.add
 fill(
 self.form,
 self.details,
 action=action
)

[docs] def update(self, updates, cancel=False):
 """ Modify an existing schedule with informations from this instance.

 Args:
 updates: Dict with fields to be updated
 cancel: Whether to click on the cancel button to interrupt the editation.

 """
 navigate_to(self, 'Edit')

 if cancel:
 action = form_buttons.cancel
 else:
 action = form_buttons.save
 self.details.update(updates)
 fill(
 self.form,
 self.details,
 action=action
)

[docs] def delete(self, cancel=False):
 """ Delete the schedule represented by this object.

 Calls the class method with the name of the schedule taken out from the object.

 Args:
 cancel: Whether to click on the cancel button in the pop-up.
 """
 navigate_to(self, 'Details')
 tb.select("Configuration", "Delete this Schedule from the Database", invokes_alert=True)
 sel.handle_alert(cancel)

[docs] def enable(self):
 """ Enable the schedule via table checkbox and Configuration menu.

 """
 self.select()
 tb.select("Configuration", "Enable the selected Schedules")

[docs] def disable(self):
 """ Enable the schedule via table checkbox and Configuration menu.

 """
 self.select()
 tb.select("Configuration", "Disable the selected Schedules")

[docs] def select(self):
 """ Select the checkbox for current schedule

 """
 navigate_to(self, 'All')
 for row in records_table.rows():
 if row.name.strip() == self.details['name']:
 checkbox = row[0].find_element_by_xpath("//input[@type='checkbox']")
 if not checkbox.is_selected():
 sel.click(checkbox)
 break
 else:
 raise ScheduleNotFound(
 "Schedule '{}' could not be found for selection!".format(self.details['name'])
)

@navigator.register(Schedule, 'All')
[docs]class ScheduleAll(CFMENavigateStep):
 prerequisite = NavigateToObject(Server, 'Configuration')

[docs] def step(self):
 server_region = store.current_appliance.server_region_string()
 self.prerequisite_view.accordions.settings.tree.click_path(server_region, "Schedules")

@navigator.register(Schedule, 'Add')
[docs]class ScheduleAdd(CFMENavigateStep):
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 tb.select("Configuration", "Add a new Schedule")

@navigator.register(Schedule, 'Details')
[docs]class ScheduleDetails(CFMENavigateStep):
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 records_table.click_cell("name", self.obj.details["name"])

@navigator.register(Schedule, 'Edit')
[docs]class ScheduleEdit(CFMENavigateStep):
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 tb.select("Configuration", "Edit this Schedule")

[docs]class DatabaseBackupSchedule(Schedule):
 """ Configure/Configuration/Region/Schedules - Database Backup type

 Args:
 name: Schedule name
 description: Schedule description
 active: Whether the schedule should be active (default `True`)
 protocol: One of ``{'Samba', 'Network File System'}``
 run_type: Once, Hourly, Daily, ...
 run_every: If `run_type` is not Once, then you can specify how often it should be run
 time_zone: Time zone selection
 start_date: Specify start date (mm/dd/yyyy or datetime.datetime())
 start_hour: Starting hour
 start_min: Starting minute

 Usage:
 smb_schedule = DatabaseBackupSchedule(
 name="Bi-hourly Samba Database Backup",
 description="Everybody's favorite backup schedule",
 protocol="Samba",
 uri="samba.example.com/share_name",
 username="samba_user",
 password="secret",
 password_verify="secret",
 time_zone="UTC",
 start_date=datetime.datetime.utcnow(),
 run_type="Hourly",
 run_every="2 Hours"
)
 smb_schedule.create()
 smb_schedule.delete()

 ... or ...

 nfs_schedule = DatabaseBackupSchedule(
 name="One-time NFS Database Backup",
 description="The other backup schedule",
 protocol="Network File System",
 uri="nfs.example.com/path/to/share",
 time_zone="Chihuahua",
 start_date="21/6/2014",
 start_hour="7",
 start_min="45"
)
 nfs_schedule.create()
 nfs_schedule.delete()

 """
 form = Form(fields=[
 ("name", Input("name")),
 ("description", Input("description")),
 ("active", Input("enabled")),
 ("action", {
 version.LOWEST: Select("select#action_typ"),
 '5.5': AngularSelect('action_typ')}),
 ("log_protocol", {
 version.LOWEST: Select("select#log_protocol"),
 '5.5': AngularSelect('log_protocol')}),
 ("depot_name", Input("depot_name")),
 ("uri", Input("uri")),
 ("log_userid", Input("log_userid")),
 ("log_password", Input("log_password")),
 ("log_verify", Input("log_verify")),
 ("timer_type", {
 version.LOWEST: Select("select#timer_typ"),
 '5.5': AngularSelect('timer_typ')}),
 ("timer_hours", Select("select#timer_hours")),
 ("timer_days", Select("select#timer_days")),
 ("timer_weeks", Select("select#timer_weekss")), # Not a typo!
 ("timer_months", Select("select#timer_months")),
 ("timer_value", AngularSelect('timer_value'), {"appeared_in": "5.5"}),
 ("time_zone", AngularSelect('time_zone')),
 ("start_date", Calendar("start_date")),
 ("start_hour", AngularSelect('start_hour')),
 ("start_min", AngularSelect('start_min')),
])

 def __init__(self, name, description, active=True, protocol=None, depot_name=None, uri=None,
 username=None, password=None, password_verify=None, run_type="Once",
 run_every=None, time_zone=None, start_date=None, start_hour=None, start_min=None):

 assert protocol in {'Samba', 'Network File System'},\
 "Unknown protocol type '{}'".format(protocol)

 if protocol == 'Samba':
 self.details = dict(
 name=name,
 description=description,
 active=active,
 action='Database Backup',
 log_protocol=sel.ByValue(protocol),
 depot_name=depot_name,
 uri=uri,
 log_userid=username,
 log_password=password,
 log_verify=password_verify,
 time_zone=sel.ByValue(time_zone),
 start_date=start_date,
 start_hour=start_hour,
 start_min=start_min,
)
 else:
 self.details = dict(
 name=name,
 description=description,
 active=active,
 action='Database Backup',
 log_protocol=sel.ByValue(protocol),
 depot_name=depot_name,
 uri=uri,
 time_zone=sel.ByValue(time_zone),
 start_date=start_date,
 start_hour=start_hour,
 start_min=start_min,
)

 if run_type == "Once":
 self.details["timer_type"] = "Once"
 else:
 field = version.pick({
 version.LOWEST: self.tab[run_type],
 '5.5': 'timer_value'})
 self.details["timer_type"] = run_type
 self.details[field] = run_every

[docs] def create(self, cancel=False, samba_validate=False):
 """ Create a new schedule from the informations stored in the object.

 Args:
 cancel: Whether to click on the cancel button to interrupt the creation.
 samba_validate: Samba-only option to click the `Validate` button to check
 if entered samba credentials are valid or not
 """
 navigate_to(self, 'Add')

 fill(self.form, self.details)
 if samba_validate:
 sel.click(form_buttons.validate)
 if cancel:
 form_buttons.cancel()
 else:
 form_buttons.add()

[docs] def update(self, updates, cancel=False, samba_validate=False):
 """ Modify an existing schedule with informations from this instance.

 Args:
 updates: Dict with fields to be updated
 cancel: Whether to click on the cancel button to interrupt the editation.
 samba_validate: Samba-only option to click the `Validate` button to check
 if entered samba credentials are valid or not
 """
 navigate_to(self, 'Edit')

 self.details.update(updates)
 fill(self.form, self.details)
 if samba_validate:
 sel.click(form_buttons.validate)
 if cancel:
 form_buttons.cancel()
 else:
 form_buttons.save()

 @property
 def last_date(self):
 navigate_to(self, 'All')
 name = self.details["name"]
 row = records_table.find_row("Name", name)
 return row[6].text

[docs]class Category(Pretty, Navigatable):
 pretty_attrs = ['name', 'display_name', 'description', 'show_in_console',
 'single_value', 'capture_candu']

 def __init__(self, name=None, display_name=None, description=None, show_in_console=True,
 single_value=True, capture_candu=False, appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.name = name
 self.display_name = display_name
 self.description = description
 self.show_in_console = show_in_console
 self.single_value = single_value
 self.capture_candu = capture_candu

 def _form_mapping(self, create=None, **kwargs):
 return {
 'name': kwargs.get('name'),
 'display_name': kwargs.get('display_name'),
 'description': kwargs.get('description'),
 'show_in_console': kwargs.get('show_in_console'),
 'single_value': kwargs.get('single_value'),
 'capture_candu': kwargs.get('capture_candu'),
 }

[docs] def create(self, cancel=False):
 navigate_to(self, 'Add')
 fill(category_form, self._form_mapping(True, **self.__dict__))
 if cancel:
 form_buttons.cancel()
 else:
 form_buttons.add()
 flash.assert_success_message('Category "{}" was added'.format(self.display_name))

[docs] def update(self, updates, cancel=False):
 navigate_to(self, 'Edit')
 fill(category_form, self._form_mapping(**updates))
 if cancel:
 form_buttons.cancel()
 else:
 form_buttons.save()
 flash.assert_success_message('Category "{}" was saved'.format(self.name))

[docs] def delete(self, cancel=True):
 """
 """
 if not cancel:
 navigate_to(self, 'All')
 row = category_table.find_row_by_cells({'name': self.name})
 del_btn_fn = version.pick({
 version.LOWEST: lambda: row[0],
 '5.6': lambda: row.actions
 })
 sel.click(del_btn_fn(), wait_ajax=False)
 sel.handle_alert()
 flash.assert_success_message('Category "{}": Delete successful'.format(self.name))

@navigator.register(Category, 'All')
[docs]class CategoryAll(CFMENavigateStep):
 prerequisite = NavigateToAttribute('appliance.server.zone.region', 'Details')

[docs] def step(self):
 tabs.select_tab("My Company Categories")

@navigator.register(Category, 'Add')
[docs]class CategoryAdd(CFMENavigateStep):
 """Unlike most other Add operations, this one requires an instance"""
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 sel.click(category_form.new_tr)

@navigator.register(Category, 'Edit')
[docs]class CategoryEdit(CFMENavigateStep):
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 category_table.click_cell("name", self.obj.name)

[docs]class Tag(Pretty, Navigatable):
 pretty_attrs = ['name', 'display_name', 'category']

 def __init__(self, name=None, display_name=None, category=None, appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.name = name
 self.display_name = display_name
 self.category = category

 def _form_mapping(self, create=None, **kwargs):
 return {
 'name': kwargs.get('name'),
 'display_name': kwargs.get('display_name'),
 }

[docs] def create(self):
 navigate_to(self, 'Add')
 sel.click(tag_form.new)
 fill(tag_form, self._form_mapping(True, **self.__dict__), action=tag_form.add)

[docs] def update(self, updates):
 navigate_to(self, 'Edit')
 update_action = version.pick({
 version.LOWEST: tag_form.add,
 '5.6': tag_form.save
 })
 fill(tag_form, self._form_mapping(**updates), action=update_action)

[docs] def delete(self, cancel=True):
 """
 """
 if not cancel:
 navigate_to(self, 'All')
 fill(tag_form, {'category': self.category.display_name})
 row = classification_table.find_row_by_cells({'name': self.name})
 del_btn_fn = version.pick({
 version.LOWEST: lambda: row[0],
 '5.6': lambda: row.actions
 })
 sel.click(del_btn_fn(), wait_ajax=False)
 sel.handle_alert()

@navigator.register(Tag, 'All')
[docs]class TagsAll(CFMENavigateStep):
 prerequisite = NavigateToAttribute('appliance.server.zone.region', 'Details')

[docs] def step(self):
 tabs.select_tab("My Company Tags")

@navigator.register(Tag, 'Add')
[docs]class TagsAdd(CFMENavigateStep):
 """Unlike most other Add operations, this one requires an instance"""
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 fill(tag_form, {'category': self.obj.category.display_name})
 sel.click(tag_form.new)

@navigator.register(Tag, 'Edit')
[docs]class TagsEdit(CFMENavigateStep):
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 fill(tag_form, {'category': self.obj.category.display_name})
 classification_table.click_cell('name', self.obj.name)

[docs]def set_server_roles(db=True, **roles):
 """ Set server roles on Configure / Configuration pages.

 Args:
 **roles: Roles specified as in server_roles Form in this module. Set to True or False
 """
 if get_server_roles() == roles:
 logger.debug(' Roles already match, returning...')
 return
 if db:
 store.current_appliance.server_roles = roles
 else:
 navigate_to(current_appliance.server, 'Server')
 fill(server_roles, roles, action=form_buttons.save)

[docs]def get_server_roles(navigate=True, db=True):
 """ Get server roles from Configure / Configuration

 Returns: :py:class:`dict` with the roles in the same format as :py:func:`set_server_roles`
 accepts as kwargs.
 """
 if db:
 return store.current_appliance.server_roles
 else:
 if navigate:
 navigate_to(current_appliance.server, 'Server')

 role_list = {}
 for (name, locator) in server_roles.fields:
 try:
 role_list[name] = locator.is_selected()
 except:
 logger.warning("role not found, skipping, netapp storage role? (%s)", name)
 return role_list

@contextmanager
def _server_roles_cm(enable, *roles):
 """ Context manager that takes care of setting required roles and then restoring original roles.

 Args:
 enable: Whether to enable the roles.
 *roles: Role ids to set
 """
 try:
 original_roles = get_server_roles()
 set_roles = dict(original_roles)
 for role in roles:
 if role not in set_roles:
 raise NameError("No such role {}".format(role))
 set_roles[role] = enable
 set_server_roles(**set_roles)
 yield
 finally:
 set_server_roles(**original_roles)

[docs]def server_roles_enabled(*roles):
 return _server_roles_cm(True, *roles)

[docs]def server_roles_disabled(*roles):
 return _server_roles_cm(False, *roles)

[docs]def set_ntp_servers(*servers):
 """ Set NTP servers on Configure / Configuration pages.

 Args:
 *servers: Maximum of 3 hostnames.
 """
 server_value = ["", "", ""]
 navigate_to(current_appliance.server, 'Server')
 assert len(servers) <= 3, "There is place only for 3 servers!"
 for enum, server in enumerate(servers):
 server_value[enum] = server
 fields = {}
 for enum, server in enumerate(server_value):
 fields["ntp_server_%d" % (enum + 1)] = server
 fill(ntp_servers, fields, action=form_buttons.save)
 if servers:
 flash.assert_message_match(
 "Configuration settings saved for {} Server \"{} [{}]\" in Zone \"{}\"".format(
 store.current_appliance.product_name,
 store.current_appliance.server_name(),
 store.current_appliance.server_id(),
 store.current_appliance.zone_description.partition(' ')[0].lower()))

[docs]def get_ntp_servers():
 navigate_to(current_appliance.server, 'Server')
 servers = set([])
 for i in range(3):
 value = sel.value("#ntp_server_{}".format(i + 1)).encode("utf-8").strip()
 if value:
 servers.add(value)
 return servers

[docs]def restart_workers(name, wait_time_min=1):
 """ Restarts workers by their name.

 Args:
 name: Name of the worker. Multiple workers can have the same name. Name is matched with `in`
 Returns: bool whether the restart succeeded.
 """

 navigate_to(current_appliance.server, 'DiagnosticsWorkers')

 def get_all_pids(worker_name):
 return {row.pid.text for row in records_table.rows() if worker_name in row.name.text}

 reload_func = partial(tb.select, "Reload current workers display")

 pids = get_all_pids(name)
 # Initiate the restart
 for pid in pids:
 records_table.click_cell("pid", pid)
 tb.select("Configuration", "Restart selected worker", invokes_alert=True)
 sel.handle_alert(cancel=False)
 reload_func()

 # Check they have finished
 def _check_all_workers_finished():
 for pid in pids:
 if records_table.click_cell("pid", pid): # If could not click, no longer present
 return False # If clicked, it is still there so unsuccess
 return True

 # Wait for all original workers to be gone
 try:
 wait_for(
 _check_all_workers_finished,
 fail_func=reload_func,
 num_sec=wait_time_min * 60
)
 except TimedOutError:
 return False

 # And now check whether the same number of workers is back online
 try:
 wait_for(
 lambda: len(pids) == len(get_all_pids(name)),
 fail_func=reload_func,
 num_sec=wait_time_min * 60,
 message="wait_workers_back_online"
)
 return True
 except TimedOutError:
 return False

[docs]def get_workers_list(do_not_navigate=False, refresh=True):
 """Retrieves all workers.

 Returns a dictionary where keys are names of the workers and values are lists (because worker
 can have multiple instances) which contain dictionaries with some columns.
 """
 if do_not_navigate:
 if refresh:
 tb.select("Reload current workers display")
 else:
 navigate_to(current_appliance.server, 'Workers')
 workers = {}
 for row in records_table.rows():
 name = sel.text_sane(row.name)
 if name not in workers:
 workers[name] = []
 worker = {
 "status": sel.text_sane(row.status),
 "pid": int(sel.text_sane(row.pid)) if len(sel.text_sane(row.pid)) > 0 else None,
 "spid": int(sel.text_sane(row.spid)) if len(sel.text_sane(row.spid)) > 0 else None,
 "started": parsetime.from_american_with_utc(sel.text_sane(row.started)),

 "last_heartbeat": None,
 }
 try:
 workers["last_heartbeat"] = parsetime.from_american_with_utc(
 sel.text_sane(row.last_heartbeat))
 except ValueError:
 pass
 workers[name].append(worker)
 return workers

[docs]def setup_authmode_database():
 set_auth_mode(mode='database')

[docs]def set_auth_mode(mode, **kwargs):
 """ Set up authentication mode

 Args:
 mode: Authentication mode to set up.
 kwargs: A dict of keyword arguments used to initialize one of
 the *AuthSetting classes - class type is mode-dependent.
 Raises:
 AuthModeUnknown: when the given mode is not valid
 """
 if mode == 'ldap':
 auth_pg = LDAPAuthSetting(**kwargs)
 elif mode == 'ldaps':
 auth_pg = LDAPSAuthSetting(**kwargs)
 elif mode == 'amazon':
 auth_pg = AmazonAuthSetting(**kwargs)
 elif mode == 'database':
 auth_pg = DatabaseAuthSetting(**kwargs)
 else:
 raise AuthModeUnknown("{} is not a valid authentication mode".format(mode))
 auth_pg.update()

[docs]def set_replication_worker_host(host, port='5432'):
 """ Set replication worker host on Configure / Configuration pages.

 Args:
 host: Address of the hostname to replicate to.
 """
 navigate_to(current_appliance.server, 'Workers')
 change_stored_password()
 fill(
 replication_worker,
 dict(host=host,
 port=port,
 username=conf.credentials['database']['username'],
 password=conf.credentials['database']['password'],
 password_verify=conf.credentials['database']['password']),
 action=form_buttons.save
)

[docs]def get_replication_status(navigate=True):
 """ Gets replication status from Configure / Configuration pages.

 Returns: bool of whether replication is Active or Inactive.
 """
 if navigate:

 navigate_to(Region, 'Replication')
 return replication_process.status.text == "Active"

[docs]def get_replication_backlog(navigate=True):
 """ Gets replication backlog from Configure / Configuration pages.

 Returns: int representing the remaining items in the replication backlog.
 """
 if navigate:
 navigate_to(Region, 'Replication')
 return int(replication_process.current_backlog.text)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/configure/access_control.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.configure.access_control

from navmazing import NavigateToSibling, NavigateToAttribute
from widgetastic_manageiq import UpDownSelect, PaginationPane, SummaryFormItem, Table
from widgetastic_patternfly import (
 BootstrapSelect, Button, Input, Tab, CheckableBootstrapTreeview,
 BootstrapSwitch, CandidateNotFound, Dropdown)
from widgetastic.utils import VersionPick, Version
from widgetastic.widget import Checkbox, View, Text

from cfme.base.credential import Credential
from cfme.base.ui import ConfigurationView
from cfme.exceptions import OptionNotAvailable, RBACOperationBlocked
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to
from cfme.utils.log import logger
from cfme.utils.pretty import Pretty
from cfme.utils.update import Updateable
from cfme.utils.wait import wait_for

[docs]def simple_user(userid, password):
 creds = Credential(principal=userid, secret=password)
 return User(name=userid, credential=creds)

[docs]class AccessControlToolbar(View):
 """ Toolbar on the Access Control page """
 configuration = Dropdown('Configuration')
 policy = Dropdown('Policy')

##
RBAC USER METHODS
^^
[docs]class UserForm(ConfigurationView):
 """ User Form View."""
 name_txt = Input(name='name')
 userid_txt = Input(name='userid')
 password_txt = Input(id='password')
 password_verify_txt = Input(id='verify')
 email_txt = Input(name='email')
 user_group_select = BootstrapSelect(id='chosen_group')

 cancel_button = Button('Cancel')

[docs]class UsersEntities(View):
 table = Table('//div[@id=\'records_div\']//table')

[docs]class AllUserView(ConfigurationView):
 """ All Users View."""
 toolbar = View.nested(AccessControlToolbar)
 entities = View.nested(UsersEntities)

 @property
 def is_displayed(self):
 return (
 self.accordions.accesscontrol.is_opened and
 self.title.text == 'Access Control EVM Users'
)

[docs]class AddUserView(UserForm):
 """ Add User View."""
 add_button = Button('Add')

 @property
 def is_displayed(self):
 return self.accordions.accesscontrol.is_opened and self.title.text == "Adding a new User"

[docs]class DetailsUserView(ConfigurationView):
 """ User Details view."""
 toolbar = View.nested(AccessControlToolbar)

 @property
 def is_displayed(self):
 return (
 self.title.text == 'EVM User "{}"'.format(self.context['object'].name) and
 self.accordions.accesscontrol.is_opened
)

[docs]class EditUserView(UserForm):
 """ User Edit View."""
 save_button = Button('Save')
 reset_button = Button('Reset')
 change_stored_password = Text('#change_stored_password')
 cancel_password_change = Text('#cancel_password_change')

 @property
 def is_displayed(self):
 return (
 self.title.text == 'Editing User "{}"'.format(self.context['object'].name) and
 self.accordions.accesscontrol.is_opened
)

[docs]class EditTagsUserView(ConfigurationView):
 """ Tags edit for Users view."""
 tag_table = Table("//div[@id='assignments_div']//table")
 select_tag = BootstrapSelect(id='tag_cat')
 select_value = BootstrapSelect(id='tag_add')

 save_button = Button('Save')
 cancel_button = Button('Cancel')
 reset_button = Button('Reset')

 @property
 def is_displayed(self):
 return (
 self.accordions.accesscontrol.is_opened and
 self.title.text == 'Editing My Company Tags for "EVM Users"'
)

[docs]class User(Updateable, Pretty, Navigatable):
 """ Class represents an user in CFME UI

 Args:
 name: Name of the user
 credential: User's credentials
 email: User's email
 group: User's group for assigment
 cost_center: User's cost center
 value_assign: user's value to assign
 appliance: appliance under test
 """
 pretty_attrs = ['name', 'group']

 def __init__(self, name=None, credential=None, email=None, group=None, cost_center=None,
 value_assign=None, appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.name = name
 self.credential = credential
 self.email = email
 self.group = group
 self.cost_center = cost_center
 self.value_assign = value_assign
 self._restore_user = None

 def __enter__(self):
 if self._restore_user != self.appliance.user:
 logger.info('Switching to new user: %s', self.credential.principal)
 self._restore_user = self.appliance.user
 self.appliance.server.logout()
 self.appliance.user = self

 def __exit__(self, *args, **kwargs):
 if self._restore_user != self.appliance.user:
 logger.info('Restoring to old user: %s', self._restore_user.credential.principal)
 self.appliance.server.logout()
 self.appliance.user = self._restore_user
 self._restore_user = None

[docs] def create(self, cancel=False):
 """ User creation method

 Args:
 cancel: True - if you want to cancel user creation,
 by defaul user will be created

 Throws:
 RBACOperationBlocked: If operation is blocked due to current user
 not having appropriate permissions OR update is not allowed
 for currently selected role
 """
 if self.appliance.version < "5.8":
 user_blocked_msg = ("Userid has already been taken")
 else:
 user_blocked_msg = ("Userid is not unique within region {}".format(
 self.appliance.server_region()))

 view = navigate_to(self, 'Add')
 view.fill({
 'name_txt': self.name,
 'userid_txt': self.credential.principal,
 'password_txt': self.credential.secret,
 'password_verify_txt': self.credential.verify_secret,
 'email_txt': self.email,
 'user_group_select': getattr(self.group, 'description', None)
 })

 if cancel:
 view.cancel_button.click()
 flash_message = 'Add of new User was cancelled by the user'
 else:
 view.add_button.click()
 flash_message = 'User "{}" was saved'.format(self.name)

 try:
 view.flash.assert_message(user_blocked_msg)
 raise RBACOperationBlocked(user_blocked_msg)
 except AssertionError:
 pass

 view = self.create_view(AllUserView)
 view.flash.assert_success_message(flash_message)
 assert view.is_displayed

[docs] def update(self, updates):
 """ Update user method

 Args:
 updates: user data that should be changed

 Note: In case updates is the same as original user data, update will be canceled,
 as 'Save' button will not be active
 """
 view = navigate_to(self, 'Edit')
 self.change_stored_password()
 new_updates = {}
 if 'credential' in updates:
 new_updates.update({
 'userid_txt': updates.get('credential').principal,
 'password_txt': updates.get('credential').secret,
 'password_verify_txt': updates.get('credential').verify_secret
 })
 new_updates.update({
 'name_txt': updates.get('name'),
 'email_txt': updates.get('email'),
 'user_group_select': getattr(
 updates.get('group'),
 'description', None)
 })
 changed = view.fill({
 'name_txt': new_updates.get('name_txt'),
 'userid_txt': new_updates.get('userid_txt'),
 'password_txt': new_updates.get('password_txt'),
 'password_verify_txt': new_updates.get('password_verify_txt'),
 'email_txt': new_updates.get('email_txt'),
 'user_group_select': new_updates.get('user_group_select')
 })
 if changed:
 view.save_button.click()
 flash_message = 'User "{}" was saved'.format(updates.get('name', self.name))
 else:
 view.cancel_button.click()
 flash_message = 'Edit of User was cancelled by the user'
 view = self.create_view(DetailsUserView, override=updates)
 view.flash.assert_message(flash_message)
 assert view.is_displayed

[docs] def copy(self):
 """ Creates copy of existing user
 return: User object of copied user
 """
 view = navigate_to(self, 'Details')
 view.toolbar.configuration.item_select('Copy this User to a new User')
 view = self.create_view(AddUserView)
 new_user = User(name="{}copy".format(self.name),
 credential=Credential(principal='redhat', secret='redhat'))
 view.fill({
 'name_txt': new_user.name,
 'userid_txt': new_user.credential.principal,
 'password_txt': new_user.credential.secret,
 'password_verify_txt': new_user.credential.verify_secret
 })
 view.add_button.click()
 view = self.create_view(AllUserView)
 view.flash.assert_success_message('User "{}" was saved'.format(new_user.name))
 assert view.is_displayed
 return new_user

[docs] def delete(self, cancel=True):
 """
 Delete existing user
 Args:
 cancel: Default value 'True', user will be deleted
 'False' - deletion of user will be canceled
 Throws:
 RBACOperationBlocked: If operation is blocked due to current user
 not having appropriate permissions OR delete is not allowed
 for currently selected user
 """
 flash_success_msg = 'EVM User "{}": Delete successful'.format(self.name)
 flash_blocked_msg = "Default EVM User \"{}\" cannot be deleted".format(self.name)
 delete_user_txt = 'Delete this User'

 view = navigate_to(self, 'Details')

 if not view.toolbar.configuration.item_enabled(delete_user_txt):
 raise RBACOperationBlocked("Configuration action '{}' is not enabled".format(
 delete_user_txt))

 view.toolbar.configuration.item_select(delete_user_txt, handle_alert=cancel)
 try:
 view.flash.assert_message(flash_blocked_msg)
 raise RBACOperationBlocked(flash_blocked_msg)
 except AssertionError:
 pass

 view.flash.assert_message(flash_success_msg)

 if cancel:
 view = self.create_view(AllUserView)
 view.flash.assert_success_message(flash_success_msg)
 else:
 view = self.create_view(DetailsUserView)
 assert view.is_displayed

[docs] def edit_tags(self, tag, value):
 """ Edits tag for existing user

 Args:
 tag: Tag category
 value: Tag name
 """
 view = navigate_to(self, 'EditTags')
 view.fill({'select_tag': tag,
 'select_value': value})
 view.save_button.click()
 view = self.create_view(DetailsUserView)
 view.flash.assert_success_message('Tag edits were successfully saved')
 assert view.is_displayed

[docs] def remove_tag(self, tag, value):
 """ Remove tag from existing user

 Args:
 tag: Tag category
 value: Tag name
 """
 view = navigate_to(self, 'EditTags')
 row = view.tag_table.row(category=tag, assigned_value=value)
 row[0].click()
 view.save_button.click()
 view = self.create_view(DetailsUserView)
 view.flash.assert_success_message('Tag edits were successfully saved')
 assert view.is_displayed

 # TODO update elements, after 1469035 fix
[docs] def change_stored_password(self, changes=None, cancel=False):
 """ Changes user password

 Args:
 changes: dict with fields to be changes,
 if None, passwords fields only be anabled
 cancel: True, if you want to disable password change
 """
 view = navigate_to(self, 'Edit')
 self.browser.execute_script(
 self.browser.get_attribute(
 'onClick', self.browser.element(view.change_stored_password)))
 if changes:
 view.fill(changes)
 if cancel:
 self.browser.execute_script(
 self.browser.get_attribute(
 'onClick', self.browser.element(view.cancel_password_change)))

 @property
 def exists(self):
 try:
 navigate_to(self, 'Details')
 return True
 except CandidateNotFound:
 return False

 @property
 def description(self):
 return self.credential.principal

@navigator.register(User, 'All')
[docs]class UserAll(CFMENavigateStep):
 VIEW = AllUserView
 prerequisite = NavigateToAttribute('appliance.server', 'Configuration')

[docs] def step(self):
 self.prerequisite_view.accordions.accesscontrol.tree.click_path(
 self.obj.appliance.server_region_string(), 'Users')

@navigator.register(User, 'Add')
[docs]class UserAdd(CFMENavigateStep):
 VIEW = AddUserView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.toolbar.configuration.item_select("Add a new User")

@navigator.register(User, 'Details')
[docs]class UserDetails(CFMENavigateStep):
 VIEW = DetailsUserView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.accordions.accesscontrol.tree.click_path(
 self.obj.appliance.server_region_string(), 'Users', self.obj.name)

@navigator.register(User, 'Edit')
[docs]class UserEdit(CFMENavigateStep):
 VIEW = EditUserView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.toolbar.configuration.item_select('Edit this User')

@navigator.register(User, 'EditTags')
[docs]class UserTagsEdit(CFMENavigateStep):
 VIEW = EditTagsUserView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.toolbar.policy.item_select(
 "Edit 'My Company' Tags for this User")

^^
RBAC USER METHODS
##

##
RBAC GROUP METHODS
^^
[docs]class GroupForm(ConfigurationView):
 """ Group Form in CFME UI."""
 ldap_groups_for_user = BootstrapSelect(id='ldap_groups_user')
 description_txt = Input(name='description')
 lookup_ldap_groups_chk = Checkbox(name='lookup')
 role_select = BootstrapSelect(id='group_role')
 group_tenant = BootstrapSelect(id='group_tenant')
 user_to_look_up = Input(name='user')
 username = Input(name='user_id')
 password = Input(name='password')

 tag = SummaryFormItem('Smart Management', 'My Company Tags')

 cancel_button = Button('Cancel')
 retrieve_button = Button('Retrieve')

 @View.nested
 class my_company_tags(Tab): # noqa
 """ Represents 'My company tags' tab in Group Form """
 TAB_NAME = "My Company Tags"
 tree_locator = VersionPick({
 Version.lowest(): 'tagsbox',
 '5.8': 'tags_treebox'})
 tree = CheckableBootstrapTreeview(tree_locator)

 @View.nested
 class hosts_and_clusters(Tab): # noqa
 """ Represents 'Hosts and Clusters' tab in Group Form """
 TAB_NAME = "Hosts & Clusters"
 tree = CheckableBootstrapTreeview('hac_treebox')

 @View.nested
 class vms_and_templates(Tab): # noqa
 """ Represents 'VM's and Templates' tab in Group Form """
 TAB_NAME = "VMs & Templates"
 tree = CheckableBootstrapTreeview('vat_treebox')

[docs]class AddGroupView(GroupForm):
 """ Add Group View in CFME UI """
 add_button = Button("Add")

 @property
 def is_displayed(self):
 return (
 self.accordions.accesscontrol.is_opened and
 self.title.text == "Adding a new Group"
)

[docs]class DetailsGroupView(ConfigurationView):
 """ Details Group View in CFME UI """
 toolbar = View.nested(AccessControlToolbar)

 @property
 def is_displayed(self):
 return (
 self.accordions.accesscontrol.is_opened and
 self.title.text == 'EVM Group "{}"'.format(self.context['object'].description)
)

[docs]class EditGroupView(GroupForm):
 """ Edit Group View in CFME UI """
 save_button = Button("Save")
 reset_button = Button('Reset')

 @property
 def is_displayed(self):
 return (
 self.accordions.accesscontrol.is_opened and
 self.title.text == 'Editing Group "{}"'.format(self.context['object'].description)
)

[docs]class AllGroupView(ConfigurationView):
 """ All Groups View in CFME UI """
 toolbar = View.nested(AccessControlToolbar)
 table = Table("//div[@id='main_div']//table")
 paginator = PaginationPane()

 @property
 def is_displayed(self):
 return (
 self.accordions.accesscontrol.is_opened and
 self.title.text == 'Access Control EVM Groups'
)

[docs]class EditGroupSequenceView(ConfigurationView):
 """ Edit Groups Sequence View in CFME UI """

 group_order_selector = UpDownSelect(
 '#seq_fields',
 '//button[@title="Move selected fields up"]/i',
 '//button[@title="Move selected fields down"]/i')

 save_button = Button('Save')
 reset_button = Button('Reset')
 cancel_button = Button('Cancel')

 @property
 def is_displayed(self):
 return (
 self.accordions.accesscontrol.is_opened and
 self.title.text == "Editing Sequence of User Groups"
)

[docs]class GroupEditTagsView(ConfigurationView):
 """ Edit Groups Tags View in CFME UI """
 tag_table = Table("//div[@id='assignments_div']//table")

 select_tag = BootstrapSelect(id='tag_cat')
 select_value = BootstrapSelect(id='tag_add')

 save_button = Button('Save')
 cancel_button = Button('Cancel')
 reset_button = Button('Reset')

 @property
 def is_displayed(self):
 return (
 self.accordions.accesscontrol.is_opened and
 self.title.text == 'Editing My Company Tags for "EVM Groups"'
)

[docs]class Group(Updateable, Pretty, Navigatable):
 """Represents a group in CFME UI

 Args:
 description: group description
 role: group role
 tenant: group tenant
 user_to_lookup: ldap user to lookup
 ldap_credentials: ldap user credentials
 tag: tag for group restriction
 host_cluster: host/cluster for group restriction
 vm_template: vm/template for group restriction
 appliance: appliance under test
 """
 pretty_attrs = ['description', 'role']

 def __init__(self, description=None, role=None, tenant="My Company", user_to_lookup=None,
 ldap_credentials=None, tag=None, host_cluster=None, vm_template=None,
 appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.description = description
 self.role = role
 self.tenant = tenant
 self.ldap_credentials = ldap_credentials
 self.user_to_lookup = user_to_lookup
 self.tag = tag
 self.host_cluster = host_cluster
 self.vm_template = vm_template

[docs] def create(self, cancel=False):
 """ Create group method
 Args:
 cancel: True - if you want to cancel group creation,
 by default group will be created
 Throws:
 RBACOperationBlocked: If operation is blocked due to current user
 not having appropriate permissions OR delete is not allowed
 for currently selected user
 """
 if self.appliance.version < "5.8":
 flash_blocked_msg = ("Description has already been taken")
 else:
 flash_blocked_msg = "Description is not unique within region {}".format(
 self.appliance.server_region())

 view = navigate_to(self, 'Add')
 view.fill({
 'description_txt': self.description,
 'role_select': self.role,
 'group_tenant': self.tenant
 })
 self._set_group_restriction(view.my_company_tags, self.tag)
 self._set_group_restriction(view.hosts_and_clusters, self.host_cluster)
 self._set_group_restriction(view.vms_and_templates, self.vm_template)
 if cancel:
 view.cancel_button.click()
 flash_message = 'Add of new Group was cancelled by the user'
 else:
 view.add_button.click()
 flash_message = 'Group "{}" was saved'.format(self.description)
 view = self.create_view(AllGroupView)

 try:
 view.flash.assert_message(flash_blocked_msg)
 raise RBACOperationBlocked(flash_blocked_msg)
 except AssertionError:
 pass

 view.flash.assert_success_message(flash_message)
 assert view.is_displayed

 def _retrieve_ldap_user_groups(self):
 """ Retrive ldap user groups
 return: AddGroupView
 """
 view = navigate_to(self, 'Add')
 view.fill({'lookup_ldap_groups_chk': True,
 'user_to_look_up': self.user_to_lookup,
 'username': self.ldap_credentials.principal,
 'password': self.ldap_credentials.secret})
 view.retrieve_button.click()
 return view

 def _retrieve_ext_auth_user_groups(self):
 """ Retrive external authorization user groups
 return: AddGroupView
 """
 view = navigate_to(self, 'Add')
 view.fill({'lookup_ldap_groups_chk': True,
 'user_to_look_up': self.user_to_lookup})
 view.retrieve_button.click()
 return view

 def _fill_ldap_group_lookup(self, view):
 """ Fills ldap info for group lookup

 Args: view: view for group creation(AddGroupView)
 """
 view.fill({'ldap_groups_for_user': self.description,
 'description_txt': self.description,
 'role_select': self.role,
 'group_tenant': self.tenant})
 view.add_button.click()
 view = self.create_view(AllGroupView)
 view.flash.assert_success_message('Group "{}" was saved'.format(self.description))
 assert view.is_displayed

[docs] def add_group_from_ldap_lookup(self):
 """Adds a group from ldap lookup"""
 view = self._retrieve_ldap_user_groups()
 self._fill_ldap_group_lookup(view)

[docs] def add_group_from_ext_auth_lookup(self):
 """Adds a group from external authorization lookup"""
 view = self._retrieve_ext_auth_user_groups()
 self._fill_ldap_group_lookup(view)

[docs] def update(self, updates):
 """ Update group method

 Args:
 updates: group data that should be changed

 Note: In case updates is the same as original group data, update will be canceled,
 as 'Save' button will not be active
 """
 edit_group_txt = 'Edit this Group'

 view = navigate_to(self, 'Details')
 if not view.toolbar.configuration.item_enabled(edit_group_txt):
 raise RBACOperationBlocked("Configuration action '{}' is not enabled".format(
 edit_group_txt))
 view = navigate_to(self, 'Edit')

 changed = view.fill({
 'description_txt': updates.get('description'),
 'role_select': updates.get('role'),
 'group_tenant': updates.get('tenant')
 })

 changed_tag = self._set_group_restriction(view.my_company_tags, updates.get('tag'), True)
 changed_host_cluster = self._set_group_restriction(
 view.hosts_and_clusters, updates.get('host_cluster'), True)
 changed_vm_template = self._set_group_restriction(
 view.vms_and_templates, updates.get('vm_template'), True)

 if changed or changed_tag or changed_host_cluster or changed_vm_template:
 view.save_button.click()
 flash_message = 'Group "{}" was saved'.format(
 updates.get('description', self.description))
 else:
 view.cancel_button.click()
 flash_message = 'Edit of Group was cancelled by the user'
 view = self.create_view(DetailsGroupView, override=updates)

 view.flash.assert_message(flash_message)
 assert view.is_displayed

[docs] def delete(self, cancel=True):
 """
 Delete existing group

 Args:
 cancel: Default value 'True', group will be deleted
 'False' - deletion of group will be canceled
 Throws:
 RBACOperationBlocked: If operation is blocked due to current user
 not having appropriate permissions OR delete is not allowed
 for currently selected group
 """
 flash_success_msg = 'EVM Group "{}": Delete successful'.format(self.description)
 flash_blocked_msg = (
 "EVM Group \"{}\": "
 "Error during delete: A read only group cannot be deleted.".format(self.description))
 delete_group_txt = 'Delete this Group'

 view = navigate_to(self, 'Details')

 if not view.toolbar.configuration.item_enabled(delete_group_txt):
 raise RBACOperationBlocked("Configuration action '{}' is not enabled".format(
 delete_group_txt))

 view.toolbar.configuration.item_select(delete_group_txt, handle_alert=cancel)
 try:
 view.flash.assert_message(flash_blocked_msg)
 raise RBACOperationBlocked(flash_blocked_msg)
 except AssertionError:
 pass

 view.flash.assert_no_error()
 view.flash.assert_message(flash_success_msg)

 if cancel:
 view = self.create_view(AllGroupView)
 view.flash.assert_success_message(flash_success_msg)
 else:
 view = self.create_view(DetailsGroupView)
 assert view.is_displayed, (
 "Access Control Group {} Detail View is not displayed".format(self.description))

[docs] def edit_tags(self, tag, value):
 """ Edits tag for existing group

 Args:
 tag: Tag category
 value: Tag name
 """
 view = navigate_to(self, 'EditTags')
 view.fill({'select_tag': tag,
 'select_value': value})
 view.save_button.click()
 view = self.create_view(DetailsGroupView)
 view.flash.assert_success_message('Tag edits were successfully saved')
 assert view.is_displayed

[docs] def remove_tag(self, tag, value):
 """ Delete tag for existing group

 Args:
 tag: Tag category
 value: Tag name
 """
 view = navigate_to(self, 'EditTags')
 row = view.tag_table.row(category=tag, assigned_value=value)
 row[0].click()
 view.save_button.click()
 view = self.create_view(DetailsGroupView)
 view.flash.assert_success_message('Tag edits were successfully saved')
 assert view.is_displayed

[docs] def set_group_order(self, updated_order):
 """ Sets group order for group lookup

 Args:
 updated_order: group order list
 """
 name_column = "Name"
 find_row_kwargs = {name_column: self.description}
 view = navigate_to(self, 'All')
 row = view.paginator.find_row_on_pages(view.table, **find_row_kwargs)
 original_sequence = row.sequence.text

 original_order = self.group_order[:len(updated_order)]
 view = self.create_view(EditGroupSequenceView)
 assert view.is_displayed

 # We pick only the same amount of items for comparing
 if updated_order == original_order:
 return # Ignore that, would cause error on Save click
 view.group_order_selector.fill(updated_order)
 view.save_button.click()

 view = self.create_view(AllGroupView)
 assert view.is_displayed

 row = view.paginator.find_row_on_pages(view.table, **find_row_kwargs)
 changed_sequence = row.sequence.text
 assert original_sequence != changed_sequence, "{} Group Edit Sequence Failed".format(
 self.description)

 def _set_group_restriction(self, tab_view, item, update=False):
 """ Sets tag/host/template restriction for the group

 Args:
 tab_view: tab view
 item: path to check box that should be selected/deselected
 update: If True - checkbox state will be updated

 Returns: True - if update is successful
 """
 updated_result = False
 if item is not None:
 if update:
 if tab_view.tree.node_checked(*item):
 tab_view.tree.uncheck_node(*item)
 else:
 tab_view.tree.check_node(*item)
 updated_result = True
 else:
 tab_view.tree.fill(item)
 return updated_result

 @property
 def group_order(self):
 view = navigate_to(Group, 'EditGroupSequence')
 return view.group_order_selector.items

 @property
 def exists(self):
 try:
 navigate_to(self, 'Details')
 return True
 except CandidateNotFound:
 return False

@navigator.register(Group, 'All')
[docs]class GroupAll(CFMENavigateStep):
 VIEW = AllGroupView
 prerequisite = NavigateToAttribute('appliance.server', 'Configuration')

[docs] def step(self):
 self.prerequisite_view.accordions.accesscontrol.tree.click_path(
 self.obj.appliance.server_region_string(), 'Groups')

@navigator.register(Group, 'Add')
[docs]class GroupAdd(CFMENavigateStep):
 VIEW = AddGroupView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.toolbar.configuration.item_select("Add a new Group")

@navigator.register(Group, 'EditGroupSequence')
[docs]class EditGroupSequence(CFMENavigateStep):
 VIEW = EditGroupSequenceView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.toolbar.configuration.item_select(
 'Edit Sequence of User Groups for LDAP Look Up')

@navigator.register(Group, 'Details')
[docs]class GroupDetails(CFMENavigateStep):
 VIEW = DetailsGroupView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.accordions.accesscontrol.tree.click_path(
 self.obj.appliance.server_region_string(), 'Groups', self.obj.description)

@navigator.register(Group, 'Edit')
[docs]class GroupEdit(CFMENavigateStep):
 VIEW = EditGroupView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.toolbar.configuration.item_select('Edit this Group')

@navigator.register(Group, 'EditTags')
[docs]class GroupTagsEdit(CFMENavigateStep):
 VIEW = GroupEditTagsView

 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.toolbar.policy.item_select(
 "Edit 'My Company' Tags for this Group")

^^
END RBAC GROUP METHODS
##

##
RBAC ROLE METHODS
##
[docs]class RoleForm(ConfigurationView):
 """ Role Form for CFME UI """
 name_txt = Input(name='name')
 vm_restriction_select = BootstrapSelect(id='vm_restriction')
 product_features_tree = CheckableBootstrapTreeview("features_treebox")

 cancel_button = Button('Cancel')

[docs]class AddRoleView(RoleForm):
 """ Add Role View """
 add_button = Button('Add')

 @property
 def is_displayed(self):
 return (
 self.accordions.accesscontrol.is_opened and
 self.title.text == 'Adding a new Role'
)

[docs]class EditRoleView(RoleForm):
 """ Edit Role View """
 save_button = Button('Save')
 reset_button = Button('Reset')

 @property
 def is_displayed(self):
 return (
 self.accordions.accesscontrol.is_opened and
 self.title.text == 'Editing Role "{}"'.format(self.context['object'].name)
)

[docs]class DetailsRoleView(RoleForm):
 """ Details Role View """
 toolbar = View.nested(AccessControlToolbar)

 @property
 def is_displayed(self):
 return (
 self.accordions.accesscontrol.is_opened and
 self.title.text == 'Role "{}"'.format(self.context['object'].name)
)

[docs]class AllRolesView(ConfigurationView):
 """ All Roles View """
 toolbar = View.nested(AccessControlToolbar)
 table = Table("//div[@id='main_div']//table")

 @property
 def is_displayed(self):
 return (
 self.accordions.accesscontrol.is_opened and
 self.title.text == 'Access Control Roles'
)

[docs]class Role(Updateable, Pretty, Navigatable):
 """ Represents a role in CFME UI

 Args:
 name: role name
 vm_restriction: restriction used for role
 product_features: product feature to select
 appliance: appliance unter test
 """

 pretty_attrs = ['name', 'product_features']

 def __init__(self, name=None, vm_restriction=None, product_features=None, appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.name = name
 self.vm_restriction = vm_restriction
 self.product_features = product_features or []

[docs] def create(self, cancel=False):
 """ Create role method
 Args:
 cancel: True - if you want to cancel role creation,
 by default, role will be created
 Throws:
 RBACOperationBlocked: If operation is blocked due to current user
 not having appropriate permissions OR update is not allowed
 for currently selected role
 """
 flash_blocked_msg = "Name has already been taken"

 view = navigate_to(self, 'Add')
 view.fill({'name_txt': self.name,
 'vm_restriction_select': self.vm_restriction})
 self.set_role_product_features(view, self.product_features)
 if cancel:
 view.cancel_button.click()
 flash_message = 'Add of new Role was cancelled by the user'
 else:
 view.add_button.click()
 flash_message = 'Role "{}" was saved'.format(self.name)
 view = self.create_view(AllRolesView)

 try:
 view.flash.assert_message(flash_blocked_msg)
 raise RBACOperationBlocked(flash_blocked_msg)
 except AssertionError:
 pass

 view.flash.assert_success_message(flash_message)

 assert view.is_displayed

[docs] def update(self, updates):
 """ Update role method

 Args:
 updates: role data that should be changed

 Note: In case updates is the same as original role data, update will be canceled,
 as 'Save' button will not be active
 """
 flash_blocked_msg = "Read Only Role \"{}\" can not be edited".format(self.name)
 edit_role_txt = 'Edit this Role'

 view = navigate_to(self, 'Details')
 if not view.toolbar.configuration.item_enabled(edit_role_txt):
 raise RBACOperationBlocked("Configuration action '{}' is not enabled".format(
 edit_role_txt))

 view = navigate_to(self, 'Edit')
 try:
 view.flash.assert_message(flash_blocked_msg)
 raise RBACOperationBlocked(flash_blocked_msg)
 except AssertionError:
 pass

 changed = view.fill({
 'name_txt': updates.get('name'),
 'vm_restriction_select': updates.get('vm_restriction')
 })
 feature_changed = self.set_role_product_features(view, updates.get('product_features'))
 if changed or feature_changed:
 view.save_button.click()
 flash_message = 'Role "{}" was saved'.format(updates.get('name', self.name))
 else:
 view.cancel_button.click()
 flash_message = 'Edit of Role was cancelled by the user'
 view = self.create_view(DetailsRoleView, override=updates)
 view.flash.assert_message(flash_message)
 assert view.is_displayed

[docs] def delete(self, cancel=True):
 """ Delete existing role
 Args:
 cancel: Default value 'True', role will be deleted
 'False' - deletion of role will be canceled
 Throws:
 RBACOperationBlocked: If operation is blocked due to current user
 not having appropriate permissions OR delete is not allowed
 for currently selected role
 """
 flash_blocked_msg = ("Role \"{}\": Error during delete: Cannot delete record "
 "because of dependent entitlements".format(self.name))
 flash_success_msg = 'Role "{}": Delete successful'.format(self.name)
 delete_role_txt = 'Delete this Role'

 view = navigate_to(self, 'Details')

 if not view.toolbar.configuration.item_enabled(delete_role_txt):
 raise RBACOperationBlocked("Configuration action '{}' is not enabled".format(
 delete_role_txt))

 view.toolbar.configuration.item_select(delete_role_txt, handle_alert=cancel)
 try:
 view.flash.assert_message(flash_blocked_msg)
 raise RBACOperationBlocked(flash_blocked_msg)
 except AssertionError:
 pass

 view.flash.assert_message(flash_success_msg)

 if cancel:
 view = self.create_view(AllRolesView)
 view.flash.assert_success_message(flash_success_msg)
 else:
 view = self.create_view(DetailsRoleView)
 assert view.is_displayed

[docs] def copy(self, name=None):
 """ Creates copy of existing role

 Returns: Role object of copied role
 """
 if name is None:
 name = "{}_copy".format(self.name)
 view = navigate_to(self, 'Details')
 view.toolbar.configuration.item_select('Copy this Role to a new Role')
 view = self.create_view(AddRoleView)
 new_role = Role(name=name)
 view.fill({'name_txt': new_role.name})
 view.add_button.click()
 view = self.create_view(AllRolesView)
 view.flash.assert_success_message('Role "{}" was saved'.format(new_role.name))
 assert view.is_displayed
 return new_role

[docs] def set_role_product_features(self, view, product_features):
 """ Sets product features for role restriction

 Args:
 view: AddRoleView or EditRoleView
 product_features: list of product features with options to select
 """
 feature_update = False
 if product_features is not None and isinstance(product_features, (list, tuple, set)):
 for path, option in product_features:
 if option:
 view.product_features_tree.check_node(*path)
 else:
 view.product_features_tree.uncheck_node(*path)
 feature_update = True
 return feature_update

@navigator.register(Role, 'All')
[docs]class RoleAll(CFMENavigateStep):
 VIEW = AllRolesView
 prerequisite = NavigateToAttribute('appliance.server', 'Configuration')

[docs] def step(self):
 self.prerequisite_view.accordions.accesscontrol.tree.click_path(
 self.obj.appliance.server_region_string(), 'Roles')

@navigator.register(Role, 'Add')
[docs]class RoleAdd(CFMENavigateStep):
 VIEW = AddRoleView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.toolbar.configuration.item_select("Add a new Role")

@navigator.register(Role, 'Details')
[docs]class RoleDetails(CFMENavigateStep):
 VIEW = DetailsRoleView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.accordions.accesscontrol.tree.click_path(
 self.obj.appliance.server_region_string(), 'Roles', self.obj.name)

@navigator.register(Role, 'Edit')
[docs]class RoleEdit(CFMENavigateStep):
 VIEW = EditRoleView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.toolbar.configuration.item_select('Edit this Role')

##
RBAC TENANT METHODS
^^
[docs]class TenantForm(ConfigurationView):
 """ Tenant Form """
 name = Input(name='name')
 description = Input(name='description')

 cancel_button = Button('Cancel')

[docs]class TenantQuotaForm(View):
 cpu_cb = BootstrapSwitch(id='cpu_allocated')
 memory_cb = BootstrapSwitch(id='mem_allocated')
 storage_cb = BootstrapSwitch(id='storage_allocated')
 vm_cb = BootstrapSwitch(id='vms_allocated')
 template_cb = BootstrapSwitch(id='templates_allocated')
 cpu_txt = Input(id='id_cpu_allocated')
 memory_txt = Input(id='id_mem_allocated')
 storage_txt = Input(id='id_storage_allocated')
 vm_txt = Input(id='id_vms_allocated')
 template_txt = Input(id='id_templates_allocated')

[docs]class TenantQuotaView(ConfigurationView):
 """ Tenant Quota View """
 form = View.nested(TenantQuotaForm)

 save_button = Button('Save')
 reset_button = Button('Reset')
 cancel_button = Button('Cancel')

 @property
 def is_displayed(self):
 return (
 self.form.template_cb.is_displayed and
 self.title.text == 'Manage quotas for Tenant "{}"'.format(self.context['object'].name)
)

[docs]class AllTenantView(ConfigurationView):
 """ All Tenants View """
 toolbar = View.nested(AccessControlToolbar)

 @property
 def is_displayed(self):
 return (
 self.accordions.accesscontrol.is_opened and
 self.title.text == 'Access Control Tenants'
)

[docs]class AddTenantView(TenantForm):
 """ Add Tenant View """
 add_button = Button('Add')

 @property
 def is_displayed(self):
 return (
 self.accordions.accesscontrol.is_opened and
 self.title.text == 'Adding a new Tenant'
)

[docs]class DetailsTenantView(ConfigurationView):
 """ Details Tenant View """
 toolbar = View.nested(AccessControlToolbar)

 @property
 def is_displayed(self):
 return (
 self.accordions.accesscontrol.is_opened and
 self.title.text == 'Tenant "{}"'.format(self.context['object'].name)
)

[docs]class ParentDetailsTenantView(DetailsTenantView):
 """ Parent Tenant Details View """
 @property
 def is_displayed(self):
 return (
 self.accordions.accesscontrol.is_opened and
 self.title.text == 'Tenant "{}"'.format(self.context['object'].parent_tenant.name)
)

[docs]class EditTenantView(TenantForm):
 """ Edit Tenant View """
 save_button = Button('Save')
 reset_button = Button('Reset')

 @property
 def is_displayed(self):
 return (
 self.accordions.accesscontrol.is_opened and
 self.title.text == 'Editing Tenant "{}"'.format(self.context['object'].name)
)

[docs]class Tenant(Updateable, Pretty, Navigatable):
 """ Class representing CFME tenants in the UI.
 * Kudos to mfalesni *

 The behaviour is shared with Project, which is the same except it cannot create more nested
 tenants/projects.

 Args:
 name: Name of the tenant
 description: Description of the tenant
 parent_tenant: Parent tenant, can be None, can be passed as string or object
 """
 pretty_attrs = ["name", "description"]

 @classmethod
[docs] def get_root_tenant(cls):
 return cls(name="My Company", _default=True)

 def __init__(self, name=None, description=None, parent_tenant=None, _default=False,
 appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.name = name
 self.description = description
 self.parent_tenant = parent_tenant
 self._default = _default

 @property
 def parent_tenant(self):
 if self._default:
 return None
 if self._parent_tenant:
 return self._parent_tenant
 return self.get_root_tenant()

 @parent_tenant.setter
 def parent_tenant(self, tenant):
 if tenant is not None and isinstance(tenant, Project):
 # If we try to
 raise ValueError("Project cannot be a parent object.")
 if isinstance(tenant, basestring):
 # If parent tenant is passed as string,
 # we assume that tenant name was passed instead of object
 tenant = Tenant(tenant)
 self._parent_tenant = tenant

 def __eq__(self, other):
 if not isinstance(other, type(self)):
 return False
 else:
 return self.name == other.name

 @property
 def exists(self):
 try:
 navigate_to(self, 'Details')
 return True
 except CandidateNotFound:
 return False

 @property
 def tree_path(self):
 if self._default:
 return [self.name]
 else:
 return self.parent_tenant.tree_path + [self.name]

 @property
 def parent_path(self):
 return self.tree_path[:-1]

[docs] def create(self, cancel=False):
 """ Create role method

 Args:
 cancel: True - if you want to cancel role creation,
 by defaul(False), role will be created
 """
 if self._default:
 raise ValueError("Cannot create the root tenant {}".format(self.name))

 view = navigate_to(self, 'Add')
 view.fill({'name': self.name,
 'description': self.description})
 if cancel:
 view.cancel_button.click()
 tenant_flash_message = 'Add of new Tenant was cancelled by the user'
 project_flash_message = 'Add of new Project was cancelled by the user'
 else:
 view.add_button.click()
 tenant_flash_message = 'Tenant "{}" was saved'.format(self.name)
 project_flash_message = 'Project "{}" was saved'.format(self.name)
 view = self.create_view(ParentDetailsTenantView)
 if isinstance(self, Tenant):
 view.flash.assert_success_message(tenant_flash_message)
 elif isinstance(self, Project):
 view.flash.assert_success_message(project_flash_message)
 else:
 raise TypeError(
 'No Tenant or Project class passed to create method{}'.format(
 type(self).__name__))
 assert view.is_displayed

[docs] def update(self, updates):
 """ Update tenant/project method

 Args:
 updates: tenant/project data that should be changed

 Note: In case updates is the same as original tenant/project data, update will be canceled,
 as 'Save' button will not be active
 """
 view = navigate_to(self, 'Edit')
 changed = view.fill(updates)
 if changed:
 view.save_button.click()
 flash_message = 'Project "{}" was saved'.format(updates.get('name', self.name))
 else:
 view.cancel_button.click()
 flash_message = 'Edit of Project "{}" was cancelled by the user'.format(
 updates.get('name', self.name))
 view = self.create_view(DetailsTenantView, override=updates)
 view.flash.assert_message(flash_message)
 assert view.is_displayed

[docs] def delete(self, cancel=True):
 """ Delete existing role

 Args:
 cancel: Default value 'True', role will be deleted
 'False' - deletion of role will be canceled
 """
 view = navigate_to(self, 'Details')
 view.toolbar.configuration.item_select(
 'Delete this item', handle_alert=cancel)
 if cancel:
 view = self.create_view(ParentDetailsTenantView)
 view.flash.assert_success_message(
 'Tenant "{}": Delete successful'.format(self.description))
 else:
 view = self.create_view(DetailsRoleView)
 assert view.is_displayed

[docs] def set_quota(self, **kwargs):
 """ Sets tenant quotas """
 view = navigate_to(self, 'ManageQuotas')
 wait_for(lambda: view.is_displayed, fail_condition=False, num_sec=5, delay=0.5)
 view.form.fill({'cpu_cb': kwargs.get('cpu_cb'),
 'cpu_txt': kwargs.get('cpu'),
 'memory_cb': kwargs.get('memory_cb'),
 'memory_txt': kwargs.get('memory'),
 'storage_cb': kwargs.get('storage_cb'),
 'storage_txt': kwargs.get('storage'),
 'vm_cb': kwargs.get('vm_cb'),
 'vm_txt': kwargs.get('vm'),
 'template_cb': kwargs.get('template_cb'),
 'template_txt': kwargs.get('template')})
 view.save_button.click()
 view = self.create_view(DetailsTenantView)
 view.flash.assert_success_message('Quotas for Tenant "{}" were saved'.format(self.name))
 assert view.is_displayed

@navigator.register(Tenant, 'All')
[docs]class TenantAll(CFMENavigateStep):
 VIEW = AllTenantView
 prerequisite = NavigateToAttribute('appliance.server', 'Configuration')

[docs] def step(self):
 self.prerequisite_view.accordions.accesscontrol.tree.click_path(
 self.obj.appliance.server_region_string(), 'Tenants')

@navigator.register(Tenant, 'Details')
[docs]class TenantDetails(CFMENavigateStep):
 VIEW = DetailsTenantView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.accordions.accesscontrol.tree.click_path(
 self.obj.appliance.server_region_string(), 'Tenants', *self.obj.tree_path)

@navigator.register(Tenant, 'Add')
[docs]class TenantAdd(CFMENavigateStep):
 VIEW = AddTenantView

 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.accordions.accesscontrol.tree.click_path(
 self.obj.appliance.server_region_string(), 'Tenants', *self.obj.parent_path)
 if isinstance(self.obj, Tenant):
 add_selector = 'Add child Tenant to this Tenant'
 elif isinstance(self.obj, Project):
 add_selector = 'Add Project to this Tenant'
 else:
 raise OptionNotAvailable('Object type unsupported for Tenant Add: {}'
 .format(type(self.obj).__name__))
 self.prerequisite_view.toolbar.configuration.item_select(add_selector)

@navigator.register(Tenant, 'Edit')
[docs]class TenantEdit(CFMENavigateStep):
 VIEW = EditTenantView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.toolbar.configuration.item_select('Edit this item')

@navigator.register(Tenant, 'ManageQuotas')
[docs]class TenantManageQuotas(CFMENavigateStep):
 VIEW = TenantQuotaView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.toolbar.configuration.item_select('Manage Quotas')

^^
END TENANT METHODS
##

##
RBAC PROJECT METHODS
^^
[docs]class Project(Tenant):
 """ Class representing CFME projects in the UI.

 Project cannot create more child tenants/projects.

 Args:
 name: Name of the project
 description: Description of the project
 parent_tenant: Parent project, can be None, can be passed as string or object
 """
 pass

^^
END PROJECT METHODS
##

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/configure/about.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.configure.about

-*- coding: utf-8 -*-
from widgetastic.widget import View
from widgetastic_patternfly import AboutModal

from cfme.exceptions import ElementOrBlockNotFound
from cfme.utils.appliance import current_appliance
from cfme.utils.appliance.implementations.ui import navigate_to

MIQ/CFME about field names
VERSION = 'Version'
SERVER = 'Server Name'
USER = 'User Name'
ROLE = 'User Role'
BROWSER = 'Browser'
BROWSER_VERSION = 'Browser Version'
BROWSER_OS = 'Browser OS'

[docs]class AboutView(View):
 """
 The view for the about modal
 """
 @property
 def is_displayed(self):
 return self.modal.is_open

 modal = AboutModal(id='aboutModal')

[docs]def get_detail(field):
 """
 Open the about modal and fetch the value for one of the fields
 'title' and 'trademark' fields are allowed and get the header/footer values
 Raises ElementOrBlockNotFound if the field isn't in the about modal
 :param field: string label for the detail field
 :return: string value from the requested field
 """
 view = navigate_to(current_appliance().server, 'About')

 try:
 if field.lower() in ['title', 'trademark']:
 return getattr(view.modal, field.lower())
 else:
 return view.modal.items()[field]
 except KeyError:
 raise ElementOrBlockNotFound('No field named {} found in "About" modal.'.format(field))
 finally:
 # close since its a blocking modal and will break further navigation
 view.modal.close()

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/configure/tasks.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.configure.tasks

-*- coding: utf-8 -*-

""" Module dealing with Configure/Tasks section.
"""
from functools import partial

from navmazing import NavigateToAttribute
from widgetastic.widget import View
from widgetastic_manageiq import BootstrapSelect, Button, CheckboxSelect, Table
from widgetastic_patternfly import Dropdown, Tab, FlashMessages

from cfme import web_ui as ui
from cfme.base.login import BaseLoggedInPage
from cfme.web_ui import toolbar as tb
import cfme.fixtures.pytest_selenium as sel
from cfme.web_ui import Form, Region, CheckboxTable, fill, match_location
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to
from cfme.utils.log import logger
from cfme.utils.wait import wait_for, TimedOutError

buttons = Region(
 locators={
 'default': '//*[@id="buttons_off"]/a',
 'apply': '//*[@id="buttons_on"]/a[1]',
 'reset': '//*[@id="buttons_on"]/a[2]'
 }
)

filter_form = Form(
 fields=[
 ("zone", ui.Select("//select[@id='chosen_zone']")),
 ("user", ui.Select("//select[@id='user_choice']")),
 ("time_period", ui.Select("//select[@id='time_period']")),
 ("task_status_queued", ui.Input('queued')),
 ("task_status_running", ui.Input('running')),
 ("task_status_ok", ui.Input('ok')),
 ("task_status_error", ui.Input('error')),
 ("task_status_warn", ui.Input('warn')),
 ("task_state", ui.Select("//select[@id='state_choice']")),
]
)

table_loc = '//div[@id="records_div"]/table'

match_page = partial(match_location, controller='miq_task')

tasks_table = CheckboxTable(
 table_locator='//div[@id="records_div"]/table[thead]',
 header_checkbox_locator="//div[@id='records_div']//input[@id='masterToggle']"
)

TODO move these into Task class
def _filter(
 zone=None,
 user=None,
 time_period=None,
 task_status_queued=None,
 task_status_running=None,
 task_status_ok=None,
 task_status_error=None,
 task_status_warn=None,
 task_state=None):
 """ Does filtering of the results in table. Needs to be on the correct page before called.

 If there was no change in the form and the apply button does not appear, nothing happens.

 Args:
 zone: Value for 'Zone' select
 user: Value for 'User' select
 time_period: Value for 'Time period' select.
 task_status_*: :py:class:`bool` values for checkboxes
 task_state: Value for 'Task State' select.
 """
 fill(filter_form, locals())
 try:
 wait_for(lambda: sel.is_displayed(buttons.apply), num_sec=5)
 sel.click(buttons.apply)
 except TimedOutError:
 pass

[docs]def is_vm_analysis_finished(name, **kwargs):
 return is_analysis_finished(name=name, task_type='vm', **kwargs)

[docs]def is_host_analysis_finished(name, **kwargs):
 return is_analysis_finished(name=name, task_type='host', **kwargs)

[docs]def is_datastore_analysis_finished(name, **kwargs):
 return is_analysis_finished(name=name, task_type='datastore', **kwargs)

[docs]def is_cluster_analysis_finished(name, **kwargs):
 return is_analysis_finished(name=name, task_type='cluster', **kwargs)

[docs]def delete_all_tasks(destination):
 view = navigate_to(Tasks, destination)
 view.delete.item_select('Delete All', handle_alert=True)

[docs]def is_task_finished(destination, task_name, expected_status, clear_tasks_after_success=True):
 view = navigate_to(Tasks, destination)
 tab_view = getattr(view.tabs, destination.lower())
 try:
 row = tab_view.table.row(task_name=task_name, state=expected_status)
 except IndexError:
 logger.warn('IndexError exception suppressed when searching for task row, no match found.')
 return False

 # throw exception if error in message
 message = row.message.text.lower()
 if 'error' in message:
 raise Exception("Task {} error: {}".format(task_name, message))
 elif 'timed out' in message:
 raise TimedOutError("Task {} timed out: {}".format(task_name, message))
 elif 'failed' in message:
 raise Exception("Task {} has a failure: {}".format(task_name, message))

 if clear_tasks_after_success:
 # Remove all finished tasks so they wouldn't poison other tests
 delete_all_tasks(destination)

 return True

[docs]def is_analysis_finished(name, task_type='vm', clear_tasks_after_success=True):
 """ Check if analysis is finished - if not, reload page"""

 tabs_data = {
 'container': {
 'tab': 'AllTasks',
 'task': '{}',
 'state': 'finished'
 },
 'vm': {
 'tab': 'AllTasks',
 'task': 'Scan from Vm {}',
 'state': 'finished'
 },
 'host': {
 'tab': 'MyOtherTasks',
 'task': "SmartState Analysis for '{}'",
 'state': 'Finished'
 },
 'datastore': {
 'tab': 'MyOtherTasks',
 'task': 'SmartState Analysis for [{}]',
 'state': "Finished"
 },
 'cluster': {
 'tab': 'MyOtherTasks',
 'task': 'SmartState Analysis for [{}]',
 'state': "Finished"}
 }[task_type]
 return is_task_finished(destination=tabs_data['tab'],
 task_name=tabs_data['task'].format(name),
 expected_status=tabs_data['state'],
 clear_tasks_after_success=clear_tasks_after_success)

[docs]def wait_analysis_finished(task_name, task_type, delay=5, timeout='5M'):
 """ Wait until analysis is finished (or timeout exceeded)"""
 wait_for(lambda: is_analysis_finished(task_name, task_type),
 delay=delay, timeout=timeout, fail_func=tb.refresh)

[docs]class TasksView(BaseLoggedInPage):
 flash = FlashMessages('.//div[starts-with(@id, "flash_text_div")]')
 # Toolbar
 delete = Dropdown('Delete Tasks') # dropdown just has icon, use element title
 reload = Button(title='Reload the current display')

 @View.nested
 class tabs(View): # noqa
 # Extra Toolbar
 # Only on 'All' type tabs, but for access it doesn't make sense to access the tab for a
 # toolbar button
 cancel = Button(title='Cancel the selected task')

 # Form Buttons
 apply = Button('Apply')
 reset = Button('Reset')
 default = Button('Default')

 # Filters
 zone = BootstrapSelect(id='chosen_zone')
 period = BootstrapSelect(id='time_period')
 user = BootstrapSelect(id='user_choice')
 # This checkbox search_root captures all the filter options
 # It will break for status if/when there is second checkbox selection field added
 # It's the lowest level div with an id that captures the status checkboxes
 status = CheckboxSelect(search_root='tasks_options_div')
 state = BootstrapSelect(id='state_choice')

 @View.nested
 class mytasks(Tab): # noqa
 TAB_NAME = "My VM and Container Analysis Tasks"
 table = Table(table_loc)

 @View.nested
 class myothertasks(Tab): # noqa
 TAB_NAME = "My Other UI Tasks"
 table = Table(table_loc)

 @View.nested
 class alltasks(Tab): # noqa
 TAB_NAME = "All VM and Container Analysis Tasks"
 table = Table(table_loc)

 @View.nested
 class allothertasks(Tab): # noqa
 TAB_NAME = "All Other Tasks"
 table = Table(table_loc)

 @property
 def is_displayed(self):
 return (
 self.tabs.mytasks.is_displayed and
 self.tabs.myothertasks.is_displayed and
 self.tabs.alltasks.is_displayed and
 self.tabs.allothertasks.is_displayed)

[docs]class Tasks(Navigatable):
 pass

@navigator.register(Tasks, 'MyTasks')
[docs]class MyTasks(CFMENavigateStep):
 VIEW = TasksView
 prerequisite = NavigateToAttribute('appliance.server', 'Tasks')

[docs] def step(self, *args, **kwargs):
 self.view.tabs.mytasks.select()

[docs] def am_i_here(self):
 return match_page(title='My Tasks') and self.view.tabs.mytasks.is_active()

@navigator.register(Tasks, 'MyOtherTasks')
[docs]class MyOtherTasks(CFMENavigateStep):
 VIEW = TasksView
 prerequisite = NavigateToAttribute('appliance.server', 'Tasks')

[docs] def step(self, *args, **kwargs):
 self.view.tabs.myothertasks.select()

[docs] def am_i_here(self):
 return match_page(title='My UI Tasks') and self.view.tabs.myothertasks.is_active()

@navigator.register(Tasks, 'AllTasks')
[docs]class AllTasks(CFMENavigateStep):
 VIEW = TasksView
 prerequisite = NavigateToAttribute('appliance.server', 'Tasks')

[docs] def step(self, *args, **kwargs):
 self.view.tabs.alltasks.select()

[docs] def am_i_here(self):
 return match_page(title='All Tasks') and self.view.tabs.alltasks.is_active()

@navigator.register(Tasks, 'AllOtherTasks')
[docs]class AllOtherTasks(CFMENavigateStep):
 VIEW = TasksView
 prerequisite = NavigateToAttribute('appliance.server', 'Tasks')

[docs] def step(self, *args, **kwargs):
 self.view.tabs.allothertasks.select()

[docs] def am_i_here(self):
 return match_page(title='All UI Tasks') and self.view.tabs.allothertasks.is_active()

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/configure/configuration/region_settings.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.configure.configuration »

 Source code for cfme.configure.configuration.region_settings

import re

from navmazing import NavigateToAttribute, NavigateToSibling
from widgetastic_patternfly import Input, BootstrapSelect, Button, BootstrapSwitch
TODO replace with dynamic table
from widgetastic_manageiq import VanillaTable, SummaryFormItem, Table
from widgetastic.widget import Checkbox, Text

from cfme.base.ui import RegionView
from cfme.utils.appliance import BaseCollection, Navigatable
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to
from cfme.utils.pretty import Pretty
from cfme.utils.update import Updateable

=====================================CATEGORY===================================

[docs]class CompanyCategoriesAllView(RegionView):
 """Company Categories List View"""
 add_button = Button('Add')
 table = VanillaTable('//div[@id="settings_co_categories"]/table')

 @property
 def is_displayed(self):
 return (
 self.companycategories.is_active() and
 self.table.is_displayed
)

[docs]class CompanyCategoriesAddView(CompanyCategoriesAllView):
 """ Add Company Categories View"""
 name = Input(id='name')
 display_name = Input(id='description')
 long_description = Input(id='example_text')
 show_in_console = BootstrapSwitch(id='show')
 single_value = BootstrapSwitch(id='single_value')
 capture_candu = BootstrapSwitch(id='perf_by_tag')

 cancel_button = Button('Cancel')

 @property
 def is_displayed(self):
 return (
 self.companycategories.is_active() and
 self.name.is_displayed
)

[docs]class CompanyCategoriesEditView(CompanyCategoriesAddView):
 """Edit Company Categories View"""
 save_button = Button('Save')
 reset_button = Button('Reset')

 @property
 def is_displayed(self):
 return (
 self.companycategories.is_active() and
 self.name.is_displayed and
 self.save_button.is_displayed
)

[docs]class Category(Pretty, Navigatable, Updateable):
 """ Class represents a category in CFME UI

 Args:
 name: Name of the category
 display_name: Category display name
 description: Category description
 show_in_console: Option to show category in console (True/False)
 single_value: Option if category is single value (True/False)
 capture_candu: True/False, capture c&u data by tag

 """
 pretty_attrs = ['name', 'display_name', 'description', 'show_in_console',
 'single_value', 'capture_candu']

 def __init__(self, name=None, display_name=None, description=None, show_in_console=True,
 single_value=True, capture_candu=False, appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.name = name
 self.display_name = display_name
 self.description = description
 self.show_in_console = show_in_console
 self.single_value = single_value
 self.capture_candu = capture_candu

 def _form_mapping(self, **kwargs):
 """Returns dist used to fill forms """
 return {
 'name': kwargs.get('name'),
 'display_name': kwargs.get('display_name'),
 'long_description': kwargs.get('description'),
 'show_in_console': kwargs.get('show_in_console'),
 'single_value': kwargs.get('single_value'),
 'capture_candu': kwargs.get('capture_candu'),
 }

[docs] def create(self, cancel=False):
 """ Create category method

 Args:
 cancel: To cancel creation pass True, cancellation message will be verified
 By defaul user will be created
 """
 view = navigate_to(self, 'Add')
 view.fill(self._form_mapping(**self.__dict__))

 if cancel:
 view.cancel_button.click()
 flash_message = 'Add of new Category was cancelled by the user'
 else:
 view.add_button.click()
 flash_message = 'Category "{}" was added'.format(self.display_name)

 view = self.create_view(CompanyCategoriesAllView)
 view.flash.assert_success_message(flash_message)

[docs] def update(self, updates, cancel=False):
 """ Update category method

 Args:
 updates: category data that should be changed
 """
 view = navigate_to(self, 'Edit')
 view.fill(self._form_mapping(**updates))
 if cancel:
 view.cancel_button.click()
 flash_message = 'Edit of Category "{}" was cancelled by the user'.format(self.name)
 else:
 view.save_button.click()
 flash_message = 'Category "{}" was saved'.format(self.name)

 view = self.create_view(CompanyCategoriesAllView)
 view.flash.assert_success_message(flash_message)

[docs] def delete(self, cancel=True):
 """ Delete existing category

 Args:
 cancel: Default value 'True', category will be deleted
 'False' - deletion of category will be canceled
 """
 view = navigate_to(self, 'All')
 row = view.table.row(name=self.name)
 row.actions.click()
 view.browser.handle_alert(cancel=cancel)
 if not cancel:
 view.flash.assert_success_message('Category "{}": Delete successful'.format(self.name))

@navigator.register(Category, 'All')
[docs]class CategoryAll(CFMENavigateStep):
 VIEW = CompanyCategoriesAllView
 prerequisite = NavigateToAttribute('appliance.server.zone.region', 'Details')

[docs] def step(self):
 self.prerequisite_view.companycategories.select()

@navigator.register(Category, 'Add')
[docs]class CategoryAdd(CFMENavigateStep):
 VIEW = CompanyCategoriesAddView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.add_button.click()

@navigator.register(Category, 'Edit')
[docs]class CategoryEdit(CFMENavigateStep):
 VIEW = CompanyCategoriesEditView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.table.row(name=self.obj.name).click()

=======================================TAGS===

[docs]class CompanyTagsAllView(RegionView):
 """Company Tags list view"""
 category_dropdown = BootstrapSelect('classification_name')
 table = VanillaTable('//div[@id="classification_entries_div"]/table')
 add_button = Button('Add')

 cancel_button = Button('Cancel')

 @property
 def is_displayed(self):
 return (
 self.companycategories.is_active() and
 self.table.is_displayed
)

[docs]class CompanyTagsAddView(CompanyTagsAllView):
 """Add Company Tags view"""
 tag_name = Input(id='entry_name')
 tag_description = Input(id='entry_description')

 @property
 def is_displayed(self):
 return (
 self.companycategories.is_active() and
 self.tag_name.is_displayed
)

[docs]class CompanyTagsEditView(CompanyTagsAddView):
 """Edit Company Tags view"""
 save_button = Button('Save')
 reset_button = Button('Reset')

[docs]class Tag(Pretty, Navigatable, Updateable):
 """ Class represents a category in CFME UI
 Args:
 name: Name of the tag
 display_name: Tag display name
 category: Tags Category

 """
 pretty_attrs = ['name', 'display_name', 'category']

 def __init__(self, name=None, display_name=None, category=None, appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.name = name
 self.display_name = display_name
 self.category = category

 def _form_mapping(self, **kwargs):
 """Returns dist used to fill forms """
 return {
 'tag_name': kwargs.get('name'),
 'tag_description': kwargs.get('display_name')
 }

[docs] def create(self):
 """ Create category method """
 view = navigate_to(self, 'Add')
 view.fill(self._form_mapping(**self.__dict__))
 view.add_button.click()

[docs] def update(self, updates):
 """ Update category method """
 view = navigate_to(self, 'Edit')
 view.fill(self._form_mapping(**updates))
 view.save_button.click()

[docs] def delete(self, cancel=True):
 """ Delete category method """
 view = navigate_to(self, 'All')
 row = view.table.row(name=self.name)
 row.actions.click()
 view.browser.handle_alert(cancel=cancel)

@navigator.register(Tag, 'All')
[docs]class TagsAll(CFMENavigateStep):
 VIEW = CompanyTagsAllView
 prerequisite = NavigateToAttribute('appliance.server.zone.region', 'Details')

[docs] def step(self):
 self.prerequisite_view.companytags.select()
 self.view.fill({'category_dropdown': self.obj.category.display_name})

@navigator.register(Tag, 'Add')
[docs]class TagsAdd(CFMENavigateStep):
 VIEW = CompanyTagsAddView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.add_button.click()

@navigator.register(Tag, 'Edit')
[docs]class TagsEdit(CFMENavigateStep):
 VIEW = CompanyTagsEditView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.table.row(name=self.obj.name).click()

=======================================MAP TAGS==

[docs]class MapTagsAllView(RegionView):
 """Map Tags list view"""
 table = VanillaTable('//div[@id="settings_label_tag_mapping"]/table')
 add_button = Button('Add')

 @property
 def is_displayed(self):
 return (
 self.maptags.is_active() and
 self.table.is_displayed
)

[docs]class MapTagsAddView(RegionView):
 """Add Map Tags view"""
 resource_entity = BootstrapSelect(id='entity')
 resource_label = Input(id='label_name')
 category = Input(id='category')

 add_button = Button('Add')
 cancel_button = Button('Cancel')

 @property
 def is_displayed(self):
 return (
 self.maptags.is_active() and
 self.resource_entity.is_displayed
)

[docs]class MapTagsEditView(MapTagsAddView):
 """Edit Map Tags view"""
 save_button = Button('Save')
 reset_button = Button('Reset')

[docs]class MapTags(Navigatable, Pretty, Updateable):
 """ Class represents a category in CFME UI

 Args:
 entity: Name of the tag
 label: Tag display name
 category: Tags Category

 """
 pretty_attrs = ['entity', 'label', 'category']

 def __init__(self, entity=None, label=None, category=None, appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.entity = entity
 self.label = label
 self.category = category

 def _form_mapping(self, **kwargs):
 """Returns dist used to fill forms """
 return {
 'resource_entity': kwargs.get('entity'),
 'resource_label': kwargs.get('label'),
 'category': kwargs.get('category')
 }

[docs] def create(self, cancel=False):
 """ Map tags creation method

 Args:
 cancel: True - if you want to cancel map creation,
 by defaul map will be created
 """
 view = navigate_to(self, 'Add')
 view.fill(self._form_mapping(**self.__dict__))

 if cancel:
 view.cancel_button.click()
 flash_message = 'Add of new Container Label Tag Mapping was cancelled by the user'
 else:
 view.add_button.click()
 flash_message = 'Container Label Tag Mapping "{}" was added'.format(self.label)

 view = self.create_view(MapTagsAllView)
 view.flash.assert_success_message(flash_message)

[docs] def update(self, updates, cancel=False):
 """ Update tag map method

 Args:
 updates: tag map data that should be changed
 cancel: True - if you want to cancel map edition,
 by defaul map will be updated
 """
 view = navigate_to(self, 'Edit')
 # only category can be updated, as other fields disabled by default
 view.fill({
 'category': updates.get('category')
 })

 if cancel:
 view.cancel_button.click()
 flash_message = (
 'Edit of Container Label Tag Mapping "{}" was cancelled by the user'.format(
 self.label)
)
 else:
 view.save_button.click()
 flash_message = 'Container Label Tag Mapping "{}" was saved'.format(self.label)

 view = self.create_view(MapTagsAllView, override=updates)
 view.flash.assert_success_message(flash_message)

[docs] def delete(self, cancel=False):
 """ Delete existing user

 Args:
 cancel: Default value 'False', map will be deleted
 'True' - map will not be deleted
 """
 view = navigate_to(self, 'All')
 row = view.table.row(tag_category=self.category)
 row.actions.click()
 view.browser.handle_alert(cancel=cancel)

 if not cancel:
 view = self.create_view(MapTagsAllView)
 view.flash.assert_success_message(
 'Container Label Tag Mapping "{}": Delete successful'.format(self.label))

@navigator.register(MapTags, 'All')
[docs]class MapTagsAll(CFMENavigateStep):
 VIEW = MapTagsAllView
 prerequisite = NavigateToAttribute('appliance.server.zone.region', 'Details')

[docs] def step(self):
 self.prerequisite_view.maptags.select()

@navigator.register(MapTags, 'Add')
[docs]class MapTagsAdd(CFMENavigateStep):
 VIEW = MapTagsAddView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.add_button.click()

@navigator.register(MapTags, 'Edit')
[docs]class MapTagsEdit(CFMENavigateStep):
 VIEW = MapTagsEditView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.table.row(tag_category=self.obj.category).click()

====================Red Hat Updates===================================

[docs]class RedHatUpdatesView(RegionView):
 """Red Hat Updates details view"""
 title = Text('//div[@id="main-content"]//h3[1]')
 available_update_version = Text('//td[contains(text(), "Available Product version:")]')
 edit_registration = Button('Edit Registration')
 refresh = Button('Refresh List')
 check_for_updates = Button('Check for Updates')
 register = Button('Register')
 apply_cfme_update = Button('Apply CFME Update')
 updates_table = Table('.table.table-striped.table-bordered')
 repository_names_info = SummaryFormItem('Red Hat Software Updates', 'Repository Name(s)')

 @property
 def is_displayed(self):
 return (
 self.redhatupdates.is_active() and
 self.edit_registration.is_displayed and
 self.title.text == 'Red Hat Software Updates'
)

[docs]class RedHatUpdatesEditView(RegionView):
 """Red Hat Updates edit view"""
 title = Text('//div[@id="main-content"]//h3[1]')

 register_to = BootstrapSelect(id='register_to')
 url = Input(id='server_url')
 repo_name = Input(id='repo_name')
 use_proxy = Checkbox('use_proxy')
 proxy_url = Input(id='proxy_address')
 proxy_username = Input(id='proxy_userid')
 proxy_password = Input(id='proxy_password')
 proxy_password_verify = Input(id='proxy_password2')
 username = Input(id='customer_userid')
 password = Input(id='customer_password')
 password_verify = Input(id='customer_password2')

 repo_default_name = Button(id='repo_default_name')
 rhn_default_url = Button(id='rhn_default_button')

 validate_button = Button('Validate')
 reset_button = Button('Reset')
 save_button = Button('Save')
 cancel_button = Button('Cancel')

 @property
 def is_displayed(self):
 return (
 self.redhatupdates.is_active() and
 self.validate_button.is_displayed and
 self.title.text == 'Red Hat Software Updates'
)

[docs]class RedHatUpdates(Navigatable, Pretty):
 """ Class represents a Red Hat updates tab in CFME UI

 Args:
 service: Service type (registration method).
 url: Service server URL address.
 username: Username to use for registration.
 password: Password to use for registration.
 password_verify: 2nd entry of password for verification. Same as 'password' if None.
 repo_name: Repository/channel to enable.
 organization: Organization (sat6 only).
 use_proxy: `True` if proxy should be used, `False` otherwise (default `False`).
 proxy_url: Address of the proxy server.
 proxy_username: Username for the proxy server.
 proxy_password: Password for the proxy server.
 proxy_password_verify: 2nd entry of proxy server password for verification.
 Same as 'proxy_password' if None.
 set_default_rhsm_address: Click the Default button connected to
 the RHSM (only) address if `True`
 set_default_repository: Click the Default button connected to the repo/channel if `True`

 Note:
 With satellite 6, it is necessary to validate credentials to obtain
 available organizations from the server.
 With satellite 5, 'validate' parameter is ignored because there is
 no validation button available.
 """

 pretty_attrs = ['service', 'url', 'username', 'password']
 service_types = {
 'rhsm': 'Red Hat Subscription Management',
 'sat6': 'Red Hat Satellite 6'
 }

 def __init__(self, service, url, username, password, password_verify=None, repo_name=None,
 organization=None, use_proxy=False, proxy_url=None, proxy_username=None,
 proxy_password=None, proxy_password_verify=None,
 set_default_rhsm_address=False,
 set_default_repository=False, appliance=None):
 self.service = service
 self.url = url
 self.username = username
 self.password = password
 self.password_verify = password_verify
 self.repo_name = repo_name
 self.organization = organization
 self.use_proxy = use_proxy
 self.proxy_url = proxy_url
 self.proxy_username = proxy_username
 self.proxy_password = proxy_password
 self.proxy_password_verify = proxy_password_verify
 self.set_default_rhsm_address = set_default_rhsm_address
 self.set_default_repository = set_default_repository
 Navigatable.__init__(self, appliance=appliance)

[docs] def update_registration(self, validate=True, cancel=False):
 """ Fill in the registration form, validate and save/cancel

 Args:
 validate: Click the Validate button and check the
 flash message for errors if `True` (default `True`)
 cancel: Click the Cancel button if `True` or the Save button
 if `False` (default `False`)
 """
 assert self.service in self.service_types, "Unknown service type '{}'".format(
 self.service)
 service_value = self.service_types[self.service]

 password_verify = self.password_verify or self.password
 proxy_password_verify = self.proxy_password_verify or self.proxy_password

 view = navigate_to(self, 'Edit')
 details = {
 'register_to': service_value,
 'url': self.url,
 'username': self.username,
 'password': self.password,
 'password_verify': password_verify,
 'repo_name': self.repo_name,
 'use_proxy': self.use_proxy,
 'proxy_url': self.proxy_url,
 'proxy_username': self.proxy_username,
 'proxy_password': self.proxy_password,
 'proxy_password_verify': proxy_password_verify
 }

 view.fill(details)

 if self.set_default_rhsm_address:
 view.rhn_default_url.click()

 if self.set_default_repository:
 view.repo_default_name.click()

 if validate:
 view.validate_button.click()

 if cancel:
 view.cancel_button.click()
 flash_message = 'Edit of Customer Information was cancelled'
 else:
 view.save_button.click()
 flash_message = 'Customer Information successfully saved'

 view = self.create_view(RedHatUpdatesView)
 assert view.is_displayed
 view.flash.assert_message(flash_message)

[docs] def refresh(self):
 """ Click refresh button to update statuses of appliances """
 view = navigate_to(self, 'Details')
 view.refresh.click()

[docs] def register_appliances(self, *appliance_names):
 """ Register appliances by names

 Args:
 appliance_names: Names of appliances to register; will register all if empty
 """
 view = navigate_to(self, 'Details')
 self.select_appliances(*appliance_names)
 view.register.click()
 view.flash.assert_message("Registration has been initiated for the selected Servers")

[docs] def update_appliances(self, *appliance_names):
 """ Update appliances by names

 Args:
 appliance_names: Names of appliances to update; will update all if empty
 """
 view = navigate_to(self, 'Details')
 self.select_appliances(*appliance_names)
 view.apply_cfme_update.click()
 view.flash.assert_message("Update has been initiated for the selected Servers")

[docs] def check_updates(self, *appliance_names):
 """ Run update check on appliances by names

 Args:
 appliance_names: Names of appliances to check; will check all if empty
 """
 view = navigate_to(self, 'Details')
 self.select_appliances(*appliance_names)
 view.check_for_updates.click()
 view.flash.assert_message(
 "Check for updates has been initiated for the selected Servers")

[docs] def is_registering(self, *appliance_names):
 """ Check if at least one appliance is registering """
 view = navigate_to(self, 'Details')
 for appliance_name in appliance_names:
 row = view.updates_table.row(appliance=appliance_name)
 if row.last_message.text.lower() == 'registering':
 return True
 else:
 return False

[docs] def is_registered(self, *appliance_names):
 """ Check if each appliance is registered

 Args:
 appliance_names: Names of appliances to check; will check all if empty
 """
 view = navigate_to(self, 'Details')
 for appliance_name in appliance_names:
 row = view.updates_table.row(appliance=appliance_name)
 if row.last_message.text.lower() == 'registered':
 return True
 else:
 return False

[docs] def is_subscribed(self, *appliance_names):
 """ Check if appliances are subscribed

 Args:
 appliance_names: Names of appliances to check; will check all if empty
 """
 for row in self.get_appliance_rows(*appliance_names):
 if row.update_status.text.lower() in {'not registered', 'unsubscribed'}:
 return False
 return True

[docs] def versions_match(self, version, *appliance_names):
 """ Check if versions of appliances match version

 Args:
 version: Version to match against
 appliance_names: Names of appliances to check; will check all if empty
 """
 for row in self.get_appliance_rows(*appliance_names):
 if row.cfme_version.text != version:
 return False
 return True

[docs] def checked_updates(self, *appliance_names):
 """ Check if appliances checked if there is an update available

 Args:
 appliance_names: Names of appliances to check; will check all if empty
 """
 for row in self.get_appliance_rows(*appliance_names):
 if row.last_checked_for_updates.text == '':
 return False
 return True

[docs] def platform_updates_available(self, *appliance_names):
 """ Check if appliances have a platform update available

 Args:
 appliance_names: Names of appliances to check; will check all if empty
 """
 for row in self.get_appliance_rows(*appliance_names):
 if row.platform_updates_available.text.lower() != 'yes':
 return False
 return True

[docs] def get_available_version(self):
 """ Get available version printed on the page

 Returns:
 `None` if not available; string with version otherwise
 e.g. ``1.2.2.3``
 """
 view = navigate_to(self, 'Details')
 available_version_raw = view.available_update_version.text()
 available_version_search_res = re.search(r"([0-9]+\.)*[0-9]+", available_version_raw)
 if available_version_search_res:
 return available_version_search_res.group(0)
 return None

[docs] def get_repository_names(self):
 """Get available repositories names

 Returns:
 string: summary info for repositories names
 """
 view = navigate_to(self, 'Details')
 return view.repository_names_info.text

[docs] def select_appliances(self, *appliance_names):
 """ Select appliances by names

 Args:
 appliance_names: Names of appliances to select; will select all if empty
 """
 view = navigate_to(self, 'Details')
 if appliance_names:
 view.updates_table.uncheck_all()
 for name in appliance_names:
 view.updates_table.row(appliance=name)[0].click()
 else:
 view.updates_table.check_all()

[docs] def get_appliance_rows(self, *appliance_names):
 """ Get appliances as table rows

 Args:
 appliance_names: Names of appliances to get; will get all if empty
 """
 view = navigate_to(self, 'Details')
 if appliance_names:
 rows = [row for row in view.updates_table.rows()
 if row.appliance.text in appliance_names]
 else:
 rows = view.updates_table.rows()
 return rows

@navigator.register(RedHatUpdates)
[docs]class Details(CFMENavigateStep):
 VIEW = RedHatUpdatesView
 prerequisite = NavigateToAttribute('appliance.server.zone.region', 'Details')

[docs] def step(self):
 self.prerequisite_view.redhatupdates.select()

@navigator.register(RedHatUpdates)
[docs]class Edit(CFMENavigateStep):
 VIEW = RedHatUpdatesEditView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.edit_registration.click()

====================C and U===================================

[docs]class CANDUCollectionView(RegionView):
 """C and U View"""
 all_clusters_cb = BootstrapSwitch(id='all_clusters')
 all_datastores_cb = BootstrapSwitch(id='all_storages')

 save_button = Button('Save')
 reset_button = Button('Reset')

 @property
 def is_displayed(self):
 return (
 self.canducollection.is_active() and
 self.all_clusters_cb.is_displayed
)

[docs]class CANDUCollection(BaseCollection):
 """ Class represents a C and U in CFME UI """
 def __init__(self, appliance):
 self.appliance = appliance

 def _set_state(self, enable=True, reset=False):
 """ Enable/Disable C and U

 Args:
 enable: Switches states, 'True'- enable
 reset: Reset changes, default is 'False' - changes will not be reset
 """
 view = navigate_to(self, 'Details')
 view.fill({
 'all_clusters_cb': enable,
 'all_datastores_cb': enable
 })
 if reset:
 view.reset_button.click()
 flash_message = 'All changes have been reset'
 else:
 view.save_button.click()
 flash_message = 'Capacity and Utilization Collection settings saved'
 view.flash.assert_success_message(flash_message)

[docs] def enable_all(self, reset=False):
 """ Enable C and U

 Args:
 reset: Reset changes, default is 'False' - changes will not be reset
 """
 self._set_state(reset=reset)

[docs] def disable_all(self, reset=False):
 """ Disable C and U

 Args:
 reset: Reset changes, default is 'False' - changes will not be reset
 """
 self._set_state(False, reset=reset)

@navigator.register(CANDUCollection, 'Details')
[docs]class CANDUCollectionDetails(CFMENavigateStep):
 VIEW = CANDUCollectionView
 prerequisite = NavigateToAttribute('appliance.server.zone.region', 'Details')

[docs] def step(self):
 self.prerequisite_view.canducollection.select()

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/configure/settings.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.configure.settings

import re
from navmazing import NavigateToAttribute
from widgetastic_manageiq import Table, BootstrapSelect, BreadCrumb, Text, ViewButtonGroup
from widgetastic_patternfly import (BootstrapSwitch,
 Input, Button, CheckableBootstrapTreeview, Dropdown)
from widgetastic.utils import VersionPick, Version
from widgetastic.widget import View
from cfme.base.ui import MySettingsView
from cfme.base.login import BaseLoggedInPage
from cfme.utils.pretty import Pretty
from cfme.utils.update import Updateable
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to

Todo: Will remove this widget from here once it is available in widgetastic_patternly.
[docs]class SaveButton(Button):
 @property
 def disabled(self):
 return 'disabled' in self.browser.classes(self)

[docs]class TimeProfileAddForm(View):
 description = Input(id='description')
 scope = BootstrapSelect('profile_type')
 timezone = BootstrapSelect('profile_tz')
 days = BootstrapSwitch(name='all_days')
 hours = BootstrapSwitch(name='all_hours')
 save_button = SaveButton(VersionPick({Version.lowest(): 'Add',
 '5.8': 'Save'}))
 configuration = Dropdown('Configuration')
 table = Table("//div[@id='main_div']//table")
 save_edit_button = Button('Save')
 cancel_button = Button('Cancel')
 help_block = Text("//span[contains(@class, 'help-block')]")

[docs]class TimeprofileAddEntities(View):
 breadcrumb = BreadCrumb()
 title = Text('//div[@id="main-content"]//h3')

[docs]class TimeProfileAddFormView(BaseLoggedInPage):
 timeprofile_form = View.nested(TimeProfileAddForm)
 entities = View.nested(TimeprofileAddEntities)
 mysetting = View.nested(MySettingsView)

[docs]class Timeprofile(Updateable, Navigatable):
 def __init__(self, description=None, scope=None, days=None, hours=None, timezone=None,
 appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.description = description
 self.scope = scope
 self.days = days
 self.hours = hours
 self.timezone = timezone

[docs] def create(self, cancel=False):
 view = navigate_to(self, 'All')
 view.timeprofile_form.configuration.item_select('Add a new Time Profile')
 view.timeprofile_form.fill({
 'description': self.description,
 'scope': self.scope,
 'days': self.days,
 'hours': self.hours,
 'timezone': self.timezone,
 })
 if not cancel:
 view.timeprofile_form.save_button.click()
 end = "saved" if self.appliance.version > '5.7' else "added"
 view.flash.assert_message('Time Profile "{}" was {}'.format(self.description, end))

[docs] def update(self, updates):
 view = navigate_to(self, 'All')
 rows = view.timeprofile_form.table
 for row in rows:
 if row.description.text == self.description:
 row[0].check()
 view.timeprofile_form.configuration.item_select('Edit selected Time Profile')
 changed = view.timeprofile_form.fill({
 'description': updates.get('description'),
 'scope': updates.get('scope'),
 'days': updates.get('days'),
 'hours': updates.get('hours'),
 'timezone': updates.get('timezone'),
 })
 if changed:
 view.timeprofile_form.save_edit_button.click()
 view.flash.assert_message(
 'Time Profile "{}" was saved'.format(updates.get('description', self.description)))

[docs] def copy(self, name=None):
 view = navigate_to(self, 'All')
 rows = view.timeprofile_form.table
 for row in rows:
 if row.description.text == self.description:
 row[0].check()
 view.timeprofile_form.configuration.item_select('Copy selected Time Profile')
 if name is not None:
 new_timeprofile = Timeprofile(description=name, scope=self.scope)
 changed = view.timeprofile_form.fill({
 'description': name,
 'scope': self.scope,
 })
 else:
 new_timeprofile = Timeprofile(description="{} copy".format(self.description),
 scope=self.scope)
 changed = view.timeprofile_form.fill({
 'description': "{} copy".format(self.description),
 'scope': self.scope,
 })

 if changed:
 view.timeprofile_form.save_button.click()
 return new_timeprofile

[docs] def delete(self):
 view = navigate_to(self, 'All')
 rows = view.timeprofile_form.table
 for row in rows:
 if row.description.text == self.description:
 row[0].check()
 view.timeprofile_form.configuration.item_select("Delete selected "
 "Time Profiles", handle_alert=True)

@navigator.register(Timeprofile, 'All')
[docs]class TimeprofileAll(CFMENavigateStep):
 VIEW = TimeProfileAddFormView
 prerequisite = NavigateToAttribute('appliance.server', 'MySettings')

[docs] def step(self):
 self.view.mysetting.tabs.time_profile.select()

[docs]class Visual(Updateable, Navigatable):
 @property
 def grid_view_limit(self):
 view = navigate_to(self, 'All')
 value = re.findall("\d+", view.visualitem.grid_view.read())
 return int(value[0])

 @grid_view_limit.setter
 def grid_view_limit(self, value):
 view = navigate_to(self, 'All')
 value_to_fill = str(value)
 if view.visualitem.grid_view.fill(value_to_fill):
 view.save.click()

 @property
 def tile_view_limit(self):
 view = navigate_to(self, 'All')
 value = re.findall("\d+", view.visualitem.tile_view.read())
 return int(value[0])

 @tile_view_limit.setter
 def tile_view_limit(self, value):
 view = navigate_to(self, 'All')
 value_to_fill = str(value)
 if view.visualitem.tile_view.fill(value_to_fill):
 view.save.click()

 @property
 def list_view_limit(self):
 view = navigate_to(self, 'All')
 value = re.findall("\d+", view.visualitem.list_view.read())
 return int(value[0])

 @list_view_limit.setter
 def list_view_limit(self, value):
 view = navigate_to(self, 'All')
 value_to_fill = str(value)
 if view.visualitem.list_view.fill(value_to_fill):
 view.save.click()

 @property
 def report_view_limit(self):
 view = navigate_to(self, 'All')
 value = re.findall("\d+", view.visualitem.reports.read())
 return int(value[0])

 @report_view_limit.setter
 def report_view_limit(self, value):
 view = navigate_to(self, 'All')
 value_to_fill = str(value)
 if view.visualitem.reports.fill(value_to_fill):
 view.save.click()

 @property
 def login_page(self):
 view = navigate_to(self, 'All')
 return view.visualstartpage.show_at_login.read()

 @login_page.setter
 def login_page(self, value):
 view = navigate_to(self, 'All')
 if view.visualstartpage.show_at_login.fill(value):
 view.save.click()

 @property
 def infra_provider_quad(self):
 view = navigate_to(self, 'All')
 return view.visualquadicons.infra_provider_quad.read()

 @infra_provider_quad.setter
 def infra_provider_quad(self, value):
 view = navigate_to(self, 'All')
 if view.visualquadicons.infra_provider_quad.fill(value):
 view.save.click()

 @property
 def host_quad(self):
 view = navigate_to(self, 'All')
 return view.visualquadicons.host_quad.read()

 @host_quad.setter
 def host_quad(self, value):
 view = navigate_to(self, 'All')
 if view.visualquadicons.host_quad.fill(value):
 view.save.click()

 @property
 def datastore_quad(self):
 view = navigate_to(self, 'All')
 return view.visualquadicons.datastore_quad.read()

 @datastore_quad.setter
 def datastore_quad(self, value):
 view = navigate_to(self, 'All')
 if view.visualquadicons.datastore_quad.fill(value):
 view.save.click()

 @property
 def vm_quad(self):
 view = navigate_to(self, 'All')
 return view.visualquadicons.vm_quad.read()

 @vm_quad.setter
 def vm_quad(self, value):
 view = navigate_to(self, 'All')
 if view.visualquadicons.vm_quad.fill(value):
 view.save.click()

 @property
 def template_quad(self):
 view = navigate_to(self, 'All')
 return view.visualquadicons.template_quad.read()

 @template_quad.setter
 def template_quad(self, value):
 view = navigate_to(self, 'All')
 if view.visualquadicons.template_quad.fill(value):
 view.save.click()

 @property
 def cloud_provider_quad(self):
 view = navigate_to(self, 'All')
 return view.visualquadicons.cloud_provider_quad.read()

 @cloud_provider_quad.setter
 def cloud_provider_quad(self, value):
 view = navigate_to(self, 'All')
 if view.visualquadicons.cloud_provider_quad.fill(value):
 view.save.click()

 @property
 def timezone(self):
 view = navigate_to(self, 'All')
 return view.visualdisplay.time_zone.read()

 @timezone.setter
 def timezone(self, value):
 view = navigate_to(self, 'All')
 if view.visualdisplay.time_zone.fill(value):
 view.save.click()

visual = Visual()

[docs]class VisualTabForm(MySettingsView):

 @View.nested
 class visualitem(View): # noqa
 grid_view = BootstrapSelect("perpage_grid")
 tile_view = BootstrapSelect("perpage_tile")
 list_view = BootstrapSelect("perpage_list")
 reports = BootstrapSelect("perpage_reports")

 @View.nested
 class visualstartpage(View): # noqa
 show_at_login = BootstrapSelect("start_page")

 @View.nested
 class visualquadicons(View): # noqa
 infra_provider_quad = BootstrapSwitch("quadicons_ems")
 cloud_provider_quad = BootstrapSwitch("quadicons_ems_cloud")
 host_quad = BootstrapSwitch("quadicons_host")
 datastore_quad = BootstrapSwitch("quadicons_storage")
 vm_quad = BootstrapSwitch("quadicons_vm")
 template_quad = BootstrapSwitch("quadicons_miq_template")
 long_text = BootstrapSelect("quad_truncate")

 @View.nested
 class visualdisplay(View): # noqa
 chart_theme = BootstrapSelect("display_reporttheme")
 time_zone = BootstrapSelect("display_timezone")

 save = Button("Save")
 reset = Button("Reset")

@navigator.register(Visual, 'All')
[docs]class VisualAll(CFMENavigateStep):
 prerequisite = NavigateToAttribute('appliance.server', 'MySettings')
 VIEW = VisualTabForm

[docs] def step(self):
 self.view.tabs.visual_all.select()

[docs]class DefaultFilterForm(MySettingsView):
 tree = CheckableBootstrapTreeview('df_treebox')
 save = Button('Save')

[docs]class DefaultFilter(Updateable, Pretty, Navigatable):

 pretty_attrs = ['name', 'filters']

 def __init__(self, name=None, filters=None, appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.name = name
 self.filters = filters or []

[docs] def update(self, updates):
 view = navigate_to(self, 'All')
 for value in updates['filters']:
 for path in value:
 if isinstance(path, list) and view.tree.fill(path):
 view.save.click()

@navigator.register(DefaultFilter, 'All')
[docs]class DefaultFilterAll(CFMENavigateStep):
 VIEW = DefaultFilterForm
 prerequisite = NavigateToAttribute('appliance.server', 'MySettings')

[docs] def step(self):
 self.view.tabs.default_filter.select()

[docs]class DefaultViewForm(MySettingsView):
 flavors = ViewButtonGroup("Clouds", "Flavors")
 instances = ViewButtonGroup("Clouds", "Instances")
 availability_zones = ViewButtonGroup("Clouds", "Availability Zones")
 images = ViewButtonGroup("Clouds", "Images")
 cloud_providers = ViewButtonGroup("Clouds", "Cloud Providers")
 compare = ViewButtonGroup("General", "Compare")
 compare_mode = ViewButtonGroup("General", "Compare Mode")
 infrastructure_providers = ViewButtonGroup("Infrastructure", "Infrastructure Providers")
 configuration_management_providers = ViewButtonGroup('Infrastructure',
 'Configuration Management Providers')
 my_services = ViewButtonGroup("Services", "My Services")
 catalog_items = ViewButtonGroup("Services", "Catalog Items")
 templates = ViewButtonGroup("Services", "Templates & Images")
 vms = ViewButtonGroup("Infrastructure", "VMs")
 vms_instances = ViewButtonGroup("Services", "VMs & Instances")
 cloud_stacks = ViewButtonGroup('Clouds', 'Stacks')

 containers_providers = ViewButtonGroup("Containers", "Containers Providers")
 container_nodes = ViewButtonGroup("Containers", "Nodes")
 container_pods = ViewButtonGroup("Containers", "Pods")
 container_services = ViewButtonGroup("Containers", "Services")
 container_routes = ViewButtonGroup("Containers", "Routes")
 container_containers = ViewButtonGroup("Containers", "Containers")
 container_projects = ViewButtonGroup("Containers", "Projects")
 container_replicators = ViewButtonGroup("Containers", "Replicators")
 container_images = ViewButtonGroup("Containers", "Images")
 container_image_registries = ViewButtonGroup("Containers", "Image Registries")
 container_builds = ViewButtonGroup("Containers", "Builds")
 container_volumes = ViewButtonGroup("Containers", "Volumes")
 container_templates = ViewButtonGroup("Containers", "Templates")

 save = Button("Save")

[docs]class DefaultView(Updateable, Navigatable):
 # Basic class for navigation to default views screen
 look_up = {'Flavors': "flavors",
 'Instances': "instances",
 'Availability Zones': "availability_zones",
 'Images': "images",
 'Cloud Providers': "cloud_providers",
 'Compare': "compare",
 'Compare Mode': "compare_mode",
 'Infrastructure Providers': "infrastructure_providers",
 'My Services': "my_services",
 'Catalog Items': "catalog_items",
 'Templates & Images': "templates",
 'VMs': "vms",
 'VMs & Instances': "vms_instances",
 'Containers Providers': 'containers_providers',
 'Nodes': 'container_nodes',
 'Pods': 'container_pods',
 'Services': 'container_services',
 'Routes': 'container_routes',
 'Containers': 'container_containers',
 'Projects': 'container_projects',
 'Replicators': 'container_replicators',
 'Container Images': 'container_images',
 'Image Registries': 'container_image_registries',
 'Builds': 'container_builds',
 'Volumes': 'container_volumes',
 'Templates': 'container_templates',
 'Configuration Management Providers': 'configuration_management_providers',
 'Stacks': 'cloud_stacks'
 }

 def __init__(self, appliance=None):
 Navigatable.__init__(self, appliance=appliance)

 @classmethod
[docs] def set_default_view(cls, button_group_names, defaults, fieldset=None):
 """This function sets default views for the objects.

 Args:
 button_group_names: either the name of the button_group_name
 or list of the button groups to set the
 default view for.
 default: the default view to set. in case that button_group_names
 is a list, you can either set 1 view and it'll be set
 for all the button_group_names or you can use a list
 (default view per button_group_name).
 """
 if not isinstance(button_group_names, (list, tuple)):
 button_group_names = [button_group_names]
 if not isinstance(defaults, (list, tuple)):
 defaults = [defaults] * len(button_group_names)
 assert len(button_group_names) == len(defaults)
 navigate_to(cls, 'All')
 for button_group_name, default in zip(button_group_names, defaults):
 view = navigate_to(cls, 'All')
 value = getattr(view, cls.look_up[button_group_name])
 if value.active_button != default:
 if value.fill(default):
 view.save.click()

 @classmethod
[docs] def get_default_view(cls, button_group_name, fieldset=None):
 view = navigate_to(cls, 'All')
 value = getattr(view, cls.look_up[button_group_name])
 return value.active_button

@navigator.register(DefaultView, 'All')
[docs]class DefaultViewAll(CFMENavigateStep):
 VIEW = DefaultViewForm
 prerequisite = NavigateToAttribute('appliance.server', 'MySettings')

[docs] def step(self):
 self.view.tabs.default_views.select()

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/base/credential.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.base »

 Source code for cfme.base.credential

-*- coding: utf-8 -*-
from copy import deepcopy
from cfme.utils import version
from cfme.web_ui import FileInput, Input, Radio, form_buttons
from cfme.web_ui.tabstrip import TabStripForm
from cfme.utils import conf
from cfme.utils.pretty import Pretty
from cfme.utils.update import Updateable

[docs]class FromConfigMixin(object):
 @staticmethod
[docs] def rename_properties(creds):
 """
 helper function to make properties have same names in credential objects.
 Args:
 creds: dict

 Returns: updated dict
 """
 creds = deepcopy(creds)
 to_rename = [('password', 'secret'), ('username', 'principal')]
 for key1, key2 in to_rename:
 if key1 in creds:
 creds[key2] = creds[key1]
 del creds[key1]
 return creds

 @classmethod
[docs] def from_config(cls, key):
 """
 helper function which allows to construct credential object from credentials.eyaml

 Args:
 key: credential key

 Returns: credential object
 """
 creds = cls.rename_properties(conf.credentials[key])
 return cls(**creds)

 @classmethod
[docs] def from_plaintext(cls, creds):
 """
 helper function which allows to construct credential class from plaintext dict

 Args:
 creds: dict

 Returns: credential object
 """
 creds = cls.rename_properties(creds)
 return cls(**creds)

[docs]class Credential(Pretty, Updateable, FromConfigMixin):
 """
 A class to fill in credentials

 Args:
 principal: user name
 secret: password
 verify_secret: password
 domain: concatenated with principal if defined
 """
 pretty_attrs = ['principal', 'secret']

 def __init__(self, principal, secret, verify_secret=None, domain=None, **ignore):
 self.principal = principal
 self.secret = secret
 self.verify_secret = verify_secret
 self.domain = domain

 def __getattribute__(self, attr):
 if attr == 'verify_secret':
 if object.__getattribute__(self, 'verify_secret') is None:
 return object.__getattribute__(self, 'secret')
 else:
 return object.__getattribute__(self, 'verify_secret')

 elif attr == 'principal':
 domain = object.__getattribute__(self, 'domain')
 principal = object.__getattribute__(self, 'principal')
 return r'{}\{}'.format(domain, principal) if domain else principal
 else:
 return super(Credential, self).__getattribute__(attr)

 @property
 def view_value_mapping(self):
 """
 used for filling forms like add/edit provider form
 Returns: dict
 """
 return {
 'username': self.principal,
 'password': self.secret,
 'confirm_password': version.pick({version.LOWEST: self.verify_secret,
 version.UPSTREAM: None})
 }

 def __eq__(self, other):
 if other is None:
 return False
 return self.principal == other.principal and self.secret == other.secret and \
 self.verify_secret == other.verify_secret

 def __ne__(self, other):
 return not self.__eq__(other)

 @property
 def form(self):
 return provider_credential_form()

[docs]class EventsCredential(Credential):
 pass

[docs]class CANDUCredential(Credential):
 pass

[docs]class AzureCredential(Credential):
 pass

[docs]class SSHCredential(Credential):
 @property
 def view_value_mapping(self):
 """
 used for filling forms like add/edit provider form
 Returns: dict
 """
 return {
 'username': self.principal,
 'private_key': self.secret,
 }

[docs]class TokenCredential(Pretty, Updateable, FromConfigMixin):
 """
 A class to fill in credentials

 Args:
 token: identification token
 verify_token: token once more
 """
 pretty_attrs = ['token']

 def __init__(self, token, verify_token=None, **kwargs):
 self.token = token
 self.verify_token = verify_token
 for name, value in kwargs.items():
 setattr(self, name, value)

 def __getattribute__(self, attr):
 if attr == 'verify_token':
 if object.__getattribute__(self, 'verify_token') is not None:
 return object.__getattribute__(self, 'verify_token')
 else:
 return object.__getattribute__(self, 'token')
 else:
 return super(TokenCredential, self).__getattribute__(attr)

 def __eq__(self, other):
 return self.token == other.token and self.verify_token == other.verify_token

 def __ne__(self, other):
 return not self.__eq__(other)

 @property
 def view_value_mapping(self):
 """
 used for filling forms like add/edit provider form
 Returns: dict
 """
 return {
 'token': self.token,
 'verify_token': version.pick({version.LOWEST: self.verify_token,
 version.UPSTREAM: None})
 }

 @property
 def form(self):
 return provider_credential_form()

[docs]class ServiceAccountCredential(Pretty, Updateable):
 """
 A class to fill in credentials

 Args:
 service_account: service account string
 """
 pretty_attrs = ['service_account']

 def __init__(self, service_account):
 super(ServiceAccountCredential, self)
 self.service_account = service_account

 @property
 def view_value_mapping(self):
 """
 used for filling forms like add/edit provider form
 Returns: dict
 """
 return {
 'service_account': self.service_account
 }

 def __eq__(self, other):
 return self.service_account == other.service_account

 def __ne__(self, other):
 return not self.__eq__(other)

 @classmethod
[docs] def from_config(cls, key):
 # TODO: refactor this. consider json.dumps
 creds = deepcopy(conf.credentials[key])
 service_data = creds['service_account']
 service_account = '''
 "type": "{type}",
 "project_id": "{project}",
 "private_key_id": "{private_key_id}",
 "private_key": "{private_key}",
 "client_email": "{email}",
 "client_id": "{client}",
 "auth_uri": "{auth}",
 "token_uri": "{token}",
 "auth_provider_x509_cert_url": "{auth_provider}",
 "client_x509_cert_url": "{cert_url}"
 '''.format(
 type=service_data.get('type'),
 project=service_data.get('project_id'),
 private_key_id=service_data.get('private_key_id'),
 private_key=service_data.get('private_key').replace('\n', '\\n'),
 email=service_data.get('client_email'),
 client=service_data.get('client_id'),
 auth=service_data.get('auth_uri'),
 token=service_data.get('token_uri'),
 auth_provider=service_data.get('auth_provider_x509_cert_url'),
 cert_url=service_data.get('client_x509_cert_url'))
 service_account = '{' + service_account + '}'
 return cls(service_account=service_account)

 @property
 def form(self):
 return provider_credential_form()

[docs]def provider_credential_form():
 # todo: to remove it when all providers are moved to widgetastic
 fields = [
 ('token_secret_55', Input('bearer_token')),
 ('google_service_account', Input('service_account')),
]
 tab_fields = {
 ("Default", ('default_when_no_tabs',)): [
 ('default_principal', Input("default_userid")),
 ('default_secret', Input("default_password")),
 ('default_verify_secret', Input("default_verify")),
 ('token_secret', Input('default_password')),
 ('token_verify_secret', Input('default_verify')),
],

 "RSA key pair": [
 ('ssh_user', Input("ssh_keypair_userid")),
 ('ssh_key', FileInput("ssh_keypair_password")),
],

 "C & U Database": [
 ('candu_principal', Input("metrics_userid")),
 ('candu_secret', Input("metrics_password")),
 ('candu_verify_secret', Input("metrics_verify")),
],

 "Hawkular": [
 ('hawkular_validate_btn', form_buttons.validate),
]
 }
 fields_end = [
 ('validate_btn', form_buttons.validate),
]

 tab_fields["Events"] = [
 ('event_selection', Radio('event_stream_selection')),
 ('amqp_principal', Input("amqp_userid")),
 ('amqp_secret', Input("amqp_password")),
 ('amqp_verify_secret', Input("amqp_verify"))]

 return TabStripForm(fields=fields, tab_fields=tab_fields, fields_end=fields_end)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/configure/configuration/analysis_profile.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.configure.configuration »

 Source code for cfme.configure.configuration.analysis_profile

-*- coding: utf-8 -*-
from copy import deepcopy

from navmazing import NavigateToSibling, NavigateToObject, NavigationDestinationNotFound
from widgetastic.widget import View, Text, ConditionalSwitchableView
from widgetastic.utils import Fillable
from widgetastic_patternfly import Dropdown, Button, CandidateNotFound, TextInput, Tab
from widgetastic_manageiq import (
 Table, PaginationPane, SummaryFormItem, Checkbox, CheckboxSelect, DynamicTable)

from cfme.base.login import BaseLoggedInPage
from cfme.base.ui import Server, ConfigurationView
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to
from cfme.utils.pretty import Pretty
from cfme.utils.update import Updateable

table_button_classes = [Button.DEFAULT, Button.SMALL, Button.BLOCK]

[docs]class AnalysisProfileToolbar(View):
 """Toolbar on the analysis profiles configuration page
 Works for both all page and details page
 """
 configuration = Dropdown('Configuration')

[docs]class AnalysisProfileEntities(View):
 """Main content on the analysis profiles configuration page, title and table"""
 title = Text('//div[@id="main-content"]//h1[@id="explorer_title"]'
 '/span[@id="explorer_title_text"]')
 table = Table('//div[@id="records_div"]//table')

[docs]class AnalysisProfileDetailsEntities(View):
 """Main content on an analysis profile details page"""
 title = Text('//div[@id="main-content"]//h1[@id="explorer_title"]'
 '/span[@id="explorer_title_text"]')
 info_name = SummaryFormItem(group_title='Info', item_name='Name')
 info_description = SummaryFormItem(group_title='Info', item_name='Description')
 info_type = SummaryFormItem(group_title='Info', item_name='Type')
 table = Table('//h3[normalize-space(.)="File Items"]/following-sibling::table')

 # TODO 'Event Log Items' below the table doesn't have a label, SummaryFormItem doesn't work

[docs]class AnalysisProfileAllView(BaseLoggedInPage):
 """View for the Analysis Profile collection page"""
 @property
 def is_displayed(self):
 return (self.logged_in_as_current_user and
 self.sidebar.accordions.settings.tree.selected_item.text == 'Analysis Profiles' and
 self.entities.title.text == 'Settings Analysis Profiles')

 toolbar = View.nested(AnalysisProfileToolbar)
 sidebar = View.nested(ConfigurationView)
 entities = View.nested(AnalysisProfileEntities)
 paginator = View.nested(PaginationPane)

[docs]class AnalysisProfileDetailsView(BaseLoggedInPage):
 """View for an analysis profile details page"""
 @property
 def is_displayed(self):
 return (
 self.logged_in_as_current_user and
 self.entities.title.text == 'Settings Analysis Profile "{}"'
 .format(self.context['object'].name))

 toolbar = View.nested(AnalysisProfileToolbar)
 sidebar = View.nested(ConfigurationView)
 entities = View.nested(AnalysisProfileDetailsEntities)

[docs]class AnalysisProfileBaseAddForm(View):
 """View for the common elements of the two AP forms"""
 name = TextInput(id='name')
 description = TextInput(id='description')

 @View.nested
 class files(Tab): # noqa
 TAB_NAME = 'File'
 tab_form = DynamicTable(
 locator='.//h3[normalize-space(.)="File Entry"]/following-sibling::table',
 column_widgets={
 'Name': TextInput(id='entry_fname'),
 'Collect Contents?': Checkbox(id='entry_content'),
 'Actions': Button(title='Add this entry', classes=table_button_classes)},
 assoc_column='Name', rows_ignore_top=1, action_row=0)

 @View.nested
 class events(Tab): # noqa
 TAB_NAME = 'Event Log'
 tab_form = DynamicTable(
 locator='.//h3[normalize-space(.)="Event Log Entry"]/following-sibling::table',
 column_widgets={
 'Name': TextInput(id='entry_name'),
 'Filter Message': TextInput(id='entry_message'),
 'Level': TextInput(id='entry_level'),
 'Source': TextInput(id='entry_source'),
 '# of Days': TextInput(id='entry_num_days'),
 'Actions': Button(title='Add this entry', classes=table_button_classes)},
 assoc_column='Name', rows_ignore_top=1, action_row=0)

[docs]class AnalysisProfileAddView(BaseLoggedInPage):
 """View for the add form, switches between host/vm based on object type
 Uses a switchable view based on the profile type widget
 """
 @property
 def is_displayed(self):
 return (
 self.title.text == 'Adding a new Analysis Profile' and
 self.profile_type.text == self.context['object'].profile_type)

 title = Text('//div[@id="main-content"]//h1[@id="explorer_title"]'
 '/span[@id="explorer_title_text"]')
 # This is a ALMOST a SummaryFormItem, but there's no div to wrap the items so it doesn't work
 # instead I have this nasty xpath to hack around that
 profile_type = Text(
 locator='.//h3[normalize-space(.)="Basic Information"]'
 '/following-sibling::div[@class="form-group"]'
 '/label[normalize-space(.)="Type"]'
 '/following-sibling::div')
 form = ConditionalSwitchableView(reference='profile_type')
 # to avoid dynamic table buttons use title + alt + classes
 add = Button(title='Add', classes=[Button.PRIMARY], alt='Add')
 cancel = Button(title='Cancel', classes=[Button.DEFAULT], alt='Cancel')

 @form.register('Host')
 class AnalysisProfileAddHost(AnalysisProfileBaseAddForm):
 """View for the host profile add form"""
 pass

 @form.register('Vm')
 class AnalysisProfileAddVm(AnalysisProfileBaseAddForm):
 """View for the vm profile add form"""
 @View.nested
 class categories(Tab): # noqa
 TAB_NAME = 'Category'
 tab_form = CheckboxSelect(search_root='form_div')

 @View.nested
 class registry(Tab): # noqa
 TAB_NAME = 'Registry'
 tab_form = DynamicTable(
 locator='.//h3[normalize-space(.)="Registry Entry"]/following-sibling::table',
 column_widgets={
 'Registry Hive': Text('.//tr[@id="new_tr"]/td[normalize-space(.)="HKLM"]'),
 'Registry Key': TextInput(id='entry_kname'),
 'Registry Value': TextInput(id='entry_value'),
 'Actions': Button(title='Add this entry', classes=table_button_classes)},
 assoc_column='Registry Key', rows_ignore_top=1, action_row=0)

[docs]class AnalysisProfileEditView(AnalysisProfileAddView):
 """View for the edit form, extends add view since all fields are the same and editable"""
 @property
 def is_displayed(self):
 expected_title = 'Editing Analysis Profile "{}"'.format(self.context['object'].name)
 return (
 self.title.text == expected_title and
 self.profile_type.text == self.context['object'].profile_type)

 # to avoid dynamic table buttons use title + alt + classes
 save = Button(title='Save Changes', classes=[Button.PRIMARY])
 reset = Button(title='Reset Changes', classes=[Button.DEFAULT], alt='Save Changes')

[docs]class AnalysisProfileCopyView(AnalysisProfileAddView):
 """View for the copy form is the same as an add

 The name field is by default set with 'Copy of [profile name of copy source]
 Don't want to assert against this field to separately verify the view is displayed
 If is_displayed is called after the form is changed it will be false negative"""
 pass

[docs]class AnalysisProfile(Pretty, Updateable, Fillable, Navigatable):
 """Analysis profiles, Vm and Host type

 Example: Note the keys for files, events, registry should match UI columns

 .. code-block:: python

 p = AnalysisProfile(name, description, profile_type='VM')
 p.files = [
 {"Name": "/some/anotherfile", "Collect Contents?": True},
]
 p.events = [
 {"Name": name, "Filter Message": msg, "Level": lvl, "Source": src, "# of Days": 1},
]
 p.registry = [
 {"Registry Key": key, "Registry Value": value},
]
 p.categories = ["System", "Software"] # Use the checkbox text name
 p.create()
 p2 = p.copy(new_name="updated AP")
 with update(p):
 p.files = [{"Name": "/changed". "Collect Contents?": False}]
 p.delete()

 """
 CREATE_LOC = None
 pretty_attrs = "name", "description", "files", "events"
 VM_TYPE = 'Vm'
 HOST_TYPE = 'Host'

 def __init__(self, name, description, profile_type, files=None, events=None, categories=None,
 registry=None, appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.name = name
 self.description = description
 self.files = files if isinstance(files, (list, type(None))) else [files]
 self.events = events if isinstance(events, (list, type(None))) else [events]
 self.categories = categories if isinstance(categories, (list, type(None))) else [categories]
 self.registry = registry if isinstance(registry, (list, type(None))) else [registry]
 if profile_type in (self.VM_TYPE, self.HOST_TYPE):
 self.profile_type = profile_type
 else:
 raise ValueError("Profile Type is incorrect")

[docs] def create(self, cancel=False):
 """Add Analysis Profile to appliance"""
 # The tab form values have to be dictionaries with the root key matching the tab widget name
 form_values = self.form_fill_args()

 view = navigate_to(self, 'Add')
 view.form.fill(form_values)

 if cancel:
 view.cancel.click()
 else:
 view.add.click()

 view = self.create_view(AnalysisProfileAllView)
 view.flush_widget_cache()
 assert view.is_displayed
 view.flash.assert_success_message(
 'Add of new Analysis Profile was cancelled by the user'
 if cancel
 else 'Analysis Profile "{}" was saved'.format(self.name))

[docs] def update(self, updates, cancel=False):
 """Update the existing Analysis Profile with given updates dict
 Make use of Updateable and use `with` to update object as well
 Note the updates dict should take the structure below if called directly

 .. code-block:: python

 updates = {
 'name': self.name,
 'description': self.description,
 'files': {
 'tab_form': ['/example/file']},
 'events': {
 'tab_form': ['example_event']},
 'categories': {
 'tab_form': ['Example']},
 'registry': {
 'tab_form': ['example_registry']}
 }

 Args:
 updates (dict): Dictionary of values to change in the object.
 cancel (boolean): whether to cancel the update
 """
 # hack to work around how updates are passed when used in context mgr
 # TODO revisit this method when BZ is fixed:
 # https://bugzilla.redhat.com/show_bug.cgi?id=1485953
 form_fill_args = self.form_fill_args(updates=updates)
 view = navigate_to(self, 'Edit')
 changed = view.form.fill(form_fill_args)

 if changed and not cancel: # save button won't be enabled if nothing was changed
 view.save.click()
 else:
 view.cancel.click()

 # redirects to details if edited from there
 view = self.create_view(AnalysisProfileDetailsView, override=updates)
 assert view.is_displayed

 view.flash.assert_success_message(
 'Edit of Analysis Profile "{}" was cancelled by the user'.format(self.name)
 if cancel or not changed
 else 'Analysis Profile "{}" was saved'.format(updates.get('name', self.name)))

[docs] def delete(self, cancel=False):
 """Delete self via details page"""
 view = navigate_to(self, 'Details')
 view.toolbar.configuration.item_select("Delete this Analysis Profile",
 handle_alert=not cancel)
 view = self.create_view(
 AnalysisProfileDetailsView if cancel else AnalysisProfileAllView)
 view.flush_widget_cache()
 assert view.is_displayed
 if not cancel:
 view.flash.assert_success_message('Analysis Profile "{}": Delete successful'
 .format(self.description))
 else:
 assert view.flash.messages == []

[docs] def copy(self, new_name=None, cancel=False):
 """Copy the Analysis Profile"""
 # Create a new object to return in addition to running copy in the UI
 # TODO revisit this method when BZ is fixed:
 # https://bugzilla.redhat.com/show_bug.cgi?id=1485953
 profile_args = self.__dict__.copy()
 profile_args['name'] = new_name or self.name + "-copy"
 new_profile = AnalysisProfile(**profile_args)

 # actually run copy in the UI, fill the form
 view = navigate_to(self, 'Copy')
 form_args = self.form_fill_args(updates={'name': new_profile.name})
 view.form.fill(form_args)
 if cancel:
 view.cancel.click()
 else:
 view.add.click()

 # check the result
 view = self.create_view(
 AnalysisProfileDetailsView if cancel else AnalysisProfileAllView)
 view.flush_widget_cache()
 assert view.is_displayed
 view.flash.assert_success_message(
 'Add of new Analysis Profile was cancelled by the user' # yep, not copy specific
 if cancel
 else 'Analysis Profile "{}" was saved'.format(new_profile.name))

 return new_profile

 @property
 def exists(self):
 try:
 navigate_to(self, 'Details')
 except (NavigationDestinationNotFound, CandidateNotFound):
 return False
 else:
 return True

[docs] def as_fill_value(self):
 """String representation of an Analysis Profile in CFME UI"""
 return self.name

[docs] def form_fill_args(self, updates=None):
 """Build a dictionary of nested tab_forms for assoc_fill from a flat object dictionary
 If updates dictionary is passed, it is used instead of `self`
 This should work for create or update form fill args
 """
 fill_args = {'profile_type': None} # this can't be set when adding or editing
 for key in ['name', 'description']:
 arg = updates[key] if updates and key in updates else getattr(self, key)
 fill_args[key] = arg

 for key in ['files', 'events', 'registry']:
 data = deepcopy(updates[key] if updates and key in updates else getattr(self, key))
 if isinstance(data, list):
 # It would be much better to not have these hardcoded, but I can't get them
 # statically from the form (ConditionalSwitchWidget)
 assoc_column = 'Name' if key in ['files', 'events'] else 'Registry Key'
 values_dict = {}
 for item in data:
 name = item.pop(assoc_column)
 values_dict[name] = item

 fill_args[key] = {'tab_form': values_dict}

 for key in ['categories']:
 # No assoc_fill for checkbox select, just tab_form mapping here
 arg = deepcopy(updates[key] if updates and key in updates else getattr(self, key))
 fill_args[key] = {'tab_form': arg}

 return fill_args

 def __str__(self):
 return self.as_fill_value()

 def __enter__(self):
 self.create()

 def __exit__(self, type, value, traceback):
 self.delete()

@navigator.register(AnalysisProfile, 'All')
[docs]class AnalysisProfileAll(CFMENavigateStep):
 VIEW = AnalysisProfileAllView
 prerequisite = NavigateToObject(Server, 'Configuration')

[docs] def step(self):
 server_region = self.obj.appliance.server_region_string()
 self.prerequisite_view.accordions.settings.tree.click_path(
 server_region, "Analysis Profiles")

@navigator.register(AnalysisProfile, 'Add')
[docs]class AnalysisProfileAdd(CFMENavigateStep):
 VIEW = AnalysisProfileAddView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 # stupid capitalization inconsistencies, just wait until there's a 3rd option...
 profile_type = self.obj.profile_type if self.obj.profile_type == 'Host' else 'VM'
 self.prerequisite_view.toolbar.configuration.item_select(
 "Add {} Analysis Profile".format(profile_type))

@navigator.register(AnalysisProfile, 'Details')
[docs]class AnalysisProfileDetails(CFMENavigateStep):
 VIEW = AnalysisProfileDetailsView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 server_region = self.obj.appliance.server_region_string()
 self.prerequisite_view.sidebar.accordions.settings.tree.click_path(
 server_region, "Analysis Profiles", str(self.obj))

@navigator.register(AnalysisProfile, 'Edit')
[docs]class AnalysisProfileEdit(CFMENavigateStep):
 VIEW = AnalysisProfileEditView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.toolbar.configuration.item_select("Edit this Analysis Profile")

@navigator.register(AnalysisProfile, 'Copy')
[docs]class AnalysisProfileCopy(CFMENavigateStep):
 VIEW = AnalysisProfileCopyView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.toolbar.configuration.item_select(
 'Copy this selected Analysis Profile')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/base/ssui.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.base »

 Source code for cfme.base.ssui

from . import Server

from navmazing import NavigateToSibling
from widgetastic.widget import View, ParametrizedView
from widgetastic_patternfly import NavDropdown, FlashMessages, Input, Button
from widgetastic_manageiq import SSUIVerticalNavigation
from widgetastic.utils import ParametrizedLocator

from cfme.base.credential import Credential
from cfme.configure.access_control import User
from cfme.utils import conf
from cfme.utils.appliance import ViaSSUI
from cfme.utils.appliance.implementations.ssui import navigator, SSUINavigateStep, navigate_to
from cfme.utils.browser import ensure_browser_open, quit
from cfme.utils.log import logger

import time

[docs]class SSUIBaseLoggedInPage(View):
 """This page should be subclassed by any page that models any other page that is available as
 logged in.
 """
 flash = FlashMessages('div#flash_text_div')
 help = NavDropdown('.//li[./a[@id="dropdownMenu1"]]')
 navigation = SSUIVerticalNavigation('//ul[@class="list-group"]')
 domain_switcher = Button(id="domain-switcher")

 @ParametrizedView.nested
 class settings(ParametrizedView): # noqa
 PARAMETERS = ("user_name",)
 setting = NavDropdown(ParametrizedLocator('.//li[./a[@title={user_name|quote}]]'))

 def text(self):
 return self.setting.text

 def is_displayed(self):
 return self.setting.is_displayed

 def select_item(self, option):
 return self.setting.select_item(option)

 @property
 def is_displayed(self):
 return self.logged_in_as_current_user

[docs] def logged_in_as_user(self, user):
 if self.logged_out:
 return False
 return user.name == self.current_fullname

 @property
 def logged_in_as_current_user(self):
 return self.logged_in_as_user(self.extra.appliance.user)

 @property
 def current_username(self):
 try:
 return self.extra.appliance.user.principal
 except AttributeError:
 return None

 @property
 def current_fullname(self):
 return self.settings(self.extra.appliance.user.credential.principal).text()

 @property
 def logged_in(self):
 return (
 self.settings(self.extra.appliance.user.credential.principal).is_displayed() and
 self.domain_switcher.is_displayed)

 @property
 def logged_out(self):
 return not self.logged_in

[docs] def logout(self):
 self.settings(self.extra.appliance.user.credential.principal).select_item('Logout')
 self.browser.handle_alert(wait=None)
 self.extra.appliance.user = None

[docs]class LoginPage(View):
 flash = FlashMessages('div#flash_text_div')
 username = Input(id='inputUsername')
 password = Input(id='inputPassword')
 login = Button('Log In')

@Server.address.external_implementation_for(ViaSSUI)
[docs]def address(self):
 logger.info("USING SSUI ADDRESS")
 return 'https://{}/self_service/'.format(self.appliance.address)

@Server.login.external_implementation_for(ViaSSUI)
[docs]def login(self, user=None, **kwargs):
 if not user:
 username = conf.credentials['default']['username']
 password = conf.credentials['default']['password']
 cred = Credential(principal=username, secret=password)
 user = User(credential=cred)
 login_view = navigate_to(self.appliance.server, 'LoginScreen')
 login_view.fill({
 'username': user.credential.principal,
 'password': user.credential.secret,
 })
 login_view.login.click()
 # Without this the login screen just exits after logging in
 time.sleep(3)
 login_view.flash.assert_no_error()
 self.browser.plugin.ensure_page_safe()

@navigator.register(Server)
[docs]class LoggedIn(SSUINavigateStep):
 VIEW = SSUIBaseLoggedInPage
 prerequisite = NavigateToSibling('LoginScreen')

[docs] def step(self):
 with self.obj.appliance.context.use(ViaSSUI):
 self.obj.login()

@navigator.register(Server)
[docs]class LoginScreen(SSUINavigateStep):
 VIEW = LoginPage

[docs] def prerequisite(self):
 ensure_browser_open(self.obj.appliance.server.address())

[docs] def step(self):
 # Can be either blank or logged in
 del self.view # In order to unbind the browser
 quit()
 ensure_browser_open(self.obj.appliance.server.address())
 if not self.view.is_displayed:
 raise Exception('Could not open the login screen')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/base/login.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.base »

 Source code for cfme.base.login

from widgetastic.widget import View
from widgetastic_patternfly import NavDropdown, VerticalNavigation, FlashMessages

[docs]class BaseLoggedInPage(View):
 """This page should be subclassed by any page that models any other page that is available as
 logged in.
 """
 CSRF_TOKEN = '//meta[@name="csrf-token"]'
 flash = FlashMessages('.//div[starts-with(@class, "flash_text_div") or @id="flash_text_div"]')
 help = NavDropdown('.//li[./a[@id="dropdownMenu1"]]')
 settings = NavDropdown('.//li[./a[@id="dropdownMenu2"]]')
 navigation = VerticalNavigation('#maintab')

 @property
 def is_displayed(self):
 return self.logged_in_as_current_user

[docs] def logged_in_as_user(self, user):
 if self.logged_out:
 return False

 return user.name == self.current_fullname

 @property
 def logged_in_as_current_user(self):
 return self.logged_in_as_user(self.extra.appliance.user)

 @property
 def current_username(self):
 try:
 return self.extra.appliance.user.principal
 except AttributeError:
 return None

 @property
 def current_fullname(self):
 return self.settings.text.strip().split('|', 1)[0].strip()

 @property
 def logged_in(self):
 return self.settings.is_displayed

 @property
 def logged_out(self):
 return not self.logged_in

[docs] def logout(self):
 self.settings.select_item('Logout')
 self.browser.handle_alert(wait=None)
 self.extra.appliance.user = None

 @property
 def csrf_token(self):
 return self.browser.get_attribute('csrf-token', self.CSRF_TOKEN)

 @csrf_token.setter
 def csrf_token(self, value):
 self.browser.set_attribute('csrf-token', value, self.CSRF_TOKEN)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/middleware/server_group.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.middleware.server_group

import re

from navmazing import NavigateToSibling
from selenium.common.exceptions import NoSuchElementException
from wrapanapi.hawkular import CanonicalPath

from cfme.common import Taggable
from cfme.exceptions import (MiddlewareDomainNotFound,
 MiddlewareServerGroupNotFound)
from cfme.middleware.domain import MiddlewareDomain
from cfme.middleware.provider import MiddlewareBase, download
from cfme.middleware.provider import parse_properties, Container
from cfme.middleware.provider.middleware_views import (ServerGroupDetailsView,
 ServerGroupServerAllView)
from cfme.utils import attributize_string
from cfme.utils.appliance import Navigatable, current_appliance
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to
from cfme.utils.varmeth import variable

def _db_select_query(domain, name=None, feed=None):
 """column order: `id`, `name`, `feed`, `profile`,
 `domain_name`, `ems_ref`, `properties`"""
 t_msgr = current_appliance.db.client['middleware_server_groups']
 t_md = current_appliance.db.client['middleware_domains']
 query = current_appliance.db.client.session.query(
 t_msgr.id, t_msgr.name, t_msgr.feed, t_msgr.profile,
 t_md.name.label('domain_name'),
 t_msgr.ems_ref, t_msgr.properties).join(t_md, t_msgr.domain_id == t_md.id)
 if name:
 query = query.filter(t_msgr.name == name)
 if feed:
 query = query.filter(t_msgr.feed == feed)
 query = query.filter(t_md.name == domain.name)
 return query

def _get_server_groups_page(domain):
 return navigate_to(domain, 'DomainServerGroups')

[docs]class MiddlewareServerGroup(MiddlewareBase, Taggable, Container, Navigatable):
 """
 MiddlewareServerGroup class provides actions and details on Server Group page.
 Class method available to get existing server groups list

 Args:
 name: name of the server group
 domain: Domain (MiddlewareDomain) object to which belongs server group
 profile: Profile of the server group
 feed: feed of the server group
 db_id: database row id of server group

 Usage:

 myservergroup = MiddlewareServerGroup(name='main-server-group', domain=middleware_domain)

 myservergroups = MiddlewareServerGroup.server_groups()

 """
 property_tuples = [('name', 'Name'), ('profile', 'Profile')]
 taggable_type = 'MiddlewareServerGroup'
 deployment_message = 'Deployment "{}" has been initiated on this group.'

 def __init__(self, name, domain, appliance=None, **kwargs):
 Navigatable.__init__(self, appliance=appliance)
 if name is None:
 raise KeyError("'name' should not be 'None'")
 self.name = name
 self.domain = domain
 self.profile = kwargs['profile'] if 'profile' in kwargs else None
 self.feed = kwargs['feed'] if 'feed' in kwargs else None
 self.db_id = kwargs['db_id'] if 'db_id' in kwargs else None
 if 'properties' in kwargs:
 for property in kwargs['properties']:
 # check the properties first, so it will not overwrite core attributes
 if getattr(self, attributize_string(property), None) is None:
 setattr(self, attributize_string(property), kwargs['properties'][property])

 @classmethod
[docs] def server_groups(cls, domain, strict=True):
 server_groups = []
 view = _get_server_groups_page(domain=domain)
 _domain = domain
 for _ in view.entities.paginator.pages():
 for row in view.entities.elements:
 if strict:
 _domain = MiddlewareDomain(row.domain_name.text, provider=domain.provider)
 server_groups.append(MiddlewareServerGroup(
 name=row.server_group_name.text,
 feed=row.feed.text,
 profile=row.profile.text,
 provider=domain.provider,
 domain=_domain))
 return server_groups

 @classmethod
[docs] def server_groups_in_db(cls, domain, name=None, strict=True):
 server_groups = []
 rows = _db_select_query(name=name, domain=domain).all()
 _domain = domain
 for row in rows:
 if strict:
 _domain = MiddlewareDomain(row.domain_name)
 server_groups.append(MiddlewareServerGroup(
 name=row.name,
 feed=row.feed,
 profile=row.profile,
 db_id=row.id,
 provider=domain.provider,
 domain=_domain,
 properties=parse_properties(row.properties)))
 return server_groups

 @classmethod
[docs] def server_groups_in_mgmt(cls, domain):
 server_groups = []

 rows = domain.provider.mgmt.inventory.list_server_group(feed_id=domain.feed)

 for row in rows:
 server_groups.append(MiddlewareServerGroup(
 name=re.sub('(Domain Server Group \\[)|(\\])', '', row.name),
 feed=row.path.feed_id,
 profile=row.data['Profile']
 if 'Profile' in row.data else None,
 domain=domain))
 return server_groups

 @classmethod
[docs] def headers(cls, domain):
 view = _get_server_groups_page(domain=domain)
 headers = [hdr.encode("utf-8")
 for hdr in view.entities.elements.headers if hdr]
 return headers

[docs] def load_details(self, refresh=False):
 view = navigate_to(self, 'Details')
 if not self.db_id or refresh:
 tmp_sgr = self.server_group(method='db')
 self.db_id = tmp_sgr.db_id
 if refresh:
 view.browser.selenium.refresh()
 view.flush_widget_cache()
 return view

 @variable(alias='ui')
 def server_group(self):
 self.load_details()
 return self

 @server_group.variant('mgmt')
 def server_group_in_mgmt(self):
 db_sgr = _db_select_query(name=self.name, domain=self.domain,
 feed=self.feed).first()
 if db_sgr:
 path = CanonicalPath(db_sgr.ems_ref)
 mgmt_sgr = self.domain.provider.mgmt.inventory.get_config_data(
 feed_id=path.feed_id, resource_id=path.resource_id)
 if mgmt_sgr:
 return MiddlewareServerGroup(
 domain=self.domain,
 name=db_sgr.name,
 feed=db_sgr.feed,
 properties=mgmt_sgr.value)
 return None

 @server_group.variant('db')
 def server_group_in_db(self):
 server_group = _db_select_query(name=self.name, domain=self.domain,
 feed=self.feed).first()
 if server_group:
 return MiddlewareServerGroup(
 db_id=server_group.id,
 feed=server_group.feed,
 name=server_group.name,
 profile=server_group.profile,
 domain=self.domain,
 properties=parse_properties(server_group.properties))
 return None

 @server_group.variant('rest')
 def server_group_in_rest(self):
 raise NotImplementedError('This feature not implemented yet')

 @classmethod
[docs] def download(cls, extension, domain):
 view = _get_server_groups_page(domain)
 download(view, extension)

[docs] def restart_server_group(self):
 view = self.load_details()
 view.toolbar.power.item_select('Restart Server Group', handle_alert=True)
 view.flash.assert_success_message('Restart')

[docs] def start_server_group(self):
 view = self.load_details()
 view.toolbar.power.item_select('Start Server Group', handle_alert=True)
 view.flash.assert_success_message('Start')

[docs] def suspend_server_group(self, timeout=10, cancel=False):
 view = self.load_details()
 view.toolbar.power.item_select('Suspend Server Group')
 view.power_operation_form.fill({
 "timeout": timeout,
 })
 view.power_operation_form.cancel_button.click() \
 if cancel else view.power_operation_form.suspend_button.click()
 view.flash.assert_success_message('Suspend initiated for given server group.')

[docs] def resume_server_group(self):
 view = self.load_details()
 view.toolbar.power.item_select('Resume Server Group', handle_alert=True)
 view.flash.assert_success_message('Resume')

[docs] def reload_server_group(self):
 view = self.load_details()
 view.toolbar.power.item_select('Reload Server Group', handle_alert=True)
 view.flash.assert_success_message('Reload')

[docs] def stop_server_group(self, timeout=10, cancel=False):
 view = self.load_details()
 view.toolbar.power.item_select('Stop Server Group')
 view.power_operation_form.fill({
 "timeout": timeout,
 })
 view.power_operation_form.cancel_button.click() \
 if cancel else view.power_operation_form.stop_button.click()
 view.flash.assert_success_message('Stop initiated for given server group.')

@navigator.register(MiddlewareServerGroup, 'Details')
[docs]class Details(CFMENavigateStep):
 VIEW = ServerGroupDetailsView

[docs] def prerequisite(self):
 if not self.obj.domain:
 raise MiddlewareDomainNotFound(
 "Middleware Domain is not found in provided Server Group")
 return navigate_to(self.obj.domain, 'DomainServerGroups')

[docs] def step(self):
 try:
 # TODO find_row_on_pages change to entities.get_entity()
 row = self.prerequisite_view.entities.paginator.find_row_on_pages(
 self.prerequisite_view.entities.elements,
 server_group_name=self.obj.name)
 except NoSuchElementException:
 raise MiddlewareServerGroupNotFound(
 "Server Group '{}' not found in table".format(self.name))
 row.click()

@navigator.register(MiddlewareServerGroup, 'ServerGroupServers')
[docs]class ServerGroupServers(CFMENavigateStep):
 VIEW = ServerGroupServerAllView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.entities.relationships.click_at('Middleware Servers')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/automate/provisioning_dialogs.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.automate »

 Source code for cfme.automate.provisioning_dialogs

-*- coding: utf-8 -*-
from navmazing import NavigateToSibling, NavigateToAttribute
from widgetastic.widget import View, Text, TextInput
from widgetastic_patternfly import Dropdown, BootstrapSelect, CandidateNotFound
from widgetastic_manageiq import Button, Table, PaginationPane, SummaryForm, ScriptBox

from cfme.base.login import BaseLoggedInPage
from cfme.base.ui import automate_menu_name
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import navigator, navigate_to, CFMENavigateStep
from cfme.utils.pretty import Pretty
from cfme.utils.update import Updateable
from . import AutomateCustomizationView

group_title = 'Basic Information'

[docs]class ProvDiagAllToolbar(View):
 """Toolbar with singular configuration dropdown"""
 configuration = Dropdown('Configuration')

[docs]class ProvDiagAllEntities(View):
 """All entities view - no view selector, not using BaseEntitiesView"""
 title = Text('#explorer_title_text')
 table = Table("//div[@id='records_div']//table")
 paginator = PaginationPane()

[docs]class ProvDiagDetailsEntities(View):
 """Entities for details page"""
 title = Text('#explorer_title_text')
 basic_info = SummaryForm(group_title=group_title)
 content = ScriptBox('//textarea[contains(@id, "script_data")]')

[docs]class ProvDiagForm(View):
 """Base form with common widgets for add and edit"""
 name = TextInput('name')
 description = TextInput('description')
 diag_type = BootstrapSelect(id='dialog_type')
 content = ScriptBox('//textarea[contains(@id, "content_data")]')
 cancel = Button('Cancel')

[docs]class ProvDiagView(BaseLoggedInPage):
 @property
 def in_customization(self):
 expected_navigation = automate_menu_name(self.context['object'].appliance)
 expected_navigation.append('Customization')
 return (
 self.logged_in_as_current_user and
 self.navigation.currently_selected == expected_navigation)

 # sidebar are the same on all, details, etc
 sidebar = View.nested(AutomateCustomizationView)

[docs]class ProvDiagAllView(ProvDiagView):
 @property
 def is_displayed(self):
 return (
 self.in_customization and
 self.entities.title.text == 'All Dialogs')

 toolbar = View.nested(ProvDiagAllToolbar)
 entities = View.nested(ProvDiagAllEntities)

[docs]class ProvDiagDetailsView(ProvDiagView):
 @property
 def is_displayed(self):
 # FIXME https://github.com/ManageIQ/manageiq-ui-classic/issues/1983
 # 'Editing' should NOT be in the title here
 expected_title = 'Editing Dialog "{}"'.format(self.context['object'].description)
 basic_info_widget = self.entities.basic_info
 return (
 self.in_customization and
 self.entities.title.text == expected_title and
 basic_info_widget.get_text_of('Name') == self.context['object'].name and
 basic_info_widget.get_text_of('Description') == self.context['object'].description)

 toolbar = View.nested(ProvDiagAllToolbar)
 entities = View.nested(ProvDiagDetailsEntities)

[docs]class ProvDiagAddView(ProvDiagView):
 @property
 def is_displayed(self):
 return (
 self.in_customization and
 self.title.text == 'Adding a new Dialog' and
 self.form.is_displayed)

 title = Text('#explorer_title_text')

 @View.nested
 class form(ProvDiagForm): # noqa
 add = Button('Add')

[docs]class ProvDiagEditView(ProvDiagView):
 @property
 def is_displayed(self):
 # FIXME https://github.com/ManageIQ/manageiq-ui-classic/issues/1983
 # 'Editing' should only be in the title once
 expected_title = 'Editing Editing Dialog "{}"'.format(self.context['object'].description)
 return (
 self.in_customization and
 self.title.text == expected_title and
 self.form.is_displayed)

 title = Text('#explorer_title_text')

 @View.nested
 class form(ProvDiagForm): # noqa
 save = Button('Save')
 reset = Button('Reset')

[docs]class ProvisioningDialog(Updateable, Pretty, Navigatable):
 HOST_PROVISION = 'Host Provision'
 VM_MIGRATE = 'VM Migrate'
 VM_PROVISION = 'VM Provision'
 SYSTEM_PROVISION = 'Configured System Provision'
 ALLOWED_TYPES = {HOST_PROVISION, VM_MIGRATE, VM_PROVISION, SYSTEM_PROVISION}

 pretty_attrs = ['name', 'description', 'diag_type', 'content']

 def __init__(self, diag_type, name=None, description=None, content=None, appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.name = name
 self.description = description
 self.content = content
 if diag_type in self.ALLOWED_TYPES:
 self.diag_type = diag_type
 else:
 raise TypeError('Type must be one of ProvisioningDialog constants: {}'
 .format(self.ALLOWED_TYPES))

 def __str__(self):
 return self.name

 @property
 def exists(self):
 try:
 navigate_to(self, 'Details')
 except CandidateNotFound:
 return False
 return True

[docs] def create(self, cancel=False):
 view = navigate_to(self, 'Add')
 # might not want to use pretty_attrs here, overloading its intended use
 fill_args = {key: self.__dict__[key] for key in self.pretty_attrs}
 view.form.fill(fill_args)
 if cancel:
 flash_msg = 'Add of new Dialog was cancelled by the user'
 btn = view.form.cancel
 else:
 flash_msg = 'Dialog "{}" was added'.format(self.name)
 btn = view.form.add

 btn.click()
 view = self.create_view(ProvDiagAllView if cancel else ProvDiagDetailsView)
 assert view.is_displayed
 view.flash.assert_success_message(flash_msg)

[docs] def update(self, updates, cancel=False, reset=False):
 view = navigate_to(self, 'Edit')
 view.form.fill(updates)
 if reset:
 cancel = True
 view.form.reset.click()
 view.flash.assert_message('All changes have been reset')
 if cancel:
 flash_msg = 'Edit of Dialog "{}" was cancelled by the user'.format(self.name)
 btn = view.form.cancel
 else:
 flash_msg = ('Dialog "{}" was saved'.format(updates.get('name') or self.name))
 btn = view.form.save

 btn.click()
 view = self.create_view(ProvDiagDetailsView)
 # TODO use override in create_view in order to assert view.is_displayed
 # Saw inconsistent UI behavior when trying to use it, where UI was jumping to 'All' view
 view.flash.assert_success_message(flash_msg)

[docs] def delete(self, cancel=False):
 view = navigate_to(self, 'Details')
 view.toolbar.configuration.item_select('Remove Dialog', handle_alert=(not cancel))

 view = self.create_view(ProvDiagDetailsView if cancel else ProvDiagAllView)
 if cancel:
 assert view.is_displayed
 else:
 # redirects to the type folder, not 'All'
 assert view.sidebar.provisioning_dialogs.tree.selected_item.text == self.diag_type

@navigator.register(ProvisioningDialog, 'All')
[docs]class All(CFMENavigateStep):
 prerequisite = NavigateToAttribute('appliance.server', 'AutomateCustomization')
 VIEW = ProvDiagAllView

[docs] def step(self):
 self.prerequisite_view.provisioning_dialogs.tree.click_path('All Dialogs')

@navigator.register(ProvisioningDialog, 'Add')
[docs]class Add(CFMENavigateStep):
 prerequisite = NavigateToSibling('All')
 VIEW = ProvDiagAddView

[docs] def step(self):
 self.prerequisite_view.toolbar.configuration.item_select("Add a new Dialog")

@navigator.register(ProvisioningDialog, 'Details')
[docs]class Details(CFMENavigateStep):
 prerequisite = NavigateToSibling('All')
 VIEW = ProvDiagDetailsView

[docs] def step(self):
 accordion_tree = self.prerequisite_view.sidebar.provisioning_dialogs.tree
 accordion_tree.click_path("All Dialogs", self.obj.diag_type, self.obj.description)

@navigator.register(ProvisioningDialog, 'Edit')
[docs]class Edit(CFMENavigateStep):
 prerequisite = NavigateToSibling('Details')
 VIEW = ProvDiagEditView

[docs] def step(self):
 self.prerequisite_view.toolbar.configuration.item_select("Edit this Dialog")

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/common/provider_views.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.common »

 Source code for cfme.common.provider_views

-*- coding: utf-8 -*-
from widgetastic.utils import VersionPick, Version
from widgetastic.widget import View, Text, ConditionalSwitchableView
from widgetastic_patternfly import Dropdown, BootstrapSelect, FlashMessages

from cfme.base.login import BaseLoggedInPage
from widgetastic_manageiq import (BreadCrumb,
 SummaryTable,
 Button,
 TimelinesView,
 DetailsToolBarViewSelector,
 ItemsToolBarViewSelector,
 Checkbox,
 Input,
 Table,
 BaseEntitiesView,
 DynaTree,
 BootstrapTreeview,
 ProviderEntity,
 BaseNonInteractiveEntitiesView)
from cfme.common.host_views import HostEntitiesView

[docs]class ProviderDetailsToolBar(View):
 """
 represents provider toolbar and its controls
 """
 monitoring = Dropdown(text='Monitoring')
 configuration = Dropdown(text='Configuration')
 reload = Button(title='Reload Current Display')
 policy = Dropdown(text='Policy')
 authentication = Dropdown(text='Authentication')

 view_selector = View.nested(DetailsToolBarViewSelector)

[docs]class ProviderDetailsView(BaseLoggedInPage):
 """
 main Details page
 """
 title = Text('//div[@id="main-content"]//h1')
 breadcrumb = BreadCrumb(locator='//ol[@class="breadcrumb"]')
 flash = FlashMessages('.//div[@id="flash_msg_div"]/div[@id="flash_text_div" or '
 'contains(@class, "flash_text_div")]')
 toolbar = View.nested(ProviderDetailsToolBar)

 contents = ConditionalSwitchableView(reference='toolbar.view_selector',
 ignore_bad_reference=True)

 @contents.register('Summary View', default=True)
 class ProviderDetailsSummaryView(View):
 """
 represents Details page when it is switched to Summary aka Tables view
 """
 properties = SummaryTable(title="Properties")
 status = SummaryTable(title="Status")
 relationships = SummaryTable(title="Relationships")
 overview = SummaryTable(title="Overview")
 smart_management = SummaryTable(title="Smart Management")

 @contents.register('Dashboard View')
 class ProviderDetailsDashboardView(View):
 """
 represents Details page when it is switched to Dashboard aka Widgets view
 """
 # todo: need to develop this page
 pass

 @property
 def is_displayed(self):
 if (not self.toolbar.view_selector.is_displayed or
 self.toolbar.view_selector.selected == 'Summary View'):
 subtitle = 'Summary'
 else:
 subtitle = 'Dashboard'

 title = '{name} ({subtitle})'.format(name=self.context['object'].name,
 subtitle=subtitle)
 return (self.logged_in_as_current_user and
 self.breadcrumb.is_displayed and
 self.breadcrumb.active_location == title)

[docs]class InfraProviderDetailsView(ProviderDetailsView):
 """
 Infra Details page
 """
 @property
 def is_displayed(self):
 return (super(InfraProviderDetailsView, self).is_displayed and
 self.navigation.currently_selected == ['Compute', 'Infrastructure', 'Providers'])

[docs]class CloudProviderDetailsView(ProviderDetailsView):
 """
 Cloud Details page
 """
 @property
 def is_displayed(self):
 return (super(CloudProviderDetailsView, self).is_displayed and
 self.navigation.currently_selected == ['Compute', 'Clouds', 'Providers'])

[docs]class MiddlewareProviderDetailsView(ProviderDetailsView):
 """
 Middleware Details page
 """
 @property
 def is_displayed(self):
 return (super(MiddlewareProviderDetailsView, self).is_displayed and
 self.navigation.currently_selected == ['Middleware', 'Providers'])

[docs]class ProviderTimelinesView(TimelinesView, BaseLoggedInPage):
 """
 represents Timelines page
 """
 @property
 def is_displayed(self):
 return (self.logged_in_as_current_user and
 self.navigation.currently_selected == ['Compute', 'Infrastructure', 'Providers'] and
 TimelinesView.is_displayed)

[docs]class InfraProvidersDiscoverView(BaseLoggedInPage):
 """
 Discover View from Infrastructure Providers page
 """
 title = Text('//div[@id="main-content"]//h1')

 vmware = Checkbox('discover_type_virtualcenter')
 scvmm = Checkbox('discover_type_scvmm')
 rhevm = Checkbox('discover_type_rhevm')

 from_ip1 = Input('from_first')
 from_ip2 = Input('from_second')
 from_ip3 = Input('from_third')
 from_ip4 = Input('from_fourth')
 to_ip4 = Input('to_fourth')

 start = Button('Start')
 cancel = Button('Cancel')

 @property
 def is_displayed(self):
 return (self.logged_in_as_current_user and
 self.navigation.currently_selected == ['Compute', 'Infrastructure', 'Providers'] and
 self.title.text == 'Infrastructure Providers Discovery')

[docs]class CloudProvidersDiscoverView(BaseLoggedInPage):
 """
 Discover View from Infrastructure Providers page
 """
 title = Text('//div[@id="main-content"]//h1')

 discover_type = BootstrapSelect('discover_type_selected')

 fields = ConditionalSwitchableView(reference='discover_type')

 @fields.register('Amazon EC2', default=True)
 class Amazon(View):
 username = Input(name='userid')
 password = Input(name='password')
 confirm_password = Input(name='verify')

 @fields.register('Azure')
 class Azure(View):
 client_id = Input(name='client_id')
 client_key = Input(name='client_key')
 tenant_id = Input(name='azure_tenant_id')
 subscription = Input(name='subscription')

 start = Button('Start')
 cancel = Button('Cancel')

 @property
 def is_displayed(self):
 return (self.logged_in_as_current_user and
 self.navigation.currently_selected == ['Compute', 'Clouds', 'Providers'] and
 self.title.text == 'Cloud Providers Discovery')

[docs]class ProvidersManagePoliciesView(BaseLoggedInPage):
 """
 Provider's Manage Policies view
 """
 policies = VersionPick({Version.lowest(): DynaTree('protect_treebox'),
 '5.7': BootstrapTreeview('protectbox')})

 @View.nested
 class entities(BaseNonInteractiveEntitiesView): # noqa
 @property
 def entity_class(self):
 return ProviderEntity().pick(self.browser.product_version)

 save = Button('Save')
 reset = Button('Reset')
 cancel = Button('Cancel')

 @property
 def is_displayed(self):
 return False

[docs]class NodesToolBar(View):
 """
 represents nodes toolbar and its controls (exists for Infra OpenStack provider)
 """
 configuration = Dropdown(text='Configuration')
 policy = Dropdown(text='Policy')
 power = Dropdown(text='Power')
 download = Dropdown(text='Download')
 view_selector = View.nested(ItemsToolBarViewSelector)

[docs]class ProviderNodesView(BaseLoggedInPage):
 """
 represents main Nodes view (exists for Infra OpenStack provider)
 """
 title = Text('//div[@id="main-content"]//h1')
 toolbar = View.nested(NodesToolBar)
 including_entities = View.include(HostEntitiesView, use_parent=True)

 @property
 def is_displayed(self):
 title = '{name} (All Managed Hosts)'.format(name=self.context['object'].name)
 return (self.logged_in_as_current_user and
 self.navigation.currently_selected == ['Compute', 'Infrastructure', 'Providers'] and
 self.title.text == title)

[docs]class ProviderToolBar(View):
 """
 represents provider toolbar and its controls
 """
 configuration = Dropdown(text='Configuration')
 policy = Dropdown(text='Policy')
 authentication = Dropdown(text='Authentication')
 download = Dropdown(text='Download')
 view_selector = View.nested(ItemsToolBarViewSelector)

[docs]class ProviderSideBar(View):
 """
 represents left side bar. it usually contains navigation, filters, etc
 """
 pass

[docs]class ProviderEntitiesView(BaseEntitiesView):
 """
 represents child class of Entities view for Provider entities
 """
 @property
 def entity_class(self):
 return ProviderEntity().pick(self.browser.product_version)

[docs]class ProvidersView(BaseLoggedInPage):
 """
 represents Main view displaying all providers
 """
 @property
 def is_displayed(self):
 return self.logged_in_as_current_user

 toolbar = View.nested(ProviderToolBar)
 sidebar = View.nested(ProviderSideBar)
 including_entities = View.include(ProviderEntitiesView, use_parent=True)

[docs]class ContainersProvidersView(ProvidersView):
 """
 represents Main view displaying all Containers providers
 """
 table = Table(locator="//div[@id='list_grid']//table")

 @property
 def is_displayed(self):
 return (super(ContainersProvidersView, self).is_displayed and
 self.navigation.currently_selected == ['Compute', 'Containers', 'Providers'] and
 self.entities.title.text == 'Containers Providers')

[docs]class InfraProvidersView(ProvidersView):
 """
 represents Main view displaying all Infra providers
 """
 @property
 def is_displayed(self):
 return (super(InfraProvidersView, self).is_displayed and
 self.navigation.currently_selected == ['Compute', 'Infrastructure', 'Providers'] and
 self.entities.title.text == 'Infrastructure Providers')

[docs]class CloudProvidersView(ProvidersView):
 """
 represents Main view displaying all Cloud providers
 """
 @property
 def is_displayed(self):
 return (super(CloudProvidersView, self).is_displayed and
 self.navigation.currently_selected == ['Compute', 'Clouds', 'Providers'] and
 self.entities.title.text == 'Cloud Providers')

[docs]class MiddlewareProvidersView(ProvidersView):
 """
 represents Main view displaying all Middleware providers
 """
 @property
 def is_displayed(self):
 return (super(MiddlewareProvidersView, self).is_displayed and
 self.navigation.currently_selected == ['Middleware', 'Providers'] and
 self.entities.title.text == 'Middleware Providers')

[docs]class BeforeFillMixin(object):
 """
 this mixin is used to activate appropriate tab before filling this tab
 """
[docs] def before_fill(self):
 if self.exists and not self.is_active():
 self.select()

[docs]class ProviderAddView(BaseLoggedInPage):
 """
 represents Provider Add View
 """
 title = Text('//div[@id="main-content"]//h1')
 name = Input('name')
 prov_type = BootstrapSelect(id='emstype')
 keystone_v3_domain_id = Input('keystone_v3_domain_id') # OpenStack only
 zone = Input('zone')
 flash = FlashMessages('.//div[@id="flash_msg_div"]/div[@id="flash_text_div" or '
 'contains(@class, "flash_text_div")]')

 add = Button('Add')
 cancel = Button('Cancel')

 @View.nested
 class endpoints(View): # NOQA
 # this is switchable view that gets replaced with concrete view.
 # it gets changed according to currently chosen provider type
 # look at cfme.common.provider.BaseProvider.create() method
 pass

 @property
 def is_displayed(self):
 return self.logged_in_as_current_user

[docs]class InfraProviderAddView(ProviderAddView):
 api_version = BootstrapSelect(id='api_version') # only for OpenStack

 @property
 def is_displayed(self):
 return (super(InfraProviderAddView, self).is_displayed and
 self.navigation.currently_selected == ['Compute', 'Infrastructure', 'Providers'] and
 self.title.text == 'Add New Infrastructure Provider')

[docs]class CloudProviderAddView(ProviderAddView):
 """
 represents Cloud Provider Add View
 """
 # bug in cfme this field has different ids for cloud and infra add views
 prov_type = BootstrapSelect(id='ems_type')
 region = BootstrapSelect(id='provider_region') # Azure/AWS/GCE
 tenant_id = Input('azure_tenant_id') # only for Azure
 subscription = Input('subscription') # only for Azure
 project_id = Input('project') # only for Azure
 # bug in cfme this field has different ids for cloud and infra add views
 api_version = BootstrapSelect(id='ems_api_version') # only for OpenStack
 infra_provider = BootstrapSelect(id='ems_infra_provider_id') # OpenStack only
 tenant_mapping = Checkbox(name='tenant_mapping_enabled') # OpenStack only

 @property
 def is_displayed(self):
 return (super(CloudProviderAddView, self).is_displayed and
 self.navigation.currently_selected == ['Compute', 'Clouds', 'Providers'] and
 self.title.text == 'Add New Cloud Provider')

[docs]class ContainersProviderAddView(ProviderAddView):
 """
 represents Containers Provider Add View
 """
 prov_type = BootstrapSelect(id='ems_type')

 @property
 def is_displayed(self):
 return (super(ProviderAddView, self).is_displayed and
 self.navigation.currently_selected == ['Compute', 'Containers', 'Providers'] and
 self.title.text == 'Add New Containers Provider')

[docs]class MiddlewareProviderAddView(ProviderAddView):
 """
 represents Middleware Provider Add View
 """

 @property
 def is_displayed(self):
 return (super(MiddlewareProviderAddView, self).is_displayed and
 self.navigation.currently_selected == ['Middleware', 'Providers'] and
 self.title.text == 'Add New Middleware Provider')

[docs]class ProviderEditView(ProviderAddView):
 """
 represents Provider Edit View
 """
 prov_type = Text(locator='//label[@name="emstype"]')

 # only in edit view
 vnc_start_port = Input('host_default_vnc_port_start')
 vnc_end_port = Input('host_default_vnc_port_end')
 flash = FlashMessages('.//div[@id="flash_msg_div"]/div[@id="flash_text_div" or '
 'contains(@class, "flash_text_div")]')

 save = Button('Save')
 reset = Button('Reset')
 cancel = Button('Cancel')

 @property
 def is_displayed(self):
 return self.logged_in_as_current_user

[docs]class InfraProviderEditView(ProviderEditView):
 """
 represents Infra Provider Edit View
 """
 @property
 def is_displayed(self):
 return (super(InfraProviderEditView, self).is_displayed and
 self.navigation.currently_selected == ['Compute', 'Infrastructure', 'Providers'] and
 self.title.text == 'Edit Infrastructure Provider')

[docs]class CloudProviderEditView(ProviderEditView):
 """
 represents Cloud Provider Edit View
 """
 @property
 def is_displayed(self):
 return (super(CloudProviderEditView, self).is_displayed and
 self.navigation.currently_selected == ['Compute', 'Clouds', 'Providers'] and
 self.title.text == 'Edit Cloud Provider')

[docs]class ContainersProviderEditView(ProviderEditView):
 """
 represents Containers Provider Edit View
 """
 @property
 def is_displayed(self):
 return (super(ProviderEditView, self).is_displayed and
 self.navigation.currently_selected == ['Compute', 'Containers', 'Providers'] and
 self.title.text == 'Edit Containers Provider')

[docs]class MiddlewareProviderEditView(ProviderEditView):
 """
 represents Middleware Provider Edit View
 """
 @property
 def is_displayed(self):
 expected_title = ("Edit Middleware Providers '{name}'"
 .format(name=self.context['object'].name))
 return (super(MiddlewareProviderEditView, self).is_displayed and
 self.navigation.currently_selected == ['Middleware', 'Providers'] and
 self.title.text == expected_title)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/middleware/topology.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.middleware.topology

from navmazing import NavigateToAttribute

from cfme.common import TopologyMixin
from cfme.utils.appliance.implementations.ui import CFMENavigateStep, navigator, navigate_to

[docs]class MiddlewareTopology(TopologyMixin):

 @classmethod
[docs] def load_topology_page(cls):
 navigate_to(MiddlewareTopology, 'All')

@navigator.register(MiddlewareTopology, 'All')
[docs]class All(CFMENavigateStep):
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self):
 self.prerequisite_view.navigation.select('Middleware', 'Topology')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/automate/dialog_box.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.automate »

 Source code for cfme.automate.dialog_box

from navmazing import NavigateToAttribute
from widgetastic_patternfly import Input, Dropdown
from cached_property import cached_property

from cfme.utils.appliance import BaseCollection, BaseEntity
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to

from .dialog_tab import AddTabView

[docs]class BoxForm(AddTabView):
 box_label = Input(name='group_label')
 box_desc = Input(name="group_description")

[docs]class AddBoxView(BoxForm):
 """AddBox View."""
 plus_btn = Dropdown('Add')

 @property
 def is_displayed(self):
 return (
 self.in_customization and self.service_dialogs.is_opened and
 self.title.text == "Adding a new Dialog [Box Information]"
)

[docs]class EditBoxView(BoxForm):
 """EditBox View."""
 @property
 def is_displayed(self):
 return (
 self.in_customization and self.service_dialogs.is_opened and
 self.title.text == "Editing Dialog {} [Box Information]".format(self.box_label)
)

[docs]class BoxCollection(BaseCollection):
 def __init__(self, appliance, parent):
 self.parent = parent
 self.appliance = appliance

 @property
 def tree_path(self):
 return self.parent.tree_path

[docs] def instantiate(self, box_label=None, box_desc=None):
 return Box(self,
 box_label=box_label, box_desc=box_desc)

[docs] def create(self, box_label=None, box_desc=None):
 """Create box method.
 Args:
 box_label and box_description.
 """
 view = navigate_to(self, "Add")
 fill_dict = {
 k: v
 for k, v in {'box_label': box_label, 'box_desc': box_desc}.items()
 if v is not None}
 view.fill(fill_dict)
 return self.instantiate(box_label=box_label, box_desc=box_desc)

[docs]class Box(BaseEntity):
 """A class representing one Box of dialog."""
 def __init__(self, collection, box_label, box_desc):
 self.collection = collection
 self.appliance = self.collection.appliance
 self.box_label = box_label
 self.box_desc = box_desc

 @property
 def parent(self):
 """returns the parent object - Tab"""
 return self.collection.parent

 @cached_property
 def elements(self):
 from .dialog_element import ElementCollection
 return ElementCollection(self.collection.appliance, self)

 @property
 def tree_path(self):
 return self.collection.tree_path + [self.box_label]

 @property
 def tab(self):
 return self.parent.dialog

@navigator.register(BoxCollection)
[docs]class Add(CFMENavigateStep):
 VIEW = AddBoxView

 prerequisite = NavigateToAttribute('parent.collection', 'Add')

[docs] def step(self):
 self.prerequisite_view.plus_btn.item_select("Add a new Box to this Tab")

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/middleware/messaging.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.middleware.messaging

import re

from navmazing import NavigateToSibling, NavigateToAttribute
from selenium.common.exceptions import NoSuchElementException

from cfme.common import Taggable, UtilizationMixin
from cfme.exceptions import MiddlewareMessagingNotFound
from cfme.middleware.provider import MiddlewareBase, download, get_server_name
from cfme.middleware.provider import parse_properties
from cfme.middleware.provider.hawkular import HawkularProvider
from cfme.middleware.provider.middleware_views import (ProviderMessagingAllView,
 MessagingDetailsView)
from cfme.middleware.server import MiddlewareServer
from cfme.utils import attributize_string
from cfme.utils.appliance import Navigatable, current_appliance
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to
from cfme.utils.providers import get_crud_by_name, list_providers_by_class
from cfme.utils.varmeth import variable

def _db_select_query(name=None, nativeid=None, server=None, provider=None):
 """Column order: `id`, `nativeid`, `name`, `properties`, `server_name`,
 `feed`, `provider_name`, `ems_ref`, `messaging_type`"""
 t_ms = current_appliance.db.client['middleware_servers']
 t_mm = current_appliance.db.client['middleware_messagings']
 t_ems = current_appliance.db.client['ext_management_systems']
 query = current_appliance.db.client.session.query(
 t_mm.id,
 t_mm.nativeid,
 t_mm.name,
 t_mm.properties,
 t_ms.name.label('server_name'),
 t_ms.feed,
 t_ems.name.label('provider_name'),
 t_mm.messaging_type,
 t_mm.ems_ref)\
 .join(t_ms, t_mm.server_id == t_ms.id).join(t_ems, t_mm.ems_id == t_ems.id)
 if name:
 query = query.filter(t_mm.name == name)
 if nativeid:
 query = query.filter(t_mm.nativeid == nativeid)
 if server:
 query = query.filter(t_ms.name == server.name)
 if server.feed:
 query = query.filter(t_ms.feed == server.feed)
 if provider:
 query = query.filter(t_ems.name == provider.name)
 return query

def _get_messagings_page(provider=None, server=None):
 if server: # if server instance is provided navigate through server page
 return navigate_to(server, 'ServerMessagings')
 elif provider: # if provider instance is provided navigate through provider page
 return navigate_to(provider, 'ProviderMessagings')
 else: # if None(provider and server) given navigate through all middleware messagings page
 return navigate_to(MiddlewareMessaging, 'All')

[docs]class MiddlewareMessaging(MiddlewareBase, Navigatable, Taggable, UtilizationMixin):
 """
 MiddlewareMessaging class provides details on messaging page.
 Class methods available to get existing messagings list

 Args:
 name: Name of the messaging
 provider: Provider object (HawkularProvider)
 nativeid: Native id (internal id) of messaging
 server: Server object of the messaging (MiddlewareServer)
 properties: Messaging providers
 db_id: database row id of messaging

 Usage:

 mymessaging = MiddlewareMessaging(name='JMS Queue [hawkular/metrics/counters/new]',
 server=ser_instance,
 provider=haw_provider,
 properties='ds-properties')

 messagings = MiddlewareMessaging.messagings() [or]
 messagings = MiddlewareMessaging.messagings(provider=haw_provider) [or]
 messagings = MiddlewareMessaging.messagings(provider=haw_provider,server=ser_instance)

 """
 property_tuples = [('name', 'Name'), ('nativeid', 'Nativeid'),
 ('messaging_type', 'Messaging type')]
 taggable_type = 'MiddlewareMessaging'

 def __init__(self, name, server, provider=None, appliance=None, **kwargs):
 Navigatable.__init__(self, appliance=appliance)
 if name is None:
 raise KeyError("'name' should not be 'None'")
 if not isinstance(server, MiddlewareServer):
 raise KeyError("'server' should be an instance of MiddlewareServer")
 self.name = name
 self.provider = provider
 self.server = server
 self.nativeid = kwargs['nativeid'] if 'nativeid' in kwargs else None
 self.messaging_type = kwargs['messaging_type'] if 'messaging_type' in kwargs else None
 if 'properties' in kwargs:
 for property in kwargs['properties']:
 setattr(self, attributize_string(property), kwargs['properties'][property])
 self.db_id = kwargs['db_id'] if 'db_id' in kwargs else None

 @classmethod
[docs] def messagings(cls, provider=None, server=None):
 messagings = []
 view = _get_messagings_page(provider=provider, server=server)
 for _ in view.entities.paginator.pages():
 for row in view.entities.elements:
 _server = MiddlewareServer(provider=provider, name=row.server.text)
 messagings.append(MiddlewareMessaging(
 provider=provider,
 server=_server,
 name=row.messaging_name.text,
 messaging_type=row.messaging_type.text))
 return messagings

 @classmethod
[docs] def headers(cls):
 view = navigate_to(MiddlewareMessaging, 'All')
 headers = [hdr.encode("utf-8")
 for hdr in view.entities.elements.headers if hdr]
 return headers

 @classmethod
[docs] def messagings_in_db(cls, server=None, provider=None, strict=True):
 messagings = []
 rows = _db_select_query(server=server, provider=provider).all()
 _provider = provider
 for messaging in rows:
 if strict:
 _provider = get_crud_by_name(messaging.provider_name)
 _server = MiddlewareServer(
 name=messaging.server_name,
 feed=messaging.feed,
 provider=provider)
 messagings.append(MiddlewareMessaging(
 nativeid=messaging.nativeid,
 name=messaging.name,
 db_id=messaging.id,
 server=_server,
 provider=_provider,
 messaging_type=messaging.messaging_type,
 properties=parse_properties(messaging.properties)))
 return messagings

 @classmethod
 def _messagings_in_mgmt(cls, provider, server=None):
 messagings = []
 rows = provider.mgmt.inventory.list_messaging()
 for messaging in rows:
 _server = MiddlewareServer(name=get_server_name(messaging.path),
 feed=messaging.path.feed_id,
 provider=provider)
 _include = False
 if server:
 if server.name == _server.name:
 _include = True if not server.feed else server.feed == _server.feed
 else:
 _include = True
 if _include:
 messagings.append(MiddlewareMessaging(nativeid=messaging.id,
 name=messaging.name,
 server=_server,
 provider=provider,
 messaging_type=re.sub(' \\[.*\\]', '', messaging.name)))
 return messagings

 @classmethod
[docs] def messagings_in_mgmt(cls, provider=None, server=None):
 if provider is None:
 messagings = []
 for _provider in list_providers_by_class(HawkularProvider):
 messagings.extend(cls._messagings_in_mgmt(_provider, server))
 return messagings
 else:
 return cls._messagings_in_mgmt(provider, server)

[docs] def load_details(self, refresh=False):
 view = navigate_to(self, 'Details')
 if not self.db_id or refresh:
 tmp_msg = self.messaging(method='db')
 self.db_id = tmp_msg.db_id
 if refresh:
 view.browser.selenium.refresh()
 view.flush_widget_cache()
 return view

 @variable(alias='ui')
 def messaging(self):
 self.load_details(refresh=True)
 self.id = self.get_detail("Properties", "Nativeid")
 self.server = MiddlewareServer(
 provider=self.provider,
 name=self.get_detail("Relationships", "Middleware Server"))
 return self

 @messaging.variant('mgmt')
 def messaging_in_mgmt(self):
 raise NotImplementedError('This feature not implemented yet')

 @messaging.variant('db')
 def messaging_in_db(self):
 messaging = _db_select_query(name=self.name, server=self.server,
 nativeid=self.nativeid).first()
 if messaging:
 _server = MiddlewareServer(name=messaging.server_name, provider=self.provider)
 return MiddlewareMessaging(
 provider=self.provider,
 server=_server,
 db_id=messaging.id,
 nativeid=messaging.nativeid,
 name=messaging.name,
 messaging_type=messaging.messaging_type,
 properties=parse_properties(messaging.properties))
 return None

 @messaging.variant('rest')
 def messaging_in_rest(self):
 raise NotImplementedError('This feature not implemented yet')

 @classmethod
[docs] def download(cls, extension, provider=None, server=None):
 view = _get_messagings_page(provider, server)
 download(view, extension)

@navigator.register(MiddlewareMessaging, 'All')
[docs]class All(CFMENavigateStep):
 VIEW = ProviderMessagingAllView
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self):
 self.prerequisite_view.navigation.select('Middleware', 'Messagings')

[docs] def resetter(self):
 # Reset view and selection
 self.view.entities.paginator.check_all()
 self.view.entities.paginator.uncheck_all()

@navigator.register(MiddlewareMessaging, 'Details')
[docs]class Details(CFMENavigateStep):
 VIEW = MessagingDetailsView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 try:
 if self.obj.server:
 # TODO find_row_on_pages change to entities.get_entity()
 row = self.prerequisite_view.entities.paginator.find_row_on_pages(
 self.prerequisite_view.entities.elements,
 messaging_name=self.obj.name,
 server=self.obj.server.name)
 else:
 row = self.prerequisite_view.entities.paginator.find_row_on_pages(
 self.prerequisite_view.entities.elements,
 messaging_name=self.obj.name)
 except NoSuchElementException:
 raise MiddlewareMessagingNotFound(
 "Messaging '{}' not found in table".format(self.name))
 row.click()

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/automate/buttons.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.automate »

 Source code for cfme.automate.buttons

-*- coding: utf-8 -*-
import re

from navmazing import NavigateToSibling, NavigateToAttribute

from widgetastic.widget import Text, Checkbox
from widgetastic_manageiq import SummaryFormItem
from widgetastic_patternfly import BootstrapSelect, Button, Input

from widgetastic_patternfly import CandidateNotFound
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import navigator, navigate_to, CFMENavigateStep
from cfme.utils.update import Updateable

from . import AutomateCustomizationView

[docs]class ButtonsAllView(AutomateCustomizationView):
 title = Text('#explorer_title_text')

 @property
 def is_displayed(self):
 return self.in_customization and self.title.text == 'All Object Types'

[docs]class ButtonGroupObjectTypeView(AutomateCustomizationView):
 title = Text('#explorer_title_text')

 @property
 def is_displayed(self):
 return (
 self.in_customization and
 self.title.text == 'Button Groups' and
 not self.buttons.is_dimmed and
 self.buttons.is_opened and
 self.buttons.tree.currently_selected == ['Object Types', self.context['object'].type])

[docs]class ButtonGroupDetailView(AutomateCustomizationView):
 title = Text('#explorer_title_text')

 text = SummaryFormItem(
 'Basic Information', 'Button Text',
 text_filter=lambda text: re.sub(r'\s+Display on Button\s*$', '', text))
 hover = SummaryFormItem('Basic Information', 'Button Hover Text')

 @property
 def is_displayed(self):
 return (
 self.in_customization and
 self.title.text == 'Button Group "{}"'.format(self.context['object'].text) and
 self.buttons.is_opened and
 not self.buttons.is_dimmed and
 self.buttons.tree.currently_selected == [
 'Object Types', self.context['object'].type, self.context['object'].text])

[docs]class ButtonGroupFormCommon(AutomateCustomizationView):
 text = Input(name='name')
 display = Checkbox(name='display')
 hover = Input(name='description')
 image = BootstrapSelect('button_image')

 cancel_button = Button('Cancel')

[docs]class NewButtonGroupView(ButtonGroupFormCommon):
 title = Text('#explorer_title_text')

 add_button = Button('Add')

 @property
 def is_displayed(self):
 return (
 self.in_customization and
 self.title.text == 'Adding a new Buttons Group' and
 self.buttons.is_dimmed and
 self.buttons.is_opened and
 self.buttons.tree.currently_selected == ['Object Types', self.context['object'].type])

[docs]class EditButtonGroupView(ButtonGroupFormCommon):
 title = Text('#explorer_title_text')

 save_button = Button(title='Save Changes')
 reset_button = Button('Reset')

 @property
 def is_displayed(self):
 return (
 self.in_customization and
 self.title.text.startswith('Editing Buttons Group') and
 self.buttons.is_dimmed and
 self.buttons.is_opened and
 self.buttons.tree.currently_selected == [
 'Object Types', self.context['object'].type, self.context['object'].text])

[docs]class ButtonGroup(Updateable, Navigatable):
 """Create,Edit and Delete Button Groups

 Args:
 text: The button Group name.
 hover: The button group hover text.
 type: The object type.
 """
 CLUSTER = "Cluster"
 DATASTORE = "Datastore"
 HOST = "Host / Node"
 PROVIDER = "Provider"
 SERVICE = "Service"
 TEMPLATE = "VM Template and Image"
 VM_INSTANCE = "VM and Instance"

 def __init__(self, text=None, hover=None, type=None, appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.text = text
 self.hover = hover
 self.type = type

[docs] def create(self):
 view = navigate_to(self, 'Add')
 view.fill({
 'text': self.text,
 'hover': self.hover,
 'image': 'Button Image 1',
 })
 view.add_button.click()
 view = self.create_view(ButtonGroupObjectTypeView)
 assert view.is_displayed
 view.flash.assert_no_error()
 view.flash.assert_message('Buttons Group "{}" was added'.format(self.hover))

[docs] def update(self, updates):
 view = navigate_to(self, 'Edit')
 changed = view.fill(updates)
 if changed:
 view.save_button.click()
 else:
 view.cancel_button.click()
 view = self.create_view(ButtonGroupDetailView, override=updates)
 assert view.is_displayed
 view.flash.assert_no_error()
 if changed:
 view.flash.assert_message(
 'Buttons Group "{}" was saved'.format(updates.get('hover', self.hover)))
 else:
 view.flash.assert_message(
 'Edit of Buttons Group "{}" was cancelled by the user'.format(self.text))

[docs] def delete(self, cancel=False):
 view = navigate_to(self, 'Details')
 view.configuration.item_select('Remove this Button Group', handle_alert=not cancel)
 if cancel:
 assert view.is_displayed
 view.flash.assert_no_error()
 else:
 view = self.create_view(ButtonGroupObjectTypeView)
 assert view.is_displayed
 view.flash.assert_no_error()
 view.flash.assert_message('Buttons Group "{}": Delete successful'.format(self.hover))

 @property
 def exists(self):
 try:
 navigate_to(self, 'Details')
 return True
 except CandidateNotFound:
 return False

[docs] def delete_if_exists(self):
 if self.exists:
 self.delete()

@navigator.register(ButtonGroup, 'All')
[docs]class ButtonGroupAll(CFMENavigateStep):
 VIEW = ButtonsAllView
 prerequisite = NavigateToAttribute('appliance.server', 'AutomateCustomization')

[docs] def step(self):
 self.view.buttons.tree.click_path('Object Types')

@navigator.register(ButtonGroup, 'ObjectType')
[docs]class ButtonGroupObjectType(CFMENavigateStep):
 VIEW = ButtonGroupObjectTypeView
 prerequisite = NavigateToAttribute('appliance.server', 'AutomateCustomization')

[docs] def step(self):
 self.view.buttons.tree.click_path('Object Types', self.obj.type)

@navigator.register(ButtonGroup, 'Add')
[docs]class ButtonGroupNew(CFMENavigateStep):
 VIEW = NewButtonGroupView
 prerequisite = NavigateToSibling('ObjectType')

[docs] def step(self):
 self.view.configuration.item_select('Add a new Button Group')

@navigator.register(ButtonGroup, 'Details')
[docs]class ButtonGroupDetails(CFMENavigateStep):
 VIEW = ButtonGroupDetailView
 prerequisite = NavigateToAttribute('appliance.server', 'AutomateCustomization')

[docs] def step(self):
 self.view.buttons.tree.click_path(
 'Object Types', self.obj.type, self.obj.text)

@navigator.register(ButtonGroup, 'Edit')
[docs]class ButtonGroupEdit(CFMENavigateStep):
 VIEW = EditButtonGroupView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.view.configuration.item_select('Edit this Button Group')

Button
[docs]class ButtonFormCommon(AutomateCustomizationView):
 text = Input(name='name')
 display = Checkbox(name='display')
 hover = Input(name='description')
 image = BootstrapSelect('button_image')
 dialog = BootstrapSelect('dialog_id')
 system = BootstrapSelect('instance_name')
 message = Input(name='object_message')
 request = Input(name='object_request')
 # TODO: AVP and Visibility

 cancel = Button('Cancel')

[docs]class NewButtonView(ButtonFormCommon):
 title = Text('#explorer_title_text')

 add_button = Button('Add')

 @property
 def is_displayed(self):
 return (
 self.in_customization and
 self.title.text == 'Adding a new Button' and
 self.buttons.is_dimmed and
 self.buttons.is_opened and
 self.buttons.tree.currently_selected == [
 'Object Types', self.context['object'].group.type,
 self.context['object'].group.text])

[docs]class EditButtonView(ButtonFormCommon):
 title = Text('#explorer_title_text')

 save_button = Button(title='Save Changes')
 reset_button = Button('Reset')

 @property
 def is_displayed(self):
 return (
 self.in_customization and
 # TODO: vvv BUG
 self.title.text.startswith('Adding a new Button') and
 self.buttons.is_dimmed and
 self.buttons.is_opened and
 self.buttons.tree.currently_selected == [
 'Object Types', self.context['object'].group.type,
 self.context['object'].group.text, self.context['object'].text])

[docs]class ButtonDetailView(AutomateCustomizationView):
 title = Text('#explorer_title_text')

 text = SummaryFormItem(
 'Basic Information', 'Button Text',
 text_filter=lambda text: re.sub(r'\s+Display on Button\s*$', '', text))
 hover = SummaryFormItem('Basic Information', 'Button Hover Text')
 dialog = SummaryFormItem('Basic Information', 'Dialog')

 system = SummaryFormItem('Object Details', 'System/Process/')
 message = SummaryFormItem('Object Details', 'Message')
 request = SummaryFormItem('Object Details', 'Request')

 type = SummaryFormItem('Object Attribute', 'Type')

 show = SummaryFormItem('Visibility', 'Show')

 @property
 def is_displayed(self):
 return (
 self.in_customization and
 self.title.text == 'Button "{}"'.format(self.context['object'].text) and
 not self.buttons.is_dimmed and
 self.buttons.is_opened and
 self.buttons.tree.currently_selected == [
 'Object Types', self.context['object'].group.type,
 self.context['object'].group.text, self.context['object'].text])

[docs]class Button(Updateable, Navigatable):
 """Create,Edit and Delete buttons under a Button

 Args:
 group: Group where this button belongs.
 text: The button name.
 hover: The button hover text.
 dialog: The dialog to be selected for a button.
 system: System or Processes , DropDown to choose Automation/Request.
 """

 def __init__(self, group=None, text=None,
 hover=None, dialog=None,
 system=None, request=None, appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.group = group
 self.text = text
 self.hover = hover
 self.dialog = dialog
 self.system = system
 self.request = request

[docs] def create(self):
 view = navigate_to(self, 'Add')
 view.fill({
 'text': self.text,
 'hover': self.hover,
 'dialog': self.dialog,
 'system': self.system,
 'request': self.request,
 'image': 'Button Image 1'
 })
 view.add_button.click()
 view = self.create_view(ButtonGroupDetailView, self.group)
 # TODO: Enable this
 # assert view.is_displayed
 view.flash.assert_no_error()
 view.flash.assert_message('Button "{}" was added'.format(self.hover))

[docs] def update(self, updates):
 view = navigate_to(self, 'Edit')
 changed = view.fill(updates)
 if changed:
 view.save_button.click()
 else:
 view.cancel_button.click()
 view = self.create_view(ButtonDetailView)
 assert view.is_displayed
 view.flash.assert_no_error()
 if changed:
 view.flash.assert_message(
 'Button "{}" was saved'.format(updates.get('hover', self.hover)))
 else:
 view.flash.assert_message(
 'Edit of Button "{}" was cancelled by the user'.format(self.text))

[docs] def delete(self, cancel=False):
 view = navigate_to(self, 'Details')
 view.configuration.item_select('Remove this Button', handle_alert=not cancel)
 if cancel:
 assert view.is_displayed
 view.flash.assert_no_error()
 else:
 view = self.create_view(ButtonGroupDetailView, self.group)
 # TODO: Enable this check
 # assert view.is_displayed
 view.flash.assert_no_error()
 view.flash.assert_message('Button "{}": Delete successful'.format(self.hover))

 @property
 def exists(self):
 try:
 navigate_to(self, 'Details')
 return True
 except CandidateNotFound:
 return False

[docs] def delete_if_exists(self):
 if self.exists:
 self.delete()

@navigator.register(Button, 'All')
[docs]class ButtonAll(CFMENavigateStep):
 VIEW = ButtonsAllView
 prerequisite = NavigateToAttribute('appliance.server', 'AutomateCustomization')

[docs] def step(self):
 self.view.buttons.tree.click_path('Object Types')

@navigator.register(Button, 'Add')
[docs]class ButtonNew(CFMENavigateStep):
 VIEW = NewButtonView
 prerequisite = NavigateToAttribute('appliance.server', 'AutomateCustomization')

[docs] def step(self):
 self.view.buttons.tree.click_path("Object Types", self.obj.group.type, self.obj.group.text)
 self.view.configuration.item_select('Add a new Button')

@navigator.register(Button, 'Details')
[docs]class ButtonDetails(CFMENavigateStep):
 VIEW = ButtonDetailView
 prerequisite = NavigateToAttribute('appliance.server', 'AutomateCustomization')

[docs] def step(self):
 self.view.buttons.tree.click_path(
 "Object Types", self.obj.group.type, self.obj.group.text, self.obj.text)

@navigator.register(Button, 'Edit')
[docs]class ButtonEdit(CFMENavigateStep):
 VIEW = EditButtonView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.view.configuration.item_select('Edit this Button')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/middleware/deployment.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.middleware.deployment

import re

from navmazing import NavigateToSibling, NavigateToAttribute
from selenium.common.exceptions import NoSuchElementException

from cfme.common import Taggable
from cfme.exceptions import MiddlewareDeploymentNotFound
from cfme.middleware.provider import Deployable
from cfme.middleware.provider import MiddlewareBase, download, get_server_name
from cfme.middleware.provider.hawkular import HawkularProvider
from cfme.middleware.provider.middleware_views import (DeploymentAllView,
 DeploymentDetailsView)
from cfme.middleware.server import MiddlewareServer
from cfme.utils.appliance import Navigatable, current_appliance
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to
from cfme.utils.providers import get_crud_by_name, list_providers_by_class
from cfme.utils.varmeth import variable

def _db_select_query(name=None, server=None, provider=None):
 """Column order: `id`, `nativeid`, `name`, `server_name`,
 `feed`, `provider_name`, `host_name`, `status`"""
 t_ems = current_appliance.db.client['ext_management_systems']
 t_ms = current_appliance.db.client['middleware_servers']
 t_md = current_appliance.db.client['middleware_deployments']
 query = current_appliance.db.client.session.query(
 t_md.id,
 t_md.nativeid.label('nativeid'),
 t_md.name,
 t_ms.name.label('server_name'),
 t_ms.feed.label('feed'),
 t_ems.name.label('provider_name'),
 t_ms.hostname.label('host_name'),
 t_md.status.label('status')) \
 .join(t_ms, t_md.server_id == t_ms.id).join(t_ems, t_md.ems_id == t_ems.id)
 if name:
 query = query.filter(t_md.name == name)
 if server:
 query = query.filter(t_ms.name == server.name)
 if server.feed:
 query = query.filter(t_ms.feed == server.feed)
 if provider:
 query = query.filter(t_ems.name == provider.name)
 return query

def _get_deployments_page(provider, server):
 if server: # if server instance is provided navigate through server page
 return navigate_to(server, 'ServerDeployments')
 elif provider: # if provider instance is provided navigate through provider page
 return navigate_to(provider, 'ProviderDeployments')
 else: # if None(provider and server) given navigate through all middleware deployments page
 return navigate_to(MiddlewareDeployment, 'All')

[docs]class MiddlewareDeployment(MiddlewareBase, Taggable, Navigatable, Deployable):
 """
 MiddlewareDeployment class provides details on deployment page.
 Class methods available to get existing deployments list

 Args:
 name: Name of the deployment
 provider: Provider object (HawkularProvider)
 server: Server object of the deployment (MiddlewareServer)
 nativeid: Native id (internal id) of deployment
 db_id: database row id of deployment

 Usage:

 mydeployment = MiddlewareDeployment(name='Foo.war',
 server=ser_instance,
 provider=haw_provider)

 deployments = MiddlewareDeployment.deployments() [or]
 deployments = MiddlewareDeployment.deployments(provider=haw_provider) [or]
 deployments = MiddlewareDeployment.deployments(provider=haw_provider,server=ser_instance)

 """
 property_tuples = [('name', 'Name'), ('status', 'Status')]
 taggable_type = 'MiddlewareDeployment'

 def __init__(self, name, server, provider=None, appliance=None, **kwargs):
 Navigatable.__init__(self, appliance=appliance)
 if name is None:
 raise KeyError("'name' should not be 'None'")
 if not isinstance(server, MiddlewareServer):
 raise KeyError("'server' should be an instance of MiddlewareServer")
 self.name = name
 self.server = server
 self.provider = provider
 self.nativeid = kwargs['nativeid'] if 'nativeid' in kwargs else None
 self.hostname = kwargs['hostname'] if 'hostname' in kwargs else None
 self.status = kwargs['status'] if 'status' in kwargs else None
 self.db_id = kwargs['db_id'] if 'db_id' in kwargs else None

 @classmethod
[docs] def deployments(cls, provider=None, server=None):
 deployments = []
 view = _get_deployments_page(provider=provider, server=server)
 _provider = provider # In deployment UI, we cannot get provider name on list all page
 for _ in view.entities.paginator.pages():
 for row in view.entities.elements:
 _server = MiddlewareServer(
 provider=provider,
 name=row.server.text,
 hostname=row.host_name.text)
 deployments.append(MiddlewareDeployment(
 provider=_provider,
 server=_server,
 name=row.deployment_name.text,
 hostname=row.host_name.text,
 status=row.status.text))
 return deployments

 @classmethod
[docs] def deployments_in_db(cls, server=None, provider=None, strict=True):
 deployments = []
 rows = _db_select_query(server=server, provider=provider).all()
 _provider = provider
 for deployment in rows:
 if strict:
 _provider = get_crud_by_name(deployment.provider_name)
 _server = MiddlewareServer(
 name=deployment.server_name,
 feed=deployment.feed,
 provider=provider)
 deployments.append(MiddlewareDeployment(
 nativeid=deployment.nativeid,
 name=deployment.name,
 db_id=deployment.id,
 hostname=deployment.host_name,
 status=deployment.status,
 server=_server,
 provider=_provider))
 return deployments

 @classmethod
 def _deployments_in_mgmt(cls, provider, server=None):
 deployments = []
 rows = provider.mgmt.inventory.list_server_deployment()
 for deployment in rows:
 _server = MiddlewareServer(
 name=get_server_name(deployment.path),
 feed=deployment.path.feed_id,
 provider=provider)
 _include = False
 if server:
 if server.name == _server.name:
 _include = True if not server.feed else server.feed == _server.feed
 else:
 _include = True
 if _include:
 deployments.append(MiddlewareDeployment(
 provider=provider,
 server=_server,
 nativeid=deployment.id,
 name=re.sub('((Sub)|Deployment \\[)|(\\])', '', deployment.name)))
 return deployments

 @classmethod
[docs] def deployments_in_mgmt(cls, provider=None, server=None):
 if provider is None:
 deployments = []
 for _provider in list_providers_by_class(HawkularProvider):
 deployments.extend(cls._deployments_in_mgmt(_provider, server))
 return deployments
 else:
 return cls._deployments_in_mgmt(provider, server)

[docs] def load_details(self, refresh=False):
 view = navigate_to(self, 'Details')
 if not self.db_id or refresh:
 tmp_dep = self.deployment(method='db')
 self.db_id = tmp_dep.db_id
 if refresh:
 view.browser.selenium.refresh()
 view.flush_widget_cache()
 return view

 @variable(alias='ui')
 def deployment(self):
 self.load_details(refresh=False)
 self.id = self.get_detail("Properties", "Nativeid")
 self.status = self.get_detail("Properties", "Status")
 return self

 @deployment.variant('mgmt')
 def deployment_in_mgmt(self):
 raise NotImplementedError('This feature not implemented yet')

 @deployment.variant('db')
 def deployment_in_db(self):
 deployment = _db_select_query(name=self.name, server=self.server,
 provider=self.provider).first()
 if deployment:
 _provider = get_crud_by_name(deployment.provider_name)
 _server = MiddlewareServer(
 name=deployment.server_name,
 feed=deployment.feed,
 provider=_provider)
 return MiddlewareDeployment(
 nativeid=deployment.nativeid,
 name=deployment.name,
 hostname=deployment.host_name,
 status=deployment.status,
 server=_server,
 provider=_provider,
 db_id=deployment.id)
 return None

 @deployment.variant('rest')
 def deployment_in_rest(self):
 raise NotImplementedError('This feature not implemented yet')

 @classmethod
[docs] def download(cls, extension, provider=None, server=None):
 view = _get_deployments_page(provider, server)
 download(view, extension)

@navigator.register(MiddlewareDeployment, 'All')
[docs]class All(CFMENavigateStep):
 VIEW = DeploymentAllView
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self):
 self.prerequisite_view.navigation.select('Middleware', 'Deployments')

[docs] def resetter(self):
 # Reset view and selection
 self.view.entities.paginator.check_all()
 self.view.entities.paginator.uncheck_all()

@navigator.register(MiddlewareDeployment, 'Details')
[docs]class Details(CFMENavigateStep):
 VIEW = DeploymentDetailsView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 try:
 if self.obj.server:
 # TODO find_row_on_pages change to entities.get_entity()
 row = self.prerequisite_view.entities.paginator.find_row_on_pages(
 self.prerequisite_view.entities.elements,
 deployment_name=self.obj.name,
 server=self.obj.server.name)
 else:
 row = self.prerequisite_view.entities.paginator.find_row_on_pages(
 self.prerequisite_view.entities.elements,
 deployment_name=self.obj.name)
 except NoSuchElementException:
 raise MiddlewareDeploymentNotFound(
 "Deployment '{}' not found in table".format(self.name))
 row.click()

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/automate/dialog_tab.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.automate »

 Source code for cfme.automate.dialog_tab

from navmazing import NavigateToAttribute
from widgetastic.widget import Text
from widgetastic_patternfly import Input, Dropdown
from cached_property import cached_property

from cfme.utils.appliance import BaseCollection, BaseEntity
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to
from .service_dialogs import AddDialogView

[docs]class TabForm(AddDialogView):
 tab_label = Input(name='tab_label')
 tab_desc = Input(name="tab_description")

[docs]class AddTabView(TabForm):

 plus_btn = Dropdown('Add')

 @property
 def is_displayed(self):
 return (
 self.in_customization and self.service_dialogs.is_opened and
 self.title.text == "Adding a new Dialog [Tab Information]"
)

[docs]class EditTabView(TabForm):

 @property
 def is_displayed(self):
 return (
 self.in_customization and self.service_dialogs.is_opened and
 self.title.text == "Editing Dialog {} [Tab Information]".format(self.tab_label)
)

[docs]class DetailsTabView(TabForm):
 title = Text("#explorer_title_text")

 @property
 def is_displayed(self):
 return (
 self.in_customization and self.service_dialogs.is_opened and
 self.title.text == 'Dialog "{}"'.format(self.context['object'].tab_label)
)

[docs]class TabCollection(BaseCollection):
 def __init__(self, appliance, parent):
 self.parent = parent
 self.appliance = appliance

 @property
 def tree_path(self):
 return self.parent.tree_path

[docs] def instantiate(self, tab_label=None, tab_desc=None):
 return Tab(self,
 tab_label=tab_label, tab_desc=tab_desc)

[docs] def add_tab(self):
 view = navigate_to(self, "AddTab")
 view.plus_btn.item_select("Add a new Tab to this Dialog")

[docs] def create(self, tab_label=None, tab_desc=None):
 """ Create tab method"""
 view = navigate_to(self, "Add")
 fill_dict = {
 k: v
 for k, v in {'tab_label': tab_label, 'tab_desc': tab_desc}.items()
 if v is not None}
 view.fill(fill_dict)
 return self.instantiate(tab_label=tab_label, tab_desc=tab_desc)

[docs]class Tab(BaseEntity):
 """A class representing one Tab in the UI."""
 def __init__(self, collection, tab_label, tab_desc):
 self.collection = collection
 self.appliance = self.collection.appliance
 self.tab_label = tab_label
 self.tab_desc = tab_desc

 @property
 def parent(self):
 """ Returns parent object - Dialog"""
 return self.collection.parent

 @cached_property
 def boxes(self):
 from .dialog_box import BoxCollection
 return BoxCollection(self.appliance, self)

 @property
 def tree_path(self):
 return self.collection.tree_path + [self.tab_label]

 @property
 def dialog(self):
 """ Returns parent object - Dialog"""
 return self.parent

@navigator.register(TabCollection)
[docs]class Add(CFMENavigateStep):
 VIEW = AddTabView

 prerequisite = NavigateToAttribute('parent.collection', 'Add')

[docs] def step(self):
 self.prerequisite_view.plus_btn.item_select("Add a new Tab to this Dialog")

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/middleware/domain.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.middleware.domain

import re

from navmazing import NavigateToSibling, NavigateToAttribute
from selenium.common.exceptions import NoSuchElementException
from wrapanapi.hawkular import CanonicalPath

from cfme.common import Taggable
from cfme.exceptions import MiddlewareDomainNotFound
from cfme.middleware.provider import MiddlewareBase, download
from cfme.middleware.provider import parse_properties
from cfme.middleware.provider.hawkular import HawkularProvider
from cfme.middleware.provider.middleware_views import DomainAllView, \
 DomainServerGroupAllView, DomainDetailsView
from cfme.utils import attributize_string
from cfme.utils.appliance import Navigatable, current_appliance
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to
from cfme.utils.providers import get_crud_by_name, list_providers_by_class
from cfme.utils.varmeth import variable

def _db_select_query(name=None, feed=None, provider=None):
 """column order: `id`, `name`, `feed`,
 `provider_name`, `ems_ref`, `properties`"""
 t_md = current_appliance.db.client['middleware_domains']
 t_ems = current_appliance.db.client['ext_management_systems']
 query = current_appliance.db.client.session.query(
 t_md.id, t_md.name, t_md.feed, t_ems.name.label('provider_name'),
 t_md.ems_ref, t_md.properties).join(t_ems, t_md.ems_id == t_ems.id)
 if name:
 query = query.filter(t_md.name == name)
 if feed:
 query = query.filter(t_md.feed == feed)
 if provider:
 query = query.filter(t_ems.name == provider.name)
 return query

def _get_domains_page(provider):
 if provider: # if provider instance is provided navigate through provider's domains page
 return navigate_to(provider, 'ProviderDomains')
 else: # if None(provider) given navigate through all middleware domains page
 return navigate_to(MiddlewareDomain, 'All')

[docs]class MiddlewareDomain(MiddlewareBase, Navigatable, Taggable):
 """
 MiddlewareDomain class provides actions and details on Domain page.
 Class method available to get existing domains list

 Args:
 name: name of the domain
 provider: Provider object (HawkularProvider)
 product: Product type of the domain
 feed: feed of the domain
 db_id: database row id of domain

 Usage:

 mydomain = MiddlewareDomain(name='master', provider=haw_provider)

 mydomains = MiddlewareDomain.domains()

 """
 property_tuples = [('name', 'Name')]
 taggable_type = 'MiddlewareDomain'

 def __init__(self, name, provider=None, appliance=None, **kwargs):
 Navigatable.__init__(self, appliance=appliance)
 if name is None:
 raise KeyError("'name' should not be 'None'")
 self.name = name
 self.provider = provider
 self.product = kwargs['product'] if 'product' in kwargs else None
 self.feed = kwargs['feed'] if 'feed' in kwargs else None
 self.db_id = kwargs['db_id'] if 'db_id' in kwargs else None
 if 'properties' in kwargs:
 for property in kwargs['properties']:
 # check the properties first, so it will not overwrite core attributes
 if getattr(self, attributize_string(property), None) is None:
 setattr(self, attributize_string(property), kwargs['properties'][property])

 @classmethod
[docs] def domains(cls, provider=None, strict=True):
 domains = []
 view = _get_domains_page(provider=provider)
 _provider = provider # In deployment UI, we cannot get provider name on list all page
 for _ in view.entities.paginator.pages():
 for row in view.entities.elements:
 if strict:
 _provider = get_crud_by_name(row.provider.text)
 domains.append(MiddlewareDomain(
 name=row.domain_name.text,
 feed=row.feed.text,
 provider=_provider))
 return domains

 @classmethod
[docs] def headers(cls):
 view = navigate_to(MiddlewareDomain, 'All')
 headers = [hdr.encode("utf-8")
 for hdr in view.entities.elements.headers if hdr]
 return headers

 @classmethod
[docs] def domains_in_db(cls, name=None, feed=None, provider=None, strict=True):
 domains = []
 rows = _db_select_query(name=name, feed=feed, provider=provider).all()
 _provider = provider
 for domain in rows:
 if strict:
 _provider = get_crud_by_name(domain.provider_name)
 domains.append(MiddlewareDomain(
 name=domain.name,
 feed=domain.feed,
 db_id=domain.id,
 provider=_provider,
 properties=parse_properties(domain.properties)))
 return domains

 @classmethod
 def _domains_in_mgmt(cls, provider):
 domains = []
 rows = provider.mgmt.inventory.list_domain()
 for row in rows:
 domains.append(MiddlewareDomain(
 name=re.sub(r'master\.', '', re.sub(r'%20', ' ', row.path.feed_id)),
 feed=row.path.feed_id,
 product=row.data['Product Name']
 if 'Product Name' in row.data else None,
 provider=provider))
 return domains

 @classmethod
[docs] def domains_in_mgmt(cls, provider=None):
 if provider is None:
 deployments = []
 for _provider in list_providers_by_class(HawkularProvider):
 deployments.extend(cls._domains_in_mgmt(_provider))
 return deployments
 else:
 return cls._domains_in_mgmt(provider)

[docs] def load_details(self, refresh=False):
 view = navigate_to(self, 'Details')
 if not self.db_id or refresh:
 tmp_dmn = self.domain(method='db')
 self.db_id = tmp_dmn.db_id
 if refresh:
 view.browser.selenium.refresh()
 view.flush_widget_cache()
 return view

 @variable(alias='ui')
 def domain(self):
 self.load_details(refresh=True)
 return self

 @domain.variant('mgmt')
 def domain_in_mgmt(self):
 db_dmn = _db_select_query(name=self.name, provider=self.provider,
 feed=self.feed).first()
 if db_dmn:
 path = CanonicalPath(db_dmn.ems_ref)
 mgmt_dmn = self.provider.mgmt.inventory.get_config_data(feed_id=path.feed_id,
 resource_id=path.resource_id)
 if mgmt_dmn:
 return MiddlewareDomain(
 provider=self.provider,
 name=db_dmn.name, feed=db_dmn.feed,
 properties=mgmt_dmn.value)
 return None

 @domain.variant('db')
 def domain_in_db(self):
 domain = _db_select_query(name=self.name, provider=self.provider,
 feed=self.feed).first()
 if domain:
 return MiddlewareDomain(
 db_id=domain.id, provider=self.provider,
 feed=domain.feed, name=domain.name,
 properties=parse_properties(domain.properties))
 return None

 @domain.variant('rest')
 def domain_in_rest(self):
 raise NotImplementedError('This feature not implemented yet')

 @variable(alias='ui')
 def is_running(self):
 raise NotImplementedError('This feature not implemented yet')

 @is_running.variant('db')
 def is_running_in_db(self):
 domain = _db_select_query(name=self.name, provider=self.provider,
 feed=self.feed).first()
 if not domain:
 raise MiddlewareDomainNotFound("Domain '{}' not found in DB!".format(self.name))
 return parse_properties(domain.properties)['Host State'] == 'running'

 @is_running.variant('mgmt')
 def is_running_in_mgmt(self):
 db_dmn = _db_select_query(name=self.name, provider=self.provider,
 feed=self.feed).first()
 if db_dmn:
 path = CanonicalPath(db_dmn.ems_ref)
 mgmt_dmn = self.provider.mgmt.inventory.get_config_data(feed_id=path.feed_id,
 resource_id=path.resource_id)
 if mgmt_dmn:
 return mgmt_dmn.value['Domain State'] == 'running'
 raise MiddlewareDomainNotFound("Domain '{}' not found in MGMT!".format(self.name))

[docs] def shutdown_domain(self):
 view = self.load_details(refresh=True)
 view.toolbar.power.item_select('Shutdown Domain', handle_alert=True)
 view.flash.assert_no_error()

[docs] def start_domain(self):
 view = self.load_details(refresh=True)
 view.toolbar.power.item_select('Start Domain', handle_alert=True)
 view.flash.assert_no_error()

 @classmethod
[docs] def download(cls, extension, provider=None):
 view = _get_domains_page(provider)
 download(view, extension)

@navigator.register(MiddlewareDomain, 'All')
[docs]class All(CFMENavigateStep):
 VIEW = DomainAllView
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self):
 self.prerequisite_view.navigation.select('Middleware', 'Domains')

[docs] def resetter(self):
 # Reset view and selection
 self.view.entities.paginator.check_all()
 self.view.entities.paginator.uncheck_all()

@navigator.register(MiddlewareDomain, 'Details')
[docs]class Details(CFMENavigateStep):
 VIEW = DomainDetailsView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 try:
 # TODO find_row_on_pages change to entities.get_entity()
 row = self.prerequisite_view.entities.paginator.find_row_on_pages(
 self.prerequisite_view.entities.elements,
 domain_name=self.obj.name)
 except NoSuchElementException:
 raise MiddlewareDomainNotFound(
 "Domain '{}' not found in table".format(self.name))
 row.click()

@navigator.register(MiddlewareDomain, 'DomainServerGroups')
[docs]class DomainServerGroups(CFMENavigateStep):
 VIEW = DomainServerGroupAllView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.entities.relationships.click_at('Middleware Server Groups')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/automate/dialog_element.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.automate »

 Source code for cfme.automate.dialog_element

from navmazing import NavigateToAttribute
from widgetastic.widget import Checkbox, Image, Text
from widgetastic_patternfly import Button, Input, BootstrapSelect
from widgetastic_manageiq import ManageIQTree, Table, TextInput
from widgetastic.xpath import quote

from cfme.utils.appliance import BaseCollection, BaseEntity
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to

from .dialog_box import AddBoxView
from . import AutomateCustomizationView

[docs]class ElementForm(AddBoxView):
 ele_label = Input(name='field_label')
 ele_name = Input(name="field_name")
 ele_desc = Input(name="field_description")
 choose_type = BootstrapSelect('field_typ')
 default_text_box = Input(name='field_default_value')
 default_value = Checkbox(name='field_default_value')
 field_required = Checkbox(name='field_required')
 field_past_dates = Checkbox(name='field_past_dates')
 field_entry_point = Input(name='field_entry_point')
 field_show_refresh_button = Checkbox(name='field_show_refresh_button')
 entry_value = Input(name='entry[value]')
 entry_description = Input(name='entry[description]')
 add_entry_button = Image('.//input[@id="accept"]')
 field_category = BootstrapSelect('field_category')
 text_area = Input(name='field_default_value')
 dynamic_chkbox = Checkbox(name='field_dynamic')
 entry_table = Table('//div[@id="field_values_div"]/form/table')
 text_area = TextInput(id='field_default_value')

 element_tree = ManageIQTree('dialog_edit_treebox')
 dynamic_tree = ManageIQTree('automate_treebox')
 bt_tree = ManageIQTree('automate_treebox')

 apply_btn = Button('Apply')

[docs]class AddElementView(ElementForm):

 add_button = Button("Add")

 @property
 def is_displayed(self):
 return (
 self.in_customization and self.service_dialogs.is_opened and
 self.title.text == "Adding a new Dialog [Element Information]"
)

[docs]class EditElementView(ElementForm):
 save_button = Button('Save')
 reset_button = Button('Reset')

 @property
 def is_displayed(self):
 return (
 self.in_customization and self.service_dialogs.is_opened and
 self.title.text == "Editing Dialog {} [Element Information]".format(self.ele_label)
)

[docs]class DetailsDialogView(AutomateCustomizationView):
 title = Text("#explorer_title_text")

 @property
 def is_displayed(self):
 return (
 self.in_customization and self.service_dialogs.is_opened and
 self.title.text == 'Dialog "{}"'.format(self.context['object'].
 dialog.label)
)

[docs]class ElementCollection(BaseCollection):
 def __init__(self, appliance, parent):
 self.parent = parent
 self.appliance = appliance

 @property
 def tree_path(self):
 return self.parent.tree_path

[docs] def instantiate(self, element_data=None):
 return Element(self,
 element_data=element_data)

[docs] def create(self, element_data=None):
 for element in element_data:
 view = navigate_to(self, "Add")
 if(view.ele_label.value != ""):
 view.plus_btn.item_select("Add a new Element to this Box")
 view.fill(element)
 self.set_element_type(view, element)
 view.add_button.click()
 view.flash.assert_no_error()
 view.flash.assert_message('Dialog "{}" was added'.
 format(self.parent.tab.label))
 view.flash.assert_no_error()
 return self.instantiate(element_data=element_data)

[docs] def set_element_type(self, view, element):
 """ Method to add element type.Depending on their type the subfields varies.

 Args:
 each_element: subfields depending on element type.
 """
 choose_type = element.get("choose_type")
 dynamic_chkbox = element.get("dynamic_chkbox")
 element_type = ['Drop Down List', 'Radio Button']
 if choose_type in element_type:
 if not dynamic_chkbox:
 row = view.entry_table.row(Value='<New Entry>')
 row.click()
 view.fill({'entry_value': "Yes",
 'entry_description': "entry_desc"})
 view.add_entry_button.click()
 else:
 node1 = "InspectMe"
 view.fill({'field_entry_point': 'b'})
 view.bt_tree.click_path("Datastore", "new_domain", "System", "Request", node1)
 view.apply_btn.click()
 view.fill({'field_show_refresh_button': True})
 if choose_type == "Text Area Box":
 view.fill({'text_area': 'Default text'})

[docs]class Element(BaseEntity):
 """A class representing one Element of a dialog."""
 def __init__(self, collection, element_data):
 self.collection = collection
 self.element_data = element_data
 self.appliance = self.collection.appliance

 @property
 def parent(self):
 return self.collection.parent

 @property
 def tree_path(self):
 return self.collection.tree_path

 @property
 def dialog(self):
 return self.parent.tab

[docs] def element_loc(self, element_data):
 return self.browser.element('//div[@class="panel-heading"]'
 '[contains(normalize-space(.), {})]/..'.format(quote(element_data)))

[docs] def add_another_element(self, element):
 """Method to add element."""
 view = navigate_to(self, 'Edit')
 view.element_tree.click_path(*self.tree_path[1:])
 view.plus_btn.item_select("Add a new Element to this Box")
 view.fill(element)
 view.save_button.click()
 view = self.create_view(DetailsDialogView)
 assert view.is_displayed
 view.flash.assert_no_error()

[docs] def reorder_elements(self, add_element, second_element, element_data):
 """Method to add element and interchange element positions.
 This method updates a dialog and adds a second element.The position
 of two elements are then interchanged to test for error.

 Args:
 add_element - flag if second element needs to be added.
 second_element - The second element to be added to the dialog.
 element_data - Already existing first element's data.
 """
 view = navigate_to(self, 'Edit')
 view.element_tree.click_path(*self.tree_path[1:])
 # Add a new element and then interchange position (BZ-1238721)
 if add_element:
 view.plus_btn.item_select("Add a new Element to this Box")
 view.fill(second_element)
 view.element_tree.click_path(*self.tree_path[1:])
 self.browser.drag_and_drop(self.element_loc(element_data.get("ele_label")),
 self.element_loc(second_element.get("ele_label")))
 view.save_button.click()
 view = self.create_view(DetailsDialogView)
 assert view.is_displayed
 view.flash.assert_no_error()

@navigator.register(ElementCollection)
[docs]class Add(CFMENavigateStep):
 VIEW = AddElementView

 prerequisite = NavigateToAttribute('parent.collection', 'Add')

[docs] def step(self):
 self.prerequisite_view.plus_btn.item_select("Add a new Element to this Box")

@navigator.register(Element, 'Edit')
[docs]class Edit(CFMENavigateStep):
 VIEW = EditElementView

 prerequisite = NavigateToAttribute('dialog', 'Edit')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/middleware/provider.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.middleware.provider

import os
import re
from random import sample

from navmazing import NavigateToSibling, NavigateToAttribute
from selenium.common.exceptions import NoSuchElementException

from cfme.common import Validatable, SummaryMixin, TagPageView
from cfme.common.provider import BaseProvider
from cfme.common.provider_views import (
 MiddlewareProviderAddView,
 MiddlewareProviderEditView,
 MiddlewareProvidersView,
 MiddlewareProviderDetailsView)
from cfme.exceptions import MiddlewareProviderNotFound
from cfme.middleware.provider.middleware_views import (ProviderMessagingAllView,
 ProviderDeploymentAllView, ProviderDatasourceAllView,
 ProviderServerAllView, MiddlewareProviderTimelinesView,
 ProviderDomainsAllView)
from cfme.utils import version
from cfme.utils.appliance import current_appliance
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to
from cfme.utils.wait import wait_for

def _db_select_query(name=None, type=None):
 """column order: `id`, `name`, `type`"""
 t_ems = current_appliance.db.client['ext_management_systems']
 query = current_appliance.db.client.session.query(t_ems.id, t_ems.name, t_ems.type)
 if name:
 query = query.filter(t_ems.name == name)
 if type:
 query = query.filter(t_ems.type == type)
 return query

def _get_providers_page():
 return navigate_to(MiddlewareProvider, 'All')

[docs]class MiddlewareProvider(BaseProvider):
 in_version = ('5.7', version.LATEST)
 category = "middleware"
 page_name = 'middleware'
 string_name = 'Middleware'
 provider_types = {}
 STATS_TO_MATCH = []
 property_tuples = []
 detail_page_suffix = 'provider_detail'
 edit_page_suffix = 'provider_edit_detail'
 refresh_text = "Refresh items and relationships"
 taggable_type = 'ExtManagementSystem'
 db_types = ["MiddlewareManager"]

@navigator.register(MiddlewareProvider, 'All')
[docs]class All(CFMENavigateStep):
 VIEW = MiddlewareProvidersView
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self):
 self.prerequisite_view.navigation.select('Middleware', 'Providers')

[docs] def resetter(self):
 # Reset view
 self.view.toolbar.view_selector.select('List View')

@navigator.register(MiddlewareProvider, 'Add')
[docs]class Add(CFMENavigateStep):
 VIEW = MiddlewareProviderAddView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.toolbar.configuration.item_select('Add a New Middleware Provider')

@navigator.register(MiddlewareProvider, 'Details')
[docs]class Details(CFMENavigateStep):
 VIEW = MiddlewareProviderDetailsView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.toolbar.view_selector.select('List View')
 try:
 # TODO find_row_on_pages change to entities.get_entity()
 row = self.prerequisite_view.entities.paginator.find_row_on_pages(
 self.prerequisite_view.entities.elements,
 name=self.obj.name)
 except NoSuchElementException:
 raise MiddlewareProviderNotFound(
 "Middleware Provider '{}' not found in table".format(self.name))
 row.click()

@navigator.register(MiddlewareProvider, 'Edit')
[docs]class Edit(CFMENavigateStep):
 VIEW = MiddlewareProviderEditView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.entities.get_entity(by_name=self.obj.name).check()
 self.prerequisite_view.toolbar.configuration \
 .item_select('Edit Selected Middleware Providers')

@navigator.register(MiddlewareProvider, 'EditFromDetails')
[docs]class EditFromDetails(CFMENavigateStep):
 VIEW = MiddlewareProviderEditView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.toolbar.configuration.item_select('Edit this Middleware Provider')

@navigator.register(MiddlewareProvider, 'EditTags')
[docs]class EditTags(CFMENavigateStep):
 VIEW = TagPageView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.entities.get_entity(by_name=self.obj.name).check()
 self.prerequisite_view.toolbar.policy.item_select('Edit Tags')

@navigator.register(MiddlewareProvider, 'EditTagsFromDetails')
[docs]class EditTagsFromDetails(CFMENavigateStep):
 VIEW = TagPageView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.toolbar.policy.item_select('Edit Tags')

@navigator.register(MiddlewareProvider, 'Timelines')
[docs]class Timelines(CFMENavigateStep):
 VIEW = MiddlewareProviderTimelinesView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.toolbar.monitoring.item_select('Timelines')

@navigator.register(MiddlewareProvider, 'ProviderServers')
[docs]class ProviderServers(CFMENavigateStep):
 prerequisite = NavigateToSibling('Details')
 VIEW = ProviderServerAllView

[docs] def step(self):
 self.prerequisite_view.contents.relationships.click_at('Middleware Servers')

@navigator.register(MiddlewareProvider, 'ProviderDatasources')
[docs]class ProviderDatasources(CFMENavigateStep):
 VIEW = ProviderDatasourceAllView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.contents.relationships.click_at('Middleware Datasources')

@navigator.register(MiddlewareProvider, 'ProviderDeployments')
[docs]class ProviderDeployments(CFMENavigateStep):
 VIEW = ProviderDeploymentAllView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.contents.relationships.click_at('Middleware Deployments')

@navigator.register(MiddlewareProvider, 'ProviderDomains')
[docs]class ProviderDomains(CFMENavigateStep):
 VIEW = ProviderDomainsAllView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.contents.relationships.click_at('Middleware Domains')

@navigator.register(MiddlewareProvider, 'ProviderMessagings')
[docs]class ProviderMessagings(CFMENavigateStep):
 VIEW = ProviderMessagingAllView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.contents.relationships.click_at('Middleware Messagings')

@navigator.register(MiddlewareProvider, 'TopologyFromDetails')
[docs]class TopologyFromDetails(CFMENavigateStep):
 # TODO Topology should be converted to widgetastic
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.contents.overview.click_at('Topology')

[docs]class MiddlewareBase(Validatable):
 """
 MiddlewareBase class used to define common functions across pages.
 Also used to override existing function when required.
 """

[docs] def download_summary(self):
 view = self.load_details(refresh=False)
 view.toolbar.download()

[docs] def get_detail(self, *ident):
 """ Gets details from the details infoblock

 The function first ensures that we are on the detail page for the specific cluster.

 Args:
 ident: An InfoBlock title, followed by the Key name, e.g. "Relationships", "Images"

 Returns: A string representing the contents of the InfoBlock's value.
 """
 view = self.load_details()
 return getattr(view.contents if hasattr(view, 'contents') else view.entities,
 ident[0].lower().replace(' ', '_')).get_text_of(ident[1])

[docs]def get_random_list(items, limit):
 """In tests, when we have big list iterating through each element will take lot of time.
 To avoid this, select random list with limited numbers"""
 if len(items) > limit:
 return sample(items, limit)
 else:
 return items

[docs]def parse_properties(props):
 """Parses provided properties in string format into dictionary format.
 It splits string into lines and splits each line into key and value."""
 properties = {}
 for line in props.splitlines():
 pair = line.split(': ')
 if len(pair) == 2:
 properties.update({pair[0]: pair[1].replace('\'', '')})
 return properties

[docs]def download(view, extension):
 extensions_mapping = {'txt': 'Text', 'csv': 'CSV', 'pdf': 'PDF'}
 try:
 view.toolbar.download.item_select("Download as {}".format(extensions_mapping[extension]))
 except:
 raise ValueError("Unknown extention. check the extentions_mapping")

[docs]def get_server_name(path):
 if len(path.resource_id) > 3:
 # this is the domain mode case, take the server value
 return re.sub(r'.*server%3D', '', path.resource_id[2])
 else:
 # for standalone servers
 return re.sub(r'~~$', '', path.resource_id[0])

[docs]class Container(SummaryMixin):

[docs] def add_deployment(self, filename, runtime_name=None, enable_deploy=True,
 overwrite=False, cancel=False):
 """Clicks to "Add Deployment" button, in opened window fills fields by provided parameters,
 and deploys.

 Args:
 filename: Full path to file to import.
 runtime_name: Runtime name of deployment archive.
 enable_deploy: Whether to enable deployment archive or keep disabled.
 cancel: Whether to click Cancel instead of commit.
 """
 view = navigate_to(self, 'AddDeployment')
 view.form.fill({
 "file_select": filename,
 })
 view.form.fill({
 "runtime_name": runtime_name,
 "enable_deployment": enable_deploy,
 "force_deployment": overwrite
 })
 view.form.cancel_button.click() if cancel else view.form.deploy_button.click()
 view.flash.assert_success_message(self.deployment_message
 .format(runtime_name if runtime_name else os.path.basename(filename)))

[docs] def add_jdbc_driver(self, filename, driver_name, module_name, driver_class, xa_class=None,
 major_version=None, minor_version=None, cancel=False):
 """Clicks to "Add JDBC Driver" button, in opened window fills fields by provided parameters,
 and deploys.

 Args:
 filename: Full path to JDBC Driver to import.
 driver_name: Name of newly created JDBC Driver.
 module_name: Name on Module to register on server side.
 driver_class: JDBC Driver Class.
 major_version: Major version of JDBC driver, optional.
 minor_version: Minor version of JDBC driver, optional.
 cancel: Whether to click Cancel instead of commit.
 """
 view = navigate_to(self, 'AddJDBCDriver')
 view.form.fill({
 "file_select": filename,
 "jdbc_driver_name": driver_name,
 "jdbc_module_name": module_name,
 "jdbc_driver_class": driver_class,
 "driver_xa_datasource_class": xa_class,
 "major_version": major_version,
 "minor_version": minor_version
 })
 view.form.cancel_button.click() if cancel else view.form.deploy_button.click()
 view.flash.assert_success_message('JDBC Driver "{}" has been installed on this server.'
 .format(driver_name))

[docs] def add_datasource(self, ds_type, ds_name, jndi_name, ds_url,
 xa_ds=False, driver_name=None,
 existing_driver=None, driver_module_name=None, driver_class=None,
 username=None, password=None, sec_domain=None, cancel=False):
 """Clicks to "Add Datasource" button,
 in opened window fills fields by provided parameter by clicking 'Next',
 and submits the form by clicking 'Finish'.

 Args:
 ds_type: Type of database.
 ds_name: Name of newly created Datasource.
 jndi_name: JNDI Name of Datasource.
 driver_name: JDBC Driver name in Datasource.
 driver_module_name: Module name of JDBC Driver used in datasource.
 driver_class: JDBC Driver Class.
 ds_url: Database connection URL in jdbc format.
 username: Database username.
 password: Databasae password, optional.
 sec_domain: Security Domain, optional.
 cancel: Whether to click Cancel instead of commit.
 """
 view = navigate_to(self, 'AddDatasource')
 if self.appliance.version >= '5.8':
 view.form.fill({'xa_ds': xa_ds})
 view.form.fill({'ds_type': ds_type})
 view.form.next_button.click()
 view.form.fill({
 "ds_name": ds_name,
 "jndi_name": jndi_name
 })
 view.form.next_button.click()
 if existing_driver and self.appliance.version >= '5.8':
 view.form.tab_existing_driver.select()
 wait_for(lambda: existing_driver in
 [option.text for option in view.form.existing_driver.all_options],
 delay=3, num_sec=6,
 message='JDBC Driver {} must be listed in existing drivers'
 .format(existing_driver))
 view.form.fill({
 "existing_driver": existing_driver
 })
 else:
 view.form.fill({
 "driver_name": driver_name,
 "driver_module_name": driver_module_name,
 "driver_class": driver_class
 })
 view.form.next_button.click()
 view.form.fill({
 "ds_url": ds_url,
 "username": username,
 "password": password,
 "sec_domain": sec_domain
 })
 view.form.cancel_button.click() if cancel else view.form.finish_button.click()
 view.flash.assert_no_error()

[docs] def is_immutable(self):
 view = self.load_details()
 return not (view.toolbar.power.is_displayed or
 view.toolbar.deployments.is_displayed or
 view.toolbar.drivers.is_displayed or
 view.toolbar.datasources.is_displayed)

[docs]class Deployable(SummaryMixin):

[docs] def undeploy(self):
 """
 Clicks on "Undeploy" menu item and verifies message shown
 """
 view = self.load_details()
 view.toolbar.operations.item_select("Undeploy", handle_alert=True)
 view.flash.assert_success_message('Undeployment initiated for selected deployment(s)')

[docs] def restart(self):
 """
 Clicks on "Restart" menu item and verifies message shown
 """
 view = self.load_details()
 view.toolbar.operations.item_select("Restart", handle_alert=True)
 view.flash.assert_success_message('Restart initiated for selected deployment(s)')

[docs] def disable(self):
 """
 Clicks on "Disable" menu item and verifies message shown
 """
 view = self.load_details()
 view.toolbar.operations.item_select("Disable", handle_alert=True)
 view.flash.assert_success_message('Disable initiated for selected deployment(s)')

[docs] def enable(self):
 """
 Clicks on "Enable" menu item and verifies message shown
 """
 view = self.load_details()
 view.toolbar.operations.item_select("Enable", handle_alert=True)
 view.flash.assert_success_message('Enable initiated for selected deployment(s)')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/automate/import_export.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.automate »

 Source code for cfme.automate.import_export

-*- coding: utf-8 -*-
from cfme.base.ui import AutomateImportExportBaseView, AutomateImportExportView
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import navigate_to

from widgetastic_patternfly import BootstrapSelect, Button

[docs]class GitImportSelectorView(AutomateImportExportBaseView):
 type = BootstrapSelect('branch_or_tag')
 branch = BootstrapSelect(locator='.//div[contains(@class, "bootstrap-select git-branches")]')
 tag = BootstrapSelect(locator='.//div[contains(@class, "bootstrap-select git-tags")]')

 submit = Button('Submit')
 cancel = Button('Cancel')

 @property
 def is_displayed(self):
 return self.in_import_export and self.type.is_displayed

[docs]class AutomateGitRepository(Navigatable):
 """Represents an Automate git repository. This entity is not represented in UI as it is, but
 only in database. But by representing it it makes the code changes for domain much simpler.

 """
 def __init__(self, url=None, username=None, password=None, verify_ssl=None, appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.url = url
 self.username = username
 self.password = password
 self.verify_ssl = verify_ssl
 self.domain = None

 @classmethod
[docs] def from_db(cls, db_id, appliance=None):
 git_repositories = appliance.db.client['git_repositories']
 try:
 url, verify_ssl = appliance.db.client.session\
 .query(git_repositories.url, git_repositories.verify_ssl)\
 .filter(git_repositories.id == db_id)\
 .first()
 return cls(url=url, verify_ssl=verify_ssl > 0, appliance=appliance)
 except ValueError:
 raise ValueError('No such repository in the database')

 @property
 def fill_values_repo_add(self):
 return {
 k: v
 for k, v
 in {
 'url': self.url,
 'username': self.username,
 'password': self.password,
 'verify_ssl': self.verify_ssl}.items() if v is not None}

[docs] def fill_values_branch_select(self, branch, tag):
 """Processes the args into a dictionary to be filled in the selection dialog."""
 if branch and tag:
 raise ValueError('You cannot pass branch and tag together')
 elif tag is not None:
 return {'type': 'Tag', 'tag': tag}
 else:
 return {'type': 'Branch', 'branch': branch}

[docs] def import_domain_from(self, branch=None, tag=None):
 """Import the domain from git using the Import/Export UI.

 Args:
 branch: If you import from a branch, specify the origin/branchname
 tag: If you import from a tag, specify its name.

 Returns:
 Instance of :py:class:`cfme.automate.explorer.domain.Domain`

 Important! ``branch`` and ``tag`` are mutually exclusive.
 """
 imex_page = navigate_to(self.appliance.server, 'AutomateImportExport')
 assert imex_page.import_git.fill(self.fill_values_repo_add)
 imex_page.import_git.submit.click()
 imex_page.browser.plugin.ensure_page_safe(timeout='5m')
 git_select = self.create_view(GitImportSelectorView)
 assert git_select.is_displayed
 git_select.flash.assert_no_error()
 assert git_select.fill(self.fill_values_branch_select(branch, tag))
 git_select.submit.click()
 git_select.browser.plugin.ensure_page_safe(timeout='5m')
 imex_page = self.create_view(AutomateImportExportView)
 assert imex_page.is_displayed
 imex_page.flash.assert_no_error()
 # Now find the domain in database
 namespaces = self.appliance.db.client['miq_ae_namespaces']
 git_repositories = self.appliance.db.client['git_repositories']
 none = None
 query = self.appliance.db.client.session\
 .query(
 namespaces.id, namespaces.name, namespaces.description, git_repositories.url,
 namespaces.ref_type, namespaces.ref)\
 .filter(namespaces.parent_id == none, namespaces.source == 'remote')\
 .join(git_repositories, namespaces.git_repository_id == git_repositories.id)
 for id, name, description, url, git_type, git_type_value in query:
 if url != self.url:
 continue
 if not (
 git_type == 'branch' and branch == git_type_value or
 git_type == 'tag' and tag == git_type_value):
 continue
 # We have the domain
 from cfme.automate.explorer.domain import DomainCollection
 dc = DomainCollection(appliance=self.appliance)
 return dc.instantiate(
 db_id=id, name=name, description=description, git_checkout_type=git_type,
 git_checkout_value=git_type_value)
 else:
 raise ValueError('The domain imported was not found in the database!')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/middleware/server.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.middleware.server

import re

from navmazing import NavigateToSibling, NavigateToAttribute
from selenium.common.exceptions import NoSuchElementException
from wrapanapi.hawkular import CanonicalPath

from cfme.common import Taggable, UtilizationMixin
from cfme.exceptions import MiddlewareServerNotFound, \
 MiddlewareServerGroupNotFound
from cfme.middleware.domain import MiddlewareDomain
from cfme.middleware.provider import (
 MiddlewareBase, download
)
from cfme.middleware.provider import (parse_properties, Container)
from cfme.middleware.provider.hawkular import HawkularProvider
from cfme.middleware.provider.middleware_views import (ServerAllView,
 ServerDetailsView, ServerDatasourceAllView, ServerDeploymentAllView,
 ServerMessagingAllView, ServerGroupDetailsView, AddDatasourceView,
 AddJDBCDriverView, AddDeploymentView)
from cfme.middleware.server_group import MiddlewareServerGroup
from cfme.utils import attributize_string
from cfme.utils.appliance import Navigatable, current_appliance
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to
from cfme.utils.providers import get_crud_by_name, list_providers_by_class
from cfme.utils.varmeth import variable

def _db_select_query(name=None, feed=None, provider=None, server_group=None,
 product=None):
 """column order: `id`, `name`, `hostname`, `feed`, `product`,
 `provider_name`, `ems_ref`, `properties`, `server_group_name`"""
 t_ms = current_appliance.db.client['middleware_servers']
 t_msgr = current_appliance.db.client['middleware_server_groups']
 t_ems = current_appliance.db.client['ext_management_systems']
 query = current_appliance.db.client.session.query(
 t_ms.id, t_ms.name, t_ms.hostname, t_ms.feed, t_ms.product,
 t_ems.name.label('provider_name'),
 t_ms.ems_ref, t_ms.properties,
 t_msgr.name.label('server_group_name'))\
 .join(t_ems, t_ms.ems_id == t_ems.id)\
 .outerjoin(t_msgr, t_ms.server_group_id == t_msgr.id)
 if name:
 query = query.filter(t_ms.name == name)
 if feed:
 query = query.filter(t_ms.feed == feed)
 if provider:
 query = query.filter(t_ems.name == provider.name)
 if server_group:
 query = query.filter(t_msgr.name == server_group.name)
 query = query.filter(t_msgr.feed == server_group.feed)
 if product:
 query = query.filter(t_ms.product == product)
 return query

def _get_servers_page(provider=None, server_group=None):
 if provider: # if provider instance is provided navigate through provider's servers page
 return navigate_to(provider, 'ProviderServers')
 elif server_group:
 # if server group instance is provided navigate through it's servers page
 return navigate_to(server_group, 'ServerGroupServers')
 else: # if None(provider) given navigate through all middleware servers page
 return navigate_to(MiddlewareServer, 'All')

[docs]class MiddlewareServer(MiddlewareBase, Taggable, Container, Navigatable, UtilizationMixin):
 """
 MiddlewareServer class provides actions and details on Server page.
 Class method available to get existing servers list

 Args:
 name: name of the server
 hostname: Host name of the server
 provider: Provider object (HawkularProvider)
 product: Product type of the server
 feed: feed of the server
 db_id: database row id of server

 Usage:

 myserver = MiddlewareServer(name='Foo.war', provider=haw_provider)
 myserver.reload_server()

 myservers = MiddlewareServer.servers()

 """
 property_tuples = [('name', 'Name'), ('feed', 'Feed'),
 ('bound_address', 'Bind Address')]
 taggable_type = 'MiddlewareServer'
 deployment_message = 'Deployment "{}" has been initiated on this server.'

 def __init__(self, name, provider=None, appliance=None, **kwargs):
 Navigatable.__init__(self, appliance=appliance)
 if name is None:
 raise KeyError("'name' should not be 'None'")
 self.name = name
 self.provider = provider
 self.product = kwargs['product'] if 'product' in kwargs else None
 self.hostname = kwargs['hostname'] if 'hostname' in kwargs else None
 self.feed = kwargs['feed'] if 'feed' in kwargs else None
 self.db_id = kwargs['db_id'] if 'db_id' in kwargs else None
 if 'properties' in kwargs:
 for prop in kwargs['properties']:
 # check the properties first, so it will not overwrite core attributes
 if getattr(self, attributize_string(prop), None) is None:
 setattr(self, attributize_string(prop), kwargs['properties'][prop])

 @classmethod
[docs] def servers(cls, provider=None, server_group=None, strict=True):
 servers = []
 view = _get_servers_page(provider=provider, server_group=server_group)
 _provider = provider # In deployment UI, we cannot get provider name on list all page
 for _ in view.entities.paginator.pages():
 for row in view.entities.elements:
 if strict:
 _provider = get_crud_by_name(row.provider.text)
 servers.append(MiddlewareServer(
 name=row.server_name.text,
 feed=row.feed.text,
 hostname=row.host_name.text,
 product=row.product.text
 if row.product.text else None,
 provider=_provider))
 return servers

 @classmethod
[docs] def headers(cls):
 view = navigate_to(MiddlewareServer, 'All')
 headers = [hdr.encode("utf-8")
 for hdr in view.entities.elements.headers if hdr]
 return headers

 @classmethod
[docs] def servers_in_db(cls, name=None, feed=None, provider=None, product=None,
 server_group=None, strict=True):
 servers = []
 rows = _db_select_query(name=name, feed=feed, provider=provider,
 product=product, server_group=server_group).all()
 _provider = provider
 for server in rows:
 if strict:
 _provider = get_crud_by_name(server.provider_name)
 servers.append(MiddlewareServer(
 name=server.name,
 hostname=server.hostname,
 feed=server.feed,
 product=server.product,
 db_id=server.id,
 provider=_provider,
 properties=parse_properties(server.properties)))
 return servers

 @classmethod
 def _servers_in_mgmt(cls, provider, server_group=None):
 servers = []
 rows = provider.mgmt.inventory.list_server(feed_id=server_group.feed
 if server_group else None)
 for row in rows:
 server = MiddlewareServer(
 name=re.sub('(Domain)|(WildFly Server \\[)|(\\])', '', row.name),
 hostname=row.data['Hostname']
 if 'Hostname' in row.data else None,
 feed=row.path.feed_id,
 product=row.data['Product Name']
 if 'Product Name' in row.data else None,
 provider=provider)
 # if server_group is given, filter those servers which belongs to it
 if not server_group or cls._belongs_to_group(server, server_group):
 servers.append(server)
 return servers

 @classmethod
[docs] def servers_in_mgmt(cls, provider=None, server_group=None):
 if provider is None:
 servers = []
 for _provider in list_providers_by_class(HawkularProvider):
 servers.extend(cls._servers_in_mgmt(_provider, server_group))
 return servers
 else:
 return cls._servers_in_mgmt(provider, server_group)

 @classmethod
 def _belongs_to_group(cls, server, server_group):
 server_mgmt = server.server(method='mgmt')
 return getattr(server_mgmt, attributize_string('Server Group'), None) == server_group.name

[docs] def load_details(self, refresh=False):
 view = navigate_to(self, 'Details')
 if not self.db_id or refresh:
 tmp_ser = self.server(method='db')
 self.db_id = tmp_ser.db_id
 if refresh:
 view.browser.selenium.refresh()
 view.flush_widget_cache()
 return view

 @variable(alias='ui')
 def server(self):
 self.load_details(refresh=False)
 return self

 @server.variant('mgmt')
 def server_in_mgmt(self):
 db_srv = _db_select_query(name=self.name, provider=self.provider,
 feed=self.feed).first()
 if db_srv:
 path = CanonicalPath(db_srv.ems_ref)
 mgmt_srv = self.provider.mgmt.inventory.get_config_data(feed_id=path.feed_id,
 resource_id=path.resource_id)
 if mgmt_srv:
 return MiddlewareServer(
 provider=self.provider,
 name=db_srv.name, feed=db_srv.feed,
 properties=mgmt_srv.value)
 return None

 @server.variant('db')
 def server_in_db(self):
 server = _db_select_query(name=self.name, provider=self.provider,
 feed=self.feed).first()
 if server:
 return MiddlewareServer(
 db_id=server.id, provider=self.provider,
 feed=server.feed, name=server.name,
 hostname=server.hostname,
 properties=parse_properties(server.properties))
 return None

 @server.variant('rest')
 def server_in_rest(self):
 raise NotImplementedError('This feature not implemented yet')

 @variable(alias='ui')
 def server_group(self):
 self.load_details()
 return MiddlewareServerGroup(
 provider=self.provider,
 name=self.get_detail("Properties", "Name"),
 domain=MiddlewareDomain(
 provider=self.provider,
 name=self.get_detail("Relationships", "Middleware Domain")))

 @variable(alias='ui')
 def is_reload_required(self):
 self.load_details(refresh=True)
 return self.get_detail("Properties", "Server State") == 'Reload-required'

 @variable(alias='ui')
 def is_running(self):
 self.load_details(refresh=True)
 return self.get_detail("Properties", "Server State") == 'Running'

 @variable(alias='db')
 def is_suspended(self):
 server = _db_select_query(name=self.name, provider=self.provider,
 feed=self.feed).first()
 if not server:
 raise MiddlewareServerNotFound("Server '{}' not found in DB!".format(self.name))
 return parse_properties(server.properties)['Suspend State'] == 'SUSPENDED'

 @variable(alias='ui')
 def is_starting(self):
 self.load_details(refresh=True)
 return self.get_detail("Properties", "Server State") == 'Starting'

 @variable(alias='ui')
 def is_stopping(self):
 self.load_details(refresh=True)
 return self.get_detail("Properties", "Server State") == 'Stopping'

 @variable(alias='ui')
 def is_stopped(self):
 self.load_details(refresh=True)
 return self.get_detail("Properties", "Server State") == 'Stopped'

[docs] def shutdown_server(self, timeout=10, cancel=False):
 view = self.load_details(refresh=True)
 view.toolbar.power.item_select('Gracefully shutdown Server')
 view.power_operation_form.fill({
 "timeout": timeout,
 })
 if cancel:
 view.power_operation_form.cancel_button.click()
 else:
 view.power_operation_form.shutdown_button.click()
 view.flash.assert_success_message('Shutdown initiated for selected server(s)')

[docs] def restart_server(self):
 view = self.load_details(refresh=True)
 view.toolbar.power.item_select('Restart Server', handle_alert=True)
 view.flash.assert_success_message('Restart initiated for selected server(s)')

[docs] def start_server(self):
 view = self.load_details(refresh=True)
 view.toolbar.power.item_select('Start Server', handle_alert=True)
 view.assert_success_message('Start initiated for selected server(s)')

[docs] def suspend_server(self, timeout=10, cancel=False):
 view = self.load_details(refresh=True)
 view.toolbar.power.item_select('Suspend Server')
 view.power_operation_form.fill({
 "timeout": timeout,
 })
 if cancel:
 view.power_operation_form.cancel_button.click()
 else:
 view.power_operation_form.suspend_button.click()
 view.flash.assert_success_message('Suspend initiated for selected server(s)')

[docs] def resume_server(self):
 view = self.load_details(refresh=True)
 view.toolbar.power.item_select('Resume Server', handle_alert=True)
 view.flash.assert_success_message('Resume initiated for selected server(s)')

[docs] def reload_server(self):
 view = self.load_details(refresh=True)
 view.toolbar.power.item_select('Reload Server', handle_alert=True)
 view.flash.assert_success_message('Reload initiated for selected server(s)')

[docs] def stop_server(self):
 view = self.load_details(refresh=True)
 view.toolbar.power.item_select('Stop Server', handle_alert=True)
 view.flash.assert_success_message('Stop initiated for selected server(s)')

[docs] def kill_server(self):
 view = self.load_details(refresh=True)
 view.toolbar.power.item_select('Kill Server', handle_alert=True)
 view.flash.assert_success_message('Kill initiated for selected server(s)')

 @classmethod
[docs] def download(cls, extension, provider=None, server_group=None):
 view = _get_servers_page(provider, server_group)
 download(view, extension)

@navigator.register(MiddlewareServer, 'All')
[docs]class All(CFMENavigateStep):
 VIEW = ServerAllView
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self):
 self.prerequisite_view.navigation.select('Middleware', 'Servers')

@navigator.register(MiddlewareServer, 'Details')
[docs]class Details(CFMENavigateStep):
 VIEW = ServerDetailsView
 prerequisite = NavigateToSibling('All')

[docs] def step(self, *args, **kwargs):
 try:
 if self.obj.feed:
 # TODO find_row_on_pages change to entities.get_entity()
 row = self.prerequisite_view.entities.paginator.find_row_on_pages(
 self.prerequisite_view.entities.elements,
 server_name=self.obj.name, feed=self.obj.feed)
 elif self.obj.hostname:
 row = self.prerequisite_view.entities.paginator.find_row_on_pages(
 self.prerequisite_view.entities.elements,
 server_name=self.obj.name, host_name=self.obj.hostname)
 else:
 row = self.prerequisite_view.entities.paginator.find_row_on_pages(
 self.prerequisite_view.entities.elements, server_name=self.obj.name)
 except NoSuchElementException:
 raise MiddlewareServerNotFound(
 "Server '{}' not found in table".format(self.name))
 row.click()

@navigator.register(MiddlewareServer, 'ServerDatasources')
[docs]class ServerDatasources(CFMENavigateStep):
 VIEW = ServerDatasourceAllView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.entities.relationships.click_at('Middleware Datasources')

@navigator.register(MiddlewareServer, 'ServerDeployments')
[docs]class ServerDeployments(CFMENavigateStep):
 VIEW = ServerDeploymentAllView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.entities.relationships.click_at('Middleware Deployments')

@navigator.register(MiddlewareServer, 'ServerMessagings')
[docs]class ServerMessagings(CFMENavigateStep):
 VIEW = ServerMessagingAllView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.entities.relationships.click_at('Middleware Messagings')

@navigator.register(MiddlewareServer, 'ServerGroup')
[docs]class ServerGroup(CFMENavigateStep):
 VIEW = ServerGroupDetailsView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 try:
 self.prerequisite_view.entities.relationships.click_at('Middleware Server Group')
 except NoSuchElementException:
 raise MiddlewareServerGroupNotFound('Server does not belong to Server Group')

@navigator.register(MiddlewareServer, 'AddDatasource')
[docs]class AddDatasource(CFMENavigateStep):
 VIEW = AddDatasourceView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.toolbar.datasources.item_select('Add Datasource')

@navigator.register(MiddlewareServer, 'AddJDBCDriver')
[docs]class AddJDBCDriver(CFMENavigateStep):
 VIEW = AddJDBCDriverView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.toolbar.drivers.item_select('Add JDBC Driver')

@navigator.register(MiddlewareServer, 'AddDeployment')
[docs]class AddDeployment(CFMENavigateStep):
 VIEW = AddDeploymentView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.toolbar.deployments.item_select('Add Deployment')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/automate/service_dialogs.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.automate »

 Source code for cfme.automate.service_dialogs

from navmazing import NavigateToAttribute, NavigateToSibling
from widgetastic.widget import Text, Checkbox
from widgetastic_manageiq import ManageIQTree
from widgetastic.utils import Fillable
from widgetastic_patternfly import CandidateNotFound, Button, Input, Dropdown
from cached_property import cached_property

from cfme.exceptions import ItemNotFound
from cfme.utils.appliance import BaseCollection, BaseEntity
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to

from . import AutomateCustomizationView

[docs]class DialogForm(AutomateCustomizationView):
 title = Text('#explorer_title_text')

 plus_btn = Dropdown('Add')
 label = Input(name='label')
 description = Input(name="description")

 submit_button = Checkbox(name='chkbx_submit')
 cancel_button = Checkbox(name='chkbx_cancel')

[docs]class DialogsView(AutomateCustomizationView):
 title = Text("#explorer_title_text")

 @property
 def is_displayed(self):
 return (
 self.in_customization and
 self.title.text == 'All Dialogs' and
 self.service_dialogs.is_opened and
 self.service_dialogs.tree.currently_selected == ["All Dialogs"])

[docs]class AddDialogView(DialogForm):

 add_button = Button("Add")
 plus_btn = Dropdown('Add')

 @property
 def is_displayed(self):
 return (
 self.in_customization and self.service_dialogs.is_opened and
 self.title.text == "Adding a new Dialog [Dialog Information]"
)

[docs]class EditDialogView(DialogForm):
 element_tree = ManageIQTree('dialog_edit_treebox')

 save_button = Button('Save')
 reset_button = Button('Reset')

 @property
 def is_displayed(self):
 return (
 self.in_customization and self.service_dialogs.is_opened and
 self.title.text == "Editing Dialog {}".format(self.label)
)

[docs]class DetailsDialogView(AutomateCustomizationView):
 title = Text("#explorer_title_text")

 @property
 def is_displayed(self):
 return (
 self.in_customization and self.service_dialogs.is_opened and
 self.title.text == 'Dialog "{}"'.format(self.context['object'].label)
)

[docs]class DialogCollection(BaseCollection):
 """Collection object for the :py:class:`Dialog`."""

 tree_path = ['All Dialogs']

 def __init__(self, appliance):
 self.appliance = appliance

[docs] def instantiate(self, label, description=None, submit=False, cancel=False):
 return Dialog(self, label, description=description, submit=submit, cancel=cancel)

[docs] def create(self, label=None, description=None, submit=False, cancel=False):
 """ Create dialog label method """
 view = navigate_to(self, 'Add')
 fill_dict = {
 k: v
 for k, v in {'label': label, 'description': description,
 'submit_button': submit, 'cancel_button': cancel}.items()
 if v is not None}
 view.fill(fill_dict)
 return self.instantiate(
 label=label, description=description, submit=submit, cancel=cancel)

[docs]class Dialog(BaseEntity, Fillable):
 """A class representing one Domain in the UI."""
 def __init__(
 self, collection, label, description=None, submit=False, cancel=False):
 self.collection = collection
 self.appliance = self.collection.appliance
 self.label = label
 self.description = description
 self.submit = submit
 self.cancel = cancel

[docs] def as_fill_value(self):
 return self.label

 @property
 def parent(self):
 return self.collection

 @property
 def dialog(self):
 return self

 @cached_property
 def tabs(self,):
 from .dialog_tab import TabCollection
 return TabCollection(self.appliance, self)

 @property
 def tree_path(self):
 return self.collection.tree_path + [self.label]

[docs] def update(self, updates):
 """ Update dialog method"""
 view = navigate_to(self, 'Edit')
 changed = view.fill(updates)
 if changed:
 view.save_button.click()
 else:
 view.cancel_button.click()
 view = self.create_view(DetailsDialogView, override=updates)
 assert view.is_displayed
 view.flash.assert_no_error()
 if changed:
 view.flash.assert_message(
 'Dialog "{}" was saved'.format(updates.get('name', self.label)))
 else:
 view.flash.assert_message(
 'Edit of Dialog "{}" was cancelled by the user'.format(self.label))

[docs] def delete(self):
 """ Delete dialog method"""
 view = navigate_to(self, "Details")
 view.configuration.item_select('Remove Dialog', handle_alert=True)
 view = self.create_view(DialogsView)
 assert view.is_displayed
 view.flash.assert_no_error()
 view.flash.assert_success_message(
 'Dialog "{}": Delete successful'.format(self.label))

 @property
 def exists(self):
 """ Returns True if dialog exists"""
 try:
 navigate_to(self, 'Details')
 return True
 except (CandidateNotFound, ItemNotFound):
 return False

[docs] def delete_if_exists(self):
 if self.exists:
 self.delete()

@navigator.register(DialogCollection)
[docs]class All(CFMENavigateStep):
 VIEW = DialogsView

 prerequisite = NavigateToAttribute('appliance.server', 'AutomateCustomization')

[docs] def step(self):
 self.view.service_dialogs.tree.click_path(*self.obj.tree_path)

@navigator.register(DialogCollection)
[docs]class Add(CFMENavigateStep):
 VIEW = AddDialogView

 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.configuration.item_select('Add a new Dialog')

@navigator.register(Dialog)
[docs]class Details(CFMENavigateStep):
 VIEW = DetailsDialogView

 prerequisite = NavigateToAttribute('appliance.server', 'AutomateCustomization')

[docs] def step(self):
 self.prerequisite_view.service_dialogs.tree.click_path(*self.obj.tree_path)

@navigator.register(Dialog)
[docs]class Edit(CFMENavigateStep):
 VIEW = EditDialogView

 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.configuration.item_select("Edit this Dialog")

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/middleware/provider/middleware_views.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.middleware.provider »

 Source code for cfme.middleware.provider.middleware_views

-*- coding: utf-8 -*-

from widgetastic.widget import View, Text, TextInput, Select
from widgetastic_patternfly import (Dropdown,
 FlashMessages,
 BootstrapSwitch,
 BootstrapNav,
 Tab)

from cfme.base.login import BaseLoggedInPage
from widgetastic_manageiq import (Accordion,
 BreadCrumb,
 SummaryTable,
 Button,
 TimelinesView,
 ItemsToolBarViewSelector,
 Table,
 BaseEntitiesView,
 FileInput,
 Search)

LIST_TABLE_LOCATOR = '//div[@id="list_grid" or contains(@class, "miq-data-table")]//table'
TITLE_LOCATOR = '//div[@id="main-content"]//h1'
FLASH_MESSAGE_LOCATOR = './/div[@id="flash_msg_div"]'\
 '/div[@id="flash_text_div" or contains(@class, "flash_text_div")]'
TITLE_LOCATOR = '//div[@id="main-content"]//h1'

[docs]class ServerToolbar(View):
 """The toolbar on the main page"""
 policy = Dropdown('Policy')
 download = Dropdown('Download')

 view_selector = View.nested(ItemsToolBarViewSelector)

[docs]class ServerDetailsToolbar(View):
 """The toolbar on the details page"""
 monitoring = Dropdown('Monitoring')
 policy = Dropdown('Policy')
 power = Dropdown('Power')
 deployments = Dropdown('Deployments')
 drivers = Dropdown('JDBC Drivers')
 datasources = Dropdown('Datasources')
 download = Button(title='Download summary in PDF format')

[docs]class ServerDetailsAccordion(View):
 """The accordian on the details page"""
 @View.nested
 class server(Accordion): # noqa
 pass

 @View.nested
 class properties(Accordion): # noqa
 nav = BootstrapNav('//div[@id="middleware_server_prop"]//ul')

 @View.nested
 class relationships(Accordion): # noqa
 nav = BootstrapNav('//div[@id="middleware_server_rel"]//ul')

[docs]class ServerEntitiesView(BaseEntitiesView):
 """Entities on the main list page"""
 title = Text(TITLE_LOCATOR)
 table = Table(LIST_TABLE_LOCATOR)
 search = View.nested(Search)
 # element attributes changed from id to class in upstream-fine+, capture both with locator
 flash = FlashMessages(FLASH_MESSAGE_LOCATOR)

[docs]class ServerDetailsEntities(View):
 """Entities on the details page"""
 breadcrumb = BreadCrumb()
 title = Text(TITLE_LOCATOR)
 properties = SummaryTable(title='Properties')
 relationships = SummaryTable(title='Relationships')
 smart_management = SummaryTable(title='Smart Management')
 flash = FlashMessages(FLASH_MESSAGE_LOCATOR)

[docs]class PowerOperationForm(View):
 """Entities on the Power Operations widget"""
 title = Text('//div[@id="op_params_div"]//h4')
 timeout = TextInput("timeout")
 suspend_button = Button(title="Suspend")
 stop_button = Button(title="Stop")
 shutdown_button = Button(title="Shutdown")
 cancel_button = Button(title="Cancel")

[docs]class ServerView(BaseLoggedInPage):
 """Base view for header and nav checking, navigatable views should inherit this"""
 @property
 def in_server(self):
 nav_chain = ['Middleware', 'Servers']
 return (
 self.logged_in_as_current_user and
 self.navigation.currently_selected == nav_chain)

[docs]class ServerAllView(ServerView):
 """The "all" view -- a list of servers"""
 @property
 def is_displayed(self):
 return (
 self.in_server and
 self.entities.title.text == 'Middleware Servers')

 toolbar = View.nested(ServerToolbar)
 including_entities = View.include(ServerEntitiesView, use_parent=True)

[docs]class ProviderServerAllView(ServerView):
 """The "all" view -- a list of provider's servers"""
 @property
 def is_displayed(self):
 expected_title = '{} (All Middleware Servers)'.format(self.context['object'].name)
 return (
 self.in_server and
 self.entities.title.text == expected_title and
 self.entities.breadcrumb.active_location == expected_title)

 toolbar = View.nested(ServerToolbar)
 including_entities = View.include(ServerEntitiesView, use_parent=True)

[docs]class ServerGroupServerAllView(ServerView):
 """The "all" view -- a list of server group servers"""
 @property
 def is_displayed(self):
 nav_chain = ['Middleware', 'Domains']
 expected_title = '{name} (All Middleware Servers)'.format(name=self.context['object'].name)
 return (
 self.logged_in_as_current_user and
 self.navigation.currently_selected == nav_chain and
 self.title.text == expected_title)

 toolbar = View.nested(ServerToolbar)
 including_entities = View.include(ServerEntitiesView, use_parent=True)

[docs]class ServerDetailsView(ServerView):
 """The details page of a datasource"""
 @property
 def is_displayed(self):
 """Is this page being displayed?"""
 expected_title = '{} (Summary)'.format(self.context['object'].name)
 return (
 self.in_server and
 self.entities.title.text == expected_title and
 self.entities.breadcrumb.active_location == expected_title)

 toolbar = View.nested(ServerDetailsToolbar)
 sidebar = View.nested(ServerDetailsAccordion)
 entities = View.nested(ServerDetailsEntities)
 power_operation_form = View.nested(PowerOperationForm)
 flash = FlashMessages(FLASH_MESSAGE_LOCATOR)

[docs]class DatasourceAllToolbar(View):
 """The toolbar on the main page"""
 back = Button('Show {} Summary')
 policy = Dropdown('Policy')
 operations = Dropdown('Operations')
 download = Dropdown('Download')

 view_selector = View.nested(ItemsToolBarViewSelector)

[docs]class DatasourceDetailsToolbar(View):
 """The toolbar on the details page"""
 monitoring = Dropdown('Monitoring')
 policy = Dropdown('Policy')
 download = Button(title='Download summary in PDF format')

[docs]class DatasourceDetailsAccordion(View):
 """The accordian on the details page"""
 @View.nested
 class datasource(Accordion): # noqa
 pass

 @View.nested
 class properties(Accordion): # noqa
 nav = BootstrapNav('//div[@id="middleware_datasource_prop"]//ul')

 @View.nested
 class relationships(Accordion): # noqa
 nav = BootstrapNav('//div[@id="middleware_datasource_rel"]//ul')

[docs]class DatasourceEntitiesView(BaseEntitiesView):
 """Entities on the main list page"""
 title = Text(TITLE_LOCATOR)
 table = Table(LIST_TABLE_LOCATOR)
 search = View.nested(Search)
 # element attributes changed from id to class in upstream-fine+, capture both with locator
 flash = FlashMessages(FLASH_MESSAGE_LOCATOR)

[docs]class DatasourceDetailsEntities(View):
 """Entities on the details page"""
 breadcrumb = BreadCrumb()
 title = Text(TITLE_LOCATOR)
 properties = SummaryTable(title='Properties')
 relationships = SummaryTable(title='Relationships')
 smart_management = SummaryTable(title='Smart Management')
 flash = FlashMessages(FLASH_MESSAGE_LOCATOR)

[docs]class DatasourceView(BaseLoggedInPage):
 """Base view for header and nav checking, navigatable views should inherit this"""
 @property
 def in_datasource(self):
 nav_chain = ['Middleware', 'Datasources']
 return (
 self.logged_in_as_current_user and
 self.navigation.currently_selected == nav_chain)

[docs]class DatasourceAllView(DatasourceView):
 """The "all" view -- a list of datasources"""
 @property
 def is_displayed(self):
 return (
 self.in_datasource and
 self.entities.title.text == 'Middleware Datasources')

 toolbar = View.nested(DatasourceAllToolbar)
 including_entities = View.include(DatasourceEntitiesView, use_parent=True)

[docs]class DatasourceDetailsView(DatasourceView):
 """The details page of a datasource"""
 @property
 def is_displayed(self):
 """Is this page being displayed?"""
 expected_title = '{} (Summary)'.format(self.context['object'].name)
 return (
 self.in_datasource and
 self.entities.title.text == expected_title and
 self.entities.breadcrumb.active_location == expected_title)

 toolbar = View.nested(DatasourceDetailsToolbar)
 sidebar = View.nested(DatasourceDetailsAccordion)
 entities = View.nested(DatasourceDetailsEntities)
 flash = FlashMessages(FLASH_MESSAGE_LOCATOR)

[docs]class ServerDatasourceAllView(DatasourceView):
 """The "all" view -- a list of server's datasources"""
 @property
 def is_displayed(self):
 expected_title = '{} (All Middleware Datasources)'.format(self.context['object'].name)
 return (
 self.in_datasource and
 self.entities.title.text == expected_title and
 self.entities.breadcrumb.active_location == expected_title)

 toolbar = View.nested(DatasourceAllToolbar)
 including_entities = View.include(DatasourceEntitiesView, use_parent=True)

[docs]class ProviderDatasourceAllView(DatasourceView):
 """The "all" view -- a list of provider's datasources"""
 @property
 def is_displayed(self):
 expected_title = '{} (All Middleware Datasources)'.format(self.context['object'].name)
 return (
 self.in_datasource and
 self.entities.title.text == expected_title and
 self.entities.breadcrumb.active_location == expected_title)

 toolbar = View.nested(DatasourceAllToolbar)
 including_entities = View.include(DatasourceEntitiesView, use_parent=True)

[docs]class AddDatasourceForm(View):
 """Entities on the Add Datasource widget"""
 title = Text('//div[@id="ds_add_div"]//h4')
 ds_type = Select("//select[@id='chooose_datasource_input']")
 xa_ds = BootstrapSwitch(id="xa_ds_cb")
 ds_name = TextInput("ds_name_input")
 jndi_name = TextInput("jndi_name_input")
 driver_name = TextInput("jdbc_ds_driver_name_input")
 driver_module_name = TextInput("jdbc_modoule_name_input")
 driver_class = TextInput("jdbc_ds_driver_input")
 existing_driver = Select("//select[@id='existing_jdbc_driver_input']")
 ds_url = TextInput("connection_url_input")
 username = TextInput("user_name_input")
 password = TextInput("password_input")
 sec_domain = TextInput("security_domain_input", use_id=True)
 next_button = Button(title='Next')
 back_button = Button(title='Back')
 finish_button = Button(title='Finish')
 cancel_button = Button(title='Cancel')

 @View.nested
 class tab_specify_driver(Tab): # noqa
 TAB_NAME = 'Specify Driver'

 @View.nested
 class tab_existing_driver(Tab): # noqa
 TAB_NAME = 'Existing Driver'

[docs]class AddDatasourceView(DatasourceView):
 """The "Add" view -- new datasources"""
 @property
 def is_displayed(self):
 """ This view is opened as a widget box after clicking on toolbar operation """
 return False

 form = View.nested(AddDatasourceForm)
 flash = FlashMessages(FLASH_MESSAGE_LOCATOR)

[docs]class AddJDBCDriverForm(View):
 """Entities on the Add JDBC Driver widget"""
 title = Text('//div[@id="jdbc_add_div"]//h4')
 file_select = FileInput("jdbc_driver[file]")
 jdbc_driver_name = TextInput("jdbc_driver_name_input")
 jdbc_module_name = TextInput("jdbc_module_name_input")
 jdbc_driver_class = TextInput("jdbc_driver_class_input")
 driver_xa_datasource_class = TextInput("driver_xa_datasource_class_name_input")
 major_version = TextInput("major_version_input")
 minor_version = TextInput("minor_version_input")
 deploy_button = Button(title="Deploy")
 cancel_button = Button(title="Cancel")

[docs]class AddJDBCDriverView(View):
 """The "Add" view -- new JDBC Drivers"""
 @property
 def is_displayed(self):
 """ This view is opened as a widget box after clicking on toolbar operation """
 return False

 form = View.nested(AddJDBCDriverForm)
 flash = FlashMessages(FLASH_MESSAGE_LOCATOR)

[docs]class DeploymentAllToolbar(View):
 """The toolbar on the main page"""
 back = Button('Show {} Summary')
 policy = Dropdown('Policy')
 operations = Dropdown('Operations')
 download = Dropdown('Download')

 view_selector = View.nested(ItemsToolBarViewSelector)

[docs]class DeploymentDetailsToolbar(View):
 """The toolbar on the details page"""
 policy = Dropdown('Policy')
 operations = Dropdown('Operations')
 download = Button(title='Download summary in PDF format')

[docs]class DeploymentDetailsAccordion(View):
 """The accordian on the details page"""
 @View.nested
 class deployment(Accordion): # noqa
 pass

 @View.nested
 class properties(Accordion): # noqa
 nav = BootstrapNav('//div[@id="middleware_deployment_prop"]//ul')

 @View.nested
 class relationships(Accordion): # noqa
 nav = BootstrapNav('//div[@id="middleware_deployment_rel"]//ul')

[docs]class DeploymentEntitiesView(BaseEntitiesView):
 """Entities on the main list page"""
 title = Text(TITLE_LOCATOR)
 table = Table(LIST_TABLE_LOCATOR)
 search = View.nested(Search)
 # element attributes changed from id to class in upstream-fine+, capture both with locator
 flash = FlashMessages(FLASH_MESSAGE_LOCATOR)

[docs]class DeploymentDetailsEntities(View):
 """Entities on the details page"""
 breadcrumb = BreadCrumb()
 title = Text(TITLE_LOCATOR)
 properties = SummaryTable(title='Properties')
 relationships = SummaryTable(title='Relationships')
 smart_management = SummaryTable(title='Smart Management')
 flash = FlashMessages(FLASH_MESSAGE_LOCATOR)

[docs]class DeploymentView(BaseLoggedInPage):
 """Base view for header and nav checking, navigatable views should inherit this"""
 @property
 def in_deployment(self):
 nav_chain = ['Middleware', 'Deployments']
 return (
 self.logged_in_as_current_user and
 self.navigation.currently_selected == nav_chain)

[docs]class DeploymentAllView(DeploymentView):
 """The "all" view -- a list of deployments"""
 @property
 def is_displayed(self):
 return (
 self.in_deployment and
 self.entities.title.text == 'Middleware Deployments')

 toolbar = View.nested(DatasourceAllToolbar)
 including_entities = View.include(DeploymentEntitiesView, use_parent=True)

[docs]class DeploymentDetailsView(DeploymentView):
 """The details page of a deployment"""
 @property
 def is_displayed(self):
 """Is this page being displayed?"""
 expected_title = '{} (Summary)'.format(self.context['object'].name)
 return (
 self.in_deployment and
 self.entities.title.text == expected_title and
 self.entities.breadcrumb.active_location == expected_title)

 toolbar = View.nested(DeploymentDetailsToolbar)
 sidebar = View.nested(DeploymentDetailsAccordion)
 entities = View.nested(DeploymentDetailsEntities)
 flash = FlashMessages(FLASH_MESSAGE_LOCATOR)

[docs]class ServerDeploymentAllView(DeploymentView):
 """The "all" view -- a list of server's deployments"""
 @property
 def is_displayed(self):
 expected_title = '{} (All Middleware Deployments)'.format(self.context['object'].name)
 return (
 self.in_deployment and
 self.entities.title.text == expected_title and
 self.entities.breadcrumb.active_location == expected_title)

 toolbar = View.nested(DeploymentAllToolbar)
 including_entities = View.include(DeploymentEntitiesView, use_parent=True)

[docs]class ProviderDeploymentAllView(DeploymentView):
 """The "all" view -- a list of provider's deployments"""
 @property
 def is_displayed(self):
 expected_title = '{} (All Middleware Deployments)'.format(self.context['object'].name)
 return (
 self.in_deployment and
 self.entities.title.text == expected_title and
 self.entities.breadcrumb.active_location == expected_title)

 toolbar = View.nested(DeploymentAllToolbar)
 including_entities = View.include(DeploymentEntitiesView, use_parent=True)

[docs]class AddDeploymentForm(View):
 """Entities on the Add Deployment widget"""
 title = Text('//div[@id="ds_add_div"]//h4')
 file_select = FileInput("upload[file]")
 enable_deployment = BootstrapSwitch(id="enable_deployment_cb")
 runtime_name = TextInput(id="runtime_name_input")
 force_deployment = BootstrapSwitch(id="force_deployment_cb")
 deploy_button = Button(title="Deploy")
 cancel_button = Button(title="Cancel")

[docs]class AddDeploymentView(DeploymentView):
 """The "Add" view -- new deployments"""
 @property
 def is_displayed(self):
 """ This view is opened as a widget box after clicking on toolbar operation """
 return False

 form = View.nested(AddDeploymentForm)
 flash = FlashMessages(FLASH_MESSAGE_LOCATOR)

[docs]class DomainToolbar(View):
 """The toolbar on the main page"""
 policy = Dropdown('Policy')
 download = Dropdown('Download')

 view_selector = View.nested(ItemsToolBarViewSelector)

[docs]class DomainDetailsToolbar(View):
 """The toolbar on the details page"""
 policy = Dropdown('Policy')
 power = Dropdown('Power')
 download = Button(title='Download summary in PDF format')

[docs]class DomainDetailsAccordion(View):
 """The accordian on the details page"""
 @View.nested
 class domain(Accordion): # noqa
 pass

 @View.nested
 class properties(Accordion): # noqa
 nav = BootstrapNav('//div[@id="middleware_domain_prop"]//ul')

 @View.nested
 class relationships(Accordion): # noqa
 nav = BootstrapNav('//div[@id="middleware_domain_rel"]//ul')

[docs]class DomainEntitiesView(BaseEntitiesView):
 """Entities on the main list page"""
 title = Text(TITLE_LOCATOR)
 table = Table(LIST_TABLE_LOCATOR)
 search = View.nested(Search)
 # element attributes changed from id to class in upstream-fine+, capture both with locator
 flash = FlashMessages(FLASH_MESSAGE_LOCATOR)

[docs]class DomainDetailsEntities(View):
 """Entities on the details page"""
 breadcrumb = BreadCrumb()
 title = Text(TITLE_LOCATOR)
 properties = SummaryTable(title='Properties')
 relationships = SummaryTable(title='Relationships')
 smart_management = SummaryTable(title='Smart Management')
 flash = FlashMessages(FLASH_MESSAGE_LOCATOR)

[docs]class DomainView(BaseLoggedInPage):
 """Base view for header and nav checking, navigatable views should inherit this"""
 @property
 def in_domain(self):
 nav_chain = ['Middleware', 'Domains']
 return (
 self.logged_in_as_current_user and
 self.navigation.currently_selected == nav_chain)

[docs]class DomainAllView(DomainView):
 """The "all" view -- a list of domains"""
 @property
 def is_displayed(self):
 return (
 self.in_domain and
 self.entities.title.text == 'Middleware Domains')

 toolbar = View.nested(DomainToolbar)
 including_entities = View.include(DomainEntitiesView, use_parent=True)

[docs]class ProviderDomainsAllView(DomainView):
 """The "all" view -- a list of provider's domains"""
 @property
 def is_displayed(self):
 expected_title = '{} (All Middleware Domains)'.format(self.context['object'].name)
 return (
 self.in_domain and
 self.entities.title.text == expected_title and
 self.entities.breadcrumb.active_location == expected_title)

 toolbar = View.nested(DomainToolbar)
 including_entities = View.include(DomainEntitiesView, use_parent=True)

[docs]class DomainDetailsView(DomainView):
 """The details page of a domain"""
 @property
 def is_displayed(self):
 """Is this page being displayed?"""
 expected_title = '{} (Summary)'.format(self.context['object'].name)
 return (
 self.in_domain and
 self.entities.title.text == expected_title and
 self.entities.breadcrumb.active_location == expected_title)

 toolbar = View.nested(DomainDetailsToolbar)
 sidebar = View.nested(DomainDetailsAccordion)
 entities = View.nested(DomainDetailsEntities)

[docs]class ProviderDomainAllView(DomainView):
 """The "all" view -- a list of provider's domains"""
 @property
 def is_displayed(self):
 expected_title = '{} (All Middleware Domains)'.format(self.context['object'].name)
 return (
 self.in_domain and
 self.entities.title.text == expected_title and
 self.entities.breadcrumb.active_location == expected_title)

 toolbar = View.nested(DomainToolbar)
 including_entities = View.include(DomainEntitiesView, use_parent=True)

[docs]class MessagingAllToolbar(View):
 """The toolbar on the main page"""
 back = Button('Show {} Summary')
 policy = Dropdown('Policy')
 download = Dropdown('Download')

 view_selector = View.nested(ItemsToolBarViewSelector)

[docs]class MessagingDetailsToolbar(View):
 """The toolbar on the details page"""
 monitoring = Dropdown('Monitoring')
 policy = Dropdown('Policy')
 download = Button(title='Download summary in PDF format')

[docs]class MessagingDetailsAccordion(View):
 """The accordian on the details page"""
 @View.nested
 class messaging(Accordion): # noqa
 pass

 @View.nested
 class properties(Accordion): # noqa
 nav = BootstrapNav('//div[@id="middleware_messaging_prop"]//ul')

 @View.nested
 class relationships(Accordion): # noqa
 nav = BootstrapNav('//div[@id="middleware_messaging_rel"]//ul')

[docs]class MessagingEntitiesView(BaseEntitiesView):
 """Entities on the main list page"""
 title = Text(TITLE_LOCATOR)
 table = Table(LIST_TABLE_LOCATOR)
 search = View.nested(Search)
 # element attributes changed from id to class in upstream-fine+, capture both with locator
 flash = FlashMessages(FLASH_MESSAGE_LOCATOR)

[docs]class MessagingDetailsEntities(View):
 """Entities on the details page"""
 breadcrumb = BreadCrumb()
 title = Text(TITLE_LOCATOR)
 properties = SummaryTable(title='Properties')
 relationships = SummaryTable(title='Relationships')
 smart_management = SummaryTable(title='Smart Management')
 flash = FlashMessages(FLASH_MESSAGE_LOCATOR)

[docs]class MessagingView(BaseLoggedInPage):
 """Base view for header and nav checking, navigatable views should inherit this"""
 @property
 def in_messaging(self):
 nav_chain = ['Middleware', 'Messagings']
 return (
 self.logged_in_as_current_user and
 self.navigation.currently_selected == nav_chain)

[docs]class MessagingAllView(MessagingView):
 """The "all" view -- a list of deployments"""
 @property
 def is_displayed(self):
 return (
 self.in_messaging and
 self.entities.title.text == 'Middleware Messagings')

 toolbar = View.nested(MessagingAllToolbar)
 including_entities = View.include(MessagingEntitiesView, use_parent=True)

[docs]class MessagingDetailsView(MessagingView):
 """The details page of a deployment"""
 @property
 def is_displayed(self):
 """Is this page being displayed?"""
 expected_title = '{} (Summary)'.format(self.context['object'].name)
 return (
 self.in_messaging and
 self.entities.title.text == expected_title and
 self.entities.breadcrumb.active_location == expected_title)

 toolbar = View.nested(MessagingDetailsToolbar)
 sidebar = View.nested(MessagingDetailsAccordion)
 entities = View.nested(MessagingDetailsEntities)

[docs]class ServerMessagingAllView(MessagingView):
 """The "all" view -- a list of server's messagings"""
 @property
 def is_displayed(self):
 expected_title = '{} (All Middleware Messagings)'.format(self.context['object'].name)
 return (
 self.in_messaging and
 self.entities.title.text == expected_title and
 self.entities.breadcrumb.active_location == expected_title)

 toolbar = View.nested(MessagingAllToolbar)
 including_entities = View.include(MessagingEntitiesView, use_parent=True)

[docs]class ProviderMessagingAllView(MessagingView):
 """The "all" view -- a list of provider's messagings"""
 @property
 def is_displayed(self):
 expected_title = '{} (All Middleware Messagings)'.format(self.context['object'].name)
 return (
 self.in_messaging and
 self.entities.title.text == expected_title and
 self.entities.breadcrumb.active_location == expected_title)

 toolbar = View.nested(MessagingAllToolbar)
 including_entities = View.include(MessagingEntitiesView, use_parent=True)

[docs]class ServerGroupToolbar(View):
 """The toolbar on the main page"""
 download = Dropdown('Download')

 view_selector = View.nested(ItemsToolBarViewSelector)

[docs]class ServerGroupDetailsToolbar(View):
 """The toolbar on the details page"""
 policy = Dropdown('Policy')
 power = Dropdown('Power')
 deployments = Dropdown('Deployments')
 download = Button(title='Download summary in PDF format')

[docs]class ServerGroupDetailsAccordion(View):
 """The accordian on the details page"""
 @View.nested
 class server_group(Accordion): # noqa
 pass

 @View.nested
 class properties(Accordion): # noqa
 nav = BootstrapNav('//div[@id="middleware_server_prop"]//ul')

 @View.nested
 class relationships(Accordion): # noqa
 nav = BootstrapNav('//div[@id="middleware_server_rel"]//ul')

[docs]class ServerGroupEntitiesView(BaseEntitiesView):
 """Entities on the main list page"""
 title = Text(TITLE_LOCATOR)
 table = Table(LIST_TABLE_LOCATOR)
 search = View.nested(Search)
 # element attributes changed from id to class in upstream-fine+, capture both with locator
 flash = FlashMessages(FLASH_MESSAGE_LOCATOR)

[docs]class ServerGroupDetailsEntities(View):
 """Entities on the details page"""
 breadcrumb = BreadCrumb()
 title = Text(TITLE_LOCATOR)
 properties = SummaryTable(title='Properties')
 relationships = SummaryTable(title='Relationships')
 smart_management = SummaryTable(title='Smart Management')
 flash = FlashMessages(FLASH_MESSAGE_LOCATOR)

[docs]class ServerGroupView(BaseLoggedInPage):
 """Base view for header and nav checking, navigatable views should inherit this"""

[docs]class ServerGroupDetailsView(ServerGroupView):
 """The details page of a server group"""
 @property
 def is_displayed(self):
 """Is this page being displayed?"""
 expected_title = '{} (Summary)'.format(self.context['object'].name)
 return (
 self.entities.title.text == expected_title and
 self.entities.breadcrumb.active_location == expected_title)

 toolbar = View.nested(ServerGroupDetailsToolbar)
 sidebar = View.nested(ServerGroupDetailsAccordion)
 entities = View.nested(ServerGroupDetailsEntities)
 power_operation_form = View.nested(PowerOperationForm)
 flash = FlashMessages(FLASH_MESSAGE_LOCATOR)

[docs]class DomainServerGroupAllView(DomainView):
 """The "all" view -- a list of domain's server groups"""
 @property
 def is_displayed(self):
 expected_title = '{} (All Middleware Server Groups)' \
 .format(self.context['object'].domain.name)
 return (
 self.in_server_group and
 self.entities.title.text == expected_title and
 self.entities.breadcrumb.active_location == expected_title)

 toolbar = View.nested(ServerGroupToolbar)
 including_entities = View.include(ServerGroupEntitiesView, use_parent=True)

[docs]class MiddlewareProviderTimelinesView(TimelinesView, BaseLoggedInPage):
 @property
 def is_displayed(self):
 return (self.logged_in_as_current_user and
 self.navigation.currently_selected == ['Middleware', 'Providers'] and
 TimelinesView.is_displayed)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/automate/simulation.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.automate »

 Source code for cfme.automate.simulation

-*- coding: utf-8 -*-
from cfme.utils.appliance import get_or_create_current_appliance
from cfme.utils.appliance.implementations.ui import navigate_to

[docs]def simulate(
 instance=None, message=None, request=None, target_type=None, target_object=None,
 execute_methods=None, attributes_values=None, pre_clear=True, appliance=None):
 """Runs the simulation of specified Automate object."""
 if not appliance:
 appliance = get_or_create_current_appliance()
 view = navigate_to(appliance.server, 'AutomateSimulation')
 if pre_clear:
 view.avp.clear()
 view.fill({
 'instance': 'Request',
 'message': 'create',
 'request': '',
 'target_type': '<None>',
 'execute_methods': True, })
 view.fill({
 'instance': instance,
 'message': message,
 'request': request,
 'target_type': target_type,
 'target_object': target_object,
 'execute_methods': execute_methods,
 'avp': attributes_values,
 })
 view.submit_button.click()
 view.flash.assert_no_error()
 view.flash.assert_message('Automation Simulation has been run')

 # TODO: After fixing the tree
 # return view.result_tree.read_contents()

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/middleware/datasource.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.middleware.datasource

from navmazing import NavigateToSibling, NavigateToAttribute
from widgetastic.exceptions import NoSuchElementException
from wrapanapi.hawkular import CanonicalPath

from cfme.common import Taggable, UtilizationMixin
from cfme.exceptions import MiddlewareDatasourceNotFound
from cfme.middleware.provider import (
 MiddlewareBase, download, get_server_name)
from cfme.middleware.provider import parse_properties
from cfme.middleware.provider.hawkular import HawkularProvider
from cfme.middleware.provider.middleware_views import (DatasourceDetailsView,
 DatasourceAllView)
from cfme.middleware.server import MiddlewareServer
from cfme.utils import attributize_string
from cfme.utils.appliance import Navigatable, current_appliance
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to
from cfme.utils.providers import get_crud_by_name, list_providers_by_class
from cfme.utils.varmeth import variable

def _db_select_query(name=None, nativeid=None, server=None, provider=None):
 """Column order: `id`, `nativeid`, `name`, `properties`, `server_name`,
 `feed`, `provider_name`, `ems_ref`, `hostname`"""
 t_ms = current_appliance.db.client['middleware_servers']
 t_mds = current_appliance.db.client['middleware_datasources']
 t_ems = current_appliance.db.client['ext_management_systems']
 query = current_appliance.db.client.session.query(
 t_mds.id,
 t_mds.nativeid,
 t_mds.name,
 t_mds.properties,
 t_ms.name.label('server_name'),
 t_ms.feed,
 t_ems.name.label('provider_name'),
 t_ms.hostname,
 t_mds.ems_ref)\
 .join(t_ms, t_mds.server_id == t_ms.id).join(t_ems, t_mds.ems_id == t_ems.id)
 if name:
 query = query.filter(t_mds.name == name)
 if nativeid:
 query = query.filter(t_mds.nativeid == nativeid)
 if server:
 query = query.filter(t_ms.name == server.name)
 if server.feed:
 query = query.filter(t_ms.feed == server.feed)
 if provider:
 query = query.filter(t_ems.name == provider.name)
 return query

def _get_datasources_page(provider=None, server=None):
 if server: # if server instance is provided navigate through server page
 return navigate_to(server, 'ServerDatasources')
 elif provider: # if provider instance is provided navigate through provider page
 return navigate_to(provider, 'ProviderDatasources')
 else: # if None(provider and server) given navigate through all middleware datasources page
 return navigate_to(MiddlewareDatasource, 'All')

[docs]class MiddlewareDatasource(MiddlewareBase, Taggable, Navigatable, UtilizationMixin):
 """
 MiddlewareDatasource class provides details on datasource page.
 Class methods available to get existing datasources list

 Args:
 name: Name of the datasource
 provider: Provider object (HawkularProvider)
 nativeid: Native id (internal id) of datasource
 server: Server object of the datasource (MiddlewareServer)
 properties: Datasource driver name, connection URL and JNDI name
 db_id: database row id of datasource

 Usage:

 mydatasource = MiddlewareDatasource(name='FooDS',
 server=ser_instance,
 provider=haw_provider,
 properties='ds-properties')
 datasources = MiddlewareDatasource.datasources() [or]
 datasources = MiddlewareDeployment.datasources(provider=haw_provider) [or]
 datasources = MiddlewareDeployment.datasources(provider=haw_provider,server=ser_instance)
 """
 property_tuples = [('name', 'Name'), ('nativeid', 'Nativeid'),
 ('driver_name', 'Driver Name'), ('jndi_name', 'JNDI Name'),
 ('connection_url', 'Connection URL'), ('enabled', 'Enabled')]
 taggable_type = 'MiddlewareDatasource'

 def __init__(self, name, server, provider=None, appliance=None, **kwargs):
 Navigatable.__init__(self, appliance=appliance)
 if name is None:
 raise KeyError("'name' should not be 'None'")
 if not isinstance(server, MiddlewareServer):
 raise KeyError("'server' should be an instance of MiddlewareServer")
 self.name = name
 self.provider = provider
 self.server = server
 self.nativeid = kwargs['nativeid'] if 'nativeid' in kwargs else None
 self.hostname = kwargs['hostname'] if 'hostname' in kwargs else None
 if 'properties' in kwargs:
 for property in kwargs['properties']:
 setattr(self, attributize_string(property), kwargs['properties'][property])
 self.db_id = kwargs['db_id'] if 'db_id' in kwargs else None

 @classmethod
[docs] def datasources(cls, provider=None, server=None):
 datasources = []
 view = _get_datasources_page(provider=provider, server=server)
 for _ in view.entities.paginator.pages():
 for row in view.entities.elements:
 _server = MiddlewareServer(provider=provider, name=row.server.text)
 datasources.append(MiddlewareDatasource(
 provider=provider,
 server=_server,
 name=row.datasource_name.text,
 hostname=row.host_name.text))
 return datasources

 @classmethod
[docs] def datasources_in_db(cls, server=None, provider=None, strict=True):
 datasources = []
 rows = _db_select_query(server=server, provider=provider).all()
 _provider = provider
 for datasource in rows:
 if strict:
 _provider = get_crud_by_name(datasource.provider_name)
 _server = MiddlewareServer(
 name=datasource.server_name,
 feed=datasource.feed,
 provider=provider)
 datasources.append(MiddlewareDatasource(
 nativeid=datasource.nativeid,
 name=datasource.name,
 db_id=datasource.id,
 server=_server,
 provider=_provider,
 hostname=datasource.hostname,
 properties=parse_properties(datasource.properties)))
 return datasources

 @classmethod
 def _datasources_in_mgmt(cls, provider, server=None):
 datasources = []
 rows = provider.mgmt.inventory.list_server_datasource()
 for datasource in rows:
 _server = MiddlewareServer(name=get_server_name(datasource.path),
 feed=datasource.path.feed_id,
 provider=provider)
 _include = False
 if server:
 if server.name == _server.name:
 _include = True if not server.feed else server.feed == _server.feed
 else:
 _include = True
 if _include:
 datasources.append(MiddlewareDatasource(nativeid=datasource.id,
 name=datasource.name,
 server=_server,
 provider=provider))
 return datasources

 @classmethod
[docs] def datasources_in_mgmt(cls, provider=None, server=None):
 if provider is None:
 datasources = []
 for _provider in list_providers_by_class(HawkularProvider):
 datasources.extend(cls._datasources_in_mgmt(_provider, server))
 return datasources
 else:
 return cls._datasources_in_mgmt(provider, server)

 @classmethod
[docs] def remove_from_list(cls, datasource):
 view = _get_datasources_page(server=datasource.server)
 view.entities.get_item(by_name=datasource.name).check()
 view.toolbar.configuration.item_select('Remove', handle_alert=True)
 view.flash.assert_success_message('The selected datasources were removed')

[docs] def load_details(self, refresh=False):
 view = navigate_to(self, 'Details')
 if not self.db_id or refresh:
 tmp_dsource = self.datasource(method='db')
 self.db_id = tmp_dsource.db_id
 if refresh:
 view.browser.selenium.refresh()
 view.flush_widget_cache()
 return view

 @variable(alias='ui')
 def datasource(self):
 self.load_details(refresh=False)
 self.id = self.get_detail("Properties", "Nativeid")
 self.server = MiddlewareServer(
 provider=self.provider,
 name=self.get_detail("Relationships", "Middleware Server"))
 return self

 @datasource.variant('mgmt')
 def datasource_in_mgmt(self):
 db_ds = _db_select_query(name=self.name, server=self.server,
 nativeid=self.nativeid).first()
 if db_ds:
 path = CanonicalPath(db_ds.ems_ref)
 mgmt_ds = self.provider.mgmt.inventory.get_config_data(feed_id=path.feed_id,
 resource_id=path.resource_id)
 if mgmt_ds:
 ds = MiddlewareDatasource(
 server=self.server,
 provider=self.provider,
 name=db_ds.name,
 hostname=db_ds.hostname,
 nativeid=db_ds.nativeid,
 properties=mgmt_ds.value)
 return ds
 return None

 @datasource.variant('db')
 def datasource_in_db(self):
 datasource = _db_select_query(name=self.name, server=self.server,
 nativeid=self.nativeid).first()
 if datasource:
 _server = MiddlewareServer(name=datasource.server_name, provider=self.provider)
 return MiddlewareDatasource(
 provider=self.provider,
 server=_server,
 db_id=datasource.id,
 nativeid=datasource.nativeid,
 name=datasource.name,
 hostname=datasource.hostname,
 properties=parse_properties(datasource.properties))
 return None

 @datasource.variant('rest')
 def datasource_in_rest(self):
 raise NotImplementedError('This feature not implemented yet')

 @classmethod
[docs] def download(cls, extension, provider=None, server=None):
 view = _get_datasources_page(provider, server)
 download(view, extension)

[docs] def delete(self, cancel=False):
 """
 Deletes a datasource from CFME

 :param cancel: Whether to cancel the deletion, defaults to False
 """
 view = self.load_details()
 view.toolbar.configuration.item_select('Remove', handle_alert=not cancel)

 # flash message only displayed if it was deleted
 if not cancel:
 view.flash.assert_success_message('The selected datasources were removed')

@navigator.register(MiddlewareDatasource, 'All')
[docs]class All(CFMENavigateStep):
 VIEW = DatasourceAllView
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self):
 self.prerequisite_view.navigation.select('Middleware', 'Datasources')

[docs] def resetter(self):
 """Reset view and selection"""
 self.view.entities.paginator.check_all()
 self.view.entities.paginator.uncheck_all()

@navigator.register(MiddlewareDatasource, 'Details')
[docs]class Details(CFMENavigateStep):
 VIEW = DatasourceDetailsView
 prerequisite = NavigateToSibling('All')

[docs] def step(self, *args, **kwargs):
 try:
 if self.obj.server:
 # TODO find_row_on_pages change to entities.get_entity()
 row = self.prerequisite_view.entities.paginator.find_row_on_pages(
 self.prerequisite_view.entities.elements,
 datasource_name=self.obj.name,
 server=self.obj.server.name)
 else:
 row = self.prerequisite_view.entities.paginator.find_row_on_pages(
 self.prerequisite_view.entities.elements,
 datasource_name=self.obj.name)
 except NoSuchElementException:
 raise MiddlewareDatasourceNotFound(
 "Datasource '{}' not found in table".format(self.name))
 row.click()

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/automate/explorer.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.automate »

 Source code for cfme.automate.explorer

-*- coding: utf-8 -*-
import re

from navmazing import NavigateToSibling
from widgetastic.widget import View
from widgetastic_manageiq import Accordion, ManageIQTree
from widgetastic_patternfly import Dropdown, FlashMessages

from cfme.base import Server
from cfme.base.login import BaseLoggedInPage
from cfme.base.ui import automate_menu_name
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep

[docs]class AutomateExplorerView(BaseLoggedInPage):
 flash = FlashMessages(
 './/div[starts-with(@id, "flash_text_div") or starts-with(@class, "flash_text_div")]')

 @property
 def in_explorer(self):
 return (
 self.logged_in_as_current_user and
 self.navigation.currently_selected == automate_menu_name(
 self.context['object'].appliance) + ['Explorer'])

 @property
 def is_displayed(self):
 return self.in_explorer and self.configuration.is_displayed and not self.datastore.is_dimmed

 @View.nested
 class datastore(Accordion): # noqa
 tree = ManageIQTree()

 configuration = Dropdown('Configuration')

@navigator.register(Server)
[docs]class AutomateExplorer(CFMENavigateStep):
 VIEW = AutomateExplorerView
 prerequisite = NavigateToSibling('LoggedIn')

[docs] def step(self):
 self.view.navigation.select(*automate_menu_name(self.obj.appliance) + ['Explorer'])

[docs]def check_tree_path(actual, desired):
 if len(actual) != len(desired):
 return False
 for actual_item, desired_item in zip(actual, desired):
 if isinstance(desired_item, re._pattern_type):
 if desired_item.match(actual_item) is None:
 return False
 else:
 if desired_item != actual_item:
 return False
 else:
 return True

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/ansible/credentials.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.ansible.credentials

-*- coding: utf-8 -*-
"""Page model for Automation/Anisble/Credentials"""
from navmazing import NavigateToAttribute, NavigateToSibling
from widgetastic.exceptions import NoSuchElementException
from widgetastic.utils import ParametrizedLocator
from widgetastic.widget import ConditionalSwitchableView, ParametrizedView, Text, TextInput, View
from widgetastic_manageiq import SummaryTable, Table
from widgetastic_patternfly import BootstrapSelect, Button, Dropdown, FlashMessages, Input

from cfme.base import Server
from cfme.base.login import BaseLoggedInPage
from cfme.exceptions import ItemNotFound
from cfme.utils.appliance import BaseCollection, BaseEntity
from cfme.utils.appliance.implementations.ui import navigator, navigate_to, CFMENavigateStep
from cfme.utils.wait import wait_for

[docs]class CredentialsBaseView(BaseLoggedInPage):
 flash = FlashMessages('.//div[starts-with(@class, "flash_text_div") or @id="flash_text_div"]')
 title = Text(locator=".//div[@id='main-content']//h1")

 @property
 def in_ansible_credentials(self):
 return (
 self.logged_in_as_current_user and
 self.navigation.currently_selected == ["Automation", "Ansible", "Credentials"]
)

[docs]class CredentialsListView(CredentialsBaseView):
 configuration = Dropdown("Configuration")
 credentials = Table(".//div[@id='list_grid']/table")

 @property
 def is_displayed(self):
 return self.in_ansible_credentials and self.title.text == "Credentials"

[docs]class CredentialDetailsView(CredentialsBaseView):
 configuration = Dropdown("Configuration")
 download = Button(title="Download summary in PDF format")
 properties = SummaryTable("Properties")
 relationships = SummaryTable("Relationships")
 credential_options = SummaryTable("Credential Options")

 @property
 def is_displayed(self):
 return (
 self.in_ansible_credentials and
 self.title.text == "{} (Summary)".format(self.context["object"].name)
)

[docs]class CredentialFormView(CredentialsBaseView):
 name = Input(name="name")
 credential_form = ConditionalSwitchableView(reference="credential_type")

 @credential_form.register("<Choose>", default=True)
 class CredentialFormDefaultView(View):
 pass

 @credential_form.register("Machine")
 class CredentialFormMachineView(View):
 username = Input(locator='.//input[@title="Username for this credential"]')
 password = Input(locator='.//input[@title="Password for this credential"][2]')
 private_key = TextInput(
 locator='.//textarea[@title="RSA or DSA private key to be used instead of password"][2]'
)
 private_key_phrase = Input(
 locator='.//input[@title="Passphrase to unlock SSH private key if encrypted"][2]')
 privilage_escalation = BootstrapSelect("{{name}}")
 privilage_escalation_username = Input(
 locator='.//input[@title="Privilege escalation username"]')
 privilage_escalation_password = Input(
 locator='.//input[@title="Password for privilege escalation method"][2]')
 vault_password = Input(locator='.//input[@title="Vault password"][2]')

 @credential_form.register("Scm")
 class CredentialFormScmView(View):
 username = Input(locator='.//input[@title="Username for this credential"]')
 password = Input(locator='.//input[@title="Password for this credential"][2]')
 private_key = TextInput(
 locator='.//textarea[@title="RSA or DSA private key to be used instead of password"][2]'
)
 private_key_phrase = Input(
 locator='.//input[@title="Passphrase to unlock SSH private key if encrypted"][2]')

 @credential_form.register("Amazon")
 class CredentialFormAmazonView(View):
 access_key = Input(locator='.//input[@title="AWS Access Key for this credential"]')
 secret_key = Input(locator='.//input[@title="AWS Secret Key for this credential"][2]')
 sts_token = Input(
 locator='.//input[@title="Security Token Service(STS) Token for this credential"][2]')

 @credential_form.register("VMware")
 class CredentialFormVMwareView(View):
 username = Input(locator='.//input[@title="Username for this credential"]')
 password = Input(locator='.//input[@title="Password for this credential"][2]')
 vcenter_host = Input(
 locator='.//input[@title="The hostname or IP address of the vCenter Host"]')

 cancel_button = Button("Cancel")

[docs]class CredentialAddView(CredentialFormView):
 credential_type = BootstrapSelect("type")
 add_button = Button("Add")

 @property
 def is_displayed(self):
 return (
 self.in_ansible_credentials and
 self.title.text == "Add a new Credential"
)

[docs]class CredentialEditView(CredentialFormView):

 @ParametrizedView.nested
 class input(ParametrizedView): # noqa
 PARAMETERS = ("title",)
 field_enable = Text(ParametrizedLocator(
 ".//*[(self::input or self::textarea) and "
 "@title={title|quote}]/../../a[text()='Update']"))
 field_disable = Text(ParametrizedLocator(
 ".//*[(self::input or self::textarea) and "
 "@title={title|quote}]/../../a[text()='Cancel']"))

 def toggle(self):
 if self.field_enable.is_displayed:
 self.field_enable.click()
 elif self.field_disable.is_displayed:
 self.field_disable.click()

 credential_type = Text(locator=".//label[normalize-space(.)='Credential type']/../div")
 save_button = Button("Save")
 reset_button = Button("Reset")

 @property
 def is_displayed(self):
 return (
 self.in_ansible_credentials and
 self.title.text == 'Edit a Credential "{}"'.format(self.context["object"].name)
)

[docs] def before_fill(self, values):
 for name in self.widget_names:
 if name not in values or values[name] is None:
 continue
 widget = getattr(self, name)
 title = self.browser.get_attribute("title", widget)
 try:
 self.input(title).toggle()
 except NoSuchElementException:
 continue

[docs]class CredentialsCollection(BaseCollection):
 """Collection object for the :py:class:`Credential`."""

 def __init__(self, appliance):
 self.appliance = appliance

[docs] def instantiate(self, name, credential_type, **credentials):
 return Credential(self, name, credential_type, **credentials)

[docs] def create(self, name, credential_type, **credentials):
 add_page = navigate_to(self, "Add")
 machine_credential_fill_dict = {
 "username": credentials.get("username"),
 "password": credentials.get("password"),
 "private_key": credentials.get("private_key"),
 "private_key_phrase": credentials.get("private_key_phrase"),
 "privilage_escalation": credentials.get("privilage_escalation"),
 "privilage_escalation_username": credentials.get("privilage_escalation_username"),
 "privilage_escalation_password": credentials.get("privilage_escalation_password"),
 "vault_password": credentials.get("vault_password")
 }
 scm_credential_fill_dict = {
 "username": credentials.get("username"),
 "password": credentials.get("password"),
 "private_key": credentials.get("private_key"),
 "private_key_phrase": credentials.get("private_key_phrase")
 }
 amazon_credential_fill_dict = {
 "access_key": credentials.get("access_key"),
 "secret_key": credentials.get("secret_key"),
 "sts_token": credentials.get("sts_token"),
 }
 vmware_credential_fill_dict = {
 "username": credentials.get("username"),
 "password": credentials.get("password"),
 "vcenter_host": credentials.get("vcenter_host")
 }
 credential_type_map = {
 "Machine": machine_credential_fill_dict,
 "Scm": scm_credential_fill_dict,
 "Amazon": amazon_credential_fill_dict,
 "VMware": vmware_credential_fill_dict
 }

 add_page.fill({"name": name, "credential_type": credential_type})
 add_page.credential_form.fill(credential_type_map[credential_type])
 add_page.add_button.click()
 credentials_list_page = self.create_view(CredentialsListView)
 # Without this StaleElementReferenceException can be raised
 wait_for(lambda: False, silent_failure=True, timeout=5)
 assert credentials_list_page.is_displayed
 credentials_list_page.flash.assert_success_message(
 'Add of Credential "{}" has been successfully queued.'.format(name))

 credential = self.instantiate(name, credential_type, **credentials)

 wait_for(
 lambda: credential.exists,
 fail_func=credentials_list_page.browser.selenium.refresh,
 delay=5,
 timeout=300)

 return credential

[docs]class Credential(BaseEntity):
 """A class representing one Embedded Ansible credential in the UI."""
 def __init__(self, collection, name, credential_type, **credentials):
 self.collection = collection
 self.appliance = self.collection.appliance
 self.name = name
 self.credential_type = credential_type
 for key, value in credentials.iteritems():
 setattr(self, key, value)

[docs] def update(self, updates):
 machine_credential_fill_dict = {
 "username": updates.get("username"),
 "password": updates.get("password"),
 "private_key": updates.get("private_key"),
 "private_key_phrase": updates.get("private_key_phrase"),
 "privilage_escalation": updates.get("privilage_escalation"),
 "privilage_escalation_username": updates.get("privilage_escalation_username"),
 "privilage_escalation_password": updates.get("privilage_escalation_password"),
 "vault_password": updates.get("vault_password")
 }
 scm_credential_fill_dict = {
 "username": updates.get("username"),
 "password": updates.get("password"),
 "private_key": updates.get("private_key"),
 "private_key_phrase": updates.get("private_key_phrase")
 }
 amazon_credential_fill_dict = {
 "access_key": updates.get("access_key"),
 "secret_key": updates.get("secret_key"),
 "sts_token": updates.get("sts_token"),
 }
 vmware_credential_fill_dict = {
 "username": updates.get("username"),
 "password": updates.get("password"),
 "vcenter_host": updates.get("vcenter_host")
 }
 credential_type_map = {
 "Machine": machine_credential_fill_dict,
 "Scm": scm_credential_fill_dict,
 "Amazon": amazon_credential_fill_dict,
 "VMware": vmware_credential_fill_dict
 }
 edit_page = navigate_to(self, "Edit")
 changed = edit_page.fill({"name": updates.get("name")})
 form_changed = edit_page.credential_form.fill(credential_type_map[self.credential_type])
 if changed or form_changed:
 edit_page.save_button.click()
 else:
 edit_page.cancel_button.click()
 view = self.create_view(CredentialsListView)
 wait_for(lambda: False, silent_failure=True, timeout=5)
 assert view.is_displayed
 view.flash.assert_no_error()
 if changed or form_changed:
 view.flash.assert_message(
 'Modification of Credential "{}" has been successfully queued.'.format(
 updates.get("name", self.name)))
 else:
 view.flash.assert_message(
 'Edit of Credential "{}" was canceled by the user.'.format(self.name))

 @property
 def exists(self):
 try:
 navigate_to(self, "Details")
 return True
 except ItemNotFound:
 return False

[docs] def delete(self):
 view = navigate_to(self, "Details")
 view.configuration.item_select("Remove this Credential", handle_alert=True)
 credentials_list_page = self.create_view(CredentialsListView)
 wait_for(lambda: False, silent_failure=True, timeout=5)
 assert credentials_list_page.is_displayed
 credentials_list_page.flash.assert_success_message(
 'Deletion of Credential "{}" was successfully initiated.'.format(self.name))
 wait_for(
 lambda: not self.exists,
 delay=10,
 fail_func=credentials_list_page.browser.selenium.refresh,
 timeout=300
)

@navigator.register(Server)
[docs]class AnsibleCredentials(CFMENavigateStep):
 VIEW = CredentialsListView
 prerequisite = NavigateToSibling("LoggedIn")

[docs] def step(self):
 self.view.navigation.select("Automation", "Ansible", "Credentials")

@navigator.register(Credential)
[docs]class Details(CFMENavigateStep):
 VIEW = CredentialDetailsView
 prerequisite = NavigateToAttribute("appliance.server", "AnsibleCredentials")

[docs] def step(self):
 credentials = self.prerequisite_view.credentials
 for row in credentials:
 if row["Name"].text == self.obj.name:
 row["Name"].click()
 break
 else:
 raise ItemNotFound

@navigator.register(CredentialsCollection)
[docs]class Add(CFMENavigateStep):
 VIEW = CredentialAddView
 prerequisite = NavigateToAttribute("appliance.server", "AnsibleCredentials")

[docs] def step(self):
 self.prerequisite_view.configuration.item_select("Add New Credential")

@navigator.register(Credential)
[docs]class Edit(CFMENavigateStep):
 VIEW = CredentialEditView
 prerequisite = NavigateToSibling("Details")

[docs] def step(self):
 self.prerequisite_view.configuration.item_select("Edit this Credential")

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/ansible/repositories.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.ansible.repositories

-*- coding: utf-8 -*-
"""Page model for Automation/Ansible/Repositories"""
from navmazing import NavigateToAttribute, NavigateToSibling
from widgetastic.widget import Text, Checkbox
from widgetastic.exceptions import NoSuchElementException
from widgetastic_patternfly import Dropdown, Button, Input, FlashMessages
from widgetastic_manageiq import Table, PaginationPane

from cfme.base import Server
from cfme.base.login import BaseLoggedInPage
from cfme.exceptions import ItemNotFound
from cfme.utils.appliance import BaseCollection, BaseEntity
from cfme.utils.appliance.implementations.ui import navigator, navigate_to, CFMENavigateStep
from cfme.utils.wait import wait_for
from .playbooks import PlaybooksCollection

[docs]class RepositoryBaseView(BaseLoggedInPage):
 flash = FlashMessages('.//div[starts-with(@class, "flash_text_div") or @id="flash_text_div"]')
 title = Text(locator='.//div[@id="main-content"]//h1')

 @property
 def in_ansible_repositories(self):
 return (
 self.logged_in_as_current_user and
 self.navigation.currently_selected == ["Automation", "Ansible", "Repositories"]
)

[docs]class RepositoryAllView(RepositoryBaseView):
 configuration = Dropdown("Configuration")
 entities = Table(".//div[@id='list_grid']/table")
 paginator = PaginationPane()

 @property
 def is_displayed(self):
 return self.in_ansible_repositories and self.title.text == "Repositories"

[docs]class RepositoryDetailsView(RepositoryBaseView):
 configuration = Dropdown("Configuration")
 download = Button(title="Download summary in PDF format")

 @property
 def is_displayed(self):
 return (
 self.in_ansible_repositories and
 self.title.text == "{} (Summary)".format(self.context["object"].name)
)

[docs]class RepositoryFormView(RepositoryBaseView):
 name = Input(name="name")
 description = Input(name="description")
 url = Input(name="scm_url")
 scm_credentials = Dropdown("Select credentials")
 scm_branch = Input(name="scm_branch")
 # SCM Update Options
 clean = Checkbox(name="clean")
 delete_on_update = Checkbox(name="scm_delete_on_update")
 update_on_launch = Checkbox(name="scm_update_on_launch")

 cancel_button = Button("Cancel")

[docs]class RepositoryAddView(RepositoryFormView):
 add_button = Button("Add")

 @property
 def is_displayed(self):
 return (
 self.in_ansible_repositories and
 self.title.text == "Add new Repository"
)

[docs]class RepositoryEditView(RepositoryFormView):
 save_button = Button("Save")
 reset_button = Button("Reset")

 @property
 def is_displayed(self):
 return (
 self.in_ansible_repositories and
 self.title.text == 'Edit Repository "{}"'.format(self.context["object"].name)
)

[docs]class RepositoryCollection(BaseCollection):
 """Collection object for the :py:class:`cfme.ansible.repositories.Repository`."""

 def __init__(self, appliance):
 self.appliance = appliance

[docs] def instantiate(self, name, url, description=None, scm_credentials=None,
 scm_branch=None, clean=None, delete_on_update=None, update_on_launch=None):
 return Repository(
 self,
 name,
 url,
 description=description,
 scm_credentials=scm_credentials,
 scm_branch=scm_branch,
 clean=clean,
 delete_on_update=delete_on_update,
 update_on_launch=update_on_launch)

[docs] def create(self, name, url, description=None, scm_credentials=None, scm_branch=None,
 clean=None, delete_on_update=None, update_on_launch=None):
 """Add an ansible repository in the UI and return a Repository object.

 Args:
 name (str): name of the repository
 url (str): url of the repository
 description (str): description of the repository
 scm_credentials (str): credentials of the repository
 scm_branch (str): branch name
 clean (bool): clean
 delete_on_update (bool): delete the repo at each update
 update_on_launch (bool): update the repo at each launch

 Returns: an instance of :py:class:`cfme.ansible.repositories.Repository`
 """
 add_page = navigate_to(self, "Add")
 fill_dict = {
 "name": name,
 "description": description,
 "url": url,
 "scm_credentials": scm_credentials,
 "scm_branch": scm_branch,
 "clean": clean,
 "delete_on_update": delete_on_update,
 "update_on_launch": update_on_launch
 }
 add_page.fill(fill_dict)
 add_page.add_button.click()
 repo_list_page = self.create_view(RepositoryAllView)
 assert repo_list_page.is_displayed
 repo_list_page.flash.assert_no_error()
 repo_list_page.flash.assert_message(
 'Add of Repository "{}" was successfully initialized.'.format(name))

 repository = self.instantiate(
 name,
 url,
 description=description,
 scm_credentials=scm_credentials,
 scm_branch=scm_branch,
 clean=clean,
 delete_on_update=delete_on_update,
 update_on_launch=update_on_launch)

 wait_for(lambda: repository.exists,
 fail_func=repo_list_page.browser.selenium.refresh,
 delay=5,
 timeout=900)

 return repository

[docs] def all(self):
 """Return all repositories of the appliance.

 Returns: a :py:class:`list` of :py:class:`cfme.ansible.repositories.Repository` instances
 """
 table = self.appliance.db.client["configuration_script_sources"]
 result = []
 for row in self.appliance.db.client.session.query(table):
 result.append(
 self.instantiate(
 row.name,
 row.scm_url,
 description=row.description,
 scm_branch=row.scm_branch,
 clean=row.scm_clean,
 delete_on_update=row.scm_delete_on_update,
 update_on_launch=row.scm_update_on_launch)
)
 return result

[docs] def delete(self, *repositories):
 """Delete one or more ansible repositories in the UI.

 Args:
 repositories: a list of :py:class:`cfme.ansible.repositories.Repository`
 instances to delete

 Raises:
 ValueError: if some of the repositories were not found in the UI
 """
 repositories = list(repositories)
 checked_repositories = []
 view = navigate_to(Server, "AnsibleRepositories")
 view.paginator.uncheck_all()
 if not view.entities.is_displayed:
 raise ValueError("No repository found!")
 for row in view.entities:
 for repository in repositories:
 if repository.name == row.name.text:
 checked_repositories.append(repository)
 row[0].check()
 break
 if set(repositories) == set(checked_repositories):
 break
 if set(repositories) != set(checked_repositories):
 raise ValueError("Some of the repositories were not found in the UI.")
 view.configuration.item_select("Remove selected Repositories", handle_alert=True)
 view.flash.assert_no_error()
 for repository in checked_repositories:
 view.flash.assert_message(
 'Delete of Repository "{}" was successfully initiated.'.format(repository.name))

[docs]class Repository(BaseEntity):
 """A class representing one Embedded Ansible repository in the UI."""

 def __init__(self, collection, name, url, description=None, scm_credentials=None,
 scm_branch=None, clean=None, delete_on_update=None, update_on_launch=None):
 self.name = name
 self.url = url
 self.collection = collection
 self.appliance = self.collection.appliance
 self.description = description or ""
 self.scm_credentials = scm_credentials
 self.scm_branch = scm_branch or ""
 self.clean = clean or False
 self.delete_on_update = delete_on_update or False
 self.update_on_launch = update_on_launch or False

 @property
 def db_object(self):
 table = self.appliance.db.client["configuration_script_sources"]
 return self.appliance.db.client.sessionmaker(autocommit=True).query(table).filter(
 table.name == self.name).first()

[docs] def update(self, updates):
 """Update the repository in the UI.

 Args:
 updates (dict): :py:class:`dict` of the updates.
 """
 original_updated_at = self.db_object.updated_at
 view = navigate_to(self, "Edit")
 changed = view.fill(updates)
 if changed:
 view.save_button.click()
 else:
 view.cancel_button.click()
 view = self.create_view(RepositoryAllView)
 assert view.is_displayed
 view.flash.assert_no_error()
 if changed:
 view.flash.assert_message(
 'Edit of Repository "{}" was successfully initialized.'.format(
 updates.get("name", self.name)))

 def _wait_until_changes_applied():
 changed_updated_at = self.db_object.updated_at
 return not original_updated_at == changed_updated_at

 wait_for(_wait_until_changes_applied, delay=10, timeout="5m")
 else:
 view.flash.assert_message(
 'Edit of Repository "{}" cancelled by the user.'.format(self.name))

 @property
 def exists(self):
 try:
 navigate_to(self, "Details")
 return True
 except ItemNotFound:
 return False

[docs] def delete(self):
 """Delete the repository in the UI."""
 view = navigate_to(self, "Details")
 view.configuration.item_select("Remove this Repository", handle_alert=True)
 repo_list_page = self.create_view(RepositoryAllView)
 assert repo_list_page.is_displayed
 repo_list_page.flash.assert_no_error()
 repo_list_page.flash.assert_message(
 'Delete of Repository "{}" was successfully initiated.'.format(self.name))
 wait_for(lambda: not self.exists, delay=10,
 fail_func=repo_list_page.browser.selenium.refresh)

[docs] def refresh(self):
 """Perform a refresh to update the repository."""
 view = navigate_to(self, "Details")
 view.configuration.item_select("Refresh this Repository", handle_alert=True)
 view.flash.assert_no_error()
 view.flash.assert_message("Embedded Ansible refresh has been successfully initiated")

 @property
 def playbooks(self):
 return PlaybooksCollection(self)

@navigator.register(RepositoryCollection, 'All')
[docs]class AnsibleRepositories(CFMENavigateStep):
 VIEW = RepositoryAllView
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self):
 self.view.navigation.select("Automation", "Ansible", "Repositories")

@navigator.register(Repository, 'Details')
[docs]class Details(CFMENavigateStep):
 VIEW = RepositoryDetailsView
 prerequisite = NavigateToAttribute('collection', 'All')

[docs] def step(self):
 try:
 row = self.prerequisite_view.paginator.find_row_on_pages(
 table=self.prerequisite_view.entities,
 name=self.obj.name)
 row.click()
 except NoSuchElementException:
 raise ItemNotFound('Could not locate ansible repository table row with name {}'
 .format(self.obj.name))

@navigator.register(RepositoryCollection, 'Add')
[docs]class Add(CFMENavigateStep):
 VIEW = RepositoryAddView
 prerequisite = NavigateToSibling("All")

[docs] def step(self):
 self.prerequisite_view.configuration.item_select("Add New Repository")

@navigator.register(Repository, 'Edit')
[docs]class Edit(CFMENavigateStep):
 VIEW = RepositoryEditView
 prerequisite = NavigateToSibling("Details")

[docs] def step(self):
 self.prerequisite_view.configuration.item_select("Edit this Repository")

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/common/provider.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.common »

 Source code for cfme.common.provider

import datetime
from collections import Iterable

from manageiq_client.api import APIException
from widgetastic.widget import View, Text
from widgetastic_patternfly import Input, Button

from cfme.base.credential import (
 Credential, EventsCredential, TokenCredential, SSHCredential, CANDUCredential)
from cfme.common import WidgetasticTaggable
from cfme.exceptions import (
 ProviderHasNoKey, HostStatsNotContains, ProviderHasNoProperty, ItemNotFound)
from cfme.utils import ParamClassName, version, conf
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import navigate_to, navigator
from cfme.utils.blockers import BZ
from cfme.utils.log import logger
from cfme.utils.net import resolve_hostname
from cfme.utils.stats import tol_check
from cfme.utils.update import Updateable
from cfme.utils.varmeth import variable
from cfme.utils.wait import wait_for, RefreshTimer
from . import PolicyProfileAssignable, Taggable, SummaryMixin

[docs]def base_types():
 from pkg_resources import iter_entry_points
 return {ep.name: ep.resolve() for ep in iter_entry_points('manageiq.provider_categories')}

[docs]def provider_types(category):
 from pkg_resources import iter_entry_points
 return {
 ep.name: ep.resolve() for ep in iter_entry_points(
 'manageiq.provider_types.{}'.format(category))
 }

[docs]def all_types():
 all_types = base_types()
 for category in all_types.keys():
 all_types.update(provider_types(category))
 return all_types

[docs]class BaseProvider(Taggable, Updateable, SummaryMixin, Navigatable):
 # List of constants that every non-abstract subclass must have defined
 _param_name = ParamClassName('name')
 STATS_TO_MATCH = []
 db_types = ["Providers"]

 def __hash__(self):
 return hash(self.key) ^ hash(type(self))

 def __eq__(self, other):
 return type(self) is type(other) and self.key == other.key

 @property
 def data(self):
 return self.get_yaml_data()

 @property
 def mgmt(self):
 return self.get_mgmt_system()

 @property
 def type(self):
 return self.type_name

 @property
 def id(self):
 """"
 Return the ID associated with the specified provider name
 """
 return self.appliance.rest_api.collections.providers.find_by(name=self.name)[0].id

 @property
 def version(self):
 return self.data['version']

[docs] def deployment_helper(self, deploy_args):
 """ Used in utils.virtual_machines and usually overidden"""
 return {}

 @property
 def default_endpoint(self):
 return self.endpoints.get('default') if hasattr(self, 'endpoints') else None

[docs] def get_yaml_data(self):
 """ Returns yaml data for this provider.
 """
 if hasattr(self, 'provider_data') and self.provider_data is not None:
 return self.provider_data
 elif self.key is not None:
 return conf.cfme_data['management_systems'][self.key]
 else:
 raise ProviderHasNoKey(
 'Provider {} has no key, so cannot get yaml data'.format(self.name))

[docs] def get_mgmt_system(self):
 """ Returns the mgmt_system using the :py:func:`utils.providers.get_mgmt` method.
 """
 # gotta stash this in here to prevent circular imports
 from cfme.utils.providers import get_mgmt

 if self.key:
 return get_mgmt(self.key)
 elif getattr(self, 'provider_data', None):
 return get_mgmt(self.provider_data)
 else:
 raise ProviderHasNoKey(
 'Provider {} has no key, so cannot get mgmt system'.format(self.name))

[docs] def create(self, cancel=False, validate_credentials=True, check_existing=False,
 validate_inventory=False):
 """
 Creates a provider in the UI

 Args:
 cancel (boolean): Whether to cancel out of the creation. The cancel is done
 after all the information present in the Provider has been filled in the UI.
 validate_credentials (boolean): Whether to validate credentials - if True and the
 credentials are invalid, an error will be raised.
 check_existing (boolean): Check if this provider already exists, skip if it does
 validate_inventory (boolean): Whether or not to block until the provider stats in CFME
 match the stats gleaned from the backend management system
 (default: ``True``)

 Returns:
 True if it was created, False if it already existed
 """
 if check_existing and self.exists:
 created = False
 else:
 created = True

 logger.info('Setting up Infra Provider: %s', self.key)
 add_view = navigate_to(self, 'Add')

 if not cancel or (cancel and any(self.view_value_mapping.values())):
 # filling main part of dialog
 add_view.fill(self.view_value_mapping)

 if not cancel or (cancel and self.endpoints):
 # filling endpoints
 for endpoint_name, endpoint in self.endpoints.items():
 try:
 # every endpoint class has name like 'default', 'events', etc.
 # endpoints view can have multiple tabs, the code below tries
 # to find right tab by passing endpoint name to endpoints view
 endp_view = getattr(self.endpoints_form(parent=add_view),
 endpoint_name)
 except AttributeError:
 # tabs are absent in UI when there is only single (default) endpoint
 endp_view = self.endpoints_form(parent=add_view)

 endp_view.fill(endpoint.view_value_mapping)

 # filling credentials
 if hasattr(endpoint, 'credentials'):
 endp_view.fill(endpoint.credentials.view_value_mapping)
 # sometimes we have cases that we need to validate even though
 # there is no credentials, such as Hawkular endpoint
 if (validate_credentials and hasattr(endp_view, 'validate') and
 endp_view.validate.is_displayed):
 # there are some endpoints which don't demand validation like
 # RSA key pair
 endp_view.validate.click()
 # Flash message widget is in add_view, not in endpoints tab
 logger.info(
 'Validating credentials flash message for endpoint %s',
 endpoint_name)
 add_view.flash.assert_no_error()
 add_view.flash.assert_success_message(
 'Credential validation was successful')

 main_view = self.create_view(navigator.get_class(self, 'All').VIEW)
 if cancel:
 created = False
 add_view.cancel.click()
 cancel_text = ('Add of {} Provider was '
 'cancelled by the user'.format(self.string_name))

 main_view.entities.flash.assert_message(cancel_text)
 main_view.entities.flash.assert_no_error()
 else:
 add_view.add.click()
 if main_view.is_displayed:
 success_text = '{} Providers "{}" was saved'.format(self.string_name,
 self.name)
 main_view.entities.flash.assert_message(success_text)
 else:
 add_view.flash.assert_no_error()
 raise AssertionError("Provider wasn't added. It seems form isn't accurately"
 " filled")

 if validate_inventory:
 self.validate()

 return created

[docs] def create_rest(self):

 logger.info('Setting up provider: %s via rest', self.key)
 try:
 self.appliance.rest_api.collections.providers.action.create(
 hostname=self.hostname,
 ipaddress=self.ip_address,
 name=self.name,
 type="ManageIQ::Providers::{}".format(self.db_types[0]),
 credentials={'userid': self.endpoints['default'].credentials.principal,
 'password': self.endpoints['default'].credentials.secret})

 return self.appliance.rest_api.response.status_code == 200
 except APIException:
 return None

[docs] def update(self, updates, cancel=False, validate_credentials=True):
 """
 Updates a provider in the UI. Better to use utils.update.update context
 manager than call this directly.

 Args:
 updates (dict): fields that are changing.
 cancel (boolean): whether to cancel out of the update.
 validate_credentials (boolean): whether credentials have to be validated
 """
 edit_view = navigate_to(self, 'Edit')
 # todo: to replace/merge this code with create
 # update values:
 # filling main part of dialog
 endpoints = updates.pop('endpoints', None)
 if updates:
 edit_view.fill(updates)

 # filling endpoints
 if endpoints:
 endpoints = self._prepare_endpoints(endpoints)

 for endpoint in endpoints.values():
 # every endpoint class has name like 'default', 'events', etc.
 # endpoints view can have multiple tabs, the code below tries
 # to find right tab by passing endpoint name to endpoints view
 try:
 endp_view = getattr(self.endpoints_form(parent=edit_view), endpoint.name)
 except AttributeError:
 # tabs are absent in UI when there is only single (default) endpoint
 endp_view = self.endpoints_form(parent=edit_view)
 endp_view.fill(endpoint.view_value_mapping)

 # filling credentials
 # the code below looks for existing endpoint equal to passed one and
 # compares their credentials. it fills passed credentials
 # if credentials are different
 cur_endpoint = self.endpoints[endpoint.name]
 if hasattr(endpoint, 'credentials'):
 if not hasattr(cur_endpoint, 'credentials') or \
 endpoint.credentials != cur_endpoint.credentials:
 if hasattr(endp_view, 'change_password'):
 endp_view.change_password.click()
 elif hasattr(endp_view, 'change_key'):
 endp_view.change_key.click()
 else:
 NotImplementedError(
 "Such endpoint doesn't have change password/key button")

 endp_view.fill(endpoint.credentials.view_value_mapping)
 # sometimes we have cases that we need to validate even though
 # there is no credentials, such as Hawkular endpoint
 if (validate_credentials and hasattr(endp_view, 'validate') and
 endp_view.validate.is_displayed):
 endp_view.validate.click()

 # cloud rhos provider always requires validation of all endpoints
 # there should be a bz about that
 from cfme.cloud.provider.openstack import OpenStackProvider
 if self.one_of(OpenStackProvider):
 for endp in self.endpoints.values():
 endp_view = getattr(self.endpoints_form(parent=edit_view), endp.name)
 if hasattr(endp_view, 'validate') and endp_view.validate.is_displayed:
 endp_view.validate.click()

 details_view = self.create_view(navigator.get_class(self, 'Details').VIEW)
 main_view = self.create_view(navigator.get_class(self, 'All').VIEW)

 if cancel:
 edit_view.cancel.click()
 cancel_text = 'Edit of {type} Provider "{name}" ' \
 'was cancelled by the user'.format(type=self.string_name,
 name=self.name)
 main_view.entities.flash.assert_message(cancel_text)
 main_view.entities.flash.assert_no_error()
 else:
 edit_view.save.click()
 if endpoints:
 for endp_name, endp in endpoints.items():
 self.endpoints[endp_name] = endp
 if updates:
 self.name = updates.get('name', self.name)

 if BZ.bugzilla.get_bug(1436341).is_opened and version.current_version() > '5.8':
 logger.warning('Skipping flash message verification because of BZ 1436341')
 return

 success_text = '{} Provider "{}" was saved'.format(self.string_name, self.name)
 if main_view.is_displayed:
 # since 5.8.1 main view is displayed when edit starts from main view
 main_view.flash.assert_message(success_text)
 elif details_view.is_displayed:
 # details view is always displayed up to 5.8.1
 details_view.flash.assert_message(success_text)
 else:
 edit_view.flash.assert_no_error()
 raise AssertionError("Provider wasn't updated. It seems form isn't accurately"
 " filled")

[docs] def delete(self, cancel=True):
 """
 Deletes a provider from CFME

 Args:
 cancel: Whether to cancel the deletion, defaults to True
 """
 view = navigate_to(self, 'Details')
 view.toolbar.configuration.item_select('Remove this {} Provider'.format(self.string_name),
 handle_alert=not cancel)
 if not cancel:
 msg = ('Delete initiated for 1 {} Provider from '
 'the {} Database'.format(self.string_name, self.appliance.product_name))
 view.flash.assert_success_message(msg)

[docs] def setup(self, rest=False):
 """
 Sets up the provider robustly
 """
 return self.create(
 cancel=False, validate_credentials=True, check_existing=True, validate_inventory=True)

[docs] def delete_if_exists(self, *args, **kwargs):
 """Combines ``.exists`` and ``.delete()`` as a shortcut for ``request.addfinalizer``

 Returns: True if provider existed and delete was initiated, False otherwise
 """
 if self.exists:
 self.delete(*args, **kwargs)
 return True
 return False

 @variable(alias='rest')
 def is_refreshed(self, refresh_timer=None, refresh_delta=600):
 if refresh_timer:
 if refresh_timer.is_it_time():
 logger.info(' Time for a refresh!')
 self.refresh_provider_relationships()
 refresh_timer.reset()
 rdate = self.last_refresh_date()
 if not rdate:
 return False
 td = self.appliance.utc_time() - rdate
 if td > datetime.timedelta(0, refresh_delta):
 self.refresh_provider_relationships()
 return False
 else:
 return True

[docs] def validate(self):
 refresh_timer = RefreshTimer(time_for_refresh=300)
 try:
 wait_for(self.is_refreshed,
 [refresh_timer],
 message="is_refreshed",
 num_sec=1000,
 delay=60,
 handle_exception=True)
 except Exception:
 # To see the possible error.
 self.load_details(refresh=True)
 raise

[docs] def validate_stats(self, ui=False):
 """ Validates that the detail page matches the Providers information.

 This method logs into the provider using the mgmt_system interface and collects
 a set of statistics to be matched against the UI. The details page is then refreshed
 continuously until the matching of all items is complete. A error will be raised
 if the match is not complete within a certain defined time period.
 """

 # If we're not using db, make sure we are on the provider detail page
 if ui:
 self.load_details()

 # Initial bullet check
 if self._do_stats_match(self.mgmt, self.STATS_TO_MATCH, ui=ui):
 self.mgmt.disconnect()
 return
 else:
 # Set off a Refresh Relationships
 method = 'ui' if ui else None
 self.refresh_provider_relationships(method=method)

 refresh_timer = RefreshTimer(time_for_refresh=300)
 wait_for(self._do_stats_match,
 [self.mgmt, self.STATS_TO_MATCH, refresh_timer],
 {'ui': ui},
 message="do_stats_match_db",
 num_sec=1000,
 delay=60)

 self.mgmt.disconnect()

 @variable(alias='rest')
 def refresh_provider_relationships(self, from_list_view=False):
 # from_list_view is ignored as it is included here for sake of compatibility with UI call.
 logger.debug('Refreshing provider relationships')
 col = self.appliance.rest_api.collections.providers.find_by(name=self.name)
 try:
 col[0].action.refresh()
 except IndexError:
 raise Exception("Provider collection empty")

 @refresh_provider_relationships.variant('ui')
 def refresh_provider_relationships_ui(self, from_list_view=False):
 """Clicks on Refresh relationships button in provider"""
 if from_list_view:
 view = navigate_to(self, 'All')
 entity = view.entities.get_entity(self.name, surf_pages=True)
 entity.check()

 else:
 view = navigate_to(self, 'Details')

 view.toolbar.configuration.item_select(self.refresh_text, handle_alert=True)

 @variable(alias='rest')
 def last_refresh_date(self):
 try:
 col = self.appliance.rest_api.collections.providers.find_by(name=self.name)[0]
 return col.last_refresh_date
 except AttributeError:
 return None

 def _num_db_generic(self, table_str):
 """ Fetch number of rows related to this provider in a given table

 Args:
 table_str: Name of the table; e.g. 'vms' or 'hosts'
 """
 res = self.appliance.db.client.engine.execute(
 "SELECT count(*) "
 "FROM ext_management_systems, {0} "
 "WHERE {0}.ems_id=ext_management_systems.id "
 "AND ext_management_systems.name='{1}'".format(table_str, self.name))
 return int(res.first()[0])

 def _do_stats_match(self, client, stats_to_match=None, refresh_timer=None, ui=False):
 """ A private function to match a set of statistics, with a Provider.

 This function checks if the list of stats match, if not, the page is refreshed.

 Note: Provider mgmt_system uses the same key names as this Provider class to avoid
 having to map keyname/attributes e.g. ``num_template``, ``num_vm``.

 Args:
 client: A provider mgmt_system instance.
 stats_to_match: A list of key/attribute names to match.

 Raises:
 KeyError: If the host stats does not contain the specified key.
 ProviderHasNoProperty: If the provider does not have the property defined.
 """
 host_stats = client.stats(*stats_to_match)
 method = None
 if ui:
 self.browser.selenium.refresh()
 method = 'ui'

 if refresh_timer:
 if refresh_timer.is_it_time():
 logger.info(' Time for a refresh!')
 self.refresh_provider_relationships()
 refresh_timer.reset()

 for stat in stats_to_match:
 try:
 cfme_stat = getattr(self, stat)(method=method)
 success, value = tol_check(host_stats[stat],
 cfme_stat,
 min_error=0.05,
 low_val_correction=2)
 logger.info(' Matching stat [%s], Host(%s), CFME(%s), '
 'with tolerance %s is %s', stat, host_stats[stat], cfme_stat, value, success)
 if not success:
 return False
 except KeyError:
 raise HostStatsNotContains(
 "Host stats information does not contain '{}'".format(stat))
 except AttributeError:
 raise ProviderHasNoProperty("Provider does not know how to get '{}'".format(stat))
 else:
 return True

 @property
 def exists(self):
 """ Returns ``True`` if a provider of the same name exists on the appliance
 """
 if self.name in self.appliance.managed_provider_names:
 return True
 return False

[docs] def wait_for_delete(self):
 view = navigate_to(self, 'All')

 def is_entity_present():
 try:
 view.entities.get_entity(self.name, surf_pages=True)
 return True
 except ItemNotFound:
 return False

 logger.info('Waiting for a provider to delete...')
 wait_for(is_entity_present, fail_condition=True,
 message="Wait provider to disappear", num_sec=1000,
 fail_func=self.browser.selenium.refresh)

[docs] def load_details(self, refresh=False):
 """To be compatible with the Taggable and PolicyProfileAssignable mixins.

 Returns: ProviderDetails view
 """
 view = navigate_to(self, 'Details')
 if refresh:
 view.toolbar.reload.click()
 return view

[docs] def get_detail(self, *ident):
 """ Gets details from the details infoblock

 The function first ensures that we are on the detail page for the specific provider.

 Args:
 *ident: An SummaryTable title, followed by the Key name, e.g. "Relationships", "Images"

 Returns: A string representing the contents of passed field value.
 """
 view = self.load_details()
 block, field = ident
 return getattr(view.contents, block.lower()).get_text_of(field)

 @classmethod
[docs] def get_credentials(cls, credential_dict, cred_type=None):
 """Processes a credential dictionary into a credential object.

 Args:
 credential_dict: A credential dictionary.
 cred_type: Type of credential (None, token, ssh, amqp, ...)

 Returns:
 A :py:class:`cfme.base.credential.Credential` instance.
 """
 domain = credential_dict.get('domain')
 token = credential_dict.get('token')
 if not cred_type:
 return Credential(principal=credential_dict['username'],
 secret=credential_dict['password'],
 domain=domain)
 elif cred_type == 'amqp':
 return EventsCredential(principal=credential_dict['username'],
 secret=credential_dict['password'])

 elif cred_type == 'ssh':
 return SSHCredential(principal=credential_dict['username'],
 secret=credential_dict['password'])
 elif cred_type == 'candu':
 return CANDUCredential(principal=credential_dict['username'],
 secret=credential_dict['password'])
 elif cred_type == 'token':
 return TokenCredential(token=token)

 @classmethod
[docs] def get_credentials_from_config(cls, credential_config_name, cred_type=None):
 """Retrieves the credential by its name from the credentials yaml.

 Args:
 credential_config_name: The name of the credential in the credentials yaml.
 cred_type: Type of credential (None, token, ssh, amqp, ...)

 Returns:
 A :py:class:`cfme.base.credential.Credential` instance.
 """
 creds = conf.credentials[credential_config_name]
 return cls.get_credentials(creds, cred_type=cred_type)

 @classmethod
[docs] def process_credential_yaml_key(cls, cred_yaml_key, cred_type=None):
 """Function that detects if it needs to look up credentials in the credential yaml and acts
 as expected.

 If you pass a dictionary, it assumes it does not need to look up in the credentials yaml
 file.
 If anything else is passed, it continues with looking up the credentials in the yaml file.

 Args:
 cred_yaml_key: Either a string pointing to the credentials.yaml or a dictionary which is
 considered as the credentials.

 Returns:
 :py:class:`cfme.base.credential.Credential` instance
 """
 if isinstance(cred_yaml_key, dict):
 return cls.get_credentials(cred_yaml_key, cred_type=cred_type)
 else:
 return cls.get_credentials_from_config(cred_yaml_key, cred_type=cred_type)

 # Move to collection
 @classmethod
[docs] def clear_providers(cls):
 """ Clear all providers of given class on the appliance """
 from cfme.utils.appliance import current_appliance as app
 app.rest_api.collections.providers.reload()
 for prov in app.rest_api.collections.providers.all:
 try:
 if any([True for db_type in cls.db_types if db_type in prov.type]):
 logger.info('Deleting provider: %s', prov.name)
 prov.action.delete()
 prov.wait_not_exists()
 except APIException as ex:
 # Provider is already gone (usually caused by NetworkManager objs)
 if 'RecordNotFound' not in str(ex):
 raise ex
 app.rest_api.collections.providers.reload()

[docs] def one_of(self, *classes):
 """ Returns true if provider is an instance of any of the classes or sublasses there of"""
 return isinstance(self, classes)

 @staticmethod
 def _prepare_endpoints(endpoints):
 if not endpoints:
 return {}
 elif isinstance(endpoints, dict):
 return endpoints
 elif isinstance(endpoints, Iterable):
 return {(e.name, e) for e in endpoints}
 elif isinstance(endpoints, DefaultEndpoint):
 return {endpoints.name: endpoints}
 else:
 raise ValueError("Endpoints should be either dict or endpoint class")

 # These methods need to be overridden in the provider specific classes
[docs] def get_console_connection_status(self):
 raise NotImplementedError("This method is not implemented for given provider")

[docs] def get_remote_console_canvas(self):
 raise NotImplementedError("This method is not implemented for given provider")

[docs] def get_console_ctrl_alt_del_btn(self):
 raise NotImplementedError("This method is not implemented for given provider")

[docs] def get_console_fullscreen_btn(self):
 raise NotImplementedError("This method is not implemented for given provider")

[docs] def get_all_provider_ids(self):
 """
 Returns an integer list of provider ID's via the REST API
 """
 # TODO: Move to ProviderCollection
 logger.debug('Retrieving the list of provider ids')

 provider_ids = []
 try:
 for prov in self.appliance.rest_api.collections.providers.all:
 provider_ids.append(prov.id)
 except APIException:
 return None

 return provider_ids

[docs] def get_all_vm_ids(self):
 """
 Returns an integer list of vm ID's via the REST API
 """
 # TODO: Move to VMCollection or BaseVMCollection
 logger.debug('Retrieving the list of vm ids')

 vm_ids = []
 try:
 for vm in self.appliance.rest_api.collections.vms.all:
 vm_ids.append(vm.id)
 except APIException:
 return None

 return vm_ids

[docs] def get_all_host_ids(self):
 """
 Returns an integer list of host ID's via the Rest API
 """
 # TODO: Move to HostCollection
 logger.debug('Retrieving the list of host ids')

 host_ids = []
 try:
 for host in self.appliance.rest_api.collections.hosts.all:
 host_ids.append(host.id)
 except APIException:
 return None
 return host_ids

[docs] def get_all_template_ids(self):
 """Returns an integer list of template ID's via the Rest API"""
 # TODO: Move to TemplateCollection
 logger.debug('Retrieving the list of template ids')

 template_ids = []
 try:
 for template in self.appliance.rest_api.collections.templates.all:
 template_ids.append(template.id)
 except APIException:
 return None
 return template_ids

[docs] def get_provider_details(self, provider_id):
 """Returns the name, and type associated with the provider_id"""
 # TODO: Move to ProviderCollection.find
 logger.debug('Retrieving the provider details for ID: {}'.format(provider_id))

 details = {}
 try:
 prov = self.appliance.rest_api.collections.providers.get(id=provider_id)
 except APIException:
 return None
 details['id'] = prov.id
 details['name'] = prov.name
 details['type'] = prov.type

 return details

[docs] def get_vm_details(self, vm_id):
 """
 Returns the name, type, vendor, host_id, and power_state associated with
 the vm_id.
 """
 # TODO: Move to VMCollection.find
 logger.debug('Retrieving the VM details for ID: {}'.format(vm_id))

 details = {}
 try:
 vm = self.appliance.rest_api.collections.vms.get(id=vm_id)
 except APIException:
 return None

 details['id'] = vm.id
 details['ems_id'] = vm.ems_id
 details['name'] = vm.name
 details['type'] = vm.type
 details['vendor'] = vm.vendore
 details['host_id'] = vm.host_id
 details['power_state'] = vm.power_state
 return details

[docs] def get_template_details(self, template_id):
 """
 Returns the name, type, and guid associated with the template_id
 """
 # TODO: Move to TemplateCollection.find
 logger.debug('Retrieving the template details for ID: {}'
 .format(template_id))

 template_details = {}
 try:
 template = self.appliance.rest_api.collections.templates.get(id=template_id)
 except APIException:
 return None

 template_details['name'] = template.name
 template_details['type'] = template.type
 template_details['guid'] = template.guid
 return template_details

[docs] def get_all_template_details(self):
 """
 Returns a dictionary mapping template ids to their name, type, and guid
 """
 # TODO: Move to TemplateCollection.all
 all_details = {}
 for id in self.get_all_template_ids():
 all_details[id] = self.get_template_details(id)
 return all_details

[docs] def get_vm_id(self, vm_name):
 """
 Return the ID associated with the specified VM name
 """
 # TODO: Get Provider object from VMCollection.find, then use VM.id to get the id
 logger.debug('Retrieving the ID for VM: {}'.format(vm_name))
 for vm_id in self.get_all_vm_ids():
 details = self.get_vm_details(vm_id)
 if details['name'] == vm_name:
 return vm_id

[docs] def get_vm_ids(self, vm_names):
 """
 Returns a dictionary mapping each VM name to it's id
 """
 # TODO: Move to VMCollection.find or VMCollection.all
 name_list = vm_names[:]
 logger.debug('Retrieving the IDs for {} VM(s)'.format(len(name_list)))
 id_map = {}
 for vm_id in self.get_all_vm_ids():
 if not name_list:
 break
 vm_name = self.get_vm_details(vm_id)['name']
 if vm_name in name_list:
 id_map[vm_name] = vm_id
 name_list.remove(vm_name)
 return id_map

[docs] def get_template_guids(self, template_dict):
 """
 Returns a list of tuples. The inner tuples are formated so that each guid
 is in index 0, and its provider's name is in index 1. Expects a dictionary
 mapping a provider to its templates
 """
 # TODO: Move to TemplateCollection
 result_list = []
 all_template_details = self.get_all_template_details()
 for provider, templates in template_dict.iteritems():
 for template_name in templates:
 inner_tuple = ()
 for id in all_template_details:
 if ((all_template_details[id]['name'] == template_name) and
 (self.db_types[0] in all_template_details[id]['type'])):
 inner_tuple += (all_template_details[id]['guid'],)
 inner_tuple += (provider,)
 result_list.append(inner_tuple)
 return result_list

[docs]class CloudInfraProvider(BaseProvider, PolicyProfileAssignable, WidgetasticTaggable):
 vm_name = ""
 template_name = ""
 detail_page_suffix = 'provider'
 edit_page_suffix = 'provider_edit'
 refresh_text = "Refresh Relationships and Power States"
 db_types = ["CloudManager", "InfraManager"]

 @property
 def hostname(self):
 return getattr(self.default_endpoint, "hostname", None)

 @hostname.setter
 def hostname(self, value):
 if self.default_endpoint:
 if value:
 self.default_endpoint.hostname = value
 else:
 logger.warn("can't set hostname because default endpoint is absent")

 @property
 def ip_address(self):
 return getattr(self.default_endpoint, "ipaddress", resolve_hostname(str(self.hostname)))

 @ip_address.setter
 def ip_address(self, value):
 if self.default_endpoint:
 if value:
 self.default_endpoint.ipaddress = value
 else:
 logger.warn("can't set ipaddress because default endpoint is absent")

 @variable(alias="db")
 def num_template(self):
 """ Returns the providers number of templates, as shown on the Details page."""
 ext_management_systems = self.appliance.db.client["ext_management_systems"]
 vms = self.appliance.db.client["vms"]
 temlist = list(self.appliance.db.client.session.query(vms.name)
 .join(ext_management_systems, vms.ems_id == ext_management_systems.id)
 .filter(ext_management_systems.name == self.name)
 .filter(vms.template == True)) # NOQA
 return len(temlist)

 @num_template.variant('ui')
 def num_template_ui(self):
 return int(self.get_detail("Relationships", self.template_name))

 @variable(alias="db")
 def num_vm(self):
 """ Returns the providers number of instances, as shown on the Details page."""
 ext_management_systems = self.appliance.db.client["ext_management_systems"]
 vms = self.appliance.db.client["vms"]
 vmlist = list(self.appliance.db.client.session.query(vms.name)
 .join(ext_management_systems, vms.ems_id == ext_management_systems.id)
 .filter(ext_management_systems.name == self.name)
 .filter(vms.template == False)) # NOQA
 return len(vmlist)

 @num_vm.variant('ui')
 def num_vm_ui(self):
 return int(self.get_detail("Relationships", self.vm_name))

[docs] def load_all_provider_instances(self):
 return self.load_all_provider_vms()

[docs] def load_all_provider_vms(self):
 """ Loads the list of instances that are running under the provider.

 """
 view = navigate_to(self, 'Details')
 if view.contents.relationships.get_text_of(self.vm_name) == "0":
 return False
 else:
 view.contents.relationships.click_at(self.vm_name)
 return True

[docs] def load_all_provider_images(self):
 self.load_all_provider_templates()

[docs] def load_all_provider_templates(self):
 """ Loads the list of images that are available under the provider.

 """
 # todo: replace these methods with new nav location
 view = navigate_to(self, 'Details')
 if view.contents.relationships.get_text_of(self.template_name) == "0":
 return False
 else:
 view.contents.relationships.click_at(self.template_name)
 return True

[docs]def cleanup_vm(vm_name, provider):
 try:
 logger.info('Cleaning up VM %s on provider %s', vm_name, provider.key)
 provider.mgmt.delete_vm(vm_name)
 except:
 # The mgmt_sys classes raise Exception :\
 logger.warning('Failed to clean up VM %s on provider %s', vm_name, provider.key)

[docs]class DefaultEndpoint(object):
 credential_class = Credential
 name = 'default'

 def __init__(self, **kwargs):
 for key, val in kwargs.items():
 if key == 'credentials' and isinstance(val, str):
 val = self.credential_class.from_config(val)
 elif key == 'credentials' and isinstance(val, Iterable):
 val = self.credential_class.from_plaintext(val)
 elif key == 'credentials' and isinstance(val, (Credential, TokenCredential)):
 pass
 setattr(self, key, val)

 if not hasattr(self, 'credentials'):
 logger.warn("credentials weren't passed "
 "for endpoint {}".format(self.__class__.__name__))

 @property
 def view_value_mapping(self):
 return {'hostname': self.hostname}

[docs]class CANDUEndpoint(DefaultEndpoint):
 credential_class = CANDUCredential
 name = 'candu'

 @property
 def view_value_mapping(self):
 return {'hostname': self.hostname,
 'api_port': getattr(self, 'api_port', None),
 'database_name': self.database}

[docs]class EventsEndpoint(DefaultEndpoint):
 credential_class = EventsCredential
 name = 'events'

 @property
 def view_value_mapping(self):
 return {'event_stream': self.event_stream,
 'security_protocol': getattr(self, 'security_protocol', None),
 'hostname': self.hostname,
 'api_port': getattr(self, 'api_port', None),
 }

[docs]class SSHEndpoint(DefaultEndpoint):
 credential_class = SSHCredential
 name = 'rsa_keypair'

 @property
 def view_value_mapping(self):
 return {}

[docs]class DefaultEndpointForm(View):
 hostname = Input('default_hostname')
 username = Input('default_userid')
 password = Input('default_password')
 confirm_password = Input('default_verify')
 change_password = Text(locator='.//a[normalize-space(.)="Change stored password"]')

 validate = Button('Validate')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/web_ui/listaccordion.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.web_ui »

 Source code for cfme.web_ui.listaccordion

"""A set of functions for dealing with accordions in the UI.

Usage:

 Using Accordions is simply a case of either selecting it to return the element,
 or using the built in click method. As shown below::

 acc = web_ui.accordion

 acc.click('Diagnostics')
 acc.is_active('Diagnostics')

Note:
 Inactive links are not available in any way.
"""
from xml.sax.saxutils import quoteattr

import cfme.fixtures.pytest_selenium as sel
from cfme.exceptions import ListAccordionLinkNotFound
from cfme.utils.pretty import Pretty

LOCATOR = "|".join([
 # The older one
 '//div[contains(@class, "dhx_acc_item") or @class="topbar"]'
 '/*[contains(@data-remote, "true") and normalize-space(.)={accname}]',
 # The newer one
 "//div[contains(@class, 'panel-group')]/div[contains(@class, 'panel-')]/div/h4"
 "/a[@data-toggle and normalize-space(.)={accname}]"
])

[docs]def locate(name):
 """ Returns a list-accordion by name

 Args:
 name: The name of the accordion.
 Returns: An xpath locator of the selected accordion.
 """
 return LOCATOR.format(accname=quoteattr(name))

[docs]def click(name):
 """ Clicks an accordion and returns it

 Args:
 name: The name of the accordion.
 """
 xpath = locate(name)
 el = sel.element(xpath)
 was_active = is_active(name)
 sel.click(el)
 if not was_active:
 # sel.wait_for_element(cls._content_element(name))
 # This is ugly but the above doesn't work
 import time
 time.sleep(3)

def _content_element(name):
 """ Element with content of section specified by name

 Args:
 name: The name of the accordion.
 """
 root = sel.element(locate(name))
 # Older or newer locator
 el = sel.element('./../following-sibling::div[1]|'
 './../../following-sibling::div//ul[contains(@class, "nav-stack")]', root=root)
 return el

[docs]def is_active(name):
 """ Checks if an accordion is currently open

 Args:
 name: The name of the accordion.
 Returns: ``True`` if the button is depressed, ``False`` if not.
 """
 return sel.is_displayed(_content_element(name))

def _get_link(name, link_title_or_text, by_title=True, partial=False):
 """Retrieves the ListAccordionLink object for given accordion name and title

 Args:
 name: Name of the accordion.
 link_title_or_text: Title or text of link in expanded accordion section.
 by_title: Whether to search by title or by text.
 """
 if not is_active(name):
 click(name)
 link_root = _content_element(name)
 return ListAccordionLink(link_title_or_text, link_root, by_title, partial=partial)

[docs]def select(name, link_title_or_text, by_title=True, partial=False):
 """ Clicks an active link in accordion section

 Args:
 name: Name of the accordion.
 link_title_or_text: Title or text of link in expanded accordion section.
 by_title: Whether to search by title or by text.
 """
 return _get_link(name, link_title_or_text, by_title, partial).click()

[docs]def is_selected(name, link_title_or_text, by_title=True, partial=False):
 """ Checks if the link in accordion section is selected

 Args:
 name: Name of the accordion.
 link_title_or_text: Title or text of link in expanded accordion section.
 by_title: Whether to search by title or by text.
 """
 return _get_link(name, link_title_or_text, by_title, partial=partial).is_selected()

[docs]def get_active_links(name):
 """ Returns all active links in a section specified by name

 This is only used in pagestats and is likely to be deprecated

 Args:
 name: Name of the section
 """
 link_root = _content_element(name)
 link_loc = './/div[@class="panecontent"]//a[@title and not(child::img)]|'\
 './li[not(contains(@class, "disabled"))]/a'
 active_els = sel.elements(link_loc, root=link_root)
 return [ListAccordionLink(el.get_attribute("title"), link_root) for el in active_els]

[docs]class ListAccordionLink(Pretty):
 """ Active link in an accordion section

 Args:
 title: The title of the link.
 """
 pretty_attrs = ['title', 'root']

 def __init__(self, title, root=None, by_title=True, partial=False):
 self.root = root
 self.title = title
 self.partial = partial
 self.by_title = by_title

[docs] def locate(self):
 """ Locates an active link.

 Returns: An XPATH locator for the element."""
 if self.partial:
 matcher = "contains({}, {})"
 else:
 matcher = "{}={}"
 matcher = matcher.format("{}", quoteattr(self.title))
 if self.by_title:
 matcher = matcher.format("@title")
 else:
 matcher = matcher.format("normalize-space(.)")

 locator = './/div[@class="panecontent"]//a[{} and not(child::img)]|'\
 './li[not(contains(@class, "disabled"))]/a[{}]'\
 .format(matcher, matcher)
 return locator

 def _check_exists(self):
 try:
 sel.element(self.locate(), root=self.root)
 except sel.NoSuchElementException:
 raise ListAccordionLinkNotFound(
 'No active link with title "{}" found.'.format(self.title))

[docs] def click(self):
 """ Clicks a link by title.

 Args:
 title: The title of the button to check.

 Raises:
 ListAccordionLinkNotFound: when active link is not found.
 """
 self._check_exists()
 sel.click(sel.element(self.locate(), root=self.root))

[docs] def is_selected(self):
 """Looks whether this option is selected"""
 self._check_exists()
 e = sel.element(self.locate(), root=self.root)
 parent_li = sel.element('..', root=e)
 return 'active' in (sel.get_attribute(parent_li, 'class') or '') # Ensure it is a str

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/cloud/provider/gce.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.cloud.provider »

 Source code for cfme.cloud.provider.gce

from wrapanapi.google import GoogleCloudSystem
from widgetastic.widget import View
from widgetastic_patternfly import Button, Input

from cfme.base.credential import ServiceAccountCredential
from cfme.common.provider import DefaultEndpoint
from . import CloudProvider

[docs]class GCEEndpoint(DefaultEndpoint):
 """
 represents default GCE endpoint (Add/Edit dialogs)
 """
 credential_class = ServiceAccountCredential

 @property
 def view_value_mapping(self):
 return {}

[docs]class GCEEndpointForm(View):
 """
 represents default GCE endpoint form in UI (Add/Edit dialogs)
 """
 service_account = Input('service_account')
 validate = Button('Validate')

[docs]class GCEProvider(CloudProvider):
 """
 BaseProvider->CloudProvider->GCEProvider class.
 represents CFME provider and operations available in UI
 """
 type_name = "gce"
 mgmt_class = GoogleCloudSystem
 db_types = ["Google::CloudManager"]
 endpoints_form = GCEEndpointForm

 def __init__(self, name=None, project=None, zone=None, region=None, region_name=None,
 endpoints=None, key=None, appliance=None):
 super(GCEProvider, self).__init__(name=name, zone=zone, key=key, endpoints=endpoints,
 appliance=appliance)
 self.region = region
 self.region_name = region_name
 self.project = project

 @property
 def view_value_mapping(self):
 return {
 'name': self.name,
 'prov_type': 'Google Compute Engine',
 'region': self.region_name,
 'project_id': self.project
 }

 @classmethod
[docs] def from_config(cls, prov_config, prov_key, appliance=None):
 endpoint = GCEEndpoint(**prov_config['endpoints']['default'])
 return cls(name=prov_config['name'],
 project=prov_config['project'],
 zone=prov_config['zone'],
 region=prov_config['region'],
 region_name=prov_config['region_name'],
 endpoints={endpoint.name: endpoint},
 key=prov_key,
 appliance=appliance)

 @classmethod
[docs] def get_credentials(cls, credential_dict, cred_type=None):
 """Processes a credential dictionary into a credential object.

 Args:
 credential_dict: A credential dictionary.
 cred_type: Type of credential (None, token, ssh, amqp, ...)

 Returns:
 A :py:class:`cfme.base.credential.ServiceAccountCredential` instance.
 """
 return ServiceAccountCredential.from_config(credential_dict)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/web_ui/flash.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.web_ui »

 Source code for cfme.web_ui.flash

-*- coding: utf-8 -*-
"""Provides functions for the flash area.

:var area: A :py:class:`cfme.web_ui.Region` object representing the flash region.
"""
from functools import wraps

import cfme.fixtures.pytest_selenium as sel
from cfme.exceptions import CFMEExceptionOccured, FlashMessageException
from cfme.web_ui import Region
from cfme.utils import version
from cfme.utils.log import logger
from cfme.utils.pretty import Pretty

area = Region(
 locators={
 'message': ' | '.join([('//div[starts-with(@id, "flash_") and '
 'not(ancestor::*[contains(@style,"display: none")])]'
 '//div[contains(@class,"alert")]'), '//div[@id="flash_div"]',]) # login screen
 }
)

_mapping_new = {
 "alert-warning": "warning",
 "alert-success": "success",
 "alert-danger": "error",
 "alert-info": "info"
}

[docs]class Message(Pretty):
 """ A simple class to represent a flash error in CFME.

 Args:
 message: The message string.
 level: The level of the message.
 """
 pretty_attrs = ['message', 'level']

 def __init__(self, message=None, level=None):
 self.message = message
 self.level = level

@version.dependent
def get_message_level(el):
 return sel.get_attribute(el, "class") or "error"

@get_message_level.method('5.3')
[docs]def get_message_level_up(el):
 _class = sel.get_attribute(el, "class")
 for key, value in _mapping_new.iteritems():
 if key in _class:
 return value
 return "error"

@version.dependent
def get_message_text(el):
 strong = sel.elements("./strong", root=el)
 if strong:
 return sel.text(strong[0])
 else:
 return sel.text(el)

@get_message_text.method('5.3')
[docs]def get_message_text_up(el):
 return sel.text(el)

[docs]def message(el):
 """ Turns an element into a :py:class:`Message` object.

 Args:
 el: The element containing the flass message.
 Returns: A :py:class:`Message` object.
 """
 return Message(message=get_message_text(el),
 level=get_message_level(el)) # no class attr on login screen

[docs]def get_messages():
 """Return a list of visible flash messages"""
 sel.wait_for_ajax()
 return map(message, [e for e in sel.elements(area.message) if sel.is_displayed(e)])

[docs]def dismiss():
 """Dismiss the current flash message"""
 element = sel.element(area.message)
 if version.current_version() < '5.7':
 sel.click(element)
 else:
 close_button = sel.element('.//button[@class="close"]', root=element)
 sel.click(close_button)

[docs]def get_all_messages():
 """Returns a list of all flash messages, (including ones hidden behind
 the currently showing one, if any). All flash messages will be
 dismissed."""
 all_messages = []
 while sel.is_displayed(area.message):
 all_messages = all_messages + get_messages()
 dismiss()
 return all_messages

[docs]def is_error(message):
 """ Checks a given message to see if is an Error.'

 Args:
 message: The message object.
 """
 return message.level in ('error',)

[docs]def verify_rails_error(f):
 # Wrapper that checks the rails error before the flash message
 @wraps(f)
 def g(*args, **kwargs):
 sel.wait_for_ajax() # Just in case
 error = sel.get_rails_error()
 if error is not None:
 raise CFMEExceptionOccured(
 "Flash message check failed because of following rails error:\n{}".format(error))
 return f(*args, **kwargs)
 return g

[docs]def verpick_message(f):
 """Wrapper that resolves eventual verpick dictionary passed to the function."""
 # TODO: If we find such use for more places, this would deserve extraction in utils/
 @wraps(f)
 def g(m, *args, **kwargs):
 if isinstance(m, dict):
 m = version.pick(m)
 return f(m, *args, **kwargs)
 return g

[docs]def onexception_printall(f):
 """If FlashMessageException happens, appends all the present flash messages in the error text"""
 @wraps(f)
 def g(*args, **kwargs):
 try:
 return f(*args, **kwargs)
 except FlashMessageException as e:
 err_text = str(e)
 messages = get_messages()
 if not messages:
 raise # Just reraise the original
 messages = ['{}: {}'.format(message.level, message.message) for message in messages]
 new_err_text = '{}\nPresent flash messages:\n{}'.format(err_text, '\n'.join(messages))
 raise type(e)(new_err_text)
 return g

@verify_rails_error
[docs]def assert_no_errors(messages=None):
 """Asserts that there are no current Error messages. If no messages
 are passed in, they will be retrieved from the UI."""

 all_messages = messages or get_messages()
 errors = [error.message for error in filter(is_error, all_messages)]
 if errors:
 raise FlashMessageException(', '.join(errors))
 else:
 return all_messages

@verify_rails_error
[docs]def assert_success(messages=None):
 """Asserts that there is 1 or more successful messages, no errors. If no messages
 are passed in, they will be retrieved from the UI."""

 all_messages = messages or get_messages()
 errors = [error.message for error in filter(is_error, all_messages)]
 if not all_messages:
 raise FlashMessageException('No flash messages found')
 elif errors:
 raise FlashMessageException(', '.join(errors))
 else:
 return all_messages

@verify_rails_error
@verpick_message
@onexception_printall
[docs]def assert_message_match(m):
 """ Asserts that a message matches a specific string."""
 logger.debug('Asserting flash message match for %s', m)
 if not any([fm.message == m for fm in get_messages()]):
 logger.debug(' No match found in...%s', get_messages())
 raise FlashMessageException("No matching flash message for '{}'".format(m))

@verify_rails_error
@verpick_message
@onexception_printall
[docs]def assert_message_contain(m):
 """ Asserts that a message contains a specific string """
 if not any([m in fm.message for fm in get_messages()]):
 raise FlashMessageException("No flash message contains '{}'".format(m))

@verify_rails_error
@verpick_message
@onexception_printall
[docs]def assert_success_message(m):
 """Asserts that there are no errors and a (green) info message
 matches the given string."""
 messages = get_messages()
 logger.info('Asserting flash success message against messages: {}'.format(messages))
 assert_no_errors(messages)
 if not any([
 (fm.message == m and (fm.level in {"info", "success"}))
 for fm
 in messages]):
 raise FlashMessageException(
 "No matching info flash message for '{}', instead got {}".format(m, messages))

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/cloud/provider/azure.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.cloud.provider »

 Source code for cfme.cloud.provider.azure

from wrapanapi.msazure import AzureSystem

from . import CloudProvider
from cfme.common.provider import DefaultEndpoint, DefaultEndpointForm
from cfme.utils.version import pick

[docs]class AzureEndpoint(DefaultEndpoint):
 """
 represents default Azure endpoint (Add/Edit dialogs)
 """
 @property
 def view_value_mapping(self):
 return {}

[docs]class AzureEndpointForm(DefaultEndpointForm):
 """
 represents default Azure endpoint form in UI (Add/Edit dialogs)
 """
 pass

[docs]class AzureProvider(CloudProvider):
 """
 BaseProvider->CloudProvider->AzureProvider class.
 represents CFME provider and operations available in UI
 """
 type_name = "azure"
 mgmt_class = AzureSystem
 db_types = ["Azure::CloudManager"]
 endpoints_form = AzureEndpointForm
 discover_name = "Azure"

 def __init__(self, name=None, endpoints=None, zone=None, key=None, region=None,
 tenant_id=None, subscription_id=None, appliance=None):
 super(AzureProvider, self).__init__(name=name, endpoints=endpoints,
 zone=zone, key=key, appliance=appliance)
 self.region = region # Region can be a string or a dict for version pick
 self.tenant_id = tenant_id
 self.subscription_id = subscription_id

 @property
 def view_value_mapping(self):
 """Maps values to view attrs"""
 region = pick(self.region) if isinstance(self.region, dict) else self.region
 return {
 'name': self.name,
 'prov_type': 'Azure',
 'region': region,
 'tenant_id': self.tenant_id,
 'subscription': getattr(self, 'subscription_id', None)
 }

[docs] def deployment_helper(self, deploy_args):
 """ Used in utils.virtual_machines """
 return self.data['provisioning']

 @classmethod
[docs] def from_config(cls, prov_config, prov_key, appliance=None):
 endpoint = AzureEndpoint(**prov_config['endpoints']['default'])
 # HACK: stray domain entry in credentials, so ensure it is not there
 endpoint.credentials.domain = None
 return cls(
 name=prov_config['name'],
 region=prov_config.get('region'),
 tenant_id=prov_config['tenant_id'],
 subscription_id=prov_config['subscription_id'],
 endpoints={endpoint.name: endpoint},
 key=prov_key,
 appliance=appliance)

 @staticmethod
[docs] def discover_dict(credential):
 """Returns the discovery credentials dictionary"""
 return {
 'client_id': getattr(credential, 'principal', None),
 'client_key': getattr(credential, 'secret', None),
 'tenant_id': getattr(credential, 'tenant_id', None),
 'subscription': getattr(credential, 'subscription_id', None)
 }

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/web_ui/paginator.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.web_ui »

 Source code for cfme.web_ui.paginator

"""A set of functions for dealing with the paginator controls."""
from cfme.exceptions import PaginatorException
from widgetastic_manageiq import PaginationPane
from cfme.utils.appliance import get_or_create_current_appliance

[docs]def new_paginator():
 """ Simple function to avoid module level import """
 appliance = get_or_create_current_appliance()
 paginator = PaginationPane(parent=appliance.browser.widgetastic)
 return paginator

[docs]def page_controls_exist():
 """ Simple check to see if page controls exist. """
 return new_paginator().is_displayed

def _page_nums():
 return new_paginator().pages_amount

[docs]def check_all():
 """ selects all items """
 new_paginator().check_all()

[docs]def uncheck_all():
 """ unselects all items """
 new_paginator().uncheck_all()

[docs]def next():
 """ Returns the Next button locator."""
 new_paginator().next_page()

[docs]def previous():
 """ Returns the Previous button locator."""
 new_paginator().prev_page()

[docs]def first():
 """ Returns the First button locator."""
 new_paginator().first_page()

[docs]def last():
 """ Returns the Last button locator."""
 new_paginator().last_page()

[docs]def results_per_page(num):
 """ Changes the number of results on a page.

 Args:
 num: Number of results per page
 """
 new_paginator().set_items_per_page(num)

[docs]def sort_by(sort):
 """ Changes the sort by field.

 Args:
 sort: Value to sort by (visible text in select box)
 """
 new_paginator().sort(sort)

[docs]def rec_offset():
 """ Returns the first record offset."""
 try:
 return int(new_paginator().paginator.page_info()[0])
 except TypeError:
 raise PaginatorException()

[docs]def rec_end():
 """ Returns the record set index."""
 return new_paginator().paginator.page_info()[1]

[docs]def rec_total():
 """ Returns the total number of records."""
 return new_paginator().items_amount

[docs]def reset():
 """Reset the paginator to the first page or do nothing if no pages"""
 new_paginator().first_page()

[docs]def pages():
 """A generator to facilitate looping over pages

 Usage:

 for page in pages():
 # Do seleniumy things here, like finding and clicking elements

 Raises:
 :py:class:`ValueError`: When the paginator "breaks" (does not change)
 """
 return new_paginator().pages()

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/test_framework/appliance_police.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.test_framework.appliance_police

import attr
import pytest

import requests

from cfme.utils import ports
from cfme.utils.net import net_check
from cfme.utils.wait import TimedOutError
from cfme.utils.conf import rdb

from fixtures.pytest_store import store

from cfme.fixtures.rdb import Rdb

@attr.s
[docs]class AppliancePoliceException(Exception):
 message = attr.ib()
 port = attr.ib()

 def __str__(self):
 return "{} (port {})".format(self.message, self.port)

@pytest.fixture(autouse=True, scope="function")
[docs]def appliance_police():
 if not store.slave_manager:
 return
 try:
 port_numbers = {
 'ssh': ports.SSH,
 'https': store.current_appliance.ui_port,
 'postgres': ports.DB}
 port_results = {pn: net_check(pp, force=True) for pn, pp in port_numbers.items()}
 for port, result in port_results.items():
 if not result:
 raise AppliancePoliceException('Unable to connect', port_numbers[port])

 try:
 status_code = requests.get(store.current_appliance.url, verify=False,
 timeout=120).status_code
 except Exception:
 raise AppliancePoliceException('Getting status code failed', port_numbers['https'])

 if status_code != 200:
 raise AppliancePoliceException('Status code was {}, should be 200'.format(
 status_code), port_numbers['https'])
 return
 except AppliancePoliceException as e:
 # special handling for known failure conditions
 if e.port == 443:
 # Lots of rdbs lately where evm seems to have entirely crashed
 # and (sadly) the only fix is a rude restart
 store.current_appliance.restart_evm_service(rude=True)
 try:
 store.current_appliance.wait_for_web_ui(900)
 store.write_line('EVM was frozen and had to be restarted.', purple=True)
 return
 except TimedOutError:
 pass
 e_message = str(e)
 except Exception as e:
 e_message = str(e)

 # Regardles of the exception raised, we didn't return anywhere above
 # time to call a human
 msg = 'Help! My appliance {} crashed with: {}'.format(store.current_appliance.url, e_message)
 store.slave_manager.message(msg)
 if 'appliance_police_recipients' in rdb:
 rdb_kwargs = {
 'subject': 'RDB Breakpoint: Appliance failure',
 'recipients': rdb.appliance_police_recipients,
 }
 else:
 rdb_kwargs = {}
 Rdb(msg).set_trace(**rdb_kwargs)
 store.slave_manager.message('Resuming testing following remote debugging')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/web_ui/form_buttons.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.web_ui »

 Source code for cfme.web_ui.form_buttons

"""This module unifies working with CRUD form buttons.

Whenever you use Add, Save, Cancel, Reset button, use this module.
You can use it also for the other buttons with same shape like those CRUD ones.
"""
from selenium.common.exceptions import NoSuchElementException
from xml.sax.saxutils import quoteattr

from widgetastic.xpath import quote

from cfme.fixtures import pytest_selenium as sel
from cfme.web_ui import fill
from cfme.utils import version
from cfme.utils.log import logger
from cfme.utils.pretty import Pretty

[docs]class FormButton(Pretty):
 """This class represents the buttons usually located in forms or CRUD.

 Args:
 alt: The text from ``alt`` field of the image.
 dimmed_alt: In case the ``alt`` param is different in the dimmed variant of the button.
 force_click: Click always, even if it is dimmed. (Causes an error if not visible)
 partial_alt: Whether the alt matching should be only partial (``in``).
 ng_click: To match the angular buttons, you can use this to specify the contents of
 ``ng-click`` attributeh.
 """
 pretty_attrs = ['_alt', '_dimmed_alt', '_force', '_partial', '_ng_click']

 PRIMARY = 'btn-primary'

[docs] class Button:
 """Holds pieces of the XPath to be assembled."""
 TAG_TYPES = "//a | //button | //img | //input"
 TYPE_CONDITION = (
 "(contains(@class, 'button') or contains(@class, 'btn') or contains(@src, 'button'))"
)
 DIMMED = "(contains(@class, 'dimmed') " \
 "or contains(@class, 'disabled') " \
 "or contains(@class, 'btn-disabled'))"
 NOT_DIMMED = "not{}".format(DIMMED)
 IS_DISPLAYED = (
 "not(ancestor::*[contains(@style, 'display:none') "
 "or contains(@style, 'display: none')])")
 ON_CURRENT_TAB = (
 "not(ancestor::div[contains(@class, 'tab-pane') and not(contains(@class, 'active'))])")

 def __init__(
 self, alt, dimmed_alt=None, force_click=False, partial_alt=False, ng_click=None,
 classes=None):
 self._alt = alt
 self._dimmed_alt = dimmed_alt
 self._force = force_click
 self._partial = partial_alt
 self._ng_click = ng_click
 self._classes = classes or []

[docs] def alt_expr(self, dimmed=False):
 if self._partial:
 if self._ng_click is None:
 return (
 "(contains(normalize-space(@alt), {alt}) or "
 "contains(normalize-space(text()), {alt}))".format(
 alt=quoteattr((self._dimmed_alt or self._alt) if dimmed else self._alt)))
 else:
 return (
 "(contains(normalize-space(@alt), {alt}) or "
 "@ng-click={click} or "
 "contains(normalize-space(text()), {alt}))".format(
 alt=quoteattr((self._dimmed_alt or self._alt) if dimmed else self._alt),
 click=quoteattr(self._ng_click)))
 else:
 if self._ng_click is None:
 return (
 "(normalize-space(@alt)={alt} or "
 "normalize-space(text())={alt})".format(
 alt=quoteattr((self._dimmed_alt or self._alt) if dimmed else self._alt)))
 else:
 return (
 "(normalize-space(@alt)={alt} or "
 "@ng-click={click} or "
 "normalize-space(text())={alt})".format(
 alt=quoteattr((self._dimmed_alt or self._alt) if dimmed else self._alt),
 click=quoteattr(self._ng_click)))

 def _format_generator(self, dimmed=False, include_dimmed_alt=False):
 """Generates a dict that will be passed to the formatting strings."""
 d = {}
 for key, value in self.Button.__dict__.iteritems():
 if not key.startswith("_"):
 d[key] = value
 d["ALT_EXPR"] = self.alt_expr(dimmed=dimmed)
 if include_dimmed_alt:
 d["DIMMED_ALT"] = quoteattr(self._dimmed_alt or self._alt)
 if self._classes:
 d['CLASSES'] = 'and ({})'.format(
 ' and '.join('contains(@class, {})'.format(quote(kls)) for kls in self._classes))
 else:
 d['CLASSES'] = ''
 return d

[docs] def locate(self):
 return (
 "({TAG_TYPES})[{ALT_EXPR} and {NOT_DIMMED} and {TYPE_CONDITION} and {IS_DISPLAYED} "
 "and {ON_CURRENT_TAB} {CLASSES}]"
 .format(**self._format_generator(dimmed=False)))

 @property
 def is_dimmed(self):
 locator = (
 "({TAG_TYPES})[{ALT_EXPR} and {DIMMED} and {TYPE_CONDITION} and {IS_DISPLAYED} "
 "and {ON_CURRENT_TAB} {CLASSES}]"
 "|" # A bit different type of a button
 "({TAG_TYPES})[normalize-space(.)={DIMMED_ALT} and {IS_DISPLAYED} and "
 "(@disabled='true' or contains(@class, 'btn-disabled')) and {ON_CURRENT_TAB}]"
 .format(**self._format_generator(dimmed=True, include_dimmed_alt=True)))
 return sel.is_displayed(locator)

 @property
 def can_be_clicked(self):
 """Whether the button is displayed, therefore clickable."""
 try:
 return sel.is_displayed(self, move_to=True)
 except NoSuchElementException:
 return False

[docs] def __call__(self, *args, **kwargs):
 """For maintaining backward compatibility"""
 sel.click(self)

 def _custom_click_handler(self, wait_ajax):
 """Handler called from pytest_selenium"""
 if self.is_dimmed and not self._force:
 logger.error("Could not click %s because it was dimmed", repr(self))
 return
 sel.wait_for_element(self, timeout=5)
 return sel.click(self, no_custom_handler=True, wait_ajax=wait_ajax)

 def __str__(self):
 return self.locate()

 def __repr__(self):
 return "{}({})".format(type(self).__name__, str(repr(self._alt)))

add = FormButton("Add")
save = FormButton("Save Changes", dimmed_alt="Save", ng_click="saveClicked()")
simple_save = FormButton("Save")
angular_save = FormButton("Save changes", ng_click="saveClicked()")
cancel = FormButton("Cancel")
cancel_changes = FormButton("Cancel Changes")
submit = FormButton("Submit")
reset = FormButton("Reset Changes", dimmed_alt="Reset")
validate = FormButton("Validate the credentials by logging into the Server", dimmed_alt="Validate")
validate_short = FormButton("Validate the credentials")
validate_multi_host = FormButton("Validate the credentials by logging into the selected Host")
host_provision_submit = FormButton("Submit this provisioning request")
host_provision_cancel = FormButton("Cancel this provisioning request")
retrieve = FormButton("LDAP Group Lookup")

_stored_pw_script = '//a[contains(@id, "change_stored_password")]'
_stored_pw_angular = "//a[contains(@ng-hide, 'bChangeStoredPassword')]"

[docs]def change_stored_password():
 if version.current_version() > '5.5':
 if sel.is_displayed(_stored_pw_script):
 sel.execute_script(
 sel.get_attribute(
 sel.element(_stored_pw_script), 'onClick'))
 sel.wait_for_ajax() # To play safe
 elif sel.is_displayed(_stored_pw_angular):
 sel.click(_stored_pw_angular)
 else:
 logger.info("Probably no creds")

@fill.method((FormButton, bool))
def _fill_fb_bool(fb, b):
 if b:
 sel.click(fb)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/test_framework/config.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.test_framework.config

"""
classes to manage the cfme test framework configuration
"""

import os
import warnings
import yaycl
import attr

[docs]class Configuration(object):
 """
 holds the current configuration
 """
 def __init__(self):
 self.yaycl_config = None

[docs] def configure(self, config_dir, crypt_key_file=None):
 """
 do the defered initial loading of the configuration

 :param config_dir: path to the folder with configuration files
 :param crypt_key_file: optional name of a file holding the key for encrypted
 configuration files

 :raises: AssertionError if called more than once

 if the `utils.conf` api is removed, the loading can be transformed to eager loading
 """

 assert self.yaycl_config is None
 if crypt_key_file and os.path.exists(crypt_key_file):
 self.yaycl_config = yaycl.Config(
 config_dir=config_dir,
 crypt_key_file=crypt_key_file)
 else:
 self.yaycl_config = yaycl.Config(config_dir=config_dir)

[docs] def get_config(self, name):
 """returns a yaycl config object

 :param name: name of the configuration object
 """

 if self.yaycl_config is None:
 raise RuntimeError('cfme configuration was not initialized')
 return getattr(self.yaycl_config, name)

@attr.s
[docs]class DeprecatedConfigWrapper(object):
 """
 a wrapper that provides the old :code:``utils.conf`` api
 """
 configuration = attr.ib()
 _warn = attr.ib(default=False)

 def __getattr__(self, key):
 if self._warn:
 warnings.warn(
 'the configuration module {} will be deprecated'.format(key),
 category=DeprecationWarning,
 stacklevel=2,
)
 return self.configuration.get_config(key)

 @property
 def runtime(self):
 return self.configuration.runtime

 def __getitem__(self, key):
 if self._warn:
 warnings.warn(
 'the configuration module {} will be deprecated'.format(key),
 category=DeprecationWarning,
 stacklevel=2,
)
 return self.configuration.get_config(key)

 def __delitem__(self, key):
 # used in bad logging
 if self._warn:
 warnings.warn('clearing configuration is bad', stacklevel=2)

 del self.configuration.yaycl_config[key]

for the initial usage we keep a global object
later on we want to replace it
global_configuration = Configuration()

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/web_ui/toolbar.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.web_ui »

 Source code for cfme.web_ui.toolbar

"""A set of functions for dealing with the toolbar buttons

The main CFME toolbar is accessed by using the Root and Sub titles of the buttons.

Usage:

 tb = web_ui.toolbar
 tb.select('Configuration', 'Add a New Host')

"""
import cfme.fixtures.pytest_selenium as sel
from selenium.webdriver.common.by import By
from cfme.exceptions import ToolbarOptionGreyedOrUnavailable
from cfme.utils import version
from cfme.utils.log import logger
from xml.sax.saxutils import quoteattr, unescape

[docs]def xpath_quote(x):
 """Putting strings in xpath requires unescape also"""
 # TODO: Move it to some library!
 return unescape(quoteattr(x))

[docs]def root_loc(root):
 """ Returns the locator of the root button

 Args:
 root: The string name of the button.
 Returns: A locator for the root button.
 """
 return (By.XPATH,
 ("//div[contains(@class, 'dhx_toolbar_btn')][contains(@title, {0})] | "
 "//div[contains(@class, 'dhx_toolbar_btn')][contains(@data-original-title, {0})] | "
 "//button[normalize-space(.) = {0}] |"
 "//button[@data-original-title = {0}] |"
 "//a[@data-original-title = {0}]/.. |"
 "//a[@title = {0}]/.. |"
 "//button[@title = {0}]")
 .format(xpath_quote(root)))

[docs]def sub_loc(sub):
 """ Returns the locator of the sub button

 Args:
 sub: The string name of the button.
 Returns: A locator for the sub button.
 """
 return (
 By.XPATH,
 ("//div[contains(@class, 'btn_sel_text')][normalize-space(text()) = {0}]/../.. |"
 "//ul[contains(@class, 'dropdown-menu')]//li[normalize-space(.) = {0}]").format(
 xpath_quote(sub)))

[docs]def select_n_move(el):
 """ Clicks an element and then moves the mouse away

 This is required because if the button is active and we clicked it, the CSS class
 doesn't change until the mouse is moved away.

 Args:
 el: The element to click on.
 Returns: None
 """
 # .. if we don't move the "mouse" the button stays active
 sel.click(el)
 sel.move_to_element(".navbar-brand")

[docs]def select(*args, **kwargs):
 logger.debug('Selecting %r', args)
 if version.current_version() > '5.5.0.7':
 return pf_select(*args, **kwargs)
 else:
 return old_select(*args, **kwargs)

[docs]def pf_select(root, sub=None, invokes_alert=False):
 """ Clicks on a button by calling the click event with the jquery trigger.

 Args:
 root: The root button's name as a string.
 sub: The sub button's name as a string. (optional)
 invokes_alert: If ``True``, then the behaviour is little bit different. After the last
 click, no ajax wait and no move away is done to be able to operate the alert that
 appears after click afterwards. Defaults to ``False``.
 Returns: ``True`` if everything went smoothly
 Raises: :py:class:`cfme.exceptions.ToolbarOptionGreyedOrUnavailable`
 """

 sel.wait_for_ajax()
 if isinstance(root, dict):
 root = version.pick(root)
 if isinstance(sub, dict):
 sub = version.pick(sub)

 if sub:
 q_sub = xpath_quote(sub).replace("'", "\\'")
 sel.execute_script(
 "return $('a:contains({})').trigger('click')".format(q_sub))
 else:
 q_root = xpath_quote(root).replace("'", "\\'")
 try:
 sel.element("//button[@data-original-title = {0}] | "
 "//a[@data-original-title = {0}]".format(q_root))
 sel.execute_script(
 "return $('*[data-original-title={}]').trigger('click')".format(q_root))
 except sel.NoSuchElementException:
 try:
 sel.element("//button[@title={}]".format(q_root))
 sel.execute_script(
 "return $('button[title={}]').trigger('click')".format(q_root))
 except sel.NoSuchElementException:
 try:
 sel.element("//button[contains(@title, {})]".format(q_root))
 sel.execute_script(
 "return $('button:contains({})').trigger('click')".format(q_root))
 except sel.NoSuchElementException:
 # The view selection buttons?
 sel.click("//li/a[@title={}]/*[self::i or self::img]/../..".format(q_root))

 if not invokes_alert:
 sel.wait_for_ajax()
 return True

[docs]def old_select(root, sub=None, invokes_alert=False):
 """ Clicks on a button by calling the dhtmlx toolbar callEvent.

 Args:
 root: The root button's name as a string.
 sub: The sub button's name as a string. (optional)
 invokes_alert: If ``True``, then the behaviour is little bit different. After the last
 click, no ajax wait and no move away is done to be able to operate the alert that
 appears after click afterwards. Defaults to ``False``.
 Returns: ``True`` if everything went smoothly
 Raises: :py:class:`cfme.exceptions.ToolbarOptionGreyedOrUnavailable`
 """
 # wait for ajax on select to prevent pickup up a toolbar button in the middle of a page change
 sel.wait_for_ajax()
 if isinstance(root, dict):
 root = version.pick(root)
 if sub is not None and isinstance(sub, dict):
 sub = version.pick(sub)

 root_obj = 'ManageIQ.toolbars'

 if sub:
 search = sub_loc(sub)
 else:
 search = root_loc(root)

 eles = sel.elements(search)

 for ele in eles:
 idd = sel.get_attribute(ele, 'idd')
 if idd:
 break
 else:
 raise ToolbarOptionGreyedOrUnavailable(
 "Toolbar button {}/{} is greyed or unavailable!".format(root, sub))

 buttons = sel.execute_script('return {}'.format(root_obj))
 tb_name = None
 for tb_key, tb_obj in buttons.iteritems():
 for btn_key, btn_obj in tb_obj['buttons'].iteritems():
 if btn_obj['name'] == idd:
 tb_name = tb_key
 if not tb_name:
 raise ToolbarOptionGreyedOrUnavailable(
 "Toolbar button {}/{} is greyed or unavailable!".format(root, sub))

 sel.execute_script(
 "{}['{}']['obj'].callEvent('onClick', ['{}'])".format(root_obj, tb_name, idd))

 if not invokes_alert:
 sel.wait_for_ajax()
 return True

[docs]def is_active(root):
 """ Checks if a button is currently depressed

 Args:
 root: The root button's name as a string.
 Returns: ``True`` if the button is depressed, ``False`` if not.
 """
 el = sel.element(root_loc(root))
 class_att = sel.get_attribute(el, 'class').split(" ")
 if {"pres", "active", "pres_dis"}.intersection(set(class_att)):
 return True
 else:
 return False

[docs]def is_greyed(root, sub=None):
 """ Checks if a button is greyed out.

 Args:
 root: The root button's name as a string.
 Returns: ``True`` if the button is greyed, ``False`` if not.
 """
 if sub:
 btn = sub_loc(sub)
 else:
 btn = root_loc(root)

 el = sel.element(btn)
 class_att = sel.get_attribute(el, 'class').split(" ")
 if sub:
 if {"tr_btn_disabled", "disabled"}.intersection(set(class_att)):
 logger.debug("%s option greyed out, mouseover reason: %s",
 sub, sel.get_attribute(el, 'title'))
 return True
 else:
 if {"disabled", "dis"}.intersection(set(class_att)):
 return True
 return False

RELOAD_LOC = (
 ".//div[@title='Reload current display']|"
 ".//button[@title='Reload Current Display' or "
 "@title='Reload current display' or "
 "@id='miq_request_reload']"
)

[docs]def refresh():
 """Refreshes page, attempts to use cfme refresh button otherwise falls back to browser refresh.
 """
 if sel.is_displayed(RELOAD_LOC):
 sel.click(RELOAD_LOC)
 else:
 sel.refresh()

[docs]def exists(root, sub=None, and_is_not_greyed=False):
 """ Checks presence and usability of toolbar buttons.

 By default it checks whether the button is available, not caring whether it is greyed or not.
 You can optionally enable check for greyedness.

 Args:
 root: Button name.
 sub: Item name (optional)
 and_is_not_greyed: Check if the button is available to click.

 """
 sel.wait_for_ajax()
 if isinstance(root, dict):
 root = version.pick(root)
 if isinstance(sub, dict):
 sub = version.pick(sub)

 try:
 greyed = is_greyed(root, sub)
 if and_is_not_greyed:
 return not greyed
 else:
 return True
 except sel.NoSuchElementException:
 return False

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/test_framework/sprout/client.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.test_framework.sprout.client

-*- coding: utf-8 -*-
import json
import os
import requests

from cfme.utils.version import get_stream
from cfme.utils.appliance import current_appliance, IPAppliance
from cfme.utils.conf import credentials, env
TODO: use custom wait_for logger fitting sprout
from cfme.utils.log import logger
from cfme.utils.wait import wait_for

[docs]class SproutException(Exception):
 pass

[docs]class AuthException(SproutException):
 pass

[docs]class APIMethodCall(object):
 def __init__(self, client, method_name):
 self._client = client
 self._method_name = method_name

 def __call__(self, *args, **kwargs):
 return self._client.call_method(self._method_name, *args, **kwargs)

[docs]class SproutClient(object):
 def __init__(
 self, protocol="http", host="localhost", port=8000, entry="appliances/api", auth=None):
 self._proto = protocol
 self._host = host
 self._port = port
 self._entry = entry
 self._auth = auth

 @property
 def api_entry(self):
 return "{}://{}:{}/{}".format(self._proto, self._host, self._port, self._entry)

 def _post(self, **data):
 return requests.post(self.api_entry, data=json.dumps(data))

 def _call_post(self, **data):
 """Protect from the Sprout being updated (error 502,503)"""
 result = wait_for(
 lambda: self._post(**data),
 num_sec=60,
 fail_condition=lambda r: r.status_code in {502, 503},
 delay=2,
)
 return result.out.json()

[docs] def call_method(self, name, *args, **kwargs):
 req_data = {
 "method": name,
 "args": args,
 "kwargs": kwargs,
 }
 logger.info("SPROUT: Called {} with {} {}".format(name, args, kwargs))
 if self._auth is not None:
 req_data["auth"] = self._auth
 result = self._call_post(**req_data)
 try:
 if result["status"] == "exception":
 raise SproutException(
 "Exception {} raised! {}".format(
 result["result"]["class"], result["result"]["message"]))
 elif result["status"] == "autherror":
 raise AuthException(
 "Authentication failed! {}".format(result["result"]["message"]))
 else:
 return result["result"]
 except KeyError:
 raise Exception("Malformed response from Sprout!")

 def __getattr__(self, attr):
 return APIMethodCall(self, attr)

 @classmethod
[docs] def from_config(cls, **kwargs):
 host = env.get("sprout", {}).get("hostname", "localhost")
 port = env.get("sprout", {}).get("port", 8000)
 user = os.environ.get("SPROUT_USER", credentials.get("sprout", {}).get("username"))
 password = os.environ.get(
 "SPROUT_PASSWORD", credentials.get("sprout", {}).get("password"))
 if user and password:
 auth = user, password
 else:
 auth = None
 return cls(host=host, port=port, auth=auth, **kwargs)

[docs] def provision_appliances(
 self, count=1, preconfigured=False, version=None, stream=None, provider=None,
 lease_time=120, ram=None, cpu=None):
 # If we specify version, stream is ignored because we will get that specific version
 if version:
 stream = get_stream(version)
 # If we specify stream but not version, sprout will give us latest version of that stream
 elif stream:
 pass
 # If we dont specify either, we will get the same version as current appliance
 else:
 stream = get_stream(current_appliance.version)
 version = current_appliance.version.vstring
 request_id = self.call_method(
 'request_appliances', preconfigured=preconfigured, version=version,
 group=stream, provider=provider, lease_time=lease_time, ram=ram, cpu=cpu, count=count
)
 wait_for(
 lambda: self.call_method('request_check', str(request_id))['finished'], num_sec=300,
 message='provision {} appliance(s) from sprout'.format(count))
 data = self.call_method('request_check', str(request_id))
 logger.debug(data)
 appliances = []
 for appliance in data['appliances']:
 appliances.append(IPAppliance(appliance['ip_address']))
 return appliances, request_id

[docs] def destroy_pool(self, pool_id):
 self.call_method('destroy_pool', id=pool_id)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/common/vm.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.common »

 Source code for cfme.common.vm

-*- coding: utf-8 -*-
"""Module containing classes with common behaviour for both VMs and Instances of all types."""
from datetime import date
from functools import partial

from wrapanapi import exceptions

from cfme import js
from cfme.common.vm_console import VMConsole
from cfme.exceptions import (
 VmOrInstanceNotFound, ItemNotFound, OptionNotAvailable, UnknownProviderType)
from cfme.fixtures import pytest_selenium as sel
from cfme.web_ui import (
 AngularCalendarInput, AngularSelect, Form, InfoBlock, Input, Quadicon, Select, fill, flash,
 form_buttons, toolbar, PagedTable, SplitPagedTable, search, CheckboxTable,
 DriftGrid, BootstrapTreeview
)
import cfme.web_ui.toolbar as tb
from cfme.utils import version, ParamClassName
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import navigate_to
from cfme.utils.log import logger
from cfme.utils.pretty import Pretty
from cfme.utils.timeutil import parsetime
from cfme.utils.update import Updateable
from cfme.utils.virtual_machines import deploy_template
from cfme.utils.wait import wait_for, TimedOutError

from . import PolicyProfileAssignable, Taggable, SummaryMixin

access_btn = partial(toolbar.select, "Access")
cfg_btn = partial(toolbar.select, "Configuration")
lcl_btn = partial(toolbar.select, "Lifecycle")
mon_btn = partial(toolbar.select, 'Monitoring')
pol_btn = partial(toolbar.select, "Policy")
pwr_btn = partial(toolbar.select, "Power")

retire_remove_button = "//span[@id='remove_button']/a/img|//a/img[contains(@src, '/clear')]"

set_ownership_form = Form(fields=[
 ('user_name', AngularSelect('user_name')),
 ('group_name', AngularSelect('group_name')),
 ('create_button', form_buttons.save),
 ('reset_button', form_buttons.reset),
 ('cancel_button', form_buttons.cancel)
])

drift_table = CheckboxTable("//th[normalize-space(.)='Timestamp']/ancestor::table[1]")
drift_section = BootstrapTreeview('all_sectionsbox')

[docs]def base_types(template=False):
 from pkg_resources import iter_entry_points
 search = "template" if template else "vm"
 return {
 ep.name: ep.resolve() for ep in iter_entry_points('manageiq.{}_categories'.format(search))
 }

[docs]def instance_types(category, template=False):
 from pkg_resources import iter_entry_points
 search = "template" if template else "vm"
 return {
 ep.name: ep.resolve() for ep in iter_entry_points(
 'manageiq.{}_types.{}'.format(search, category))
 }

[docs]def all_types(template=False):
 all_types = base_types(template)
 for category in all_types.keys():
 all_types.update(instance_types(category, template))
 return all_types

class _TemplateMixin(object):
 pass

[docs]class BaseVM(Pretty, Updateable, PolicyProfileAssignable, Taggable, SummaryMixin, Navigatable):
 """Base VM and Template class that holds the largest common functionality between VMs,
 instances, templates and images.

 In order to inherit these, you have to implement the ``on_details`` method.
 """
 pretty_attrs = ['name', 'provider', 'template_name']

 # Forms
 edit_form = Form(
 fields=[
 ('custom_ident', Input("custom_1")),
 ('description_tarea', "//textarea[@id='description']"),
 ('parent_sel', {
 version.LOWEST: Select("//select[@name='chosen_parent']"),
 "5.5": AngularSelect("chosen_parent")}),
 ('child_sel', Select("//select[@id='kids_chosen']", multi=True)),
 ('vm_sel', Select("//select[@id='choices_chosen']", multi=True)),
 ('add_btn', "//img[@alt='Move selected VMs to left']"),
 ('remove_btn', "//img[@alt='Move selected VMs to right']"),
 ('remove_all_btn', "//img[@alt='Move all VMs to right']"),
])

 ###
 # Factory class methods
 #
 @classmethod
[docs] def factory(cls, vm_name, provider, template_name=None, template=False):
 """Factory class method that determines the correct subclass for given provider.

 For reference how does that work, refer to the entrypoints in the setup.py

 Args:
 vm_name: Name of the VM/Instance as it appears in the UI
 provider: The provider object (not the string!)
 template_name: Source template name. Useful when the VM/Instance does not exist and you
 want to create it.
 template: Whether the generated object class should be VM/Instance or a template class.
 """
 try:
 return all_types(template)[provider.type](vm_name, provider, template_name)
 except KeyError:
 # Matching via provider type failed. Maybe we have some generic classes for infra/cloud?
 try:
 return all_types(template)[provider.category](vm_name, provider, template_name)
 except KeyError:
 raise UnknownProviderType(
 'Unknown type of provider CRUD object: {}'
 .format(provider.__class__.__name__))

 ###
 # To be set or implemented
 #
 ALL_LIST_LOCATION = None
 TO_OPEN_EDIT = None # Name of the item in Configuration that puts you in the form
 QUADICON_TYPE = "vm"
 # Titles of the delete buttons in configuration
 REMOVE_SELECTED = {'5.6': 'Remove selected items',
 '5.6.2.2': 'Remove selected items from the VMDB',
 '5.7': 'Remove selected items'}
 REMOVE_SINGLE = {'5.6': 'Remove Virtual Machine',
 '5.6.2.2': 'Remove from the VMDB',
 '5.7': 'Remove Virtual Machine'}
 RETIRE_DATE_FMT = {version.LOWEST: parsetime.american_date_only_format,
 '5.7': parsetime.american_minutes_with_utc}
 _param_name = ParamClassName('name')

 ###
 # Shared behaviour
 #
 def __init__(self, name, provider, template_name=None, appliance=None):
 super(BaseVM, self).__init__()
 Navigatable.__init__(self, appliance=appliance)
 if type(self) in {BaseVM, VM, Template}:
 raise NotImplementedError('This class cannot be instantiated.')
 self.name = name
 self.provider = provider
 self.template_name = template_name

 ###
 # Properties
 #
 @property
 def is_vm(self):
 return not isinstance(self, _TemplateMixin)

 @property
 def quadicon_type(self):
 return self.QUADICON_TYPE

 @property
 def paged_table(self):
 _paged_table_template = '//div[@id="list_grid"]/div[@class="{}"]/table/tbody'
 return version.pick({
 version.LOWEST: SplitPagedTable(header_data=(_paged_table_template.format("xhdr"), 1),
 body_data=(_paged_table_template.format("objbox"), 0)),
 "5.5": PagedTable('//table'),
 })

 ###
 # Methods
 #
[docs] def check_compliance(self, timeout=240):
 """Initiates compliance check and waits for it to finish.

 TODO This should be refactored as it's done `Host.check_compliance`. It shouldn't return
 anything. `compliant` property should use `compliance_status`.

 """
 original_state = self.compliance_status
 cfg_btn("Refresh Relationships and Power States", invokes_alert=True)
 sel.handle_alert()
 flash.assert_no_errors()
 pol_btn("Check Compliance of Last Known Configuration", invokes_alert=True)
 sel.handle_alert()
 flash.assert_no_errors()
 wait_for(
 lambda: self.compliance_status != original_state,
 num_sec=timeout, delay=5, message="compliance of {} checked".format(self.name)
)
 return self.compliant

 @property
 def compliance_status(self):
 """Returns the title of the compliance infoblock. The title contains datetime so it can be
 compared.

 Returns:
 :py:class:`NoneType` if no title is present (no compliance checks before), otherwise str
 """
 self.load_details(refresh=True)
 return InfoBlock("Compliance", "Status").title

 @property
 def compliant(self):
 """Check if the VM is compliant

 Returns:
 :py:class:`NoneType` if the VM was never verified, otherwise :py:class:`bool`
 """
 text = self.get_detail(properties=("Compliance", "Status")).strip().lower()
 if text == "never verified":
 return None
 elif text.startswith("non-compliant"):
 return False
 elif text.startswith("compliant"):
 return True
 else:
 raise ValueError("{} is not a known state for compliance".format(text))

 @property
 def console_handle(self):
 '''
 The basic algorithm for getting the consoles window handle is to get the
 appliances window handle and then iterate through the window_handles till we find
 one that is not the appliances window handle. Once we find this check that it has
 a canvas widget with a specific ID
 '''
 browser = self.appliance.browser.widgetastic
 appliance_handle = browser.window_handle
 cur_handles = browser.selenium.window_handles
 logger.info("Current Window Handles: {}".format(cur_handles))

 for handle in cur_handles:
 if handle != appliance_handle:
 # FIXME: Add code to verify the tab has the correct widget
 # for a console tab.
 return handle

[docs] def delete(self, cancel=False, from_details=False):
 """Deletes the VM/Instance from the VMDB.

 Args:
 cancel: Whether to cancel the action in the alert.
 from_details: Whether to use the details view or list view.
 """

 if from_details:
 self.load_details(refresh=True)
 cfg_btn(self.REMOVE_SINGLE, invokes_alert=True)
 else:
 self.find_quadicon().check()
 cfg_btn(self.REMOVE_SELECTED, invokes_alert=True)
 sel.handle_alert(cancel=cancel)

 @property
 def exists(self):
 """Checks presence of the quadicon in the CFME."""
 try:
 self.find_quadicon()
 return True
 except VmOrInstanceNotFound:
 return False

 @property
 def ip_address(self):
 """Fetches IP Address of VM"""
 return self.provider.mgmt.get_ip_address(self.name)

 @property
 def is_retired(self):
 """"Check retirement status of vm"""
 self.summary.reload()
 if self.summary.lifecycle.retirement_date.text_value.lower() != 'never':
 try:
 return self.summary.lifecycle.retirement_state.text_value.lower() == 'retired'
 except AttributeError:
 return False
 else:
 return False

[docs] def find_quadicon(self, from_any_provider=False, use_search=True):
 """Find and return a quadicon belonging to a specific vm

 Args:
 from_any_provider: Whether to look for it anywhere (root of the tree). Useful when
 looking up archived or orphaned VMs

 Returns: entity of appropriate type
 Raises: VmOrInstanceNotFound
 """
 # todo :refactor this method replace it with vm methods like get_state
 if from_any_provider:
 view = navigate_to(self, 'All')
 else:
 view = navigate_to(self, 'AllForProvider', use_resetter=False)

 if 'Grid View' != view.toolbar.view_selector.selected:
 view.toolbar.view_selector.select('Grid View')

 if use_search:
 search.normal_search(self.name)

 try:
 return view.entities.get_entity(by_name=self.name, surf_pages=True)
 except ItemNotFound:
 raise VmOrInstanceNotFound("VM '{}' not found in UI!".format(self.name))

[docs] def get_detail(self, properties=None, icon_href=False):
 """Gets details from the details infoblock

 The function first ensures that we are on the detail page for the specific VM/Instance.

 Args:
 properties: An InfoBlock title, followed by the Key name, e.g. "Relationships", "Images"

 Returns:
 A string representing the contents of the InfoBlock's value.
 """
 self.load_details(refresh=True)
 if icon_href:
 return InfoBlock.icon_href(*properties)
 else:
 return InfoBlock.text(*properties)

[docs] def open_console(self, console='VM Console', invokes_alert=False, cancel=False):
 """
 Initiates the opening of one of the console types supported by the Access
 button. Presently we only support VM Console, which is the HTML5 Console.
 In case of VMware provider it could be VMRC, VNC/HTML5, WebMKS, but we only
 support VNC/HTML5.
 Possible values for 'console' could be 'VM Console' and 'Web Console', but Web
 Console is not supported as well.

 Args:
 console: one of the supported console types given by the Access button.
 invokes_alert: If the particular console will invoke a CFME popup/alert
 setting this to true will handle this.
 cancel: Allows one to cancel the operation if the popup/alert occurs.
 """
 # TODO: implement vmrc vm console
 if console not in ['VM Console']:
 raise NotImplementedError('Not supported console type: {}'.format(console))

 view = navigate_to(self, 'Details')

 # Click console button given by type
 view.toolbar.access.item_select(console, handle_alert=None
 if invokes_alert is False else True)

 # Get the consoles window handle, and then create a VMConsole object, and store
 # the VMConsole object aside.
 console_handle = self.console_handle

 if console_handle is None:
 raise TypeError("Console handle should not be None")

 appliance_handle = self.appliance.browser.widgetastic.window_handle
 logger.info("Creating VMConsole:")
 logger.info(" appliance_handle: {}".format(appliance_handle))
 logger.info(" console_handle: {}".format(console_handle))
 logger.info(" name: {}".format(self.name))

 self.vm_console = VMConsole(
 appliance_handle=appliance_handle,
 console_handle=console_handle,
 vm=self
)

[docs] def open_details(self, properties=None):
 """Clicks on details infoblock"""
 self.load_details(refresh=True)
 sel.click(InfoBlock(*properties))

 @classmethod
[docs] def get_first_vm_title(cls, do_not_navigate=False, provider=None):
 """Get the title of first VM/Instance."""
 if not do_not_navigate:
 if provider is None:
 navigate_to(cls, 'All')
 else:
 provider.load_all_provider_vms()
 return Quadicon.get_first_quad_title()

 @property
 def last_analysed(self):
 """Returns the contents of the ``Last Analysed`` field in summary"""
 return self.get_detail(properties=('Lifecycle', 'Last Analyzed')).strip()

[docs] def load_details(self, refresh=False):
 """Navigates to an VM's details page.

 Args:
 refresh: Refreshes the VM page if already there

 Raises:
 VmOrInstanceNotFound:
 When unable to find the VM passed
 """
 navigate_to(self, 'Details', use_resetter=False)
 if refresh:
 toolbar.refresh()
 self.browser.plugin.ensure_page_safe()

[docs] def open_edit(self):
 """Loads up the edit page of the object."""
 self.load_details(refresh=True)
 cfg_btn(self.TO_OPEN_EDIT)

[docs] def open_timelines(self):
 """Navigates to an VM's timeline page.

 Returns:
 :py:class:`TimelinesView` object
 """
 return navigate_to(self, 'Timelines')

[docs] def rediscover(self):
 """Deletes the VM from the provider and lets it discover again"""
 self.delete(from_details=True)
 self.wait_for_delete()
 self.provider.refresh_provider_relationships()
 self.wait_to_appear()

[docs] def rediscover_if_analysis_data_present(self):
 """Rediscovers the object if it has some analysis data present.

 Returns:
 Boolean if the rediscovery happened.
 """
 if self.last_analysed.lower() != 'never':
 self.rediscover()
 return True
 return False

[docs] def refresh_relationships(self, from_details=False, cancel=False, from_any_provider=False):
 """Executes a refresh of relationships.

 Args:
 from_details: Whether or not to perform action from instance details page
 cancel: Whether or not to cancel the refresh relationships action
 """
 if from_details:
 self.load_details()
 else:
 self.find_quadicon(from_any_provider=from_any_provider).check()
 cfg_btn('Refresh Relationships and Power States', invokes_alert=True)
 sel.handle_alert(cancel=cancel)

 @property
 def retirement_date(self):
 """Returns the retirement date of the selected machine, or 'Never'

 Returns:
 :py:class:`str` object
 """
 return self.get_detail(properties=("Lifecycle", "Retirement Date")).strip()

[docs] def smartstate_scan(self, cancel=False, from_details=False):
 """Initiates fleecing from the UI.

 Args:
 cancel: Whether or not to cancel the refresh relationships action
 from_details: Whether or not to perform action from instance details page
 """
 if from_details:
 self.load_details(refresh=True)
 else:
 self.find_quadicon().check()
 cfg_btn('Perform SmartState Analysis', invokes_alert=True)
 sel.handle_alert(cancel=cancel)

[docs] def wait_to_disappear(self, timeout=600, load_details=True):
 """Wait for a VM to disappear within CFME

 Args:
 timeout: time (in seconds) to wait for it to appear
 """
 wait_for(
 lambda: self.exists,
 num_sec=timeout, delay=30, fail_func=sel.refresh, fail_condition=True,
 message="wait for vm to not exist")

 wait_for_delete = wait_to_disappear # An alias for more fitting verbosity

[docs] def wait_to_appear(self, timeout=600, load_details=True):
 """Wait for a VM to appear within CFME

 Args:
 timeout: time (in seconds) to wait for it to appear
 load_details: when found, should it load the vm details
 """
 def _refresh():
 self.provider.refresh_provider_relationships()
 self.appliance.browser.widgetastic.browser.refresh() # strange because ViaUI

 wait_for(
 lambda: self.exists,
 num_sec=timeout, delay=5, fail_func=_refresh,
 message="wait for vm to appear")
 if load_details:
 self.load_details()

[docs] def set_ownership(self, user=None, group=None, click_cancel=False, click_reset=False):
 """Set ownership of the VM/Instance or Template/Image"""
 self.find_quadicon(use_search=False).click()
 cfg_btn('Set Ownership')
 if click_reset:
 action = form_buttons.reset
 msg_assert = partial(
 flash.assert_message_match,
 'All changes have been reset'
)
 elif click_cancel:
 action = form_buttons.cancel
 msg_assert = partial(
 flash.assert_success_message,
 'Set Ownership was cancelled by the user'
)
 else:
 action = form_buttons.save
 msg_assert = partial(
 flash.assert_success_message,
 'Ownership saved for selected {}'.format(self.VM_TYPE)
)
 fill(set_ownership_form, {'user_name': user, 'group_name': group},
 action=action)
 msg_assert()

[docs] def unset_ownership(self):
 """Unset ownership of the VM/Instance or Template/Image"""
 # choose the vm code comes here
 self.find_quadicon(use_search=False).click()
 cfg_btn('Set Ownership')
 fill(set_ownership_form, {'user_name': '<No Owner>',
 'group_name': 'EvmGroup-administrator'},
 action=form_buttons.save)
 flash.assert_success_message('Ownership saved for selected {}'.format(self.VM_TYPE))

[docs]def date_retire_element(fill_data):
 """We need to call this function that will mimic clicking the calendar, picking the date and
 the subsequent callbacks from the server"""
 # TODO: Move the code in the Calendar itself? I did not check other calendars
 if isinstance(fill_data, date):
 date_str = '{}/{}/{}'.format(fill_data.month, fill_data.day, fill_data.year)
 else:
 date_str = str(fill_data)
 sel.execute_script(
 js.update_retirement_date_function_script +
 "updateDate(arguments[0]);",
 date_str
)

[docs]class VM(BaseVM):
 TO_RETIRE = None

 retire_form = Form(fields=[
 ('date_retire',
 AngularCalendarInput("retirement_date",
 "//label[contains(normalize-space(.), 'Retirement Date')]")),
 ('warn', AngularSelect('retirementWarning'))
])

[docs] def retire(self):
 self.load_details(refresh=True)
 lcl_btn(self.TO_RETIRE, invokes_alert=True)
 sel.handle_alert()
 flash.assert_success_message(
 'Retirement initiated for 1 VM and Instance from the {} Database'.format(version.pick({
 version.LOWEST: 'CFME',
 'upstream': 'ManageIQ'})))

[docs] def power_control_from_provider(self):
 raise NotImplementedError("You have to implement power_control_from_provider!")

[docs] def power_control_from_cfme(self, option, cancel=True, from_details=False):
 """Power controls a VM from within CFME

 Args:
 option: corresponds to option values under the power button
 cancel: Whether or not to cancel the power operation on confirmation
 from_details: Whether or not to perform action from instance details page

 Raises:
 OptionNotAvailable: option param is not visible or enabled
 """
 if (self.is_pwr_option_available_in_cfme(option=option, from_details=from_details)):
 pwr_btn(option, invokes_alert=True)
 sel.handle_alert(cancel=cancel, check_present=True)
 logger.info(
 "Power control action of VM/instance %s, option %s, cancel %s executed",
 self.name, option, str(cancel))
 else:
 raise OptionNotAvailable(option + " is not visible or enabled")

[docs] def wait_candu_data_available(self, timeout=600):
 """Waits until C&U data are available for this VM/Instance

 Args:
 timeout: Timeout passed to :py:func:`utils.wait.wait_for`
 """
 self.load_details(refresh=True)
 wait_for(
 lambda: not toolbar.is_greyed('Monitoring', 'Utilization'),
 delay=10, handle_exception=True, num_sec=timeout,
 fail_func=lambda: toolbar.refresh())

[docs] def wait_for_vm_state_change(self, desired_state=None, timeout=300, from_details=False,
 with_relationship_refresh=True, from_any_provider=False):
 """Wait for M to come to desired state.

 This function waits just the needed amount of time thanks to wait_for.

 Args:
 desired_state: on, off, suspended... for available states, see
 :py:class:`EC2Instance` and :py:class:`OpenStackInstance`
 timeout: Specify amount of time (in seconds) to wait
 from_any_provider: Archived/Orphaned vms need this
 Raises:
 TimedOutError:
 When instance does not come up to desired state in specified period of time.
 InstanceNotFound:
 When unable to find the instance passed
 """
 detail_t = ("Power Management", "Power State")

 def _looking_for_state_change():
 if from_details:
 self.load_details(refresh=True)
 return self.get_detail(properties=detail_t) == desired_state
 else:
 return 'currentstate-' + desired_state in self.find_quadicon(
 from_any_provider=from_any_provider).data['state']

 return wait_for(
 _looking_for_state_change,
 num_sec=timeout,
 delay=30,
 fail_func=lambda: self.refresh_relationships(from_details=from_details,
 from_any_provider=from_any_provider) if
 with_relationship_refresh else None)

[docs] def is_pwr_option_available_in_cfme(self, option, from_details=False):
 """Checks to see if a power option is available on the VM

 Args:
 option: corresponds to option values under the power button,
 see :py:class:`EC2Instance` and :py:class:`OpenStackInstance`
 from_details: Whether or not to perform action from instance details page
 """
 if from_details:
 self.load_details(refresh=True)
 else:
 entity = self.find_quadicon()
 entity.check()
 try:
 return not toolbar.is_greyed('Power', option)
 except sel.NoSuchElementException:
 return False

[docs] def delete_from_provider(self):
 logger.info("Begin delete_from_provider")
 if self.provider.mgmt.does_vm_exist(self.name):
 try:
 if self.provider.mgmt.is_vm_suspended(self.name) and self.provider.type != 'azure':
 logger.debug("Powering up VM %s to shut it down correctly on %s.",
 self.name, self.provider.key)
 self.provider.mgmt.start_vm(self.name)
 self.provider.mgmt.wait_vm_steady(self.name)
 self.provider.mgmt.stop_vm(self.name)
 self.provider.mgmt.wait_vm_steady(self.name)
 except exceptions.ActionNotSupported:
 # Action is not supported on mgmt system. Simply continue
 pass
 # One more check (for the suspended one)
 if self.provider.mgmt.does_vm_exist(self.name):
 try:
 logger.info("Mgmt System delete_vm")
 return self.provider.mgmt.delete_vm(self.name)
 except exceptions.VMInstanceNotFound:
 # Does not exist already
 return True
 else:
 return True

[docs] def create_on_provider(self, timeout=900, find_in_cfme=False, **kwargs):
 """Create the VM on the provider

 Args:
 timeout: Number of seconds to wait for the VM to appear in CFME
 Will not wait at all, if set to 0 (Defaults to ``900``)
 """
 deploy_template(self.provider.key, self.name, self.template_name, **kwargs)
 if find_in_cfme:
 self.provider.refresh_provider_relationships()
 self.wait_to_appear(timeout=timeout, load_details=False)

[docs] def does_vm_exist_on_provider(self):
 """Check if VM exists on provider itself"""
 return self.provider.mgmt.does_vm_exist(self.name)

[docs] def set_retirement_date(self, when, warn=None):
 """Sets the retirement date for this Vm object.

 It incorporates some magic to make it work reliably since the retirement form is not very
 pretty and it can't be just "done".

 Args:
 when: When to retire. :py:class:`str` in format mm/dd/yyyy of
 :py:class:`datetime.datetime` or :py:class:`utils.timeutil.parsetime`.
 warn: When to warn, fills the select in the form in case the ``when`` is specified.
 """
 # TODO: refactor for retirement nav destinations and widget form fill when child classes
 self.load_details()
 lcl_btn("Set Retirement Date")
 if callable(self.retire_form.date_retire):
 # It is the old functiton
 sel.wait_for_element("#miq_date_1")
 else:
 sel.wait_for_element(self.retire_form.date_retire)
 if when is None:
 try:
 wait_for(lambda: sel.is_displayed(retire_remove_button), num_sec=5, delay=0.2)
 sel.click(retire_remove_button)
 wait_for(lambda: not sel.is_displayed(retire_remove_button), num_sec=10, delay=0.2)
 sel.click(form_buttons.save)
 except TimedOutError:
 pass
 else:
 if sel.is_displayed(retire_remove_button):
 sel.click(retire_remove_button)
 wait_for(lambda: not sel.is_displayed(retire_remove_button), num_sec=15, delay=0.2)
 fill(self.retire_form.date_retire, when)
 wait_for(lambda: sel.is_displayed(retire_remove_button), num_sec=15, delay=0.2)
 if warn is not None:
 fill(self.retire_form.warn, warn)
 sel.click(form_buttons.save)

[docs] def equal_drift_results(self, row_text, section, *indexes):
 """ Compares drift analysis results of a row specified by it's title text

 Args:
 row_text: Title text of the row to compare
 section: Accordion section where the change happened; this section will be activated
 indexes: Indexes of results to compare starting with 0 for first row (latest result).
 Compares all available drifts, if left empty (default).

 Note:
 There have to be at least 2 drift results available for this to work.

 Returns:
 ``True`` if equal, ``False`` otherwise.
 """
 # mark by indexes or mark all
 self.load_details(refresh=True)
 sel.click(InfoBlock("Properties", "Drift History"))
 if indexes:
 drift_table.select_rows_by_indexes(*indexes)
 else:
 # We can't compare more than 10 drift results at once
 # so when selecting all, we have to limit it to the latest 10
 if len(list(drift_table.rows())) > 10:
 drift_table.select_rows_by_indexes(*range(0, min(10, len)))
 else:
 drift_table.select_all()
 tb.select("Select up to 10 timestamps for Drift Analysis")

 # Make sure the section we need is active/open
 sec_apply_btn = "//div[@id='accordion']/a[contains(normalize-space(text()), 'Apply')]"

 # Deselect other sections
 for other_section in drift_section.child_items():
 drift_section.check_node(other_section.text)
 drift_section.uncheck_node(other_section.text)

 # Activate the required section
 drift_section.check_node(section)
 sel.click(sec_apply_btn)

 if not tb.is_active("All attributes"):
 tb.select("All attributes")
 drift_grid = DriftGrid()
 if any(drift_grid.cell_indicates_change(row_text, i) for i in range(0, len(indexes))):
 return False
 return True

[docs]class Template(BaseVM, _TemplateMixin):
 """A base class for all templates. The constructor is a bit different, it scraps template_name.
 """
 def __init__(self, name, provider, template_name=None):
 # template_name gets ignored because template does not have a template, logically.
 super(Template, self).__init__(name, provider, template_name=None)

[docs] def does_vm_exist_on_provider(self):
 """Check if template exists on provider itself"""
 return self.provider.mgmt.does_template_exist(self.name)

 # For more logical writing of conditions.
 does_template_exist_on_provider = does_vm_exist_on_provider

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/test_framework/pytest_plugin.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.test_framework.pytest_plugin

"""
cfme main plugin

this loads all of the elemental cfme plugins and prepares configuration
"""

import pytest

@pytest.mark.tryfirst
[docs]def pytest_addoption(parser):
 # Create the cfme option group for use in other plugins
 parser.getgroup('cfme', 'cfme: options related to cfme/miq appliances')

[docs]def pytest_configure(config):
 # disable pytest warnings plugin in order to keep our own warning logging
 # we might want to remove this one
 config.pluginmanager.set_blocked('warnings')

[docs]def pytest_collection_finish(session):
 from fixtures.pytest_store import store
 store.terminalreporter.write(
 "Uncollection Stats:\n", bold=True)

 for reason, value in store.uncollection_stats.iteritems():
 store.terminalreporter.write(
 " {}: {}\n".format(reason, value), bold=True)
 store.terminalreporter.write(
 " {} tests left after all uncollections\n".format(len(session.items)),
 bold=True)

pytest_plugins = (
 'markers',
 'fixtures.pytest_store',
 'cfme.test_framework.sprout.plugin',
 'cfme.test_framework.appliance_police',

 'fixtures.portset',

 'markers.manual',
 'markers.polarion', # before artifactor
 'markers.env',
 'fixtures.artifactor_plugin',
 'fixtures.parallelizer',

 'fixtures.prov_filter',

 'fixtures.appliance',
 'fixtures.single_appliance_sprout',
 'fixtures.dev_branch',
 'fixtures.events',
 'fixtures.appliance_update',
 'fixtures.blockers',
 'fixtures.browser',
 'fixtures.cfme_data',
 'fixtures.disable_forgery_protection',
 'fixtures.datafile',
 'fixtures.fixtureconf',
 'fixtures.log',
 'fixtures.maximized',
 'fixtures.merkyl',
 'fixtures.nelson',
 'fixtures.node_annotate',
 'fixtures.page_screenshots',
 'fixtures.perf',
 'fixtures.provider',
 'fixtures.qa_contact',
 'fixtures.randomness',
 'fixtures.rbac',
 'fixtures.screenshots',
 'fixtures.soft_assert',
 'fixtures.ssh_client',
 'fixtures.templateloader',
 'fixtures.terminalreporter',
 'fixtures.ui_coverage',
 'fixtures.version_file',
 'fixtures.version_info',
 'fixtures.video',
 'fixtures.virtual_machine',
 'fixtures.widgets',
 'fixtures.xunit_tools',

 'markers',

 'cfme.fixtures.base',
 'cfme.fixtures.cli',
 'cfme.fixtures.pytest_selenium',
 'cfme.fixtures.configure_auth_mode',
 'cfme.fixtures.rdb',
 'cfme.fixtures.service_fixtures',
 'cfme.fixtures.smtp',
 'cfme.fixtures.tag',
 'cfme.fixtures.vm_name',
 'cfme.fixtures.vporizer',
 'cfme.fixtures.model_collections',

 'cfme.metaplugins',
)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/common/host_views.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.common »

 Source code for cfme.common.host_views

-*- coding: utf-8 -*-
from widgetastic.utils import (
 Parameter,
 ParametrizedLocator,
 Version,
 VersionPick
)
from widgetastic.widget import ParametrizedView, Text, View
from widgetastic_manageiq import (
 BaseEntitiesView,
 NonJSBaseEntity,
 JSBaseEntity,
 BaseListEntity,
 BaseQuadIconEntity,
 BaseTileIconEntity,
 BootstrapTreeview,
 BreadCrumb,
 Button,
 Checkbox,
 Input,
 ItemsToolBarViewSelector,
 PaginationPane,
 SummaryTable,
 Table,
 TimelinesView,
 BaseNonInteractiveEntitiesView
)
from widgetastic_patternfly import (
 BootstrapSelect,
 CheckableBootstrapTreeview,
 Dropdown,
 FlashMessages,
 Tab
)

from cfme.base.login import BaseLoggedInPage

[docs]class ComputeInfrastructureHostsView(BaseLoggedInPage):
 """Common parts for host views."""
 title = Text('.//div[@id="center_div" or @id="main-content"]//h1')
 flash = FlashMessages(
 './/div[@id="flash_msg_div"]/div[@id="flash_text_div" or '
 'contains(@class, "flash_text_div")]'
)

 @property
 def in_compute_infrastructure_hosts(self):
 def _host_page(title):
 return self.navigation.currently_selected == ["Compute", "Infrastructure", title]

 return (
 self.logged_in_as_current_user and (_host_page("Hosts") or _host_page("Nodes") or
 _host_page("Hosts / Nodes"))
)

[docs]class HostQuadIconEntity(BaseQuadIconEntity):
 @property
 def data(self):
 return {
 'no_vm': int(self.browser.text(self.QUADRANT.format(pos="a"))),
 'state': self.browser.get_attribute("style", self.QUADRANT.format(pos="b")),
 'vendor': self.browser.get_attribute("alt", self.QUADRANT.format(pos="c")),
 'creds': self.browser.get_attribute("alt", self.QUADRANT.format(pos="d"))
 }

[docs]class HostTileIconEntity(BaseTileIconEntity):
 quad_icon = ParametrizedView.nested(HostQuadIconEntity)

[docs]class HostListEntity(BaseListEntity):
 pass

[docs]class NonJSHostEntity(NonJSBaseEntity):
 quad_entity = HostQuadIconEntity
 list_entity = HostListEntity
 tile_entity = HostTileIconEntity

[docs]def HostEntity(): # noqa
 """ Temporary wrapper for Host Entity during transition to JS based Entity

 """
 return VersionPick({
 Version.lowest(): NonJSHostEntity,
 '5.9': JSBaseEntity,
 })

[docs]class HostDetailsToolbar(View):
 """Represents host toolbar and its controls."""
 monitoring = Dropdown(text="Monitoring")
 configuration = Dropdown(text="Configuration")
 policy = Dropdown(text="Policy")
 power = Dropdown(text="Power")

 @ParametrizedView.nested
 class custom_button(ParametrizedView): # noqa
 PARAMETERS = ("button_group",)
 _dropdown = Dropdown(text=Parameter("button_group"))

 def item_select(self, button, handle_alert=False):
 self._dropdown.item_select(button, handle_alert=handle_alert)

[docs]class HostDetailsEntities(View):
 """Represents Details page."""
 properties = SummaryTable(title="Properties")
 relationships = SummaryTable(title="Relationships")
 compliance = SummaryTable(title="Compliance")
 configuration = SummaryTable(title="Configuration")
 smart_management = SummaryTable(title="Smart Management")
 security = SummaryTable(title="Security")
 authentication_status = SummaryTable(title="Authentication Status")
 openstack_hardware = SummaryTable(title="Openstack Hardware")

[docs]class HostDetailsView(ComputeInfrastructureHostsView):
 """Main Host details page."""
 breadcrumb = BreadCrumb(locator='.//ol[@class="breadcrumb"]')
 toolbar = View.nested(HostDetailsToolbar)
 entities = View.nested(HostDetailsEntities)

 @property
 def is_displayed(self):
 title = "{name} (Summary)".format(name=self.context["object"].name)
 return self.in_compute_infrastructure_hosts and self.breadcrumb.active_location == title

[docs]class HostDriftHistory(ComputeInfrastructureHostsView):
 breadcrumb = BreadCrumb(locator='.//ol[@class="breadcrumb"]')
 history_table = Table(locator='.//div[@id="main_div"]/table')
 analyze_button = Button(title="Select up to 10 timestamps for Drift Analysis")

 @property
 def is_displayed(self):
 return (
 self.in_compute_infrastructure_hosts and
 self.title.text == "Drift History" and
 self.history_table.is_displayed
)

[docs]class HostDriftAnalysis(ComputeInfrastructureHostsView):
 apply_button = Button("Apply")
 drift_sections = CheckableBootstrapTreeview(tree_id="all_sectionsbox")

 @ParametrizedView.nested
 class drift_analysis(ParametrizedView): # noqa
 PARAMETERS = ("drift_section",)
 CELLS = "../td//i"
 row = Text(ParametrizedLocator(".//div[@id='compare-grid']/"
 "/th[normalize-space(.)={drift_section|quote}]"))

 @property
 def is_changed(self):
 cells = self.browser.elements(self.CELLS, parent=self.row)
 attrs = [self.browser.get_attribute("class", cell) for cell in cells]
 return "drift-delta" in attrs

 @View.nested
 class toolbar(View): # noqa
 all_attributes = Button(title="All attributes")
 different_values_attributes = Button(title="Attributes with different")
 same_values_attributes = Button(title="Attributes with same values")
 details_mode = Button(title="Details Mode")
 exists_mode = Button(title="Exists Mode")

 @property
 def is_displayed(self):
 return (
 self.in_compute_infrastructure_hosts and
 self.title.text == "'{}' Drift Analysis".format(self.context["object"].name)
)

[docs]class HostTimelinesView(TimelinesView, ComputeInfrastructureHostsView):
 """Represents a Host Timelines page."""

 @property
 def is_displayed(self):
 return self.in_compute_infrastructure_hosts and super(TimelinesView, self).is_displayed

[docs]class HostDiscoverView(ComputeInfrastructureHostsView):
 """Discover View from Compute/Infrastructure/Hosts page."""
 esx = Checkbox(name="discover_type_esx")
 ipmi = Checkbox(name="discover_type_ipmi")

 from_ip1 = Input(name="from_first")
 from_ip2 = Input(name="from_second")
 from_ip3 = Input(name="from_third")
 from_ip4 = Input(name="from_fourth")
 to_ip4 = Input(name="to_fourth")

 start_button = Button("Start")
 cancel_button = Button("Cancel")

 @property
 def is_displayed(self):
 return self.in_compute_infrastructure_hosts and self.title.text == "Hosts / Nodes Discovery"

[docs]class HostManagePoliciesView(BaseLoggedInPage):
 """Host's Manage Policies view."""
 policies = BootstrapTreeview("protectbox")
 entities = View.nested(BaseNonInteractiveEntitiesView)
 save_button = Button("Save")
 reset_button = Button("Reset")
 cancel_button = Button("Cancel")

 @property
 def is_displayed(self):
 return False

[docs]class HostsToolbar(View):
 """Represents hosts toolbar and its controls."""
 configuration = Dropdown(text="Configuration")
 policy = Dropdown(text="Policy")
 lifecycle = Dropdown(text="Lifecycle")
 monitoring = Dropdown(text="Monitoring")
 power = Dropdown(text="Power")
 view_selector = View.nested(ItemsToolBarViewSelector)

[docs]class HostSideBar(View):
 """Represents left side bar. It usually contains navigation, filters, etc."""
 pass

[docs]class HostEntitiesView(BaseEntitiesView):
 """Represents the view with different items like hosts."""
 @property
 def entity_class(self):
 return HostEntity().pick(self.browser.product_version)

[docs]class HostsView(ComputeInfrastructureHostsView):
 toolbar = View.nested(HostsToolbar)
 sidebar = View.nested(HostSideBar)
 paginator = PaginationPane()
 including_entities = View.include(HostEntitiesView, use_parent=True)

 @property
 def is_displayed(self):
 return self.in_compute_infrastructure_hosts and self.title.text in "Hosts / Nodes"

[docs]class HostFormView(ComputeInfrastructureHostsView):
 # Info/Settings
 title = Text(".//div[@id='main-content']//h1")
 name = Input(name="name")
 hostname = Input(name="hostname")
 custom_ident = Input(name="custom_1")
 ipmi_address = Input(name="ipmi_address")
 mac_address = Input(name="mac_address")

 @View.nested
 class endpoints(View): # noqa
 @View.nested
 class default(Tab): # noqa
 username = Input(name="default_userid")
 password = Input(name="default_password")
 confirm_password = Input(name="default_verify")
 validate_button = Button("Validate")

 @View.nested
 class remote_login(Tab): # noqa
 TAB_NAME = "Remote Login"
 username = Input(name="remote_userid")
 password = Input(name="remote_password")
 confirm_password = Input(name="remote_verify")
 validate_button = Button("Validate")

 @View.nested
 class web_services(Tab): # noqa
 TAB_NAME = "Web Services"
 username = Input(name="ws_userid")
 password = Input(name="ws_password")
 confirm_password = Input(name="ws_verify")
 validate_button = Button("Validate")

 @View.nested
 class ipmi(Tab): # noqa
 TAB_NAME = "IPMI"
 username = Input(name="ipmi_userid")
 password = Input(name="ipmi_password")
 confirm_password = Input(name="ipmi_verify")
 validate_button = Button("Validate")

 cancel_button = Button("Cancel")

[docs]class HostAddView(HostFormView):
 host_platform = BootstrapSelect("user_assigned_os")
 add_button = Button("Add")
 cancel_button = Button("Cancel")

 @property
 def is_displayed(self):
 return self.in_compute_infrastructure_hosts and self.title.text == "Add New Host"

[docs]class HostEditView(HostFormView):
 """View for editing a single host"""
 save_button = Button("Save")
 reset_button = Button("Reset")
 change_stored_password = Text(".//a[contains(@ng-hide, 'bChangeStoredPassword')]")

 @property
 def is_displayed(self):
 return self.in_compute_infrastructure_hosts and self.title.text == "Info/Settings"

[docs]class HostsEditView(HostEditView):
 """View when editing multiple hosts
 Restricted to endpoints section of the form
 Title changes
 Must select host before validation
 """
 validation_host = BootstrapSelect('validate_id') # only shown when editing multiple hosts

 @property
 def is_displayed(self):
 return self.in_compute_infrastructure_hosts and self.title.text == 'Credentials/Settings'

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/ansible/playbooks.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.ansible.playbooks

-*- coding: utf-8 -*-
"""Page model for Automation/Anisble/Playbooks"""
from navmazing import NavigateToAttribute, NavigateToSibling
from widgetastic.widget import Text, View
from widgetastic_manageiq import (
 BaseEntitiesView,
 BaseListEntity,
 BaseQuadIconEntity,
 BaseTileIconEntity,
 BreadCrumb,
 ItemsToolBarViewSelector,
 NonJSBaseEntity,
 PaginationPane,
 SummaryTable,
)
from widgetastic_patternfly import Button, Dropdown, FlashMessages

from cfme.base import Server
from cfme.base.login import BaseLoggedInPage
from cfme.exceptions import ItemNotFound
from cfme.utils.appliance import BaseCollection, BaseEntity
from cfme.utils.appliance.implementations.ui import navigator, navigate_to, CFMENavigateStep

[docs]class PlaybookBaseView(BaseLoggedInPage):
 flash = FlashMessages('.//div[starts-with(@class, "flash_text_div") or @id="flash_text_div"]')
 title = Text(locator='.//div[@id="main-content"]//h1')

 @property
 def in_ansible_playbooks(self):
 return (
 self.logged_in_as_current_user and
 self.navigation.currently_selected == ["Automation", "Ansible", "Playbooks"]
)

[docs]class PlaybooksToolbar(View):
 view_selector = View.nested(ItemsToolBarViewSelector)
 download = Dropdown("Download")

[docs]class PlaybookGridIconEntity(BaseQuadIconEntity):
 pass

[docs]class PlaybookTileIconEntity(BaseTileIconEntity):
 pass

[docs]class PlaybookListEntity(BaseListEntity):
 pass

[docs]class PlaybookEntity(NonJSBaseEntity):
 grid_entity = PlaybookGridIconEntity
 tile_entity = PlaybookTileIconEntity
 list_entity = PlaybookListEntity

[docs]class PlaybookDetailsEntities(View):
 properties = SummaryTable(title="Properties")
 relationships = SummaryTable(title="Relationships")
 smart_management = SummaryTable(title="Smart Management")

[docs]class PlaybookDetailsView(PlaybookBaseView):
 download_button = Button(title="Download summary in PDF format")
 breadcrumb = BreadCrumb(locator='.//ol[@class="breadcrumb"]')
 entities = View.nested(PlaybookDetailsEntities)

 @property
 def is_displayed(self):
 return (
 self.in_ansible_repositories and
 self.title.text == "{} (Summary)".format(self.context["object"].name)
)

[docs]class PlaybookEntitiesView(BaseEntitiesView):
 """Represents the view with different items like hosts."""

 @property
 def entity_class(self):
 return PlaybookEntity

[docs]class PlaybooksView(PlaybookBaseView):
 toolbar = View.nested(PlaybooksToolbar)
 paginator = View.nested(PaginationPane)
 including_entities = View.include(PlaybookEntitiesView, use_parent=True)

 @property
 def is_displayed(self):
 return (
 self.in_ansible_playbooks and
 self.title.text == "Playbooks (Embedded Ansible)"
)

[docs]class PlaybooksCollection(BaseCollection):
 """Collection object for the :py:class:`Playbook`."""

 def __init__(self, appliance, parent_repository):
 self.appliance = appliance
 self.parent = parent_repository

[docs] def instantiate(self, name, repository):
 return Playbook(self, name, repository)

[docs] def all(self):
 view = navigate_to(Server, "AnsiblePlaybooks")
 playbooks = []
 for entity in view.entities.get_all(surf_pages=True):
 if entity.data["Repository"] == self.parent.name:
 playbooks.append(
 self.instantiate(entity.data["Name"], entity.data["Repository"])
)
 return playbooks

[docs]class Playbook(BaseEntity):
 """A class representing one Embedded Ansible playbook in the UI."""

 def __init__(self, collection, name, repository):
 self.collection = collection
 self.appliance = self.collection.appliance
 self.name = name
 self.repository = repository

 @property
 def exists(self):
 try:
 navigate_to(self, "Details")
 return True
 except ItemNotFound:
 return False

@navigator.register(Server)
[docs]class AnsiblePlaybooks(CFMENavigateStep):
 VIEW = PlaybooksView
 prerequisite = NavigateToSibling("LoggedIn")

[docs] def step(self):
 self.prerequisite_view.navigation.select("Automation", "Ansible", "Playbooks")

@navigator.register(Playbook)
[docs]class Details(CFMENavigateStep):
 VIEW = PlaybookDetailsView
 prerequisite = NavigateToAttribute("appliance.server", "AnsiblePlaybooks")

[docs] def step(self):
 self.prerequisite_view.entities.get_entity(by_name=self.obj.name, surf_pages=True).click()

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/common/vm_console.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.common »

 Source code for cfme.common.vm_console

-*- coding: utf-8 -*-
"""
Module containing classes with common behaviour for consoles of both VMs and Instances of all types.
"""

import base64
import re
import tempfile
import time

from cfme.exceptions import ItemNotFound
from PIL import Image, ImageFilter
from pytesseract import image_to_string
from selenium.webdriver.common.keys import Keys
from cfme.utils.log import logger
from cfme.utils.pretty import Pretty
from wait_for import wait_for, TimedOutError

[docs]class VMConsole(Pretty):
 """Class to manage the VM Console. Presently, only support HTML5 Console."""

 pretty_attrs = ['appliance_handle', 'browser', 'console_handle', 'name']

 def __init__(self, vm, console_handle, appliance_handle):
 self.name = vm.name
 self.selenium = vm.appliance.browser.widgetastic.selenium
 self.console_handle = console_handle
 self.appliance_handle = appliance_handle
 self.provider = vm.provider

 ###
 # Methods
 #
[docs] def get_banner(self):
 """Get the text of the banner above the console screen."""
 self.switch_to_console()
 # We know the widget may or may not be available right away
 # so we do this in a try-catch to ensure the code is not stopped
 # due to an exception being thrown.
 try:
 text = self.provider.get_console_connection_status()
 except ItemNotFound:
 logger.exception('Could not find banner element.')
 return None
 finally:
 self.switch_to_appliance()

 logger.info('Read following text from console banner: %s', text)
 return text

[docs] def get_screen(self, timeout=15):
 """
 Retrieve the bit map from the canvas widget that represents the console screen.

 Returns it as a binary string.

 Implementation:
 The canvas tag has a method toDataURL() which one can use in javascript to
 obtain the canvas image base64 encoded. Examples of how to do this can be
 seen here:

 https://qxf2.com/blog/selenium-html5-canvas-verify-what-was-drawn/
 https://stackoverflow.com/questions/38316402/how-to-save-a-canvas-as-png-in-selenium
 """
 # Internal function to use in wait_for(). We need to try to get the
 # canvas element within a try-catch, that is in within a wait_for() so
 # we can handle it not showing up right away as it is wont to do on
 # at least RHV providers.
 def _get_canvas_element(provider):
 try:
 canvas = provider.get_remote_console_canvas()
 except ItemNotFound:
 logger.exception('Could not find canvas element.')
 return False

 return canvas

 self.switch_to_console()

 # Get the canvas element
 canvas, wait = wait_for(func=_get_canvas_element, func_args=[self.provider],
 delay=1, handle_exceptions=True,
 num_sec=timeout)
 logger.info("canvas: {}\n".format(canvas))

 # Now run some java script to get the contents of the canvas element
 # base 64 encoded.
 image_base64_url = self.selenium.execute_script(
 "return arguments[0].toDataURL('image/jpeg',1);",
 canvas
)

 # The results will look like:
 #
 # ...
 #
 # So parse out the data from the non image data from the URL:
 image_base64 = image_base64_url.split(",")[1]

 # Now convert to binary:
 image_jpeg = base64.b64decode(image_base64)

 self.switch_to_appliance()
 return image_jpeg

[docs] def get_screen_text(self):
 """
 Return the text from a text console.

 Uses OCR to scrape the text from the console image taken at the time of the call.
 """
 image_str = self.get_screen()

 # Write the image string to a file as pytesseract requires
 # a file, and doesn't take a string.
 tmp_file = tempfile.NamedTemporaryFile(suffix='.jpeg')
 tmp_file.write(image_str)
 tmp_file.flush()
 tmp_file_name = tmp_file.name
 # Open Image file, resize it to high resolution, sharpen it for clearer text
 # and then run image_to_string operation which returns unicode that needs to
 # be converted to utf-8 which gives us text [typr(text) == 'str']
 # higher resolution allows tesseract to recognize text correctly
 text = (image_to_string(((Image.open(tmp_file_name)).resize((7680, 4320),
 Image.ANTIALIAS)).filter(ImageFilter.SHARPEN), lang='eng',
 config='--user-words eng.user-words')).encode('utf-8')
 tmp_file.close()

 logger.info('screen text:{}'.format(text))
 return text

[docs] def is_connected(self):
 """Wait for the banner on the console to say the console is connected."""
 banner = self.get_banner()
 if banner is None:
 return False
 return re.match('Connected', banner) is not None

[docs] def send_keys(self, text):
 """Send text to the console."""
 self.switch_to_console()
 canvas = self.provider.get_remote_console_canvas()
 logger.info("Sending following Keys to Console {}".format(text))
 for character in text:
 canvas.send_keys(character)
 # time.sleep() is used as a short delay between two keystrokes.
 # If keys are sent to canvas any faster, canvas fails to receive them.
 time.sleep(0.3)
 canvas.send_keys(Keys.ENTER)
 self.switch_to_appliance()

[docs] def send_ctrl_alt_delete(self):
 """Press the ctrl-alt-delete button in the console tab."""
 self.switch_to_console()
 ctrl_alt_del_btn = self.provider.get_console_ctrl_alt_del_btn()
 logger.info("Sending following Keys to Console CTRL+ALT+DEL")
 ctrl_alt_del_btn.click()
 self.switch_to_appliance()

[docs] def send_fullscreen(self):
 """Press the fullscreen button in the console tab."""
 self.switch_to_console()
 fullscreen_btn = self.provider.get_console_fullscreen_btn()
 logger.info("Sending following Keys to Console Toggle Fullscreen")
 before_height = self.selenium.get_window_size()['height']
 fullscreen_btn.click()
 after_height = self.selenium.get_window_size()['height']
 fullscreen_btn.click()
 self.switch_to_console()
 logger.info("Height before fullscreen: {}\n Height after fullscreen:{}\n".format(
 before_height, after_height))
 if after_height > before_height:
 return True
 return False

[docs] def switch_to_appliance(self):
 """Switch focus to appliance tab/window."""
 logger.info("Switching to appliance: window handle = {}".format(self.appliance_handle))
 self.selenium.switch_to_window(self.appliance_handle)

[docs] def switch_to_console(self):
 """Switch focus to console tab/window."""
 logger.info("Switching to console: window handle = {}".format(self.console_handle))
 self.selenium.switch_to_window(self.console_handle)

[docs] def wait_for_connect(self, timeout=30):
 """Wait for as long as the specified/default timeout for the console to be connected."""
 try:
 logger.info('Waiting for console connection (timeout={})'.format(timeout))
 wait_for(func=lambda: self.is_connected(),
 delay=1, handle_exceptions=True,
 num_sec=timeout)
 return True
 except TimedOutError:
 return False

[docs] def close_console_window(self):
 """Attempt to close Console window at the end of test."""
 if self.console_handle is not None:
 self.switch_to_console()
 self.selenium.close()
 logger.info("Browser window/tab containing Console was closed.")
 self.switch_to_appliance()

[docs] def find_text_on_screen(self, text_to_find, current_line=False):
 """Find particular text is present on Screen.

 This function uses get_screen_text function to get string containing
 the text on the screen and then tries to match it against the 'text_to_find'.

 Args:
 text_to_find: This is what re.search will try to search for on screen.
 Returns:
 If the match is found returns True else False.
 """
 # With provider RHOS7-GA, VMs spawned from Cirros template goes into screensaver mode
 # sometimes, and shows a blank black screen, which causes test failures. To avoid that,
 # and wake Cirros up from screensaver, following check is applied ,"\n" is sent if required.
 if not self.get_screen_text():
 self.send_keys("\n")
 if current_line:
 return re.search(text_to_find, self.get_screen_text().split('\n')[-1]) is not None
 return re.search(text_to_find, self.get_screen_text()) is not None

[docs] def wait_for_text(self, timeout=45, text_to_find="", to_disappear=False):
 """Wait for as long as the specified/default timeout for the 'text' to show up on screen.

 Args:
 timeout: Wait Time before wait_for function times out.
 text_to_find: value passed to find_text_on_screen function
 to_disappear: if set to True, function will wait for text_to_find to disappear
 from screen.
 """
 if not text_to_find:
 return None
 try:
 if to_disappear:
 logger.info("Waiting for {} to disappear from screen".format(text_to_find))
 result = wait_for(func=lambda: to_disappear != self.find_text_on_screen(text_to_find),
 delay=5,
 num_sec=timeout)
 return result.out
 except TimedOutError:
 return None

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/test_framework/sprout/plugin.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.test_framework.sprout.plugin

import re
import pytest
import random
import attr
from urlparse import urlparse
from threading import Timer
from cfme.utils import at_exit, conf
from cfme.utils.appliance import IPAppliance, stack as appliance_stack
todo: use own logger after logfix merge
from cfme.utils.log import logger as log
from cfme.utils.path import project_path
from .client import SproutClient, SproutException
from cfme.utils.wait import wait_for

_appliance_help = '''specify appliance URLs to use for distributed testing.
this option can be specified more than once, and must be specified at least two times'''

[docs]def pytest_addoption(parser):
 group = parser.getgroup("cfme")
 group._addoption(
 '--appliance', dest='appliances', action='append', metavar='base_url', help=_appliance_help,
 default=[])
 group._addoption('--use-sprout', dest='use_sprout', action='store_true',
 default=False, help="Use Sprout for provisioning appliances.")
 group._addoption('--sprout-appliances', dest='sprout_appliances', type=int,
 default=1, help="How many Sprout appliances to use?.")
 group._addoption('--sprout-timeout', dest='sprout_timeout', type=int,
 default=60, help="How many minutes is the lease timeout.")
 group._addoption('--sprout-provision-timeout', dest='sprout_provision_timeout', type=int,
 default=60, help="How many minutes to wait for appliances provisioned.")
 group._addoption(
 '--sprout-group', dest='sprout_group', default=None, help="Which stream to use.")
 group._addoption(
 '--sprout-version', dest='sprout_version', default=None, help="Which version to use.")
 group._addoption(
 '--sprout-date', dest='sprout_date', default=None, help="Which date to use.")
 group._addoption(
 '--sprout-desc', dest='sprout_desc', default=None, help="Set description of the pool.")
 group._addoption('--sprout-override-ram', dest='sprout_override_ram', type=int,
 default=0, help="Override RAM (MB). 0 means no override.")
 group._addoption('--sprout-override-cpu', dest='sprout_override_cpu', type=int,
 default=0, help="Override CPU core count. 0 means no override.")
 group._addoption(
 '--sprout-provider', dest='sprout_provider', default=None, help="Which provider to use.")

[docs]def dump_pool_info(log, pool_data):
 log.info("Fulfilled: %s", pool_data["fulfilled"])
 log.info("Progress: %s%%", pool_data["progress"])
 log.info("Appliances:")
 for appliance in pool_data["appliances"]:
 name = appliance["name"]
 log.info("\t%s:", name)
 for key in sorted(appliance.keys()):
 if key == "name":
 continue
 log.info("\t\t%s: %s", key, appliance[key])

@pytest.mark.tryfirst
[docs]def pytest_configure(config):
 if config.getoption("appliances"):
 return
 if not config.getoption('--use-sprout'):
 return

 provision_request = SproutProvisioningRequest.from_config(config)

 mgr = config._sprout_mgr = SproutManager()
 requested_appliances = mgr.request_appliances(provision_request)
 config.option.appliances[:] = []
 appliances = config.option.appliances
 # Push an appliance to the stack to have proper reference for test collection
 # FIXME: this is a bad hack based on the need for controll of collection partitioning
 appliance_stack.push(
 IPAppliance(address=requested_appliances[0]["ip_address"]))
 log.info("Appliances were provided:")
 for appliance in requested_appliances:
 url = "https://{}/".format(appliance["ip_address"])
 appliances.append(url)
 log.info("- %s is %s", url, appliance['name'])

 mgr.reset_timer()
 # Set the base_url for collection purposes on the first appliance
 conf.runtime["env"]["base_url"] = appliances[0]
 # Retrieve and print the template_name for Jenkins to pick up
 template_name = requested_appliances[0]["template_name"]
 conf.runtime["cfme_data"]["basic_info"]["appliance_template"] = template_name
 log.info("appliance_template: %s", template_name)
 with project_path.join('.appliance_template').open('w') as template_file:
 template_file.write('export appliance_template="{}"'.format(template_name))
 log.info("Sprout setup finished.")

 config.pluginmanager.register(ShutdownPlugin())

@attr.s
[docs]class SproutProvisioningRequest(object):
 """data holder for provisioning metadata"""

 group = attr.ib()
 count = attr.ib()
 version = attr.ib()
 provider = attr.ib()
 date = attr.ib()
 lease_time = attr.ib()
 desc = attr.ib()
 provision_timeout = attr.ib()

 cpu = attr.ib()
 ram = attr.ib()

 @classmethod
[docs] def from_config(cls, config):
 return cls(
 group=config.option.sprout_group,
 count=config.option.sprout_appliances,
 version=config.option.sprout_version,
 provider=config.option.sprout_provider,
 date=config.option.sprout_date,
 lease_time=config.option.sprout_timeout,
 desc=config.option.sprout_desc,
 provision_timeout=config.option.sprout_provision_timeout,
 cpu=config.option.sprout_override_cpu or None,
 ram=config.option.sprout_override_ram or None,
)

@attr.s
[docs]class SproutManager(object):
 client = attr.ib(default=attr.Factory(SproutClient.from_config))
 pool = attr.ib(init=False, default=None)
 lease_time = attr.ib(init=False, default=None, repr=False)
 timer = attr.ib(init=False, default=None, repr=False)

[docs] def request_appliances(self, provision_request):
 self.request_pool(provision_request)

 try:
 result = wait_for(
 self.check_fullfilled,
 num_sec=provision_request.provision_timeout * 60,
 delay=5,
 message="requesting appliances was fulfilled"
)
 except Exception:
 pool = self.request_check()
 dump_pool_info(log, pool)
 log.debug("Destroying the pool on error.")
 self.destroy_pool()
 raise
 else:
 at_exit(self.destroy_pool)
 pool = self.request_check()
 dump_pool_info(log, pool)

 log.info("Provisioning took %.1f seconds", result.duration)
 return pool["appliances"]

[docs] def request_pool(self, provision_request):
 log.info("Requesting %s appliances from Sprout at %s",
 provision_request.count, self.client.api_entry)
 self.lease_time = provision_request.lease_time
 if provision_request.desc is not None:
 jenkins_job = re.findall(r"Jenkins.*[^\d+$]", provision_request.desc)
 if jenkins_job:
 self.clean_jenkins_job(jenkins_job)

 self.pool = self.client.request_appliances(
 provision_request.group,
 count=provision_request.count,
 version=provision_request.version,
 provider=provision_request.provider,
 date=provision_request.date,
 lease_time=provision_request.lease_time,
 cpu=provision_request.cpu,
 ram=provision_request.ram,
)
 log.info("Pool %s. Waiting for fulfillment ...", self.pool)

 if provision_request.desc is not None:
 self.client.set_pool_description(self.pool, provision_request.desc)

[docs] def destroy_pool(self):
 try:
 self.client.destroy_pool(self.pool)
 except Exception:
 pass

[docs] def request_check(self):
 return self.client.request_check(self.pool)

[docs] def check_fullfilled(self):
 try:
 result = self.request_check()
 except SproutException as e:
 # TODO: ensure we only exit this way on sprout usage
 self.destroy_pool()
 log.error("sprout pool could not be fulfilled\n%s", str(e))
 pytest.exit(1)

 log.debug("fulfilled at %f %%", result['progress'])
 return result["fulfilled"]

[docs] def clean_jenkins_job(self, jenkins_job):
 try:
 log.info(
 "Check if pool already exists for this %r Jenkins job", jenkins_job[0])
 jenkins_job_pools = self.client.find_pools_by_description(jenkins_job[0], partial=True)
 for pool in jenkins_job_pools:
 # Some jobs have overlapping descriptions, sprout API doesn't support regex
 # job-name-12345 vs job-name-master-12345
 # the partial match alone will catch both of these, use regex to confirm pool
 # description is an accurate match
 if self.client.get_pool_description(pool) == '{}{}'.format(jenkins_job[0], pool):
 log.info("Destroying the old pool %s for %r job.", pool, jenkins_job[0])
 self.client.destroy_pool(pool)
 else:
 log.info('Skipped pool destroy due to potential pool description overlap: %r',
 jenkins_job[0])
 except Exception:
 log.exception(
 "Exception occurred during old pool deletion, this can be ignored"
 "proceeding to Request new pool")

[docs] def reset_timer(self, timeout=None):
 if self.pool is None:
 if self.timer:
 self.timer.cancel() # Cancel it anyway
 log.info("Sprout timer cancelled")
 return
 if self.timer:
 self.timer.cancel()
 timeout = timeout or ((self.lease_time / 2) * 60)
 self.timer = Timer(timeout, self.ping_pool)
 self.timer.daemon = True
 self.timer.start()

[docs] def ping_pool(self):
 timeout = None # None - keep the half of the lease time
 try:
 self.client.prolong_appliance_pool_lease(self.pool, self.lease_time)
 except SproutException as e:
 log.exception(
 "Pool %s does not exist any more, disabling the timer.\n"
 "This can happen before the tests are shut down "
 "(last deleted appliance deleted the pool\n"
 "> The exception was: %s", self.pool, str(e))
 self.pool = None # Will disable the timer in next reset call.
 except Exception as e:
 log.error('An unexpected error happened during interaction with Sprout:')
 log.exception(e)
 # Have a shorter timer now (1 min), because something is happening right now
 # WE have a reserve of half the lease time so that should be enough time to
 # solve any minor problems
 # Adding a 0-10 extra random sec just for sake of dispersing any possible "swarm"
 timeout = 60 + random.randint(0, 10)
 finally:
 self.reset_timer(timeout=timeout)

[docs]def pytest_addhooks(pluginmanager):
 pluginmanager.add_hookspecs(NewHooks)

[docs]class ShutdownPlugin(object):

[docs] def pytest_miq_node_shutdown(self, config, nodeinfo):
 if config.getoption('ui_coverage'):
 # TODO: Ensure this gets called after pytest_sessionfinish
 # This disables the appliance deletion when ui coverage is on. ^
 # This is because we need one of the appliances to do the collection for us
 return
 if nodeinfo:
 netloc = urlparse(nodeinfo).netloc
 ip_address = netloc.split(":")[0]
 log.debug("Trying to end appliance {}".format(ip_address))
 if config.getoption('--use-sprout'):
 try:
 call_method = config._sprout_mgr.client.call_method
 log.debug("appliance data %r", call_method('appliance_data', ip_address))
 log.debug(
 "destroy appliance result: %r",
 call_method('destroy_appliance', ip_address))
 except Exception as e:
 log.debug('Error trying to end sprout appliance %s', ip_address)
 log.debug(e)
 else:
 log.debug('Not a sprout run so not doing anything for %s', ip_address)
 else:
 log.debug('The IP address was not present - not terminating any appliance')

[docs]class NewHooks(object):
[docs] def pytest_miq_node_shutdown(self, config, nodeinfo):
 pass

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/common/vm_views.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.common »

 Source code for cfme.common.vm_views

-*- coding: utf-8 -*-
import os
from time import sleep

from widgetastic.widget import View, Text, TextInput, Checkbox, ParametrizedView
from widgetastic_patternfly import (
 Dropdown, BootstrapSelect, FlashMessages, Tab, Input, BootstrapTreeview)
from widgetastic_manageiq import BreadCrumb

from cfme.base.login import BaseLoggedInPage
from cfme.exceptions import TemplateNotFound
from widgetastic_manageiq import (
 Calendar, SummaryTable, Button, ItemsToolBarViewSelector, Table, MultiBoxSelect,
 CheckableManageIQTree, VersionPick, Version, BaseEntitiesView, NonJSBaseEntity, BaseListEntity,
 BaseQuadIconEntity, BaseTileIconEntity, JSBaseEntity, BaseNonInteractiveEntitiesView)

[docs]class InstanceQuadIconEntity(BaseQuadIconEntity):
 """ Provider child of Quad Icon entity

 """
 @property
 def data(self):
 br = self.browser
 try:
 if br.product_version > '5.8':
 state = br.get_attribute('style', self.QUADRANT.format(pos='b'))
 state = state.split('"')[1]
 else:
 state = br.get_attribute('src', self.QUADRANT.format(pos='b'))

 state = os.path.split(state)[1]
 state = os.path.splitext(state)[0]
 except IndexError:
 state = ''

 if br.is_displayed(self.QUADRANT.format(pos='g')):
 policy = br.get_attribute('src', self.QUADRANT.format(pos='g'))
 else:
 policy = None

 return {
 "os": br.get_attribute('src', self.QUADRANT.format(pos='a')),
 "state": state,
 "vendor": br.get_attribute('src', self.QUADRANT.format(pos='c')),
 "no_snapshot": br.text(self.QUADRANT.format(pos='d')),
 "policy": policy,
 }

[docs]class InstanceTileIconEntity(BaseTileIconEntity):
 """ Provider child of Tile Icon entity

 """
 quad_icon = ParametrizedView.nested(InstanceQuadIconEntity)

[docs]class InstanceListEntity(BaseListEntity):
 """ Provider child of List entity

 """
 pass

[docs]class NonJSInstanceEntity(NonJSBaseEntity):
 """ Provider child of Proxy entity

 """
 quad_entity = InstanceQuadIconEntity
 list_entity = InstanceListEntity
 tile_entity = InstanceTileIconEntity

[docs]def InstanceEntity(): # noqa
 """ Temporary wrapper for Instance Entity during transition to JS based Entity

 """
 return VersionPick({
 Version.lowest(): NonJSInstanceEntity,
 '5.9': JSBaseEntity,
 })

[docs]class SelectTable(Table):
 """Wigdet for non-editable table. used for selecting value"""
[docs] def fill(self, values):
 """Clicks on item - fill by selecting required value"""
 value = values.get('name', '<None>')
 changed = False
 if value != self.currently_selected:
 changed = True
 self.row(name=value).click()
 return changed

 @property
 def currently_selected(self):
 """Return Name of the selected row"""
 selected = self.browser.elements(
 ".//tr[@class='selected']/td[1]",
 parent=self)
 result = map(self.browser.text, selected)
 if len(result) == 0:
 self.logger.info('Nothing is currently selected')
 return None
 else:
 return result[0]

[docs] def read(self):
 return self.currently_selected

[docs] def read_content(self):
 """This is a default Table.read() method for those who will need table content"""
 return super(SelectTable, self).read()

[docs]class VMToolbar(View):
 """
 Toolbar view for vms/instances collection destinations
 """
 reload = Button(title='Reload current display')
 configuration = Dropdown('Configuration')
 policy = Dropdown('Policy')
 lifecycle = Dropdown('Lifecycle')
 power = Dropdown('Power Operations') # title
 download = Dropdown('Download')

 view_selector = View.nested(ItemsToolBarViewSelector)

[docs]class VMEntities(BaseEntitiesView):
 """
 Entities view for vms/instances collection destinations
 """
 @property
 def entity_class(self):
 return InstanceEntity().pick(self.browser.product_version)

 adv_search_clear = Text('//div[@id="main-content"]//h1//span[@id="clear_search"]/a')

[docs]class VMDetailsEntities(View):
 """
 Details entities view for vms/instances details destinations

 VM's have 3-4 more tables, should inherit and add them there.
 """
 title = Text('//div[@id="main-content"]//h1//span[@id="explorer_title_text"]')
 flash = FlashMessages('.//div[@id="flash_msg_div"]'
 '/div[@id="flash_text_div" or contains(@class, "flash_text_div")]')
 properties = SummaryTable(title='Properties')
 lifecycle = SummaryTable(title='Lifecycle')
 relationships = SummaryTable(title='Relationships')
 vmsafe = SummaryTable(title='VMsafe')
 attributes = SummaryTable(title='Custom Attributes') # Only displayed when assigned
 compliance = SummaryTable(title='Compliance')
 power_management = SummaryTable(title='Power Management')
 security = SummaryTable(title='Security')
 configuration = SummaryTable(title='Configuration')
 diagnostics = SummaryTable(title='Diagnostics')
 smart_management = SummaryTable(title='Smart Management')

[docs]class BasicProvisionFormView(View):
 @View.nested
 class request(Tab): # noqa
 TAB_NAME = 'Request'
 email = Input(name='requester__owner_email')
 first_name = Input(name='requester__owner_first_name')
 last_name = Input(name='requester__owner_last_name')
 notes = Input(name='requester__request_notes')
 manager_name = Input(name='requester__owner_manager')

 @View.nested
 class purpose(Tab): # noqa
 TAB_NAME = 'Purpose'
 apply_tags = BootstrapTreeview('all_tags_treebox')

 @View.nested
 class catalog(Tab): # noqa
 TAB_NAME = 'Catalog'
 vm_name = Input(name='service__vm_name')
 vm_description = Input(name='service__vm_description')
 vm_filter = BootstrapSelect('service__vm_filter')
 num_vms = BootstrapSelect('service__number_of_vms')
 catalog_name = SelectTable('//div[@id="prov_vm_div"]/table')
 provision_type = BootstrapSelect('service__provision_type')
 linked_clone = Input(name='service__linked_clone')
 pxe_server = BootstrapSelect('service__pxe_server_id')
 pxe_image = SelectTable('//div[@id="prov_pxe_img_div"]/table')
 iso_file = SelectTable('//div[@id="prov_iso_img_div"]/table')

 @View.nested
 class environment(Tab): # noqa
 TAB_NAME = 'Environment'
 automatic_placement = Checkbox(id='environment__placement_auto')
 # Cloud
 availability_zone = BootstrapSelect('environment__placement_availability_zone')
 cloud_network = BootstrapSelect('environment__cloud_network')
 cloud_subnet = BootstrapSelect('environment__cloud_subnet')
 security_groups = BootstrapSelect('environment__security_groups')
 resource_groups = BootstrapSelect('environment__resource_group')
 public_ip_address = BootstrapSelect('environment__floating_ip_address')
 # Infra
 provider_name = BootstrapSelect('environment__placement_ems_name')
 datacenter = BootstrapSelect('environment__placement_dc_name')
 cluster = BootstrapSelect('environment__placement_cluster_name')
 resource_pool = BootstrapSelect('environment__placement_rp_name')
 folder = BootstrapSelect('environment__placement_folder_name')
 host_filter = BootstrapSelect('environment__host_filter')
 host_name = SelectTable('//div[@id="prov_host_div"]/table')
 datastore_create = Input('environment__new_datastore_create')
 datastore_filter = BootstrapSelect('environment__ds_filter')
 datastore_name = SelectTable('//div[@id="prov_ds_div"]/table')

 @View.nested
 class hardware(Tab): # noqa
 TAB_NAME = 'Hardware'
 num_sockets = BootstrapSelect('hardware__number_of_sockets')
 cores_per_socket = BootstrapSelect('hardware__cores_per_socket')
 num_cpus = BootstrapSelect('hardware__number_of_cpus')
 memory = BootstrapSelect('hardware__vm_memory')
 # TODO patternfly radio widget, RadioGroup doesn't apply here
 # disk_format, hardware__disk_format')
 vm_limit_cpu = Input(name='hardware__cpu_limit')
 vm_limit_memory = Input(name='hardware__memory_limit')
 vm_reserve_cpu = Input(name='hardware__cpu_reserve')
 vm_reserve_memory = Input(name='hardware__memory_reserve')

 @View.nested
 class network(Tab): # noqa
 TAB_NAME = 'Network'
 vlan = BootstrapSelect('network__vlan')

 @View.nested
 class properties(Tab): # noqa
 TAB_NAME = 'Properties'
 instance_type = BootstrapSelect('hardware__instance_type')
 guest_keypair = BootstrapSelect('hardware__guest_access_key_pair')
 hardware_monitoring = BootstrapSelect('hardware__monitoring')
 boot_disk_size = BootstrapSelect('hardware__boot_disk_size')
 # GCE
 is_preemtible = Input(name='hardware__is_preemptible')

 @View.nested
 class customize(Tab): # noqa
 TAB_NAME = 'Customize'
 # Common
 dns_servers = Input(name='customize__dns_servers')
 dns_suffixes = Input(name='customize__dns_suffixes')
 customize_type = BootstrapSelect('customize__sysprep_enabled')
 specification_name = Table('//div[@id="prov_vc_div"]/table')
 admin_username = Input(name='customize__root_username')
 root_password = Input(name='customize__root_password')
 linux_host_name = Input(name='customize__linux_host_name')
 linux_domain_name = Input(name='customize__linux_domain_name')
 ip_address = Input(name='customize__ip_addr')
 subnet_mask = Input(name='customize__subnet_mask')
 gateway = Input(name='customize__gateway')
 custom_template = SelectTable('//div[@id="prov_template_div"]/table')
 hostname = Input(name='customize__hostname')

 @View.nested
 class schedule(Tab): # noqa
 TAB_NAME = 'Schedule'
 # Common
 # TODO radio widget # schedule_type = Radio('schedule__schedule_type')
 provision_date = Calendar('miq_date_1')
 provision_start_hour = BootstrapSelect('start_hour')
 provision_start_min = BootstrapSelect('start_min')
 power_on = Input(name='schedule__vm_auto_start')
 retirement = BootstrapSelect('schedule__retirement')
 retirement_warning = BootstrapSelect('schedule__retirement_warn')
 # Infra
 stateless = Input(name='schedule__stateless')

[docs]class ProvisionView(BaseLoggedInPage):
 """
 The provisioning view, with nested ProvisioningForm as `form` attribute.
 Handles template selection before Provisioning form with `before_fill` method
 """
 title = Text('#explorer_title_text')
 breadcrumb = BreadCrumb()

 @View.nested
 class form(BasicProvisionFormView): # noqa
 """First page of provision form is image selection
 Second page of form is tabbed with nested views
 """
 image_table = Table('//div[@id="pre_prov_div"]//table')
 continue_button = Button('Continue') # Continue button on 1st page, image selection
 submit_button = Button('Submit') # Submit for 2nd page, tabular form
 cancel_button = Button('Cancel')

 def before_fill(self, values):
 # Provision from image is a two part form,
 # this completes the image selection before the tabular parent form is filled
 template_name = values.get('template_name',
 self.parent_view.context['object'].template_name)
 provider_name = self.parent_view.context['object'].provider.name
 try:
 row = self.image_table.row(name=template_name,
 provider=provider_name)
 except IndexError:
 raise TemplateNotFound('Cannot find template "{}" for provider "{}"'
 .format(template_name, provider_name))
 row.click()
 self.continue_button.click()
 # TODO timing, wait_displayed is timing out and can't get it to stop in is_displayed
 sleep(3)
 self.flush_widget_cache()

 @property
 def is_displayed(self):
 return False

[docs]class RetirementView(BaseLoggedInPage):
 """
 Set Retirement date view for vms/instances
 The title actually as Instance|VM.VM_TYPE string in it, otherwise the same
 """

 title = Text('#explorer_title_text')

 @View.nested
 class form(View): # noqa
 """The form portion of the view"""
 retirement_date = Calendar(name='retirementDate')
 # TODO This is just an anchor with an image, weaksauce
 # remove_date = Button()
 retirement_warning = BootstrapSelect(id='retirementWarning')
 entities = View.nested(BaseNonInteractiveEntitiesView)
 save_button = Button('Save')
 cancel_button = Button('Cancel')

 @property
 def is_displayed(self):
 # TODO match quadicon and title
 return False

[docs]class EditView(BaseLoggedInPage):
 """
 Edit vms/instance page
 The title actually as Instance|VM.VM_TYPE string in it, otherwise the same
 """
 title = Text('#explorer_title_text')

 @View.nested
 class form(View): # noqa
 """The form portion of the view"""
 custom_identifier = TextInput(id='custom_1')
 description = TextInput(id='description')
 parent_vm = BootstrapSelect(id='chosen_parent')
 # MultiBoxSelect element only has table ID in CFME 5.8+
 # https://bugzilla.redhat.com/show_bug.cgi?id=1463265
 child_vms = MultiBoxSelect(id='child-vm-select')
 save_button = Button('Save')
 reset_button = Button('Reset')
 cancel_button = Button('Cancel')

 @property
 def is_displayed(self):
 # Only name is displayed
 return False

[docs]class SetOwnershipView(BaseLoggedInPage):
 """
 Set vms/instance ownership page
 The title actually as Instance|VM.VM_TYPE string in it, otherwise the same
 """
 @View.nested
 class form(View): # noqa
 user_name = BootstrapSelect('user_name')
 group_name = BootstrapSelect('group_name')
 entities = View.nested(BaseNonInteractiveEntitiesView)
 save_button = Button('Save')
 reset_button = Button('Reset')
 cancel_button = Button('Cancel')

 @property
 def is_displayed(self):
 # TODO match quadicon using entities, no provider match through icon asset yet
 return False

[docs]class ManagementEngineView(BaseLoggedInPage):
 """
 Edit management engine relationship page
 The title actually as Instance|VM.VM_TYPE string in it, otherwise the same
 """
 @View.nested
 class form(View): # noqa
 server = BootstrapSelect('server_id')
 save_button = Button('Save')
 reset_button = Button('Reset')
 cancel_button = Button('Cancel')

 @property
 def is_displayed(self):
 # Only the name is displayed
 return False

[docs]class ManagePoliciesView(BaseLoggedInPage):
 """
 Manage policies page
 """
 @View.nested
 class form(View): # noqa
 policy_profiles = CheckableManageIQTree(tree_id='protectbox')
 entities = View.nested(BaseNonInteractiveEntitiesView)
 save_button = Button('Save')
 reset_button = Button('Reset')
 cancel_button = Button('Cancel')

 @property
 def is_displayed(self):
 # TODO match quadicon using entities, no provider match through icon asset yet
 return False

[docs]class PolicySimulationView(BaseLoggedInPage):
 """
 Policy Simulation page for vms/instances
 """
 @View.nested
 class form(View): # noqa
 policy = BootstrapSelect('policy_id')
 # TODO policies table, ability to remove
 entities = View.nested(BaseNonInteractiveEntitiesView)
 cancel_button = Button('Cancel')

 @property
 def is_displayed(self):
 # TODO match quadicon
 return False

[docs]class RightSizeView(BaseLoggedInPage):
 """
 Right Size recommendations page for vms/instances
 """
 # TODO new table widget for right-size tables
 # They're H3 headers with the table as following-sibling

 @property
 def is_displayed(self):
 # Only name is displayed
 return False

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/cloud/provider/ec2.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.cloud.provider »

 Source code for cfme.cloud.provider.ec2

from wrapanapi.ec2 import EC2System

from . import CloudProvider
from cfme.common.provider import DefaultEndpoint, DefaultEndpointForm

[docs]class EC2Endpoint(DefaultEndpoint):
 """
 represents default Amazon endpoint (Add/Edit dialogs)
 """
 @property
 def view_value_mapping(self):
 return {}

[docs]class EC2EndpointForm(DefaultEndpointForm):
 """
 represents default Amazon endpoint form in UI (Add/Edit dialogs)
 """
 pass

[docs]class EC2Provider(CloudProvider):
 """
 BaseProvider->CloudProvider->EC2Provider class.
 represents CFME provider and operations available in UI
 """
 type_name = "ec2"
 mgmt_class = EC2System
 db_types = ["Amazon::CloudManager"]
 endpoints_form = EC2EndpointForm
 discover_name = "Amazon EC2"

 def __init__(
 self, name=None, endpoints=None, zone=None, key=None, region=None, region_name=None,
 appliance=None):
 super(EC2Provider, self).__init__(name=name, endpoints=endpoints,
 zone=zone, key=key, appliance=appliance)
 self.region = region
 self.region_name = region_name

 @property
 def view_value_mapping(self):
 """Maps values to view attrs"""
 return {
 'name': self.name,
 'prov_type': 'Amazon EC2',
 'region': self.region_name,
 }

 @classmethod
[docs] def from_config(cls, prov_config, prov_key, appliance=None):
 """Returns the EC" object from configuration"""
 endpoint = EC2Endpoint(**prov_config['endpoints']['default'])
 return cls(name=prov_config['name'],
 region=prov_config['region'],
 region_name=prov_config['region_name'],
 endpoints={endpoint.name: endpoint},
 zone=prov_config['server_zone'],
 key=prov_key,
 appliance=appliance)

 @staticmethod
[docs] def discover_dict(credential):
 """Returns the discovery credentials dictionary"""
 return {
 'username': getattr(credential, 'principal', None),
 'password': getattr(credential, 'secret', None),
 'password_verify': getattr(credential, 'verify_secret', None)
 }

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/web_ui/cfme_exception.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.web_ui »

 Source code for cfme.web_ui.cfme_exception

-*- coding: utf-8 -*-
"""Module handling the Rails exceptions from CFME"""

from cfme.exceptions import CFMEExceptionOccured
from cfme.fixtures import pytest_selenium as sel
from cfme.web_ui import Region

cfme_exception_region = Region(
 locators=dict(
 root_div="//div[@id='exception_div']",
 error_text="//div[@id='exception_div']//td[@id='maincol']/div[2]/h3[2]",
),
 identifying_loc="root_div",
)

[docs]def is_cfme_exception():
 """Check whether an exception is displayed on the page"""
 return cfme_exception_region.is_displayed()

[docs]def cfme_exception_text():
 """Get the error message from the exception"""
 return sel.text(cfme_exception_region.error_text)

[docs]def assert_no_cfme_exception():
 """Raise an exception if CFME exception occured

 Raises: :py:class:`cfme.exceptions.CFMEExceptionOccured`
 """
 if is_cfme_exception():
 raise CFMEExceptionOccured(cfme_exception_text())

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/cloud/instance/gce.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.cloud.instance »

 Source code for cfme.cloud.instance.gce

-*- coding: utf-8 -*-
from cfme.exceptions import OptionNotAvailable
from cfme.utils import version, deferred_verpick
from . import Instance

[docs]class GCEInstance(Instance):
 # CFME & provider power control options
 START = "Start"
 POWER_ON = START # For compatibility with the infra objects.
 STOP = "Stop"
 DELETE = "Delete"
 TERMINATE = deferred_verpick({
 version.LOWEST: 'Terminate',
 '5.6.1': 'Delete',
 })
 # CFME-only power control options
 SOFT_REBOOT = "Soft Reboot"
 # Provider-only power control options
 RESTART = "Restart"

 # CFME power states
 STATE_ON = "on"
 STATE_OFF = "off"
 STATE_SUSPENDED = "suspended"
 STATE_TERMINATED = "terminated"
 STATE_ARCHIVED = "archived"
 STATE_UNKNOWN = "unknown"

 @property
 def ui_powerstates_available(self):
 return {
 'on': [self.STOP, self.SOFT_REBOOT, self.TERMINATE],
 'off': [self.START, self.TERMINATE]}

 @property
 def ui_powerstates_unavailable(self):
 return {
 'on': [self.START],
 'off': [self.STOP, self.SOFT_REBOOT]}

[docs] def create(self, cancel=False, **prov_fill_kwargs):
 """Provisions an GCE instance with the given properties through CFME

 Args:
 cancel: Clicks the cancel button if `True`, otherwise clicks the submit button
 (Defaults to `False`)
 prov_fill_kwargs: dictionary of provisioning field/value pairs
 Note:
 For more optional keyword arguments, see
 :py:data:`cfme.cloud.provisioning.ProvisioningForm`
 """
 super(GCEInstance, self).create(form_values=prov_fill_kwargs, cancel=cancel)

[docs] def power_control_from_provider(self, option):
 """Power control the instance from the provider

 Args:
 option: power control action to take against instance
 Raises:
 OptionNotAvailable: option param must have proper value
 """
 if option == GCEInstance.START:
 self.provider.mgmt.start_vm(self.name)
 elif option == GCEInstance.STOP:
 self.provider.mgmt.stop_vm(self.name)
 elif option == GCEInstance.RESTART:
 self.provider.mgmt.restart_vm(self.name)
 elif option == GCEInstance.TERMINATE:
 self.provider.mgmt.delete_vm(self.name)
 else:
 raise OptionNotAvailable(option + " is not a supported action")

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/web_ui/history.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.web_ui »

 Source code for cfme.web_ui.history

-*- coding: utf-8 -*-
"""Module handling the history button.

:var HISTORY_ITEMS: Locator that finds all the history items from dropdown
:var SINGLE_HISTORY_BUTTON: Locator that finds the history button if it is without the dropdown.
"""
from cfme.fixtures import pytest_selenium as sel
from . import toolbar

HISTORY_ITEMS = (
 '//button[following-sibling::ul and ./i[contains(normalize-space(@class), "fa-arrow-left")]]'
 '/following-sibling::ul/li/a')
SINGLE_HISTORY_BUTTON = (
 '//button[not(following-sibling::ul) and '
 './i[contains(normalize-space(@class), "fa-arrow-left")]]')

[docs]def single_button():
 """Returns the textual contents of the single history button. If not present, None is returned.
 """
 if not sel.is_displayed(SINGLE_HISTORY_BUTTON):
 return None
 return sel.get_attribute(SINGLE_HISTORY_BUTTON, 'title')

[docs]def dropdown_history_items():
 """Returns a list of strings representing the items from dropdown. Empty if not present"""
 return map(sel.text, sel.elements(HISTORY_ITEMS))

[docs]def any_history_present():
 """Returns if the single history button or the dropdown is present."""
 return bool(single_button() or dropdown_history_items())

[docs]def history_items_present():
 """Checks if the history items are present, returns bool"""
 return bool(dropdown_history_items())

[docs]def single_button_present():
 """Checks if the single history button is present, returns bool"""
 return bool(single_button())

[docs]def history_items():
 """Returns a list of all history items on the page."""
 sb = single_button()
 if sb:
 return [sb]
 else:
 return dropdown_history_items()

[docs]def select_history_item(text):
 """Handles selecting the history item by text using the toolbar module."""
 sb = single_button()
 if sb is not None:
 # No dropdown items
 if sb != text:
 raise ValueError('There is no such history button: {!r}'.format(text))
 return toolbar.select(text)
 else:
 # There are dropdown items
 di = dropdown_history_items()
 if text not in di:
 raise ValueError('There is no such history button: {!r}'.format(text))
 return toolbar.select('History', text)

[docs]def select_nth_history_item(n):
 """Handles selecting the history items by the position. 0 is the latest (top one)."""
 try:
 return select_history_item(history_items()[n])
 except KeyError:
 raise KeyError(
 'There are only {} history items, you wanted the {}th'.format(len(history_items(), n)))

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/cloud/provider/openstack.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.cloud.provider »

 Source code for cfme.cloud.provider.openstack

from wrapanapi.openstack import OpenstackSystem

from . import CloudProvider
from cfme.common.provider import EventsEndpoint
from cfme.infrastructure.provider.openstack_infra import RHOSEndpoint, OpenStackInfraEndpointForm
from cfme.exceptions import ItemNotFound

[docs]class OpenStackProvider(CloudProvider):
 """
 BaseProvider->CloudProvider->OpenStackProvider class.
 represents CFME provider and operations available in UI
 """
 type_name = "openstack"
 mgmt_class = OpenstackSystem
 db_types = ["Openstack::CloudManager"]
 endpoints_form = OpenStackInfraEndpointForm
 # xpath locators for elements, to be used by selenium
 _console_connection_status_element = '//*[@id="noVNC_status"]'
 _canvas_element = '//*[@id="noVNC_canvas"]'
 _ctrl_alt_del_xpath = '//*[@id="sendCtrlAltDelButton"]'

 def __init__(self, name=None, endpoints=None, zone=None, key=None, hostname=None,
 ip_address=None, api_port=None, sec_protocol=None, amqp_sec_protocol=None,
 tenant_mapping=None, infra_provider=None, appliance=None):
 super(OpenStackProvider, self).__init__(name=name, endpoints=endpoints,
 zone=zone, key=key, appliance=appliance)
 self.hostname = hostname
 self.ip_address = ip_address
 self.api_port = api_port
 self.infra_provider = infra_provider
 self.sec_protocol = sec_protocol
 self.tenant_mapping = tenant_mapping
 self.amqp_sec_protocol = amqp_sec_protocol

[docs] def create(self, *args, **kwargs):
 # Override the standard behaviour to actually create the underlying infra first.
 if self.infra_provider:
 self.infra_provider.create(validate_credentials=True, validate_inventory=True,
 check_existing=True)
 if self.appliance.version >= "5.6" and 'validate_credentials' not in kwargs:
 # 5.6 requires validation, so unless we specify, we want to validate
 kwargs['validate_credentials'] = True
 return super(OpenStackProvider, self).create(*args, **kwargs)

 @property
 def view_value_mapping(self):
 if self.infra_provider is None:
 # Don't look for the selectbox; it's either not there or we don't care what's selected
 infra_provider_name = None
 elif self.infra_provider is False:
 # Select nothing (i.e. deselect anything that is potentially currently selected)
 infra_provider_name = "---"
 else:
 infra_provider_name = self.infra_provider.name
 return {
 'name': self.name,
 'prov_type': 'OpenStack',
 'region': None,
 'infra_provider': infra_provider_name,
 'tenant_mapping': getattr(self, 'tenant_mapping', None),
 }

[docs] def deployment_helper(self, deploy_args):
 """ Used in utils.virtual_machines """
 if ('network_name' not in deploy_args) and self.data.get('network'):
 return {'network_name': self.data['network']}
 return {}

 @classmethod
[docs] def from_config(cls, prov_config, prov_key, appliance=None):
 endpoints = {}
 endpoints[RHOSEndpoint.name] = RHOSEndpoint(**prov_config['endpoints'][RHOSEndpoint.name])

 endp_name = EventsEndpoint.name
 if prov_config['endpoints'].get(endp_name):
 endpoints[endp_name] = EventsEndpoint(**prov_config['endpoints'][endp_name])

 from cfme.utils.providers import get_crud
 infra_prov_key = prov_config.get('infra_provider_key')
 infra_provider = get_crud(infra_prov_key, appliance=appliance) if infra_prov_key else None
 return cls(name=prov_config['name'],
 hostname=prov_config['hostname'],
 ip_address=prov_config['ipaddress'],
 api_port=prov_config['port'],
 endpoints=endpoints,
 zone=prov_config['server_zone'],
 key=prov_key,
 sec_protocol=prov_config.get('sec_protocol', "Non-SSL"),
 tenant_mapping=prov_config.get('tenant_mapping', False),
 infra_provider=infra_provider,
 appliance=appliance)

 # Following methods will only work if the remote console window is open
 # and if selenium focused on it. These will not work if the selenium is
 # focused on Appliance window.
[docs] def get_console_connection_status(self):
 try:
 return self.appliance.browser.widgetastic.selenium.find_element_by_xpath(
 self._console_connection_status_element).text
 except:
 raise ItemNotFound("Element not found on screen, is current focus on console window?")

[docs] def get_remote_console_canvas(self):
 try:
 return self.appliance.browser.widgetastic.selenium.find_element_by_xpath(
 self._canvas_element)
 except:
 raise ItemNotFound("Element not found on screen, is current focus on console window?")

[docs] def get_console_ctrl_alt_del_btn(self):
 try:
 return self.appliance.browser.widgetastic.selenium.find_element_by_xpath(
 self._ctrl_alt_del_xpath)
 except:
 raise ItemNotFound("Element not found on screen, is current focus on console window?")

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/fixtures/vm_name.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.fixtures.vm_name

-*- coding: utf-8 -*-
import pytest
from cfme.utils.generators import random_vm_name
from cfme.utils.log import logger

TODO This fixture needs to go way, cleanup shouldn't happen here and should happen in the
otherlocations
@pytest.yield_fixture(scope='function')
[docs]def vm_name(provider):
 # also tries to delete the VM that gets made with this name
 vm_name = random_vm_name('scat')
 yield vm_name
 try:
 logger.info('Cleaning up VM %s on provider %s', vm_name, provider.key)
 provider.mgmt.delete_vm(vm_name)
 except:
 # The mgmt_sys classes raise Exception :\
 logger.warning('Failed to clean up VM %s on provider %s', vm_name, provider.key)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/trackerbot.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.trackerbot

import argparse
import re
import urlparse
from collections import defaultdict, namedtuple
from datetime import date
import urllib

import slumber
import requests
import time

from cfme.utils.conf import env
from cfme.utils.providers import providers_data
from cfme.utils.version import get_stream

regexen to match templates to streams and pull out the date
stream names must be slugified (alphanumeric, dashes, underscores only)
regex must include month and day, may include year
If year is unset, will be the most recent month/day (not in the future)
stream_matchers = (
 (get_stream('latest'), '^miq-nightly-(?P<year>\d{4})(?P<month>\d{2})(?P<day>\d{2})'),
 (get_stream('5.2'), r'^cfme-52.*-(?P<month>\d{2})(?P<day>\d{2})'),
 (get_stream('5.3'), r'^cfme-53.*-(?P<month>\d{2})(?P<day>\d{2})'),
 (get_stream('5.4'), r'^cfme-54.*-(?P<month>\d{2})(?P<day>\d{2})'),
 (get_stream('5.5'), r'^cfme-55.*-(?P<month>\d{2})(?P<day>\d{2})'),
 (get_stream('5.6'), r'^cfme-56.*-(?P<month>\d{2})(?P<day>\d{2})'),
 (get_stream('5.7'), r'^cfme-57.*-(?P<month>\d{2})(?P<day>\d{2})'),
 (get_stream('5.8'), r'^cfme-58.*-(?P<month>\d{2})(?P<day>\d{2})'),
 # Nightly builds have potentially multiple version streams bound to them so we
 # cannot use get_stream()
 ('upstream_stable', r'^miq-stable-(?P<release>fine[-\w]*?)'
 r'-(?P<year>\d{4})(?P<month>\d{2})(?P<day>\d{2})'),
 ('upstream_euwe', r'^miq-stable-(?P<release>euwe[-\w]*?)'
 r'-(?P<year>\d{4})(?P<month>\d{2})(?P<day>\d{2})'),
 ('downstream-nightly', r'^cfme-nightly-(?P<year>\d{4})(?P<month>\d{2})(?P<day>\d{2})'),
 # new format
 ('downstream-nightly', r'^cfme-nightly-\d*-(?P<year>\d{4})(?P<month>\d{2})(?P<day>\d{2})'),
)
generic_matchers = (
 ('sprout', r'^s_tpl'),
 ('sprout', r'^sprout_template'),
 ('rhevm-internal', r'^auto-tmp'),
)
conf = env.get('trackerbot', {})
_active_streams = None

TemplateInfo = namedtuple('TemplateInfo', ['group_name', 'datestamp', 'stream'])

[docs]def cmdline_parser():
 """Get a parser with basic trackerbot configuration params already set up

 It will use the following keys from the env conf if they're available::

 # with example values
 trackerbot:
 url: http://hostname/api/
 username: username
 apikey: 0123456789abcdef

 """
 # Set up defaults from env, if they're set, otherwise require them on the commandline
 def_url = {'default': None, 'nargs': '?'} if 'url' in conf else {}

 parser = argparse.ArgumentParser()
 parser.add_argument('--trackerbot-url',
 help='URL to the base of the tracker API, e.g. http://hostname/api/', **def_url)
 return parser

[docs]def api(trackerbot_url=None):
 """Return an API object authenticated to the given trackerbot api"""
 if trackerbot_url is None:
 trackerbot_url = conf['url']

 return slumber.API(trackerbot_url)

[docs]def futurecheck(check_date):
 """Given a date object, return a date object that isn't from the future

 Some templates only have month/day values, not years. We create a date object

 """
 today = date.today()
 while check_date > today:
 check_date = date(check_date.year - 1, check_date.month, check_date.day)

 return check_date

[docs]def active_streams(api, force=False):
 global _active_streams
 if _active_streams is None or force:
 _active_streams = [stream['name'] for stream in api.group.get(stream=True)['objects']]
 return _active_streams

[docs]def parse_template(template_name):
 """Given a template name, attempt to extract its group name and upload date

 Returns:
 * None if no groups matched
 * group_name, datestamp of the first matching group. group name will be a string,
 datestamp with be a :py:class:`datetime.date <python:datetime.date>`, or None if
 a date can't be derived from the template name
 """
 for group_name, regex in stream_matchers:
 matches = re.match(regex, template_name)
 if matches:
 groups = matches.groupdict()
 # hilarity may ensue if this code is run right before the new year
 today = date.today()
 year = int(groups.get('year', today.year))
 month, day = int(groups['month']), int(groups['day'])
 # validate the template date by turning into a date obj
 template_date = futurecheck(date(year, month, day))
 return TemplateInfo(group_name, template_date, True)
 for group_name, regex in generic_matchers:
 matches = re.match(regex, template_name)
 if matches:
 return TemplateInfo(group_name, None, False)
 # If no match, unknown
 return TemplateInfo('unknown', None, False)

[docs]def provider_templates(api):
 provider_templates = defaultdict(list)
 for template in depaginate(api, api.template.get())['objects']:
 for provider in template['providers']:
 provider_templates[provider].append(template['name'])
 return provider_templates

[docs]def mark_provider_template(api, provider, template, tested=None, usable=None,
 diagnosis='', build_number=None, stream=None):
 """Mark a provider template as tested and/or usable

 Args:
 api: The trackerbot API to act on
 provider: The provider's key in cfme_data or a :py:class:`Provider` instance
 template: The name of the template to mark on this provider or a :py:class:`Template`
 tested: Whether or not this template has been tested on this provider
 usable: Whether or not this template is usable on this provider
 diagnosis: Optional reason for marking a template

 Returns the response of the API request

 """
 provider_template = _as_providertemplate(provider, template, group=stream)

 if tested is not None:
 provider_template['tested'] = bool(tested)

 if usable is not None:
 provider_template['usable'] = bool(usable)

 if diagnosis:
 provider_template['diagnosis'] = diagnosis

 if build_number:
 provider_template['build_number'] = int(build_number)

 return api.providertemplate.post(provider_template)

[docs]def delete_provider_template(api, provider, template):
 """Delete a provider/template relationship, used when a template is removed from one provider"""
 provider_template = _as_providertemplate(provider, template)
 return api.providertemplate(provider_template.concat_id).delete()

[docs]def set_provider_active(api, provider, active=True):
 """Set a provider active (or inactive)

 Args:
 api: The trackerbot API to act on
 active: active flag to set on the provider (True or False)

 """
 api.provider[provider].patch(active=active)

[docs]def latest_template(api, group, provider_key=None):
 if not isinstance(group, Group):
 group = Group(str(group))

 if provider_key is None:
 # Just get the latest template for a given group, as well as its providers
 response = api.group(group['name']).get()
 return {
 'latest_template': response['latest_template'],
 'latest_template_providers': response['latest_template_providers'],
 }
 else:
 # Given a provider, use the provider API to get the latest
 # template for that provider, as well as the additional usable
 # providers for that template
 response = api.provider(provider_key).get()
 return response['latest_templates'][group['name']]

[docs]def templates_to_test(api, limit=1, request_type=None):
 """get untested templates to pass to jenkins

 Args:
 limit: max number of templates to pull per request
 request_type: request the provider_key of specific type
 e.g openstack

 """
 templates = []
 for pt in api.untestedtemplate.get(
 limit=limit, tested=False, provider__type=request_type).get(
 'objects', []):
 name = pt['template']['name']
 group = pt['template']['group']['name']
 provider = pt['provider']['key']
 request_type = pt['provider']['type']
 templates.append([name, provider, group, request_type])
 return templates

def _as_providertemplate(provider, template, group=None):
 if not isinstance(provider, Provider):
 provider = Provider(str(provider))
 if not isinstance(group, Group) and group is not None:
 group = Group(name=group)
 if not isinstance(template, Template):
 template = Template(str(template), group=group)

 return ProviderTemplate(provider, template)

[docs]def post_task_result(tid, result, output=None, coverage=0.0):
 if not output:
 output = "No output capture"
 api().task(tid).patch({'result': result, 'output': output, 'coverage': coverage})

[docs]def post_jenkins_result(job_name, number, stream, date, template,
 build_status, artifact_report):
 try:
 api().build.post({
 'job_name': job_name,
 'number': number,
 'stream': '/api/group/{}/'.format(stream),
 'datestamp': date,
 'template': template,
 'results': artifact_report,
 })
 except slumber.exceptions.HttpServerError as exc:
 print(exc.response)
 print(exc.content)

[docs]def trackerbot_add_provider_template(stream, provider, template_name):
 try:
 existing_provider_templates = [
 pt['id']
 for pt in depaginate(
 api(), api().providertemplate.get())['objects']]
 if '{}_{}'.format(template_name, provider) in existing_provider_templates:
 print('Template {} already tracked for provider {}'.format(
 template_name, provider))
 else:
 mark_provider_template(api(), provider, template_name, stream=stream)
 print('Added {} template {} on provider {}'.format(
 stream, template_name, provider))
 except Exception as e:
 print(e)
 print('{}: Error occured while template sync to trackerbot'.format(provider))

[docs]def depaginate(api, result):
 """Depaginate the first (or only) page of a paginated result"""
 meta = result['meta']
 if meta['next'] is None:
 # No pages means we're done
 return result

 # make a copy of meta that we'll mess with and eventually return
 # since we'll be chewing on the 'meta' object with every new GET
 # same thing for objects, since we'll just be appending to it
 # while we pull more records
 ret_meta = meta.copy()
 ret_objects = result['objects']
 while meta['next']:
 # parse out url bits for constructing the new api req
 next_url = urlparse.urlparse(meta['next'])
 # ugh...need to find the word after 'api/' in the next URL to
 # get the resource endpoint name; not sure how to make this better
 next_endpoint = next_url.path.strip('/').split('/')[-1]
 next_params = {k: v[0] for k, v in urlparse.parse_qs(next_url.query).items()}
 result = getattr(api, next_endpoint).get(**next_params)
 ret_objects.extend(result['objects'])
 meta = result['meta']

 # fix meta up to not tell lies
 ret_meta['total_count'] = len(ret_objects)
 ret_meta['next'] = None
 ret_meta['limit'] = ret_meta['total_count']
 return {
 'meta': ret_meta,
 'objects': ret_objects
 }

[docs]def composite_uncollect(build, source='jenkins'):
 """Composite build function"""
 since = env.get('ts', time.time())
 url = "{0}?build={1}&source={2}&since={3}".format(
 conf['ostriz'], urllib.quote(build), urllib.quote(source), urllib.quote(since))
 try:
 resp = requests.get(url, timeout=10)
 return resp.json()
 except Exception as e:
 print(e)
 return {'tests': []}

Dict subclasses to help with JSON serialization
[docs]class Group(dict):
 """dict subclass to help serialize groups as JSON"""
 def __init__(self, name, stream=True, active=True):
 self.update({
 'name': name,
 'stream': stream,
 'active': active
 })

[docs]class Provider(dict):
 """dict subclass to help serialize providers as JSON"""
 def __init__(self, key):
 self['key'] = key
 # We assume this provider exists, is locally known, and has a type
 self['type'] = providers_data[key]['type']

[docs]class Template(dict):
 """dict subclass to help serialize templates as JSON"""
 def __init__(self, name, group=None, datestamp=None):
 self['name'] = name
 if group is not None:
 self['group'] = group
 if datestamp is not None:
 self['datestamp'] = datestamp.strftime('%Y-%m-%d')

[docs]class ProviderTemplate(dict):
 """dict subclass to help serialize providertemplate details as JSON"""
 def __init__(self, provider, template, usable=None, tested=None):
 self['provider'] = provider
 self['template'] = template

 if usable is not None:
 self['usable'] = bool(usable)

 if tested is not None:
 self['tested'] = bool(tested)

 @property
 def concat_id(self):
 return '_'.join([self['template']['name'], self['provider']['key']])

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/timeutil.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.timeutil

-*- coding: utf-8 -*-

""" This module should contain all things associated with time or date that can be shared.

"""

from datetime import datetime as _datetime
import time
import tzlocal

local_tz = tzlocal.get_localzone()

[docs]class parsetime(_datetime): # NOQA
 """ Modified class with loaders for our datetime formats.

 """
 american_with_utc_format = "%m/%d/%y %H:%M:%S UTC"
 iso_with_utc_format = "%Y-%m-%d %H:%M:%S UTC"
 american_minutes = "%m/%d/%y %H:%M"
 american_minutes_with_utc = "%m/%d/%y %H:%M UTC"
 american_date_only_format = "%m/%d/%y"
 iso_date_only_format = "%Y-%m-%d"
 request_format = "%Y-%m-%d-%H-%M-%S"
 long_date_format = "%B %d, %Y %H:%M"
 saved_report_title_format = "%a, %d %b %Y %H:%M:%S +0000"

 @classmethod
 def _parse(cls, fmt, time_string):
 return cls.fromtimestamp(
 time.mktime(
 time.strptime(
 time_string,
 fmt
)
)
)

 @classmethod
[docs] def from_american_with_utc(cls, time_string):
 """ Convert the string representation of the time into parsetime()

 CFME's format here is 'mm/dd/yy hh:mm:ss UTC'

 Args:
 time_string: String with time to parse
 Returns: :py:class`utils.timeutil.datetime()` object
 """
 return cls._parse(cls.american_with_utc_format, time_string)

[docs] def to_american_with_utc(self):
 """ Convert the this object to string representation in american with UTC.

 CFME's format here is 'mm/dd/yy hh:mm:ss UTC'

 Returns: :py:class`str` object
 """
 return self.strftime(self.american_with_utc_format)

 @classmethod
[docs] def from_iso_with_utc(cls, time_string):
 """ Convert the string representation of the time into parsetime()

 CFME's format here is 'mm-dd-yy hh:mm:ss UTC'

 Args:
 time_string: String with time to parse
 Returns: :py:class`utils.timeutil.datetime()` object
 """
 return cls._parse(cls.iso_with_utc_format, time_string)

[docs] def to_iso_with_utc(self):
 """ Convert the this object to string representation in american with UTC.

 CFME's format here is 'mm-dd-yy hh:mm:ss UTC'

 Returns: :py:class`str` object
 """
 return self.strftime(self.iso_with_utc_format)

 @classmethod
[docs] def from_american_minutes(cls, time_string):
 """ Convert the string representation of the time into parsetime()

 CFME's format here is 'mm/dd/yy hh:mm'

 Args:
 time_string: String with time to parse
 Returns: :py:class`utils.timeutil.datetime()` object
 """
 return cls._parse(cls.american_minutes, time_string)

[docs] def to_american_minutes(self):
 """ Convert the this object to string representation in american with just minutes.

 CFME's format here is 'mm/dd/yy hh:mm'

 Returns: :py:class`str` object
 """
 return self.strftime(self.american_minutes)

 @classmethod
[docs] def from_american_minutes_with_utc(cls, time_string):
 """ Convert the string representation of the time into parsetime()

 CFME's format here is 'mm/dd/yy hh:mm UTC'

 Args:
 time_string: String with time to parse
 Returns: :py:class`utils.timeutil.datetime()` object
 """
 return cls._parse(cls.american_minutes_with_utc, time_string)

[docs] def to_american_minutes_with_utc(self):
 """ Convert the this object to string representation in american with just minutes.

 CFME's format here is 'mm/dd/yy hh:mm'

 Returns: :py:class`str` object
 """
 return self.strftime(self.american_minutes_with_utc)

 @classmethod
[docs] def from_american_date_only(cls, time_string):
 """ Convert the string representation of the time into parsetime()

 CFME's format here is 'mm/dd/yy'

 Args:
 time_string: String with time to parse
 Returns: :py:class`utils.timeutil.datetime()` object
 """
 return cls._parse(cls.american_date_only_format, time_string)

[docs] def to_american_date_only(self):
 """ Convert the this object to string representation in american date only format.

 CFME's format here is 'mm/dd/yy'

 Returns: :py:class`str` object
 """
 return self.strftime(self.american_date_only_format)

 @classmethod
[docs] def from_iso_date(cls, time_string):
 """ Convert the string representation of the time into parsetime()

 Format here is 'YYYY-MM-DD'

 Args:
 time_string: String with time to parse
 Returns: :py:class`utils.timeutil.datetime()` object
 """
 return cls._parse(cls.iso_date_only_format, time_string)

[docs] def to_iso_date(self):
 """ Convert the this object to string representation in ISO format.

 Format here is 'YYYY-MM-DD'

 Returns: :py:class`str` object
 """
 return self.strftime(self.iso_date_only_format)

 @classmethod
[docs] def from_request_format(cls, time_string):
 """ Convert the string representation of the time into parsetime()

 Format here is 'YYYY-MM-DD-HH-MM-SS'. Used for transmitting data over http

 Args:
 time_string: String with time to parse
 Returns: :py:class`utils.timeutil.datetime()` object
 """
 return cls._parse(cls.request_format, time_string)

[docs] def to_request_format(self):
 """ Convert the this object to string representation in http request.

 Format here is 'YYYY-MM-DD-HH-MM-SS'

 Returns: :py:class`str` object
 """
 return self.strftime(self.request_format)

 @classmethod
[docs] def from_long_date_format(cls, time_string):
 """ Convert the string representation of the time into parsetime()

 Format here is '%B %d, %Y %H:%M'.

 Args:
 time_string: String with time to parse
 Returns: :py:class`utils.timeutil.datetime()` object
 """
 return cls._parse(cls.long_date_format, time_string)

[docs] def to_long_date_format(self):
 """ Convert the this object to string representation in http request.

 Format here is '%B %d, %Y %H:%M'

 Returns: :py:class`str` object
 """
 return self.strftime(self.long_date_format)

 @classmethod
[docs] def from_saved_report_title_format(cls, time_string):
 """ Convert the string representation of the time into parsetime()

 Format here is '%a, %d %b %Y %H:%M:%S +0000'.

 Args:
 time_string: String with time to parse
 Returns: :py:class`utils.timeutil.datetime()` object
 """
 return cls._parse(cls.saved_report_title_format, time_string)

[docs] def to_saved_report_title_format(self):
 """ Convert the this object to string representation in Saved Report title.

 Format here is '%a, %d %b %Y %H:%M:%S +0000'

 Returns: :py:class`str` object
 """
 return self.strftime(self.saved_report_title_format)

[docs]def nice_seconds(t_s):
 """Return nicer representation of seconds"""
 if t_s < 60.0:
 return "{0:.2f}s".format(t_s)
 minutes = 1
 while t_s - (minutes * 60.0) >= 60.0:
 minutes += 1
 seconds = t_s - (minutes * 60)
 if minutes < 60.0:
 return "{0}m{1:.2f}s".format(minutes, seconds)
 # Hours
 hours = 1
 while minutes - (hours * 60.0) >= 60.0:
 hours += 1
 minutes = minutes - (hours * 60)
 if hours < 24.0:
 return "{0}h{1}m{2:.2f}s".format(hours, minutes, seconds)
 # Days
 days = 1
 while hours - (days * 24.0) >= 24.0:
 days += 1
 hours = hours - (days * 24)
 if days < 7.0:
 return "{0}d{1}h{2}m{3:.2f}s".format(days, hours, minutes, seconds)
 # Weeks
 weeks = 1
 while days - (weeks * 7.0) >= 7.0:
 weeks += 1
 days = days - (weeks * 7)
 return "{0}w{1}d{2}h{3}m{4:.2f}s".format(weeks, days, hours, minutes, seconds)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/fixtures/base.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.fixtures.base

import pytest

from cfme.utils.appliance import get_or_create_current_appliance
from cfme.configure import configuration

from fixtures.artifactor_plugin import fire_art_hook

from cfme.utils.log import logger
from cfme.utils.path import data_path

@pytest.fixture(scope="session")
[docs]def appliance():
 return get_or_create_current_appliance()

@pytest.fixture(scope="session", autouse=True)
[docs]def set_session_timeout(appliance):
 appliance.set_session_timeout(86400)

@pytest.fixture(scope="session", autouse=True)
[docs]def ensure_websocket_role_disabled():
 # TODO: This is a temporary solution until we find something better.
 roles = configuration.get_server_roles()
 if 'websocket' in roles and roles['websocket']:
 logger.info('Disabling the websocket role to ensure we get no intrusive popups')
 roles['websocket'] = False
 configuration.set_server_roles(**roles)

@pytest.fixture(scope="session", autouse=True)
[docs]def fix_merkyl_workaround(request, appliance):
 """Workaround around merkyl not opening an iptables port for communication"""
 ssh_client = appliance.ssh_client
 if ssh_client.run_command('test -s /etc/init.d/merkyl').rc != 0:
 logger.info('Rudely overwriting merkyl init.d on appliance;')
 local_file = data_path.join("bundles").join("merkyl").join("merkyl")
 remote_file = "/etc/init.d/merkyl"
 ssh_client.put_file(local_file.strpath, remote_file)
 ssh_client.run_command("service merkyl restart")
 fire_art_hook(
 request.config,
 'setup_merkyl',
 ip=appliance.address)

@pytest.fixture(scope="session", autouse=True)
[docs]def fix_missing_hostname(appliance):
 """Fix for hostname missing from the /etc/hosts file

 Note: Affects RHOS-based appliances but can't hurt the others so
 it's applied on all.
 """
 ssh_client = appliance.ssh_client
 logger.info("Checking appliance's /etc/hosts for its own hostname")
 if ssh_client.run_command('grep $(hostname) /etc/hosts').rc != 0:
 logger.info("Adding it's hostname to its /etc/hosts")
 # Append hostname to the first line (127.0.0.1)
 ret = ssh_client.run_command('sed -i "1 s/$/ $(hostname)/" /etc/hosts')
 if ret.rc == 0:
 logger.info("Hostname added")
 else:
 logger.error("Failed to add hostname")

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/browser.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.browser

"""Core functionality for starting, restarting, and stopping a selenium browser."""
import atexit
import json
import os
import urllib2
import time
import threading
from shutil import rmtree
from string import Template
from tempfile import mkdtemp
import warnings

import logging

from werkzeug.local import LocalProxy

import requests
from selenium import webdriver
from selenium.webdriver.common.action_chains import ActionChains
from selenium.webdriver.common import keys
from selenium.common.exceptions import UnexpectedAlertPresentException, WebDriverException
from selenium.webdriver.firefox.firefox_profile import FirefoxProfile
from selenium.webdriver.remote.file_detector import UselessFileDetector

from cached_property import cached_property

from fixtures.pytest_store import store, write_line
from cfme.utils import conf, tries
from cfme.utils.path import data_path

from cfme.utils.log import logger as log # TODO remove after artifactor handler
log = logging.getLogger('cfme.browser')

FIVE_MINUTES = 5 * 60
THIRTY_SECONDS = 30

def _load_firefox_profile():
 # create a firefox profile using the template in data/firefox_profile.js.template

 # Make a new firefox profile dir if it's unset or doesn't exist for some reason
 firefox_profile_tmpdir = mkdtemp(prefix='firefox_profile_')
 log.debug("created firefox profile")
 # Clean up tempdir at exit
 atexit.register(rmtree, firefox_profile_tmpdir, ignore_errors=True)

 template = data_path.join('firefox_profile.js.template').read()
 profile_json = Template(template).substitute(profile_dir=firefox_profile_tmpdir)
 profile_dict = json.loads(profile_json)

 profile = FirefoxProfile(firefox_profile_tmpdir)
 for pref in profile_dict.iteritems():
 profile.set_preference(*pref)
 profile.update_preferences()
 return profile

[docs]class Wharf(object):
 # class level to allow python level atomic removal of instance values
 docker_id = None

 def __init__(self, wharf_url):
 self.wharf_url = wharf_url
 self._renew_thread = None

 def _get(self, *args):

 response = requests.get(os.path.join(self.wharf_url, *args))
 if response.status_code == 204:
 return
 try:
 return json.loads(response.content)
 except ValueError:
 raise ValueError(
 "JSON could not be decoded:\n{}".format(response.content))

[docs] def checkout(self):
 if self.docker_id is not None:
 return self.docker_id
 checkout = self._get('checkout')
 self.docker_id, self.config = checkout.items()[0]
 self._start_renew_thread()
 log.info('Checked out webdriver container %s', self.docker_id)
 log.debug("%r", checkout)
 return self.docker_id

[docs] def checkin(self):
 # using dict pop to avoid race conditions
 my_id = self.__dict__.pop('docker_id', None)
 if my_id:
 self._get('checkin', my_id)
 log.info('Checked in webdriver container %s', my_id)
 self._renew_thread = None

 def _start_renew_thread(self):
 assert self._renew_thread is None
 self._renew_thread = threading.Thread(target=self._renew_function)
 self._renew_thread.daemon = True
 self._renew_thread.start()

 def _renew_function(self):
 # If we have a docker id, renew_timer shouldn't still be None
 log.debug("renew thread started")
 while True:
 time.sleep(FIVE_MINUTES)
 if self._renew_thread is not threading.current_thread():
 log.debug("renew done %s is not %s",
 self._renew_thread, threading.current_thread())
 return
 if self.docker_id is None:
 log.debug("renew done, docker id %s", self.docker_id)
 return
 expiry_info = self._get('renew', self.docker_id)
 self.config.update(expiry_info)
 log.info('Renewed webdriver container %s', self.docker_id)

 def __nonzero__(self):
 return self.docker_id is not None

[docs]class BrowserFactory(object):
 def __init__(self, webdriver_class, browser_kwargs):
 self.webdriver_class = webdriver_class
 self.browser_kwargs = browser_kwargs

 if webdriver_class is not webdriver.Remote:
 # desired_capabilities is only for Remote driver, but can sneak in
 browser_kwargs.pop('desired_capabilities', None)
 elif browser_kwargs['desired_capabilities']['browserName'] == 'firefox':
 browser_kwargs['browser_profile'] = self._firefox_profile

 if webdriver_class is webdriver.Firefox:
 browser_kwargs['firefox_profile'] = self._firefox_profile

 @cached_property
 def _firefox_profile(self):
 return _load_firefox_profile()

[docs] def processed_browser_args(self):
 if 'keep_alive' in self.browser_kwargs:
 warnings.warn(
 "forcing browser keep_alive to False due to selenium bugs\n"
 "we are aware of the performance cost and hope to redeem",
 category=RuntimeWarning,
)
 return dict(self.browser_kwargs, keep_alive=False)
 return self.browser_kwargs

[docs] def create(self, url_key):
 try:
 browser = tries(
 3, WebDriverException,
 self.webdriver_class, **self.processed_browser_args())
 except urllib2.URLError as e:
 if e.reason.errno == 111:
 # Known issue
 raise RuntimeError('Could not connect to Selenium server. Is it up and running?')
 else:
 # Unknown issue
 raise

 browser.file_detector = UselessFileDetector()
 browser.maximize_window()
 browser.get(url_key)
 browser.url_key = url_key
 return browser

[docs] def close(self, browser):
 if browser:
 browser.quit()

[docs]class WharfFactory(BrowserFactory):
 def __init__(self, webdriver_class, browser_kwargs, wharf):
 super(WharfFactory, self).__init__(webdriver_class, browser_kwargs)
 self.wharf = wharf

 if browser_kwargs['desired_capabilities']['browserName'] == 'chrome':
 # chrome uses containers to sandbox the browser, and we use containers to
 # run chrome in wharf, so disable the sandbox if running chrome in wharf
 co = browser_kwargs['desired_capabilities'].get('chromeOptions', {})
 arg = '--no-sandbox'
 if 'args' not in co:
 co['args'] = [arg]
 elif arg not in co['args']:
 co['args'].append(arg)
 browser_kwargs['desired_capabilities']['chromeOptions'] = co

[docs] def processed_browser_args(self):
 command_executor = self.wharf.config['webdriver_url']
 view_msg = 'tests can be viewed via vnc on display {}'.format(
 self.wharf.config['vnc_display'])
 log.info('webdriver command executor set to %s', command_executor)
 log.info(view_msg)
 write_line(view_msg, cyan=True)
 return dict(
 super(WharfFactory, self).processed_browser_args(),
 command_executor=command_executor,
)

[docs] def create(self, url_key):

 def inner():
 try:
 self.wharf.checkout()
 return super(WharfFactory, self).create(url_key)
 except urllib2.URLError as ex:
 # connection to selenum was refused for unknown reasons
 log.error('URLError connecting to selenium; recycling container. URLError:')
 write_line('URLError caused container recycle, see log for details', red=True)
 log.exception(ex)
 self.wharf.checkin()
 raise
 return tries(10, urllib2.URLError, inner)

[docs] def close(self, browser):
 try:
 super(WharfFactory, self).close(browser)
 finally:
 self.wharf.checkin()

[docs]class BrowserManager(object):
 def __init__(self, browser_factory):
 self.factory = browser_factory
 self.browser = None
 self._browser_renew_thread = None

[docs] def coerce_url_key(self, key):
 return key or store.base_url

 @classmethod
[docs] def from_conf(cls, browser_conf):
 webdriver_name = browser_conf.get('webdriver', 'Firefox')
 webdriver_class = getattr(webdriver, webdriver_name)

 browser_kwargs = browser_conf.get('webdriver_options', {})

 if 'webdriver_wharf' in browser_conf:
 wharf = Wharf(browser_conf['webdriver_wharf'])
 atexit.register(wharf.checkin)
 return cls(WharfFactory(webdriver_class, browser_kwargs, wharf))
 else:
 return cls(BrowserFactory(webdriver_class, browser_kwargs))

 def _is_alive(self):
 log.debug("alive check")
 try:
 self.browser.current_url
 except UnexpectedAlertPresentException:
 # We shouldn't think that an Unexpected alert means the browser is dead
 return True
 except Exception:
 log.exception("browser in unknown state, considering dead")
 return False
 return True

[docs] def ensure_open(self, url_key=None):
 url_key = self.coerce_url_key(url_key)
 if getattr(self.browser, 'url_key', None) != url_key:
 return self.start(url_key=url_key)

 if self._is_alive():
 return self.browser
 else:
 return self.start(url_key=url_key)

[docs] def add_cleanup(self, callback):
 assert self.browser is not None
 try:
 cl = self.browser.__cleanup
 except AttributeError:
 cl = self.browser.__cleanup = []
 cl.append(callback)

 def _consume_cleanups(self):
 try:
 cl = self.browser.__cleanup
 except AttributeError:
 pass
 else:
 while cl:
 cl.pop()()

[docs] def quit(self):
 # TODO: figure if we want to log the url key here
 log.info('closing browser')
 self._consume_cleanups()
 try:
 self.factory.close(self.browser)
 except Exception as e:
 log.error('An exception happened during browser shutdown:')
 log.exception(e)
 finally:
 self.browser = None

[docs] def start(self, url_key=None):
 log.info('starting browser')
 url_key = self.coerce_url_key(url_key)
 if self.browser is not None:
 self.quit()
 return self.open_fresh(url_key=url_key)

[docs] def open_fresh(self, url_key=None):
 url_key = self.coerce_url_key(url_key)
 log.info('starting browser for %r', url_key)
 assert self.browser is None

 self.browser = self.factory.create(url_key=url_key)
 return self.browser

[docs]class WithZoom(object):
 """
 This class is a decorator that used to wrap function with zoom level.
 this class perform zoom by <level>, call the target function and exit
 by zooming back to the original zoom level.

 Args:
 * level: int, the zooming value (i.e. -2 -> 2 clicks out; 3 -> 3 clicks in)
 """
 def __init__(self, level):
 self._level = level

 def __call__(self, func):
 def wrapper(*args, **kwargs):
 ensure_browser_open()
 with self:
 return func(*args, **kwargs)
 return wrapper

 def __enter__(self, *args, **kwargs):
 ac = ActionChains(browser())
 for _ in xrange(abs(self._level)):
 ac.send_keys(keys.Keys.CONTROL,
 keys.Keys.SUBTRACT if self._level < 0 else keys.Keys.ADD)
 ac.perform()

 def __exit__(self, *args, **kwargs):
 ac = ActionChains(browser())
 for _ in xrange(abs(self._level)):
 ac.send_keys(keys.Keys.CONTROL,
 keys.Keys.SUBTRACT if -self._level < 0 else keys.Keys.ADD)
 ac.perform()

manager = BrowserManager.from_conf(conf.env.get('browser', {}))

driver = LocalProxy(manager.ensure_open)

[docs]def browser():
 """callable that will always return the current browser instance

 If ``None``, no browser is running.

 Returns:

 The current browser instance.

 """
 return manager.browser

[docs]def ensure_browser_open(url_key=None):
 """Ensures that there is a browser instance currently open

 Will reuse an existing browser or start a new one as-needed

 Returns:

 The current browser instance.

 """
 if not url_key:
 from cfme.utils.appliance import current_appliance
 url_key = current_appliance.server.address()
 return manager.ensure_open(url_key=url_key)

[docs]def start(url_key=None):
 """Starts a new web browser

 If a previous browser was open, it will be closed before starting the new browser

 Args:
 """
 # Try to clean up an existing browser session if starting a new one
 return manager.start(url_key=url_key)

[docs]def quit():
 """Close the current browser

 Will silently fail if the current browser can't be closed for any reason.

 .. note::
 If a browser can't be closed, it's usually because it has already been closed elsewhere.

 """
 manager.quit()

atexit.register(manager.quit)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/fixtures/cli.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.fixtures.cli

from cfme.utils.version import get_stream
from collections import namedtuple
from cfme.test_framework.sprout.client import SproutClient
from cfme.utils.conf import cfme_data, credentials
from cfme.utils.log import logger
import pytest
from wait_for import wait_for
from cfme.test_framework.sprout.client import SproutException
from fixtures.appliance import temp_appliances

TimedCommand = namedtuple('TimedCommand', ['command', 'timeout'])

@pytest.yield_fixture(scope="function")
[docs]def dedicated_db_appliance(app_creds, appliance):
 """'ap' launch appliance_console, '' clear info screen, '5/8' setup db, '1' Creates v2_key,
 '1' selects internal db, 'y' continue, '1' use partition, 'y' create dedicated db, 'pwd'
 db password, 'pwd' confirm db password + wait 360 secs and '' finish."""
 if appliance.version > '5.7':
 with temp_appliances(count=1, preconfigured=False) as apps:
 pwd = app_creds['password']
 opt = '5' if apps[0].version >= "5.8" else '8'
 command_set = ('ap', '', opt, '1', '1', 'y', '1', 'y', pwd, TimedCommand(pwd, 360), '')
 apps[0].appliance_console.run_commands(command_set)
 wait_for(lambda: apps[0].db.is_dedicated_active)
 yield apps[0]
 else:
 raise Exception("Can't setup dedicated db on appliance below 5.7 builds")

""" The Following fixture 'fqdn_appliance' provisions one appliance for testing from an FQDN
 provider unless there are no provisions available"""

@pytest.yield_fixture(scope="function")
[docs]def fqdn_appliance(appliance):
 sp = SproutClient.from_config()
 available_providers = set(sp.call_method('available_providers'))
 required_providers = set(cfme_data['fqdn_providers'])
 usable_providers = available_providers & required_providers
 version = appliance.version.vstring
 stream = get_stream(appliance.version)
 for provider in usable_providers:
 try:
 apps, pool_id = sp.provision_appliances(
 count=1, preconfigured=True, version=version, stream=stream, provider=provider)
 break
 except Exception as e:
 logger.warning("Couldn't provision appliance with following error:")
 logger.warning("{}".format(e))
 continue
 else:
 logger.error("Couldn't provision an appliance at all")
 raise SproutException('No provision available')
 yield apps[0]

 apps[0].ssh_client.close()
 sp.destroy_pool(pool_id)

@pytest.yield_fixture()
[docs]def ipa_crud(fqdn_appliance, app_creds, ipa_creds):
 fqdn_appliance.appliance_console_cli.configure_ipa(ipa_creds['ipaserver'],
 ipa_creds['username'], ipa_creds['password'], ipa_creds['domain'], ipa_creds['realm'])

 yield(fqdn_appliance)

@pytest.fixture()
[docs]def app_creds():
 return {
 'username': credentials['database']['username'],
 'password': credentials['database']['password'],
 'sshlogin': credentials['ssh']['username'],
 'sshpass': credentials['ssh']['password']
 }

@pytest.fixture(scope="module")
[docs]def app_creds_modscope():
 return {
 'username': credentials['database']['username'],
 'password': credentials['database']['password'],
 'sshlogin': credentials['ssh']['username'],
 'sshpass': credentials['ssh']['password']
 }

@pytest.fixture()
[docs]def ipa_creds():
 fqdn = cfme_data['auth_modes']['ext_ipa']['ipaserver'].split('.', 1)
 creds_key = cfme_data['auth_modes']['ext_ipa']['credentials']
 return{
 'hostname': fqdn[0],
 'domain': fqdn[1],
 'realm': cfme_data['auth_modes']['ext_ipa']['iparealm'],
 'ipaserver': cfme_data['auth_modes']['ext_ipa']['ipaserver'],
 'username': credentials[creds_key]['principal'],
 'password': credentials[creds_key]['password']
 }

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/video.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.video

"""Video recording library

Configuration for this module + fixture:
.. code-block:: yaml

 logging:
 video:
 enabled: True
 dir: video
 display: ":99"
 quality: 10

"""

import os
import subprocess

from signal import SIGINT

from cfme.utils.conf import env
from utils.log import logger

vid_options = env.get('logging', {}).get('video')

[docs]def process_running(pid):
 """Check whether specified process is running"""
 try:
 os.kill(pid, 0)
 except OSError as e:
 if e.errno == 3:
 return False
 else:
 raise
 else:
 return True

[docs]class Recorder(object):
 """Recorder class

 Usage:

 with Recorder(filename):
 # do something

 # or
 r = Recorder(filename)
 r.start()
 # do something
 r.stop()

 The first way is preferred, obviously
 """
 def __init__(self, filename, display=None, quality=None):
 self.filename = filename
 self.display = display or vid_options["display"]
 self.quality = quality or vid_options["quality"]
 self.pid = None

[docs] def start(self):
 cmd_line = ['recordmydesktop',
 '--display', str(self.display),
 '-o', str(self.filename),
 '--no-sound',
 '--v_quality', str(self.quality),
 '--on-the-fly-encoding',
 '--overwrite']
 try:
 proc = subprocess.Popen(cmd_line, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
 self.pid = proc.pid
 except OSError:
 # Had to disable for artifactor
 # logger.exception("Couldn't initialize videoer! Is recordmydesktop installed?")
 pass

[docs] def stop(self):
 if self.pid is not None:
 if process_running(self.pid):
 os.kill(self.pid, SIGINT)
 os.waitpid(self.pid, 0)
 # Had to disable for artifactor
 # logger.info("Recording finished")
 self.pid = None
 else:
 # Had to disable for artifactor
 # logger.exception("Could not find recordmydesktop process #%d" % self.pid)
 pass

 def __enter__(self):
 self.start()

 def __exit__(self, t, v, tb):
 self.stop()

[docs] def __del__(self):
 """If the reference is lost and the object is destroyed ..."""
 self.stop()

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/fixtures/configure_auth_mode.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.fixtures.configure_auth_mode

import pytest

from cfme.utils.conf import cfme_data, credentials
from cfme.configure import configuration
from cfme.utils.appliance import current_appliance
from cfme.utils.ext_auth import disable_external_auth_ipa, disable_external_auth_openldap, \
 setup_external_auth_ipa, setup_external_auth_openldap

@pytest.fixture(scope='session')
[docs]def available_auth_modes():
 return cfme_data.get('auth_modes', {}).keys()

@pytest.yield_fixture(scope='module')
[docs]def configure_ldap_auth_mode(browser, available_auth_modes):
 """Configure LDAP authentication mode"""
 if 'miq_ldap' in available_auth_modes:
 server_data = cfme_data.get('auth_modes', {})['miq_ldap']
 configuration.set_auth_mode(**server_data)
 yield
 current_appliance.server.login_admin()
 configuration.set_auth_mode(mode='database')
 else:
 yield

@pytest.yield_fixture(scope='module')
[docs]def configure_openldap_auth_mode(browser, available_auth_modes):
 """Configure LDAP authentication mode"""
 if 'miq_openldap' in available_auth_modes:
 server_data = cfme_data.get('auth_modes', {})['miq_openldap']
 configuration.set_auth_mode(**server_data)
 yield
 current_appliance.server.login_admin()
 configuration.set_auth_mode(mode='database')
 else:
 yield

@pytest.yield_fixture(scope='module')
[docs]def configure_openldap_auth_mode_default_groups(browser, available_auth_modes):
 """Configure LDAP authentication mode"""
 if 'miq_openldap' in available_auth_modes:
 server_data = cfme_data.get('auth_modes', {})['miq_openldap']
 server_data['get_groups'] = False
 server_data['default_groups'] = 'EvmRole-user'
 configuration.set_auth_mode(**server_data)
 yield
 current_appliance.server.login_admin()
 configuration.set_auth_mode(mode='database')
 else:
 yield

@pytest.yield_fixture(scope='module')
[docs]def configure_aws_iam_auth_mode(browser, available_auth_modes):
 """Configure AWS IAM authentication mode"""
 if 'miq_aws_iam' in available_auth_modes:
 aws_iam_data = dict(cfme_data.get('auth_modes', {})['miq_aws_iam'])
 aws_iam_creds = credentials[aws_iam_data.pop('credentials')]
 aws_iam_data['access_key'] = aws_iam_creds['username']
 aws_iam_data['secret_key'] = aws_iam_creds['password']
 configuration.set_auth_mode(**aws_iam_data)
 yield
 current_appliance.server.login_admin()
 configuration.set_auth_mode(mode='database')
 else:
 yield

@pytest.fixture()
[docs]def configure_auth(request, auth_mode):
 data = cfme_data['auth_modes'].get(auth_mode, {})
 if auth_mode == 'ext_ipa':
 request.addfinalizer(disable_external_auth_ipa)
 setup_external_auth_ipa(**data)
 elif auth_mode == 'ext_openldap':
 request.addfinalizer(disable_external_auth_openldap)
 setup_external_auth_openldap(**data)
 elif auth_mode in ['miq_openldap', 'miq_ldap']:
 configuration.set_auth_mode(**data)
 request.addfinalizer(current_appliance.server.login_admin)
 request.addfinalizer(configuration.setup_authmode_database)
 elif auth_mode == 'miq_aws_iam':
 aws_iam_creds = credentials[data.pop('credentials')]
 data['access_key'] = aws_iam_creds['username']
 data['secret_key'] = aws_iam_creds['password']
 configuration.set_auth_mode(**data)
 request.addfinalizer(current_appliance.server.login_admin)
 request.addfinalizer(configuration.setup_authmode_database)
 else:
 pytest.skip("auth_mode specified is not a expected value for cfme_auth tests")

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/soft_get.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.soft_get

import collections
from difflib import SequenceMatcher

[docs]class MultipleResultsException(Exception):
 pass

[docs]def soft_get(obj,
 field_base_name,
 dict_=False,
 case_sensitive=False,
 best_match=True,
 dont_include=None):
 """
 This function used for cases that we want to get some attribute that we
 either know only few parts of its name or want to prevent from case issues.

 Example:
 Imagine you have a relationships table and you want to get 'image' field.
 Since sometimes the exact name of the field is changing among versions, pages, etc.
 it could be appear as 'Images', 'Image', 'Container Images', Containers Images', etc.
 Since we don't care for the exact name and know that 'image' is a unique in the table,
 we can use this function to prevent from this complexity.

 Args:
 * obj: The object which we want to get the attribute
 * field_base_name: The base name, a string that we know
 for sure that is a sub-string of the target field
 * dict_: Whether this is a dict AND we want to perform the same functionality on its keys
 * case_sensitive: Whether the search is a sensitive case.
 * best_match: If True: in case that it found more than 1 match field,
 it will take the closest one
 If False: in case that it found more than 1 match field,
 it will raise an error
 * dont_include: Strings that should not be a part of the field.
 Used to prevent cases like: soft_get(obj, 'image') -> obj.image_registry
 Returns:
 The value of the target attribute
 """
 dont_include = dont_include or []
 signature = ('soft_get({}, {}, dict_={}, case_sensitive={})'
 .format(obj, field_base_name, dict_, case_sensitive))
 if not case_sensitive:
 field_base_name = field_base_name.lower()
 if dict_:
 if not isinstance(obj, collections.Mapping):
 raise TypeError('{}: {} is not a dict (type={}). '
 .format(signature, obj, type(obj)))
 all_fields = obj.keys()
 else:
 all_fields = dir(obj)
 found_fields = []
 if not case_sensitive:
 dont_include = [s.lower() for s in dont_include]
 for field in all_fields:
 origin_field = field
 if not case_sensitive:
 field = field.lower()
 if (field_base_name in field) and \
 all([(s not in field) for s in dont_include]):
 found_fields.append(origin_field)
 if not found_fields:
 raise AttributeError('{}: Could not find a member for field {}.'
 .format(signature, field_base_name))
 elif len(found_fields) > 1:
 if not best_match:
 raise MultipleResultsException('{}: Found more than 1 member for {}: {}'
 .format(signature, field_base_name, found_fields))
 found_fields = [max(found_fields, key=lambda s:
 SequenceMatcher(None, s, field_base_name).ratio())]

 if dict_:
 return obj[found_fields[0]]
 return getattr(obj, found_fields[0])

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/fixtures/smtp.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.fixtures.smtp

-*- coding: utf-8 -*-
"""This module provides a fixture useful for checking the e-mails arrived.

Main use is of fixture :py:meth:`smtp_test`, which is function scoped. There is also
a :py:meth:`smtp_test_module` fixture for which the smtp_test is just a function-scoped wrapper
to speed things up. The base of all this is the session-scoped _smtp_test_session that keeps care
about the collector.
"""
import logging
import os
import pytest
import signal
import subprocess
import time

from cfme.configure import configuration
from fixtures.artifactor_plugin import fire_art_test_hook
from cfme.utils.conf import env
from cfme.utils.log import setup_logger
from cfme.utils.net import random_port, my_ip_address, net_check_remote
from cfme.utils.path import scripts_path
from cfme.utils.smtp_collector_client import SMTPCollectorClient

logger = setup_logger(logging.getLogger('emails'))

@pytest.fixture(scope="function")
[docs]def smtp_test(request):
 """Fixture, which prepares the appliance for e-mail capturing tests

 Returns: :py:class:`util.smtp_collector_client.SMTPCollectorClient` instance.
 """
 logger.info("Preparing start for e-mail collector")
 ports = env.get("mail_collector", {}).get("ports", {})
 mail_server_port = ports.get("smtp", False) or os.getenv('SMTP', False) or random_port()
 mail_query_port = ports.get("json", False) or os.getenv('JSON', False) or random_port()
 my_ip = my_ip_address()
 logger.info("Mind that it needs ports %s and %s open", mail_query_port, mail_server_port)
 smtp_conf = configuration.SMTPSettings(
 host=my_ip,
 port=mail_server_port,
 auth="none",
)
 smtp_conf.update()
 server_filename = scripts_path.join('smtp_collector.py').strpath
 server_command = server_filename + " --smtp-port {} --query-port {}".format(
 mail_server_port,
 mail_query_port
)
 logger.info("Starting mail collector %s", server_command)
 collector = None

 def _finalize():
 if collector is None:
 return
 logger.info("Sending KeyboardInterrupt to collector")
 try:
 collector.send_signal(signal.SIGINT)
 except OSError as e:
 # TODO: Better logging.
 logger.exception(e)
 logger.error("Something happened to the e-mail collector!")
 return
 time.sleep(2)
 if collector.poll() is None:
 logger.info("Sending SIGTERM to collector")
 collector.send_signal(signal.SIGTERM)
 time.sleep(5)
 if collector.poll() is None:
 logger.info("Sending SIGKILL to collector")
 collector.send_signal(signal.SIGKILL)
 collector.wait()
 logger.info("Collector finished")
 logger.info("Cleaning up smtp setup in CFME")
 smtp_conf = configuration.SMTPSettings(
 host='',
 port='',
)
 smtp_conf.update()
 collector = subprocess.Popen(server_command, shell=True)
 request.addfinalizer(_finalize)
 logger.info("Collector pid %s", collector.pid)
 logger.info("Waiting for collector to become alive.")
 time.sleep(3)
 assert collector.poll() is None, "Collector has died. Something must be blocking selected ports"
 logger.info("Collector alive")
 query_port_open = net_check_remote(mail_query_port, my_ip, force=True)
 server_port_open = net_check_remote(mail_server_port, my_ip, force=True)
 assert query_port_open and server_port_open,\
 'Ports {} and {} on the machine executing the tests are closed.\n'\
 'The ports are randomly chosen -> turn firewall off.'\
 .format(mail_query_port, mail_server_port)
 client = SMTPCollectorClient(
 my_ip,
 mail_query_port
)
 client.set_test_name(request.node.name)
 client.clear_database()
 return client

@pytest.mark.hookwrapper
[docs]def pytest_runtest_call(item):
 try:
 yield
 finally:
 if "smtp_test" not in item.funcargs:
 return

 try:
 fire_art_test_hook(
 item,
 "filedump",
 description="received e-mails",
 contents=item.funcargs["smtp_test"].get_html_report(),
 file_type="html",
 display_glyph="align-justify",
 group_id="misc-artifacts",
)
 except Exception as e:
 logger.exception(e)
 logger.error("Something happened to the SMTP collector.")

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/apidoc.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.apidoc

"""Sphinx plugin for automatically generating (and optionally cleaning) project api documentation

To enable the optional cleaning, set ``clean_autogenerated_docs`` to ``True`` in docs/conf.py

"""
import subprocess

from sphinx.util.console import bold, red

from cfme.utils.path import docs_path, project_path

When adding/removing from this list, remember to edit docs/modules.rst to match
#: List of modules/packages to document, paths relative to the project root.
modules_to_document = ['cfme', 'fixtures', 'markers', 'utils']
_doc_modules_path = docs_path.join('modules')

[docs]def setup(sphinx):
 """Main sphinx entry point, calls sphinx-apidoc"""
 for module in modules_to_document:
 module_path = project_path.join(module).strpath
 tests_exclude_path = project_path.join(module, 'tests').strpath
 output_module_path = _doc_modules_path.join(module).strpath

 # Shove stdout into a pipe to supress the output, but still let stderr out
 args = ['sphinx-apidoc', '-T', '-e', '-o', output_module_path, module_path,
 tests_exclude_path]
 proc = subprocess.Popen(args, stdout=subprocess.PIPE)
 proc.wait()
 sphinx.add_config_value('clean_autogenerated_docs', False, rebuild='')
 sphinx.connect('build-finished', purge_module_apidoc)

[docs]def purge_module_apidoc(sphinx, exception):
 # Short out if not supposed to run
 if not sphinx.config.clean_autogenerated_docs:
 return

 try:
 sphinx.info(bold('cleaning autogenerated docs... '), nonl=True)
 _doc_modules_path.ensure(dir=True)
 _doc_modules_path.remove(rec=True)
 sphinx.info(message='done')
 except Exception as ex:
 sphinx.info(red('failed to clean autogenerated docs'))
 sphinx.info(red(type(ex).__name__) + ' ', nonl=True)
 sphinx.info(str(ex))

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/fixtures/service_fixtures.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.fixtures.service_fixtures

-*- coding: utf-8 -*-
import fauxfactory
import pytest

from cfme.automate.service_dialogs import DialogCollection
from cfme.common.provider import cleanup_vm
from cfme.services.catalogs.catalog import Catalog
from cfme.services.catalogs.catalog_item import CatalogItem
from cfme.services.catalogs.service_catalogs import ServiceCatalogs
from cfme.services.requests import RequestCollection
from cfme.utils.log import logger

@pytest.yield_fixture(scope="function")
[docs]def dialog(appliance):
 service_dialogs = DialogCollection(appliance)
 dialog = fauxfactory.gen_alphanumeric()
 element_data = dict(
 ele_label="ele_" + fauxfactory.gen_alphanumeric(),
 ele_name="service_name",
 ele_desc="my ele desc",
 choose_type="Text Box",
 default_text_box=dialog
)

 sd = service_dialogs.create(label=dialog,
 description="my dialog", submit=True, cancel=True,)
 tab = sd.tabs.create(tab_label='tab_' + fauxfactory.gen_alphanumeric(),
 tab_desc="my tab desc")
 box = tab.boxes.create(box_label='box_' + fauxfactory.gen_alphanumeric(),
 box_desc="my box desc")
 box.elements.create(element_data=[element_data])
 yield sd

@pytest.yield_fixture(scope="function")
[docs]def catalog():
 catalog = "cat_" + fauxfactory.gen_alphanumeric()
 cat = Catalog(name=catalog,
 description="my catalog")
 cat.create()
 yield cat

@pytest.fixture(scope="function")
[docs]def catalog_item(provider, provisioning, vm_name, dialog, catalog):
 template, host, datastore, iso_file, catalog_item_type, vlan = map(provisioning.get,
 ('template', 'host', 'datastore', 'iso_file', 'catalog_item_type', 'vlan'))
 item_name = dialog.label
 provisioning_data = dict(
 vm_name=vm_name,
 host_name={'name': [host]},
 datastore_name={'name': [datastore]},
 vlan=vlan
)

 if provider.type == 'rhevm':
 provisioning_data['provision_type'] = 'Native Clone'
 elif provider.type == 'virtualcenter':
 provisioning_data['provision_type'] = 'VMware'
 catalog_item = CatalogItem(item_type=catalog_item_type, name=item_name,
 description="my catalog", display_in=True, catalog=catalog,
 dialog=dialog, catalog_name=template,
 provider=provider, prov_data=provisioning_data)
 return catalog_item

@pytest.fixture(scope="function")
[docs]def order_catalog_item_in_ops_ui(appliance, provider, catalog_item, request):
 """
 Fixture for SSUI tests.
 Orders catalog item in OPS UI.
 """
 vm_name = catalog_item.provisioning_data["vm_name"]
 request.addfinalizer(lambda: cleanup_vm("{}_0001".format(vm_name), provider))
 catalog_item.create()
 service_catalogs = ServiceCatalogs(catalog_item.catalog, catalog_item.name)
 service_catalogs.order()
 logger.info("Waiting for cfme provision request for service {}".format(catalog_item.name))
 request_description = catalog_item.name
 provision_request = RequestCollection(appliance).instantiate(request_description,
 partial_check=True)
 provision_request.wait_for_request()
 assert provision_request.is_finished()
 return catalog_item.name

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/net.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.net

from collections import defaultdict
import socket
import os
import re
import urlparse
from fixtures.pytest_store import store

from cfme.utils.log import logger

_ports = defaultdict(dict)
_dns_cache = {}
ip_address = re.compile(
 r"^((25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}"
 r"(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)$")

[docs]def random_port(tcp=True):
 """Get a random port number for making a socket

 Args:
 tcp: Return a TCP port number if True, UDP if False

 This may not be reliable at all due to an inherent race condition. This works
 by creating a socket on an ephemeral port, inspecting it to see what port was used,
 closing it, and returning that port number. In the time between closing the socket
 and opening a new one, it's possible for the OS to reopen that port for another purpose.

 In practical testing, this race condition did not result in a failure to (re)open the
 returned port number, making this solution squarely "good enough for now".
 """
 # Port 0 will allocate an ephemeral port
 socktype = socket.SOCK_STREAM if tcp else socket.SOCK_DGRAM
 s = socket.socket(socket.AF_INET, socktype)
 s.bind(('', 0))
 addr, port = s.getsockname()
 s.close()
 return port

[docs]def my_ip_address(http=False):
 """Get the ip address of the host running tests using the service listed in cfme_data['ip_echo']

 The ip echo endpoint is expected to write the ip address to the socket and close the
 connection. See a working example of this in :py:func:`ip_echo_socket`.

 """
 # the pytest store does this work, it's included here for convenience
 return store.my_ip_address

[docs]def ip_echo_socket(port=32123):
 """A simple socket server, for use with :py:func:`my_ip_address`"""
 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 s.bind(('', port))
 s.listen(0)
 while True:
 conn, addr = s.accept()
 conn.sendall(addr[0])
 conn.close()

[docs]def net_check(port, addr=None, force=False):
 """Checks the availablility of a port"""
 port = int(port)
 if not addr:
 addr = urlparse.urlparse(store.base_url).hostname
 if port not in _ports[addr] or force:
 # First try DNS resolution
 try:
 addr = socket.gethostbyname(addr)

 # Then try to connect to the port
 try:
 socket.create_connection((addr, port), timeout=10)
 _ports[addr][port] = True
 except socket.error:
 _ports[addr][port] = False
 except:
 _ports[addr][port] = False
 return _ports[addr][port]

[docs]def net_check_remote(port, addr=None, machine_addr=None, ssh_creds=None, force=False):
 """Checks the availability of a port from outside using another machine (over SSH)"""
 from cfme.utils.ssh import SSHClient
 port = int(port)
 if not addr:
 addr = my_ip_address()
 if port not in _ports[addr] or force:
 if not machine_addr:
 machine_addr = urlparse.urlparse(store.base_url).hostname
 if not ssh_creds:
 ssh_client = store.current_appliance.ssh_client
 else:
 ssh_client = SSHClient(
 hostname=machine_addr,
 username=ssh_creds['username'],
 password=ssh_creds['password']
)
 with ssh_client:
 # on exception => fails with return code 1
 cmd = '''python -c "
import sys, socket
addr = socket.gethostbyname('%s')
socket.create_connection((addr, %d), timeout=10)
sys.exit(0)
 "''' % (addr, port)
 ret, out = ssh_client.run_command(cmd)
 if ret == 0:
 _ports[addr][port] = True
 else:
 _ports[addr][port] = False
 return _ports[addr][port]

[docs]def resolve_hostname(hostname, force=False):
 """Cached DNS resolver. If the hostname does not resolve to an IP, returns None."""
 if hostname not in _dns_cache or force:
 try:
 _dns_cache[hostname] = socket.gethostbyname(hostname)
 except socket.gaierror:
 _dns_cache[hostname] = None
 return _dns_cache[hostname]

[docs]def resolve_ips(host_iterable, force_dns=False):
 """Takes list of hostnames, ips and another things. If the item is not an IP, it will be tried
 to be converted to an IP. If that succeeds, it is appended to the set together with original
 hostname. If it can't be resolved, just the original hostname is appended.
 """
 result = set([])
 for host in map(str, host_iterable):
 result.add(host) # It is already an IP address
 if ip_address.match(host) is None:
 ip = resolve_hostname(host, force=force_dns)
 if ip is not None:
 result.add(ip)
 return result

[docs]def is_pingable(ip_addr):
 """verifies the specified ip_address is reachable or not.

 Args:
 ip_addr: ip_address to verify the PING.
 returns: return True is ip_address is pinging else returns False.
 """
 try:
 status = os.system("ping -c1 -w2 {}".format(ip_addr))
 if status == 0:
 logger.info('IP: %s is UP !', ip_addr)
 return True
 logger.info('IP: %s is DOWN !', ip_addr)
 return False
 except Exception as e:
 logger.exception(e)
 return False

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/fixtures/vporizer.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.fixtures.vporizer

from datetime import datetime
import re
from collections import namedtuple
from random import random

import pytest

vpor_values_pattern = """---
:avg:
 :cpu_usagemhz_rate_average: {}
 :derived_memory_used: {}
 :max_cpu_usage_rate_average: {}
 :max_mem_usage_absolute_average: {}
:dev:
 :cpu_usagemhz_rate_average: {}
 :derived_memory_used: {}
 :max_cpu_usage_rate_average: {}
 :max_mem_usage_absolute_average: {}
"""

vpor_data_instance = namedtuple('vpor_data_instance',
 [
 'resource_type',
 'resource_id',
 'resource_name',
 'cpu_usagemhz_rate_average',
 'derived_memory_used',
 'max_cpu_usage_rate_average',
 'max_mem_usage_absolute_average'
])

cpu_usagemhz_rate_average__data_range = 8196 # 13 bit depth
derived_memory_used__data_range = 100 # Percents
max_cpu_usage_rate_average__data_range = 8196 # 13 bit depth
max_mem_usage_absolute_average__data_range = 100 # Percents

[docs]def gen_vpor_values():
 return vpor_values_pattern.format(
 random(), random() * cpu_usagemhz_rate_average__data_range,
 random() * derived_memory_used__data_range,
 random() * derived_memory_used__data_range,
 random(), random() * max_cpu_usage_rate_average__data_range,
 random() * max_mem_usage_absolute_average__data_range,
 random() * max_mem_usage_absolute_average__data_range
)

@pytest.yield_fixture(scope='module')
[docs]def vporizer(appliance):

 """Grabbing vim_performance_operating_ranges table data for nodes and projects.
 In case that no such data exists, inserting fake rows"""

 db = appliance.db.client
 vpor = db['vim_performance_operating_ranges']

 container_nodes = db['container_nodes']
 container_pods = db['container_groups']
 container_projects = db['container_projects']
 created_at = datetime.now()
 vpor_data_list = []

 tables_2_names = zip(
 (container_nodes, container_projects, container_pods),
 ('ContainerNode', 'ContainerProject', 'ContainerGroup')
)
 for table, resource_type in tables_2_names:
 ids = []
 for resource in db.session.query(table).all():
 def get_resource_vpor_data():
 return vpor.__table__.select().where(
 (vpor.resource_id == resource.id) &
 (vpor.resource_type == resource_type)
).execute().fetchone()
 # Checking whether values has already inserted to the table for this resource.
 # Should be True only in case that the appliance age is greater than 24h
 # if there isn't such row, insert...
 if not get_resource_vpor_data():
 ids.append(
 vpor.__table__.insert().values(
 resource_type=resource_type, resource_id=resource.id,
 created_at=created_at, days=30, updated_at=datetime.now(),
 time_profile_id=1, values=gen_vpor_values()
).execute().inserted_primary_key[0]
)
 # now, collecting the values from the table
 resource_vpor_data = get_resource_vpor_data()
 vpor_values_match = re.search(vpor_values_pattern.replace('{}', '([\d\.\-e]+)'),
 resource_vpor_data['values'])
 if not vpor_values_match:
 raise Exception('Could not parse VPOR values from row: values={}'
 .format(resource_vpor_data['values']))
 vpor_values = [float(v) for v in vpor_values_match.groups()]
 vpor_data_list.append(
 vpor_data_instance(
 resource_vpor_data['resource_type'],
 resource_vpor_data['resource_id'], resource.name,
 vpor_values[0], vpor_values[1], vpor_values[2], vpor_values[3]
)
)

 yield vpor_data_list

 vpor.__table__.delete().where(vpor.id.in_(ids)).execute()

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/workloads.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.workloads

"""Functions for workloads."""
from cfme.utils.conf import cfme_performance

[docs]def get_capacity_and_utilization_replication_scenarios():
 if 'test_cap_and_util_rep' in cfme_performance.get('tests', {}).get('workloads', []):
 if (cfme_performance['tests']['workloads']['test_cap_and_util_rep']['scenarios'] and
 len(
 cfme_performance['tests']['workloads']['test_cap_and_util_rep']['scenarios']) > 0):
 # Add Replication Master into Scenario(s):
 for scn in cfme_performance['tests']['workloads']['test_cap_and_util_rep']['scenarios']:
 scn['replication_master'] = cfme_performance['replication_master']
 return cfme_performance['tests']['workloads']['test_cap_and_util_rep']['scenarios']
 return []

[docs]def get_capacity_and_utilization_scenarios():
 if 'test_cap_and_util' in cfme_performance.get('tests', {}).get('workloads', []):
 if (cfme_performance['tests']['workloads']['test_cap_and_util']['scenarios'] and
 len(cfme_performance['tests']['workloads']['test_cap_and_util']['scenarios']) > 0):
 return cfme_performance['tests']['workloads']['test_cap_and_util']['scenarios']
 return []

[docs]def get_idle_scenarios():
 if 'test_idle' in cfme_performance.get('tests', {}).get('workloads', []):
 if(cfme_performance['tests']['workloads']['test_idle']['scenarios'] and
 len(cfme_performance['tests']['workloads']['test_idle']['scenarios']) > 0):
 return cfme_performance['tests']['workloads']['test_idle']['scenarios']
 return []

[docs]def get_provisioning_scenarios():
 if 'test_provisioning' in cfme_performance.get('tests', {}).get('workloads', []):
 if(cfme_performance['tests']['workloads']['test_provisioning']['scenarios'] and
 len(cfme_performance['tests']['workloads']['test_provisioning']['scenarios']) > 0):
 return cfme_performance['tests']['workloads']['test_provisioning']['scenarios']
 return []

[docs]def get_refresh_providers_scenarios():
 if 'test_refresh_providers' in cfme_performance.get('tests', {}).get('workloads', []):
 if (cfme_performance['tests']['workloads']['test_refresh_providers']['scenarios'] and
 len(
 cfme_performance['tests']['workloads']['test_refresh_providers']['scenarios']) > 0):
 return cfme_performance['tests']['workloads']['test_refresh_providers']['scenarios']
 return []

[docs]def get_refresh_vms_scenarios():
 if 'test_refresh_vms' in cfme_performance.get('tests', {}).get('workloads', []):
 if (cfme_performance['tests']['workloads']['test_refresh_vms']['scenarios'] and
 len(cfme_performance['tests']['workloads']['test_refresh_vms']['scenarios']) > 0):
 return cfme_performance['tests']['workloads']['test_refresh_vms']['scenarios']
 return []

[docs]def get_smartstate_analysis_scenarios():
 if 'test_smartstate' in cfme_performance.get('tests', {}).get('workloads', []):
 if(cfme_performance['tests']['workloads']['test_smartstate']['scenarios'] and
 len(cfme_performance['tests']['workloads']['test_smartstate']['scenarios']) > 0):
 return cfme_performance['tests']['workloads']['test_smartstate']['scenarios']
 return []

[docs]def get_ui_single_page_scenarios():
 if 'test_ui_single_page' in cfme_performance.get('tests', {}).get('ui_workloads', []):
 if(cfme_performance['tests']['ui_workloads']['test_ui_single_page']['scenarios'] and
 len(cfme_performance['tests']['ui_workloads']['test_ui_single_page']['scenarios']) > 0):
 return cfme_performance['tests']['ui_workloads']['test_ui_single_page']['scenarios']
 return []

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/fixtures/model_collections.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.fixtures.model_collections

-*- coding: utf-8 -*-
import pytest

@pytest.fixture(scope='function')
[docs]def dashboards(appliance):
 from cfme.dashboard import DashboardCollection
 return DashboardCollection(appliance=appliance)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/grafana.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.grafana

"""Wrap interactions with Grafana or logging Grafana URLs."""
from cfme.utils.conf import cfme_performance
from cfme.utils.log import logger

[docs]def get_scenario_dashboard_urls(scenario, from_ts, to_ts, output_to_log=True):
 """Builds a dictionary of URLs to Grafana Dashboards of relevant appliances for a single
 workload's scenario. It accounts for when a replication_master appliance is under test too."""
 if cfme_performance['tools']['grafana']['enabled']:
 g_ip = cfme_performance['tools']['grafana']['ip_address']
 g_port = cfme_performance['tools']['grafana']['port']
 appliance_name = cfme_performance['appliance']['appliance_name']
 dashboard_name = cfme_performance['tools']['grafana']['default_dashboard']
 grafana_urls = {}
 if 'grafana_dashboard' in scenario:
 dashboard_name = scenario['grafana_dashboard']
 stub = 'http://{}:{}/dashboard/db/{}?from={}&to={}&var-Node={}'
 grafana_urls['appliance'] = stub.format(g_ip, g_port, dashboard_name,
 from_ts, to_ts, appliance_name)
 if 'replication_master' in scenario:
 grafana_urls['replication_master'] = \
 stub.format(g_ip, g_port, dashboard_name, from_ts, to_ts,
 scenario['replication_master']['appliance_name'])
 if output_to_log:
 logger.info('Grafana URLs: {}'.format(grafana_urls))
 return grafana_urls
 else:
 logger.warn('Grafana integration is not enabled')
 return ''

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/fixtures/pytest_selenium.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.fixtures.pytest_selenium

"""Provides a number of useful functions for integrating with selenium.

The aim is that no direct calls to selenium be made at all.
One reason for this it to ensure that all function calls to selenium wait for the ajax
response which is needed in CFME.

Members of this module are available in the the pytest.sel namespace, e.g.::

 pytest.sel.click(locator)

:var ajax_wait_js: A Javascript function for ajax wait checking
:var class_selector: Regular expression to detect simple CSS locators
"""
from HTMLParser import HTMLParser
from time import sleep
from xml.sax.saxutils import quoteattr, unescape
from collections import Iterable, namedtuple
from contextlib import contextmanager
from textwrap import dedent
import json
import re
from selenium.common.exceptions import \
 (NoSuchAttributeException,
 NoSuchElementException, NoAlertPresentException, UnexpectedAlertPresentException,
 MoveTargetOutOfBoundsException, WebDriverException,
 StaleElementReferenceException)
from selenium.webdriver.common.action_chains import ActionChains
from selenium.webdriver.common.by import By
from selenium.webdriver.support import expected_conditions
from selenium.webdriver.support.wait import WebDriverWait
from selenium.webdriver.remote.file_detector import LocalFileDetector, UselessFileDetector
from selenium.webdriver.remote.webelement import WebElement
from selenium.webdriver.support.select import Select as SeleniumSelect
from multimethods import singledispatch, multidispatch

import base64

from cfme import exceptions, js
from fixtures.pytest_store import store
from cfme.utils import version
from cfme.utils.browser import browser, ensure_browser_open
from cfme.utils.path import log_path
from cfme.utils.log import logger
from cfme.utils.wait import wait_for
from cfme.utils.pretty import Pretty
from cfme.utils.deprecation import removed_in_fw30

from threading import local
_thread_local = local()
_thread_local.ajax_timeout = 30

class_selector = re.compile(r"^(?:[a-zA-Z][a-zA-Z0-9]*)?(?:[#.][a-zA-Z0-9_-]+)+$")
removed = removed_in_fw30(message="it is replaced by the browser endpoint api")

urls = []

Monkeypatching WebElement
if "_old__repr__" not in globals():
 _old__repr__ = WebElement.__repr__

def __repr__(self):
 if hasattr(self, "_source_locator"):
 this, parent = self._source_locator
 if parent:
 return "element({}, root={})".format(repr(this), repr(parent))
 else:
 return "element({})".format(repr(this))
 else:
 return _old__repr__(self)

if WebElement.__repr__ is not __repr__:
 WebElement.__repr__ = __repr__

[docs]class ByValue(Pretty):
 pretty_attrs = ['value']

 def __init__(self, value):
 self.value = value

 def __eq__(self, other):
 return self.value == other.value

 def __str__(self):
 return str(self.value)

[docs]class ByText(Pretty):
 pretty_attrs = ['text']

 def __init__(self, text):
 self.text = text

 def __str__(self):
 return str(self.text)

 def __eq__(self, other):
 return self.text == other.text

@removed
@singledispatch
[docs]def elements(o, **kwargs):
 """
 Convert object o to list of matching WebElements. Can be extended by registering the type of o
 to this function.

 Args:
 o: An object to be converted to a matching web element, eg str, WebElement, tuple.

 Returns: A list of WebElement objects
 """
 check_visibility = kwargs.pop("check_visibility", True)
 if hasattr(o, "locate"):
 els = elements(o.locate(), **kwargs)
 if check_visibility:
 return [e for e in els if is_displayed(e)]
 else:
 return els
 elif callable(o):
 els = elements(o(), **kwargs)
 if check_visibility:
 return [e for e in els if is_displayed(e)]
 else:
 return els
 else:
 raise TypeError("Unprocessable type for elements({}) -> class {} (kwargs: {})".format(
 str(repr(o)), o.__class__.__name__, str(repr(kwargs))
))

 # If it doesn't implement locate() or __call__(), we're in trouble so
 # let the error bubble up.

@elements.method(basestring)
def _s(s, **kwargs):
 """Detect string and process it into locator.

 If the string starts with # or ., it is considered as CSS selector.
 If the string is in format tag#id.class2 it is considered as CSS selector format too.
 No other forms of CSS selectors are supported (use tuples if you really want to)
 Otherwise it is assumed it is an XPATH selector.

 If the root element is actually multiple elements, then the locator is resolved for each
 of root nodes.

 Result: Flat list of elements
 """
 s = s.strip()
 css = class_selector.match(s)
 if css is not None:
 return elements((By.CSS_SELECTOR, css.group()), **kwargs)
 else:
 return elements((By.XPATH, s), **kwargs)

@elements.method(WebElement)
def _w(webelement, **kwargs):
 """Return a 1-item list of webelements

 If the root element is actually multiple elements, then the locator is resolved for each
 of root nodes.

 Result: Flat list of elements
 """
 # accept **kwargs to deal with root if it's passed by singledispatch
 return [webelement]

@elements.method(tuple)
def _t(t, root=None):
 """Assume tuple is a 2-item tuple like (By.ID, 'myid').

 Handles the case when root= locator resolves to multiple elements. In that case all of them
 are processed and all results are put in the same list."""
 result = []
 for root_element in (elements(root) if root is not None else [ensure_browser_open()]):
 # 20140920 - dajo - hack to get around selenium e is null bs
 count = 0
 while count < 8:
 count += 1
 try:
 result += root_element.find_elements(*t)
 break
 except Exception as e:
 logger.info('Exception detected: %s', str(e))
 sleep(0.25)
 if count == 8:
 result += root_element.find_elements(*t)
 # Monkey patch them
 for elem in result:
 elem._source_locator = (t, root)
 return result

@elements.method(list)
@elements.method(set)
def _l(l, **kwargs):
 """If we pass an iterable (non-tuple), just find everything relevant from it by all locators."""
 if not l:
 return []
 found = reduce(lambda a, b: a + b, map(lambda loc: elements(loc, **kwargs), l))
 seen = set([])
 result = []
 # Multiple locators can find the same elements, so let's filter
 for item in found:
 if item in seen:
 continue
 result.append(item)
 seen.add(item)
 return result

@elements.method(dict)
def _d(l, **kwargs):
 """Resolve version-specific locators."""
 return elements(version.pick(l), **kwargs)

[docs]def get_rails_error():
 """Get displayed rails error. If not present, return None"""
 if is_displayed(
 "//body[./h1 and ./p and ./hr and ./address]", _no_deeper=True):
 try:
 title = text("//body/h1", _no_deeper=True)
 body = text("//body/p", _no_deeper=True)
 except NoSuchElementException: # Just in case something goes really wrong
 return None
 return "{}: {}".format(title, body)
 elif is_displayed(
 "//h1[normalize-space(.)='Unexpected error encountered']", _no_deeper=True):
 try:
 error_text = text(
 "//h1[normalize-space(.)='Unexpected error encountered']"
 "/following-sibling::h3[not(fieldset)]", _no_deeper=True)
 except NoSuchElementException: # Just in case something goes really wrong
 return None
 return error_text
 return None

@removed
[docs]def element(o, **kwargs):
 """
 Convert o to a single matching WebElement.

 Args:
 o: An object to be converted to a matching web element, expected string, WebElement, tuple.

 Keywords:
 _no_deeper: Whether this call of the function can call for something that can retrieve
 elements too. Recursion protection.

 Returns: A WebElement object

 Raises:
 NoSuchElementException: When element is not found on page
 """
 no_deeper = kwargs.pop("_no_deeper", False)
 matches = elements(o, **kwargs)

 if not matches:
 if (not no_deeper):
 r_e = get_rails_error()
 if r_e is not None:
 raise exceptions.CFMEExceptionOccured(
 "Element {} not found on page because the following Rails error happened:\n{}"
 .format(str(o), r_e))
 raise NoSuchElementException("Element {} not found on page.".format(str(o)))
 return matches[0]

@removed
[docs]def wait_until(f, msg="Webdriver wait timed out", timeout=120.0):
 """This used to be a wrapper around WebDriverWait from selenium.

 Now it is just compatibility layer using :py:func:`utils.wait.wait_for`
 """
 return wait_for(lambda: f(ensure_browser_open()), num_sec=timeout, message=msg, delay=0.5)

@removed
[docs]def in_flight(script):
 """Check remaining (running) ajax requests

 The element visibility check is complex because lightbox_div invokes visibility
 of spinner_div although it is not visible.

 Args:
 script: Script (string) to execute

 Returns:
 Dictionary of js-related keys and booleans as its values, depending on status.
 The keys are: ``jquery, prototype, miq, spinner and document``.
 The values are: ``True`` if running, ``False`` otherwise.
 """
 try:
 return execute_script(script)
 except UnexpectedAlertPresentException:
 raise
 except Exception:
 sleep(0.5)
 return execute_script(script)

@removed
[docs]def wait_for_ajax():
 """
 Waits until all ajax timers are complete, in other words, waits until there are no
 more pending ajax requests, page load should be finished completely.

 Raises:
 TimedOutError: when ajax did not load in time
 """

 execute_script("""
 try {
 angular.element('error-modal').hide();
 } catch(err) {
 }""")

 _thread_local.ajax_log_msg = ''

 def _nothing_in_flight():
 """Checks if there is no ajax in flight and also logs current status
 """
 prev_log_msg = _thread_local.ajax_log_msg

 # 5.5.z and 5.7.0.4+
 if not store.current_appliance.is_miqqe_patch_candidate:
 try:
 anything_in_flight = in_flight("return ManageIQ.qe.anythingInFlight()")
 except Exception as e:
 # if jQuery in error message, a non-cfme page (proxy error) is displayed
 # should be handled by something else
 if "jquery" not in str(e).lower():
 raise
 return True
 running = execute_script("return ManageIQ.qe.inFlight()")
 log_msg = ', '.join(["{}: {}".format(k, str(v)) for k, v in running.iteritems()])
 # 5.6.z, 5.7.0.{1,2,3}
 else:
 try:
 running = in_flight(js.in_flight)
 except Exception as e:
 # if jQuery in error message, a non-cfme page (proxy error) is displayed
 # should be handled by something else
 if "jquery" not in str(e).lower():
 raise
 return True
 anything_in_flight = False
 anything_in_flight |= running["jquery"] > 0
 anything_in_flight |= running["prototype"] > 0
 anything_in_flight |= running["spinner"]
 anything_in_flight |= running["document"] != "complete"
 anything_in_flight |= running["autofocus"] > 0
 anything_in_flight |= running["debounce"] > 0
 anything_in_flight |= running["miqQE"] > 0
 log_msg = ', '.join(["{}: {}".format(k, str(v)) for k, v in running.iteritems()])

 # Log the message only if it's different from the last one
 if prev_log_msg != log_msg:
 _thread_local.ajax_log_msg = log_msg
 logger.trace('Ajax running: %s', log_msg)
 if (not anything_in_flight) and prev_log_msg:
 logger.trace('Ajax done')

 return not anything_in_flight

 wait_for(
 _nothing_in_flight,
 num_sec=_thread_local.ajax_timeout, delay=0.1, message="wait for ajax", quiet=True,
 silent_failure=True)

 # If we are not supposed to take page screenshots...well...then...dont.
 if store.config and not store.config.getvalue('page_screenshots'):
 return

 url = browser().current_url
 url = url.replace(base_url(), '')
 url = url.replace("/", '_')
 if url not in urls:
 logger.info('Taking picture of page: %s', url)
 ss, sse = take_screenshot()
 if ss:
 ss_path = log_path.join('page_screenshots')
 if not ss_path.exists():
 ss_path.mkdir()
 with ss_path.join("{}.png".format(url)).open('wb') as f:
 f.write(base64.b64decode(ss))
 urls.append(url)

@removed
@contextmanager
[docs]def ajax_timeout(seconds):
 """Change the AJAX timeout in this context. Useful when something takes a long time.

 Args:
 seconds: Numebr of seconnds to wait.
 """
 original = _thread_local.ajax_timeout
 _thread_local.ajax_timeout = seconds
 yield
 _thread_local.ajax_timeout = original

@removed
[docs]def is_displayed(loc, _deep=0, **kwargs):
 """
 Checks if a particular locator is displayed

 Args:
 loc: A locator, expects either a string, WebElement, tuple.

 Keywords:
 move_to: Uses :py:func:`move_to_element` instead of :py:func:`element`

 Returns: ``True`` if element is displayed, ``False`` if not

 Raises:
 NoSuchElementException: If element is not found on page
 CFMEExceptionOccured: When there is a CFME rails exception on the page.
 """
 move_to = kwargs.pop("move_to", False)
 try:
 if move_to:
 e = move_to_element(loc, **kwargs)
 else:
 e = element(loc, **kwargs)
 return e.is_displayed()
 except (NoSuchElementException, exceptions.CannotScrollException):
 return False
 except StaleElementReferenceException:
 # It can happen sometimes that the change will happen between element lookup and visibility
 # check. Then StaleElementReferenceException happens. We give it two additional tries.
 # One regular. And one if something really bad happens. We don't check WebElements as it has
 # no point.
 if _deep >= 2 or isinstance(loc, WebElement):
 # Too deep, or WebElement, which has no effect in repeating
 raise
 else:
 # So try it again after a little bit of sleep
 sleep(0.05)
 return is_displayed(loc, _deep + 1)

@removed
[docs]def is_displayed_text(text):
 """
 Checks if a particular text is displayed

 Args:
 text: A string.

 Returns: A string containing the text
 """
 return is_displayed("//*[normalize-space(text())={}]".format(quoteattr(text)))

@removed
[docs]def wait_for_element(*locs, **kwargs):
 """
 Wrapper around wait_until, specific to an element.

 Args:
 loc: A locator, expects either a string, WebElement, tuple.
 Keywords:
 all_elements: Whether to wait not for one, but all elements (Default False)
 timeout: How much time to wait
 """
 # wait_until(lambda s: is_displayed(loc),"Element '{}' did not appear as expected.".format(loc))
 filt = all if kwargs.get("all_elements", False) else any
 msg = "All" if kwargs.get("all_elements", False) else "Any"
 new_kwargs = {}
 if "timeout" in kwargs:
 new_kwargs["timeout"] = kwargs["timeout"]
 wait_until(
 lambda s: filt([is_displayed(loc, move_to=True) for loc in locs]),
 msg="{} of the elements '{}' to appear".format(msg, str(locs)),
 **kwargs
)

@removed
[docs]def get_alert():
 return browser().switch_to_alert()

@removed
[docs]def is_alert_present():
 try:
 get_alert().text
 except NoAlertPresentException:
 return False
 else:
 return True

@removed
[docs]def dismiss_any_alerts():
 """Loops until there are no further alerts present to dismiss.

 Useful for handling the cases where the alert pops up multiple times.
 """
 try:
 while is_alert_present():
 alert = get_alert()
 logger.warning("Dismissing additional alert with text: %s", alert.text)
 alert.dismiss()
 except NoAlertPresentException: # Just in case. is_alert_present should be reliable, but still.
 pass

@removed
[docs]def handle_alert(cancel=False, wait=30.0, squash=False, prompt=None, check_present=False):
 """Handles an alert popup.

 Args:
 cancel: Whether or not to cancel the alert.
 Accepts the Alert (False) by default.
 wait: Time to wait for an alert to appear.
 Default 30 seconds, can be set to 0 to disable waiting.
 squash: Whether or not to squash errors during alert handling.
 Default False
 prompt: If the alert is a prompt, specify the keys to type in here
 check_present: Does not squash
 :py:class:`selenium.common.exceptions.NoAlertPresentException`

 Returns:
 True if the alert was handled, False if exceptions were
 squashed, None if there was no alert.

 No exceptions will be raised if ``squash`` is True and ``check_present`` is False.

 Raises:
 utils.wait.TimedOutError: If the alert popup does not appear
 selenium.common.exceptions.NoAlertPresentException: If no alert is present when accepting
 or dismissing the alert.

 """
 # throws timeout exception if not found
 try:
 if wait:
 WebDriverWait(browser(), wait).until(expected_conditions.alert_is_present())
 popup = get_alert()
 answer = 'cancel' if cancel else 'ok'
 t = "alert" if prompt is None else "prompt"
 logger.info('Handling %s %s, clicking %s', t, popup.text, answer)
 if prompt is not None:
 logger.info("Typing in: %s", prompt)
 popup.send_keys(prompt)
 popup.dismiss() if cancel else popup.accept()
 # Should any problematic "double" alerts appear here, we don't care, just blow'em away.
 dismiss_any_alerts()
 wait_for_ajax()
 return True
 except NoAlertPresentException:
 if check_present:
 raise
 else:
 return None
 except Exception as e:
 logger.exception(e)
 if squash:
 return False
 else:
 raise

@removed
[docs]def click(loc, wait_ajax=True, no_custom_handler=False):
 """
 Clicks on an element.

 If the element implements `_custom_click_handler` the control will be given to it. Then the
 handler decides what to do (eg. do not click under some circumstances).

 Args:
 loc: A locator, expects either a string, WebElement, tuple or an object implementing
 `_custom_click_handler` method.
 wait_ajax: Whether to wait for ajax call to finish. Default True but sometimes it's
 handy to not do that. (some toolbar clicks)
 no_custom_handler: To prevent recursion, the custom handler sets this to True.
 """
 if hasattr(loc, "_custom_click_handler") and not no_custom_handler:
 # Object can implement own modification of click behaviour
 return loc._custom_click_handler(wait_ajax=wait_ajax)

 # Move mouse cursor to element
 move_to_element(loc)
 # and then click on current mouse position
 ActionChains(browser()).click().perform()
 # -> using this approach, we don't check if we clicked a specific element
 if wait_ajax:
 wait_for_ajax()
 return True

@removed
[docs]def raw_click(loc, wait_ajax=True):
 """Does raw selenium's .click() call on element. Circumvents mouse move.

 Args:
 loc: Locator to click on.
 wait_ajax: Whether to wait for ajax.
 """
 element(loc).click()
 if wait_ajax:
 wait_for_ajax()

@removed
[docs]def double_click(loc, wait_ajax=True):
 """Double-clicks on an element.

 Args:
 loc: A locator, expects either a string, WebElement, tuple.
 wait_ajax: Whether to wait for ajax call to finish. Default True but sometimes it's
 handy to not do that. (some toolbar clicks)
 """
 # Move mouse cursor to element
 move_to_element(loc)
 # and then click on current mouse position
 ActionChains(browser()).double_click().perform()
 # -> using this approach, we don't check if we clicked a specific element
 if wait_ajax:
 wait_for_ajax()
 return True

@removed
[docs]def drag_and_drop(source_element, dest_element):
 """Drag and Drop element.

 Args:
 source_element: A locator, expects either a string, WebElement, tuple.
 dest_element: A locator, expects either a string, WebElement, tuple.
 wait_ajax: Whether to wait for ajax call to finish. Default True but sometimes it's
 handy to not do that. (some toolbar clicks)
 """
 ActionChains(browser()).drag_and_drop(source_element, dest_element).perform()

@removed
[docs]def drag_and_drop_by_offset(source_element, x=0, y=0):
 """Drag and Drop element by offset

 Args:
 source_element: A locator, expects either a string, WebElement, tuple.
 x: Distance in pixels on X axis to move it.
 y: Distance in pixels on Y axis to move it.
 """
 e = move_to_element(source_element)
 ActionChains(browser()).drag_and_drop_by_offset(e, x, y).perform()

@removed
[docs]def move_to_element(loc, **kwargs):
 """
 Moves to an element.

 Args:
 loc: A locator, expects either a string, WebElement, tuple.
 Returns: Returns the element it was moved to to enable chaining.
 """
 brand = "//div[@id='page_header_div']//div[contains(@class, 'brand')]"
 wait_for_ajax()
 el = element(loc, **kwargs)
 if el.tag_name == "option":
 # Instead of option, let's move on its parent <select> if possible
 parent = element("..", root=el)
 if parent.tag_name == "select":
 move_to_element(parent)
 return el
 move_to = ActionChains(browser()).move_to_element(el)
 try:
 move_to.perform()
 except MoveTargetOutOfBoundsException:
 # ff workaround
 execute_script("arguments[0].scrollIntoView();", el)
 if elements(brand) and not is_displayed(brand):
 # If it does it badly that it moves whole page, this moves it back
 try:
 execute_script("arguments[0].scrollIntoView();", element(brand))
 except MoveTargetOutOfBoundsException:
 pass
 try:
 move_to.perform()
 except MoveTargetOutOfBoundsException: # This has become desperate now.
 raise exceptions.CannotScrollException(
 "Despite all the workarounds, scrolling to `{}` was unsuccessful.".format(loc))
 return el

@removed
[docs]def text(loc, **kwargs):
 """ Returns the text of an element. Always.

 If the element is not visible and the text cannot be retrieved by usual means, JS is used.

 Args:
 loc: A locator, expects eithera string, WebElement, tuple.

 Returns: A string containing the text of the element.
 """
 try:
 text = move_to_element(loc, **kwargs).text.strip()
 if not text:
 # Not visible for some other reason?
 text = text_content(loc, **kwargs)
 return text
 except exceptions.CannotScrollException:
 # Work around, the element is not movable to
 return text_content(loc, **kwargs)

[docs]def text_content(loc, **kwargs):
 """Retrieves the text content of the element using JavaScript.

 Use if the element is not visible

 Args:
 loc: A locator, expects either a string, WebElement or tuple

 Returns: A string containing the text of the element.
 """
 text = execute_script(
 "return arguments[0].textContent || arguments[0].innerText;",
 element(loc, **kwargs))
 return text.strip() if text is not None else ""

@removed
[docs]def text_sane(loc, **kwargs):
 """Returns text decoded from UTF-8 and stripped

 Args:
 loc: A locator, expects eithera string, WebElement, tuple.

 Returns: A string containing the text of the element, decoded and stripped.
 """
 # TODO: normalize_space() when the PR comes in.
 return re.sub(r'\s+', ' ', text(loc).encode("utf-8"))

@removed
[docs]def value(loc):
 """
 Returns the value of an input element.

 Args:
 loc: A locator, expects eithera string, WebElement, tuple.

 Returns: A string containing the value of the input element.
 """
 return get_attribute(loc, 'value')

@removed
[docs]def classes(loc):
 """Return a list of classes attached to the element."""
 return set(execute_script("return arguments[0].classList;", element(loc)))

@removed
[docs]def tag(loc):
 """
 Returns the tag name of an element

 Args:
 loc: A locator, expects either a string, WebElement, tuple.

 Returns: A string containing the tag element's name.
 """
 return element(loc).tag_name

@removed
[docs]def get_attribute(loc, attr):
 """
 Returns the value of the HTML attribute of the given locator.

 Args:
 loc: A locator, expects eithera string, WebElement, tuple.
 attr: An attribute name.

 Returns: Text describing the attribute of the element.
 """
 return element(loc).get_attribute(attr)

@removed
[docs]def set_attribute(loc, attr, value):
 """Sets the attribute of an element.

 This is usually not done, that's why it is not implemented in selenium. But sometimes ...

 Args:
 loc: A locator, expects either a string, WebElement, tuple.
 attr: Attribute name.
 value: Value to set.
 """
 logger.info(
 "!!! ATTENTION! SETTING READ-ONLY ATTRIBUTE %s OF %s TO %s!!!", attr, loc, value)
 return execute_script(
 "arguments[0].setAttribute(arguments[1], arguments[2]);", element(loc), attr, value)

@removed
[docs]def unset_attribute(loc, attr):
 """Removes an attribute of an element.

 This is usually not done, that's why it is not implemented in selenium. But sometimes ...

 Args:
 loc: A locator, expects either a string, WebElement, tuple.
 attr: Attribute name.
 """
 logger.info("!!! ATTENTION! REMOVING READ-ONLY ATTRIBUTE %s OF %s!!!", attr, loc)
 return execute_script("arguments[0].removeAttribute(arguments[1]);", element(loc), attr)

@removed
[docs]def set_angularjs_value(loc, value):
 """Sets value of an element managed by angularjs

 Args:
 loc: A locator, expects either a string, WebElement, tuple.
 value: Value to set.
 """
 logger.info("Setting value of an angularjs element %s to %s", loc, value)
 return execute_script(js.set_angularjs_value_script, element(loc), value)

@removed
[docs]def send_keys(loc, text):
 """Sends the supplied keys to an element. Handles the file upload fields on background.

 If it detects the element is and input of type file, it uses the LocalFileDetector so
 the file gets transferred properly. Otherwise it takes care of having UselessFileDetector.

 Args:
 loc: A locator, expects either a string, WebElement, tuple.
 text: The text to inject into the element.
 """
 if text is not None:
 file_intercept = False
 # If the element is input type file, we will need to use the file detector
 if tag(loc) == 'input':
 type_attr = get_attribute(loc, 'type')
 if type_attr and type_attr.strip() == 'file':
 file_intercept = True
 try:
 if file_intercept:
 # If we detected a file upload field, let's use the file detector.
 browser().file_detector = LocalFileDetector()
 move_to_element(loc).send_keys(text)
 finally:
 # Always the UselessFileDetector for all other kinds of fields, so do not leave
 # the LocalFileDetector there.
 if file_intercept:
 browser().file_detector = UselessFileDetector()
 wait_for_ajax()

@removed
[docs]def checkbox(loc, set_to=False):
 """
 Checks or unchecks a given checkbox

 Finds an element given by loc and checks it

 Args:
 loc: The locator of the element
 value: The value the checkbox should represent as a bool (or None to do nothing)

 Returns: Previous state of the checkbox
 """
 if set_to is not None:
 el = move_to_element(loc)
 if el.tag_name == 'img':
 # Yeah, CFME sometimes uses images for check boxen. *sigh*
 # item_chk0 = unchecked, item_chk1 = checked
 selected = 'item_chk1' in el.get_attribute('src')
 else:
 selected = el.is_selected()

 if selected is not set_to:
 logger.debug("Setting checkbox to {}".format(set_to))
 click(el)
 return selected

@removed
[docs]def check(loc):
 """
 Convenience function to check a checkbox

 Args:
 loc: The locator of the element
 """
 return checkbox(loc, True)

@removed
[docs]def uncheck(loc):
 """
 Convenience function to uncheck a checkbox

 Args:
 loc: The locator of the element
 """
 return checkbox(loc, False)

@removed
[docs]def current_url():
 """
 Returns the current_url of the page

 Returns: A url.
 """
 return browser().current_url

@removed
[docs]def title():
 return browser().title

@removed
[docs]def get(url):
 """
 Changes page to the specified URL

 Args:
 url: URL to navigate to.
 """
 return browser().get(url)

@removed
[docs]def refresh():
 """
 Refreshes the current browser window.
 """
 browser().refresh()

Begin CFME specific stuff, should eventually factor
out everything above into a lib

@removed
[docs]def base_url():
 """
 Returns the base url.

 Returns: `base_url` from env config yaml
 """
 return store.base_url

[docs]class ContextWrapper(dict):
 """Dict that provides .attribute access + dumps all keys when not found."""
 def __getattr__(self, attr):
 try:
 return self[attr]
 except KeyError:
 raise AttributeError(
 "No such key {} in the context! (available: {})".format(
 repr(attr), repr(self.keys())))

 def __getitem__(self, item):
 try:
 return super(ContextWrapper, self).__getitem__(item)
 except KeyError:
 raise KeyError(
 "No such key {} in the context! (available: {})".format(
 repr(item), repr(self.keys())))

@removed
[docs]def detect_observed_field(loc):
 """Detect observed fields; sleep if needed

 Used after filling most form fields, this function will inspect the filled field for
 one of the known CFME observed field attribues, and if found, sleep long enough for the observed
 field's AJAX request to go out, and then block until no AJAX requests are in flight.

 Observed fields occasionally declare their own wait interval before firing their AJAX request.
 If found, that interval will be used instead of the default.

 """
 try:
 if is_displayed(loc):
 el = element(loc)
 else:
 # Element not visible, sort out
 return
 except StaleElementReferenceException:
 return

 # Default wait period, based on the default UI wait (700ms)
 # plus a little padding to let the AJAX fire before we wait_for_ajax
 default_wait = .8
 # Known observed field attributes
 observed_field_markers = (
 'data-miq_observe',
 'data-miq_observe_date',
 'data-miq_observe_checkbox',
)
 for attr in observed_field_markers:
 try:
 observed_field_attr = el.get_attribute(attr)
 break
 except NoSuchAttributeException:
 pass
 else:
 # Failed to detect an observed text field, short out
 return

 try:
 attr_dict = json.loads(observed_field_attr)
 interval = float(attr_dict.get('interval', default_wait))
 # Pad the detected interval, as with default_wait
 interval += .1
 except (TypeError, ValueError):
 # ValueError and TypeError happens if the attribute value couldn't be decoded as JSON
 # ValueError also happens if interval couldn't be coerced to float
 # In either case, we've detected an observed text field and should wait
 interval = default_wait

 logger.trace(' Observed field detected, pausing %.1f seconds', interval)
 sleep(interval)
 wait_for_ajax()

@removed
[docs]def set_text(loc, text):
 """
 Clears the element and then sends the supplied keys.

 Args:
 loc: A locator, expects either a string, WebElement, tuple.
 text: The text to inject into the element.

 Returns:
 Any text that might have been in the textbox element already
 """
 if text is not None:
 el = move_to_element(loc)
 old_text = el.get_attribute('value')
 if text != old_text:
 el.clear()
 send_keys(el, text)
 return old_text

[docs]class Select(SeleniumSelect, Pretty):
 """ A proxy class for the real selenium Select() object.

 We differ in one important point, that we can instantiate the object
 without it being present on the page. The object is located at the beginning
 of each function call.

 Can hadle patternfly ``selectpicker`` kind of select. It alters the behaviour slightly, it does
 not use :py:func:`move_to_element` and uses JavaScript more extensively.

 Args:
 loc: A locator.

 Returns: A :py:class:`cfme.web_ui.Select` object.
 """

 pretty_attrs = ['_loc', 'is_multiple']

 Option = namedtuple("Option", ["text", "value"])

 is_broken = False # For compatibility with AngularSelect

 def __init__(self, loc, multi=False, none=None):
 self._none = none
 if isinstance(loc, Select):
 self._loc = loc._loc
 else:
 self._loc = loc
 self.is_multiple = multi

 @property
 def none(self):
 if self._none:
 return version.pick(self._none)
 else:
 return None

 @property
 def is_patternfly(self):
 return "selectpicker" in get_attribute(self._loc, "class")

 @property
 def _el(self):
 if self.is_patternfly:
 return element(self, check_visibility=False)
 else:
 return move_to_element(self)

 @property
 def classes(self):
 return classes(self._el)

 @property
 def all_options(self):
 """Returns a list of tuples of all the options in the Select"""
 # More reliable using javascript
 script = dedent("""\
 var result_arr = [];
 var opt_elements = arguments[0].options;
 for(var i = 0; i < opt_elements.length; i++){
 var option = opt_elements[i];
 result_arr.push([option.innerHTML, option.getAttribute("value")]);
 }
 return result_arr;
 """)
 options = execute_script(script, element(self._loc))
 parser = HTMLParser()
 return [self.Option(parser.unescape(option[0]), option[1]) for option in options]

 @property
 def all_selected_options(self):
 """Fast variant of the original all_selected_options.

 Selenium's all_selected_options iterates over ALL of the options, this directly returns
 only those that are selected.
 """
 return execute_script(
 "return arguments[0].selectedOptions;",
 element(self, check_visibility=not self.is_patternfly))

 @property
 def first_selected_option(self):
 """Fast variant of the original first_selected_option.

 Uses all_selected_options, mimics selenium's exception behaviour.
 """
 try:
 return self.all_selected_options[0]
 except IndexError:
 raise NoSuchElementException("No options are selected")

 @property
 def first_selected_option_text(self):
 if not self.is_patternfly:
 return text(self.first_selected_option)
 else:
 parser = HTMLParser()
 return parser.unescape(
 execute_script("return arguments[0].innerHTML;", self.first_selected_option))

[docs] def deselect_all(self):
 """Fast variant of the original deselect_all.

 Uses all_selected_options, mimics selenium's exception behaviour.
 """
 if not self.is_multiple:
 raise NotImplementedError("You may only deselect all options of a multi-select")
 if not self.is_patternfly:
 for opt in self.all_selected_options:
 raw_click(opt)
 else:
 execute_script(
 "$(arguments[0]).selectpicker('deselectAll'); $(arguments[0]).trigger('change');",
 element(self))

[docs] def get_value_by_text(self, text):
 # unescape because it turns <> into <> which we don't want in xpath
 opt = element(
 ".//option[normalize-space(.)={}]".format(unescape(quoteattr(text))),
 root=element(self, check_visibility=not self.is_patternfly))
 return get_attribute(opt, "value")

[docs] def select_by_value(self, value):
 if not self.is_patternfly:
 return super(Select, self).select_by_value(value)
 else:
 execute_script(
 "$(arguments[0]).selectpicker('val', arguments[1]);"
 "$(arguments[0]).trigger('change');",
 element(self, check_visibility=not self.is_patternfly), value)
 return None

[docs] def select_by_visible_text(self, text):
 """Dump all of the options if the required option is not present."""
 try:
 if not self.is_patternfly:
 return super(Select, self).select_by_visible_text(text)
 else:
 # selectpicker needs value only
 return self.select_by_value(self.get_value_by_text(text))
 except NoSuchElementException as e:
 msg = str(e)
 available = ", ".join(repr(opt.text) for opt in self.all_options)
 raise type(e)("{} - Available options: {}".format(msg, available))

[docs] def locate(self):
 """Guards against passing wrong locator (not resolving to a select)."""
 sel_el = element(self._loc) if self.is_patternfly else move_to_element(self._loc)
 sel_tag = tag(sel_el)
 if sel_tag != "select":
 raise exceptions.UnidentifiableTagType(
 "{} ({}) is not a select!".format(self._loc, sel_tag))
 return sel_el

[docs] def observer_wait(self):
 detect_observed_field(self._loc)

 def __repr__(self):
 return "{}({}, multi={})".format(
 type(self).__name__, repr(self._loc), repr(self.is_multiple))

@multidispatch
def select(loc, o):
 raise NotImplementedError('Unable to select {} in this type: {}'.format(o, loc))

@select.method((object, ByValue))
def _select_tuple(loc, val):
 value = val.value
 if not value and isinstance(loc, Select):
 if loc.none:
 value = loc.none
 else:
 return
 elif not value:
 return

 # Do not "cast" the loc unless it is needed
 from cfme.web_ui import AngularSelect
 if type(loc) in {Select, AngularSelect}:
 l = loc
 else:
 l = Select(loc)
 return select_by_value(l, value)

@select.method((object, type(None)))
@select.method((object, basestring))
@select.method((object, ByText))
def _select_str(loc, s):
 value = s
 if not value and isinstance(loc, Select):
 if loc.none:
 value = loc.none
 else:
 return
 elif not value:
 return

 # Do not "cast" the loc unless it is needed
 from cfme.web_ui import AngularSelect
 if type(loc) in {Select, AngularSelect}:
 l = loc
 else:
 l = Select(loc)
 return select_by_text(l, str(value))

@select.method((object, Iterable))
def _select_iter(loc, items):
 return [select(loc, item) for item in items]

def _sel_desel(el, getter_fn, setter_attr, item):
 wait_for_ajax()
 if item is not None:
 old_item = getter_fn(el)
 if old_item != item:
 getattr(el, setter_attr)(item)
 wait_for_ajax()
 return old_item

@removed
[docs]def select_by_text(select_element, txt):
 """
 Works on a select element and selects an option by the visible text.

 Args:
 loc: A locator, expects either a string, WebElement, tuple.
 text: The select element option's visible text.

 Returns: previously selected text
 """
 def _getter(s):
 try:
 return s.first_selected_option.text
 except (NoSuchElementException, AttributeError):
 return None
 return _sel_desel(select_element, _getter,
 'select_by_visible_text', txt)

@removed
[docs]def select_by_value(select_element, val):
 """
 Works on a select element and selects an option by the value attribute.

 Args:
 loc: A locator, expects either a string, WebElement, tuple.
 value: The select element's option value.
 """
 return _sel_desel(select_element, lambda s: ByValue(value(s)), 'select_by_value', val)

@removed
[docs]def deselect_by_text(select_element, txt):
 """
 Works on a select element and deselects an option by the visible text.

 Args:
 loc: A locator, expects either a string, WebElement, tuple.
 text: The select element option's visible text.
 """
 return _sel_desel(select_element, lambda s: s.first_selected_option.text,
 'deselect_by_visible_text', txt)

@removed
[docs]def deselect_by_value(select_element, val):
 """
 Works on a select element and deselects an option by the value attribute.

 Args:
 loc: A locator, expects either a string, WebElement, tuple.
 value: The select element's option value.
 """
 return _sel_desel(select_element, lambda s: ByValue(value(s)), 'deselect_by_value', val)

@removed
[docs]def execute_script(script, *args, **kwargs):
 """Wrapper for execute_script() to not have to pull browser() from somewhere.

 It also provides our library which is stored in data/lib.js file.
 """
 return browser().execute_script(dedent(script), *args, **kwargs)

ScreenShot = namedtuple("screenshot", ['png', 'error'])

@removed
[docs]def take_screenshot():
 screenshot = None
 screenshot_error = None
 try:
 screenshot = browser().get_screenshot_as_base64()
 except (AttributeError, WebDriverException):
 # See comments utils.browser.ensure_browser_open for why these two exceptions
 screenshot_error = 'browser error'
 except Exception as ex:
 # If this fails for any other reason,
 # leave out the screenshot but record the reason
 if str(ex):
 screenshot_error = '{}: {}'.format(type(ex).__name__, str(ex))
 else:
 screenshot_error = type(ex).__name__
 return ScreenShot(screenshot, screenshot_error)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/appliance.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.appliance

import json
import logging
import os
import re
import socket
import traceback
import warnings
from copy import copy
from datetime import datetime
from tempfile import NamedTemporaryFile
from time import sleep, time
from urlparse import ParseResult, urlparse

import dateutil.parser
from debtcollector import removals
import fauxfactory
import requests
import yaml
from cached_property import cached_property
from manageiq_client.api import ManageIQClient as VanillaMiqApi
from sentaku import ImplementationContext
from werkzeug.local import LocalStack, LocalProxy

from fixtures import ui_coverage
from fixtures.pytest_store import store
from cfme.utils import clear_property_cache
from cfme.utils import conf, ssh, ports
from cfme.utils.datafile import load_data_file
from cfme.utils.events import EventListener
from cfme.utils.log import logger, create_sublogger, logger_wrap
from cfme.utils.net import net_check
from cfme.utils.path import data_path, patches_path, scripts_path, conf_path
from cfme.utils.ssh import SSHTail
from cfme.utils.version import Version, get_stream, pick
from cfme.utils.wait import wait_for, TimedOutError

from .db import ApplianceDB
from .implementations.ui import ViaUI
from .implementations.ssui import ViaSSUI
from .services import SystemdService

RUNNING_UNDER_SPROUT = os.environ.get("RUNNING_UNDER_SPROUT", "false") != "false"

EMS types recognized by IP or credentials
RECOGNIZED_BY_IP = [
 "InfraManager", "ContainerManager", "MiddlewareManager", "Openstack::CloudManager"
]
RECOGNIZED_BY_CREDS = ["CloudManager"]

A helper for the IDs
SEQ_FACT = 1e12

def _current_miqqe_version():
 """Parses MiqQE JS patch version from the patch file

 Returns: Version as int
 """
 with patches_path.join('miq_application.js.diff').open("r") as f:
 match = re.search("MiqQE_version = (\d+);", f.read(), flags=0)
 version = int(match.group(1))
 return version

current_miqqe_version = _current_miqqe_version()

[docs]class MiqApi(VanillaMiqApi):
[docs] def get_entity_by_href(self, href):
 """Parses the collections"""
 parsed = urlparse(href)
 # TODO: Check the netloc, scheme
 path = [step for step in parsed.path.split('/') if step]
 # Drop the /api
 path = path[1:]
 collection = getattr(self.collections, path.pop(0))
 entity = collection(int(path.pop(0)))
 if path:
 raise ValueError('Subcollections not supported! ({})'.format(parsed.path))
 return entity

[docs]class ApplianceException(Exception):
 pass

[docs]class ApplianceConsole(object):
 """ApplianceConsole is used for navigating and running appliance_console commands against an
 appliance."""

 def __init__(self, appliance):
 self.appliance = appliance

[docs] def timezone_check(self, timezone):
 channel = self.appliance.ssh_client.invoke_shell()
 channel.settimeout(20)
 channel.send("ap")
 result = ''
 try:
 while True:
 result += channel.recv(1)
 if ("{}".format(timezone[0])) in result:
 break
 except socket.timeout:
 pass
 logger.debug(result)

[docs] def run_commands(self, commands, autoreturn=True, timeout=10, channel=None):
 if not channel:
 channel = self.appliance.ssh_client.invoke_shell()
 self.commands = commands
 for command in commands:
 if isinstance(command, basestring):
 command_string, timeout = command, timeout
 else:
 command_string, timeout = command
 channel.settimeout(timeout)
 if autoreturn:
 command_string = (command_string + '\n')
 channel.send("{}".format(command_string))
 result = ''
 try:
 while True:
 result += channel.recv(1)
 if 'Press any key to continue' in result:
 break
 except socket.timeout:
 pass
 logger.debug(result)

[docs]class ApplianceConsoleCli(object):

 def __init__(self, appliance):
 self.appliance = appliance

 def _run(self, appliance_console_cli_command):
 return self.appliance.ssh_client.run_command(
 "appliance_console_cli {}".format(appliance_console_cli_command))

[docs] def set_hostname(self, hostname):
 self._run("--host {host}".format(host=hostname))

[docs] def configure_appliance_external_join(self, dbhostname,
 username, password, dbname, fetch_key, sshlogin, sshpass):
 self._run("--hostname {dbhostname} --username {username} --password {password}"
 " --dbname {dbname} --verbose --fetch-key {fetch_key} --sshlogin {sshlogin}"
 " --sshpassword {sshpass}".format(dbhostname=dbhostname, username=username,
 password=password, dbname=dbname, fetch_key=fetch_key, sshlogin=sshlogin,
 sshpass=sshpass))

[docs] def configure_appliance_external_create(self, region, dbhostname,
 username, password, dbname, fetch_key, sshlogin, sshpass):
 self._run("--region {region} --hostname {dbhostname} --username {username}"
 " --password {password} --dbname {dbname} --verbose --fetch-key {fetch_key}"
 " --sshlogin {sshlogin} --sshpassword {sshpass}".format(
 region=region, dbhostname=dbhostname, username=username, password=password,
 dbname=dbname, fetch_key=fetch_key, sshlogin=sshlogin, sshpass=sshpass))

[docs] def configure_appliance_internal_fetch_key(self, region, dbhostname,
 username, password, dbname, fetch_key, sshlogin, sshpass):
 self._run("--region {region} --internal --hostname {dbhostname} --username {username}"
 " --password {password} --dbname {dbname} --verbose --fetch-key {fetch_key}"
 " --sshlogin {sshlogin} --sshpassword {sshpass}".format(
 region=region, dbhostname=dbhostname, username=username, password=password,
 dbname=dbname, fetch_key=fetch_key, sshlogin=sshlogin, sshpass=sshpass))

[docs] def configure_ipa(self, ipaserver, username, password, domain, realm):
 self._run("--ipaserver {ipaserver} --ipaprincipal {username} --ipapassword {password}"
 " --ipadomain {domain} --iparealm {realm}".format(
 ipaserver=ipaserver, username=username, password=password, domain=domain,
 realm=realm))
 assert self.appliance.ssh_client.run_command("systemctl status sssd | grep running")
 return_code, output = self.appliance.ssh_client.run_command(
 "cat /etc/ipa/default.conf | grep 'enable_ra = True'")
 assert return_code == 0

[docs] def uninstall_ipa_client(self):
 self._run("--uninstall-ipa")
 return_code, output = self.appliance.ssh_client.run_command(
 "cat /etc/ipa/default.conf")
 assert return_code != 0

[docs]class IPAppliance(object):
 """IPAppliance represents an already provisioned cfme appliance whos provider is unknown
 but who has an IP address. This has a lot of core functionality that Appliance uses, since
 it knows both the provider, vm_name and can there for derive the IP address.

 Args:
 ipaddress: The IP address of the provider
 browser_steal: If True then then current browser is killed and the new appliance
 is used to generate a new session.
 container: If the appliance is running as a container or as a pod, specifies its name.
 openshift_creds: If the appliance runs as a project on openshift, provides credentials for
 the openshift host so the framework can interact with the project.
 db_host: If the database is located somewhere else than on the appliance itself, specify
 the host here.
 db_port: Database port.
 ssh_port: SSH port.
 """
 _nav_steps = {}

 evmserverd = SystemdService.declare(unit_name='evmserverd')
 db = ApplianceDB.declare()

 CONFIG_MAPPING = {
 'base_url': 'address',
 'browser_steal': 'browser_steal',
 'container': 'container',
 'pod': 'container',
 'openshift_creds': 'openshift_creds',
 'db_host': 'db_host',
 'db_port': 'db_port',
 'ssh_port': 'ssh_port',
 }
 CONFIG_NONGLOBAL = {'base_url'}

 @property
 def as_json(self):
 """Dumps the arguments that can create this appliance as a JSON. None values are ignored."""
 return json.dumps({
 k: getattr(self, k)
 for k in set(self.CONFIG_MAPPING.values())})

 @classmethod
[docs] def from_json(cls, json_string):
 return cls(**json.loads(json_string))

 def __init__(
 self, address=None, browser_steal=False, container=None, openshift_creds=None,
 db_host=None, db_port=None, ssh_port=None):
 self.ssh_port = ssh_port or ports.SSH
 self.db_port = db_port or ports.DB
 if address is not None:
 if not isinstance(address, ParseResult):
 address = urlparse(str(address))
 if not (address.scheme and address.netloc):
 # Use .path (w.x.y.z ip format)
 self.address = address.path
 self.scheme = "https"
 self._url = "https://{}/".format(address.path)
 else:
 # schema://w.x.y.z/ format
 self.address = address.netloc
 self.scheme = address.scheme
 self._url = address.geturl()
 self.browser_steal = browser_steal
 self.container = container
 self.openshift_creds = openshift_creds or {}
 self.db_host = db_host
 self._user = None
 self.appliance_console = ApplianceConsole(self)
 self.appliance_console_cli = ApplianceConsoleCli(self)
 self.browser = ViaUI(owner=self)
 self.ssui = ViaSSUI(owner=self)
 self.context = ImplementationContext.from_instances(
 [self.browser, self.ssui])
 self._server = None
 self.is_pod = False

[docs] def get(self, cls, *args, **kwargs):
 """A generic getter for instantiation of Collection classes

 This generic getter will supply an appliance (self) to an object and instantiate
 it with the supplied args/kwargs e.g.::

 my_appliance.get(NodeCollection)

 This will return a NodeCollection object that is bound to the appliance.
 """
 assert 'appliance' not in kwargs
 return cls(appliance=self, *args, **kwargs)

[docs] def unregister(self):
 """ unregisters appliance from RHSM/SAT6 """
 self.ssh_client.run_command('subscription-manager remove --all')
 self.ssh_client.run_command('subscription-manager unregister')
 self.ssh_client.run_command('subscription-manager clean')
 self.ssh_client.run_command('mv -f /etc/rhsm/rhsm.conf.kat-backup /etc/rhsm/rhsm.conf')
 self.ssh_client.run_command('rpm -qa | grep katello-ca-consumer | xargs rpm -e')

[docs] def is_registration_complete(self, used_repo_or_channel):
 """ Checks if an appliance has the correct repos enabled with RHSM or SAT6 """
 ret, out = self.ssh_client.run_command('yum repolist enabled')
 # Check that the specified (or default) repo (can be multiple, separated by a space)
 # is enabled and that there are packages available
 for repo in used_repo_or_channel.split(' '):
 if (repo not in out) or (not re.search(r'repolist: [^0]', out)):
 return False
 return True

 @property
 def default_zone(self):
 from cfme.base import Region, Zone
 return Zone(self, region=Region(self, self.server_region()))

 @property
 def server(self):
 if self._server is None:
 from cfme.base import Server
 self._server = Server(appliance=self, zone=self.default_zone, sid=self.server_id())
 return self._server

 @property
 def user(self):
 from cfme.configure.access_control import User
 from cfme.base.credential import Credential
 if self._user is None:
 # Admin by default
 username = conf.credentials['default']['username']
 password = conf.credentials['default']['password']
 logger.info(
 '%r.user was set to None before, therefore generating an admin user: %s/%s',
 self, username, password)
 cred = Credential(principal=username, secret=password)
 self._user = User(credential=cred, appliance=self, name='Administrator')
 return self._user

 @user.setter
 def user(self, user_object):
 if user_object is None:
 logger.info('%r.user set to None, will be set to admin on next access', self)
 self._user = user_object

 @property
 def appliance(self):
 return self

 def __repr__(self):
 return '{}(address={!r}, container={!r}, db_host={!r}, db_port={!r}, ssh_port={!r})'.format(
 type(self).__name__, self.address, self.container, self.db_host, self.db_port,
 self.ssh_port)

[docs] def __call__(self, **kwargs):
 """Syntactic sugar for overriding certain instance variables for context managers.

 Currently possible variables are:

 * `browser_steal`
 """
 self.browser_steal = kwargs.get("browser_steal", self.browser_steal)
 return self

[docs] def __enter__(self):
 """ This method will replace the current appliance in the store """
 stack.push(self)
 return self

 def _screenshot_capture_at_context_leave(self, exc_type, exc_val, exc_tb):

 try:
 from fixtures.artifactor_plugin import fire_art_hook
 from pytest import config
 from fixture.pytest_store import store
 except ImportError:
 logger.info('Not inside pytest run, ignoring')
 return

 if (
 exc_type is not None and not RUNNING_UNDER_SPROUT):
 from cfme.fixtures.pytest_selenium import take_screenshot
 logger.info("Before we pop this appliance, a screenshot and a traceback will be taken.")
 ss, ss_error = take_screenshot()
 full_tb = "".join(traceback.format_tb(exc_tb))
 short_tb = "{}: {}".format(exc_type.__name__, str(exc_val))
 full_tb = "{}\n{}".format(full_tb, short_tb)

 g_id = "appliance-cm-screenshot-{}".format(fauxfactory.gen_alpha(length=6))

 fire_art_hook(
 config, 'filedump',
 slaveid=store.slaveid,
 description="Appliance CM error traceback", contents=full_tb, file_type="traceback",
 display_type="danger", display_glyph="align-justify", group_id=g_id)

 if ss:
 fire_art_hook(
 config, 'filedump',
 slaveid=store.slaveid, description="Appliance CM error screenshot",
 file_type="screenshot", mode="wb", contents_base64=True, contents=ss,
 display_glyph="camera", group_id=g_id)
 if ss_error:
 fire_art_hook(
 config, 'filedump',
 slaveid=store.slaveid,
 description="Appliance CM error screenshot failure", mode="w",
 contents_base64=False, contents=ss_error, display_type="danger", group_id=g_id)
 elif exc_type is not None:
 logger.info("Error happened but we are not inside a test run so no screenshot now.")

 def __exit__(self, exc_type, exc_val, exc_tb):
 try:
 self._screenshot_capture_at_context_leave(exc_type, exc_val, exc_tb)
 except Exception:
 # repr is used in order to avoid having the appliance object in the log record
 logger.exception("taking a screenshot for %s failed", repr(self))
 finally:
 assert stack.pop() is self, 'appliance stack inconsistent'

 def __eq__(self, other):
 return isinstance(other, IPAppliance) and self.address == other.address

 def __ne__(self, other):
 return not self.__eq__(other)

 def __hash__(self):
 return hash(self.address)

 @cached_property
 def rest_logger(self):
 return create_sublogger('rest-api')

 # Configuration methods
 @logger_wrap("Configure IPAppliance: {}")
 def configure(self, log_callback=None, **kwargs):
 """Configures appliance - database setup, rename, ntp sync

 Utility method to make things easier.

 Note:
 db_address, name_to_set are not used currently.

 Args:
 db_address: Address of external database if set, internal database if ``None``
 (default ``None``)
 name_to_set: Name to set the appliance name to if not ``None`` (default ``None``)
 region: Number to assign to region (default ``0``)
 fix_ntp_clock: Fixes appliance time if ``True`` (default ``True``)
 loosen_pgssl: Loosens postgres connections if ``True`` (default ``True``)
 key_address: Fetch encryption key from this address if set, generate a new key if
 ``None`` (default ``None``)

 """

 log_callback("Configuring appliance {}".format(self.address))
 loosen_pgssl = kwargs.pop('loosen_pgssl', True)
 fix_ntp_clock = kwargs.pop('fix_ntp_clock', True)
 region = kwargs.pop('region', 0)
 key_address = kwargs.pop('key_address', None)
 with self as ipapp:
 ipapp.wait_for_ssh()

 # Debugging - ifcfg-eth0 overwritten by unknown process
 # Rules are permanent and will be reloade after machine reboot
 self.ssh_client.run_command(
 "cp -pr /etc/sysconfig/network-scripts/ifcfg-eth0 /var/tmp", ensure_host=True)
 self.ssh_client.run_command(
 "echo '-w /etc/sysconfig/network-scripts/ifcfg-eth0 -p wa' >> "
 "/etc/audit/rules.d/audit.rules", ensure_host=True)
 self.ssh_client.run_command("systemctl daemon-reload", ensure_host=True)
 self.ssh_client.run_command("service auditd restart", ensure_host=True)

 self.deploy_merkyl(start=True, log_callback=log_callback)
 if fix_ntp_clock:
 self.fix_ntp_clock(log_callback=log_callback)
 # TODO: Handle external DB setup
 self.db.setup(region=region, key_address=key_address)
 self.wait_for_evm_service(timeout=1200, log_callback=log_callback)

 # Some conditionally ran items require the evm service be
 # restarted:
 restart_evm = False
 if loosen_pgssl:
 self.db.loosen_pgssl()
 restart_evm = True
 if self.version >= '5.8':
 self.configure_vm_console_cert(log_callback=log_callback)
 restart_evm = True
 if restart_evm:
 self.restart_evm_service(log_callback=log_callback)
 self.wait_for_web_ui(timeout=1800, log_callback=log_callback)

 # TODO: this method eventually needs to be moved to provider class..
 @logger_wrap("Configure GCE IPAppliance: {}")
 def configure_gce(self, log_callback=None):
 self.wait_for_ssh(timeout=1200)
 self.deploy_merkyl(start=True, log_callback=log_callback)
 # TODO: Fix NTP on GCE instances.
 # self.fix_ntp_clock(log_callback=log_callback)
 self.db.enable_internal()
 # evm serverd does not auto start on GCE instance..
 self.start_evm_service(log_callback=log_callback)
 self.wait_for_evm_service(timeout=1200, log_callback=log_callback)
 self.wait_for_web_ui(timeout=1800, log_callback=log_callback)
 self.db.loosen_pgssl()
 self.wait_for_web_ui(timeout=1800, log_callback=log_callback)

[docs] def seal_for_templatizing(self):
 """Prepares the VM to be "generalized" for saving as a template."""
 with self.ssh_client as ssh_client:
 # Seals the VM in order to work when spawned again.
 ssh_client.run_command("rm -rf /etc/ssh/ssh_host_*", ensure_host=True)
 if ssh_client.run_command(
 "grep '^HOSTNAME' /etc/sysconfig/network", ensure_host=True).rc == 0:
 # Replace it
 ssh_client.run_command(
 "sed -i -r -e 's/^HOSTNAME=.*$/HOSTNAME=localhost.localdomain/' "
 "/etc/sysconfig/network", ensure_host=True)
 else:
 # Set it
 ssh_client.run_command(
 "echo HOSTNAME=localhost.localdomain >> /etc/sysconfig/network",
 ensure_host=True)
 ssh_client.run_command(
 "sed -i -r -e '/^HWADDR/d' /etc/sysconfig/network-scripts/ifcfg-eth0",
 ensure_host=True)
 ssh_client.run_command(
 "sed -i -r -e '/^UUID/d' /etc/sysconfig/network-scripts/ifcfg-eth0",
 ensure_host=True)
 ssh_client.run_command("rm -f /etc/udev/rules.d/70-*", ensure_host=True)
 # Fix SELinux things
 ssh_client.run_command("restorecon -R /etc/sysconfig/network-scripts", ensure_host=True)
 ssh_client.run_command("restorecon /etc/sysconfig/network", ensure_host=True)
 # Stop the evmserverd and move the logs somewhere
 ssh_client.run_command("systemctl stop evmserverd", ensure_host=True)
 ssh_client.run_command("mkdir -p /var/www/miq/vmdb/log/preconfigure-logs",
 ensure_host=True)
 ssh_client.run_command(
 "mv /var/www/miq/vmdb/log/*.log /var/www/miq/vmdb/log/preconfigure-logs/",
 ensure_host=True)
 ssh_client.run_command(
 "mv /var/www/miq/vmdb/log/*.gz /var/www/miq/vmdb/log/preconfigure-logs/",
 ensure_host=True)
 # Reduce swapping, because it can do nasty things to our providers
 ssh_client.run_command('echo "vm.swappiness = 1" >> /etc/sysctl.conf',
 ensure_host=True)

 def _encrypt_string(self, string):
 try:
 # Let's not log passwords
 logging.disable(logging.CRITICAL)
 rc, out = self.ssh_client.run_rails_command(
 "\"puts MiqPassword.encrypt('{}')\"".format(string))
 return out.strip()
 finally:
 logging.disable(logging.NOTSET)

 @property
 def managed_provider_names(self):
 """Returns a list of names for all providers configured on the appliance

 Note:
 Unlike ``managed_known_providers``, this will also return names of providers that were
 not recognized, but are present.
 """
 known_ems_list = []
 for ems in self.rest_api.collections.providers:
 if not any(
 p_type in ems['type'] for p_type in RECOGNIZED_BY_IP + RECOGNIZED_BY_CREDS):
 continue
 known_ems_list.append(ems['name'])
 return known_ems_list

 @property
 def managed_known_providers(self):
 """Returns a set of provider crud objects of known providers managed by this appliance

 Note:
 Recognized by name only.
 """
 from cfme.utils.providers import list_providers
 prov_cruds = list_providers(use_global_filters=False, appliance=self)

 found_cruds = set()
 unrecognized_ems_names = set()
 for ems_name in self.managed_provider_names:
 for prov in prov_cruds:
 # Name check is authoritative and the only proper way to recognize a known provider
 if ems_name == prov.name:
 found_cruds.add(prov)
 break
 else:
 unrecognized_ems_names.add(ems_name)
 if unrecognized_ems_names:
 self.log.warning(
 "Unrecognized managed providers: {}".format(', '.join(unrecognized_ems_names)))
 return list(found_cruds)

 @classmethod
[docs] def from_url(cls, url):
 return cls(urlparse(url))

[docs] def new_rest_api_instance(
 self, entry_point=None, auth=None, logger="default", verify_ssl=False):
 """Returns new REST API instance."""
 return MiqApi(
 entry_point=entry_point or "{}://{}:{}/api".format(
 self.scheme, self.address, self.ui_port),
 auth=auth or (conf.credentials["default"]["username"],
 conf.credentials["default"]["password"]),
 logger=self.rest_logger if logger == "default" else logger,
 verify_ssl=verify_ssl)

 @cached_property
 def rest_api(self):
 return self.new_rest_api_instance()

 @cached_property
 def miqqe_version(self):
 """Returns version of applied JS patch or None if not present"""
 rc, out = self.ssh_client.run_command('grep "[0-9]\+" /var/www/miq/vmdb/.miqqe_version')
 if rc == 0:
 return int(out)
 return None

 @cached_property
 def address(self):
 # If address wasn't set in __init__, use the hostname from base_url
 if getattr(self, "_url", None) is not None:
 parsed_url = urlparse(self._url)
 return parsed_url.netloc
 else:
 parsed_url = urlparse(store.base_url)
 return parsed_url.netloc

 @cached_property
 def hostname(self):
 parsed_url = urlparse(self.url)
 return parsed_url.hostname

 @cached_property
 def product_name(self):
 try:
 return self.rest_api.product_info['name']
 except (AttributeError, KeyError, IOError):
 self.log.exception(
 'appliance.product_name could not be retrieved from REST, falling back')
 try:
 # We need to print to a file here because the deprecation warnings make it hard
 # to get robust output and they do not seem to go to stderr
 result = self.ssh_client.run_rails_command(
 '"File.open(\'/tmp/product_name.txt\', \'w\') '
 '{|f| f.write(I18n.t(\'product.name\')) }"')
 result = self.ssh_client.run_command('cat /tmp/product_name.txt')
 return result.output
 except Exception:
 logger.exception(
 "Couldn't fetch the product name from appliance, using ManageIQ as default")
 return 'ManageIQ'

 @property
 def ui_port(self):
 parsed_url = urlparse(self.url)
 if parsed_url.port is not None:
 return parsed_url.port
 elif parsed_url.scheme == "https":
 return 443
 elif parsed_url.scheme == "http":
 return 80
 else:
 raise Exception("Unknown scheme {} for {}".format(parsed_url.scheme, store.base_url))

 @cached_property
 def scheme(self):
 return "https" # By default

 @cached_property
 def url(self):
 return "{}://{}/".format(self.scheme, self.address)

 @cached_property
 def is_downstream(self):
 return self.product_name == 'CFME'

 @cached_property
 def version(self):
 try:
 version_string = self.rest_api.server_info['version']
 except (AttributeError, KeyError, IOError):
 self.log.exception('appliance.version could not be retrieved from REST, falling back')
 res = self.ssh_client.run_command('cat /var/www/miq/vmdb/VERSION')
 if res.rc != 0:
 raise RuntimeError('Unable to retrieve appliance VMDB version')
 version_string = res.output
 return Version(version_string)

 @cached_property
 def build(self):
 if not self.is_downstream:
 return 'master'
 try:
 return self.rest_api.server_info['build']
 except (AttributeError, KeyError, IOError):
 self.log.exception('appliance.build could not be retrieved from REST, falling back')
 res = self.ssh_client.run_command('cat /var/www/miq/vmdb/BUILD')
 if res.rc != 0:
 raise RuntimeError('Unable to retrieve appliance VMDB version')
 return res.output.strip("\n")

 @cached_property
 def os_version(self):
 # Currently parses the os version out of redhat release file to allow for
 # rhel and centos appliances
 res = self.ssh_client.run_command(
 r"cat /etc/redhat-release | sed 's/.* release \(.*\) (.*/\1/' #)")
 if res.rc != 0:
 raise RuntimeError('Unable to retrieve appliance OS version')
 return Version(res.output)

 @cached_property
 def log(self):
 return create_sublogger(self.address)

 @cached_property
 def coverage(self):
 return ui_coverage.CoverageManager(self)

[docs] def ssh_client_with_privatekey(self):
 with open(conf_path.join('appliance_private_key').strpath, 'w') as key:
 key.write(conf.credentials['ssh']['private_key'])
 connect_kwargs = {
 'hostname': self.hostname,
 'username': conf.credentials['ssh']['ssh-user'],
 'key_filename': conf_path.join('appliance_private_key').strpath,
 }
 ssh_client = ssh.SSHClient(**connect_kwargs)
 # FIXME: propperly store ssh clients we made
 store.ssh_clients_to_close.append(ssh_client)
 return ssh_client

 @cached_property
 def ssh_client(self):
 """Creates an ssh client connected to this appliance

 Returns: A configured :py:class:``utils.ssh.SSHClient`` instance.

 Usage:

 with appliance.ssh_client as ssh:
 status, output = ssh.run_command('...')

 Note:

 The credentials default to those found under ``ssh`` key in ``credentials.yaml``.

 """
 if not self.is_ssh_running:
 raise Exception('SSH is unavailable')

 # IPAppliance.ssh_client only connects to its address
 if self.openshift_creds:
 connect_kwargs = {
 'hostname': self.openshift_creds['hostname'],
 'username': self.openshift_creds['username'],
 'password': self.openshift_creds['password'],
 'container': self.container,
 'is_pod': True,
 'port': self.ssh_port,
 }
 self.is_pod = True
 else:
 connect_kwargs = {
 'hostname': self.hostname,
 'username': conf.credentials['ssh']['username'],
 'password': conf.credentials['ssh']['password'],
 'container': self.container,
 'is_pod': False,
 'port': self.ssh_port,
 }
 ssh_client = ssh.SSHClient(**connect_kwargs)
 try:
 ssh_client.get_transport().is_active()
 logger.info('default appliance ssh credentials are valid')
 except Exception as e:
 logger.error(e)
 logger.error('default appliance ssh credentials failed, trying establish ssh connection'
 ' using ssh private key')
 ssh_client = self.ssh_client_with_privatekey()
 # FIXME: propperly store ssh clients we made
 store.ssh_clients_to_close.append(ssh_client)
 return ssh_client

 @property
 def swap(self):
 """Retrieves the value of swap for the appliance. Might raise an exception if SSH fails.

 Return:
 An integer value of swap in the VM in megabytes. If ``None`` is returned, it means it
 was not possible to parse the command output.

 Raises:
 :py:class:`paramiko.ssh_exception.SSHException` or :py:class:`socket.error`
 """
 try:
 server = self.rest_api.get_entity_by_href(self.rest_api.server_info['server_href'])
 return server.system_swap_used / 1024 / 1024
 except (AttributeError, KeyError, IOError):
 self.log.exception('appliance.swap could not be retrieved from REST, falling back')
 value = self.ssh_client.run_command(
 'free -m | tr -s " " " " | cut -f 3 -d " " | tail -n 1', reraise=True, timeout=15)
 try:
 value = int(value.output.strip())
 except (TypeError, ValueError):
 value = None
 return value

[docs] def event_listener(self):
 """Returns an instance of the event listening class pointed to this appliance."""
 return EventListener(self)

[docs] def diagnose_evm_failure(self):
 """Go through various EVM processes, trying to figure out what fails

 Returns: A string describing the error, or None if no errors occurred.

 This is intended to be run after an appliance is configured but failed for some reason,
 such as in the template tester.

 """
 logger.info('Diagnosing EVM failures, this can take a while...')

 if not self.address:
 return 'appliance has no IP Address; provisioning failed or networking is broken'

 logger.info('Checking appliance SSH Connection')
 if not self.is_ssh_running:
 return 'SSH is not running on the appliance'

 # Now for the DB
 logger.info('Checking appliance database')
 if not self.db.online:
 # postgres isn't running, try to start it
 cmd = 'systemctl restart {}-postgresql'.format(self.db.postgres_version)
 result = self.db.ssh_client.run_command(cmd)
 if result.rc != 0:
 return 'postgres failed to start:\n{}'.format(result.output)
 else:
 return 'postgres was not running for unknown reasons'

 if not self.db.has_database:
 return 'vmdb_production database does not exist'

 if not self.db.has_tables:
 return 'vmdb_production has no tables'

 # try to start EVM
 logger.info('Checking appliance evmserverd service')
 try:
 self.restart_evm_service()
 except ApplianceException as ex:
 return 'evmserverd failed to start:\n{}'.format(ex.args[0])

 # This should be pretty comprehensive, but we might add some net_checks for
 # 3000, 4000, and 80 at this point, and waiting a reasonable amount of time
 # before exploding if any of them don't appear in time after evm restarts.

 @logger_wrap("Fix NTP Clock: {}")
 def fix_ntp_clock(self, log_callback=None):
 """Fixes appliance time using ntpdate on appliance"""
 log_callback('Fixing appliance clock')
 client = self.ssh_client

 # checking whether chrony is installed
 check_cmd = 'yum list installed chrony'
 if client.run_command(check_cmd).rc != 0:
 raise ApplianceException("Chrony isn't installed")

 # # checking whether it is enabled and enable it
 is_enabled_cmd = 'systemctl is-enabled chronyd'
 if client.run_command(is_enabled_cmd).rc != 0:
 logger.debug("chrony will start on system startup")
 client.run_command('systemctl enable chronyd')
 client.run_command('systemctl daemon-reload')

 # Retrieve time servers from yamls
 server_template = 'server {srv} iburst'
 time_servers = set()
 try:
 logger.debug('obtaining clock servers from config file')
 clock_servers = conf.cfme_data.get('clock_servers')
 for clock_server in clock_servers:
 time_servers.add(server_template.format(srv=clock_server))
 except TypeError:
 msg = 'No clock servers configured in cfme_data.yaml'
 log_callback(msg)
 raise ApplianceException(msg)

 filename = '/etc/chrony.conf'
 chrony_conf = set(client.run_command("cat {f}".format(f=filename)).output.strip()
 .split('\n'))

 modified_chrony_conf = chrony_conf.union(time_servers)
 if modified_chrony_conf != chrony_conf:
 modified_chrony_conf = "\n".join(list(modified_chrony_conf))
 client.run_command('echo "{txt}" > {f}'.format(txt=modified_chrony_conf, f=filename))
 logger.info("chrony's config file updated")
 conf_file_updated = True
 else:
 logger.info("chrony's config file hasn't been changed")
 conf_file_updated = False

 if conf_file_updated or client.run_command('systemctl status chronyd').rc != 0:
 logger.debug('restarting chronyd')
 client.run_command('systemctl restart chronyd')

 # check that chrony is running correctly now
 result = client.run_command('chronyc tracking')
 if result.rc == 0:
 logger.info('chronyc is running correctly')
 else:
 raise ApplianceException("chrony doesn't work. "
 "Error message: {e}".format(e=result.output))

 @property
 def is_miqqe_patch_candidate(self):
 return self.version < "5.6.3"

 @property
 def miqqe_patch_applied(self):
 return self.miqqe_version == current_miqqe_version

 @logger_wrap("Patch appliance with MiqQE js: {}")
 def patch_with_miqqe(self, log_callback=None):

 # (local_path, remote_path, md5/None) trio
 autofocus_patch = pick({
 '5.5': 'autofocus.js.diff',
 '5.7': 'autofocus_57.js.diff'
 })
 patch_args = (
 (str(patches_path.join('miq_application.js.diff')),
 '/var/www/miq/vmdb/app/assets/javascripts/miq_application.js',
 None),
 (str(patches_path.join(autofocus_patch)),
 '/var/www/miq/vmdb/app/assets/javascripts/directives/autofocus.js',
 None),
)

 for local_path, remote_path, md5 in patch_args:
 self.ssh_client.patch_file(local_path, remote_path, md5)

 self.precompile_assets()
 self.restart_evm_service()
 logger.info("Waiting for Web UI to start")
 wait_for(
 func=self.is_web_ui_running,
 message='appliance.is_web_ui_running',
 delay=20,
 timeout=300)
 logger.info("Web UI is up and running")
 self.ssh_client.run_command(
 "echo '{}' > /var/www/miq/vmdb/.miqqe_version".format(current_miqqe_version))
 # Invalidate cached version
 del self.miqqe_version

 @logger_wrap("Work around missing Gem file: {}")
 def workaround_missing_gemfile(self, log_callback=None):
 """Fix Gemfile issue.

 Early 5.4 builds have issues with Gemfile not present (BUG 1191496). This circumvents the
 issue with pointing the env variable that Bundler uses to get the Gemfile to the Gemfile in
 vmdb which *should* be correct.

 When this issue is resolved, this method will do nothing.
 """
 client = self.ssh_client
 status, out = client.run_command("ls /opt/rh/cfme-gemset")
 if status != 0:
 return # Not needed
 log_callback('Fixing Gemfile issue')
 # Check if the error is there
 status, out = client.run_rails_command("puts 1")
 if status == 0:
 return # All OK!
 client.run_command('echo "export BUNDLE_GEMFILE=/var/www/miq/vmdb/Gemfile" >> /etc/bashrc')
 # To be 100% sure
 self.reboot(wait_for_web_ui=False, log_callback=log_callback)

 @logger_wrap("Precompile assets: {}")
 def precompile_assets(self, log_callback=None):
 """Precompile the static assets (images, css, etc) on an appliance

 """
 log_callback('Precompiling assets')
 client = self.ssh_client

 store.terminalreporter.write_line('Precompiling assets')
 store.terminalreporter.write_line(
 'THIS IS NOT STUCK. Just wait until it\'s done, it will be only done once', red=True)
 store.terminalreporter.write_line('Phase 1 of 2: rake assets:clobber')
 status, out = client.run_rake_command("assets:clobber")
 if status != 0:
 msg = 'Appliance {} failed to nuke old assets'.format(self.address)
 log_callback(msg)
 raise ApplianceException(msg)

 store.terminalreporter.write_line('Phase 2 of 2: rake assets:precompile')
 status, out = client.run_rake_command("assets:precompile")
 if status != 0:
 msg = 'Appliance {} failed to precompile assets'.format(self.address)
 log_callback(msg)
 raise ApplianceException(msg)

 store.terminalreporter.write_line('Asset precompilation done')
 return status

 @logger_wrap("Clone automate domain: {}")
 def clone_domain(self, source="ManageIQ", dest="Default", log_callback=None):
 """Clones Automate domain

 Args:
 src: Source domain name.
 dst: Destination domain name.

 """
 client = self.ssh_client

 # Make sure the database is ready
 log_callback('Waiting for database')
 self.db.wait_for()

 # Make sure the working dir exists
 client.run_command('mkdir -p /tmp/{}'.format(source))

 export_opts = 'DOMAIN={} EXPORT_DIR=/tmp/{} PREVIEW=false OVERWRITE=true'.format(source,
 source)
 export_cmd = 'evm:automate:export {}'.format(export_opts)
 log_callback('Exporting domain ({}) ...'.format(export_cmd))
 status, output = client.run_rake_command(export_cmd)
 if status != 0:
 msg = 'Failed to export {} domain'.format(source)
 log_callback(msg)
 raise ApplianceException(msg)

 ro_fix_cmd = ("sed -i 's/system: true/system: false/g' "
 "/tmp/{}/{}/__domain__.yaml".format(source, source))
 status, output = client.run_command(ro_fix_cmd)
 if status != 0:
 msg = 'Setting {} domain to read/write failed'.format(dest)
 log_callback(msg)
 raise ApplianceException(msg)

 import_opts = 'DOMAIN={} IMPORT_DIR=/tmp/{} PREVIEW=false'.format(source, source)
 import_opts += ' OVERWRITE=true IMPORT_AS={} ENABLED=true'.format(dest)
 import_cmd = 'evm:automate:import {}'.format(import_opts)
 log_callback('Importing domain ({}) ...'.format(import_cmd))
 status, output = client.run_rake_command(import_cmd)
 if status != 0:
 msg = 'Failed to import {} domain'.format(dest)
 log_callback(msg)
 raise ApplianceException(msg)

 return status, output

 @logger_wrap("Deploying Merkyl: {}")
 def deploy_merkyl(self, start=False, log_callback=None):
 """Deploys the Merkyl log relay service to the appliance"""

 client = self.ssh_client

 client.run_command('mkdir -p /root/merkyl')
 for filename in ['__init__.py', 'merkyl.tpl', ('bottle.py.dontflake', 'bottle.py'),
 'allowed.files']:
 try:
 src, dest = filename
 except (TypeError, ValueError):
 # object is not iterable or too many values to unpack
 src = dest = filename
 log_callback('Sending {} to appliance'.format(src))
 client.put_file(data_path.join(
 'bundles', 'merkyl', src).strpath, os.path.join('/root/merkyl', dest))

 client.put_file(data_path.join(
 'bundles', 'merkyl', 'merkyl').strpath, os.path.join('/etc/init.d/merkyl'))
 client.run_command('chmod 775 /etc/init.d/merkyl')
 client.run_command(
 '/bin/bash -c \'if ! [[$(iptables -L -n | grep "state NEW tcp dpt:8192")]]; then '
 'iptables -I INPUT 6 -m state --state NEW -m tcp -p tcp --dport 8192 -j ACCEPT; fi\'')

 if start:
 log_callback("Starting ...")
 client.run_command('systemctl restart merkyl')
 log_callback("Setting it to start after reboot")
 client.run_command("chkconfig merkyl on")

[docs] def get_repofile_list(self):
 """Returns list of repofiles present at the appliance.

 Ignores certain files, like redhat.repo.
 """
 repofiles = self.ssh_client.run_command('ls /etc/yum.repos.d').output.strip().split('\n')
 return [f for f in repofiles if f not in {"redhat.repo"} and f.endswith(".repo")]

[docs] def read_repos(self):
 """Reads repofiles so it gives you mapping of id and url."""
 result = {}
 name_regexp = re.compile(r"^\[update-([^\]]+)\]")
 baseurl_regexp = re.compile(r"baseurl\s*=\s*([^\s]+)")
 for repofile in self.get_repofile_list():
 rc, out = self.ssh_client.run_command("cat /etc/yum.repos.d/{}".format(repofile))
 if rc != 0:
 # Something happened meanwhile?
 continue
 out = out.strip()
 name_match = name_regexp.search(out)
 if name_match is None:
 continue
 baseurl_match = baseurl_regexp.search(out)
 if baseurl_match is None:
 continue
 result[name_match.groups()[0]] = baseurl_match.groups()[0]
 return result

 # Regexp that looks for product type and version in the update URL
 product_url_regexp = re.compile(
 r"/((?:[A-Z]+|CloudForms|rhel|RHEL_Guest))(?:-|/|/server/)(\d+[^/]*)/")

[docs] def find_product_repos(self):
 """Returns a dictionary of products, where the keys are names of product (repos) and values
 are dictionaries where keys are the versions and values the names of the repositories.
 """
 products = {}
 for repo_name, repo_url in self.read_repos().iteritems():
 match = self.product_url_regexp.search(repo_url)
 if match is None:
 continue
 product, ver = match.groups()
 if product not in products:
 products[product] = {}
 products[product][ver] = repo_name
 return products

[docs] def write_repofile(self, repo_id, repo_url, **kwargs):
 """Wrapper around writing a repofile. You can specify conf options in kwargs."""
 if "gpgcheck" not in kwargs:
 kwargs["gpgcheck"] = 0
 if "enabled" not in kwargs:
 kwargs["enabled"] = 1
 filename = "/etc/yum.repos.d/{}.repo".format(repo_id)
 logger.info("Writing a new repofile %s %s", repo_id, repo_url)
 self.ssh_client.run_command('echo "[update-{}]" > {}'.format(repo_id, filename))
 self.ssh_client.run_command('echo "name=update-url-{}" >> {}'.format(repo_id, filename))
 self.ssh_client.run_command('echo "baseurl={}" >> {}'.format(repo_url, filename))
 for k, v in kwargs.iteritems():
 self.ssh_client.run_command('echo "{}={}" >> {}'.format(k, v, filename))
 return repo_id

[docs] def add_product_repo(self, repo_url, **kwargs):
 """This method ensures that when we add a new repo URL, there will be no other version
 of such product present in the yum.repos.d. You can specify conf options in kwargs. They
 will be applied only to newly created repo file.

 Returns:
 The repo id.
 """
 match = self.product_url_regexp.search(repo_url)
 if match is None:
 raise ValueError(
 "The URL {} does not contain information about product and version.".format(
 repo_url))
 for repo_id, url in self.read_repos().iteritems():
 if url == repo_url:
 # It is already there, so just enable it
 self.enable_disable_repo(repo_id, True)
 return repo_id
 product, ver = match.groups()
 repos = self.find_product_repos()
 if product in repos:
 for v, i in repos[product].iteritems():
 logger.info("Deleting %s repo with version %s (%s)", product, v, i)
 self.ssh_client.run_command("rm -f /etc/yum.repos.d/{}.repo".format(i))
 return self.write_repofile(fauxfactory.gen_alpha(), repo_url, **kwargs)

[docs] def enable_disable_repo(self, repo_id, enable):
 logger.info("%s repository %s", "Enabling" if enable else "Disabling", repo_id)
 return self.ssh_client.run_command(
 "sed -i 's/^enabled=./enabled={}/' /etc/yum.repos.d/{}.repo".format(
 1 if enable else 0, repo_id)).rc == 0

 @logger_wrap("Update RHEL: {}")
 def update_rhel(self, *urls, **kwargs):
 """Update RHEL on appliance

 Will pull URLs from the 'updates_urls' environment variable (whitespace-separated URLs),
 or cfme_data.

 If the env var is not set, URLs will be pulled from cfme_data.
 If the env var is set, it is the only source for update URLs.

 Generic rhel update URLs cfme_data.get('basic_info', {})['rhel_updates_urls'] (yaml list)
 On downstream builds, an additional RH SCL updates url can be inserted at
 cfme_data.get('basic_info', {})['rhscl_updates_urls'].

 If the ``skip_broken`` kwarg is passed, and evaluated as True, broken packages will be
 ignored in the yum update.

 """
 urls = list(urls)
 log_callback = kwargs.pop("log_callback")
 skip_broken = kwargs.pop("skip_broken", False)
 reboot = kwargs.pop("reboot", True)
 streaming = kwargs.pop("streaming", False)
 cleanup = kwargs.pop('cleanup', False)
 log_callback('updating appliance')
 if not urls:
 basic_info = conf.cfme_data.get('basic_info', {})
 if os.environ.get('updates_urls'):
 # try to pull URLs from env if var is non-empty
 urls.extend(os.environ['update_urls'].split())
 else:
 # fall back to cfme_data
 if self.version >= "5.5":
 updates_url = basic_info.get('rhel7_updates_url')
 else:
 updates_url = basic_info.get('rhel_updates_url')

 if updates_url:
 urls.append(updates_url)

 if streaming:
 client = self.ssh_client(stream_output=True)
 else:
 client = self.ssh_client

 if cleanup:
 client.run_command(
 "cd /etc/yum.repos.d && find . -not -name 'redhat.repo' "
 "-not -name 'rhel-source.repo' -not -name . -exec rm {} \;")

 for url in urls:
 self.add_product_repo(url)

 # update
 log_callback('Running rhel updates on appliance')
 # clean yum beforehand to clear metadata from earlier update repos, if any
 try:
 skip = '--skip-broken' if skip_broken else ''
 result = client.run_command('yum update -y --nogpgcheck {}'.format(skip),
 timeout=3600)
 except socket.timeout:
 msg = 'SSH timed out while updating appliance, exiting'
 log_callback(msg)
 # failure to update is fatal, kill this process
 raise KeyboardInterrupt(msg)

 self.log.error(result.output)
 if result.rc != 0:
 self.log.error('appliance update failed')
 msg = 'Appliance {} failed to update RHEL, error in logs'.format(self.address)
 log_callback(msg)
 raise ApplianceException(msg)

 if reboot:
 self.reboot(wait_for_web_ui=False, log_callback=log_callback)

 return result

[docs] def utc_time(self):
 client = self.ssh_client
 status, output = client.run_command('date --iso-8601=seconds -u')
 if not status:
 return dateutil.parser.parse(output)
 else:
 raise Exception("Couldn't get datetime: {}".format(output))

 def _check_appliance_ui_wait_fn(self):
 # Get the URL, don't verify ssl cert
 try:
 response = requests.get(self.url, timeout=15, verify=False)
 if response.status_code == 200:
 self.log.info("Appliance online")
 return True
 else:
 self.log.debug('Appliance online, status code %s', response.status_code)
 except requests.exceptions.Timeout:
 self.log.debug('Appliance offline, connection timed out')
 except ValueError:
 # requests exposes invalid URLs as ValueErrors, which is excellent
 raise
 except Exception as ex:
 self.log.debug('Appliance online, but connection failed: %s', str(ex))
 return False

[docs] def is_web_ui_running(self, unsure=False):
 """Triple checks if web UI is up and running

 Args:
 unsure: Variable to return when not sure if web UI is running or not
 (default ``False``)

 """
 num_of_tries = 3
 was_running_count = 0
 for try_num in range(num_of_tries):
 if self._check_appliance_ui_wait_fn():
 was_running_count += 1
 sleep(3)

 if was_running_count == 0:
 return False
 elif was_running_count == num_of_tries:
 return True
 else:
 return unsure

 def _evm_service_command(self, command, log_callback, expected_exit_code=None):
 """Runs given systemctl command against the ``evmserverd`` service
 Args:
 command: Command to run, e.g. "start"
 expected_exit_code: If the exit codes don't match, ApplianceException is raised
 """
 log_callback("Running command '{}' against the evmserverd service".format(command))
 with self.ssh_client as ssh:
 status, output = ssh.run_command('systemctl {} evmserverd'.format(command))

 if expected_exit_code is not None and status != expected_exit_code:
 msg = 'Failed to {} evmserverd on {}\nError: {}'.format(command, self.address, output)
 log_callback(msg)
 raise ApplianceException(msg)

 return status

 @logger_wrap("Status of EVM service: {}")
 def is_evm_service_running(self, log_callback=None):
 """Checks the ``evmserverd`` service status on this appliance
 """
 return self._evm_service_command("status", log_callback=log_callback) == 0

 @logger_wrap("Start EVM Service: {}")
 def start_evm_service(self, log_callback=None):
 """Starts the ``evmserverd`` service on this appliance
 """
 self._evm_service_command('start', expected_exit_code=0, log_callback=log_callback)

 @logger_wrap("Restart EVM Service: {}")
 def restart_evm_service(self, rude=False, log_callback=None):
 """Restarts the ``evmserverd`` service on this appliance
 """
 store.terminalreporter.write_line('evmserverd is being restarted, be patient please')
 with self.ssh_client as ssh:
 if rude:
 log_callback('restarting evm service by killing processes')
 status, msg = ssh.run_command(
 'killall -9 ruby; systemctl restart {}-postgresql'.format(
 self.db.postgres_version))
 self._evm_service_command("start", expected_exit_code=0, log_callback=log_callback)
 else:
 self._evm_service_command(
 "restart", expected_exit_code=0, log_callback=log_callback)
 self.server_details_changed()

 @logger_wrap("Waiting for EVM service: {}")
 def wait_for_evm_service(self, timeout=900, log_callback=None):
 """Waits for the evemserverd service to be running

 Args:
 timeout: Number of seconds to wait until timeout (default ``900``)
 """
 log_callback('Waiting for evmserverd to be running')
 result, wait = wait_for(self.is_evm_service_running, num_sec=timeout,
 fail_condition=False, delay=10)
 return result

 @logger_wrap("Rebooting Appliance: {}")
 def reboot(self, wait_for_web_ui=True, log_callback=None):
 log_callback('Rebooting appliance')
 client = self.ssh_client

 old_uptime = client.uptime()
 status, out = client.run_command('reboot')

 wait_for(lambda: client.uptime() < old_uptime, handle_exception=True,
 num_sec=600, message='appliance to reboot', delay=10)

 if wait_for_web_ui:
 self.wait_for_web_ui()

 @logger_wrap("Waiting for web_ui: {}")
 def wait_for_web_ui(self, timeout=900, running=True, log_callback=None):
 """Waits for the web UI to be running / to not be running

 Args:
 timeout: Number of seconds to wait until timeout (default ``600``)
 running: Specifies if we wait for web UI to start or stop (default ``True``)
 ``True`` == start, ``False`` == stop
 """
 prefix = "" if running else "dis"
 (log_callback or self.log.info)('Waiting for web UI to ' + prefix + 'appear')
 result, wait = wait_for(self._check_appliance_ui_wait_fn, num_sec=timeout,
 fail_condition=not running, delay=10)
 return result

 @logger_wrap("Install VDDK: {}")
 def install_vddk(self, reboot=True, force=False, vddk_url=None, log_callback=None,
 wait_for_web_ui_after_reboot=False):
 """Install the vddk on a appliance"""

 def log_raise(exception_class, message):
 log_callback(message)
 raise exception_class(message)

 if vddk_url is None: # fallback to VDDK 5.5
 vddk_url = conf.cfme_data.get("basic_info", {}).get("vddk_url", {}).get("v5_5")
 if vddk_url is None:
 raise Exception("vddk_url not specified!")

 with self.ssh_client as client:
 is_already_installed = False
 if client.run_command('test -d /usr/lib/vmware-vix-disklib/lib64')[0] == 0:
 is_already_installed = True

 if not is_already_installed or force:

 # start
 filename = vddk_url.split('/')[-1]

 # download
 log_callback('Downloading VDDK')
 result = client.run_command('curl {} -o {}'.format(vddk_url, filename))
 if result.rc != 0:
 log_raise(Exception, "Could not download VDDK")

 # install
 log_callback('Installing vddk')
 status, out = client.run_command(
 'yum -y install {}'.format(filename))
 if status != 0:
 log_raise(
 Exception, 'VDDK installation failure (rc: {})\n{}'.format(out, status))

 # verify
 log_callback('Verifying vddk')
 status, out = client.run_command('ldconfig -p | grep vix')
 if len(out) < 2:
 log_raise(
 Exception,
 "Potential installation issue, libraries not detected\n{}".format(out))

 # reboot
 if reboot:
 self.reboot(log_callback=log_callback,
 wait_for_web_ui=wait_for_web_ui_after_reboot)
 else:
 log_callback('A reboot is required before vddk will work')

 @logger_wrap("Uninstall VDDK: {}")
 def uninstall_vddk(self, log_callback=None):
 """Uninstall the vddk from an appliance"""
 with self.ssh_client as client:
 is_installed = client.run_command('test -d /usr/lib/vmware-vix-disklib/lib64').success
 if is_installed:
 status, out = client.run_command('yum -y remove vmware-vix-disklib')
 if status != 0:
 log_callback('VDDK removing failure (rc: {})\n{}'.format(out, status))
 raise Exception('VDDK removing failure (rc: {})\n{}'.format(out, status))
 else:
 log_callback('VDDK has been successfully removed.')
 else:
 log_callback('VDDK is not installed.')

 @logger_wrap("Install Netapp SDK: {}")
 def install_netapp_sdk(self, sdk_url=None, reboot=False, log_callback=None):
 """Installs the Netapp SDK.

 Args:
 sdk_url: Where the SDK zip file is located? (optional)
 reboot: Whether to reboot the appliance afterwards? (Default False but reboot is needed)
 """

 def log_raise(exception_class, message):
 log_callback(message)
 raise exception_class(message)

 if sdk_url is None:
 try:
 sdk_url = conf.cfme_data['basic_info']['netapp_sdk_url']
 except KeyError:
 raise Exception("cfme_data.yaml/basic_info/netapp_sdk_url is not present!")

 filename = sdk_url.split('/')[-1]
 foldername = os.path.splitext(filename)[0]

 with self.ssh_client as ssh:
 log_callback('Downloading SDK from {}'.format(sdk_url))
 status, out = ssh.run_command(
 'wget {url} -O {file} > /root/unzip.out 2>&1'.format(
 url=sdk_url, file=filename))
 if status != 0:
 log_raise(Exception, 'Could not download Netapp SDK: {}'.format(out))

 log_callback('Extracting SDK ({})'.format(filename))
 status, out = ssh.run_command(
 'unzip -o -d /var/www/miq/vmdb/lib/ {}'.format(filename))
 if status != 0:
 log_raise(Exception, 'Could not extract Netapp SDK: {}'.format(out))

 path = '/var/www/miq/vmdb/lib/{}/lib/linux-64'.format(foldername)
 # Check if we haven't already added this line
 if ssh.run_command("grep -F '{}' /etc/default/evm".format(path)).rc != 0:
 log_callback('Installing SDK ({})'.format(foldername))
 status, out = ssh.run_command(
 'echo "export LD_LIBRARY_PATH=\$LD_LIBRARY_PATH:{}" >> /etc/default/evm'.format(
 path))
 if status != 0:
 log_raise(Exception, 'SDK installation failure ($?={}): {}'.format(status, out))
 else:
 log_callback("Not needed to install, already done")

 log_callback('ldconfig')
 ssh.run_command('ldconfig')

 log_callback('Modifying YAML configuration')
 c_yaml = self.get_yaml_config()
 c_yaml['product']['storage'] = True
 self.set_yaml_config(c_yaml)

 # To mark that we installed netapp
 ssh.run_command("touch /var/www/miq/vmdb/HAS_NETAPP")

 if reboot:
 self.reboot(log_callback=log_callback)
 else:
 log_callback(
 'Appliance must be restarted before the netapp functionality can be used.')
 clear_property_cache(self, 'is_storage_enabled')

 @logger_wrap('Updating appliance UUID: {}')
 def update_guid(self, log_callback=None):
 guid_gen = 'uuidgen |tee /var/www/miq/vmdb/GUID'
 log_callback('Running {} to generate UUID'.format(guid_gen))
 with self.ssh_client as ssh:
 result = ssh.run_command(guid_gen)
 assert result.success, 'Failed to generate UUID'
 log_callback('Updated UUID: {}'.format(str(result)))
 try:
 del self.__dict__['guid'] # invalidate cached_property
 except KeyError:
 logger.exception('Exception clearing cached_property "guid"')
 return str(result).rstrip('\n') # should return UUID from stdout

[docs] def wait_for_ssh(self, timeout=600):
 """Waits for appliance SSH connection to be ready

 Args:
 timeout: Number of seconds to wait until timeout (default ``600``)
 """
 wait_for(func=lambda: self.is_ssh_running,
 message='appliance.is_ssh_running',
 delay=5,
 num_sec=timeout)

 @property
 def is_supervisord_running(self):
 output = self.ssh_client.run_command("systemctl status supervisord")
 return output.success

 @property
 def is_nginx_running(self):
 output = self.ssh_client.run_command("systemctl status nginx")
 return output.success

 @property
 def is_rabbitmq_running(self):
 output = self.ssh_client.run_command("systemctl status rabbitmq-server")
 return output.success

 @property
 def is_embedded_ensible_role_enabled(self):
 return self.server_roles.get("embedded_ansible", False)

 @property
 def is_embedded_ansible_running(self):
 return self.is_embedded_ensible_role_enabled and self.is_supervisord_running

[docs] def wait_for_embedded_ansible(self, timeout=900):
 """Waits for embedded ansible to be ready

 Args:
 timeout: Number of seconds to wait until timeout (default ``900``)
 """
 wait_for(
 func=lambda: self.is_embedded_ansible_running,
 message='appliance.is_embedded_ansible_running',
 delay=60,
 num_sec=timeout
)

 @cached_property
 def get_host_address(self):
 try:
 server = self.get_yaml_config().get('server')
 if server:
 return server.get('host')
 except Exception as e:
 logger.exception(e)
 self.log.error('Exception occured while fetching host address')

[docs] def wait_for_host_address(self):
 try:
 wait_for(func=lambda: getattr(self, 'get_host_address'),
 fail_condition=None,
 delay=5,
 num_sec=120)
 return self.get_host_address
 except Exception as e:
 logger.exception(e)
 self.log.error('waiting for host address from yaml_config timedout')

 @property
 def is_ssh_running(self):
 return net_check(ports.SSH, self.hostname, force=True)

 @property
 def has_cli(self):
 if self.ssh_client.run_command('ls -l /bin/appliance_console_cli')[0] == 0:
 return True
 else:
 return False

 @property
 def is_idle(self):
 """Return appliance idle state measured by last production.log activity.
 It runs one liner script, which first gathers current date on appliance and then gathers
 date of last entry in production.log(which has to be parsed) with /api calls filtered
 (These calls occur every minute.)
 Then it deducts that last time in log from current date and if it is lower than idle_time it
 returns False else True.

 Args:

 Returns:
 True if appliance is idling for longer or equal to idle_time seconds.
 False if appliance is not idling for longer or equal to idle_time seconds.
 """
 idle_time = 3600
 ssh_output = self.ssh_client.run_command('if [$((`date "+%s"` - `date -d "$(egrep -v '
 '"(Processing by Api::ApiController\#index as JSON|Started GET "/api" for '
 '127.0.0.1|Completed 200 OK in)" /var/www/miq/vmdb/log/production.log | tail -1 |cut '
 '-d"[" -f3 | cut -d"]" -f1 | cut -d" " -f1)\" \"+%s\"`)) -lt {}];'
 'then echo "False";'
 'else echo "True";'
 'fi;'.format(idle_time))
 return True if 'True' in ssh_output else False

 @cached_property
 def build_datetime(self):
 build_datetime_string = self.build.split('_', 1)[0]
 return datetime.strptime(build_datetime_string, '%Y%m%d%H%M%S')

 @cached_property
 def build_date(self):
 return self.build_datetime.date()

[docs] def has_netapp(self):
 return self.ssh_client.appliance_has_netapp()

 @cached_property
 def guid(self):
 try:
 server = self.rest_api.get_entity_by_href(self.rest_api.server_info['server_href'])
 return server.guid
 except (AttributeError, KeyError, IOError):
 self.log.exception('appliance.guid could not be retrieved from REST, falling back')
 result = self.ssh_client.run_command('cat /var/www/miq/vmdb/GUID')
 return result.output

 @cached_property
 def evm_id(self):
 try:
 server = self.rest_api.get_entity_by_href(self.rest_api.server_info['server_href'])
 return server.id
 except (AttributeError, KeyError, IOError):
 self.log.exception('appliance.evm_id could not be retrieved from REST, falling back')
 miq_servers = self.db.client['miq_servers']
 return self.db.client.session.query(
 miq_servers.id).filter(miq_servers.guid == self.guid)[0][0]

 @property
 def server_roles(self):
 """Return a dictionary of server roles from database"""
 asr = self.db.client['assigned_server_roles']
 sr = self.db.client['server_roles']
 all_role_names = {row[0] for row in self.db.client.session.query(sr.name)}
 # Query all active server roles assigned to this server
 query = self.db.client.session\
 .query(sr.name)\
 .join(asr, asr.server_role_id == sr.id)\
 .filter(asr.miq_server_id == self.evm_id)\
 .filter(asr.active == True) # noqa
 active_roles = {row[0] for row in query}
 roles = {role_name: role_name in active_roles for role_name in all_role_names}
 dead_keys = ['database_owner', 'vdi_inventory']
 for key in roles:
 if not self.is_storage_enabled:
 if key.startswith('storage'):
 dead_keys.append(key)
 if key == 'vmdb_storage_bridge':
 dead_keys.append(key)
 for key in dead_keys:
 try:
 del roles[key]
 except KeyError:
 pass
 return roles

 @server_roles.setter
 def server_roles(self, roles):
 """Sets the server roles. Requires a dictionary full of the role keys with bool values."""
 if self.server_roles == roles:
 self.log.debug(' Roles already match, returning...')
 return
 yaml = self.get_yaml_config()
 yaml['server']['role'] = ','.join([role for role, boolean in roles.iteritems() if boolean])
 self.set_yaml_config(yaml)
 wait_for(lambda: self.server_roles == roles, num_sec=300, delay=15)

[docs] def enable_embedded_ansible_role(self):
 """Enables embbeded ansible role

 This is necessary because server_roles does not wait long enough"""

 roles = self.server_roles
 roles['embedded_ansible'] = True
 try:
 self.server_roles = roles
 except TimedOutError:
 wait_for(lambda: self.server_roles == roles, num_sec=600, delay=15)
 self.wait_for_embedded_ansible()

[docs] def update_server_roles(self, changed_roles):
 server_roles = self.server_roles.copy()
 server_roles.update(changed_roles)
 self.server_roles = server_roles
 return server_roles == self.server_roles

 @cached_property
 def configuration_details(self):
 """Return details that are necessary to navigate through Configuration accordions.

 Args:
 ip_address: IP address of the server to match. If None, uses hostname from
 ``conf.env['base_url']``

 Returns:
 If the data weren't found in the DB, :py:class:`NoneType`
 If the data were found, it returns tuple ``(region, server name,
 server id, server zone id)``
 """
 try:
 servers = self.rest_api.collections.servers.all
 chosen_server = None
 if len(servers) == 1:
 chosen_server = servers[0]
 else:
 for server in servers:
 if self.guid == server.guid:
 chosen_server = server
 if chosen_server:
 chosen_server.reload(attributes=['region_number'])
 return (chosen_server.region_number, chosen_server.name,
 chosen_server.id, chosen_server.zone_id)
 else:
 return None, None, None, None
 except:
 return None

 @cached_property
 def configuration_details_old(self):
 try:
 miq_servers = self.db.client['miq_servers']
 for region in self.db.client.session.query(self.db.client['miq_regions']):
 reg_min = region.region * SEQ_FACT
 reg_max = reg_min + SEQ_FACT
 all_servers = self.db.client.session.query(miq_servers).all()
 server = None
 if len(all_servers) == 1:
 # If there's only one server, it's the one we want
 server = all_servers[0]
 else:
 # Otherwise, filter based on id and ip/guid
 def server_filter(server):
 return all([
 server.id >= reg_min,
 server.id < reg_max,
 # second check because of openstack ip addresses
 server.ipaddress == self.db.address or server.guid == self.guid
])
 servers = filter(server_filter, all_servers)
 if servers:
 server = servers[0]
 if server:
 return region.region, server.name, server.id, server.zone_id
 else:
 return None, None, None, None
 else:
 return None

 except KeyError:
 return None

[docs] def server_id(self):
 try:
 return self.configuration_details[2]
 except TypeError:
 return None

[docs] def server_region(self):
 try:
 return self.configuration_details[0]
 except TypeError:
 return None

[docs] def server_name(self):
 try:
 return self.configuration_details[1]
 except TypeError:
 return None

[docs] def server_zone_id(self):
 try:
 return self.configuration_details[3]
 except TypeError:
 return None

[docs] def server_region_string(self):
 r = self.server_region()
 return "{} Region: Region {} [{}]".format(
 self.product_name, r, r)

[docs] def slave_server_zone_id(self):
 table = self.db.client["miq_servers"]
 try:
 return self.db.client.session.query(table.id).filter(
 table.is_master == 'false').first()[0]
 except TypeError:
 return None

[docs] def slave_server_name(self):
 table = self.db.client["miq_servers"]
 try:
 return self.db.client.session.query(table.name).filter(
 table.id == self.slave_server_zone_id()).first()[0]
 except TypeError:
 return None

 @cached_property
 def company_name(self):
 return self.get_yaml_config()["server"]["company"]

 @cached_property
 def zone_description(self):
 zone_id = self.server_zone_id()
 zones = list(
 self.db.client.session.query(self.db.client["zones"]).filter(
 self.db.client["zones"].id == zone_id
)
)
 if zones:
 return zones[0].description
 else:
 return None

[docs] def host_id(self, hostname):
 hosts = list(
 self.db.client.session.query(self.db.client["hosts"]).filter(
 self.db.client["hosts"].name == hostname
)
)
 if hosts:
 return str(hosts[0].id)
 else:
 return None

 @cached_property
 def is_storage_enabled(self):
 return 'storage' in self.get_yaml_config().get('product', {})

[docs] def get_yaml_config(self):
 writeout = self.ssh_client.run_rails_command(
 '"File.open(\'/tmp/yam_dump.yaml\', \'w\') '
 '{|f| f.write(Settings.to_hash.deep_stringify_keys.to_yaml) }"'
)
 if writeout.rc:
 logger.error("Config couldn't be found")
 logger.error(writeout.output)
 raise Exception('Error obtaining config')
 base_data = self.ssh_client.run_command('cat /tmp/yam_dump.yaml')
 if base_data.rc:
 logger.error("Config couldn't be found")
 logger.error(base_data.output)
 raise Exception('Error obtaining config')
 try:
 return yaml.load(base_data.output)
 except:
 logger.debug(base_data.output)
 raise

[docs] def set_yaml_config(self, data_dict):
 temp_yaml = NamedTemporaryFile()
 dest_yaml = '/tmp/conf.yaml'
 yaml.dump(data_dict, temp_yaml, default_flow_style=False)
 self.ssh_client.put_file(temp_yaml.name, dest_yaml)
 # Build and send ruby script
 dest_ruby = '/tmp/set_conf.rb'

 ruby_template = data_path.join('utils', 'cfmedb_set_config.rbt')
 ruby_replacements = {
 'config_file': dest_yaml
 }
 temp_ruby = load_data_file(ruby_template.strpath, ruby_replacements)
 self.ssh_client.put_file(temp_ruby.name, dest_ruby)

 # Run it
 result = self.ssh_client.run_rails_command(dest_ruby)
 if result:
 self.server_details_changed()
 else:
 raise Exception('Unable to set config: {!r}:{!r}'.format(result.rc, result.output))

[docs] def set_session_timeout(self, timeout=86400, quiet=True):
 """Sets the timeout of UI timeout.

 Args:
 timeout: Timeout in seconds
 quiet: Whether to ignore any errors
 """
 try:
 vmdb_config = self.get_yaml_config()
 if vmdb_config["session"]["timeout"] != timeout:
 vmdb_config["session"]["timeout"] = timeout
 self.set_yaml_config(vmdb_config)
 except Exception as ex:
 logger.error('Setting session timeout failed:')
 logger.exception(ex)
 if not quiet:
 raise

[docs] def delete_all_providers(self):
 logger.info('Destroying all appliance providers')
 for prov in self.rest_api.collections.providers:
 prov.action.delete()

[docs] def reset_automate_model(self):
 with self.ssh_client as ssh_client:
 ssh_client.run_rake_command("evm:automate:reset")

[docs] def clean_appliance(self):
 starttime = time()
 self.ssh_client.run_command('service evmserverd stop')
 self.ssh_client.run_command('sync; sync; echo 3 > /proc/sys/vm/drop_caches')
 self.ssh_client.run_command('service collectd stop')
 self.ssh_client.run_command('service {}-postgresql restart').format(
 self.db.postgres_version)
 self.ssh_client.run_command(
 'cd /var/www/miq/vmdb;DISABLE_DATABASE_ENVIRONMENT_CHECK=1 bin/rake evm:db:reset')
 self.ssh_client.run_rake_command('db:seed')
 self.ssh_client.run_command('service collectd start')
 # Work around for https://bugzilla.redhat.com/show_bug.cgi?id=1337525
 self.ssh_client.run_command('service httpd stop')
 self.ssh_client.run_command('rm -rf /run/httpd/*')
 self.ssh_client.run_command('rm -rf /var/www/miq/vmdb/log/*.log*')
 self.ssh_client.run_command('rm -rf /var/www/miq/vmdb/log/apache/*.log*')
 self.ssh_client.run_command('service evmserverd start')
 logger.debug('Cleaned appliance in: {}'.format(round(time() - starttime, 2)))

[docs] def set_full_refresh_threshold(self, threshold=100):
 yaml = self.get_yaml_config()
 yaml['ems_refresh']['full_refresh_threshold'] = threshold
 self.set_yaml_config(yaml)

[docs] def set_cap_and_util_all_via_rails(self):
 """Turns on Collect for All Clusters and Collect for all Datastores without using Web UI."""
 command = (
 'Metric::Targets.perf_capture_always = {:storage=>true, :host_and_cluster=>true};')
 self.ssh_client.run_rails_console(command, timeout=None)

[docs] def set_cfme_server_relationship(self, vm_name, server_id=1):
 """Set MiqServer record to the id of a VM by name, effectively setting the CFME Server
 Relationship without using the Web UI."""
 command = ('miq_server = MiqServer.find_by(id: {});'
 'miq_server.vm_id = Vm.find_by(name: \'{}\').id;'
 'miq_server.save'.format(server_id, vm_name))
 self.ssh_client.run_rails_console(command, timeout=None)

[docs] def set_pglogical_replication(self, replication_type=':none'):
 """Set pglogical replication type (:none, :remote, :global) without using the Web UI."""
 command = ('MiqRegion.replication_type = {}'.format(replication_type))
 self.ssh_client.run_rails_console(command, timeout=None)

[docs] def add_pglogical_replication_subscription(self, host):
 """Add a pglogical replication subscription without using the Web UI."""
 user = conf.credentials['ssh']['username']
 password = conf.credentials['ssh']['password']
 dbname = 'vmdb_production'
 port = 5432
 command = ('sub = PglogicalSubscription.new;'
 'sub.dbname = \'{}\';'
 'sub.host = \'{}\';'
 'sub.user = \'{}\';'
 'sub.password = \'{}\';'
 'sub.port = {};'
 'sub.save'.format(dbname, host, user, password, port))
 self.ssh_client.run_rails_console(command, timeout=None)

[docs] def set_rubyrep_replication(self, host, port=5432, database='vmdb_production',
 username='root', password=None):
 """Sets up rubyrep replication via advanced configuration settings yaml."""
 password = password or self._encrypt_string(conf.credentials['ssh']['password'])
 yaml = self.get_yaml_config()
 if 'replication_worker' in yaml['workers']['worker_base']:
 dest = yaml['workers']['worker_base']['replication_worker']['replication'][
 'destination']
 dest['database'] = database
 dest['username'] = username
 dest['password'] = password
 dest['port'] = port
 dest['host'] = host
 else: # 5.5 configuration:
 dest = yaml['workers']['worker_base'][':replication_worker'][':replication'][
 ':destination']
 dest[':database'] = database
 dest[':username'] = username
 dest[':password'] = password
 dest[':port'] = port
 dest[':host'] = host
 logger.debug('Dest: {}'.format(dest))
 self.set_yaml_config(yaml)

[docs] def wait_for_miq_server_workers_started(self, evm_tail=None, poll_interval=5):
 """Waits for the CFME's workers to be started by tailing evm.log for:
 'INFO -- : MIQ(MiqServer#wait_for_started_workers) All workers have been started'
 """
 if evm_tail is None:
 logger.info('Opening /var/www/miq/vmdb/log/evm.log for tail')
 evm_tail = SSHTail('/var/www/miq/vmdb/log/evm.log')
 evm_tail.set_initial_file_end()

 attempts = 0
 detected = False
 max_attempts = 60
 while (not detected and attempts < max_attempts):
 logger.debug('Attempting to detect MIQ Server workers started: {}'.format(attempts))
 for line in evm_tail:
 if 'MiqServer#wait_for_started_workers' in line:
 if ('All workers have been started' in line):
 logger.info('Detected MIQ Server is ready.')
 detected = True
 break
 sleep(poll_interval) # Allow more log lines to accumulate
 attempts += 1
 if not (attempts < max_attempts):
 logger.error('Could not detect MIQ Server workers started in {}s.'.format(
 poll_interval * max_attempts))
 evm_tail.close()

[docs] def server_details_changed(self):
 clear_property_cache(self, 'configuration_details', 'zone_description')

 @logger_wrap("Setting dev branch: {}")
 def use_dev_branch(self, repo, branch, log_callback=None):
 """Sets up an exitsing appliance to change the branch to specified one and reset it.

 Args:
 repo: URL to the repo
 branch: Branch of that repo
 """
 with self.ssh_client as ssh_client:
 dev_branch_cmd = 'cd /var/www/miq/vmdb; git remote add dev_branch {}'.format(repo)
 if not ssh_client.run_command(dev_branch_cmd):
 ssh_client.run_command('cd /var/www/miq/vmdb; git remote remove dev_branch')
 if not ssh_client.run_command(dev_branch_cmd):
 raise Exception('Could not add the dev_branch remote')
 # We now have the repo and now let's update it
 ssh_client.run_command('cd /var/www/miq/vmdb; git remote update')
 self.evmserverd.stop()
 ssh_client.run_command(
 'cd /var/www/miq/vmdb; git checkout dev_branch/{}'.format(branch))
 ssh_client.run_command('cd /var/www/miq/vmdb; bin/update')
 self.start_evm_service()
 self.wait_for_evm_service()
 self.wait_for_web_ui()

[docs] def check_domain_enabled(self, domain):
 namespaces = self.db.client["miq_ae_namespaces"]
 q = self.db.client.session.query(namespaces).filter(
 namespaces.parent_id == None, namespaces.name == domain) # NOQA (for is/==)
 try:
 return list(q)[0].enabled
 except IndexError:
 raise KeyError("No such Domain: {}".format(domain))

[docs] def configure_appliance_for_openldap_ext_auth(self, appliance_fqdn):
 """This method changes the /etc/sssd/sssd.conf and /etc/openldap/ldap.conf files to set
 up the appliance for an external authentication with OpenLdap.
 Apache file configurations are updated, for webui to take effect.

 arguments:
 appliance_name: FQDN for the appliance.

 """
 openldap_domain1 = conf.cfme_data['auth_modes']['ext_openldap']
 assert self.ssh_client.run_command('appliance_console_cli --host {}'.format(appliance_fqdn))
 self.ssh_client.run_command('echo "{}\t{}" > /etc/hosts'.format(
 openldap_domain1['ipaddress'], openldap_domain1['hostname']))
 self.ssh_client.put_file(
 local_file=conf_path.join(openldap_domain1['cert_filename']).strpath,
 remote_file=openldap_domain1['cert_filepath'])
 ldap_conf_data = conf.cfme_data['auth_modes']['ext_openldap']['ldap_conf']
 sssd_conf_data = conf.cfme_data['auth_modes']['ext_openldap']['sssd_conf']
 command1 = 'echo "{}" > /etc/openldap/ldap.conf'.format(ldap_conf_data)
 command2 = 'echo "{}" > /etc/sssd/sssd.conf && chown -R root:root /etc/sssd/sssd.conf && ' \
 'chmod 600 /etc/sssd/sssd.conf'.format(sssd_conf_data)
 assert self.ssh_client.run_command(command1)
 assert self.ssh_client.run_command(command2)
 template_dir = '/opt/rh/cfme-appliance/TEMPLATE'
 if self.version == 'master':
 template_dir = '/var/www/miq/system/TEMPLATE'
 httpd_auth = '/etc/pam.d/httpd-auth'
 manageiq_ext_auth = '/etc/httpd/conf.d/manageiq-external-auth.conf'
 apache_config = """
 cp {template_dir}/etc/pam.d/httpd-auth {httpd_auth} &&
 cp {template_dir}/etc/httpd/conf.d/manageiq-remote-user.conf /etc/httpd/conf.d/ &&
 cp {template_dir}/etc/httpd/conf.d/manageiq-external-auth.conf.erb {manageiq_ext_auth}
 """.format(template_dir=template_dir, httpd_auth=httpd_auth,
 manageiq_ext_auth=manageiq_ext_auth)
 assert self.ssh_client.run_command(apache_config)
 self.ssh_client.run_command(
 'setenforce 0 && systemctl restart sssd && systemctl restart httpd')
 self.wait_for_web_ui()

 @logger_wrap("Configuring VM Console: {}")
 def configure_vm_console_cert(self, log_callback=None):
 """This method generates a self signed SSL cert and installs it
 in the miq/vmdb/certs dir. This cert will be used by the
 HTML 5 VM Console feature. Note evmserverd needs to be restarted
 after running this.
 """
 log_callback('Installing SSL certificate')

 cert = conf.cfme_data['vm_console'].get('cert')
 if cert is None:
 raise Exception('vm_console:cert does not exist in cfme_data.yaml')

 cert_file = os.path.join(cert.install_dir, 'server.cer')
 key_file = os.path.join(cert.install_dir, 'server.cer.key')
 cert_generator = scripts_path.join('gen_ssl_cert.py').strpath
 remote_cert_generator = os.path.join('/usr/bin', 'gen_ssl_cert.py')

 # Copy self signed SSL certificate generator to the appliance
 # because it needs to get the FQDN for the cert it generates.
 self.ssh_client.put_file(cert_generator, remote_cert_generator)

 # Generate cert
 command = '''
 {cert_generator} \\
 --C="{country}" \\
 --ST="{state}" \\
 --L="{city}" \\
 --O="{organization}" \\
 --OU="{organizational_unit}" \\
 --keyFile="{key}" \\
 --certFile="{cert}"
 '''.format(
 cert_generator=remote_cert_generator,
 country=cert.country,
 state=cert.state,
 city=cert.city,
 organization=cert.organization,
 organizational_unit=cert.organizational_unit,
 key=key_file,
 cert=cert_file,
)
 result = self.ssh_client.run_command(command)
 if not result == 0:
 raise Exception(
 'Failed to generate self-signed SSL cert on appliance: {}'.format(
 result[1]
)
)

[docs]class Appliance(IPAppliance):
 """Appliance represents an already provisioned cfme appliance vm

 Args:
 provider_name: Name of the provider this appliance is running under
 vm_name: Name of the VM this appliance is running as
 browser_steal: Setting of the browser_steal attribute.
 """

 _default_name = 'EVM'

 # For JSON Serialization
 CONFIG_MAPPING = {
 'provider_name': 'provider_name',
 'vm_name': 'vm_name',
 'container': 'container',
 }
 CONFIG_NONGLOBAL = {'vm_name'}

 def __init__(self, provider_name, vm_name, browser_steal=False, container=None):
 """Initializes a deployed appliance VM
 """
 super(Appliance, self).__init__(browser_steal=browser_steal, container=None)
 self.name = Appliance._default_name

 self._provider_key = provider_name
 self.vmname = vm_name

 def __eq__(self, other):
 return isinstance(other, type(self)) and (
 self.vmname == other.vmname and self._provider_key == other._provider_key)

 def __ne__(self, other):
 return not self.__eq__(other)

 def __hash__(self):
 return hash((self.vmname, self._provider_key))

 @property
 def ipapp(self):
 # For backwards compat
 return self

 @cached_property
 def provider(self):
 """
 Note:
 Cannot be cached because provider object is unpickable.
 """
 from cfme.utils.providers import get_mgmt
 return get_mgmt(self._provider_key)

 @property
 def vm_name(self):
 """ VM's name of the appliance on the provider """
 return self.vmname

 @cached_property
 def address(self):
 def is_ip_available():
 try:
 ip = self.provider.get_ip_address(self.vm_name)
 if ip is None:
 return False
 else:
 return ip
 except AttributeError:
 return False

 ec, tc = wait_for(is_ip_available,
 delay=5,
 num_sec=600)
 return str(ec)

 def _custom_configure(self, **kwargs):
 log_callback = kwargs.pop(
 "log_callback",
 lambda msg: logger.info("Custom configure %s: %s", self.vmname, msg))
 region = kwargs.get('region', 0)
 db_address = kwargs.get('db_address')
 key_address = kwargs.get('key_address')
 db_username = kwargs.get('db_username')
 db_password = kwargs.get('ssh_password')
 ssh_password = kwargs.get('ssh_password')
 db_name = kwargs.get('db_name')

 if kwargs.get('fix_ntp_clock', True) is True:
 self.fix_ntp_clock(log_callback=log_callback)
 if kwargs.get('db_address') is None:
 self.db.enable_internal(
 region, key_address, db_password, ssh_password)
 else:
 self.db.enable_external(
 db_address, region, db_name, db_username, db_password)
 self.wait_for_web_ui(timeout=1800, log_callback=log_callback)
 if kwargs.get('loosen_pgssl', True) is True:
 self.db.loosen_pgssl()

 name_to_set = kwargs.get('name_to_set')
 if name_to_set is not None and name_to_set != self.name:
 self.rename(name_to_set)
 self.restart_evm_service(log_callback=log_callback)
 self.wait_for_web_ui(log_callback=log_callback)

 @logger_wrap("Configure Appliance: {}")
 def configure(self, setup_fleece=False, log_callback=None, **kwargs):
 """Configures appliance - database setup, rename, ntp sync

 Utility method to make things easier.

 Args:
 db_address: Address of external database if set, internal database if ``None``
 (default ``None``)
 name_to_set: Name to set the appliance name to if not ``None`` (default ``None``)
 region: Number to assign to region (default ``0``)
 fix_ntp_clock: Fixes appliance time if ``True`` (default ``True``)
 loosen_pgssl: Loosens postgres connections if ``True`` (default ``True``)
 key_address: Fetch encryption key from this address if set, generate a new key if
 ``None`` (default ``None``)

 """
 log_callback("Configuring appliance {} on {}".format(self.vmname, self._provider_key))
 if kwargs:
 with self:
 self._custom_configure(**kwargs)
 else:
 # Defer to the IPAppliance.
 super(Appliance, self).configure(log_callback=log_callback)
 # And do configure the fleecing if requested
 if setup_fleece:
 self.configure_fleecing(log_callback=log_callback)

 @logger_wrap("Configure fleecing: {}")
 def configure_fleecing(self, log_callback=None):
 from cfme.configure.configuration import set_server_roles, get_server_roles
 with self(browser_steal=True):
 if self.is_on_vsphere:
 self.install_vddk(reboot=True, log_callback=log_callback)
 self.wait_for_web_ui(log_callback=log_callback)

 if self.is_on_rhev:
 self.add_rhev_direct_lun_disk()

 log_callback('Enabling smart proxy role...')
 roles = get_server_roles()
 if not roles["smartproxy"]:
 roles["smartproxy"] = True
 set_server_roles(**roles)
 # web ui crashes
 if str(self.version).startswith("5.2.5") or str(self.version).startswith("5.5"):
 try:
 self.wait_for_web_ui(timeout=300, running=False)
 except:
 pass
 self.wait_for_web_ui(running=True)

 # add provider
 log_callback('Setting up provider...')
 self.provider.setup()

 # credential hosts
 log_callback('Credentialing hosts...')
 if not RUNNING_UNDER_SPROUT:
 from cfme.utils.hosts import setup_providers_hosts_credentials
 setup_providers_hosts_credentials(self._provider_key, ignore_errors=True)

 # if rhev, set relationship
 if self.is_on_rhev:
 from cfme.infrastructure.virtual_machines import Vm # For Vm.CfmeRelationship
 log_callback('Setting up CFME VM relationship...')
 from cfme.common.vm import VM
 from cfme.utils.providers import get_crud
 vm = VM.factory(self.vm_name, get_crud(self._provider_key))
 cfme_rel = Vm.CfmeRelationship(vm)
 cfme_rel.set_relationship(str(self.server_name()), self.server_id())

[docs] def does_vm_exist(self):
 return self.provider.does_vm_exist(self.vm_name)

[docs] def rename(self, new_name):
 """Changes appliance name

 Args:
 new_name: Name to set

 Note:
 Database must be up and running and evm service must be (re)started afterwards
 for the name change to take effect.
 """
 vmdb_config = self.get_yaml_config()
 vmdb_config['server']['name'] = new_name
 self.set_yaml_config(vmdb_config)
 self.name = new_name

[docs] def destroy(self):
 """Destroys the VM this appliance is running as
 """
 if self.is_on_rhev:
 # if rhev, try to remove direct_lun just in case it is detach
 self.remove_rhev_direct_lun_disk()
 self.provider.delete_vm(self.vm_name)

[docs] def stop(self):
 """Stops the VM this appliance is running as
 """
 self.provider.stop_vm(self.vm_name)
 self.provider.wait_vm_stopped(self.vm_name)

[docs] def start(self):
 """Starts the VM this appliance is running as
 """
 self.provider.start_vm(self.vm_name)
 self.provider.wait_vm_running(self.vm_name)

[docs] def templatize(self, seal=True):
 """Marks the appliance as a template. Destroys the original VM in the process.

 By default it runs the sealing process. If you have done it differently, you can opt out.

 Args:
 seal: Whether to run the sealing process (making the VM 'universal').
 """
 if seal:
 if not self.is_running:
 self.start()
 self.seal_for_templatizing()
 self.stop()
 else:
 if self.is_running:
 self.stop()
 self.provider.mark_as_template(self.vm_name)

 @property
 def is_running(self):
 return self.provider.is_vm_running(self.vm_name)

 @property
 def is_on_rhev(self):
 from cfme.infrastructure.provider.rhevm import RHEVMProvider
 return isinstance(self.provider, RHEVMProvider.mgmt_class)

 @property
 def is_on_vsphere(self):
 from cfme.infrastructure.provider.virtualcenter import VMwareProvider
 return isinstance(self.provider, VMwareProvider.mgmt_class)

[docs] def add_rhev_direct_lun_disk(self, log_callback=None):
 if log_callback is None:
 log_callback = logger.info
 if not self.is_on_rhev:
 log_callback("appliance NOT on rhev, unable to connect direct_lun")
 raise ApplianceException("appliance NOT on rhev, unable to connect direct_lun")
 log_callback('Adding RHEV direct_lun hook...')
 self.wait_for_ssh()
 try:
 self.provider.connect_direct_lun_to_appliance(self.vm_name, False)
 except Exception as e:
 log_callback("Appliance {} failed to connect RHEV direct LUN.".format(self.vm_name))
 log_callback(str(e))
 raise

 @logger_wrap("Remove RHEV LUN: {}")
 def remove_rhev_direct_lun_disk(self, log_callback=None):
 if not self.is_on_rhev:
 msg = "appliance {} NOT on rhev, unable to disconnect direct_lun".format(self.vmname)
 log_callback(msg)
 raise ApplianceException(msg)
 log_callback('Removing RHEV direct_lun hook...')
 self.wait_for_ssh()
 try:
 self.provider.connect_direct_lun_to_appliance(self.vm_name, True)
 except Exception as e:
 log_callback("Appliance {} failed to connect RHEV direct LUN.".format(self.vm_name))
 log_callback(str(e))
 raise

[docs]def provision_appliance(version=None, vm_name_prefix='cfme', template=None, provider_name=None,
 vm_name=None):
 """Provisions fresh, unconfigured appliance of a specific version

 Note:
 Version must be mapped to template name under ``appliance_provisioning > versions``
 in ``cfme_data.yaml``.
 If no matching template for given version is found, and trackerbot is set up,
 the latest available template of the same stream will be used.
 E.g.: if there is no template for 5.5.5.1 but there is 5.5.5.3, it will be used instead.
 If both template name and version are specified, template name takes priority.

 Args:
 version: version of appliance to provision
 vm_name_prefix: name prefix to use when deploying the appliance vm

 Returns: Unconfigured appliance; instance of :py:class:`Appliance`

 Usage:
 my_appliance = provision_appliance('5.5.1.8', 'my_tests')
 my_appliance.fix_ntp_clock()
 ...other configuration...
 my_appliance.db.enable_internal()
 my_appliance.wait_for_web_ui()
 or
 my_appliance = provision_appliance('5.5.1.8', 'my_tests')
 my_appliance.configure()
 """

 def _generate_vm_name():
 if version is not None:
 version_digits = ''.join([letter for letter in version if letter.isdigit()])
 return '{}_{}_{}'.format(
 vm_name_prefix, version_digits, fauxfactory.gen_alphanumeric(8))
 else:
 return '{}_{}'.format(vm_name_prefix, fauxfactory.gen_alphanumeric(8))

 def _get_latest_template():
 from cfme.utils import trackerbot
 api = trackerbot.api()
 stream = get_stream(version)
 template_data = trackerbot.latest_template(api, stream, provider_name)
 return template_data.get('latest_template')

 if provider_name is None:
 provider_name = conf.cfme_data.get('appliance_provisioning', {})['default_provider']

 if template is not None:
 template_name = template
 elif version is not None:
 templates_by_version = conf.cfme_data.get('appliance_provisioning', {}).get('versions', {})
 try:
 template_name = templates_by_version[version]
 except KeyError:
 # We try to get the latest template from the same stream - if trackerbot is set up
 if conf.env.get('trackerbot', {}):
 template_name = _get_latest_template()
 if not template_name:
 raise ApplianceException('No template found for stream {} on provider {}'
 .format(get_stream(version), provider_name))
 logger.warning('No template found matching version %s, using %s instead.',
 version, template_name)
 else:
 raise ApplianceException('No template found matching version {}'.format(version))
 else:
 raise ApplianceException('Either version or template name must be specified')

 prov_data = conf.cfme_data.get('management_systems', {})[provider_name]
 from cfme.utils.providers import get_mgmt
 provider = get_mgmt(provider_name)
 if not vm_name:
 vm_name = _generate_vm_name()

 deploy_args = {}
 deploy_args['vm_name'] = vm_name

 if prov_data['type'] == 'rhevm':
 deploy_args['cluster'] = prov_data['default_cluster']

 if prov_data["type"] == "virtualcenter":
 if "allowed_datastores" in prov_data:
 deploy_args["allowed_datastores"] = prov_data["allowed_datastores"]

 provider.deploy_template(template_name, **deploy_args)

 return Appliance(provider_name, vm_name)

[docs]class ApplianceStack(LocalStack):

[docs] def push(self, obj):
 was_before = self.top
 super(ApplianceStack, self).push(obj)

 logger.info("Pushed appliance {} on stack (was {} before) ".format(
 obj.address, getattr(was_before, 'address', 'empty')))
 if obj.browser_steal:
 from cfme.utils import browser
 browser.start()

[docs] def pop(self):
 was_before = super(ApplianceStack, self).pop()
 current = self.top
 logger.info(
 "Popped appliance {} from the stack (now there is {})".format(
 was_before.address, getattr(current, 'address', 'empty')))
 if was_before.browser_steal:
 from cfme.utils import browser
 browser.start()
 return was_before

stack = ApplianceStack()

[docs]def load_appliances(appliance_list, global_kwargs):
 """Instantiate a list of appliances from configuration data.

 Args:
 appliance_list: List of dictionaries that contain parameters for :py:class:`IPAppliance`
 global_kwargs: Arguments that will be defined for each appliances. Appliance can override.

 Result:
 List of :py:class:`IPAppliance`
 """
 result = []
 for appliance_kwargs in appliance_list:
 kwargs = {}
 kwargs.update(global_kwargs)
 kwargs.update(appliance_kwargs)
 if not kwargs.get('base_url'):
 raise ValueError('Appliance definition {!r} is missing base_url'.format(kwargs))

 result.append(IPAppliance(**{IPAppliance.CONFIG_MAPPING[k]: v for k, v in kwargs.items()}))
 return result

[docs]def load_appliances_from_config(config):
 """Backwards-compatible config loader.

 The ``config`` contains some global values and ``appliances`` key which contains a list of dicts
 that have the same keys as ``IPAppliance.CONFIG_MAPPING``'s keys. If ``appliances`` key is not
 present, it is assumed it is old-format definition and the whole dict is used as a reference
 for one single appliance.

 The global values in the root of the dict (in case of ``appliances`` present) have lesser
 priority than the values in appliance definitions themselves

 Args:
 config: A dictionary with the configuration
 """
 if 'appliances' not in config:
 # old-style setup
 warnings.warn(
 'Your conf.env has old-style base_url', category=DeprecationWarning, stacklevel=2)
 appliances = [{
 k: config[k]
 for k in IPAppliance.CONFIG_MAPPING.keys()
 if k in config}]
 global_kwargs = {}
 else:
 # new-style setup
 appliances = config['appliances']
 global_kwargs = {
 k: config[k]
 for k in IPAppliance.CONFIG_MAPPING.keys()
 if k not in IPAppliance.CONFIG_NONGLOBAL and k in config}

 return load_appliances(appliances, global_kwargs)

[docs]def get_or_create_current_appliance():
 if stack.top is None:
 stack.push(load_appliances_from_config(conf.env)[0])
 return stack.top

current_appliance = LocalProxy(get_or_create_current_appliance)

@removals.removed_class(
 "CurrentAppliance", message=("The CurrentAppliance descriptor is being phased out"
 "in favour of collections.")
)
[docs]class CurrentAppliance(object):
 def __get__(self, instance, owner):
 return get_or_create_current_appliance()

[docs]class NavigatableMixin(object):

 @property
 def browser(self):
 return self.appliance.browser.widgetastic

[docs] def create_view(self, view_class, o=None, override=None):
 o = o or self
 if override is not None:
 new_obj = copy(o)
 new_obj.__dict__.update(override)
 else:
 new_obj = o
 return self.appliance.browser.create_view(
 view_class, additional_context={'object': new_obj})

@removals.removed_class(
 "Navigatable", message=("Navigatable is being deprecated in favour of using Collections "
 "objects with the NavigatableMixin")
)
[docs]class Navigatable(NavigatableMixin):

 appliance = CurrentAppliance()

 def __init__(self, appliance=None):
 self.appliance = appliance or get_or_create_current_appliance()

[docs]class BaseCollection(NavigatableMixin):
 pass

[docs]class BaseEntity(NavigatableMixin):
 pass

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/configure/documentation.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.configure.documentation

from widgetastic.widget import Text, Image, View

[docs]class LinksView(View):
 """
 Widgets for all of the links on the documentation page
 Each doc link is an anchor with a child image element, then an anchor with text
 Both the image and the text anchor should link to the same PDF
 """
 @View.nested
 class policies(View): # noqa
 TEXT = 'Defining Policies Profiles Guide'
 img_anchor = Text('//a[@title="View the {}"]'.format(TEXT))
 img = Image(locator='//img[@alt="View the {}"]'.format(TEXT))
 link = Text('//a[normalize-space(.)="{}"]'.format(TEXT))

 @View.nested
 class general(View): # noqa
 TEXT = 'General Configuration Guide'
 img_anchor = Text('//a[@title="View the {}"]'.format(TEXT))
 img = Image(locator='//img[@alt="View the {}"]'.format(TEXT))
 link = Text('//a[normalize-space(.)="{}"]'.format(TEXT))

 @View.nested
 class inventory(View): # noqa
 TEXT = 'Infrastructure Inventory Guide'
 img_anchor = Text('//a[@title="View the {}"]'.format(TEXT))
 img = Image(locator='//img[@alt="View the {}"]'.format(TEXT))
 link = Text('//a[normalize-space(.)="{}"]'.format(TEXT))

 @View.nested
 class automation(View): # noqa
 TEXT = 'Methods For Automation Guide'
 img_anchor = Text('//a[@title="View the {}"]'.format(TEXT))
 img = Image(locator='//img[@alt="View the {}"]'.format(TEXT))
 link = Text('//a[normalize-space(.)="{}"]'.format(TEXT))

 @View.nested
 class monitoring(View): # noqa
 TEXT = 'Monitoring Alerts Reporting Guide'
 img_anchor = Text('//a[@title="View the {}"]'.format(TEXT))
 img = Image(locator='//img[@alt="View the {}"]'.format(TEXT))
 link = Text('//a[normalize-space(.)="{}"]'.format(TEXT))

 @View.nested
 class providers(View): # noqa
 TEXT = 'Providers Guide'
 img_anchor = Text('//a[@title="View the {}"]'.format(TEXT))
 img = Image(locator='//img[@alt="View the {}"]'.format(TEXT))
 link = Text('//a[normalize-space(.)="{}"]'.format(TEXT))

 @View.nested
 class rest(View): # noqa
 TEXT = 'Rest Api Guide'
 img_anchor = Text('//a[@title="View the {}"]'.format(TEXT))
 img = Image(locator='//img[@alt="View the {}"]'.format(TEXT))
 link = Text('//a[normalize-space(.)="{}"]'.format(TEXT))

 @View.nested
 class scripting(View): # noqa
 TEXT = 'Scripting Actions Guide'
 img_anchor = Text('//a[@title="View the {}"]'.format(TEXT))
 img = Image(locator='//img[@alt="View the {}"]'.format(TEXT))
 link = Text('//a[normalize-space(.)="{}"]'.format(TEXT))

 @View.nested
 class vm_hosts(View): # noqa
 TEXT = 'Virtual Machines Hosts Guide'
 img_anchor = Text('//a[@title="View the {}"]'.format(TEXT))
 img = Image(locator='//img[@alt="View the {}"]'.format(TEXT))
 link = Text('//a[normalize-space(.)="{}"]'.format(TEXT))

 @View.nested
 class customer_portal(View): # noqa
 TEXT = 'Red Hat Customer Portal'
 link = Text('//a[normalize-space(.)="{}"]'.format(TEXT))

[docs]class DocView(View):
 """
 View for the documentation page, a title and a bunch of pdf of links
 """
 @property
 def is_displayed(self):
 return (
 self.title.read() == 'Documentation' and
 all([link.is_displayed for link in self.links.sub_widgets])
)

 title = Text('//div[@id="main-content"]//div/h1')
 links = View.nested(LinksView)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/automate/explorer/klass.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.automate »

 		cfme.automate.explorer »

 Source code for cfme.automate.explorer.klass

-*- coding: utf-8 -*-
import re
from cached_property import cached_property
from copy import copy

from navmazing import NavigateToAttribute, NavigateToSibling
from widgetastic.utils import ParametrizedLocator, ParametrizedString
from widgetastic.widget import Checkbox, Text, ParametrizedView
from widgetastic_manageiq import Table
from widgetastic_patternfly import BootstrapSelect, CandidateNotFound, Input, Button, Tab

from cfme.exceptions import ItemNotFound
from cfme.utils.appliance import BaseCollection, BaseEntity, Navigatable
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to

from . import AutomateExplorerView, check_tree_path
from .common import Copiable, CopyViewBase
from .namespace import NamespaceDetailsView

[docs]class ClassCopyView(AutomateExplorerView, CopyViewBase):
 @property
 def is_displayed(self):
 return (
 self.in_explorer and
 self.title.text == 'Copy Automate Class' and
 self.datastore.is_opened and
 check_tree_path(
 self.datastore.tree.currently_selected,
 self.context['object'].tree_path))

[docs]class ClassDetailsView(AutomateExplorerView):
 title = Text('#explorer_title_text')

 class instances(Tab): # noqa
 table = Table('#class_instances_grid')

 class methods(Tab): # noqa
 table = Table('#class_methods_grid')

 class properties(Tab): # noqa
 table = Table('//table[./preceding-sibling::h3[normalize-space(.)="Properties"]][1]')
 overrides = Table(
 '//table[./preceding-sibling::h3[normalize-space(.)="Domain Overrides (by priority)"]]')

 class schema(Tab): # noqa
 schema_title = Text('//div[@id="class_fields_div"]/h3')
 table = Table('//div[@id="class_fields_div"]/table')

 @property
 def is_displayed(self):
 return (
 self.in_explorer and
 self.title.text == 'Automate Class "{}"'.format(
 self.context['object'].display_name or self.context['object'].name) and
 self.datastore.is_opened and
 check_tree_path(
 self.datastore.tree.currently_selected,
 self.context['object'].tree_path))

[docs]class ClassForm(AutomateExplorerView):
 title = Text('#explorer_title_text')

 name = Input(name='name')
 display_name = Input(name='display_name')
 description = Input(name='description')

 cancel_button = Button('Cancel')

[docs]class ClassAddView(ClassForm):
 add_button = Button('Add')

 @property
 def is_displayed(self):
 return (
 self.in_explorer and
 self.title.text == 'Datastore' and
 self.datastore.is_opened and
 self.title.text == 'Adding a new Class')

[docs]class ClassEditView(ClassForm):
 save_button = Button('Save')

 @property
 def is_displayed(self):
 return (
 self.in_explorer and
 self.title.text == 'Editing Class "{}"'.format(self.obj.name))

[docs]class ClassCollection(BaseCollection):
 def __init__(self, appliance, parent_namespace):
 self.parent = parent_namespace
 self.appliance = appliance

 @property
 def tree_path(self):
 return self.parent.tree_path

[docs] def instantiate(self, name=None, display_name=None, description=None):
 return Class(self, name=name, display_name=display_name, description=description)

[docs] def create(self, name=None, display_name=None, description=None, cancel=False):
 add_page = navigate_to(self, 'Add')
 fill_dict = {
 k: v
 for k, v in {
 'name': name, 'display_name': display_name, 'description': description
 }.items()
 if v is not None}
 add_page.fill(fill_dict)
 if cancel:
 add_page.cancel_button.click()
 add_page.flash.assert_no_error()
 add_page.flash.assert_message('Add of new Automate Class was cancelled by the user')
 return None
 else:
 add_page.add_button.click()
 add_page.flash.assert_no_error()
 add_page.flash.assert_message(
 'Automate Class "/{}/{}" was added'.format(
 '/'.join(self.tree_path[1:]), name))
 return self.instantiate(name=name, display_name=display_name, description=description)

[docs] def delete(self, *classes):
 all_page = navigate_to(self.parent, 'Details')
 classes = list(classes)
 parents = set()
 # Check if the parent is the same
 for klass in classes:
 parents.add(klass.parent)
 if len(parents) > 1:
 raise ValueError('You passed classes that are not under one parent.')

 checked_classes = []
 if not all_page.namespaces.is_displayed:
 raise ValueError('No class found!')
 all_page.namespaces.uncheck_all()
 for row in all_page.namespaces.rows(_row__attr_startswith=('data-click-id', 'aec-')):
 name = row[2].text
 for klass in classes:
 if (klass.display_name and klass.display_name == name) or klass.name == name:
 checked_classes.append(klass)
 row[0].check()
 break

 if set(classes) == set(classes):
 break

 if set(classes) != set(checked_classes):
 raise ValueError('Some of the classes were not found in the UI.')

 all_page.configuration.item_select('Remove selected Items', handle_alert=True)
 all_page.flash.assert_no_error()
 for klass in checked_classes:
 all_page.flash.assert_message(
 'Automate Class "{}": Delete successful'.format(klass.description or klass.name))

@navigator.register(ClassCollection)
[docs]class Add(CFMENavigateStep):
 VIEW = ClassAddView
 prerequisite = NavigateToAttribute('parent', 'Details')

[docs] def step(self):
 self.prerequisite_view.configuration.item_select('Add a New Class')

[docs]class Class(BaseEntity, Copiable):
 def __init__(self, collection, name, display_name, description):
 self.collection = collection
 self.appliance = self.collection.appliance
 self.name = name
 if display_name is not None:
 self.display_name = display_name
 if description is not None:
 self.description = description

 @cached_property
 def display_name(self):
 return self.db_object.display_name

 @cached_property
 def description(self):
 return self.db_object.description

 @cached_property
 def db_id(self):
 table = self.appliance.db.client['miq_ae_classes']
 try:
 return self.appliance.db.client.session.query(table.id).filter(
 table.name == self.name,
 table.namespace_id == self.namespace.db_id)[0] # noqa
 except IndexError:
 raise ItemNotFound('Class named {} not found in the database'.format(self.name))

 @property
 def db_object(self):
 table = self.appliance.db.client['miq_ae_classes']
 return self.appliance.db.client.session.query(table).filter(table.id == self.db_id).first()

 @property
 def parent(self):
 return self.collection.parent

 @property
 def namespace(self):
 return self.parent

 @property
 def domain(self):
 return self.parent.domain

 @property
 def tree_path(self):
 if self.display_name:
 return self.parent.tree_path + ['{} ({})'.format(self.display_name, self.name)]
 else:
 return self.parent.tree_path + [self.name]

 @property
 def tree_path_name_only(self):
 return self.parent.tree_path + [self.name]

 @property
 def pure_tree_path(self):
 return self.parent.tree_path[1:] + [self.name]

 @property
 def fqdn(self):
 return '/' + '/'.join(self.pure_tree_path)

 @cached_property
 def instances(self):
 from .instance import InstanceCollection
 return InstanceCollection(self.appliance, self)

 @cached_property
 def methods(self):
 from .method import MethodCollection
 return MethodCollection(self.appliance, self)

 @cached_property
 def schema(self):
 return ClassSchema(self)

[docs] def delete(self, cancel=False):
 # Ensure this has correct data
 self.description
 # Do it!
 details_page = navigate_to(self, 'Details')
 details_page.configuration.item_select('Remove this Class', handle_alert=not cancel)
 if cancel:
 assert details_page.is_displayed
 details_page.flash.assert_no_error()
 else:
 result_view = self.create_view(NamespaceDetailsView, self.parent)
 assert result_view.is_displayed
 result_view.flash.assert_no_error()
 result_view.flash.assert_message(
 'Automate Class "{}": Delete successful'.format(self.description or self.name))

[docs] def update(self, updates):
 view = navigate_to(self, 'Edit')
 changed = view.fill(updates)
 if changed:
 view.save_button.click()
 else:
 view.cancel_button.click()
 view = self.create_view(ClassDetailsView, override=updates)
 assert view.is_displayed
 view.flash.assert_no_error()
 if changed:
 # When updating, class FQDN is used
 if 'name' in updates:
 # Replace the last component with a new name
 fqdn = self.fqdn.rsplit('/', 1)[0] + '/{}'.format(updates['name'])
 else:
 fqdn = self.fqdn
 view.flash.assert_message('Automate Class "{}" was saved'.format(fqdn))
 else:
 view.flash.assert_message(
 'Edit of Automate Class "{}" was cancelled by the user'.format(self.name))

 @property
 def exists(self):
 try:
 navigate_to(self, 'Details')
 return True
 except CandidateNotFound:
 return False

[docs] def delete_if_exists(self):
 if self.exists:
 self.delete()

@navigator.register(Class)
[docs]class Details(CFMENavigateStep):
 VIEW = ClassDetailsView
 prerequisite = NavigateToAttribute('domain', 'Details')

[docs] def step(self):
 self.prerequisite_view.datastore.tree.click_path(*self.obj.tree_path)

@navigator.register(Class)
[docs]class Edit(CFMENavigateStep):
 VIEW = ClassEditView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.configuration.item_select('Edit this Class')

@navigator.register(Class)
[docs]class Copy(CFMENavigateStep):
 VIEW = ClassCopyView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.configuration.item_select('Copy this Class')

schema
[docs]class ClassSchemaEditView(ClassDetailsView):
 class schema(Tab): # noqa
 schema_title = Text('//div[@id="form_div"]/h3')

 @ParametrizedView.nested
 class fields(ParametrizedView): # noqa
 PARAMETERS = ('name',)
 # Points to the <tr>
 ROOT = ParametrizedLocator(
 './/input[starts-with(@id, "fields_name_") and @value={name|quote}]/../..')
 ALL_FIELDS = './/input[starts-with(@name, "fields_name_")]'

 @cached_property
 def row_id(self):
 attr = self.browser.get_attribute(
 'id',
 './td/input[starts-with(@id, "fields_name_")',
 parent=self)
 return int(attr.rsplit('_', 1)[-1])

 name = Input(name=ParametrizedString('fields_name_{@row_id}'))
 type = BootstrapSelect(ParametrizedString('fields_aetype_{@row_id}'))
 data_type = BootstrapSelect(ParametrizedString('fields_datatype_{@row_id}'))
 default_value = Input(name=ParametrizedString('fields_default_value_{@row_id}'))
 display_name = Input(name=ParametrizedString('fields_display_name_{@row_id}'))
 description = Input(name=ParametrizedString('fields_description_{@row_id}'))
 substitute = Checkbox(name=ParametrizedString('fields_substitute_{@row_id}'))
 collect = Input(name=ParametrizedString('fields_collect_{@row_id}'))
 message = Input(name=ParametrizedString('fields_message_{@row_id}'))
 on_entry = Input(name=ParametrizedString('fields_on_entry_{@row_id}'))
 on_exit = Input(name=ParametrizedString('fields_on_exit_{@row_id}'))
 on_error = Input(name=ParametrizedString('fields_on_error_{@row_id}'))
 max_retries = Input(name=ParametrizedString('fields_max_retries_{@row_id}'))
 max_time = Input(name=ParametrizedString('fields_max_time_{@row_id}'))

 def delete(self):
 self.browser.click(
 './/img[@alt="Click to delete this field from schema"]', parent=self)
 try:
 del self.row_id
 except AttributeError:
 pass

 @classmethod
 def all(cls, browser):
 result = []
 for e in browser.elements(cls.ALL_FIELDS):
 result.append((browser.get_attribute('value', e),))
 return result

 add_field = Text('//img[@alt="Equal green"]')
 name = Input(name='field_name')
 type = BootstrapSelect('field_aetype')
 data_type = BootstrapSelect('field_datatype')
 default_value = Input(name='field_default_value')
 display_name = Input(name='field_display_name')
 description = Input(name='field_description')
 substitute = Checkbox(name='field_substitute')
 collect = Input(name='field_collect')
 message = Input(name='field_message')
 on_entry = Input(name='field_on_entry')
 on_exit = Input(name='field_on_exit')
 on_error = Input(name='field_on_error')
 max_retries = Input(name='field_max_retries')
 max_time = Input(name='field_max_time')
 finish_add_field = Text('//img[@alt="Add this entry"]')

 save_button = Button('Save')
 reset_button = Button('Reset')
 cancel_button = Button('Cancel')

 @property
 def is_displayed(self):
 return (
 self.in_explorer and
 self.schema.is_active and
 self.schema.schema_title.is_displayed and
 self.schema.schema_title.text == 'Schema' and
 (self.schema.add_field.is_displayed or self.schema.finish_add_field.is_displayed))

[docs]class ClassSchema(Navigatable):
 FIELD_NAMES = [
 'name', 'type', 'data_type', 'default_value', 'display_name', 'description', 'substitute',
 'collect', 'message', 'on_entry', 'on_exit', 'on_error', 'max_retries', 'max_time']

 def __init__(self, klass):
 Navigatable.__init__(self, appliance=klass.appliance)
 self.klass = klass

 @property
 def schema_field_names(self):
 page = navigate_to(self.klass, 'Details')
 page.schema.select()
 fields = []
 for row in page.schema.table:
 fields.append(re.sub(r'^\(([^)]+)\)$', '\\1', row.name.text.strip()))
 return fields

 def _fill_field(
 self, page, **fields):
 page.schema.add_field.click()
 # Collect things to one fill dict
 fields = copy(fields)
 fill_dict = {}
 for field_name in self.FIELD_NAMES:
 try:
 fill_dict[field_name] = fields.pop(field_name)
 except KeyError:
 continue

 if fields:
 raise TypeError(
 'Unexpected fields passed to schema: {}'.format(', '.join(fields.keys())))

 result = page.schema.fill(fill_dict)

 page.schema.finish_add_field.click()
 page.flash.assert_no_error()

 return result

[docs] def add_field(self, **kwargs):
 page = navigate_to(self, 'Edit')
 change = self._fill_field(page, **kwargs)
 if change:
 page.schema.save_button.click()
 page.flash.assert_no_error()
 page.flash.assert_message(
 'Schema for Automate Class "{}" was saved'.format(self.klass.name))
 else:
 page.schema.cancel_button.click()
 page.flash.assert_no_error()
 page.flash.assert_message(
 'Edit of schema for Automate Class "{}" was cancelled by the user'.format(
 self.klass.name))

[docs] def add_fields(self, *fields):
 page = navigate_to(self, 'Edit')
 change = False
 for field in fields:
 if self._fill_field(page, **field):
 change = True
 if change:
 page.schema.save_button.click()
 page.flash.assert_no_error()
 page.flash.assert_message(
 'Schema for Automate Class "{}" was saved'.format(self.klass.name))
 else:
 page.schema.cancel_button.click()
 page.flash.assert_no_error()
 page.flash.assert_message(
 'Edit of schema for Automate Class "{}" was cancelled by the user'.format(
 self.klass.name))

 def _delete_field(
 self, page, field):
 page.schema.fields(field).delete()

 page.flash.assert_no_error()

 return True

[docs] def delete_field(self, field):
 page = navigate_to(self, 'Edit')
 change = self._delete_field(page, field)
 if change:
 page.schema.save_button.click()
 page.flash.assert_no_error()
 page.flash.assert_message(
 'Schema for Automate Class "{}" was saved'.format(self.klass.name))
 else:
 page.schema.cancel_button.click()
 page.flash.assert_no_error()
 page.flash.assert_message(
 'Edit of schema for Automate Class "{}" was cancelled by the user'.format(
 self.klass.name))

[docs] def delete_fields(self, *fields):
 page = navigate_to(self, 'Edit')
 change = False
 for field in fields:
 if self._delete_field(page, field):
 change = True
 if change:
 page.schema.save_button.click()
 page.flash.assert_no_error()
 page.flash.assert_message(
 'Schema for Automate Class "{}" was saved'.format(self.klass.name))
 else:
 page.schema.cancel_button.click()
 page.flash.assert_no_error()
 page.flash.assert_message(
 'Edit of schema for Automate Class "{}" was cancelled by the user'.format(
 self.klass.name))

@navigator.register(ClassSchema, 'Edit')
[docs]class EditSchema(CFMENavigateStep):
 VIEW = ClassSchemaEditView
 prerequisite = NavigateToAttribute('klass', 'Details')

[docs] def step(self):
 self.prerequisite_view.schema.select()
 self.prerequisite_view.configuration.item_select('Edit selected Schema')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/networks/security_group.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.networks.security_group

from navmazing import NavigateToSibling, NavigateToAttribute

from cfme.common import WidgetasticTaggable, TagPageView
from cfme.exceptions import ItemNotFound
from cfme.networks.views import SecurityGroupDetailsView, SecurityGroupView
from cfme.utils import version
from cfme.utils.appliance import BaseCollection, BaseEntity
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to

[docs]class SecurityGroupCollection(BaseCollection):
 """ Collection object for SecurityGroup object
 Note: Network providers object are not implemented in mgmt
 """
 def __init__(self, appliance, parent_provider=None):
 self.appliance = appliance
 self.parent = parent_provider

[docs] def instantiate(self, name):
 return SecurityGroup(collection=self, name=name)

[docs] def all(self):
 if self.parent:
 view = navigate_to(self.parent, 'SecurityGroups')
 else:
 view = navigate_to(self, 'All')
 list_networks_obj = view.entities.get_all(surf_pages=True)
 return [self.instantiate(name=s.name) for s in list_networks_obj]

[docs]class SecurityGroup(WidgetasticTaggable, BaseEntity):
 """Class representing security group in sdn"""
 in_version = ('5.8', version.LATEST)
 category = 'networks'
 page_name = 'security_group'
 string_name = 'SecurityGroup'
 quad_name = None
 db_types = ['SecurityGroup']

 def __init__(self, collection, name, provider=None):
 self.collection = collection
 self.appliance = self.collection.appliance
 self.name = name
 self.provider = provider

 @property
 def network_provider(self):
 """ Returns network provider """
 from cfme.networks.provider import NetworkProviderCollection
 # security group collection contains reference to provider
 if self.collection.parent:
 return self.collection.parent
 # otherwise get provider name from ui
 view = navigate_to(self, 'Details')
 try:
 prov_name = view.entities.relationships.get_text_of("Network Manager")
 collection = NetworkProviderCollection(appliance=self.appliance)
 return collection.instantiate(name=prov_name)
 except ItemNotFound: # BZ 1480577
 return None

@navigator.register(SecurityGroupCollection, 'All')
[docs]class All(CFMENavigateStep):
 VIEW = SecurityGroupView
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self):
 self.prerequisite_view.navigation.select('Networks', 'Security Groups')

@navigator.register(SecurityGroup, 'Details')
[docs]class Details(CFMENavigateStep):
 prerequisite = NavigateToAttribute('collection', 'All')
 VIEW = SecurityGroupDetailsView

[docs] def step(self):
 self.prerequisite_view.entities.get_entity(by_name=self.obj.name).click()

@navigator.register(SecurityGroup, 'EditTagsFromDetails')
[docs]class EditTags(CFMENavigateStep):
 VIEW = TagPageView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.toolbar.policy.item_select('Edit Tags')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/automate/explorer/namespace.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.automate »

 		cfme.automate.explorer »

 Source code for cfme.automate.explorer.namespace

-*- coding: utf-8 -*-
from cached_property import cached_property

from navmazing import NavigateToAttribute, NavigateToSibling
from widgetastic.widget import Text
from widgetastic_manageiq import Table
from widgetastic_patternfly import CandidateNotFound, Input, Button

from cfme.exceptions import ItemNotFound
from cfme.utils.appliance import BaseCollection, BaseEntity
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to

from . import AutomateExplorerView, check_tree_path
from .domain import DomainDetailsView, Domain

[docs]class NamespaceDetailsView(AutomateExplorerView):
 title = Text('#explorer_title_text')
 namespaces = Table('#ns_details_grid')

 @property
 def is_displayed(self):
 return (
 self.in_explorer and
 self.title.text == 'Automate Namespace "{}"'.format(self.context['object'].name) and
 self.datastore.is_opened and
 check_tree_path(
 self.datastore.tree.currently_selected,
 self.context['object'].tree_path))

[docs]class NamespaceForm(AutomateExplorerView):
 title = Text('#explorer_title_text')

 name = Input(name='ns_name')
 description = Input(name='ns_description')

 cancel_button = Button('Cancel')

[docs]class NamespaceAddView(NamespaceForm):
 add_button = Button('Add')

 @property
 def is_displayed(self):
 return (
 self.in_explorer and
 self.datastore.is_opened and
 check_tree_path(
 self.datastore.tree.currently_selected,
 self.context['object'].tree_path) and
 self.title.text == 'Adding a new Automate Namespace')

[docs]class NamespaceEditView(NamespaceForm):
 save_button = Button('Save')

 @property
 def is_displayed(self):
 return (
 self.in_explorer and
 self.datastore.is_opened and
 check_tree_path(
 self.datastore.tree.currently_selected,
 self.context['object'].tree_path) and
 self.title.text == 'Editing Automate Namespace "{}"'.format(self.obj.name))

[docs]class NamespaceCollection(BaseCollection):
 def __init__(self, appliance, parent):
 self.parent = parent
 self.appliance = appliance

 @property
 def tree_path(self):
 return self.parent.tree_path

[docs] def instantiate(self, name=None, description=None):
 return Namespace(self, name=name, description=description)

[docs] def create(self, name=None, description=None, cancel=False):
 add_page = navigate_to(self, 'Add')
 fill_dict = {
 k: v
 for k, v in {'name': name, 'description': description}.items()
 if v is not None}
 add_page.fill(fill_dict)
 if cancel:
 add_page.cancel_button.click()
 add_page.flash.assert_no_error()
 add_page.flash.assert_message('Add of new Automate Namespace was cancelled by the user')
 return None
 else:
 add_page.add_button.click()
 add_page.flash.assert_no_error()
 if self.appliance.version >= '5.8.2':
 add_page.flash.assert_message(
 'Automate Namespace "{}" was added'.format(description or name))
 else:
 add_page.flash.assert_message('Automate Namespace "{}" was added'.format(name))
 return self.instantiate(name=name, description=description)

[docs] def delete(self, *namespaces):
 all_page = navigate_to(self.parent, 'Details')
 namespaces = list(namespaces)
 parents = set()
 # Check if the parent is the same
 for namespace in namespaces:
 parents.add(namespace.parent)
 if len(parents) > 1:
 raise ValueError('You passed namespaces that are not under one parent.')
 checked_namespaces = []
 if not all_page.namespaces.is_displayed:
 raise ValueError('No namespace found!')
 all_page.namespaces.uncheck_all()
 for row in all_page.namespaces.rows(_row__attr_startswith=('data-click-id', 'aen-')):
 name = row[2].text
 for namespace in namespaces:
 if namespace.name == name:
 checked_namespaces.append(namespace)
 row[0].check()
 break

 if set(namespaces) == set(checked_namespaces):
 break

 if set(namespaces) != set(checked_namespaces):
 raise ValueError('Some of the namespaces were not found in the UI.')

 if isinstance(self.parent, Domain):
 all_page.configuration.item_select('Remove Namespaces', handle_alert=True)
 else:
 all_page.configuration.item_select('Remove selected Items', handle_alert=True)
 all_page.flash.assert_no_error()
 for namespace in checked_namespaces:
 all_page.flash.assert_message(
 'Automate Namespace "{}": Delete successful'.format(
 namespace.description or namespace.name))

@navigator.register(NamespaceCollection)
[docs]class Add(CFMENavigateStep):
 VIEW = NamespaceAddView
 prerequisite = NavigateToAttribute('parent', 'Details')

[docs] def step(self):
 self.prerequisite_view.configuration.item_select('Add a New Namespace')

[docs]class Namespace(BaseEntity):
 def __init__(self, collection, name, description):
 self.collection = collection
 self.appliance = self.collection.appliance
 self.name = name
 if description is not None:
 self.description = description

 @cached_property
 def description(self):
 return self.db_object.description

 @cached_property
 def db_id(self):
 table = self.appliance.db.client['miq_ae_namespaces']
 try:
 return self.appliance.db.client.session.query(table.id).filter(
 table.name == self.name,
 table.parent_id == self.parent.db_id)[0] # noqa
 except IndexError:
 raise ItemNotFound('Namespace named {} not found in the database'.format(self.name))

 @property
 def db_object(self):
 table = self.appliance.db.client['miq_ae_namespaces']
 return self.appliance.db.client.session.query(table).filter(table.id == self.db_id).first()

 @property
 def parent(self):
 return self.collection.parent

 @property
 def domain(self):
 return self.parent.domain

 @property
 def tree_path(self):
 return self.parent.tree_path + [self.name]

 @cached_property
 def namespaces(self):
 return NamespaceCollection(self.appliance, self)

 @cached_property
 def classes(self):
 from .klass import ClassCollection
 return ClassCollection(self.appliance, self)

[docs] def delete(self, cancel=False):
 # Ensure this has correct data
 self.description
 # Do it!
 details_page = navigate_to(self, 'Details')
 details_page.configuration.item_select('Remove this Namespace', handle_alert=not cancel)
 if cancel:
 assert details_page.is_displayed
 details_page.flash.assert_no_error()
 else:
 if self.browser.product_version < '5.7':
 # Domain list in 5.6 and lower
 from .domain import DomainCollection, DomainListView
 dc = DomainCollection(self.appliance)
 result_view = self.create_view(DomainListView, dc)
 elif isinstance(self.parent, Domain):
 result_view = self.create_view(DomainDetailsView, self.parent)
 else:
 result_view = self.create_view(NamespaceDetailsView, self.parent)
 assert result_view.is_displayed
 result_view.flash.assert_no_error()
 result_view.flash.assert_message(
 'Automate Namespace "{}": Delete successful'.format(self.description or self.name))

[docs] def update(self, updates):
 view = navigate_to(self, 'Edit')
 changed = view.fill(updates)
 if changed:
 view.save_button.click()
 else:
 view.cancel_button.click()
 view = self.create_view(NamespaceDetailsView, override=updates)
 assert view.is_displayed
 view.flash.assert_no_error()
 if changed:
 if self.appliance.version >= '5.8.2':
 text = (
 updates.get('description', self.description) or
 updates.get('name', self.name))
 view.flash.assert_message(
 'Automate Namespace "{}" was saved'.format(text))
 else:
 view.flash.assert_message(
 'Automate Namespace "{}" was saved'.format(updates.get('name', self.name)))
 else:
 view.flash.assert_message(
 'Edit of Automate Namespace "{}" was cancelled by the user'.format(self.name))

 @property
 def exists(self):
 try:
 navigate_to(self, 'Details')
 return True
 except CandidateNotFound:
 return False

[docs] def delete_if_exists(self):
 if self.exists:
 self.delete()

@navigator.register(Namespace)
[docs]class Details(CFMENavigateStep):
 VIEW = NamespaceDetailsView
 prerequisite = NavigateToAttribute('domain', 'Details')

[docs] def step(self):
 self.prerequisite_view.datastore.tree.click_path(*self.obj.tree_path)

@navigator.register(Namespace)
[docs]class Edit(CFMENavigateStep):
 VIEW = NamespaceEditView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.configuration.item_select('Edit this Namespace')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/networks/network_port.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.networks.network_port

from navmazing import NavigateToSibling, NavigateToAttribute

from cfme.common import WidgetasticTaggable, TagPageView
from cfme.exceptions import ItemNotFound
from cfme.networks.views import NetworkPortDetailsView, NetworkPortView
from cfme.utils import version
from cfme.utils.appliance import BaseCollection, BaseEntity
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to

[docs]class NetworkPortCollection(BaseCollection):
 """ Collection object for NetworkPort object
 Note: Network providers object are not implemented in mgmt
 """
 def __init__(self, appliance, parent_provider=None):
 self.appliance = appliance
 self.parent = parent_provider

[docs] def instantiate(self, name):
 return NetworkPort(collection=self, name=name)

[docs] def all(self):
 if self.parent:
 view = navigate_to(self.parent, 'NetworkPorts')
 else:
 view = navigate_to(self, 'All')
 list_networks_obj = view.entities.get_all(surf_pages=True)
 return [self.instantiate(name=p.name) for p in list_networks_obj]

[docs]class NetworkPort(WidgetasticTaggable, BaseEntity):
 """Class representing network ports in sdn"""
 in_version = ('5.8', version.LATEST)
 category = "networks"
 page_name = 'network_port'
 string_name = 'NetworkPort'
 quad_name = None
 db_types = ['CloudNetworkPort']

 def __init__(self, collection, name, provider=None):
 self.collection = collection
 self.appliance = self.collection.appliance
 self.name = name
 self.provider = provider

 @property
 def mac_address(self):
 """ Returns mac adress (string) of the port """
 view = navigate_to(self, 'Details')
 return view.entities.properties.get_text_of('Mac address')

 @property
 def network_type(self):
 view = navigate_to(self, 'Details')
 return view.entities.properties.get_text_of('Type')

 @property
 def floating_ips(self):
 """ Returns floating ips (string) of the port """
 view = navigate_to(self, 'Details')
 return view.entities.properties.get_text_of('Floating ip addresses')

 @property
 def fixed_ips(self):
 """ Returns fixed ips (string) of the port """
 view = navigate_to(self, 'Details')
 return view.entities.properties.get_text_of('Fixed ip addresses')

 @property
 def network_provider(self):
 """ Returns network provider """
 from cfme.networks.provider import NetworkProviderCollection
 # port collection contains reference to provider
 if self.collection.parent:
 return self.collection.parent
 # otherwise get provider name from ui
 view = navigate_to(self, 'Details')
 try:
 prov_name = view.entities.relationships.get_text_of("Network Manager")
 collection = NetworkProviderCollection(appliance=self.appliance)
 return collection.instantiate(name=prov_name)
 except ItemNotFound: # BZ 1480577
 return None

@navigator.register(NetworkPortCollection, 'All')
[docs]class All(CFMENavigateStep):
 VIEW = NetworkPortView
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self):
 self.prerequisite_view.navigation.select('Networks', 'Network Ports')

@navigator.register(NetworkPort, 'Details')
[docs]class Details(CFMENavigateStep):
 prerequisite = NavigateToAttribute('collection', 'All')
 VIEW = NetworkPortDetailsView

[docs] def step(self):
 self.prerequisite_view.entities.get_entity(by_name=self.obj.name).click()

@navigator.register(NetworkPort, 'EditTagsFromDetails')
[docs]class EditTags(CFMENavigateStep):
 VIEW = TagPageView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.toolbar.policy.item_select('Edit Tags')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/automate/explorer/domain.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.automate »

 		cfme.automate.explorer »

 Source code for cfme.automate.explorer.domain

-*- coding: utf-8 -*-
from cached_property import cached_property
from navmazing import NavigateToAttribute, NavigateToSibling
from widgetastic.xpath import quote
from widgetastic.widget import Text, Checkbox
from widgetastic.utils import Fillable
from widgetastic_manageiq import Table, UpDownSelect
from widgetastic_patternfly import CandidateNotFound, Input, Button

from cfme.exceptions import ItemNotFound
from cfme.utils import clear_property_cache
from cfme.utils.appliance import BaseCollection, BaseEntity
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to

from . import AutomateExplorerView

[docs]def generate_updown(title):
 return './/*[(self::a or self::button) and @title={}]/*[self::img or self::i]'.format(
 quote(title))

[docs]class DomainPriorityView(AutomateExplorerView):
 title = Text('#explorer_title_text')
 domains = UpDownSelect(
 '#seq_fields',
 generate_updown('Move selected fields up'),
 generate_updown('Move selected fields down'))

 save_button = Button('Save')
 reset_button = Button('Reset')
 cancel_button = Button('Cancel')

 @property
 def is_displayed(self):
 return (
 self.in_explorer and
 self.title.text == 'Datastore' and
 self.domains.is_displayed)

[docs]class DomainListView(AutomateExplorerView):
 title = Text('#explorer_title_text')
 domains = Table('#ns_list_grid')

 @property
 def is_displayed(self):
 return (
 self.in_explorer and
 self.title.text == 'Datastore' and
 self.datastore.is_opened and
 self.datastore.tree.currently_selected == ['Datastore'])

[docs]class DomainForm(AutomateExplorerView):
 title = Text('#explorer_title_text')

 name = Input(name='ns_name')
 description = Input(name='ns_description')
 enabled = Checkbox(name='ns_enabled')

 cancel_button = Button('Cancel')

[docs]class DomainAddView(DomainForm):
 add_button = Button('Add')

 @property
 def is_displayed(self):
 return (
 self.in_explorer and
 self.title.text == 'Adding a new Automate Domain')

[docs]class DomainEditView(DomainForm):
 save_button = Button('Save')

 @property
 def is_displayed(self):
 return (
 self.in_explorer and
 self.title.text == 'Editing Automate Domain "{}"'.format(self.obj.name))

[docs]class DomainCollection(BaseCollection):
 """Collection object for the :py:class:`Domain`."""
 tree_path = ['Datastore']

 def __init__(self, appliance):
 self.appliance = appliance

[docs] def instantiate(
 self, name, description=None, enabled=None, git_repository=None, git_checkout_type=None,
 git_checkout_value=None, db_id=None, locked=None):
 return Domain(self,
 name=name, description=description, enabled=enabled, locked=None,
 git_repository=git_repository, git_checkout_type=git_checkout_type,
 git_checkout_value=git_checkout_value, db_id=db_id)

[docs] def create(self, name=None, description=None, enabled=None, cancel=False):
 add_page = navigate_to(self, 'Add')
 fill_dict = {
 k: v
 for k, v in {'name': name, 'description': description, 'enabled': enabled}.items()
 if v is not None}
 add_page.fill(fill_dict)
 if cancel:
 add_page.cancel_button.click()
 add_page.flash.assert_no_error()
 add_page.flash.assert_message('Add of new Automate Domain was cancelled by the user')
 return None
 else:
 add_page.add_button.click()
 add_page.flash.assert_no_error()
 if self.appliance.version >= '5.8.2':
 add_page.flash.assert_message(
 'Automate Domain "{}" was added'.format(description or name))
 else:
 add_page.flash.assert_message(
 'Automate Domain "{}" was added'.format(name))
 if enabled is None:
 # Assume
 enabled = False
 return self.instantiate(
 name=name, description=description, enabled=enabled, locked=False)

[docs] def all(self):
 table = self.appliance.db.client['miq_ae_namespaces']
 query = self.appliance.db.client.session.query(
 table.name, table.description, table.enabled, table.source, table.ref, table.ref_type,
 table.git_repository_id)
 query = query.filter(table.name != '$', table.parent_id == None) # noqa
 result = []
 for name, description, enabled, source, ref, ref_type, git_repository_id in query:
 if source != 'remote':
 result.append(
 self.instantiate(
 name=name,
 description=description or '',
 enabled=enabled,
 locked=source in {'user_locked', 'system'}))
 else:
 repo_table = self.appliance.db.client['git_repositories']
 repo = self.appliance.db.client.session\
 .query(repo_table)\
 .filter(repo_table.id == git_repository_id)\
 .first()
 from cfme.automate.import_export import AutomateGitRepository
 agr = AutomateGitRepository(
 url=repo.url,
 verify_ssl=repo.verify_ssl,
 appliance=self.appliance)
 result.append(
 self.instantiate(
 name=name,
 description=description,
 enabled=enabled,
 locked=True,
 git_repository=agr,
 git_checkout_type=ref_type,
 git_checkout_value=ref))
 return result

[docs] def delete(self, *domains):
 domains = list(domains)
 checked_domains = []
 all_page = navigate_to(self, 'All')
 all_page.domains.uncheck_all()
 if not all_page.domains.is_displayed:
 raise ValueError('No domain found!')
 for row in all_page.domains:
 for domain in domains:
 if domain.table_display_name == row.name.text:
 checked_domains.append(domain)
 row[0].check()
 break

 if set(domains) == set(checked_domains):
 break

 if set(domains) != set(checked_domains):
 raise ValueError('Some of the domains were not found in the UI.')

 all_page.configuration.item_select('Remove Domains', handle_alert=True)
 all_page.flash.assert_no_error()
 for domain in checked_domains:
 all_page.flash.assert_message(
 'Automate Domain "{}": Delete successful'.format(domain.description or domain.name))

[docs] def set_order(self, items):
 if not isinstance(items, (list, tuple)):
 items = [items]

 processed_items = [Fillable.coerce(item) for item in items]
 priority_page = navigate_to(self, 'Priority')
 changed = priority_page.domains.fill(processed_items)
 if changed:
 # Changed
 priority_page.save_button.click()
 else:
 # Not changed
 priority_page.cancel_button.click()
 domains_view = self.create_view(DomainListView)
 assert domains_view.is_displayed
 domains_view.flash.assert_no_error()
 if changed:
 domains_view.flash.assert_message('Priority Order was saved')
 else:
 domains_view.flash.assert_message('Edit of Priority Order was cancelled by the user')
 return changed

@navigator.register(DomainCollection)
[docs]class All(CFMENavigateStep):
 VIEW = DomainListView
 prerequisite = NavigateToAttribute('appliance.server', 'AutomateExplorer')

[docs] def step(self):
 self.prerequisite_view.datastore.tree.click_path(*self.obj.tree_path)

@navigator.register(DomainCollection)
[docs]class Add(CFMENavigateStep):
 VIEW = DomainAddView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.configuration.item_select('Add a New Domain')

@navigator.register(DomainCollection)
[docs]class Priority(CFMENavigateStep):
 VIEW = DomainPriorityView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.configuration.item_select('Edit Priority Order of Domains')

[docs]class DomainDetailsView(AutomateExplorerView):
 title = Text('#explorer_title_text')
 namespaces = Table('#ns_details_grid')

 @property
 def is_displayed(self):
 return (
 self.in_explorer and
 self.title.text == 'Automate Domain "{}"'.format(
 self.context['object'].table_display_name))

[docs]class Domain(BaseEntity, Fillable):
 """A class representing one Domain in the UI."""
 def __init__(
 self, collection, name, description, enabled=None, locked=None,
 git_repository=None, git_checkout_type=None, git_checkout_value=None, db_id=None):
 if db_id is not None:
 self.db_id = db_id
 self.collection = collection
 self.appliance = self.collection.appliance
 self.name = name
 self.description = description
 if git_repository is not None:
 self.git_repository = git_repository
 if git_checkout_type is not None:
 self.git_checkout_type = git_checkout_type
 if git_checkout_value is not None:
 self.git_checkout_value = git_checkout_value
 if enabled is not None:
 self.enabled = enabled
 if locked is not None:
 self.locked = locked

[docs] def as_fill_value(self):
 return self.name

 @cached_property
 def db_id(self):
 table = self.appliance.db.client['miq_ae_namespaces']
 try:
 return self.appliance.db.client.session.query(table.id).filter(
 table.name == self.name,
 table.parent_id == None)[0] # noqa
 except IndexError:
 raise ItemNotFound('Domain named {} not found in the database'.format(self.name))

 @cached_property
 def git_repository(self):
 """Returns an associated git repository object. None if no git repo associated."""
 dbo = self.db_object
 if dbo.git_repository_id is None:
 return None
 from cfme.automate.import_export import AutomateGitRepository
 return AutomateGitRepository.from_db(dbo.git_repository_id, appliance=self.appliance)

 @cached_property
 def git_checkout_type(self):
 return self.db_object.ref_type

 @cached_property
 def git_checkout_value(self):
 return self.db_object.ref

 @property
 def db_object(self):
 if self.db_id is None:
 return None
 table = self.appliance.db.client['miq_ae_namespaces']
 return self.appliance.db.client.session.query(table).filter(table.id == self.db_id).first()

 @cached_property
 def enabled(self):
 return self.db_object.enabled

 @cached_property
 def locked(self):
 if self.browser.product_version < '5.7':
 return self.db_object.system
 else:
 return self.db_object.source in {'user_locked', 'system', 'remote'}

 @property
 def parent(self):
 return self.collection

 @property
 def domain(self):
 return self

 @cached_property
 def namespaces(self):
 from .namespace import NamespaceCollection
 return NamespaceCollection(self.appliance, self)

 @property
 def tree_display_name(self):
 if self.git_repository:
 name = '{name} ({ref}) ({name})'.format(name=self.name, ref=self.git_checkout_value)
 else:
 name = self.name

 if self.locked and not self.enabled:
 return '{} (Locked & Disabled)'.format(name)
 elif self.locked and self.enabled:
 return '{} (Locked)'.format(name)
 elif not self.locked and not self.enabled:
 return '{} (Disabled)'.format(name)
 else:
 return name

 @property
 def table_display_name(self):
 if self.git_repository:
 name = '{name} ({ref})'.format(name=self.name, ref=self.git_checkout_value)
 else:
 name = self.name

 if self.locked and not self.enabled:
 return '{} (Locked & Disabled)'.format(name)
 elif self.locked and self.enabled:
 return '{} (Locked)'.format(name)
 elif not self.locked and not self.enabled:
 return '{} (Disabled)'.format(name)
 else:
 return name

 @property
 def tree_path(self):
 return self.collection.tree_path + [self.tree_display_name]

[docs] def delete(self, cancel=False):
 # Ensure this has correct data
 self.description
 # Do it!
 details_page = navigate_to(self, 'Details')
 details_page.configuration.item_select('Remove this Domain', handle_alert=not cancel)
 if cancel:
 assert details_page.is_displayed
 details_page.flash.assert_no_error()
 else:
 domains_view = self.create_view(DomainListView)
 assert domains_view.is_displayed
 domains_view.flash.assert_no_error()
 domains_view.flash.assert_message(
 'Automate Domain "{}": Delete successful'.format(self.description or self.name))

[docs] def lock(self):
 # Ensure this has correct data
 self.description
 details_page = navigate_to(self, 'Details')
 details_page.configuration.item_select('Lock this Domain')
 details_page.flash.assert_no_error()
 details_page.flash.assert_message('The selected Automate Domain were marked as Locked')
 clear_property_cache(self, 'locked')
 assert self.locked

[docs] def unlock(self):
 # Ensure this has correct data
 self.description
 details_page = navigate_to(self, 'Details')
 details_page.configuration.item_select('Unlock this Domain')
 details_page.flash.assert_no_error()
 details_page.flash.assert_message('The selected Automate Domain were marked as Unlocked')
 clear_property_cache(self, 'locked')
 assert not self.locked

[docs] def update(self, updates):
 view = navigate_to(self, 'Edit')
 changed = view.fill(updates)
 if changed:
 view.save_button.click()
 else:
 view.cancel_button.click()
 view = self.create_view(DomainDetailsView, override=updates)
 assert view.is_displayed
 view.flash.assert_no_error()
 if changed:
 if self.appliance.version >= '5.8.2':
 text = (
 updates.get('description', self.description) or
 updates.get('name', self.name))
 else:
 text = updates.get('name', self.name)
 view.flash.assert_message('Automate Domain "{}" was saved'.format(text))
 else:
 view.flash.assert_message(
 'Edit of Automate Domain "{}" was cancelled by the user'.format(self.name))

 @property
 def exists(self):
 try:
 navigate_to(self, 'Details')
 return True
 except (CandidateNotFound, ItemNotFound):
 return False

[docs] def delete_if_exists(self):
 if self.exists:
 self.delete()

@navigator.register(Domain)
[docs]class Details(CFMENavigateStep):
 VIEW = DomainDetailsView
 prerequisite = NavigateToAttribute('appliance.server', 'AutomateExplorer')

[docs] def step(self):
 try:
 self.prerequisite_view.datastore.tree.click_path(*self.obj.tree_path)
 except CandidateNotFound:
 # Try it with regexp (drop the locked to None)
 # That will force reload from database
 self.obj.locked = None
 self.prerequisite_view.datastore.tree.click_path(*self.obj.tree_path)

@navigator.register(Domain)
[docs]class Edit(CFMENavigateStep):
 VIEW = DomainEditView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.configuration.item_select('Edit this Domain')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/networks/balancer.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.networks.balancer

from navmazing import NavigateToSibling, NavigateToAttribute

from cfme.common import WidgetasticTaggable, TagPageView
from cfme.exceptions import ItemNotFound
from cfme.networks.views import BalancerDetailsView, BalancerView
from cfme.utils import version
from cfme.utils.appliance import BaseCollection, BaseEntity
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to

[docs]class BalancerCollection(BaseCollection):
 """Collection object for Balancer object"""
 def __init__(self, appliance, parent_provider=None):
 self.appliance = appliance
 self.parent = parent_provider

[docs] def instantiate(self, name):
 return Balancer(collection=self, name=name)

[docs] def all(self):
 if self.parent:
 view = navigate_to(self.parent, 'LoadBalancers')
 else:
 view = navigate_to(self, 'All')
 list_networks_obj = view.entities.get_all(surf_pages=True)
 return [self.instantiate(name=b.name) for b in list_networks_obj]

[docs]class Balancer(WidgetasticTaggable, BaseEntity):
 """Class representing balancers in sdn"""
 in_version = ('5.8', version.LATEST)
 category = 'networks'
 page_name = 'network_balancer'
 string_name = 'NetworkBalancer'
 refresh_text = 'Refresh items and relationships'
 detail_page_suffix = 'network_balancer_detail'
 quad_name = None
 db_types = ['NetworkBalancer']

 def __init__(self, collection, name, provider=None):
 self.collection = collection
 self.appliance = self.collection.appliance
 self.name = name
 self.provider = provider

 @property
 def health_checks(self):
 """ Returns health check state """
 view = navigate_to(self, 'Details')
 return view.entities.properties.get_text_of('Health checks')

 @property
 def listeners(self):
 """ Returns listeners of balancer """
 view = navigate_to(self, 'Details')
 return view.entities.properties.get_text_of('Listeners')

 @property
 def network_provider(self):
 """ Returns network provider """
 from cfme.networks.provider import NetworkProviderCollection
 # balancer collection contains reference to provider
 if self.collection.parent:
 return self.collection.parent
 # otherwise get provider name from ui
 view = navigate_to(self, 'Details')
 try:
 prov_name = view.entities.relationships.get_text_of("Network Manager")
 collection = NetworkProviderCollection(appliance=self.appliance)
 return collection.instantiate(name=prov_name)
 except ItemNotFound: # BZ 1480577
 return None

@navigator.register(BalancerCollection, 'All')
[docs]class All(CFMENavigateStep):
 VIEW = BalancerView
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self):
 self.prerequisite_view.navigation.select('Networks', 'Load Balancers')

@navigator.register(Balancer, 'Details')
[docs]class Details(CFMENavigateStep):
 prerequisite = NavigateToAttribute('collection', 'All')
 VIEW = BalancerDetailsView

[docs] def step(self):
 self.prerequisite_view.entities.get_entity(by_name=self.obj.name).click()

@navigator.register(Balancer, 'EditTagsFromDetails')
[docs]class EditTags(CFMENavigateStep):
 VIEW = TagPageView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.toolbar.policy.item_select('Edit Tags')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/automate/explorer/method.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.automate »

 		cfme.automate.explorer »

 Source code for cfme.automate.explorer.method

-*- coding: utf-8 -*-
from cached_property import cached_property
from navmazing import NavigateToAttribute, NavigateToSibling
from widgetastic.widget import Text
from widgetastic_manageiq import SummaryFormItem, ScriptBox, Input
from widgetastic_patternfly import BootstrapSelect, Button, CandidateNotFound

from cfme.exceptions import ItemNotFound
from cfme.utils.appliance import BaseCollection, BaseEntity
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to
from cfme.utils.timeutil import parsetime

from . import AutomateExplorerView, check_tree_path
from .common import Copiable, CopyViewBase
from .klass import ClassDetailsView

[docs]class MethodCopyView(AutomateExplorerView, CopyViewBase):
 @property
 def is_displayed(self):
 return (
 self.in_explorer and
 self.title.text == 'Copy Automate Method' and
 self.datastore.is_opened and
 check_tree_path(
 self.datastore.tree.currently_selected,
 self.context['object'].tree_path))

[docs]class MethodDetailsView(AutomateExplorerView):
 title = Text('#explorer_title_text')
 fqdn = SummaryFormItem(
 'Main Info', 'Fully Qualified Name',
 text_filter=lambda text: [item.strip() for item in text.strip().lstrip('/').split('/')])
 name = SummaryFormItem('Main Info', 'Name')
 display_name = SummaryFormItem('Main Info', 'Display Name')
 location = SummaryFormItem('Main Info', 'Location')
 created_on = SummaryFormItem('Main Info', 'Created On', text_filter=parsetime.from_iso_with_utc)

 @property
 def is_displayed(self):
 return (
 self.in_explorer and
 self.title.text.startswith('Automate Method [{}'.format(
 self.context['object'].display_name or self.context['object'].name)) and
 self.fqdn.is_displayed and
 # We need to chop off the leading Domain name.
 self.fqdn.text == self.context['object'].tree_path_name_only[1:])

[docs]class MethodAddView(AutomateExplorerView):
 title = Text('#explorer_title_text')

 location = BootstrapSelect('cls_method_location', can_hide_on_select=True)
 name = Input(name='cls_method_name')
 display_name = Input(name='cls_method_display_name')

 script = ScriptBox()
 data = Input(name='cls_method_data')

 validate_button = Button('Validate')
 add_button = Button('Add')
 cancel_button = Button('Cancel')

 # TODO: Input parameters

 @property
 def is_displayed(self):
 return (
 self.in_explorer and
 self.datastore.is_opened and
 self.title.text == 'Adding a new Automate Method' and
 check_tree_path(
 self.datastore.tree.currently_selected,
 self.context['object'].tree_path))

[docs]class MethodEditView(AutomateExplorerView):
 title = Text('#explorer_title_text')

 name = Input(name='method_name')
 display_name = Input(name='method_display_name')
 location = BootstrapSelect('method_location')

 script = ScriptBox()
 data = Input(name='method_data')

 validate_button = Button('Validate')
 save_button = Button('Save')
 reset_button = Button('Reset')
 cancel_button = Button('Cancel')

 # TODO: Input parameters

 @property
 def is_displayed(self):
 return (
 self.in_explorer and
 self.datastore.is_opened and
 self.title.text == 'Editing Automate Method "{}"'.format(
 self.context['object'].name) and
 check_tree_path(
 self.datastore.tree.currently_selected,
 self.context['object'].tree_path))

[docs]class MethodCollection(BaseCollection):
 def __init__(self, appliance, parent_class):
 self.appliance = appliance
 self.parent = parent_class

 @property
 def tree_path(self):
 return self.parent.tree_path

[docs] def instantiate(self, name=None, display_name=None, location=None, script=None, data=None):
 return Method(
 self,
 name=name,
 display_name=display_name,
 location=location,
 script=script,
 data=data)

[docs] def create(
 self, name=None, display_name=None, location='inline', script=None, data=None,
 cancel=False, validate=True):
 add_page = navigate_to(self, 'Add')
 fill_dict = {
 k: v
 for k, v in {
 'name': name,
 'display_name': display_name,
 'location': location,
 'script': script,
 'data': data,
 }.items()
 if v is not None}
 add_page.fill(fill_dict)
 if validate:
 add_page.validate_button.click()
 add_page.flash.assert_no_error()
 add_page.flash.assert_message('Data validated successfully')
 if cancel:
 add_page.cancel_button.click()
 add_page.flash.assert_no_error()
 add_page.flash.assert_message('Add of new Automate Method was cancelled by the user')
 return None
 else:
 add_page.add_button.click()
 add_page.flash.assert_no_error()
 add_page.flash.assert_message('Automate Method "{}" was added'.format(name))
 return self.instantiate(
 name=name,
 display_name=display_name,
 location=location,
 script=script,
 data=data)

[docs] def delete(self, *methods):
 all_page = navigate_to(self.parent, 'Details')
 all_page.methods.select()
 methods = list(methods)
 parents = set()
 for method in methods:
 parents.add(method.parent)
 if len(parents) > 1:
 raise ValueError('You passed methods that are not under one class.')

 checked_methods = []
 if not all_page.methods.table.is_displayed:
 raise ValueError('No method found!')
 all_page.methods.table.uncheck_all()
 for row in all_page.instances.table:
 name = row[2].text
 for method in methods:
 if (
 (method.display_name and method.display_name == name) or
 method.name == name):
 checked_methods.append(method)
 row[0].check()
 break

 if set(methods) == set(checked_methods):
 break

 if set(methods) != set(checked_methods):
 raise ValueError('Some of the instances were not found in the UI.')

 all_page.configuration.item_select('Remove Methods', handle_alert=True)
 all_page.flash.assert_no_error()
 for method in checked_methods:
 all_page.flash.assert_message(
 'Automate Method "{}": Delete successful'.format(method.name))

@navigator.register(MethodCollection)
[docs]class Add(CFMENavigateStep):
 VIEW = MethodAddView
 prerequisite = NavigateToAttribute('parent', 'Details')

[docs] def step(self):
 self.prerequisite_view.methods.select()
 self.prerequisite_view.configuration.item_select('Add a New Method')

[docs]class Method(BaseEntity, Copiable):
 def __init__(self, collection, name, display_name, location, script, data):
 self.collection = collection
 self.appliance = self.collection.appliance
 self.name = name
 if display_name is not None:
 self.display_name = display_name
 self.location = location
 self.script = script
 self.data = data

 @cached_property
 def display_name(self):
 return self.db_object.display_name

 @cached_property
 def db_id(self):
 table = self.appliance.db.client['miq_ae_methods']
 try:
 return self.appliance.db.client.session.query(table.id).filter(
 table.name == self.name,
 table.class_id == self.klass.db_id)[0] # noqa
 except IndexError:
 raise ItemNotFound('Method named {} not found in the database'.format(self.name))

 @property
 def db_object(self):
 table = self.appliance.db.client['miq_ae_methods']
 return self.appliance.db.client.session.query(table).filter(table.id == self.db_id).first()

 @property
 def klass(self):
 return self.parent

 @property
 def namespace(self):
 return self.klass.namespace

 @property
 def parent(self):
 return self.collection.parent

 @property
 def domain(self):
 return self.parent.domain

 @property
 def tree_path(self):
 if self.display_name:
 return self.parent.tree_path + ['{} ({})'.format(self.display_name, self.name)]
 else:
 return self.parent.tree_path + [self.name]

 @property
 def tree_path_name_only(self):
 return self.parent.tree_path_name_only + [self.name]

[docs] def update(self, updates):
 view = navigate_to(self, 'Edit')
 changed = view.fill(updates)
 if changed:
 view.save_button.click()
 else:
 view.cancel_button.click()
 view = self.create_view(MethodDetailsView, override=updates)
 assert view.is_displayed
 view.flash.assert_no_error()
 if changed:
 view.flash.assert_message(
 'Automate Method "{}" was saved'.format(updates.get('name', self.name)))
 else:
 view.flash.assert_message(
 'Edit of Automate Method "{}" was cancelled by the user'.format(self.name))

[docs] def delete(self, cancel=False):
 details_page = navigate_to(self, 'Details')
 details_page.configuration.item_select('Remove this Method', handle_alert=not cancel)
 if cancel:
 assert details_page.is_displayed
 details_page.flash.assert_no_error()
 else:
 result_view = self.create_view(ClassDetailsView, self.parent)
 assert result_view.is_displayed
 result_view.flash.assert_no_error()
 result_view.flash.assert_message(
 'Automate Method "{}": Delete successful'.format(self.name))

 @property
 def exists(self):
 try:
 navigate_to(self, 'Details')
 return True
 except CandidateNotFound:
 return False

[docs] def delete_if_exists(self):
 if self.exists:
 self.delete()

@navigator.register(Method)
[docs]class Details(CFMENavigateStep):
 VIEW = MethodDetailsView
 prerequisite = NavigateToAttribute('domain', 'Details')

[docs] def step(self):
 self.prerequisite_view.datastore.tree.click_path(*self.obj.tree_path)

@navigator.register(Method)
[docs]class Edit(CFMENavigateStep):
 VIEW = MethodEditView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.configuration.item_select('Edit this Method')

@navigator.register(Method)
[docs]class Copy(CFMENavigateStep):
 VIEW = MethodCopyView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.configuration.item_select('Copy this Method')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/networks/cloud_network.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.networks.cloud_network

from navmazing import NavigateToSibling, NavigateToAttribute

from cfme.common import WidgetasticTaggable, TagPageView
from cfme.exceptions import ItemNotFound
from cfme.networks.views import CloudNetworkDetailsView, CloudNetworkView
from cfme.utils import providers, version
from cfme.utils.appliance import BaseCollection, BaseEntity
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to

[docs]class CloudNetworkCollection(BaseCollection):
 """Collection object for Cloud Network object"""
 def __init__(self, appliance, parent_provider=None):
 self.appliance = appliance
 self.parent = parent_provider

[docs] def instantiate(self, name):
 return CloudNetwork(collection=self, name=name)

[docs] def all(self):
 if self.parent:
 view = navigate_to(self.parent, 'CloudNetworks')
 else:
 view = navigate_to(self, 'All')
 list_networks_obj = view.entities.get_all(surf_pages=True)
 return [self.instantiate(name=n.name) for n in list_networks_obj]

[docs]class CloudNetwork(WidgetasticTaggable, BaseEntity):
 """Class representing cloud networks in cfme database"""
 in_version = ('5.8', version.LATEST)
 category = 'networks'
 page_name = 'cloud_network'
 string_name = 'CloudNetwork'
 quad_name = None
 db_types = ['CloudNetwork']

 def __init__(self, collection, name, provider=None):
 self.collection = collection
 self.appliance = self.collection.appliance
 self.name = name
 self.provider = provider

 @property
 def parent_provider(self):
 """ Return object of parent cloud provider """
 view = navigate_to(self, 'Details')
 provider_name = view.entities.relationships.get_text_of('Parent ems cloud')
 return providers.get_crud_by_name(provider_name)

 @property
 def network_type(self):
 """ Return type of network """
 view = navigate_to(self, 'Details')
 return view.entities.properties.get_text_of('Type')

 @property
 def network_provider(self):
 """ Returns network provider """
 from cfme.networks.provider import NetworkProviderCollection
 # cloud network collection contains reference to provider
 if self.collection.parent:
 return self.collection.parent
 # otherwise get provider name from ui
 view = navigate_to(self, 'Details')
 try:
 prov_name = view.entities.relationships.get_text_of("Network Manager")
 collection = NetworkProviderCollection(appliance=self.appliance)
 return collection.instantiate(name=prov_name)
 except ItemNotFound: # BZ 1480577
 return None

@navigator.register(CloudNetworkCollection, 'All')
[docs]class All(CFMENavigateStep):
 VIEW = CloudNetworkView
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self):
 self.prerequisite_view.navigation.select('Networks', 'Networks')

@navigator.register(CloudNetwork, 'Details')
[docs]class Details(CFMENavigateStep):
 prerequisite = NavigateToAttribute('collection', 'All')
 VIEW = CloudNetworkDetailsView

[docs] def step(self):
 self.prerequisite_view.entities.get_entity(by_name=self.obj.name).click()

@navigator.register(CloudNetwork, 'EditTagsFromDetails')
[docs]class EditTags(CFMENavigateStep):
 VIEW = TagPageView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.toolbar.policy.item_select('Edit Tags')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/automate/explorer/instance.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.automate »

 		cfme.automate.explorer »

 Source code for cfme.automate.explorer.instance

-*- coding: utf-8 -*-
import re

from cached_property import cached_property

from navmazing import NavigateToAttribute, NavigateToSibling
from widgetastic.utils import ParametrizedLocator, ParametrizedString
from widgetastic.widget import Text, ParametrizedView
from widgetastic_manageiq import Table
from widgetastic_patternfly import CandidateNotFound, Input, Button

from cfme.exceptions import ItemNotFound
from cfme.utils.appliance import BaseCollection, BaseEntity
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to

from . import AutomateExplorerView, check_tree_path
from .common import Copiable, CopyViewBase
from .klass import ClassDetailsView

[docs]class InstanceCopyView(AutomateExplorerView, CopyViewBase):
 @property
 def is_displayed(self):
 return (
 self.in_explorer and
 self.title.text == 'Copy Automate Instance' and
 self.datastore.is_opened and
 check_tree_path(
 self.datastore.tree.currently_selected,
 self.context['object'].tree_path))

[docs]class InstanceDetailsView(AutomateExplorerView):
 title = Text('#explorer_title_text')
 table = Table('#instance_fields_grid')

 @property
 def is_displayed(self):
 return (
 self.in_explorer and
 self.title.text.startswith('Automate Instance [{}'.format(
 self.context['object'].display_name or self.context['object'].name)) and
 self.datastore.is_opened and
 check_tree_path(
 self.datastore.tree.currently_selected,
 self.context['object'].tree_path))

[docs]class InstanceAddView(AutomateExplorerView):
 title = Text('#explorer_title_text')

 name = Input(name='cls_inst_name')
 display_name = Input(name='cls_inst_display_name')
 description = Input(name='cls_inst_description')

 @ParametrizedView.nested
 class fields(ParametrizedView): # noqa
 PARAMETERS = ('name',)
 ROOT = ParametrizedLocator('.//tr[./td[1][contains(normalize-space(.), "({name})")]]')
 ALL_FIELDS = './/table//tr/td[1]'

 @cached_property
 def row_id(self):
 attr = self.browser.get_attribute(
 'id',
 './td/input[starts-with(@id, "cls_inst_value_")]',
 parent=self)
 return int(attr.rsplit('_', 1)[-1])

 value = Input(name=ParametrizedString('cls_inst_value_{@row_id}'))
 on_entry = Input(name=ParametrizedString('cls_inst_on_entry_{@row_id}'))
 on_exit = Input(name=ParametrizedString('cls_inst_on_exit_{@row_id}'))
 on_error = Input(name=ParametrizedString('cls_inst_on_error_{@row_id}'))
 collect = Input(name=ParametrizedString('cls_inst_collect_{@row_id}'))

 @classmethod
 def all(cls, browser):
 results = []
 for e in browser.elements(cls.ALL_FIELDS):
 text = re.sub(r'^\(|\)$', '', browser.text(e))
 results.append((text,))
 return results

 add_button = Button('Add')
 cancel_button = Button('Cancel')

 @property
 def is_displayed(self):
 return (
 self.in_explorer and
 self.title.text == 'Datastore' and
 self.datastore.is_opened and
 self.title.text == 'Adding a new Automate Instance')

[docs]class InstanceEditView(AutomateExplorerView):
 title = Text('#explorer_title_text')

 name = Input(name='inst_name')
 display_name = Input(name='inst_display_name')
 description = Input(name='inst_description')

 @ParametrizedView.nested
 class fields(ParametrizedView): # noqa
 PARAMETERS = ('name',)
 ROOT = ParametrizedLocator('.//tr[./td[1][contains(normalize-space(.), "({name})")]]')
 ALL_FIELDS = './/table//tr/td[1]'

 @cached_property
 def row_id(self):
 attr = self.browser.get_attribute(
 'id',
 './td/input[starts-with(@id, "inst_value_")]',
 parent=self)
 return int(attr.rsplit('_', 1)[-1])

 value = Input(name=ParametrizedString('inst_value_{@row_id}'))
 on_entry = Input(name=ParametrizedString('inst_on_entry_{@row_id}'))
 on_exit = Input(name=ParametrizedString('inst_on_exit_{@row_id}'))
 on_error = Input(name=ParametrizedString('inst_on_error_{@row_id}'))
 collect = Input(name=ParametrizedString('inst_collect_{@row_id}'))

 @classmethod
 def all(cls, browser):
 results = []
 for e in browser.elements(cls.ALL_FIELDS):
 text = re.sub(r'^\(|\)$', '', browser.text(e))
 results.append((text,))
 return results

 save_button = Button('Save')
 cancel_button = Button('Cancel')

 @property
 def is_displayed(self):
 return (
 self.in_explorer and
 self.title.text == 'Editing Automate Instance "{}"'.format(self.obj.name))

[docs]class InstanceCollection(BaseCollection):
 def __init__(self, appliance, parent_class):
 self.parent = parent_class
 self.appliance = appliance

 @property
 def tree_path(self):
 return self.parent.tree_path

[docs] def instantiate(self, name=None, display_name=None, description=None, fields=None):
 return Instance(
 self,
 name=name,
 display_name=display_name,
 description=description,
 fields=fields)

[docs] def create(self, name=None, display_name=None, description=None, fields=None, cancel=False):
 add_page = navigate_to(self, 'Add')
 fill_dict = {
 k: v
 for k, v in {
 'name': name,
 'display_name': display_name,
 'description': description,
 'fields': fields,
 }.items()
 if v is not None}
 add_page.fill(fill_dict)
 if cancel:
 add_page.cancel_button.click()
 add_page.flash.assert_no_error()
 add_page.flash.assert_message('Add of new Automate Instance was cancelled by the user')
 return None
 else:
 add_page.add_button.click()
 add_page.flash.assert_no_error()
 add_page.flash.assert_message('Automate Instance "{}" was added'.format(name))
 return self.instantiate(
 name=name,
 display_name=display_name,
 description=description,
 fields=fields)

[docs] def delete(self, *instances):
 all_page = navigate_to(self.parent, 'Details')
 all_page.instances.select()
 instances = list(instances)
 parents = set()
 for instance in instances:
 parents.add(instance.parent)
 if len(parents) > 1:
 raise ValueError('You passed instances that are not under one class.')

 checked_instances = []
 if not all_page.instances.table.is_displayed:
 raise ValueError('No instance found!')
 all_page.instances.table.uncheck_all()
 for row in all_page.instances.table:
 name = row[2].text
 for instance in instances:
 if (
 (instance.display_name and instance.display_name == name) or
 instance.name == name):
 checked_instances.append(instance)
 row[0].check()
 break

 if set(instances) == set(checked_instances):
 break

 if set(instances) != set(checked_instances):
 raise ValueError('Some of the instances were not found in the UI.')

 all_page.configuration.item_select('Remove Instances', handle_alert=True)
 all_page.flash.assert_no_error()
 for instance in checked_instances:
 all_page.flash.assert_message(
 'Automate Instance "{}": Delete successful'.format(instance.name))

@navigator.register(InstanceCollection)
[docs]class Add(CFMENavigateStep):
 VIEW = InstanceAddView
 prerequisite = NavigateToAttribute('parent', 'Details')

[docs] def step(self):
 self.prerequisite_view.instances.select()
 self.prerequisite_view.configuration.item_select('Add a New Instance')

[docs]class Instance(BaseEntity, Copiable):
 def __init__(self, collection, name, display_name, description, fields):
 self.collection = collection
 self.appliance = self.collection.appliance
 self.name = name
 if display_name is not None:
 self.display_name = display_name
 if description is not None:
 self.description = description
 self.fields = fields

 @cached_property
 def display_name(self):
 return self.db_object.display_name

 @cached_property
 def description(self):
 return self.db_object.description

 @cached_property
 def db_id(self):
 table = self.appliance.db.client['miq_ae_instances']
 try:
 return self.appliance.db.client.session.query(table.id).filter(
 table.name == self.name,
 table.class_id == self.klass.db_id)[0] # noqa
 except IndexError:
 raise ItemNotFound('Instance named {} not found in the database'.format(self.name))

 @property
 def db_object(self):
 table = self.appliance.db.client['miq_ae_instances']
 return self.appliance.db.client.session.query(table).filter(table.id == self.db_id).first()

 @property
 def klass(self):
 return self.parent

 @property
 def namespace(self):
 return self.klass.namespace

 @property
 def parent(self):
 return self.collection.parent

 @property
 def domain(self):
 return self.parent.domain

 @property
 def tree_path(self):
 if self.display_name:
 return self.parent.tree_path + ['{} ({})'.format(self.display_name, self.name)]
 else:
 return self.parent.tree_path + [self.name]

 @property
 def tree_path_name_only(self):
 return self.parent.tree_path_name_only + [self.name]

[docs] def update(self, updates):
 view = navigate_to(self, 'Edit')
 changed = view.fill(updates)
 if changed:
 view.save_button.click()
 else:
 view.cancel_button.click()
 view = self.create_view(InstanceDetailsView, override=updates)
 assert view.is_displayed
 view.flash.assert_no_error()
 if changed:
 view.flash.assert_message(
 'Automate Instance "{}" was saved'.format(updates.get('name', self.name)))
 else:
 view.flash.assert_message(
 'Edit of Automate Instance "{}" was cancelled by the user'.format(self.name))

[docs] def delete(self, cancel=False):
 # Ensure this has correct data
 self.description
 # Do it!
 details_page = navigate_to(self, 'Details')
 details_page.configuration.item_select('Remove this Instance', handle_alert=not cancel)
 if cancel:
 assert details_page.is_displayed
 details_page.flash.assert_no_error()
 else:
 result_view = self.create_view(ClassDetailsView, self.parent)
 assert result_view.is_displayed
 result_view.flash.assert_no_error()
 result_view.flash.assert_message(
 'Automate Instance "{}": Delete successful'.format(self.description or self.name))

 @property
 def exists(self):
 try:
 navigate_to(self, 'Details')
 return True
 except CandidateNotFound:
 return False

[docs] def delete_if_exists(self):
 if self.exists:
 self.delete()

@navigator.register(Instance)
[docs]class Details(CFMENavigateStep):
 VIEW = InstanceDetailsView
 prerequisite = NavigateToAttribute('domain', 'Details')

[docs] def step(self):
 self.prerequisite_view.datastore.tree.click_path(*self.obj.tree_path)

@navigator.register(Instance)
[docs]class Edit(CFMENavigateStep):
 VIEW = InstanceEditView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.configuration.item_select('Edit this Instance')

@navigator.register(Instance)
[docs]class Copy(CFMENavigateStep):
 VIEW = InstanceCopyView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.configuration.item_select('Copy this Instance')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/networks/subnet.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.networks.subnet

from navmazing import NavigateToSibling, NavigateToAttribute

from cfme.common import WidgetasticTaggable, TagPageView
from cfme.exceptions import ItemNotFound
from cfme.networks.views import SubnetDetailsView, SubnetView
from cfme.utils import providers, version
from cfme.utils.appliance import BaseCollection, BaseEntity
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to

[docs]class SubnetCollection(BaseCollection):
 """ Collection object for Subnet object
 Note: Network providers object are not implemented in mgmt
 """
 def __init__(self, appliance, parent_provider=None):
 self.appliance = appliance
 self.parent = parent_provider

[docs] def instantiate(self, name):
 return Subnet(collection=self, name=name)

[docs] def all(self):
 if self.parent:
 view = navigate_to(self.parent, 'CloudSubnets')
 else:
 view = navigate_to(self, 'All')
 list_networks_obj = view.entities.get_all()
 return [self.instantiate(name=p.name) for p in list_networks_obj]

[docs]class Subnet(WidgetasticTaggable, BaseEntity):
 """Class representing subnets in sdn"""
 in_version = ('5.8', version.LATEST)
 category = 'networks'
 page_name = 'network_subnet'
 string_name = 'NetworkSubnet'
 quad_name = None
 db_types = ['NetworkSubnet']

 def __init__(self, collection, name, provider=None):
 self.collection = collection
 self.appliance = self.collection.appliance
 self.name = name
 self.provider = provider

 @property
 def parent_provider(self):
 """ Return object of parent cloud provider """
 view = navigate_to(self, 'Details')
 provider_name = view.entities.relationships.get_text_of('Parent ems cloud')
 return providers.get_crud_by_name(provider_name)

 @property
 def network_provider(self):
 """ Returns network provider """
 from cfme.networks.provider import NetworkProviderCollection
 # subnet collection contains reference to provider
 if self.collection.parent:
 return self.collection.parent
 # otherwise get provider name from ui
 view = navigate_to(self, 'Details')
 try:
 prov_name = view.entities.relationships.get_text_of("Network Manager")
 collection = NetworkProviderCollection(appliance=self.appliance)
 return collection.instantiate(name=prov_name)
 except ItemNotFound: # BZ 1480577
 return None

 @property
 def zone(self):
 view = navigate_to(self, 'Details')
 return view.entities.relationships.get_text_of('Zone')

@navigator.register(SubnetCollection, 'All')
[docs]class All(CFMENavigateStep):
 VIEW = SubnetView
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self):
 self.prerequisite_view.navigation.select('Networks', 'Subnets')

@navigator.register(Subnet, 'Details')
[docs]class OpenCloudNetworks(CFMENavigateStep):
 VIEW = SubnetDetailsView
 prerequisite = NavigateToAttribute('collection', 'All')

[docs] def step(self):
 self.prerequisite_view.entities.get_entity(by_name=self.obj.name).click()

@navigator.register(Subnet, 'EditTagsFromDetails')
[docs]class EditTags(CFMENavigateStep):
 prerequisite = NavigateToSibling('Details')
 VIEW = TagPageView

[docs] def step(self):
 self.prerequisite_view.toolbar.policy.item_select('Edit Tags')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/datafile.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.datafile

"""datafile functions, to help reliably datafiles from the data directory."""
import os
from string import Template
from tempfile import NamedTemporaryFile

from jinja2 import Environment, FileSystemLoader

from cfme.utils.path import template_path

[docs]def load_data_file(filename, replacements=None):
 """Opens the given filename, returning a file object

 Args:
 filename: If a base_path string is passed, filename will be loaded from there
 replacements: If a replacements mapping is passed, the loaded file is assumed to
 be a `template <http://docs.python.org/2/library/string.html#template-strings>`_.
 In this case the replacements mapping will be used in that template's subsitute method.
 Returns: A file object.
 """
 if replacements is None:
 return open(filename)
 else:
 with open(filename) as template_file:
 template = Template(template_file.read())

 output = template.substitute(replacements)

 outfile = NamedTemporaryFile()
 outfile.write(output)
 outfile.flush()
 outfile.seek(0)
 return outfile

[docs]def data_path_for_filename(filename, base_path, testmod_path=None):
 """ Returns the data path for a given file name"""
 if testmod_path:
 # remove the base path from testmod path
 test_path_fragment = testmod_path[len(base_path):]

 # remove the .py extension
 test_path_fragment = test_path_fragment.rsplit('.py', 1)[0]

 # remove the tests dir (really just the first occurance of 'tests')
 test_path_fragment = test_path_fragment.replace('tests', '', 1)

 # clean up any extraneous slashes or spaces
 test_path_fragment = test_path_fragment.strip('/ ').replace('//', '/')

 # put it all back together, getting the absolute fs path to filename
 # in the data dir related to testmod_path
 new_path = os.path.join(base_path, 'data', test_path_fragment, filename)
 else:
 # No testmod_path? Well that's a lot easier!
 # Just join it with the data root, minus its leading slash
 new_path = os.path.join(base_path, 'data', filename)

 return new_path

template_env = Environment(
 loader=FileSystemLoader(template_path.strpath)
)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/networks/views.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.networks.views

from widgetastic_manageiq import (ManageIQTree, SummaryTable, ItemsToolBarViewSelector,
 BaseEntitiesView)
from widgetastic_patternfly import Dropdown, Accordion, FlashMessages, Button
from widgetastic.widget import View, Text

from cfme.base.login import BaseLoggedInPage

[docs]class NetworkProviderToolBar(View):
 """ Represents provider toolbar and its controls """
 configuration = Dropdown(text='Configuration')
 policy = Dropdown(text='Policy')
 download = Dropdown(text='Download')
 view_selector = View.nested(ItemsToolBarViewSelector)

[docs]class NetworkProviderDetailsToolBar(NetworkProviderToolBar):
 """ Represents provider details toolbar """
 monitoring = Dropdown(text='Monitoring')
 download = Button(title='Download summary in PDF format')

[docs]class NetworkProviderSideBar(View):
 """ Represents left side bar, usually contains navigation, filters, etc """
 pass

[docs]class NetworkProviderDetailsSideBar(View):
 """ Represents left side bar of network providers details """
 @View.nested
 class properties(Accordion): # noqa
 ACCORDION_NAME = "Properties"
 tree = ManageIQTree()

 @View.nested
 class relationships(Accordion): # noqa
 ACCORDION_NAME = "Relationships"
 tree = ManageIQTree()

[docs]class NetworkProviderEntities(BaseEntitiesView):
 """ Represents central view where all QuadIcons, etc are displayed """
 pass

[docs]class NetworkProviderView(BaseLoggedInPage):
 """ Represents whole All NetworkProviders page """
 flash = FlashMessages('.//div[@div="flash_msg_div"]/div[@id="flash_text_div" or '
 'contains(@class, "flash_text_div")]')
 toolbar = View.nested(NetworkProviderToolBar)
 sidebar = View.nested(NetworkProviderSideBar)
 including_entities = View.include(NetworkProviderEntities, use_parent=True)

 @property
 def is_displayed(self):
 return (super(BaseLoggedInPage, self).is_displayed and
 self.navigation.currently_selected == ['Networks', 'Providers'] and
 self.entities.title.text == 'Network Managers')

[docs]class NetworkProviderDetailsView(BaseLoggedInPage):
 """ Represents detail view of network provider """
 title = Text('//div[@id="main-content"]//h1')
 flash = FlashMessages('.//div[@id="flash_msg_div"]/div[@id="flash_text_div" or '
 'contains(@class, "flash_text_div")]')
 toolbar = View.nested(NetworkProviderDetailsToolBar)
 sidebar = View.nested(NetworkProviderDetailsSideBar)

 @View.nested
 class entities(View): # noqa
 """ Represents details page when it's switched to Summary/Table view """
 properties = SummaryTable(title="Properties")
 relationships = SummaryTable(title="Relationships")
 status = SummaryTable(title="Status")
 overview = SummaryTable(title="Overview")
 smart_management = SummaryTable(title="Smart Management")

 @property
 def is_displayed(self):
 return (super(BaseLoggedInPage, self).is_displayed and
 self.navigation.currently_selected == ['Networks', 'Providers'] and
 self.title.text == '{name} (Summary)'.format(name=self.context['object'].name))

[docs]class BalancerToolBar(View):
 """ Represents balancers toolbar and its controls """
 policy = Dropdown(text='Policy')
 download = Dropdown(text='Download')
 view_selector = View.nested(ItemsToolBarViewSelector)

[docs]class BalancerDetailsToolBar(BalancerToolBar):
 """ Represents details toolbar of balancer summary """
 download = Button(title='Download summary in PDF format')

[docs]class BalancerSideBar(View):
 """ Represents left side bar, usually contains navigation, filters, etc """
 pass

[docs]class BalancerDetailsSideBar(View):
 """ Represents left side bar of balancer details """
 @View.nested
 class properties(Accordion): # noqa
 ACCORDION_NAME = "Properties"
 tree = ManageIQTree()

 @View.nested
 class relationships(Accordion): # noqa
 ACCORDION_NAME = "Relationships"
 tree = ManageIQTree()

[docs]class BalancerEntities(BaseEntitiesView):
 """ Represents central view where all QuadIcons, etc are displayed """
 pass

[docs]class BalancerView(BaseLoggedInPage):
 """ Represents whole All NetworkProviders page """
 flash = FlashMessages('.//div[@div="flash_msg_div"]/div[@id="flash_text_div" or '
 'contains(@class, "flash_text_div")]')
 toolbar = View.nested(BalancerToolBar)
 sidebar = View.nested(BalancerSideBar)
 including_entities = View.include(NetworkProviderEntities, use_parent=True)

 @property
 def is_displayed(self):
 return (super(BaseLoggedInPage, self).is_displayed and
 self.navigation.currently_selected == ['Networks', 'Load Balancers'] and
 self.entities.title.text == 'Load Balancers')

[docs]class BalancerDetailsView(BaseLoggedInPage):
 """ Represents detail view of network provider """
 title = Text('//div[@id="main-content"]//h1')
 flash = FlashMessages('.//div[@id="flash_msg_div"]/div[@id="flash_text_div" or '
 'contains(@class, "flash_text_div")]')
 toolbar = View.nested(BalancerDetailsToolBar)
 sidebar = View.nested(BalancerDetailsSideBar)

 @View.nested
 class entities(View): # noqa
 """ Represents details page when it's switched to Summary/Table view """
 properties = SummaryTable(title="Properties")
 relationships = SummaryTable(title="Relationships")
 smart_management = SummaryTable(title="Smart Management")

 @property
 def is_displayed(self):
 return (super(BaseLoggedInPage, self).is_displayed and
 self.navigation.currently_selected == ['Networks', 'Load Balancers'] and
 self.title.text == '{name} (Summary)'.format(name=self.context['object'].name))

[docs]class CloudNetworkToolBar(View):
 """ Represents cloud networks toolbar and its controls """
 configuration = Dropdown(text='Configuration')
 policy = Dropdown(text='Policy')
 download = Dropdown(text='Download')
 view_selector = View.nested(ItemsToolBarViewSelector)

[docs]class CloudNetworkDetailsToolBar(View):
 """ Represents provider details toolbar """
 policy = Dropdown(text='Policy')
 download = Button(title='Download summary in PDF format')

[docs]class CloudNetworkSideBar(View):
 """ Represents left side bar, usually contains navigation, filters, etc """
 pass

[docs]class CloudNetworkDetailsSideBar(View):
 """ Represents left side bar of network providers details """
 @View.nested
 class properties(Accordion): # noqa
 ACCORDION_NAME = "Properties"
 tree = ManageIQTree()

 @View.nested
 class relationships(Accordion): # noqa
 ACCORDION_NAME = "Relationships"
 tree = ManageIQTree()

[docs]class CloudNetworkEntities(BaseEntitiesView):
 """ Represents central view where all QuadIcons, etc are displayed """
 pass

[docs]class CloudNetworkView(BaseLoggedInPage):
 """ Represents whole All Cloud network page """
 flash = FlashMessages('.//div[@div="flash_msg_div"]/div[@id="flash_text_div" or '
 'contains(@class, "flash_text_div")]')
 toolbar = View.nested(CloudNetworkToolBar)
 sidebar = View.nested(CloudNetworkSideBar)
 including_entities = View.include(NetworkProviderEntities, use_parent=True)

 @property
 def is_displayed(self):
 return (super(BaseLoggedInPage, self).is_displayed and
 self.navigation.currently_selected == ['Networks', 'Networks'] and
 self.entities.title.text == 'Cloud Networks')

[docs]class CloudNetworkDetailsView(BaseLoggedInPage):
 """ Represents detail view of cloud network """
 title = Text('//div[@id="main-content"]//h1')
 flash = FlashMessages('.//div[@id="flash_msg_div"]/div[@id="flash_text_div" or '
 'contains(@class, "flash_text_div")]')
 toolbar = View.nested(NetworkProviderDetailsToolBar)
 sidebar = View.nested(NetworkProviderDetailsSideBar)

 @View.nested
 class entities(View): # noqa
 """ Represents details page when it's switched to Summary/Table view """
 properties = SummaryTable(title="Properties")
 relationships = SummaryTable(title="Relationships")
 smart_management = SummaryTable(title="Smart Management")

 @property
 def is_displayed(self):
 return (super(BaseLoggedInPage, self).is_displayed and
 self.navigation.currently_selected == ['Networks', 'Networks'] and
 self.title.text == '{name} (Summary)'.format(name=self.context['object'].name))

[docs]class NetworkPortToolBar(View):
 """ Represents provider toolbar and its controls """
 policy = Dropdown(text='Policy')
 download = Dropdown(text='Download')
 view_selector = View.nested(ItemsToolBarViewSelector)

[docs]class NetworkPortDetailsToolBar(View):
 """ Represents toolbar of summary of port """
 policy = Dropdown(text='Policy')
 download = Button(title='Download summary in PDF format')

[docs]class NetworkPortSideBar(View):
 """ Represents left side bar, usually contains navigation, filters, etc """
 pass

[docs]class NetworkPortDetailsSideBar(View):
 """ Represents left side bar of network providers details """
 @View.nested
 class properties(Accordion): # noqa
 ACCORDION_NAME = "Properties"
 tree = ManageIQTree()

 @View.nested
 class relationships(Accordion): # noqa
 ACCORDION_NAME = "Relationships"
 tree = ManageIQTree()

[docs]class NetworkPortEntities(BaseEntitiesView):
 """ Represents central view where all QuadIcons, etc are displayed """
 pass

[docs]class NetworkPortView(BaseLoggedInPage):
 """ Represents whole All NetworkPorts page """
 flash = FlashMessages('.//div[@div="flash_msg_div"]/div[@id="flash_text_div" or '
 'contains(@class, "flash_text_div")]')
 toolbar = View.nested(NetworkPortToolBar)
 sidebar = View.nested(NetworkPortSideBar)
 including_entities = View.include(NetworkPortEntities, use_parent=True)

 @property
 def is_displayed(self):
 return (super(BaseLoggedInPage, self).is_displayed and
 self.navigation.currently_selected == ['Networks', 'Network Ports'] and
 self.entities.title.text == 'Network Ports')

[docs]class NetworkPortDetailsView(BaseLoggedInPage):
 """ Represents detail view of network provider """
 title = Text('//div[@id="main-content"]//h1')
 flash = FlashMessages('.//div[@id="flash_msg_div"]/div[@id="flash_text_div" or '
 'contains(@class, "flash_text_div")]')
 toolbar = View.nested(NetworkPortDetailsToolBar)
 sidebar = View.nested(NetworkPortDetailsSideBar)

 @View.nested
 class entities(View): # noqa
 """ Represents details page when it's switched to Summary/Table view """
 properties = SummaryTable(title="Properties")
 relationships = SummaryTable(title="Relationships")
 smart_management = SummaryTable(title="Smart Management")

 @property
 def is_displayed(self):
 return (super(BaseLoggedInPage, self).is_displayed and
 self.navigation.currently_selected == ['Networks', 'Network Ports'] and
 self.title.text == '{name} (Summary)'.format(name=self.context['object'].name))

[docs]class NetworkRouterToolBar(View):
 """ Represents provider toolbar and its controls """
 configuration = Dropdown(text='Configuration')
 policy = Dropdown(text='Policy')
 download = Dropdown(text='Download')
 view_selector = View.nested(ItemsToolBarViewSelector)

[docs]class NetworkRouterDetailsToolBar(View):
 """ Represents provider toolbar and its controls """
 policy = Dropdown(text='Policy')
 download = Button(title='Download')

[docs]class NetworkRouterSideBar(View):
 """ Represents left side bar, usually contains navigation, filters, etc """
 pass

[docs]class NetworkRouterDetailsSideBar(View):
 """ Represents left side bar of network providers details """
 @View.nested
 class properties(Accordion): # noqa
 ACCORDION_NAME = "Properties"
 tree = ManageIQTree()

 @View.nested
 class relationships(Accordion): # noqa
 ACCORDION_NAME = "Relationships"
 tree = ManageIQTree()

[docs]class NetworkRouterEntities(BaseEntitiesView):
 """ Represents central view where all QuadIcons, etc are displayed """
 pass

[docs]class NetworkRouterView(BaseLoggedInPage):
 """ Represents whole All NetworkRouters page """
 flash = FlashMessages('.//div[@div="flash_msg_div"]/div[@id="flash_text_div" or '
 'contains(@class, "flash_text_div")]')
 toolbar = View.nested(NetworkRouterToolBar)
 sidebar = View.nested(NetworkRouterSideBar)
 including_entities = View.include(NetworkRouterEntities, use_parent=True)

 @property
 def is_displayed(self):
 return (super(BaseLoggedInPage, self).is_displayed and
 self.navigation.currently_selected == ['Networks', 'Network Routers'] and
 self.entities.title.text == 'Network Routers')

[docs]class NetworkRouterDetailsView(BaseLoggedInPage):
 """ Represents detail view of network provider """
 title = Text('//div[@id="main-content"]//h1')
 flash = FlashMessages('.//div[@id="flash_msg_div"]/div[@id="flash_text_div" or '
 'contains(@class, "flash_text_div")]')
 toolbar = View.nested(NetworkRouterDetailsToolBar)
 sidebar = View.nested(NetworkRouterDetailsSideBar)

 @View.nested
 class entities(View): # noqa
 """ Represents details page when it's switched to Summary/Table view """
 properties = SummaryTable(title="Properties")
 relationships = SummaryTable(title="Relationships")
 smart_management = SummaryTable(title="Smart Management")

 @property
 def is_displayed(self):
 return (super(BaseLoggedInPage, self).is_displayed and
 self.navigation.currently_selected == ['Networks', 'Providers'] and
 self.title.text == '{name} (Summary)'.format(name=self.context['object'].name))

[docs]class SecurityGroupToolBar(View):
 """ Represents provider toolbar and its controls """
 configuration = Dropdown(text='Configuration')
 policy = Dropdown(text='Policy')
 download = Dropdown(text='Download')
 view_selector = View.nested(ItemsToolBarViewSelector)

[docs]class SecurityGroupDetailsToolBar(View):
 """ Represents provider details toolbar """
 policy = Dropdown(text='Policy')
 download = Button(title='Download summary in PDF format')
 view_selector = View.nested(ItemsToolBarViewSelector)

[docs]class SecurityGroupSideBar(View):
 """ Represents left side bar, usually contains navigation, filters, etc """
 pass

[docs]class SecurityGroupDetailsSideBar(View):
 """ Represents left side bar of network providers details """
 @View.nested
 class properties(Accordion): # noqa
 ACCORDION_NAME = "Properties"
 tree = ManageIQTree()

 @View.nested
 class relationships(Accordion): # noqa
 ACCORDION_NAME = "Relationships"
 tree = ManageIQTree()

[docs]class SecurityGroupEntities(BaseEntitiesView):
 """ Represents central view where all QuadIcons, etc are displayed """
 pass

[docs]class SecurityGroupView(BaseLoggedInPage):
 """ Represents whole All SecurityGroups page """
 flash = FlashMessages('.//div[@div="flash_msg_div"]/div[@id="flash_text_div" or '
 'contains(@class, "flash_text_div")]')
 toolbar = View.nested(SecurityGroupToolBar)
 sidebar = View.nested(SecurityGroupSideBar)
 including_entities = View.include(SecurityGroupEntities, use_parent=True)

 @property
 def is_displayed(self):
 return (super(BaseLoggedInPage, self).is_displayed and
 self.navigation.currently_selected == ['Networks', 'Security Groups'] and
 self.entities.title.text == 'Security Groups')

[docs]class SecurityGroupDetailsView(BaseLoggedInPage):
 """ Represents detail view of network provider """
 title = Text('//div[@id="main-content"]//h1')
 flash = FlashMessages('.//div[@id="flash_msg_div"]/div[@id="flash_text_div" or '
 'contains(@class, "flash_text_div")]')
 toolbar = View.nested(SecurityGroupDetailsToolBar)
 sidebar = View.nested(SecurityGroupDetailsSideBar)

 @View.nested
 class entities(View): # noqa
 """ Represents details page when it's switched to Summary/Table view """
 properties = SummaryTable(title="Properties")
 relationships = SummaryTable(title="Relationships")
 smart_management = SummaryTable(title="Smart Management")

 @property
 def is_displayed(self):
 return (super(BaseLoggedInPage, self).is_displayed and
 self.navigation.currently_selected == ['Networks', 'Providers'] and
 self.title.text == '{name} (Summary)'.format(name=self.context['object'].name))

[docs]class SubnetToolBar(View):
 """ Represents provider toolbar and its controls """
 configuration = Dropdown(text='Configuration')
 policy = Dropdown(text='Policy')
 download = Dropdown(text='Download')
 view_selector = View.nested(ItemsToolBarViewSelector)

[docs]class SubnetDetailsToolBar(View):
 """ Represents provider details toolbar """
 policy = Dropdown(text='Policy')
 download = Button(title='Download summary in PDF format')

[docs]class SubnetSideBar(View):
 """ Represents left side bar, usually contains navigation, filters, etc """
 pass

[docs]class SubnetDetailsSideBar(View):
 """ Represents left side bar of network providers details """
 @View.nested
 class properties(Accordion): # noqa
 ACCORDION_NAME = "Properties"
 tree = ManageIQTree()

 @View.nested
 class relationships(Accordion): # noqa
 ACCORDION_NAME = "Relationships"
 tree = ManageIQTree()

[docs]class SubnetEntities(BaseEntitiesView):
 """ Represents central view where all QuadIcons, etc are displayed """
 pass

[docs]class SubnetView(BaseLoggedInPage):
 """ Represents whole All Subnets page """
 flash = FlashMessages('.//div[@div="flash_msg_div"]/div[@id="flash_text_div" or '
 'contains(@class, "flash_text_div")]')
 toolbar = View.nested(SubnetToolBar)
 sidebar = View.nested(SubnetSideBar)
 including_entities = View.include(SubnetEntities, use_parent=True)

 @property
 def is_displayed(self):
 return (super(BaseLoggedInPage, self).is_displayed and
 self.navigation.currently_selected == ['Networks', 'Subnets'] and
 self.entities.title.text == 'Cloud Subnets')

[docs]class SubnetDetailsView(BaseLoggedInPage):
 """ Represents detail view of network provider """
 title = Text('//div[@id="main-content"]//h1')
 flash = FlashMessages('.//div[@id="flash_msg_div"]/div[@id="flash_text_div" or '
 'contains(@class, "flash_text_div")]')
 toolbar = View.nested(SubnetDetailsToolBar)
 sidebar = View.nested(SubnetDetailsSideBar)

 @View.nested
 class entities(View): # noqa
 """ Represents details page when it's switched to Summary/Table view """
 properties = SummaryTable(title="Properties")
 relationships = SummaryTable(title="Relationships")
 smart_management = SummaryTable(title="Smart Management")

 @property
 def is_displayed(self):
 return (super(BaseLoggedInPage, self).is_displayed and
 self.navigation.currently_selected == ['Networks', 'Subnets'] and
 self.title.text == '{name} (Summary)'.format(name=self.context['object'].name))

[docs]class OneProviderComponentsToolbar(View):
 policy = Dropdown(text='Policy')
 download = Dropdown(text='Download')
 back = Button(name='show_summary')
 view_selector = View.nested(ItemsToolBarViewSelector)

[docs]class OneProviderSubnetView(BaseLoggedInPage):
 """ Represents whole All Subnets page """
 flash = FlashMessages('.//div[@div="flash_msg_div"]/div[@id="flash_text_div" or '
 'contains(@class, "flash_text_div")]')
 toolbar = View.nested(OneProviderComponentsToolbar)
 sidebar = View.nested(SubnetSideBar)
 including_entities = View.include(SubnetEntities, use_parent=True)

 @property
 def is_displayed(self):
 title = '{name} (All Cloud Subnets)'.format(name=self.context['object'].name)
 return (super(BaseLoggedInPage, self).is_displayed and
 self.navigation.currently_selected == ['Networks', 'Providers'] and
 self.title.text == title)

[docs]class OneProviderBalancerView(BaseLoggedInPage):
 """ Represents whole All Subnets page """
 flash = FlashMessages('.//div[@div="flash_msg_div"]/div[@id="flash_text_div" or '
 'contains(@class, "flash_text_div")]')
 toolbar = View.nested(OneProviderComponentsToolbar)
 sidebar = View.nested(BalancerSideBar)
 including_entities = View.include(BalancerEntities, use_parent=True)

 @property
 def is_displayed(self):
 title = '{name} (All Balancers)'.format(name=self.context['object'].name)
 return (super(BaseLoggedInPage, self).is_displayed and
 self.navigation.currently_selected == ['Networks', 'Providers'] and
 self.title.text == title)

[docs]class OneProviderNetworkPortView(BaseLoggedInPage):
 """ Represents whole All Subnets page """
 flash = FlashMessages('.//div[@div="flash_msg_div"]/div[@id="flash_text_div" or '
 'contains(@class, "flash_text_div")]')
 toolbar = View.nested(OneProviderComponentsToolbar)
 sidebar = View.nested(NetworkPortSideBar)
 including_entities = View.include(NetworkPortEntities, use_parent=True)

 @property
 def is_displayed(self):
 title = '{name} (All Network Ports)'.format(name=self.context['object'].name)
 return (super(BaseLoggedInPage, self).is_displayed and
 self.navigation.currently_selected == ['Networks', 'Providers'] and
 self.title.text == title)

[docs]class OneProviderCloudNetworkView(BaseLoggedInPage):
 """ Represents whole All Subnets page """
 flash = FlashMessages('.//div[@div="flash_msg_div"]/div[@id="flash_text_div" or '
 'contains(@class, "flash_text_div")]')
 toolbar = View.nested(OneProviderComponentsToolbar)
 sidebar = View.nested(CloudNetworkSideBar)
 including_entities = View.include(CloudNetworkEntities, use_parent=True)

 @property
 def is_displayed(self):
 title = '{name} (All Cloud Networks)'.format(name=self.context['object'].name)
 return (super(BaseLoggedInPage, self).is_displayed and
 self.navigation.currently_selected == ['Networks', 'Providers'] and
 self.title.text == title)

[docs]class OneProviderNetworkRouterView(BaseLoggedInPage):
 """ Represents whole All Subnets page """
 flash = FlashMessages('.//div[@div="flash_msg_div"]/div[@id="flash_text_div" or '
 'contains(@class, "flash_text_div")]')
 toolbar = View.nested(OneProviderComponentsToolbar)
 sidebar = View.nested(NetworkRouterSideBar)
 including_entities = View.include(NetworkRouterEntities, use_parent=True)

 @property
 def is_displayed(self):
 title = '{name} (All Network Routers)'.format(name=self.context['object'].name)
 return (super(BaseLoggedInPage, self).is_displayed and
 self.navigation.currently_selected == ['Networks', 'Providers'] and
 self.title.text == title)

[docs]class OneProviderSecurityGroupView(BaseLoggedInPage):
 """ Represents whole All Subnets page """
 flash = FlashMessages('.//div[@div="flash_msg_div"]/div[@id="flash_text_div" or '
 'contains(@class, "flash_text_div")]')
 toolbar = View.nested(OneProviderComponentsToolbar)
 sidebar = View.nested(SecurityGroupSideBar)
 including_entities = View.include(SecurityGroupEntities, use_parent=True)

 @property
 def is_displayed(self):
 title = '{name} (All Security Groups)'.format(name=self.context['object'].name)
 return (super(BaseLoggedInPage, self).is_displayed and
 self.navigation.currently_selected == ['Networks', 'Providers'] and
 self.title.text == title)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/automate/explorer/common.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.automate »

 		cfme.automate.explorer »

 Source code for cfme.automate.explorer.common

-*- coding: utf-8 -*-
from widgetastic.widget import Text, Checkbox, View
from widgetastic.utils import Fillable
from widgetastic_manageiq import Input
from widgetastic_patternfly import BootstrapSelect, Button

from cfme.utils.appliance.implementations.ui import navigate_to

[docs]class CopyViewBase(View):
 title = Text('#explorer_title_text')
 to_domain_select = BootstrapSelect('domain')
 to_domain_text = Text('.//div[./label[normalize-space(.)="To Domain"]]/div/p[not(.//button)]')
 new_name = Input(name='new_name')
 override_source = Checkbox(name='override_source')
 override_existing = Checkbox(name='override_existing')
 namespace = Input(name='namespace')

 copy_button = Button('Copy')
 reset_button = Button('Reset')
 cancel_button = Button('Cancel')

[docs]class Copiable(object):
 # TODO: Namespace!
[docs] def copy_to(self, domain, new_name=None, replace=None, cancel=False):
 copy_page = navigate_to(self, 'Copy')
 fill_values = {'override_existing': replace, 'new_name': new_name}
 if domain is not None:
 d = Fillable.coerce(domain)
 if copy_page.to_domain_text.is_displayed:
 if copy_page.to_domain_text.text != d:
 raise ValueError(
 'Wanted to select {} but the only domain possible is {}'.format(
 copy_page.to_domain_text.text, d))
 else:
 fill_values['to_domain_select'] = d

 copy_page.fill(fill_values)
 if not cancel:
 copy_page.copy_button.click()
 # Attention! Now we should be on a different page but the flash message is the same!
 copy_page.flash.assert_no_error()
 copy_page.flash.assert_message(
 'Copy selected Automate {} was saved'.format(type(self).__name__))
 else:
 copy_page.cancel_button.click()
 # Attention! Now we should be on a different page but the flash message is the same!
 copy_page.flash.assert_no_error()
 copy_page.flash.assert_message(
 'Copy Automate {} was cancelled by the user'.format(type(self).__name__))

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/networks/network_router.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.networks.network_router

from navmazing import NavigateToSibling, NavigateToAttribute

from cfme.common import WidgetasticTaggable, TagPageView
from cfme.exceptions import ItemNotFound
from cfme.networks.views import NetworkRouterDetailsView, NetworkRouterView
from cfme.utils import version
from cfme.utils.appliance import BaseCollection, BaseEntity
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to

[docs]class NetworkRouterCollection(BaseCollection):
 """ Collection object for NetworkRouter object
 Note: Network providers object are not implemented in mgmt
 """
 def __init__(self, appliance, parent_provider=None):
 self.appliance = appliance
 self.parent = parent_provider

[docs] def instantiate(self, name):
 return NetworkRouter(collection=self, name=name)

[docs] def all(self):
 if self.parent:
 view = navigate_to(self.parent, 'NetworkRouters')
 else:
 view = navigate_to(self, 'All')
 list_networks_obj = view.entities.get_all(surf_pages=True)
 return [self.instantiate(name=r.name) for r in list_networks_obj]

[docs]class NetworkRouter(WidgetasticTaggable, BaseEntity):
 """ Class representing network ports in sdn"""
 in_version = ('5.8', version.LATEST)
 category = 'networks'
 page_name = 'NetworkRouter'
 string_name = 'NetworkRouter'
 quad_name = None
 db_types = ['NetworkRouter']

 def __init__(self, collection, name, provider=None):
 self.collection = collection
 self.appliance = self.collection.appliance
 self.name = name
 self.provider = provider

 @property
 def network_provider(self):
 """ Returns network provider """
 from cfme.networks.provider import NetworkProviderCollection
 # router collection contains reference to provider
 if self.collection.parent:
 return self.collection.parent
 # otherwise get provider name from ui
 view = navigate_to(self, 'Details')
 try:
 prov_name = view.entities.relationships.get_text_of("Network Manager")
 collection = NetworkProviderCollection(appliance=self.appliance)
 return collection.instantiate(name=prov_name)
 except ItemNotFound: # BZ 1480577
 return None

@navigator.register(NetworkRouterCollection, 'All')
[docs]class All(CFMENavigateStep):
 VIEW = NetworkRouterView
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self):
 self.prerequisite_view.navigation.select('Networks', 'Network Routers')

@navigator.register(NetworkRouter, 'Details')
[docs]class Details(CFMENavigateStep):
 prerequisite = NavigateToAttribute('collection', 'All')
 VIEW = NetworkRouterDetailsView

[docs] def step(self):
 self.prerequisite_view.entities.get_entity(by_name=self.obj.name).click()

@navigator.register(NetworkRouter, 'EditTagsFromDetails')
[docs]class EditTags(CFMENavigateStep):
 VIEW = TagPageView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.toolbar.policy.item_select('Edit Tags')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/version.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.version

-*- coding: utf-8 -*-
import re
from cached_property import cached_property
from collections import namedtuple
from datetime import date, datetime
from six import string_types

import multimethods as mm

from fixtures.pytest_store import store

[docs]def get_product_version(ver):
 """Return product version for given Version obj or version string
 """
 ver = Version(ver)
 if ver.product_version() is not None:
 return ver.product_version()
 else:
 raise LookupError("no matching product version found for version {}".format(ver))

[docs]def get_stream(ver):
 """Return a stream name for given Version obj or version string
 """
 ver = Version(ver)
 if ver.stream() is not None:
 return ver.stream()
 else:
 raise LookupError("no matching stream found for version {}".format(ver))

[docs]def current_stream():
 return get_stream(store.current_appliance.version)

[docs]def get_version(obj=None):
 """
 Return a Version based on obj. For CFME, 'master' version
 means always the latest (compares as greater than any other version)

 If obj is None, the version will be retrieved from the current appliance

 """
 if isinstance(obj, Version):
 return obj
 if not isinstance(obj, string_types):
 obj = str(obj)
 if obj.startswith('master'):
 return Version.latest()
 return Version(obj)

[docs]def current_version():
 """A lazy cached method to return the appliance version.

 Do not catch errors, since generally we cannot proceed with
 testing, without knowing the server version.

 """
 return store.current_appliance.version

[docs]def appliance_build_datetime():
 try:
 return store.current_appliance.build_datetime
 except:
 return None

[docs]def appliance_build_date():
 try:
 return store.current_appliance.build_date
 except:
 return None

[docs]def appliance_is_downstream():
 return store.current_appliance.is_downstream

[docs]def parsedate(o):
 if isinstance(o, date):
 return o
 elif isinstance(o, datetime):
 return o.date()
 else:
 # 1234-12-13
 return date(*[int(x) for x in str(o).split("-", 2)])

[docs]def before_date_or_version(date=None, version=None):
 """Function for deciding based on the build date and version.

 Usage:

 * If both date and version are set, then two things can happen. If the appliance is
 downstream, both date and version are checked, otherwise only the date.
 * If only date is set, then only date is checked.
 * if only version is set, then it checks the version if the appliance is downstream,
 otherwise it returns ``False``

 The checks are in form ``appliance_build_date() < date`` and ``current_version() < version``.
 Therefore when used in ``if`` statement, the truthy value signalizes 'older' version and falsy
 signalizes 'newer' version.
 """
 if date is not None:
 date = parsedate(date)
 if date is not None and version is not None:
 if not appliance_is_downstream():
 return appliance_build_date() < date
 else:
 return appliance_build_date() < date and current_version() < version
 elif date is not None and version is None:
 return appliance_build_date() < date
 elif date is None and version is not None:
 if not appliance_is_downstream():
 return False
 return current_version() < version
 else:
 raise TypeError("You have to pass either date or version, or both!")

[docs]def since_date_or_version(*args, **kwargs):
 """Opposite of :py:func:`before_date_or_version`"""
 return not before_date_or_version(*args, **kwargs)

[docs]def appliance_has_netapp():
 try:
 return store.current_appliance.has_netapp()
 except:
 return None

[docs]def product_version_dispatch(*_args, **_kwargs):
 """Dispatch function for use in multimethods that just ignores
 arguments and dispatches on the current product version."""
 return current_version()

[docs]def dependent(default_function):
 m = mm.MultiMethod(default_function.__name__, product_version_dispatch)
 m.add_method(mm.Default, default_function)
 mm._copy_attrs(default_function, m)
 return m

[docs]def pick(v_dict):
 """
 Collapses an ambiguous series of objects bound to specific versions
 by interrogating the CFME Version and returning the correct item.
 """
 # convert keys to Versions
 v_dict = {get_version(k): v for (k, v) in v_dict.items()}
 versions = v_dict.keys()
 sorted_matching_versions = sorted(filter(lambda v: v <= current_version(), versions),
 reverse=True)
 return v_dict.get(sorted_matching_versions[0]) if sorted_matching_versions else None

[docs]class Version(object):
 """Version class based on distutil.version.LooseVersion"""
 SUFFIXES = ('nightly', 'pre', 'alpha', 'beta', 'rc')
 SUFFIXES_STR = "|".join(r'-{}(?:\d+(?:\.\d+)?)?'.format(suff) for suff in SUFFIXES)
 component_re = re.compile(r'(?:\s*(\d+|[a-z]+|\.|(?:{})+$))'.format(SUFFIXES_STR))
 suffix_item_re = re.compile(r'^([^0-9]+)(\d+(?:\.\d+)?)?$')

 def __init__(self, vstring):
 self.parse(vstring)

[docs] def parse(self, vstring):
 if vstring is None:
 raise ValueError('Version string cannot be None')
 elif isinstance(vstring, (list, tuple)):
 vstring = ".".join(map(str, vstring))
 elif vstring:
 vstring = str(vstring).strip()
 if vstring in ('master', 'latest', 'upstream') or 'fine' in vstring or 'euwe' in vstring:
 vstring = 'master'
 # TODO These aren't used anywhere - remove?
 if vstring == 'darga-3':
 vstring = '5.6.1'
 if vstring == 'darga-4.1':
 vstring = '5.6.2'
 if vstring == 'darga-5':
 vstring = '5.6.3'

 components = filter(lambda x: x and x != '.',
 self.component_re.findall(vstring))
 # Check if we have a version suffix which denotes pre-release
 if components and components[-1].startswith('-'):
 self.suffix = components[-1][1:].split('-') # Chop off the -
 components = components[:-1]
 else:
 self.suffix = None
 for i in range(len(components)):
 try:
 components[i] = int(components[i])
 except ValueError:
 pass

 self.vstring = vstring
 self.version = components

 @cached_property
 def normalized_suffix(self):
 """Turns the string suffixes to numbers. Creates a list of tuples.

 The list of tuples is consisting of 2-tuples, the first value says the position of the
 suffix in the list and the second number the numeric value of an eventual numeric suffix.

 If the numeric suffix is not present in a field, then the value is 0
 """
 numberized = []
 if self.suffix is None:
 return numberized
 for item in self.suffix:
 suff_t, suff_ver = self.suffix_item_re.match(item).groups()
 if suff_ver is None or len(suff_ver) == 0:
 suff_ver = 0.0
 else:
 suff_ver = float(suff_ver)
 suff_t = self.SUFFIXES.index(suff_t)
 numberized.append((suff_t, suff_ver))
 return numberized

 @classmethod
[docs] def latest(cls):
 try:
 return cls._latest
 except AttributeError:
 cls._latest = cls('latest')
 return cls._latest

 @classmethod
[docs] def lowest(cls):
 try:
 return cls._lowest
 except AttributeError:
 cls._lowest = cls('lowest')
 return cls._lowest

 def __str__(self):
 return self.vstring

 def __repr__(self):
 return '{}({})'.format(type(self).__name__, repr(self.vstring))

 def __cmp__(self, other):
 try:
 if not isinstance(other, type(self)):
 other = Version(other)
 except:
 raise ValueError('Cannot compare Version to {}'.format(type(other).__name__))

 if self == other:
 return 0
 elif self == self.latest() or other == self.lowest():
 return 1
 elif self == self.lowest() or other == self.latest():
 return -1
 else:
 result = cmp(self.version, other.version)
 if result != 0:
 return result
 # Use suffixes to decide
 if self.suffix is None and other.suffix is None:
 # No suffix, the same
 return 0
 elif self.suffix is None:
 # This does not have suffix but the other does so this is "newer"
 return 1
 elif other.suffix is None:
 # This one does have suffix and the other does not so this one is older
 return -1
 else:
 # Both have suffixes, so do some math
 return cmp(self.normalized_suffix, other.normalized_suffix)

 def __eq__(self, other):
 try:
 if not isinstance(other, type(self)):
 other = Version(other)
 return (
 self.version == other.version and self.normalized_suffix == other.normalized_suffix)
 except:
 return False

[docs] def __contains__(self, ver):
 """Enables to use ``in`` expression for :py:meth:`Version.is_in_series`.

 Example:
 ``"5.5.5.2" in Version("5.5") returns ``True``

 Args:
 ver: Version that should be checked if it is in series of this version. If
 :py:class:`str` provided, it will be converted to :py:class:`Version`.
 """
 try:
 return Version(ver).is_in_series(self)
 except:
 return False

[docs] def is_in_series(self, series):
 """This method checks whether the version belongs to another version's series.

 Eg.: ``Version("5.5.5.2").is_in_series("5.5")`` returns ``True``

 Args:
 series: Another :py:class:`Version` to check against. If string provided, will be
 converted to :py:class:`Version`
 """

 if not isinstance(series, Version):
 series = get_version(series)
 if self in {self.lowest(), self.latest()}:
 if series == self:
 return True
 else:
 return False
 return series.version == self.version[:len(series.version)]

[docs] def series(self, n=2):
 return ".".join(self.vstring.split(".")[:n])

[docs] def stream(self):
 for v, spt in version_stream_product_mapping.items():
 if self.is_in_series(v):
 return spt.stream

[docs] def product_version(self):
 for v, spt in version_stream_product_mapping.items():
 if self.is_in_series(v):
 return spt.product_version

LOWEST = Version.lowest()
LATEST = Version.latest()
UPSTREAM = LATEST

SPTuple = namedtuple('StreamProductTuple', ['stream', 'product_version'])

Maps stream and product version to each app version
version_stream_product_mapping = {
 '5.2': SPTuple('downstream-52z', '3.0'),
 '5.3': SPTuple('downstream-53z', '3.1'),
 '5.4': SPTuple('downstream-54z', '3.2'),
 '5.5': SPTuple('downstream-55z', '4.0'),
 '5.6': SPTuple('downstream-56z', '4.1'),
 '5.7': SPTuple('downstream-57z', '4.2'),
 '5.8': SPTuple('downstream-58z', '4.5'),
 LATEST: SPTuple('upstream', 'master')
}

Compare Versions using > for dispatch
@mm.is_a.method((Version, Version))
def _is_a_loose(x, y):
 return x >= y

@mm.is_a.method((str, Version))
def _is_a_slv(x, y):
 return mm.is_a(Version(x), y)

@mm.is_a.method((Version, str))
def _is_a_lvs(x, y):
 return mm.is_a(x, Version(y))

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/networks/provider.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.networks.provider

from navmazing import NavigateToSibling, NavigateToAttribute
from cached_property import cached_property

from cfme.common import WidgetasticTaggable, TagPageView
from cfme.common.provider import BaseProvider
from cfme.exceptions import ItemNotFound
from cfme.networks.balancer import BalancerCollection
from cfme.networks.cloud_network import CloudNetworkCollection
from cfme.networks.network_port import NetworkPortCollection
from cfme.networks.network_router import NetworkRouterCollection
from cfme.networks.security_group import SecurityGroupCollection
from cfme.networks.subnet import SubnetCollection
from cfme.networks.views import (
 NetworkProviderDetailsView,
 NetworkProviderView,
 OneProviderBalancerView,
 OneProviderCloudNetworkView,
 OneProviderNetworkPortView,
 OneProviderNetworkRouterView,
 OneProviderSecurityGroupView,
 OneProviderSubnetView
)
from cfme.utils import version
from cfme.utils.appliance import BaseCollection, BaseEntity
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to
from cfme.utils.wait import wait_for

[docs]class NetworkProviderCollection(BaseCollection):
 """Collection object for NetworkProvider object
 Note: Network providers object are not implemented in mgmt
 """
 def __init__(self, appliance=None):
 self.appliance = appliance

[docs] def instantiate(self, name):
 return NetworkProvider(collection=self, name=name)

[docs] def all(self):
 view = navigate_to(self, 'All')
 list_networks = view.entities.get_all(surf_pages=True)
 return [self.instantiate(name=p.name) for p in list_networks]

[docs]class NetworkProvider(BaseProvider, WidgetasticTaggable, BaseEntity):
 """ Class representing network provider in sdn

 Note: Network provider can be added to cfme database
 only automaticaly with cloud provider
 """
 STATS_TO_MATCH = []
 string_name = 'Networks'
 in_version = ('5.8', version.LATEST)
 page_name = 'networks'
 edit_page_suffix = ''
 detail_page_suffix = ''
 refresh_text = 'Refresh items and relationships'
 quad_name = None
 category = 'networks'
 provider_types = {}
 property_tuples = []
 detail_page_suffix = 'provider_detail'
 db_types = ['NetworksManager']

 def __init__(self, collection, name, provider=None):
 self.collection = collection
 self.appliance = self.collection.appliance
 self.name = name
 self.provider = provider

[docs] def refresh_provider_relationships(self, cancel=True):
 """ Refresh relationships of network provider """
 view = navigate_to(self, 'Details')
 view.toolbar.configuration.item_select('Refresh Relationships and Power States',
 handle_alert=not cancel)

[docs] def delete(self, cancel=True):
 """ Deletes a network provider from CFME """
 view = navigate_to(self, 'Details')
 wait_for(lambda: view.toolbar.configuration.item_enabled('Remove this Network Provider'),
 num_sec=10)
 view.toolbar.configuration.item_select('Remove this Network Provider',
 handle_alert=not cancel)

 @property
 def valid_credentials_state(self):
 """ Checks whether credentials are valid """
 view = navigate_to(self, 'Details')
 cred_state = view.entities.status.get_text_of('Default Credentials')
 return cred_state == "Valid"

 @property
 def exists(self):
 try:
 navigate_to(self, 'Details')
 except ItemNotFound:
 return False
 else:
 return True

 @cached_property
 def balancers(self):
 return BalancerCollection(self.appliance, parent_provider=self)

 @cached_property
 def subnets(self):
 return SubnetCollection(self.appliance, parent_provider=self)

 @cached_property
 def networks(self):
 return CloudNetworkCollection(self.appliance, parent_provider=self)

 @cached_property
 def ports(self):
 return NetworkPortCollection(self.appliance, parent_provider=self)

 @cached_property
 def routers(self):
 return NetworkRouterCollection(self.appliance, parent_provider=self)

 @cached_property
 def security_groups(self):
 return SecurityGroupCollection(self.appliance, parent_provider=self)

@navigator.register(NetworkProviderCollection, 'All')
[docs]class All(CFMENavigateStep):
 VIEW = NetworkProviderView
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self):
 self.prerequisite_view.navigation.select('Networks', 'Providers')

@navigator.register(NetworkProvider, 'Details')
[docs]class Details(CFMENavigateStep):
 prerequisite = NavigateToAttribute('collection', 'All')
 VIEW = NetworkProviderDetailsView

[docs] def step(self):
 self.prerequisite_view.entities.get_entity(by_name=self.obj.name).click()

@navigator.register(NetworkProvider, 'CloudSubnets')
[docs]class OpenCloudSubnets(CFMENavigateStep):
 prerequisite = NavigateToSibling('Details')
 VIEW = OneProviderSubnetView

[docs] def step(self):
 self.prerequisite_view.entities.relationships.click_at('Cloud Subnets')

@navigator.register(NetworkProvider, 'CloudNetworks')
[docs]class OpenCloudNetworks(CFMENavigateStep):
 prerequisite = NavigateToSibling('Details')
 VIEW = OneProviderCloudNetworkView

[docs] def step(self):
 self.prerequisite_view.entities.relationships.click_at('Cloud Networks')

@navigator.register(NetworkProvider, 'NetworkRouters')
[docs]class OpenNetworkRouters(CFMENavigateStep):
 prerequisite = NavigateToSibling('Details')
 VIEW = OneProviderNetworkRouterView

[docs] def step(self):
 self.prerequisite_view.entities.relationships.click_at('Network Routers')

@navigator.register(NetworkProvider, 'SecurityGroups')
[docs]class OpenSecurityGroups(CFMENavigateStep):
 prerequisite = NavigateToSibling('Details')
 VIEW = OneProviderSecurityGroupView

[docs] def step(self):
 self.prerequisite_view.entities.relationships.click_at('Security Groups')

@navigator.register(NetworkProvider, 'FloatingIPs')
[docs]class OpenFloatingIPs(CFMENavigateStep):
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.entities.relationships.click_at('Floating IPs')

@navigator.register(NetworkProvider, 'NetworkPorts')
[docs]class OpenNetworkPorts(CFMENavigateStep):
 prerequisite = NavigateToSibling('Details')
 VIEW = OneProviderNetworkPortView

[docs] def step(self):
 self.prerequisite_view.entities.relationships.click_at('Network Ports')

@navigator.register(NetworkProvider, 'LoadBalancers')
[docs]class OpenNetworkBalancers(CFMENavigateStep):
 prerequisite = NavigateToSibling('Details')
 VIEW = OneProviderBalancerView

[docs] def step(self):
 self.prerequisite_view.entities.relationships.click_at('Load Balancers')

@navigator.register(NetworkProvider, 'TopologyFromDetails')
[docs]class OpenTopologyFromDetails(CFMENavigateStep):
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.entities.overview.click_at('Topology')

@navigator.register(NetworkProvider, 'EditTagsFromDetails')
[docs]class EditTags(CFMENavigateStep):
 VIEW = TagPageView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.toolbar.policy.item_select('Edit Tags')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/varmeth.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.varmeth

-*- coding: utf-8 -*-
"""Method variant decorator. You specify the desired method variant by a kwarg.

.. code-block:: python

 from cfme.utils.varmeth import variable

 class SomeClass(object):
 secret = 42

 @variable
 def mymethod(self):
 print("I am default!")

 @mymethod.variant("foo", "foo_too")
 def i_foo(self):
 print("I foo!")

 @mymethod.variant("bar")
 def in_bar(self):
 print("In bar!")

 @variable(alias="foo")
 def myfoo(self):
 print("foo!")

 s = SomeClass()
 s.mymethod() # => I am default!
 s.mymethod(method="moo") # => I am default!
 s.mymethod(method="foo") # => I foo!
 s.mymethod(method="foo_too") # => I foo!
 s.mymethod(method="bar") # => In bar!
 s.mymethod(method="baz") # => AttributeError
 s.myfoo() # => foo!
 s.myfoo(method="foo") # => foo!

Original idea:
 Pete Savage

Implementation:
 Milan Falešník
"""

class _default(object):
 """Whoever touches this outside of this module, his/her hands will fall off."""

[docs]class variable(object):
 """Create a new variable method."""

 def __init__(self, *args, **kwargs):
 if len(args) == 1 and callable(args[0]):
 # Decorator without parameters
 f = args[0]
 self._name = f.__name__
 self._mapping = {_default: f}
 self._alias = None
 else:
 # Decorator with parameters, the default function comes later in __call__
 self._name = None
 self._mapping = {}
 self._alias = kwargs.get("alias")

 def __call__(self, f):
 if _default in self._mapping:
 raise ValueError("You cannot set the default twice!")
 self._mapping[_default] = f
 if self._alias is not None:
 self._mapping[self._alias] = f
 return self

 def __get__(self, obj, objtype):
 def caller(*args, **kwargs):
 method = kwargs.pop("method", _default)
 if not method:
 method = _default
 try:
 method = self._mapping[method]
 except KeyError:
 raise AttributeError(
 "Method {} does not have a variant for {}, valid variants are {}".format(
 self._name, method, ", ".join(map(str, self._mapping.keys()))))
 return method(obj, *args, **kwargs)
 return caller

[docs] def variant(self, *names):
 """Register a new variant of a method under a name."""
 def g(f):
 for name in names:
 self._mapping[name] = f

 return g

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/fixtures/rdb.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.fixtures.rdb

"""Rdb: Remote debugger

Given the following configuration in conf/rdb.yaml::

 breakpoints:
 - subject: Brief explanation of a problem
 exceptions:
 - cfme.exceptions.ImportableExampleException
 - BuiltinException (e.g. ValueError)
 recipients:
 - user@example.com

Any time an exception listed in a breakpoint's "exceptions" list is raised in :py:func:`rdb_catch`
context in the course of a test run, a remote debugger will be started on a random port, and the
users listed in "recipients" will be emailed instructions to access the remote debugger via telnet.

The exceptions will be imported, so their fully-qualified importable path is required.
Exceptions without a module path are assumed to be builtins.

An Rdb instance can be used just like a :py:class:`Pdb <python:Pdb>` instance.

Additionally, a signal handler has been set up to allow for triggering Rdb during a test run. To
invoke it, ``kill -USR1`` a test-running process and Rdb will start up. No emails are sent when
operating in this mode, so check the py.test console for the endpoint address.

By default, Rdb assumes that there is a working MTA available on localhost, but this can
be configured in ``conf['env']['smtp']['server']``.

Note:

 This is very insecure, and should be used as a last resort for debugging elusive failures.

"""
import os
import signal
import smtplib
import socket
import sys
from contextlib import contextmanager
from email.mime.text import MIMEText
from importlib import import_module
from pdb import Pdb
from textwrap import dedent

from fixtures.pytest_store import store, write_line
from cfme.utils import conf
from cfme.utils.log import logger

_breakpoint_exceptions = {}

defaults
smtp_conf = {
 'server': '127.0.0.1'
}
Update defaults from conf
smtp_conf.update(conf.env.get('smtp', {}))

for breakpoint in (conf.rdb.get('breakpoints') or []):
 for i, exc_name in enumerate(breakpoint['exceptions']):
 split_exc = exc_name.rsplit('.', 1)
 if len(split_exc) == 1:
 # If no module is given to import from, assume builtin
 split_exc = ['__builtin__', exc_name]
 exc = getattr(import_module(split_exc[0]), split_exc[1])
 # stash exceptions for easy matching in exception handlers
 _breakpoint_exceptions[exc] = breakpoint

[docs]def rdb_handle_signal(signal, frame):
 # only registered for USR1, no need to inspect the signal,
 # just hand the frame off to Rdb
 Rdb('Debugger started on user signal').set_trace(frame)

signal.signal(signal.SIGUSR1, rdb_handle_signal)

XXX: Pdb (and its bases) are old-style classobjs, so don't use super
[docs]class Rdb(Pdb):
 """Remote Debugger

 When set_trace is called, it will open a socket on a random unprivileged port connected to a
 Pdb debugging session. This session can be accessed via telnet, and will end when "continue"
 is called in the Pdb session.

 """
 def __init__(self, prompt_msg=''):
 self._prompt_msg = str(prompt_msg)
 self._stdout = sys.stdout
 self._stdin = sys.stdin
 self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 # bind to random port
 self.sock.bind(('0.0.0.0', 0))

[docs] def do_continue(self, arg):
 sys.stdout = self._stdout
 sys.stdin = self._stdin
 self.sock.shutdown(socket.SHUT_RDWR)
 self.sock.close()
 self.set_continue()
 return 1

 do_c = do_cont = do_continue

[docs] def interaction(self, *args, **kwargs):
 print >>self.stdout, self._prompt_msg
 Pdb.interaction(self, *args, **kwargs)

[docs] def set_trace(self, *args, **kwargs):
 """Start a pdb debugger available via telnet, and optionally email people the endpoint

 The endpoint will always be seen in the py.test runner output.

 Keyword Args:
 recipients: A list where, if set, an email will be sent to email addresses
 in this list.
 subject: If set, an optional custom email subject

 """
 host, port = self.sock.getsockname()
 endpoint = 'host {} port {}'.format(store.my_ip_address, port)

 recipients = kwargs.pop('recipients', None)
 if recipients:
 # write and send an email
 subject = kwargs.pop('subject', 'RDB Breakpoint: Manually invoked')
 body = dedent("""\
 A py.test run encountered an error. The remote debugger is running
 on {} (TCP), waiting for telnet connection.
 """).format(endpoint)

 try:
 smtp_server = smtp_conf['server']
 smtp = smtplib.SMTP(smtp_server)
 msg = MIMEText(body)
 msg['Subject'] = subject
 msg['To'] = ', '.join(recipients)
 smtp.sendmail('rdb-breakpoint@example.com', recipients, msg.as_string())
 except socket.error:
 logger.critical("Couldn't send email")

 msg = 'Remote debugger listening on {}'.format(endpoint)
 logger.critical(msg)
 write_line(msg, red=True, bold=True)
 self.sock.listen(1)
 (client_socket, address) = self.sock.accept()
 client_fh = client_socket.makefile('rw')
 Pdb.__init__(self, completekey='tab', stdin=client_fh, stdout=client_fh)
 sys.stdout = sys.stdin = client_fh
 Pdb.set_trace(self, *args, **kwargs)
 msg = 'Debugger on {} shut down'.format(endpoint)
 logger.critical(msg)
 write_line(msg, green=True, bold=True)

[docs]def send_breakpoint_email(exctype, msg=''):
 job_name = os.environ.get('JOB_NAME', 'Non-jenkins')
 breakpoint = _breakpoint_exceptions[exctype]
 subject = 'RDB Breakpoint: {} {}'.format(job_name, breakpoint['subject'])
 rdb = Rdb(msg)
 rdb.set_trace(subject=subject, recipients=breakpoint['recipients'])

[docs]def pytest_internalerror(excrepr, excinfo):
 if excinfo.type in _breakpoint_exceptions:
 msg = "A py.test internal error has triggered RDB:\n"
 msg += str(excrepr)
 send_breakpoint_email(excinfo.type, msg)

@contextmanager
[docs]def rdb_catch():
 """Context Manager used to wrap mysterious failures for remote debugging."""
 try:
 yield
 except tuple(_breakpoint_exceptions) as exc:
 send_breakpoint_email(type(exc))

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/fixtures/tag.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.fixtures.tag

import fauxfactory
import pytest

from cfme.base.credential import Credential
from cfme.configure.access_control import Group, Role, User
from cfme.configure.configuration import Category, Tag
from cfme.web_ui import mixins
from cfme.utils.appliance.implementations.ui import navigate_to
from cfme.utils.log import logger

@pytest.yield_fixture(scope="session")
[docs]def category():
 """
 Returns random created category object
 Object can be used in all test run session
 """
 cg = Category(name=fauxfactory.gen_alpha(8).lower(),
 description=fauxfactory.gen_alphanumeric(length=32),
 display_name=fauxfactory.gen_alphanumeric(length=32))
 cg.create()
 yield cg
 cg.delete(False)

@pytest.yield_fixture(scope="session")
[docs]def tag(category):
 """
 Returns random created tag object
 Object can be used in all test run session
 """
 tag = Tag(name=fauxfactory.gen_alpha(8).lower(),
 display_name=fauxfactory.gen_alphanumeric(length=32),
 category=category)
 tag.create()
 yield tag
 tag.delete(False)

@pytest.yield_fixture(scope="module")
[docs]def role():
 """
 Returns role object used in test module
 """
 role = Role(
 name='role{}'.format(fauxfactory.gen_alphanumeric()),
 vm_restriction='None')
 role.create()
 yield role
 role.delete()

@pytest.yield_fixture(scope="module")
[docs]def group_with_tag(role, category, tag):
 """
 Returns group object with set up tag filter used in test module
 """
 group = Group(
 description='grp{}'.format(fauxfactory.gen_alphanumeric()),
 role=role.name,
 tag=[category.display_name, tag.display_name]
)
 group.create()
 yield group
 group.delete()

@pytest.yield_fixture(scope="module")
[docs]def user_restricted(group_with_tag, new_credential):
 """
 Returns restricted user object assigned
 to group with tag filter used in test module
 """
 user = User(
 name='user{}'.format(fauxfactory.gen_alphanumeric()),
 credential=new_credential,
 email='xyz@redhat.com',
 group=group_with_tag,
 cost_center='Workload',
 value_assign='Database')
 user.create()
 yield user
 user.delete()

@pytest.fixture(scope="module")
[docs]def new_credential():
 """
 Returns credentials object used for new user in test module
 """
 # Todo remove .lower() for principal after 1486041 fix
 return Credential(
 principal='uid{}'.format(fauxfactory.gen_alphanumeric().lower()), secret='redhat')

TODO Remove once widgetastic fixture replaces completely
@pytest.fixture(scope='function')
[docs]def check_item_visibility(tag, user_restricted):
 def _check_item_visibility(vis_object, visibility_result):
 """
 Args:
 visibility_result: pass 'True' is item should be visible,
 'False' if not
 """
 navigate_to(vis_object, 'EditTagsFromDetails')
 if visibility_result:
 mixins.add_tag(tag=tag)
 else:
 try:
 mixins.remove_tag(tag=tag)
 except TypeError:
 logger.debug('Tag is already removed')
 actual_visibility = False
 with user_restricted:
 try:
 navigate_to(vis_object, 'EditTagsFromDetails')
 actual_visibility = True
 except Exception:
 logger.debug('Tagged item is not visible')
 assert actual_visibility == visibility_result
 return _check_item_visibility

@pytest.fixture(scope='function')
[docs]def widgetastic_check_tag_visibility(tag, user_restricted):
 def _check_item_visibility(vis_object, vis_expect):
 """
 Args:
 vis_object: the object with a tag to check
 vis_expect: bool, True if tag should be visible

 Returns: None
 """
 view = navigate_to(vis_object, 'Details')
 if vis_expect:
 vis_object.add_tag(tag)
 elif tag.name in vis_object.get_tags(tenant=tag.category):
 vis_object.remove_tag(tag)
 with user_restricted:
 view = navigate_to(vis_object, 'Details')
 test_vis = tag.name in view.entities.smart_management.get_text_of(tag.category.name)

 assert test_vis == vis_expect

 return _check_item_visibility

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/bz.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.bz

-*- coding: utf-8 -*-
import re
from bugzilla import Bugzilla as _Bugzilla
from collections import Sequence

from cached_property import cached_property
from cfme.utils.conf import cfme_data, credentials
from cfme.utils.log import logger
from cfme.utils.version import (
 LATEST, Version, current_version, appliance_build_datetime, appliance_is_downstream)

NONE_FIELDS = {"---", "undefined", "unspecified"}

[docs]class Product(object):
 def __init__(self, data):
 self._data = data

 @property
 def default_release(self):
 return Version(self._data["default_release"])

 @property
 def name(self):
 return self._data["name"]

 @property
 def milestones(self):
 return map(lambda ms: ms["name"], self._data["milestones"])

 @property
 def releases(self):
 return map(lambda release: release["name"], self._data["releases"])

 @property
 def versions(self):
 versions = []
 for version in self._data["versions"]:
 if version["name"] not in NONE_FIELDS:
 versions.append(Version(version["name"]))
 return sorted(versions)

 @property
 def latest_version(self):
 return self.versions[-1]

[docs]class Bugzilla(object):
 def __init__(self, **kwargs):
 self.__product = kwargs.pop("product", None)
 self.__kwargs = kwargs
 self.__bug_cache = {}
 self.__product_cache = {}

 @property
 def bug_count(self):
 return len(self.__bug_cache.keys())

 @property
 def bugs(self):
 for bug in self.__bug_cache.itervalues():
 yield bug

[docs] def products(self, *names):
 return map(Product, self.bugzilla._proxy.Product.get({"names": names})["products"])

[docs] def product(self, product):
 if product not in self.__product_cache:
 self.__product_cache[product] = self.products(product)[0]
 return self.__product_cache[product]

 @property
 def default_product(self):
 if self.__product is None:
 return None
 return self.product(self.__product)

 @classmethod
[docs] def from_config(cls):
 url = cfme_data.get("bugzilla", {}).get("url")
 product = cfme_data.get("bugzilla", {}).get("product")
 if url is None:
 raise Exception("No Bugzilla URL specified!")
 cr_root = cfme_data.get("bugzilla", {}).get("credentials")
 username = credentials.get(cr_root, {}).get("username")
 password = credentials.get(cr_root, {}).get("password")
 return cls(
 url=url, user=username, password=password, cookiefile=None,
 tokenfile=None, product=product)

 @cached_property
 def bugzilla(self):
 return _Bugzilla(**self.__kwargs)

 @cached_property
 def loose(self):
 return cfme_data.get("bugzilla", {}).get("loose", [])

 @cached_property
 def open_states(self):
 return cfme_data.get("bugzilla", {}).get("skip", set([]))

 @cached_property
 def upstream_version(self):
 if self.default_product is not None:
 return self.default_product.latest_version
 else:
 return Version(cfme_data.get("bugzilla", {}).get("upstream_version", "9.9"))

[docs] def get_bug(self, id):
 id = int(id)
 if id not in self.__bug_cache:
 self.__bug_cache[id] = BugWrapper(self, self.bugzilla.getbug(id))
 return self.__bug_cache[id]

[docs] def get_bug_variants(self, id):
 if isinstance(id, BugWrapper):
 bug = id
 else:
 bug = self.get_bug(id)
 expanded = set([])
 found = set([])
 stack = set([bug])
 while stack:
 b = stack.pop()
 if b.status == "CLOSED" and b.resolution == "DUPLICATE":
 b = self.get_bug(b.dupe_of)
 found.add(b)
 if b.copy_of:
 stack.add(self.get_bug(b.copy_of))
 if b not in expanded:
 for cp in map(self.get_bug, b.copies):
 found.add(cp)
 stack.add(cp)
 expanded.add(b)
 return found

[docs] def resolve_blocker(self, blocker, version=None, ignore_bugs=None, force_block_streams=None):
 # ignore_bugs is mutable but is not mutated here! Same force_block_streams
 force_block_streams = force_block_streams or []
 ignore_bugs = set([]) if not ignore_bugs else ignore_bugs
 if isinstance(id, BugWrapper):
 bug = blocker
 else:
 bug = self.get_bug(blocker)
 if version is None:
 version = current_version()
 if version == LATEST:
 version = bug.product.latest_version
 variants = self.get_bug_variants(bug)
 filtered = set([])
 version_series = ".".join(str(version).split(".")[:2])
 for variant in variants:
 if variant.id in ignore_bugs:
 continue
 if variant.version is not None and variant.version > version:
 continue
 if ((variant.version is not None and variant.target_release is not None) and
 (
 variant.version.is_in_series(version_series) or
 variant.target_release.is_in_series(version_series))):
 filtered.add(variant)
 elif variant.release_flag is not None:
 if version.is_in_series(variant.release_flag):
 # Simple case
 filtered.add(variant)
 else:
 logger.info(
 "Ignoring bug #%s, appliance version not in bug release flag", variant.id)
 else:
 logger.info("No release flags, wrong versions, ignoring %s", variant.id)
 if not filtered:
 # No appropriate bug was found
 for forced_stream in force_block_streams:
 # Find out if we force this bug.
 if current_version().is_in_series(forced_stream):
 return bug
 else:
 # No bug, yipee :)
 return None
 # First, use versions
 for bug in filtered:
 if ((bug.version is not None and bug.target_release is not None) and
 check_fixed_in(bug.fixed_in, version_series) and
 (
 bug.version.is_in_series(version_series) or
 bug.target_release.is_in_series(version_series))):
 return bug
 # Otherwise prefer release_flag
 for bug in filtered:
 if bug.release_flag and version.is_in_series(bug.release_flag):
 return bug
 return None

[docs]def check_fixed_in(fixed_in, version_series):
 # used to check if the bug belongs to that series
 if fixed_in is None:
 return True
 if not isinstance(fixed_in, Version):
 fixed_in = Version(fixed_in)
 return fixed_in.is_in_series(version_series)

[docs]class BugWrapper(object):
 _copy_matchers = map(re.compile, [
 r'^[+]{3}\s*This bug is a CFME zstream clone. The original bug is:\s*[+]{3}\n[+]{3}\s*'
 'https://bugzilla.redhat.com/show_bug.cgi\?id=(\d+)\.\s*[+]{3}',
 r"^\+\+\+ This bug was initially created as a clone of Bug #([0-9]+) \+\+\+"
])

 def __init__(self, bugzilla, bug):
 self._bug = bug
 self._bugzilla = bugzilla

 @property
 def loose(self):
 return self._bugzilla.loose

 @property
 def bugzilla(self):
 return self._bugzilla

[docs] def __getattr__(self, attr):
 """This proxies the attribute queries to the Bug object and modifies its result.

 If the field looked up is specified as loose field, it will be converted to Version.
 If the field is string and it has zero length, or the value is specified as "not specified",
 it will return None.
 """
 value = getattr(self._bug, attr)
 if attr in self.loose:
 if isinstance(value, Sequence) and not isinstance(value, basestring):
 value = value[0]
 value = value.strip()
 if not value:
 return None
 if value.lower() in NONE_FIELDS:
 return None
 # We have to strip any leading non-number characters to correctly match
 value = re.sub(r"^[^0-9]+", "", value)
 if not value:
 return None
 return Version(value)
 if isinstance(value, basestring):
 if len(value.strip()) == 0:
 return None
 else:
 return value
 else:
 return value

 @property
 def qa_whiteboard(self):
 """Returns a set of QA Whiteboard markers.

 It relies on the fact, that our QA Whiteboard uses format foo:bar:baz.

 Should be able to handle cases like 'foo::bar', or 'abc:'.
 """
 return {x.strip() for x in self._bug.qa_whiteboard.strip().split(":") if x.strip()}

 @property
 def copy_of(self):
 """Returns either id of the bug this is copy of, or None, if it is not a copy."""
 try:
 first_comment = self._bug.comments[0]["text"].lstrip()
 except IndexError:
 return None

 for copy_matcher in self._copy_matchers:
 copy_match = copy_matcher.match(first_comment)
 if copy_match is not None:
 return int(copy_match.groups()[0])
 else:
 return None

 @property
 def copies(self):
 """Returns list of copies of this bug."""
 result = []
 for bug_id in self._bug.blocks:
 bug = self._bugzilla.get_bug(bug_id)
 if bug.copy_of == self._bug.id:
 result.append(bug_id)
 return map(int, result)

 @property
 def _release_flag_data(self):
 for flag in self.flags:
 if flag["name"].startswith("cfme-"):
 release_flag = flag["name"].split("-", 1)[-1]
 if release_flag.endswith(".z"):
 return release_flag.rsplit(".", 1)[0], True
 else:
 return release_flag, False
 else:
 return None, False

 @property
 def release_flag(self):
 return self._release_flag_data[0]

 @property
 def zstream(self):
 return self._release_flag_data[1]

 @property
 def is_opened(self):
 states = self._bugzilla.open_states
 if not self.upstream_bug and appliance_is_downstream():
 states = self._bugzilla.open_states + ["POST", "MODIFIED"]
 return self.status in states

 @property
 def product(self):
 return self._bugzilla.product(self._bug.product)

 @property
 def upstream_bug(self):
 if self.version is None:
 return True
 return self.version >= self.product.latest_version

 @property
 def can_test_on_upstream(self):
 change_states = {"POST", "MODIFIED"}
 # With these states, the change is in upstream
 if self.status not in {"POST", "MODIFIED", "ON_QA", "VERIFIED", "RELEASE_PENDING"}:
 return False
 history = self.get_history_raw()["bugs"][0]["history"]
 changes = []
 # We look for status changes in the history
 for event in history:
 for change in event["changes"]:
 if change["field_name"].lower() != "status":
 continue
 if change["added"] in change_states:
 changes.append(event["when"])
 return event["when"] < appliance_build_datetime()
 else:
 return False

 def __repr__(self):
 return repr(self._bug)

 def __str__(self):
 return str(self._bug)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/middleware/provider/hawkular.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.middleware.provider »

 Source code for cfme.middleware.provider.hawkular

import re

from widgetastic_patternfly import Input, BootstrapSelect
from wrapanapi.hawkular import Hawkular

from cfme.common import TopologyMixin, TimelinesMixin
from cfme.common.provider import DefaultEndpoint, DefaultEndpointForm
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import navigate_to
from cfme.utils.varmeth import variable

from . import MiddlewareProvider
from . import _get_providers_page, _db_select_query
from . import download, MiddlewareBase

[docs]class HawkularEndpoint(DefaultEndpoint):
 @property
 def view_value_mapping(self):
 return {'security_protocol': self.security_protocol,
 'hostname': self.hostname,
 'api_port': self.api_port,
 }

[docs]class HawkularEndpointForm(DefaultEndpointForm):
 security_protocol = BootstrapSelect('default_security_protocol')
 api_port = Input('default_api_port')

[docs]class HawkularProvider(MiddlewareBase, TopologyMixin, TimelinesMixin, MiddlewareProvider):
 """
 HawkularProvider class holds provider data. Used to perform actions on hawkular provider page

 Args:
 name: Name of the provider
 endpoints: one or several provider endpoints like DefaultEndpoint. it should be either dict
 in format dict{endpoint.name, endpoint, endpoint_n.name, endpoint_n}, list of endpoints or
 mere one endpoint
 hostname: Hostname/IP of the provider
 port: http/https port of hawkular provider
 credentials: see Credential inner class.
 key: The CFME key of the provider in the yaml.
 db_id: database row id of provider

 Usage:

 myprov = HawkularProvider(name='foo',
 endpoints=endpoint,
 hostname='localhost',
 port=8080,
 credentials=Provider.Credential(principal='admin', secret='foobar')))
 myprov.create()
 myprov.num_deployment(method="ui")
 """
 STATS_TO_MATCH = MiddlewareProvider.STATS_TO_MATCH +\
 ['num_server', 'num_domain', 'num_deployment', 'num_datasource', 'num_messaging']
 property_tuples = MiddlewareProvider.property_tuples +\
 [('name', 'Name'), ('hostname', 'Host Name'), ('port', 'Port'), ('provider_type', 'Type')]
 type_name = "hawkular"
 mgmt_class = Hawkular
 db_types = ["Hawkular::MiddlewareManager"]
 endpoints_form = HawkularEndpointForm

 def __init__(self, name=None, endpoints=None, hostname=None, port=None,
 credentials=None, key=None,
 appliance=None, sec_protocol=None, **kwargs):
 Navigatable.__init__(self, appliance=appliance)
 self.name = name
 self.hostname = hostname
 self.port = port
 self.provider_type = 'Hawkular'
 if not credentials:
 credentials = {}
 self.credentials = credentials
 self.key = key
 self.sec_protocol = sec_protocol if sec_protocol else 'Non-SSL'
 self.db_id = kwargs['db_id'] if 'db_id' in kwargs else None
 self.endpoints = self._prepare_endpoints(endpoints)

 @property
 def view_value_mapping(self):
 """Maps values to view attrs"""
 return {
 'name': self.name,
 'prov_type': 'Hawkular'
 }

 @variable(alias='db')
 def num_deployment(self):
 return self._num_db_generic('middleware_deployments')

 @num_deployment.variant('ui')
 def num_deployment_ui(self, reload_data=True):
 self.load_details(refresh=reload_data)
 return int(self.get_detail("Relationships", "Middleware Deployments"))

 @variable(alias='db')
 def num_server(self):
 return self._num_db_generic('middleware_servers')

 @num_server.variant('ui')
 def num_server_ui(self, reload_data=True):
 self.load_details(refresh=reload_data)
 return int(self.get_detail("Relationships", "Middleware Servers"))

 @variable(alias='db')
 def num_server_group(self):
 res = self.appliance.db.client.engine.execute(
 "SELECT count(*) "
 "FROM ext_management_systems, middleware_domains, middleware_server_groups "
 "WHERE middleware_domains.ems_id=ext_management_systems.id "
 "AND middleware_domains.id=middleware_server_groups.domain_id "
 "AND ext_management_systems.name='{0}'".format(self.name))
 return int(res.first()[0])

 @variable(alias='db')
 def num_datasource(self):
 return self._num_db_generic('middleware_datasources')

 @num_datasource.variant('ui')
 def num_datasource_ui(self, reload_data=True):
 self.load_details(refresh=reload_data)
 return int(self.get_detail("Relationships", "Middleware Datasources"))

 @variable(alias='db')
 def num_domain(self):
 return self._num_db_generic('middleware_domains')

 @num_domain.variant('ui')
 def num_domain_ui(self, reload_data=True):
 self.load_details(refresh=reload_data)
 return int(self.get_detail("Relationships", "Middleware Domains"))

 @variable(alias='db')
 def num_messaging(self):
 return self._num_db_generic('middleware_messagings')

 @num_messaging.variant('ui')
 def num_messaging_ui(self, reload_data=True):
 self.load_details(refresh=reload_data)
 return int(self.get_detail("Relationships", "Middleware Messagings"))

 @variable(alias='ui')
 def is_refreshed(self, reload_data=True):
 self.load_details(refresh=reload_data)
 if re.match('Success.*Minute.*Ago', self.get_detail("Status", "Last Refresh")):
 return True
 else:
 return False

 @is_refreshed.variant('db')
 def is_refreshed_db(self):
 ems = self.appliance.db.client['ext_management_systems']
 dates = self.appliance.db.client.session.query(ems.created_on,
 ems.updated_on).filter(ems.name == self.name).first()
 return dates.updated_on > dates.created_on

 @classmethod
[docs] def download(cls, extension):
 view = _get_providers_page()
 download(view, extension)

[docs] def load_details(self, refresh=False):
 """Navigate to Details and load `db_id` if not set"""
 view = navigate_to(self, 'Details')
 if not self.db_id or refresh:
 tmp_provider = _db_select_query(
 name=self.name, type='ManageIQ::Providers::Hawkular::MiddlewareManager').first()
 self.db_id = tmp_provider.id
 if refresh:
 view.browser.selenium.refresh()
 view.flush_widget_cache()
 return view

[docs] def load_topology_page(self):
 return navigate_to(self, 'TopologyFromDetails')

[docs] def recheck_auth_status(self):
 view = self.load_details(refresh=True)
 view.toolbar.authentication.item_select("Re-check Authentication Status")

[docs] def load_timelines_page(self):
 view = self.load_details()
 view.toolbar.monitoring.item_select("Timelines")

 @staticmethod
[docs] def from_config(prov_config, prov_key, appliance=None):
 credentials_key = prov_config['credentials']
 credentials = HawkularProvider.process_credential_yaml_key(credentials_key)
 endpoints = {}
 endpoints[HawkularEndpoint.name] = HawkularEndpoint(
 **prov_config['endpoints'][HawkularEndpoint.name])
 return HawkularProvider(
 name=prov_config['name'],
 endpoints=endpoints,
 key=prov_key,
 hostname=prov_config['hostname'],
 sec_protocol=prov_config.get('sec_protocol'),
 port=prov_config['port'],
 credentials={'default': credentials},
 appliance=appliance)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/markers/env_markers/provider.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for markers.env_markers.provider

import pytest
from distutils.version import LooseVersion

from cfme.utils.log import logger
from cfme.utils.providers import ProviderFilter, list_providers

from markers.env import EnvironmentMarker

ONE = 'one'
ALL = 'all'
LATEST = 'latest'
ONE_PER_VERSION = 'one_per_version'
ONE_PER_CATEGORY = 'one_per_category'
ONE_PER_TYPE = 'one_per_type'

def _param_check(metafunc, argnames, argvalues):
 """Helper function to check if parametrizing is necessary

 * If no argnames were specified, parametrization is unnecessary.
 * If argvalues were generated, parametrization is necessary.
 * If argnames were specified, but no values were generated, the test cannot run successfully,
 and will be uncollected using the :py:mod:`markers.uncollect` mark.

 See usage in :py:func:`parametrize`

 Args:
 metafunc: metafunc objects from pytest_generate_tests
 argnames: argnames list for use in metafunc.parametrize
 argvalues: argvalues list for use in metafunc.parametrize

 Returns:
 * ``True`` if this test should be parametrized
 * ``False`` if it shouldn't be parametrized
 * ``None`` if the test will be uncollected

 """
 # If no parametrized args were named, don't parametrize
 if not argnames:
 return False
 # If parametrized args were named and values were generated, parametrize
 elif any(argvalues):
 return True
 # If parametrized args were named, but no values were generated, mark this test to be
 # removed from the test collection. Otherwise, py.test will try to find values for the
 # items in argnames by looking in its fixture pool, which will almost certainly fail.
 else:
 # module and class are optional, but function isn't
 modname = getattr(metafunc.module, '__name__', None)
 classname = getattr(metafunc.cls, '__name__', None)
 funcname = metafunc.function.__name__

 test_name = '.'.join(filter(None, (modname, classname, funcname)))
 uncollect_msg = 'Parametrization for {} yielded no values,'\
 ' marked for uncollection'.format(test_name)
 logger.warning(uncollect_msg)

 # apply the mark
 pytest.mark.uncollect(reason=uncollect_msg)(metafunc.function)

[docs]def parametrize(metafunc, argnames, argvalues, *args, **kwargs):
 """parametrize wrapper that calls :py:func:`_param_check`, and only parametrizes when needed

 This can be used in any place where conditional parametrization is used.

 """
 kwargs.pop('selector')
 if _param_check(metafunc, argnames, argvalues):
 metafunc.parametrize(argnames, argvalues, *args, **kwargs)
 # if param check failed and the test was supposed to be parametrized around a provider
 elif 'provider' in metafunc.fixturenames:
 try:
 # hack to pass trough in case of a failed param_check
 # where it sets a custom message
 metafunc.function.uncollect
 except AttributeError:
 pytest.mark.uncollect(
 reason="provider was not parametrized did you forget --use-provider?"
)(metafunc.function)

[docs]def providers(metafunc, filters=None, selector=ALL):
 """ Gets providers based on given (+ global) filters

 Note:
 Using the default 'function' scope, each test will be run individually for each provider
 before moving on to the next test. To group all tests related to single provider together,
 parametrize tests in the 'module' scope.

 Note:
 testgen for providers now requires the usage of test_flags for collection to work.
 Please visit http://cfme-tests.readthedocs.org/guides/documenting.html#documenting-tests
 for more details.
 """
 filters = filters or []
 argnames = []
 argvalues = []
 idlist = []

 # Obtains the test's flags in form of a ProviderFilter
 meta = getattr(metafunc.function, 'meta', None)
 test_flag_str = getattr(meta, 'kwargs', {}).get('from_docs', {}).get('test_flag')
 if test_flag_str:
 test_flags = test_flag_str.split(',')
 flags_filter = ProviderFilter(required_flags=test_flags)
 filters = filters + [flags_filter]

 potential_providers = list_providers(filters)

 if selector == ONE:
 allowed_providers = [potential_providers[0]]
 elif selector == LATEST:
 allowed_providers = [sorted(
 potential_providers, key=lambda k:LooseVersion(
 str(k.data.get('version', 0))), reverse=True
)[0]]
 elif selector == ONE_PER_TYPE:
 types = set()

 def add_prov(prov):
 types.add(prov.type)
 return prov

 allowed_providers = [
 add_prov(prov) for prov in potential_providers if prov.type not in types
]
 elif selector == ONE_PER_CATEGORY:
 categories = set()

 def add_prov(prov):
 categories.add(prov.category)
 return prov

 allowed_providers = [
 add_prov(prov) for prov in potential_providers if prov.category not in categories
]
 elif selector == ONE_PER_VERSION:
 versions = set()

 def add_prov(prov):
 versions.add(prov.data.get('version', 0))
 return prov

 allowed_providers = [
 add_prov(prov) for prov in potential_providers if prov.data.get(
 'version', 0) not in versions
]
 else:
 allowed_providers = potential_providers

 for provider in allowed_providers:
 argvalues.append([provider])
 # Use the provider key for idlist, helps with readable parametrized test output
 idlist.append(provider.key)
 # Add provider to argnames if missing
 if 'provider' in metafunc.fixturenames and 'provider' not in argnames:
 metafunc.function = pytest.mark.uses_testgen()(metafunc.function)
 argnames.append('provider')
 if metafunc.config.getoption('sauce') or selector == ONE:
 break

 return argnames, argvalues, idlist

[docs]def providers_by_class(metafunc, classes, required_fields=None, selector=ALL):
 """ Gets providers by their class

 Args:
 metafunc: Passed in by pytest
 classes: List of classes to fetch
 required_fields: See :py:class:`cfme.utils.provider.ProviderFilter`

 Usage:
 # In the function itself
 def pytest_generate_tests(metafunc):
 argnames, argvalues, idlist = testgen.providers_by_class(
 [GCEProvider, AzureProvider], required_fields=['provisioning']
)
 metafunc.parametrize(argnames, argvalues, ids=idlist, scope='module')

 # Using the parametrize wrapper
 pytest_generate_tests = testgen.parametrize([GCEProvider], scope='module')
 """
 pf = ProviderFilter(classes=classes, required_fields=required_fields)
 return providers(metafunc, filters=[pf], selector=selector)

[docs]class ProviderEnvironmentMarker(EnvironmentMarker):
 NAME = 'provider'

[docs] def process_env_mark(self, metafunc):
 if hasattr(metafunc.function, self.NAME):
 args = getattr(metafunc.function, self.NAME).args
 kwargs = getattr(metafunc.function, self.NAME).kwargs

 scope = kwargs.pop('scope', 'function')
 indirect = kwargs.pop('indirect', False)
 filter_unused = kwargs.pop('filter_unused', True)
 selector = kwargs.pop('selector', ALL)
 gen_func = kwargs.pop('gen_func', providers_by_class)

 def fixture_filter(metafunc, argnames, argvalues):
 """Filter fixtures based on fixturenames in
 the function represented by ``metafunc``"""

 # Identify indeces of matches between argnames and fixturenames
 keep_index = [e[0] for e in enumerate(argnames) if e[1] in metafunc.fixturenames]

 # Keep items at indices in keep_index
 def f(l):
 return [e[1] for e in enumerate(l) if e[0] in keep_index]

 # Generate the new values
 argnames = f(argnames)
 argvalues = map(f, argvalues)
 return argnames, argvalues

 # If parametrize doesn't get you what you need, steal this and modify as needed
 kwargs.update({'selector': selector})
 argnames, argvalues, idlist = gen_func(metafunc, *args, **kwargs)
 # Filter out argnames that aren't requested on the metafunc test item, so not all tests
 # need all fixtures to run, and tests not using gen_func's fixtures aren't parametrized.
 if filter_unused:
 argnames, argvalues = fixture_filter(metafunc, argnames, argvalues)
 # See if we have to parametrize at all after filtering
 parametrize(
 metafunc, argnames, argvalues, indirect=indirect,
 ids=idlist, scope=scope, selector=selector
)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/containers/provider/openshift.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.containers.provider »

 Source code for cfme.containers.provider.openshift

from cached_property import cached_property

from . import ContainersProvider
from cfme.utils.varmeth import variable
from cfme.utils.path import data_path
from os import path
from wrapanapi.containers.providers.openshift import Openshift
from cfme.utils.ocp_cli import OcpCli
from cfme.containers.provider import ContainersProviderDefaultEndpoint,\
 ContainersProviderEndpointsForm
from cfme.common.provider import DefaultEndpoint
from cfme.utils.version import current_version

[docs]class CustomAttribute(object):
 def __init__(self, name, value, field_type=None, href=None):
 self.name = name
 self.value = value
 self.field_type = field_type
 self.href = href

[docs]class OpenshiftDefaultEndpoint(ContainersProviderDefaultEndpoint):
 """Represents Openshift default endpoint"""
 @staticmethod
[docs] def get_ca_cert():
 """Getting OpenShift's certificate from the master machine.
 Args:
 No args.
 returns:
 certificate's content.
 """
 cert_file_path = path.join(str(data_path), 'cert-auths', 'cmqe-tests-openshift-signer.crt')
 with open(cert_file_path) as f:
 return f.read()

[docs]class HawkularEndpoint(DefaultEndpoint):
 """Represents Hawkular Endpoint"""
 name = 'hawkular'

 @property
 def view_value_mapping(self):
 out = {
 'hostname': self.hostname,
 'api_port': self.api_port
 }
 if current_version() >= '5.8':
 out['sec_protocol'] = self.sec_protocol
 if self.sec_protocol.lower() == 'ssl trusting custom ca':
 out['trusted_ca_certificates'] = OpenshiftDefaultEndpoint.get_ca_cert()
 return out

[docs]class OpenshiftProvider(ContainersProvider):
 num_route = ['num_route']
 STATS_TO_MATCH = ContainersProvider.STATS_TO_MATCH + num_route
 type_name = "openshift"
 mgmt_class = Openshift
 db_types = ["Openshift::ContainerManager"]
 endpoints_form = ContainersProviderEndpointsForm

 def __init__(self, name=None, key=None, zone=None,
 provider_data=None, endpoints=None, appliance=None):
 super(OpenshiftProvider, self).__init__(
 name=name, key=key, zone=zone, provider_data=provider_data,
 endpoints=endpoints, appliance=appliance)

 @cached_property
 def cli(self):
 return OcpCli(self)

[docs] def href(self):
 return self.appliance.rest_api.collections.providers\
 .find_by(name=self.name).resources[0].href

 @property
 def view_value_mapping(self):
 return {
 'name': self.name,
 'prov_type': 'OpenShift Container Platform',
 'zone': self.zone,
 }

 @variable(alias='db')
 def num_route(self):
 return self._num_db_generic('container_routes')

 @num_route.variant('ui')
 def num_route_ui(self):
 return int(self.get_detail("Relationships", "Routes"))

 @variable(alias='db')
 def num_template(self):
 return self._num_db_generic('container_templates')

 @num_template.variant('ui')
 def num_template_ui(self):
 return int(self.get_detail("Relationships", "Container Templates"))

 @classmethod
[docs] def from_config(cls, prov_config, prov_key, appliance=None):

 endpoints = {}
 token_creds = cls.process_credential_yaml_key(prov_config['credentials'], cred_type='token')
 for endp in prov_config['endpoints']:
 if OpenshiftDefaultEndpoint.name == endp:
 prov_config['endpoints'][endp]['token'] = token_creds.token
 endpoints[endp] = OpenshiftDefaultEndpoint(**prov_config['endpoints'][endp])
 elif HawkularEndpoint.name == endp:
 endpoints[endp] = HawkularEndpoint(**prov_config['endpoints'][endp])
 else:
 raise Exception('Unsupported endpoint type "{}".'.format(endp))

 return cls(
 name=prov_config['name'],
 key=prov_key,
 zone=prov_config['server_zone'],
 endpoints=endpoints,
 provider_data=prov_config,
 appliance=appliance)

[docs] def custom_attributes(self):
 """returns custom attributes"""
 response = self.appliance.rest_api.get(
 path.join(self.href(), 'custom_attributes'))
 out = []
 for attr_dict in response['resources']:
 attr = self.appliance.rest_api.get(attr_dict['href'])
 out.append(
 CustomAttribute(
 attr['name'], attr['value'],
 (attr['field_type'] if 'field_type' in attr else None),
 attr_dict['href']
)
)
 return out

[docs] def add_custom_attributes(self, *custom_attributes):
 """Adding static custom attributes to provider.
 Args:
 custom_attributes: The custom attributes to add.
 returns: response.
 """
 if not custom_attributes:
 raise TypeError('{} takes at least 1 argument.'
 .format(self.add_custom_attributes.__name__))
 for attr in custom_attributes:
 if not isinstance(attr, CustomAttribute):
 raise TypeError('All arguments should be of type {}. ({} != {})'
 .format(CustomAttribute, type(attr), CustomAttribute))
 payload = {
 "action": "add",
 "resources": [{
 "name": ca.name,
 "value": str(ca.value)
 } for ca in custom_attributes]}
 for i, fld_tp in enumerate([attr.field_type for attr in custom_attributes]):
 if fld_tp:
 payload['resources'][i]['field_type'] = fld_tp
 return self.appliance.rest_api.post(
 path.join(self.href(), 'custom_attributes'), **payload)

[docs] def edit_custom_attributes(self, *custom_attributes):
 """Editing static custom attributes in provider.
 Args:
 custom_attributes: The custom attributes to edit.
 returns: response.
 """
 if not custom_attributes:
 raise TypeError('{} takes at least 1 argument.'
 .format(self.edit_custom_attributes.__name__))
 for attr in custom_attributes:
 if not isinstance(attr, CustomAttribute):
 raise TypeError('All arguments should be of type {}. ({} != {})'
 .format(CustomAttribute, type(attr), CustomAttribute))
 attribs = self.custom_attributes()
 payload = {
 "action": "edit",
 "resources": [{
 "href": filter(lambda attr: attr.name == ca.name, attribs)[-1].href,
 "value": ca.value
 } for ca in custom_attributes]}
 return self.appliance.rest_api.post(
 path.join(self.href(), 'custom_attributes'), **payload)

[docs] def delete_custom_attributes(self, *custom_attributes):
 """Deleting static custom attributes from provider.

 Args:
 custom_attributes: The custom attributes to delete.
 (Could be also names (str))
 Returns: response.
 """
 names = []
 for attr in custom_attributes:
 attr_type = type(attr)
 if attr_type in (str, CustomAttribute):
 names.append(attr if attr_type is str else attr.name)
 else:
 raise TypeError('Type of arguments should be either'
 'str or CustomAttribute. ({} not in [str, CustomAttribute])'
 .format(type(attr)))
 attribs = self.custom_attributes()
 if not names:
 names = [attr.name for attr in attribs]
 payload = {
 "action": "delete",
 "resources": [{
 "href": attr.href,
 } for attr in attribs if attr.name in names]}
 return self.appliance.rest_api.post(
 path.join(self.href(), 'custom_attributes'), **payload)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/intelligence/chargeback.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.intelligence.chargeback

-*- coding: utf-8 -*-
from navmazing import NavigateToSibling
from widgetastic.widget import View
from widgetastic_manageiq import ManageIQTree
from widgetastic_patternfly import Accordion

from cfme.base import Server
from cfme.base.login import BaseLoggedInPage
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep

[docs]class ChargebackView(BaseLoggedInPage):

 @property
 def in_chargeback(self):
 return (
 self.logged_in_as_current_user and
 self.navigation.currently_selected == ['Cloud Intel', 'Chargeback'])

 @property
 def is_displayed(self):
 return self.in_chargeback

 @View.nested
 class reports(Accordion): # noqa
 tree = ManageIQTree()

 @View.nested
 class rates(Accordion): # noqa
 tree = ManageIQTree()

 @View.nested
 class assignments(Accordion): # noqa
 tree = ManageIQTree()

@navigator.register(Server)
[docs]class IntelChargeback(CFMENavigateStep):
 VIEW = ChargebackView
 prerequisite = NavigateToSibling("LoggedIn")

[docs] def step(self):
 self.prerequisite_view.navigation.select("Cloud Intel", "Chargeback")

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/intelligence/rss.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.intelligence.rss

-*- coding: utf-8 -*-
from cfme.base.login import BaseLoggedInPage

[docs]class RSSView(BaseLoggedInPage):
 @property
 def is_displayed(self):
 return (
 self.logged_in_as_current_user and
 self.navigation.currently_selected == ['Cloud Intel', 'RSS'])

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/sentaku/context.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for sentaku.context

import contextlib
import attr
import dectate
from collections import defaultdict
from .chooser import ChooserStack

METHOD_DATA_KEY = 'sentaku_method_data'

@attr.s
class ImplementationRegistrationAction(dectate.Action):
 config = {
 'methods': lambda: defaultdict(dict)
 }
 method = attr.ib()
 implementation = attr.ib()

 def identifier(self, methods):
 return self.method, self.implementation

 def perform(self, obj, methods):
 methods[self.method][self.implementation] = obj

@attr.s(hash=False)
class ImplementationContext(dectate.App):
 """ maintains a mapping
 of :ref:`implementation-identification` to implementations,
 as well as the list of currently availiable Implementations
 in the order of precedence.

 :type implementations: `collections.Mapping`
 :param implementations:
 the implementations availiable in the context

 a mapping of :ref:`implementation-identification` to implementation
 :param default_choices:
 the implementations that should be used by default
 in order of percedence
 :type default_choices: optional list
 """

 implementations = attr.ib()
 implementation_chooser = attr.ib(
 default=attr.Factory(ChooserStack), convert=ChooserStack)
 strict_calls = attr.ib(default=False)

 external_for = dectate.directive(ImplementationRegistrationAction)

 @classmethod
 def with_default_choices(cls, implementations, default_choices):
 return cls(
 implementations=implementations,
 implementation_chooser=default_choices,
)

 @property
 def impl(self):
 """the currently active implementation"""
 return self.implementation_chooser.choose(
 self.implementations).value

 def _get_implementation_for(self, key):
 self.commit()
 implementation_set = self.config.methods[key]
 return self.implementation_chooser.choose(implementation_set)

 @classmethod
 def from_instances(cls, instances):
 """utility to create the context

 by passing a ordered list of instances
 and turning them into implementations and the default choices
 """
 return cls.with_default_choices(
 implementations={type(x): x for x in instances},
 default_choices=[type(x) for x in instances],
)

 @property
 def context(self):
 """alias for consistence with elements"""
 return self

 root = context

 @contextlib.contextmanager
 def use(self, *implementation_types, **kw):
 """contextmanager for controlling
 the currently active/usable implementations and
 their order of percedence

 :param `implementation-identification` implementation_types:
 the implementations availiable within the context
 :keyword bool frozen: if True prevent further nesting
 """
 def _get_frozen(frozen=False):
 return frozen

 with self.implementation_chooser.pushed(
 implementation_types, frozen=_get_frozen(**kw)):
 yield self.impl

@attr.s
class _ImplementationBindingMethod(object):
 """bound method equivalent for :class:`ImplementationCooser`

 on call it:

 * looks up the implementation
 * freezes the context
 * calls the actual implementation
 """
 instance = attr.ib()
 selector = attr.ib()

 def __call__(self, *k, **kw):
 ctx = self.instance.context
 choice, implementation = ctx._get_implementation_for(self.selector)
 bound_method = implementation.__get__(
 self.instance, type(self.instance))
 with ctx.use(choice, frozen=ctx.strict_calls):
 return bound_method(*k, **kw)

class ContextualMethod(object):
 """
 descriptor for implementing context sensitive methods
 and registration of their implementations

 .. code:: python

 class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass
 """
 # todo - turn into attrs class once attribute ancoring is implemented
 def __repr__(self):
 return '<ContextualMethod>'

 def external_implementation_for(self, implementation):
 return ImplementationContext.external_for(self, implementation)

 def __get__(self, instance, *_ignored):
 if instance is None:
 return self
 return _ImplementationBindingMethod(instance=instance, selector=self)

class ContextualProperty(object):
 # todo - turn into attrs class once attribute ancoring is implemented
 def __init__(self):
 # setter and getter currently are lookup keys
 self.setter = self, 'set'
 self.getter = self, 'get'

 def external_setter_implemented_for(self, implementation):
 return ImplementationContext.external_for(self.setter, implementation)

 def external_getter_implemented_for(self, implementation):
 return ImplementationContext.external_for(self.getter, implementation)

 def __set__(self, instance, value):

 ctx = instance.context
 choice, implementation = ctx._get_implementation_for(self.setter)

 bound_method = implementation.__get__(instance, type(instance))
 with ctx.use(choice, frozen=True):
 return bound_method(value)

 def __get__(self, instance, owner):
 if instance is None:
 return self

 ctx = instance.context
 choice, implementation = ctx._get_implementation_for(self.getter)

 bound_method = implementation.__get__(instance, type(instance))
 with ctx.use(choice, frozen=True):
 return bound_method()

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/storage/object_store.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.storage.object_store

-*- coding: utf-8 -*-
from functools import partial
from navmazing import NavigateToSibling, NavigateToAttribute

from cfme.common import SummaryMixin, Taggable
from cfme.fixtures import pytest_selenium as sel
from cfme.web_ui import toolbar as tb
from cfme.web_ui import Quadicon, match_location, mixins
from cfme.utils.appliance.implementations.ui import navigate_to, navigator, CFMENavigateStep
from cfme.utils.appliance import Navigatable

match_page = partial(match_location, controller='cloud_object_store_container',
 title='Object Stores')

[docs]class ObjectStore(Taggable, SummaryMixin, Navigatable):
 """ Automate Model page of Cloud Object Stores

 Args:
 name: Name of Object Store
 """

 def __init__(self, name=None, appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.name = name
 self.quad_name = 'object_store'

[docs] def add_tag(self, tag, **kwargs):
 """Tags the system by given tag"""
 navigate_to(self, 'Details')
 mixins.add_tag(tag, **kwargs)

[docs] def untag(self, tag):
 """Removes the selected tag off the system"""
 navigate_to(self, 'Details')
 mixins.remove_tag(tag)

@navigator.register(ObjectStore, 'All')
[docs]class All(CFMENavigateStep):
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self):
 if self.obj.appliance.version < "5.8":
 self.prerequisite_view.navigation.select('Storage', 'Object Stores')
 else:
 self.prerequisite_view.navigation.select(
 'Storage', 'Object Storage', 'Object Store Containers')

[docs] def resetter(self):
 tb.select("Grid View")

@navigator.register(ObjectStore, 'Details')
[docs]class Details(CFMENavigateStep):
 prerequisite = NavigateToSibling('All')

[docs] def am_i_here(self):
 return match_page(summary="{} (Summary)".format(self.obj.name))

[docs] def step(self):
 sel.click(Quadicon(self.obj.name, self.obj.quad_name))

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/intelligence/reports/schedules.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.intelligence.reports »

 Source code for cfme.intelligence.reports.schedules

-*- coding: utf-8 -*-
"""Module handling schedules"""
from navmazing import NavigateToSibling, NavigateToAttribute

from widgetastic.exceptions import NoSuchElementException
from widgetastic.widget import Text, Checkbox, TextInput
from widgetastic_manageiq import Calendar, AlertEmail, Table, PaginationPane
from widgetastic_patternfly import Button, BootstrapSelect

from cfme.utils.appliance import BaseCollection, BaseEntity
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to
from cfme.utils.update import Updateable
from cfme.utils.pretty import Pretty

from . import CloudIntelReportsView

[docs]class SchedulesAllView(CloudIntelReportsView):
 title = Text("#explorer_title_text")
 schedules_table = Table(".//div[@id='records_div']/table")
 paginator = PaginationPane()

 @property
 def is_displayed(self):
 return self.in_intel_reports and self.title.text == "All Schedules"

[docs]class SchedulesFormCommon(CloudIntelReportsView):
 # Basic Information
 title = Text("#explorer_title_text")
 name = TextInput(name="name")
 description = TextInput(name="description")
 active = Checkbox("enabled")
 # Report Selection
 filter1 = BootstrapSelect("filter_typ")
 filter2 = BootstrapSelect("subfilter_typ")
 filter3 = BootstrapSelect("repfilter_typ")
 # Timer
 run = BootstrapSelect("timer_typ")
 time_zone = BootstrapSelect("time_zone")
 starting_date = Calendar("miq_date_1")
 hour = BootstrapSelect("start_hour")
 minute = BootstrapSelect("start_min")
 # Email
 emails_send = Checkbox("send_email_cb")
 emails = AlertEmail()
 send_if_empty = Checkbox("send_if_empty")
 send_txt = Checkbox("send_txt")
 send_csv = Checkbox("send_csv")
 send_pdf = Checkbox("send_pdf")
 # Buttons
 cancel_button = Button("Cancel")

[docs]class NewScheduleView(SchedulesFormCommon):
 add_button = Button("Add")

 @property
 def is_displayed(self):
 return (
 self.in_intel_reports and
 self.title.text == "Adding a new Schedule" and
 # TODO uncomment when https://bugzilla.redhat.com/show_bug.cgi?id=1441101 will be fixed
 # self.schedules.is_opened and
 self.schedules.tree.currently_selected == ["All Schedules"]
)

[docs]class EditScheduleView(SchedulesFormCommon):
 save_button = Button("Save")
 reset_button = Button("Reset")

 @property
 def is_displayed(self):
 return (
 self.in_intel_reports and
 self.title.text == 'Editing Schedule "{}"'.format(self.context["object"].name) and
 # TODO uncomment when https://bugzilla.redhat.com/show_bug.cgi?id=1441101 will be fixed
 # self.schedules.is_opened and
 self.schedules.tree.currently_selected == ["All Schedules", self.context["object"].name]
)

[docs]class ScheduleDetailsView(CloudIntelReportsView):
 title = Text("#explorer_title_text")

 @property
 def is_displayed(self):
 return (
 self.in_intel_reports and
 self.title.text == 'Schedule "{}"'.format(self.context["object"].name) and
 # TODO uncomment when https://bugzilla.redhat.com/show_bug.cgi?id=1441101 will be fixed
 # self.schedules.is_opened and
 self.schedules.tree.currently_selected == ["All Schedules", self.context["object"].name]
)

[docs]class ScheduleCollection(BaseCollection):

 def __init__(self, appliance):
 self.appliance = appliance

[docs] def instantiate(self, name, description, filter, active=None, timer=None,
 emails=None, email_options=None):
 return Schedule(self, name, description, filter, active=active, timer=timer,
 emails=emails, email_options=email_options)

[docs] def create(self, name=None, description=None, filter=None, active=None,
 timer=None, emails=None, email_options=None):
 schedule = self.instantiate(name, description, filter, active=active, timer=timer,
 emails=emails, email_options=email_options)
 view = navigate_to(self, "Add")
 view.fill({
 "name": name,
 "description": description,
 "active": active,
 "filter1": filter[0],
 "filter2": filter[1],
 "filter3": filter[2],
 "run": timer.get("run"),
 "time_zone": timer.get("time_zone"),
 "starting_date": timer.get("starting_date"),
 "hour": timer.get("hour"),
 "minute": timer.get("minute"),
 "emails_send": bool(emails),
 "emails": emails,
 "send_if_empty": email_options.get("send_if_empty"),
 "send_txt": email_options.get("send_txt"),
 "send_csv": email_options.get("send_csv"),
 "send_pdf": email_options.get("send_pdf")
 })
 view.add_button.click()
 view = schedule.create_view(ScheduleDetailsView)
 assert view.is_displayed
 # TODO Doesn't work due https://bugzilla.redhat.com/show_bug.cgi?id=1441101
 # view.flash.assert_success_message('Schedule "{}" was added'.format(name))
 return schedule

 def _select_schedules(self, schedules):
 """Select schedules in the table.

 Args:
 schedules: Schedules to select.
 Raises: :py:class:`NameError` when some of the schedules were not found.
 """
 view = navigate_to(self, "All")
 failed_selections = []
 try:
 for schedule in schedules:
 name = str(schedule)
 cell = view.table.row(name=name)[0]
 cell.check()
 except NoSuchElementException:
 failed_selections.append(name)
 if failed_selections:
 raise NameError("These schedules were not found: {}.".format(
 ", ".join(failed_selections)
))
 return view

 def _action_on_schedules(self, action, schedules, cancel=False):
 """Select schedules and perform an action on them

 Args:
 action: Action in Configuration to perform.
 schedules: List of schedules.
 cancel: If specified, the nalert is expected after clicking on action and value of the
 variable specifies handling behaviour.
 Raises: :py:class:`NameError` when some of the schedules were not found.
 """
 view = self._select_schedules(schedules)
 view.configuration.item_select(action, handle_alert=not cancel)
 # TODO https://bugzilla.redhat.com/show_bug.cgi?id=1441101
 # view.flash.assert_no_errors()

[docs] def enable_schedules(self, *schedules):
 """Select and enable specified schedules.

 Args:
 *schedules: Schedules to enable. Can be objects or strings.
 Raises: :py:class:`NameError` when some of the schedules were not found.
 """
 self._action_on_schedules("Enable the selected Schedules", schedules)

[docs] def disable_schedules(self, *schedules):
 """Select and disable specified schedules.

 Args:
 *schedules: Schedules to disable. Can be objects or strings.
 Raises: :py:class:`NameError` when some of the schedules were not found.
 """
 self._action_on_schedules("Disable the selected Schedules", schedules)

[docs] def queue_schedules(self, *schedules):
 """Select and queue specified schedules.

 Args:
 *schedules: Schedules to queue. Can be objects or strings.
 Raises: :py:class:`NameError` when some of the schedules were not found.
 """
 self._action_on_schedules("Queue up selected Schedules to run now", schedules)

[docs] def delete_schedules(self, *schedules, **kwargs):
 """Select and delete specified schedules from VMDB.

 Args:
 *schedules: Schedules to delete. Can be objects or strings.
 cancel: (kwarg) Whether to cancel the deletion (Default: False)
 Raises: :py:class:`NameError` when some of the schedules were not found.
 """
 self._action_on_schedules(
 "Delete the selected Schedules", schedules, kwargs.pop("cancel", False)
)

[docs]class Schedule(Updateable, Pretty, BaseEntity):
 """Represents a schedule in Cloud Intel/Reports/Schedules.

 Args:
 name: Schedule name.
 description: Schedule description.
 filter: 3-tuple with filter selection (see the UI).
 active: Whether is this schedule active.
 run: Specifies how often this schedule runs. It can be either string "Once", or a tuple,
 which maps to the two selects in UI ("Hourly", "Every hour")...
 time_zone: Specify time zone.
 start_date: Specify the start date.
 start_time: Specify the start time either as a string ("0:15") or tuple ("0", "15")
 send_email: If specifies, turns on e-mail sending. Can be string, or list or set.
 """
 pretty_attrs = ["name", "filter"]

 def __str__(self):
 return self.name

 def __init__(self, collection, name, description, filter, active=None, timer=None, emails=None,
 email_options=None):
 self.collection = collection
 self.appliance = self.collection.appliance
 self.name = name
 self.description = description
 self.filter = filter
 self.active = active
 self.timer = timer
 self.emails = emails
 self.email_options = email_options

 @property
 def exists(self):
 schedules = self.appliance.db["miq_schedules"]
 return self.appliance.db.session\
 .query(schedules.name)\
 .filter(schedules.name == self.name)\
 .count() > 0

[docs] def update(self, updates):
 view = navigate_to(self, "Edit")
 changed = view.fill(updates)
 if changed:
 view.save_button.click()
 else:
 view.cancel_button.click()
 view = self.create_view(ScheduleDetailsView, override=updates)
 assert view.is_displayed

 # TODO Doesn't work due https://bugzilla.redhat.com/show_bug.cgi?id=1441101
 # view.flash.assert_no_error()
 # if changed:
 # view.flash.assert_message(
 # 'Schedule "{}" was saved'.format(updates.get("name", self.name)))
 # else:
 # view.flash.assert_message(
 # 'Edit of Schedule "{}" was cancelled by the user'.format(self.name))

[docs] def delete(self, cancel=False):
 view = navigate_to(self, "Details")
 view.configuration.item_select("Delete this Schedule", handle_alert=not cancel)
 if cancel:
 assert view.is_displayed
 else:
 view = self.create_view(SchedulesAllView)
 assert view.is_displayed

 # TODO Doesn't work due https://bugzilla.redhat.com/show_bug.cgi?id=1441101
 # view.flash.assert_no_error()

[docs] def queue(self):
 """Queue this schedule."""
 view = navigate_to(self, "Details")
 view.configuration.item_select("Queue up this Schedule to run now")

@navigator.register(ScheduleCollection, "All")
[docs]class ScheduleAll(CFMENavigateStep):
 VIEW = SchedulesAllView
 prerequisite = NavigateToAttribute("appliance.server", "CloudIntelReports")

[docs] def step(self):
 self.prerequisite_view.schedules.tree.click_path("All Schedules")

@navigator.register(ScheduleCollection, "Add")
[docs]class ScheduleNew(CFMENavigateStep):
 VIEW = NewScheduleView
 prerequisite = NavigateToSibling("All")

[docs] def step(self):
 self.view.configuration.item_select("Add a new Schedule")

@navigator.register(Schedule, "Details")
[docs]class ScheduleDetails(CFMENavigateStep):
 VIEW = ScheduleDetailsView
 prerequisite = NavigateToAttribute("appliance.server", "CloudIntelReports")

[docs] def step(self):
 self.prerequisite_view.schedules.tree.click_path("All Schedules", self.obj.name)

@navigator.register(Schedule, "Edit")
[docs]class ScheduleEdit(CFMENavigateStep):
 VIEW = EditScheduleView
 prerequisite = NavigateToSibling("Details")

[docs] def step(self):
 self.prerequisite_view.configuration.item_select("Edit this Schedule")

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/storage/volume.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.storage.volume

-*- coding: utf-8 -*-
from navmazing import NavigateToSibling, NavigateToAttribute
from widgetastic_manageiq import (
 Accordion,
 BaseEntitiesView,
 BaseListEntity,
 BaseQuadIconEntity,
 BaseTileIconEntity,
 BootstrapSelect,
 BreadCrumb,
 ItemsToolBarViewSelector,
 JSBaseEntity,
 ManageIQTree,
 NonJSBaseEntity,
 SummaryTable,
 TextInput,
 Version,
 VersionPick
)
from widgetastic_patternfly import Button, Dropdown, FlashMessages
from widgetastic.widget import View, Text, ParametrizedView

from cfme.base.ui import BaseLoggedInPage
from cfme.exceptions import VolumeNotFound, ItemNotFound
from cfme.web_ui import match_location
from cfme.utils.appliance.implementations.ui import CFMENavigateStep, navigator, navigate_to
from cfme.utils.appliance import BaseCollection, BaseEntity
from cfme.utils.log import logger
from cfme.utils.wait import wait_for, TimedOutError

[docs]class VolumeToolbar(View):
 configuration = Dropdown('Configuration')
 policy = Dropdown('Policy')
 download = Dropdown('Download') # title match
 view_selector = View.nested(ItemsToolBarViewSelector)

[docs]class VolumeDetailsToolbar(View):
 configuration = Dropdown('Configuration')
 policy = Dropdown('Policy')
 download = Button('Download summary in PDF format')

[docs]class VolumeQuadIconEntity(BaseQuadIconEntity):
 pass

[docs]class VolumeTileIconEntity(BaseTileIconEntity):
 quad_icon = ParametrizedView.nested(VolumeQuadIconEntity)

[docs]class VolumeListEntity(BaseListEntity):
 pass

[docs]class NonJSVolumeEntity(NonJSBaseEntity):
 quad_entity = VolumeQuadIconEntity
 list_entity = VolumeListEntity
 tile_entity = VolumeTileIconEntity

[docs]def VolumeEntity(): # noqa
 """Temporary wrapper for Volume Entity during transition to JS based Entity """
 return VersionPick({
 Version.lowest(): NonJSVolumeEntity,
 '5.9': JSBaseEntity,
 })

[docs]class VolumeEntities(BaseEntitiesView):
 """The entities on the main list of Volume Page"""

 @property
 def entity_class(self):
 return VolumeEntity().pick(self.browser.product_version)

[docs]class VolumeDetailsEntities(View):
 breadcrumb = BreadCrumb()
 title = Text('//div[@id="main-content"]//h1')
 properties = SummaryTable('Properties')
 relationships = SummaryTable('Relationships')
 smart_management = SummaryTable('Smart Management')
 flash = FlashMessages('.//div[@id="flash_msg_div"]'
 '/div[@id="flash_text_div" or contains(@class, "flash_text_div")]')

[docs]class VolumeDetailsAccordion(View):
 @View.nested
 class properties(Accordion): # noqa
 tree = ManageIQTree()

 @View.nested
 class relationships(Accordion): # noqa
 tree = ManageIQTree()

[docs]class VolumeView(BaseLoggedInPage):
 """Base class for header and nav check"""
 @property
 def in_volume(self):
 nav = Volume.nav.pick(self.context['object'].appliance.version)
 return (
 self.logged_in_as_current_user and
 self.navigation.currently_selected == nav and
 match_location(controller='cloud_volume', title='Cloud Volumes'))

[docs]class VolumeAllView(VolumeView):
 toolbar = View.nested(VolumeToolbar)
 including_entities = View.include(VolumeEntities, use_parent=True)

 @property
 def is_displayed(self):
 return (
 self.in_volume and
 self.entities.title.text == 'Cloud Volumes'
)

[docs]class VolumeDetailsView(VolumeView):
 @property
 def is_displayed(self):
 expected_title = '{} (Summary)'.format(self.context['object'].name)
 # The field in relationships table changes based on volume status so look for either
 try:
 provider = self.entities.relationships.get_text_of('Cloud Provider')
 except NameError:
 provider = self.entities.relationships.get_text_of('Parent Cloud Provider')
 return (
 self.in_volume and
 self.entities.title.text == expected_title and
 self.entities.breadcrumb.active_location == expected_title and
 provider == self.context['object'].provider.name)

 toolbar = View.nested(VolumeDetailsToolbar)
 sidebar = View.nested(VolumeDetailsAccordion)
 entities = View.nested(VolumeDetailsEntities)

[docs]class VolumeAddEntities(View):
 breadcrumb = BreadCrumb()
 title = Text('//div[@id="main-content"]//h1')

[docs]class VolumeAddForm(View):
 volume_name = TextInput(name='name')
 size = TextInput(name='size')
 tenant = BootstrapSelect(id='cloud_tenant_id')
 add = Button('Add')
 cancel = Button('Cancel')

[docs]class VolumeAddView(VolumeView):
 @property
 def is_displayed(self):
 expected_title = "Add New Cloud Volume"
 return (
 self.in_volume and
 self.entities.title.text == expected_title and
 self.entities.breadcrumb.active_location == expected_title)

 entities = View.nested(VolumeAddEntities)
 form = View.nested(VolumeAddForm)

[docs]class VolumeCollection(BaseCollection):
 """Collection object for the :py:class:'cfme.storage.volume.Volume'. """

 def __init__(self, appliance):
 self.appliance = appliance

[docs] def instantiate(self, name, provider):
 return Volume(self, name, provider)

[docs] def delete(self, *volumes):
 """Delete one or more Volumes from list of Volumes

 Args:
 One or Multiple 'cfme.storage.volume.Volume' objects
 """

 view = navigate_to(self, 'All')

 if view.entities.get_all():
 for volume in volumes:
 try:
 view.entities.get_entity(volume.name).check()
 except ItemNotFound:
 raise VolumeNotFound("Volume {} not found".format(volume.name))

 view.toolbar.configuration.item_select('Delete selected Cloud Volumes',
 handle_alert=True)

 for volume in volumes:
 volume.wait_for_disappear()
 else:
 raise VolumeNotFound('No Cloud Volume for Deletion')

[docs]class Volume(BaseEntity):
 # Navigation menu option
 nav = VersionPick({
 Version.lowest(): ['Storage', 'Volumes'],
 '5.8': ['Storage', 'Block Storage', 'Volumes']})

 def __init__(self, collection, name, provider):
 self.name = name
 # TODO add storage provider parameter, needed for accurate details nav
 # the storage providers have different names then cloud providers
 # https://bugzilla.redhat.com/show_bug.cgi?id=1455270
 self.provider = provider
 self.collection = collection
 self.appliance = self.collection.appliance

[docs] def wait_for_disappear(self, timeout=300):
 def refresh():
 self.provider.refresh_provider_relationships()
 self.browser.refresh()

 try:
 wait_for(lambda: not self.exists,
 timeout=timeout,
 message='Wait for cloud Volume to disappear',
 delay=20,
 fail_func=refresh)
 except TimedOutError:
 logger.error('Timed out waiting for Volume to disappear, continuing')

[docs] def delete(self, wait=True):
 """Delete the Volume"""

 view = navigate_to(self, 'Details')
 view.toolbar.configuration.item_select('Delete this Cloud Volume', handle_alert=True)

 view.entities.flash.assert_success_message('Delete initiated for 1 Cloud Volume.')

 if wait:
 self.wait_for_disappear(500)

 @property
 def exists(self):
 view = navigate_to(self.collection, 'All')
 try:
 view.entities.get_entity(by_name=self.name, surf_pages=True)
 return True
 except ItemNotFound:
 return False

@navigator.register(VolumeCollection, 'All')
[docs]class VolumeAll(CFMENavigateStep):
 VIEW = VolumeAllView
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self, *args, **kwargs):
 nav = Volume.nav.pick(self.obj.appliance.version)
 self.prerequisite_view.navigation.select(*nav)

@navigator.register(Volume, 'Details')
[docs]class VolumeDetails(CFMENavigateStep):
 VIEW = VolumeDetailsView
 prerequisite = NavigateToAttribute('collection', 'All')

[docs] def step(self, *args, **kwargs):

 try:
 self.prerequisite_view.entities.get_entity(by_name=self.obj.name,
 surf_pages=True).click()

 except ItemNotFound:
 raise VolumeNotFound('Volume {} not found'.format(self.obj.name))

@navigator.register(VolumeCollection, 'Add')
[docs]class VolumeAdd(CFMENavigateStep):
 VIEW = VolumeAddView
 prerequisite = NavigateToSibling('All')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.toolbar.configuration.item_select('Add a new Cloud Volume')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/intelligence/reports.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.intelligence.reports

-*- coding: utf-8 -*-
from navmazing import NavigateToSibling
from widgetastic.utils import Parameter
from widgetastic.widget import View
from widgetastic_manageiq import ManageIQTree, MultiBoxSelect
from widgetastic_patternfly import Accordion, Button, Dropdown, FlashMessages

from cfme.base import Server
from cfme.base.login import BaseLoggedInPage
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep

[docs]class CloudIntelReportsView(BaseLoggedInPage):
 flash = FlashMessages('.//div[starts-with(@id, "flash_text_div")]')

 @property
 def in_intel_reports(self):
 return (
 self.logged_in_as_current_user and
 self.navigation.currently_selected == ["Cloud Intel", "Reports"]
)

 @property
 def is_displayed(self):
 return self.in_intel_reports and self.configuration.is_displayed

 @View.nested
 class saved_reports(Accordion): # noqa
 ACCORDION_NAME = "Saved Reports"
 tree = ManageIQTree()

 @View.nested
 class reports(Accordion): # noqa
 tree = ManageIQTree()

 @View.nested
 class schedules(Accordion): # noqa
 tree = ManageIQTree()

 @View.nested
 class dashboards(Accordion): # noqa
 tree = ManageIQTree()

 @View.nested
 class dashboard_widgets(Accordion): # noqa
 ACCORDION_NAME = "Dashboard Widgets"
 tree = ManageIQTree()

 @View.nested
 class edit_report_menus(Accordion): # noqa
 ACCORDION_NAME = "Edit Report Menus"
 tree = ManageIQTree()

 @View.nested
 class import_export(Accordion): # noqa
 ACCORDION_NAME = "Import/Export"
 tree = ManageIQTree()

 configuration = Dropdown("Configuration")

@navigator.register(Server)
[docs]class CloudIntelReports(CFMENavigateStep):
 VIEW = CloudIntelReportsView
 prerequisite = NavigateToSibling("LoggedIn")

[docs] def step(self):
 self.view.navigation.select("Cloud Intel", "Reports")

[docs]class ReportsMultiBoxSelect(MultiBoxSelect):
 move_into_button = Button(title=Parameter("@move_into"))
 move_from_button = Button(title=Parameter("@move_from"))

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/services/workloads.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.services.workloads

-*- coding: utf-8 -*-
""" A model of Workloads page in CFME
"""
from navmazing import NavigateToAttribute, NavigateToSibling
from widgetastic.widget import View, Text
from widgetastic_manageiq import Accordion, ManageIQTree, Search

from cfme.base.login import BaseLoggedInPage
from cfme.utils.appliance import Navigatable
from cfme.base import Server
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep

[docs]class WorkloadsView(BaseLoggedInPage):
 search = View.nested(Search)

 @property
 def in_workloads(self):
 return (self.logged_in_as_current_user and
 self.navigation.currently_selected == ['Services', 'Workloads'])

 @View.nested
 class vms(Accordion): # noqa
 ACCORDION_NAME = "VMs & Instances"
 tree = ManageIQTree()

 def select_global_filter(self, filter_name):
 self.tree.click_path("All VMs & Instances", "Global Filters", filter_name)

 def select_my_filter(self, filter_name):
 self.tree.click_path("All VMs & Instances", "My Filters", filter_name)

 def clear_filter(self):
 self.parent.search.clear_search()
 self.tree.click_path("All VMs & Instances")

 @View.nested
 class templates(Accordion): # noqa
 ACCORDION_NAME = "Templates & Images"
 tree = ManageIQTree()

 def select_global_filter(self, filter_name):
 self.tree.click_path("All Templates & Images", "Global Filters", filter_name)

 def select_my_filter(self, filter_name):
 self.tree.click_path("All Templates & Images", "My Filters", filter_name)

 def clear_filter(self):
 self.parent.search.clear_search()
 self.tree.click_path("All Templates & Images")

[docs]class WorkloadsVM(WorkloadsView):
 title = Text("#explorer_title_text")

 @property
 def is_displayed(self):
 return (
 self.in_workloads and
 self.title.text == 'All VMs & Instances' and
 self.vms.is_opened and
 self.vms.tree.currently_selected == [
 "All VMs & Instances"])

[docs]class WorkloadsDefaultView(WorkloadsView):
 title = Text("#explorer_title_text")

 @property
 def is_displayed(self):
 return (
 self.in_workloads and
 self.title.text == 'All VMs & Instances' and
 self.vms.is_opened)

[docs]class WorkloadsTemplate(WorkloadsView):
 title = Text("#explorer_title_text")

 @property
 def is_displayed(self):
 return (
 self.in_workloads and
 self.title.text == 'All Templates & Images' and
 self.templates.is_opened and
 self.templates.tree.currently_selected == [
 "All Templates & Images"])

[docs]class VmsInstances(Navigatable):
 """
 This is fake class mainly needed for navmazing navigation

 """
 def __init__(self, appliance=None):
 Navigatable.__init__(self, appliance)

[docs]class TemplatesImages(Navigatable):
 """
 This is fake class mainly needed for navmazing navigation

 """

 def __init__(self, appliance=None):
 Navigatable.__init__(self, appliance)

@navigator.register(Server)
[docs]class WorkloadsDefault(CFMENavigateStep):
 VIEW = WorkloadsDefaultView
 prerequisite = NavigateToSibling("LoggedIn")

[docs] def step(self):
 self.view.navigation.select("Services", "Workloads")

@navigator.register(VmsInstances, 'All')
[docs]class AllVMs(CFMENavigateStep):
 VIEW = WorkloadsVM
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.navigation.select('Services', 'Workloads')
 self.view.search.clear_search()
 self.view.vms.clear_filter()

@navigator.register(TemplatesImages, 'All')
[docs]class AllTemplates(CFMENavigateStep):
 VIEW = WorkloadsTemplate
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.navigation.select('Services', 'Workloads')
 self.view.search.clear_search()
 self.view.templates.clear_filter()

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/intelligence/reports/reports.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.intelligence.reports »

 Source code for cfme.intelligence.reports.reports

-*- coding: utf-8 -*-
"""Page model for Cloud Intel / Reports / Reports"""
from cached_property import cached_property
from navmazing import NavigateToAttribute, NavigateToSibling
from cfme.utils.wait import wait_for
from cfme.utils.pretty import Pretty
from cfme.utils.update import Updateable
from cfme.utils.timeutil import parsetime
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to
from . import CloudIntelReportsView, ReportsMultiBoxSelect

from widgetastic.utils import ParametrizedLocator
from widgetastic.widget import Text, Checkbox, View, ParametrizedView, Table as VanillaTable
from widgetastic.exceptions import NoSuchElementException
from widgetastic_manageiq import PaginationPane, Table
from widgetastic_patternfly import Button, Input, BootstrapSelect, Tab, CandidateNotFound
from cfme.web_ui.expression_editor_widgetastic import ExpressionEditor

[docs]class CustomReportFormCommon(CloudIntelReportsView):
 report_title = Text("#explorer_title_text")

 menu_name = Input("name")
 title = Input("title")
 base_report_on = BootstrapSelect("chosen_model")
 report_fields = ReportsMultiBoxSelect(
 move_into="Move selected fields down",
 move_from="Move selected fields up",
 available_items="available_fields",
 chosen_items="selected_fields"
)
 cancel_after = BootstrapSelect("chosen_queue_timeout")

 @View.nested
 class consolidation(Tab): # noqa
 column1 = BootstrapSelect("chosen_pivot1")
 column2 = BootstrapSelect("chosen_pivot2")
 column3 = BootstrapSelect("chosen_pivot3")

 @View.nested
 class formatting(Tab): # noqa
 page_size = BootstrapSelect("pdf_page_size")

 @View.nested
 class styling(Tab): # noqa
 pass

 @View.nested
 class filter(Tab): # noqa
 filter_show_costs = BootstrapSelect("cb_show_typ")
 filter_owner = BootstrapSelect("cb_owner_id")
 filter_tag_cat = BootstrapSelect("cb_tag_cat")
 filter_tag_value = BootstrapSelect("cb_tag_value")
 interval_end = BootstrapSelect("cb_end_interval_offset")
 primary_filter = ExpressionEditor()
 secondary_filter = ExpressionEditor()

 @View.nested
 class summary(Tab): # noqa
 sort_by = BootstrapSelect("chosen_sort1")
 sort_order = BootstrapSelect("sort_order")
 show_breaks = BootstrapSelect("sort_group")
 sort_by_2 = BootstrapSelect("chosen_sort2")
 row_limit = BootstrapSelect("row_limit")

 @View.nested
 class charts(Tab): # noqa
 chart_type = BootstrapSelect("chosen_graph")
 chart_mode = BootstrapSelect("chart_mode")
 values_to_show = BootstrapSelect("chosen_count")
 sum_other_values = Checkbox("chosen_other")

 @View.nested
 class timeline(Tab): # noqa
 based_on = BootstrapSelect("chosen_tl")
 position = BootstrapSelect("chosen_position")

 cancel_button = Button("Cancel")

[docs]class NewCustomReportView(CustomReportFormCommon):
 add_button = Button("Add")

 @property
 def is_displayed(self):
 return (
 self.in_intel_reports and
 self.reports.is_opened and
 self.report_title.text == "Adding a new Report" and
 self.reports.tree.currently_selected == ["All Reports"]
)

[docs]class EditCustomReportView(CustomReportFormCommon):
 save_button = Button("Save")

 @property
 def is_displayed(self):
 return (
 self.in_intel_reports and
 self.reports.is_opened and
 self.reports.tree.currently_selected == [
 "All Reports",
 "My Company (All EVM Groups)",
 "Custom",
 self.context["object"].menu_name
] and
 self.report_title.text == 'Editing Report "{}"'.format(self.context["object"].menu_name)
)

[docs]class CustomReportDetailsView(CloudIntelReportsView):
 title = Text("#explorer_title_text")
 reload_button = Button(title="Reload current display")

 @View.nested
 class report_info(Tab): # noqa
 TAB_NAME = "Report Info"
 queue_button = Button("Queue")

 @View.nested
 class saved_reports(Tab): # noqa
 TAB_NAME = "Saved Reports"
 table = Table(".//div[@id='records_div']/table")
 paginator = PaginationPane()

 @property
 def is_displayed(self):
 return (
 self.in_intel_reports and
 self.reports.is_opened and
 self.report_info.is_active() and
 self.reports.tree.currently_selected == [
 "All Reports",
 "My Company (All EVM Groups)",
 "Custom",
 self.context["object"].menu_name
] and
 self.title.text == 'Report "{}"'.format(self.context["object"].menu_name)
)

[docs]class AllReportsView(CloudIntelReportsView):
 title = Text("#explorer_title_text")
 reports_table = VanillaTable(".//div[@id='report_list_div']/table")

 @property
 def is_displayed(self):
 return (
 self.in_intel_reports and
 self.reports.is_opened and
 self.reports.tree.currently_selected == ["All Reports"] and
 self.title.text == "All Reports" and
 self.reports_table.is_displayed
)

[docs]class AllCustomReportsView(CloudIntelReportsView):
 title = Text("#explorer_title_text")

 @property
 def is_displayed(self):
 return (
 self.in_intel_reports and
 self.reports.is_opened and
 self.reports.tree.currently_selected == [
 "All Reports",
 "My Company (All EVM Groups)",
 "Custom"
] and
 self.title.text == "Custom Reports"
)

[docs]class CustomReport(Updateable, Navigatable):
 _default_dict = {
 "menu_name": None,
 "title": None,
 "base_report_on": None,
 "report_fields": None,
 "cancel_after": None,
 "consolidation": None,
 "formatting": None,
 "styling": None,
 "filter": None,
 "summary": None,
 "charts": None,
 "timeline": None
 }

 def __init__(self, appliance=None, **values):
 Navigatable.__init__(self, appliance=appliance)
 # We will override the original dict
 self.__dict__ = dict(self._default_dict)
 self.__dict__.update(values)
 # We need to pass the knowledge whether it is a candu report
 try:
 self.is_candu
 except AttributeError:
 self.is_candu = False

[docs] def create(self, cancel=False):
 view = navigate_to(self, "Add")
 view.fill(self.__dict__)
 view.add_button.click()
 view = self.create_view(AllReportsView)
 assert view.is_displayed
 view.flash.assert_no_error()
 view.flash.assert_message('Report "{}" was added'.format(self.menu_name))

[docs] def update(self, updates):
 view = navigate_to(self, "Edit")
 changed = view.fill(updates)
 if changed:
 view.save_button.click()
 else:
 view.cancel_button.click()
 for attr, value in updates.items():
 setattr(self, attr, value)
 view = self.create_view(CustomReportDetailsView)
 assert view.is_displayed
 view.flash.assert_no_error()
 if changed:
 view.flash.assert_message(
 'Report "{}" was saved'.format(self.menu_name))
 else:
 view.flash.assert_message(
 'Edit of Report "{}" was cancelled by the user'.format(self.menu_name))

[docs] def delete(self, cancel=False):
 view = navigate_to(self, "Details")
 node = view.reports.tree.expand_path("All Reports", "My Company (All EVM Groups)", "Custom")
 custom_reports_number = len(view.reports.tree.child_items(node))
 view.configuration.item_select("Delete this Report from the Database",
 handle_alert=not cancel)
 if cancel:
 assert view.is_displayed
 view.flash.assert_no_error()
 else:
 # This check needs because after deleting the last custom report
 # whole "My Company (All EVM Groups)" branch in the tree will be removed.
 if custom_reports_number > 1:
 view = self.create_view(AllCustomReportsView)
 assert view.is_displayed
 view.flash.assert_no_error()
 view.flash.assert_message(
 'Report "{}": Delete successful'.format(self.menu_name))

[docs] def get_saved_reports(self):
 view = navigate_to(self, "Details")
 results = []
 try:
 for _ in view.saved_reports.paginator.pages():
 for row in view.saved_reports.table.rows():
 results.append(
 CustomSavedReport(self, row.run_at.text.encode("utf-8"),
 row.queued_at.text.encode("utf-8"), self.is_candu)
)
 except NoSuchElementException:
 pass
 return results

[docs] def queue(self, wait_for_finish=False):
 view = navigate_to(self, "Details")
 view.report_info.queue_button.click()
 view.flash.assert_no_error()
 if wait_for_finish:
 # Get the queued_at value to always target the correct row
 queued_at = view.saved_reports.table[0]["Queued At"].text

 def _get_state():
 row = view.saved_reports.table.row(queued_at=queued_at)
 status = row.status.text.strip().lower()
 assert status != "error"
 return status == "complete"

 wait_for(
 _get_state,
 delay=1,
 message="wait for report generation finished",
 fail_func=view.reload_button.click,
 num_sec=300,
)

[docs]class CustomSavedReportDetailsView(CloudIntelReportsView):
 title = Text("#explorer_title_text")
 table = VanillaTable(".//div[@id='report_html_div']/table")
 paginator = PaginationPane()

 @ParametrizedView.nested
 class download(ParametrizedView): # noqa
 PARAMETERS = ("format",)
 ALL_LINKS = ".//a[starts-with(@name, 'download_choice__render_report_')]"
 download_button = Button(title="Download")
 link = Text(ParametrizedLocator(".//a[normalize-space()={format|quote}]"))

 def __init__(self, *args, **kwargs):
 ParametrizedView.__init__(self, *args, **kwargs)
 self.download_button.click()
 self.link.click()

 @classmethod
 def all(cls, browser):
 return [(browser.text(e),) for e in browser.elements(cls.ALL_LINKS)]

 @property
 def is_displayed(self):
 return (
 self.in_intel_reports and
 self.reports.is_opened and
 self.reports.tree.currently_selected == [
 "All Reports",
 "My Company (All EVM Groups)",
 "Custom",
 self.context["object"].report.menu_name,
 self.context["object"].datetime_in_tree
] and
 self.title.text == 'Saved Report "{} - {}"'.format(
 self.context["object"].report.title,
 self.context["object"].queued_datetime_in_title
)
)

[docs]class CustomSavedReport(Updateable, Pretty, Navigatable):
 """Custom Saved Report. Enables us to retrieve data from the table.

 Args:
 report: Report that we have data from.
 run_datetime: Datetime of "Run At" of the report. That's what :py:func:`queue` returns.
 queued_datetime: Datetime of "Queued At" of the report.
 candu: If it is a C&U report, in that case it uses a different table.
 """

 pretty_attrs = ["report", "run_datetime", "queued_datetime"]

 def __init__(self, report, run_datetime, queued_datetime, candu=False, appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.report = report
 self.run_datetime = run_datetime
 self.queued_datetime_in_title = parsetime.from_american_with_utc(
 queued_datetime).to_saved_report_title_format()
 self.datetime_in_tree = parsetime.from_american_with_utc(
 self.run_datetime).to_iso_with_utc()
 self.candu = candu

 @cached_property
 def data(self):
 """Retrieves data from the saved report.

 Returns: :py:class:`SavedReportData`.
 """
 view = navigate_to(self, "Details")
 view.paginator.set_items_per_page(1000)
 try:
 headers = tuple([hdr.encode("utf-8") for hdr in view.table.headers])
 body = []
 for _ in view.paginator.pages():
 for row in view.table.rows():
 if not all([c[1].is_displayed for c in row]):
 # This is a temporary workaround for cases we have row span
 # greater that 1 column (e.g. in case of "Totals: ddd" column).
 # TODO: Support this functionality in widgetastic. Issue:
 # https://github.com/RedHatQE/widgetastic.core/issues/26
 continue
 row_data = tuple([row[header].text.encode("utf-8") for header in headers])
 body.append(row_data)
 except NoSuchElementException:
 # No data found
 return SavedReportData([], [])
 else:
 return SavedReportData(headers, body)

[docs] def download(self, extension):
 view = navigate_to(self, "Details")
 extensions_mapping = {"txt": "Text", "csv": "CSV", "pdf": "PDF"}
 try:
 view.download("Download as {}".format(extensions_mapping[extension]))
 except NoSuchElementException:
 raise ValueError("Unknown extention. check the extentions_mapping")

[docs]class SavedReportData(Pretty):
 """This class stores data retrieved from saved report.

 Args:
 headers: Tuple with header columns.
 body: List of tuples with body rows.
 """
 pretty_attrs = ["headers", "body"]

 def __init__(self, headers, body):
 self.headers = headers
 self.body = body

 @property
 def rows(self):
 for row in self.body:
 yield dict(zip(self.headers, row))

[docs] def find_row(self, column, value):
 if column not in self.headers:
 return None
 for row in self.rows:
 if row[column] == value:
 return row

[docs] def find_cell(self, column, value, cell):
 try:
 return self.find_row(column, value)[cell]
 except TypeError:
 return None

[docs]class CannedReportView(CustomReportDetailsView):

 @property
 def is_displayed(self):
 return (
 self.in_intel_reports and
 self.reports.is_opened and
 self.report_info.is_active() and
 self.reports.tree.currently_selected == (["All Reports"] +
 self.context["object"].path) and
 self.title.text == 'Report "{}"'.format(self.context["object"].path[-1])
)

[docs]class CannedSavedReportView(CustomSavedReportDetailsView):

 @property
 def is_displayed(self):
 return (
 self.in_intel_reports and
 self.reports.is_opened and
 self.reports.tree.currently_selected == (
 ["All Reports"] + self.context["object"].path
) and
 self.title.text == 'Saved Report "{} - {}"'.format(
 self.context["object"].path[-1],
 self.context["object"].queued_datetime_in_title
)
)

[docs]class CannedSavedReport(CustomSavedReport, Navigatable):
 """As we cannot create or edit canned reports, we don't know their titles and so, so we
 need to change the navigation a little bit for it to work correctly.

 Args:
 path_to_report: Iterable with path to report.
 datetime: Datetime of "Run At" of the report. That's what :py:func:`queue_canned_report`
 returns.
 """

 def __init__(self, path_to_report, run_datetime, queued_datetime, candu=False, appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.path = path_to_report
 self.datetime = run_datetime
 self.candu = candu
 self.queued_datetime_in_title = parsetime.from_american_with_utc(
 queued_datetime).to_saved_report_title_format()
 self.datetime_in_tree = parsetime.from_american_with_utc(self.datetime).to_iso_with_utc()

[docs] def navigate(self):
 navigate_to(self, "Info")

 @classmethod
[docs] def new(cls, path):
 return cls(path, *cls.queue_canned_report(path))

 @classmethod
[docs] def queue_canned_report(cls, path):
 """Queue report from selection of pre-prepared reports.

 Args:
 *path: Path in tree after All Reports
 Returns: Value of Run At in the table so the run can be then checked.
 """
 cls.path = path
 view = navigate_to(cls, "Info")
 assert view.is_displayed
 view.report_info.queue_button.click()
 view.flash.assert_no_error()
 view.flash.assert_message("Report has been successfully queued to run")
 queued_at = view.saved_reports.table[0]["Queued At"].text

 def _get_state():
 row = view.saved_reports.table.row(queued_at=queued_at)
 status = row.status.text.strip().lower()
 assert status != "error"
 return status == "complete"

 wait_for(
 _get_state,
 delay=1,
 message="wait for report generation finished",
 fail_func=view.reload_button.click,
 num_sec=300,
)
 first_row = view.saved_reports.table[0]
 return first_row.run_at.text, first_row.queued_at.text

[docs] def get_saved_canned_reports(self, *path):
 view = navigate_to(self, "Info")
 results = []
 try:
 for _ in view.saved_reports.paginator.pages():
 for row in view.saved_reports.table.rows():
 if not all([c[1].is_displayed for c in row]):
 # This is a temporary workaround for cases we have row span
 # greater that 1 column (e.g. in case of "Totals: ddd" column).
 # TODO: Support this functionality in widgetastic. Issue:
 # https://github.com/RedHatQE/widgetastic.core/issues/26
 continue
 results.append(
 CannedSavedReport(
 path,
 row.run_at.text.encode("utf-8"),
 row.queued_at.text.encode("utf-8")
)
)
 except NoSuchElementException:
 pass
 return results

[docs] def delete(self, cancel=False):
 view = navigate_to(self, "Info")
 cell = view.saved_reports.table.row(run_at=self.datetime)[0]
 cell.check()
 view.configuration.item_select(
 "Delete this Saved Report from the Database",
 handle_alert=not cancel
)
 if cancel:
 assert view.is_displayed
 view.flash.assert_no_error()
 else:
 view.flash.assert_no_error()

 # TODO Doesn't work due to this BZ https://bugzilla.redhat.com/show_bug.cgi?id=1489387
 # view.flash.assert_message("Successfully deleted Saved Report from the CFME Database")

 @property
 def exists(self):
 try:
 navigate_to(self, 'Info')
 return True
 except CandidateNotFound:
 return False

[docs] def delete_if_exists(self):
 if self.exists:
 self.delete()

@navigator.register(CustomReport, "Add")
[docs]class CustomReportNew(CFMENavigateStep):
 VIEW = NewCustomReportView
 prerequisite = NavigateToAttribute("appliance.server", "CloudIntelReports")

[docs] def step(self):
 self.prerequisite_view.reports.tree.click_path("All Reports")
 self.prerequisite_view.configuration.item_select("Add a new Report")

@navigator.register(CustomReport, "Edit")
[docs]class CustomReportEdit(CFMENavigateStep):
 VIEW = EditCustomReportView
 prerequisite = NavigateToSibling("Details")

[docs] def step(self):
 self.prerequisite_view.configuration.item_select("Edit this Report")

@navigator.register(CustomReport, "Details")
[docs]class CustomReportDetails(CFMENavigateStep):
 VIEW = CustomReportDetailsView
 prerequisite = NavigateToAttribute("appliance.server", "CloudIntelReports")

[docs] def step(self):
 self.prerequisite_view.reports.tree.click_path(
 "All Reports",
 "My Company (All EVM Groups)",
 "Custom",
 self.obj.menu_name
)
 self.view.report_info.select()

@navigator.register(CustomSavedReport, "Details")
[docs]class CustomSavedReportDetails(CFMENavigateStep):
 VIEW = CustomSavedReportDetailsView
 prerequisite = NavigateToAttribute("appliance.server", "CloudIntelReports")

[docs] def step(self):
 self.prerequisite_view.reports.tree.click_path(
 "All Reports",
 "My Company (All EVM Groups)",
 "Custom",
 self.obj.report.menu_name,
 self.obj.datetime_in_tree
)

@navigator.register(CannedSavedReport, "Details")
[docs]class CannedSavedReportDetails(CFMENavigateStep):
 VIEW = CannedSavedReportView
 prerequisite = NavigateToAttribute("appliance.server", "CloudIntelReports")

[docs] def step(self):
 path = self.obj.path + [self.obj.datetime_in_tree]
 self.prerequisite_view.reports.tree.click_path("All Reports", *path)

@navigator.register(CannedSavedReport, "Info")
[docs]class CannedReportInfo(CFMENavigateStep):
 VIEW = CannedReportView
 prerequisite = NavigateToAttribute("appliance.server", "CloudIntelReports")

[docs] def step(self):
 self.prerequisite_view.reports.tree.click_path("All Reports", *self.obj.path)

@navigator.register(CustomReport, "All")
[docs]class CustomReportAll(CFMENavigateStep):
 VIEW = AllReportsView
 prerequisite = NavigateToAttribute("appliance.server", "CloudIntelReports")

[docs] def step(self):
 self.prerequisite_view.reports.tree.click_path("All Reports")

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/services/dashboard.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.services.dashboard

import sentaku

from cfme.utils.appliance import Navigatable

[docs]class Dashboard(Navigatable, sentaku.modeling.ElementMixin):
 """ Dashboard main class for SSUI."""

 total_service = sentaku.ContextualMethod()
 total_request = sentaku.ContextualMethod()
 retiring_soon = sentaku.ContextualMethod()
 current_services = sentaku.ContextualMethod()
 retired_services = sentaku.ContextualMethod()
 monthly_charges = sentaku.ContextualMethod()

 def __init__(self, appliance):
 self.appliance = appliance
 self.parent = self.appliance.context

from . import ssui # NOQA last for import cycles
sentaku.register_external_implementations_in(ssui)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/intelligence/reports/widgets.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.intelligence.reports »

 Source code for cfme.intelligence.reports.widgets

-*- coding: utf-8 -*-
"""Page model for Cloud Intel / Reports / Dashboard Widgets"""
from cfme.utils.wait import wait_for
from cfme.utils.pretty import Pretty
from cfme.utils.update import Updateable
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import CFMENavigateStep, navigator, navigate_to
from widgetastic.widget import Text, Checkbox
from widgetastic_manageiq import SummaryFormItem
from widgetastic_patternfly import Button, Input, BootstrapSelect
from navmazing import NavigateToAttribute
from cfme.intelligence.reports import CloudIntelReportsView

[docs]class BaseDashboardReportWidget(Updateable, Pretty, Navigatable):

 # This string is a title of a widget type in the tree
 TYPE = None
 # This string is a part of widgets title
 TITLE = None
 pretty_attrs = []

[docs] def generate(self, wait=True, cancel=False, **kwargs):
 view = navigate_to(self, "Details")
 view.configuration.item_select(
 "Generate Widget content now",
 handle_alert=not cancel
)
 view.flash.assert_message("Content generation for this Widget has been initiated")
 view.flash.assert_no_error()
 if wait:
 self.wait_generated(**kwargs)

[docs] def refresh(self):
 view = navigate_to(self, "Details")
 view.reload_button.click()

[docs] def wait_generated(self, timeout=600):
 wait_for(
 self.check_status,
 num_sec=timeout, delay=5, fail_condition=lambda result: result != "Complete",
 fail_func=self.refresh)

[docs] def check_status(self):
 view = navigate_to(self, "Details")
 return view.status_info.text

[docs] def create(self):
 """Create this Widget in the UI."""
 view = navigate_to(self, "Add")
 view.fill(self.fill_dict)
 view.add_button.click()
 view = self.create_view(AllDashboardWidgetsView)
 assert view.is_displayed
 view.flash.assert_no_error()
 view.flash.assert_message('Widget "{}" was saved'.format(self.title))

[docs] def update(self, updates):
 """Update this Widget in the UI.

 Args:
 updates: Provided by update() context manager.
 cancel: Whether to cancel the update (default False).
 """
 view = navigate_to(self, "Edit")
 changed = view.fill(updates)
 if changed:
 view.save_button.click()
 else:
 view.cancel_button.click()
 for attr, value in updates.items():
 setattr(self, attr, value)
 view = self.create_view(DashboardWidgetDetailsView)
 assert view.is_displayed
 view.flash.assert_no_error()
 if changed:
 view.flash.assert_message('Widget "{}" was saved'.format(self.title))
 else:
 view.flash.assert_message(
 'Edit of Widget "{}" was cancelled by the user'.format(self.description))

[docs] def delete(self, cancel=False):
 """Delete this Widget in the UI.

 Args:
 cancel: Whether to cancel the deletion (default False).
 """
 view = navigate_to(self, "Details")
 view.configuration.item_select(
 "Delete this Widget from the Database",
 handle_alert=not cancel
)
 if cancel:
 assert view.is_displayed
 view.flash.assert_no_error()
 else:
 view = self.create_view(AllDashboardWidgetsView)
 assert view.is_displayed
 view.flash.assert_no_error()

[docs]class DashboardWidgetsView(CloudIntelReportsView):

 @property
 def in_dashboard_widgets(self):
 return self.in_intel_reports and self.dashboard_widgets.is_opened

 @property
 def is_displayed(self):
 return self.in_dashboard_widgets

[docs]class AllDashboardWidgetsView(DashboardWidgetsView):
 title = Text("#explorer_title_text")

 @property
 def is_displayed(self):
 return (
 self.in_dashboard_widgets and
 self.title.text == "{} Widgets".format(self.context["object"].TITLE) and
 self.dashboard_widgets.tree.currently_selected == [
 "All Widgets",
 self.context["object"].TYPE
]
)

[docs]class DashboardWidgetDetailsView(DashboardWidgetsView):

 title = Text("#explorer_title_text")
 status_info = SummaryFormItem("Status", "Current Status")
 reload_button = Button(title="Reload current display")

 @property
 def is_displayed(self):
 return (
 self.in_dashboard_widgets and
 self.title.text == '{} Widget "{}"'.format(
 self.context["object"].TITLE, self.context["object"].title) and
 self.dashboard_widgets.tree.currently_selected == [
 "All Widgets",
 self.context["object"].TYPE,
 self.context["object"].title
]
)

[docs]class BaseDashboardWidgetFormCommon(DashboardWidgetsView):

 title = Text("#explorer_title_text")
 widget_title = Input(name="title")
 description = Input(name="description")
 active = Checkbox("enabled")
 visibility = BootstrapSelect("visibility_typ")
 # TODO add roles and groups CheckboxSelect
 cancel_button = Button("Cancel")

[docs]class BaseNewDashboardWidgetView(DashboardWidgetsView):

 add_button = Button("Add")

 @property
 def is_displayed(self):
 return (
 self.in_dashboard_widgets and
 self.title.text == "Adding a new Widget" and
 self.dashboard_widgets.tree.currently_selected == [
 "All Widgets",
 self.context["object"].TYPE
]
)

[docs]class BaseEditDashboardWidgetView(DashboardWidgetsView):

 save_button = Button("Save")
 reset_button = Button("Reset")

 @property
 def is_displayed(self):
 return (
 self.in_dashboard_widgets and
 self.title_text == 'Editing Widget "{}"'.format(self.context["object"]) and
 self.dashboard_widgets.tree.currently_selected == [
 "All Widgets",
 self.context["object"].TYPE,
 self.context["object"].title
]
)

[docs]class BaseNewDashboardWidgetStep(CFMENavigateStep):
 VIEW = None
 prerequisite = NavigateToAttribute("appliance.server", "CloudIntelReports")

[docs] def step(self):
 self.view.dashboard_widgets.tree.click_path(
 "All Widgets",
 self.obj.TYPE
)
 self.view.configuration.item_select("Add a new Widget")

@navigator.register(BaseDashboardReportWidget, "Details")
[docs]class BaseDashboardWidgetDetailsStep(CFMENavigateStep):
 VIEW = DashboardWidgetDetailsView
 prerequisite = NavigateToAttribute("appliance.server", "CloudIntelReports")

[docs] def step(self):
 self.view.dashboard_widgets.tree.click_path(
 "All Widgets",
 self.obj.TYPE,
 self.obj.title
)

[docs]class BaseEditDashboardWidgetStep(BaseDashboardWidgetDetailsStep):

[docs] def step(self):
 super(BaseEditDashboardWidgetStep, self).step()
 self.view.configuration.item_select("Edit this Widget")

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/containers/node.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.containers.node

-*- coding: utf-8 -*-
added new list_tbl definition
from functools import partial
import random
import itertools
from cached_property import cached_property

from wrapanapi.containers.node import Node as ApiNode

from navmazing import NavigateToAttribute, NavigateToSibling
from widgetastic.widget import View
from widgetastic_manageiq import (BootstrapSelect, Button, Table, Accordion, ManageIQTree,
 PaginationPane, BaseNonInteractiveEntitiesView)

from cfme.common import Taggable, SummaryMixin
from cfme.containers.provider import ContainersProvider, Labelable,\
 ContainerObjectAllBaseView, LoggingableView
from cfme.exceptions import NodeNotFound
from cfme.fixtures import pytest_selenium as sel
from cfme.web_ui import CheckboxTable, toolbar as tb, InfoBlock, match_location
from cfme.utils.appliance import BaseCollection, BaseEntity
from cfme.utils.appliance.implementations.ui import CFMENavigateStep, navigator, navigate_to

list_tbl = CheckboxTable(table_locator="//div[@id='list_grid']//table")

match_page = partial(match_location, controller='container_node', title='Nodes')

TODO Replace with resource table widget
resource_locator = "//div[@id='records_div']/table//span[@title='{}']"

[docs]class NodeView(ContainerObjectAllBaseView, LoggingableView):
 TITLE_TEXT = "Nodes"

 nodes = Table(locator="//div[@id='list_grid']//table")

 @property
 def table(self):
 return self.nodes

 @property
 def in_cloud_instance(self):
 return (
 self.logged_in_as_current_user and
 self.navigation.currently_selected == ['Compute', 'Containers', 'Container Nodes'] and
 match_page() # No summary, just match controller and title
)

[docs]class NodeCollection(BaseCollection):
 """Collection object for :py:class:`Node`."""

 def __init__(self, appliance):
 self.appliance = appliance

[docs] def instantiate(self, name, provider):
 return Node(name=name, provider=provider, collection=self)

[docs] def all(self):
 # container_nodes table has ems_id, join with ext_mgmgt_systems on id for provider name
 node_table = self.appliance.db.client['container_nodes']
 ems_table = self.appliance.db.client['ext_management_systems']
 node_query = self.appliance.db.client.session.query(node_table.name, ems_table.name)\
 .join(ems_table, node_table.ems_id == ems_table.id)
 nodes = []
 for name, provider_name in node_query.all():
 # Hopefully we can get by with just provider name?
 nodes.append(Node(name=name,
 provider=ContainersProvider(name=provider_name,
 appliance=self.appliance),
 collection=self))
 return nodes

[docs]class NodeAllView(NodeView):
 @property
 def is_displayed(self):
 return (
 self.in_cloud_instance and
 match_page(summary='Nodes')
)

 paginator = PaginationPane()

[docs]class Node(Taggable, Labelable, SummaryMixin, BaseEntity):

 PLURAL = 'Nodes'

 def __init__(self, name, provider, collection):
 self.name = name
 self.provider = provider
 self.collection = collection
 self.appliance = self.collection.appliance

 @cached_property
 def mgmt(self):
 return ApiNode(self.provider.mgmt, self.name)

[docs] def load_details(self, refresh=False):
 navigate_to(self, 'Details')
 if refresh:
 tb.refresh()

[docs] def get_detail(self, *ident):
 """ Gets details from the details infoblock
 Args:
 *ident: Table name and Key name, e.g. "Relationships", "Images"
 Returns: A string representing the contents of the summary's value.
 """
 self.load_details()
 return InfoBlock.text(*ident)

 @classmethod
[docs] def get_random_instances(cls, provider, count=1, appliance=None):
 """Generating random instances."""
 node_list = provider.mgmt.list_node()
 random.shuffle(node_list)
 return [cls(obj.name, provider, appliance=appliance)
 for obj in itertools.islice(node_list, count)]

Still registering Node to keep on consistency on container objects navigations
@navigator.register(Node, 'All')
@navigator.register(NodeCollection, 'All')
[docs]class All(CFMENavigateStep):
 VIEW = NodeAllView
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.navigation.select('Compute', 'Containers', 'Container Nodes')

[docs] def resetter(self):
 # Reset view and selection
 tb.select("List View")

[docs]class NodeDetailsView(NodeView):
 download = Button(name='download_view')

 @property
 def is_displayed(self):
 return (
 self.in_cloud_instance and
 match_page(summary='{} (Summary)'.format(self.context['object'].name))
)

 @View.nested
 class properties(Accordion): # noqa
 tree = ManageIQTree()

 @View.nested
 class relationships(Accordion): # noqa
 tree = ManageIQTree()

@navigator.register(Node, 'Details')
[docs]class Details(CFMENavigateStep):
 VIEW = NodeDetailsView
 prerequisite = NavigateToAttribute('collection', 'All')

[docs] def step(self, *args, **kwargs):
 # Need to account for paged view
 for _ in self.prerequisite_view.paginator.pages():
 row = self.view.nodes.row(name=self.obj.name, provider=self.obj.provider.name)
 if row:
 row.click()
 break
 else:
 raise NodeNotFound('Failed to navigate to node, could not find matching row')

[docs]class NodeEditTagsForm(NodeView):
 tag_category = BootstrapSelect('tag_cat')
 tag = BootstrapSelect('tag_add')
 # TODO: table for added tags with removal support
 # less than ideal button duplication between classes
 entities = View.nested(BaseNonInteractiveEntitiesView)
 save_button = Button('Save')
 reset_button = Button('Reset')
 cancel_button = Button('Cancel')

 @property
 def is_displayed(self):
 return (
 self.in_cloud_instance and
 match_page(summary='Tag Assignment') and
 sel.is_displayed(resource_locator.format(self.context['object'].name))
)

@navigator.register(Node, 'EditTags')
[docs]class EditTags(CFMENavigateStep):
 VIEW = NodeEditTagsForm
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.policy.item_select('Edit Tags')

[docs]class NodeManagePoliciesForm(NodeView):
 policy_profiles = BootstrapSelect('protectbox')
 # less than ideal button duplication between classes
 entities = View.nested(BaseNonInteractiveEntitiesView)
 save_button = Button('Save')
 reset_button = Button('Reset')
 cancel_button = Button('Cancel')

 @property
 def is_displayed(self):
 return (
 self.in_cloud_instance and
 match_page(summary='Select Policy Profiles') and
 sel.is_displayed(resource_locator.format(self.context['object'].name))
)

@navigator.register(Node, 'ManagePolicies')
[docs]class ManagePolicies(CFMENavigateStep):
 VIEW = NodeManagePoliciesForm
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.policy.item_select('Manage Policies')

[docs]class NodeUtilizationView(NodeView):
 # TODO manageIQ/patternfly C&U view/widget?

 @property
 def is_displayed(self):
 return (
 self.in_cloud_instance and
 match_page(summary='{} Capacity & Utilization'.format(self.context['object'].name))
)

@navigator.register(Node, 'Utilization')
[docs]class Utilization(CFMENavigateStep):
 VIEW = NodeUtilizationView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.monitor.item_select('Utilization')

[docs]class NodeTimelinesForm(NodeView):
 # TODO PR 3710, timeline widget

 @property
 def is_displayed(self):
 return (
 self.in_cloud_instance and
 match_page(summary='Timelines'.format(self.context['object'].name)) and
 # TODO: PR 3710 adds BreadCrumb widget, replace False with breadcrumb check
 # Can't use accordion because it truncates the name
 # sel.is_displayed(details_accordion_locator.format(self.context['object'].name))
 False
)

@navigator.register(Node, 'Timelines')
[docs]class Timelines(CFMENavigateStep):
 VIEW = NodeTimelinesForm
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.monitor.item_select('Timelines')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/control/explorer/alert_profiles.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.control.explorer »

 Source code for cfme.control.explorer.alert_profiles

-*- coding: utf-8 -*-
from navmazing import NavigateToAttribute
from widgetastic.widget import Text, TextInput
from widgetastic_manageiq import CheckableManageIQTree, MultiBoxSelect
from widgetastic_patternfly import BootstrapSelect, Button, Input

from . import ControlExplorerView
from cfme.utils import version, ParamClassName
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import navigator, navigate_to, CFMENavigateStep
from cfme.utils.pretty import Pretty
from cfme.utils.update import Updateable

[docs]class AlertProfileFormCommon(ControlExplorerView):
 title = Text("#explorer_title_text")

 description = Input(name="description")
 notes = TextInput(name="notes")
 alerts = MultiBoxSelect()

 cancel_button = Button("Cancel")

[docs]class NewAlertProfileView(AlertProfileFormCommon):
 add_button = Button("Add")

 @property
 def is_displayed(self):
 return (
 self.in_control_explorer and
 self.title.text == "Adding a new Alert Profile" and
 self.alert_profiles.tree.currently_selected == [
 "All Alert Profiles",
 "{} Alert Profiles".format(self.context["object"].TYPE)
]
)

[docs]class EditAlertProfileView(AlertProfileFormCommon):
 save_button = Button("Save")

 @property
 def is_displayed(self):
 return (
 self.in_control_explorer and
 self.title.text == 'Editing {} Alert Profile "{}"'.format(
 self.context["object"].TYPE,
 self.context["object"].description) and
 self.alert_profiles.tree.currently_selected == [
 "All Alert Profiles",
 self.context["object"].description
]
)

[docs]class AlertProfileDetailsView(ControlExplorerView):
 title = Text("#explorer_title_text")

 @property
 def is_displayed(self):
 return (
 self.in_control_explorer and
 self.title.text == 'Alert Profile "{}"'.format(self.context["object"].description)
)

[docs]class AlertProfilesAllView(ControlExplorerView):
 title = Text("#explorer_title_text")

 @property
 def is_displayed(self):
 return (
 self.in_control_explorer and
 self.title.text == "All {} Alert Profiles".format(self.context["object"].TYPE)
)

[docs]class AlertProfilesEditAssignmentsView(ControlExplorerView):
 title = Text("#explorer_title_text")
 assign_to = BootstrapSelect("chosen_assign_to")
 tag_category = BootstrapSelect("chosen_cat")
 selections = CheckableManageIQTree("obj_treebox")
 header = Text("//div[@id='alert_profile_assign_div']/h3")
 based_on = Text('//label[normalize-space(.)="Based On"]/../div')

 save_button = Button("Save")
 reset_button = Button("Reset")
 cancel_button = Button("Cancel")

 @property
 def is_displayed(self):
 return (
 self.in_control_explorer and
 self.title.text == 'Alert Profile "{}"'.format(self.context["object"].description) and
 self.header.text == "Assignments" and
 self.based_on == self.context["object"].TYPE
)

[docs]class BaseAlertProfile(Updateable, Navigatable, Pretty):

 TYPE = None
 _param_name = ParamClassName('description')
 pretty_attrs = ["description", "alerts"]

 def __init__(self, description, alerts=None, notes=None, appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.description = description
 self.notes = notes
 self.alerts = alerts

[docs] def create(self):
 view = navigate_to(self, "Add")
 view.fill({
 "description": self.description,
 "notes": self.notes,
 "alerts": [str(alert) for alert in self.alerts]
 })
 view.add_button.click()
 view = self.create_view(AlertProfileDetailsView)
 assert view.is_displayed
 view.flash.assert_no_error()
 view.flash.assert_message('Alert Profile "{}" was added'.format(self.description))

[docs] def update(self, updates):
 """Update this Alert Profile in UI.

 Args:
 updates: Provided by update() context manager.
 cancel: Whether to cancel the update (default False).
 """
 view = navigate_to(self, "Edit")
 changed = view.fill(updates)
 if changed:
 view.save_button.click()
 else:
 view.cancel_button.click()
 for attr, value in updates.items():
 setattr(self, attr, value)
 view = self.create_view(AlertProfileDetailsView)
 assert view.is_displayed
 view.flash.assert_no_error()
 if changed:
 view.flash.assert_message(
 'Alert Profile "{}" was saved'.format(
 updates.get("description", self.description)))
 else:
 view.flash.assert_message(
 'Edit of Alert Profile "{}" was cancelled by the user'.format(self.description))

[docs] def delete(self, cancel=False):
 """Delete this Alert Profile in UI.

 Args:
 cancel: Whether to cancel the deletion (default False).
 """
 view = navigate_to(self, "Details")
 view.configuration.item_select("Delete this Alert Profile", handle_alert=not cancel)
 if cancel:
 assert view.is_displayed
 view.flash.assert_no_error()
 else:
 view = self.create_view(AlertProfilesAllView)
 assert view.is_displayed
 view.flash.assert_no_error()
 view.flash.assert_message(
 'Alert Profile "{}": Delete successful'.format(self.description))

 @property
 def exists(self):
 """Check existence of this Alert Profile.

 Returns: :py:class:`bool` signalizing the presence of the Alert Profile in database.
 """
 miq_sets = self.appliance.db.client["miq_sets"]
 return self.appliance.db.client.session\
 .query(miq_sets.description)\
 .filter(
 miq_sets.description == self.description and miq_sets.set_type == "MiqAlertSet")\
 .count() > 0

[docs] def assign_to(self, assign, selections=None, tag_category=None):
 """Assigns this Alert Profile to specified objects.

 Args:
 assign: Where to assign (The Enterprise, ...).
 selections: What items to check in the tree. N/A for The Enteprise.
 tag_category: Only for choices starting with Tagged. N/A for The Enterprise.
 """
 view = navigate_to(self, "Edit assignments")
 changed = view.fill({
 "assign_to": assign,
 "tag_category": tag_category,
 "selections": selections
 })
 if changed:
 view.save_button.click()
 else:
 view.cancel_button.click()
 view = self.create_view(AlertProfileDetailsView)
 assert view.is_displayed
 view.flash.assert_no_error()
 if changed:
 view.flash.assert_message(
 'Alert Profile "{}" assignments {} saved'.format(
 self.description,
 version.pick({
 version.LOWEST: "succesfully",
 "5.8": "successfully",
 })
))
 else:
 view.flash.assert_message(
 'Edit of Alert Profile "{}" was cancelled by the user'.format(self.description))

@navigator.register(BaseAlertProfile, "Add")
[docs]class AlertProfileNew(CFMENavigateStep):
 VIEW = NewAlertProfileView
 prerequisite = NavigateToAttribute("appliance.server", "ControlExplorer")

[docs] def step(self):
 self.view.alert_profiles.tree.click_path("All Alert Profiles",
 "{} Alert Profiles".format(self.obj.TYPE))
 self.view.configuration.item_select("Add a New {} Alert Profile".format(self.obj.TYPE))

@navigator.register(BaseAlertProfile, "Edit")
[docs]class AlertProfileEdit(CFMENavigateStep):
 VIEW = EditAlertProfileView
 prerequisite = NavigateToAttribute("appliance.server", "ControlExplorer")

[docs] def step(self):
 self.view.alert_profiles.tree.click_path("All Alert Profiles",
 "{} Alert Profiles".format(self.obj.TYPE), self.obj.description)
 self.view.configuration.item_select("Edit this Alert Profile")

@navigator.register(BaseAlertProfile, "Edit assignments")
[docs]class AlertProfileEditAssignments(CFMENavigateStep):
 VIEW = AlertProfilesEditAssignmentsView
 prerequisite = NavigateToAttribute("appliance.server", "ControlExplorer")

[docs] def step(self):
 self.view.alert_profiles.tree.click_path("All Alert Profiles",
 "{} Alert Profiles".format(self.obj.TYPE), self.obj.description)
 self.view.configuration.item_select("Edit assignments for this Alert Profile")

@navigator.register(BaseAlertProfile, "Details")
[docs]class AlertProfileDetails(CFMENavigateStep):
 VIEW = AlertProfileDetailsView
 prerequisite = NavigateToAttribute("appliance.server", "ControlExplorer")

[docs] def step(self):
 self.view.alert_profiles.tree.click_path("All Alert Profiles",
 "{} Alert Profiles".format(self.obj.TYPE), self.obj.description)

[docs]class ClusterAlertProfile(BaseAlertProfile):

 TYPE = "Cluster / Deployment Role"

[docs]class DatastoreAlertProfile(BaseAlertProfile):

 TYPE = "Datastore"

[docs]class HostAlertProfile(BaseAlertProfile):

 TYPE = "Host / Node"

[docs]class MiddlewareServerAlertProfile(BaseAlertProfile):

 TYPE = "Middleware Server"

[docs]class ProviderAlertProfile(BaseAlertProfile):

 TYPE = "Provider"

[docs]class ServerAlertProfile(BaseAlertProfile):

 TYPE = "Server"

[docs]class VMInstanceAlertProfile(BaseAlertProfile):

 TYPE = "VM and Instance"

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/markers/env.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for markers.env

"""
This file provides multiple markers for environmental parameters

A test can be marked with

@pytest.mark.browser(ALL)
@pytest.mark.browser(NONE)
@pytest.mark.browser('firefox')

At the moment, lists of parameters are not supported

"""
from cfme.utils import testgen

[docs]class EnvironmentMarker(object):
 """Base Environment Marker"""
 PARAM_BY_DEFAULT = False

[docs] def process_env_mark(self, metafunc):
 if hasattr(metafunc.function, self.NAME):
 if getattr(metafunc.function, self.NAME).args:
 mark_param = getattr(metafunc.function, self.NAME).args[0]
 else:
 raise Exception('No keyword given to mark')
 if mark_param == testgen.ALL:
 metafunc.fixturenames.append(self.NAME)
 testgen.parametrize(metafunc, self.NAME, self.CHOICES)
 elif mark_param == testgen.ONE:
 metafunc.fixturenames.append(self.NAME)
 testgen.parametrize(metafunc, self.NAME, [self.CHOICES[0]])
 elif mark_param == testgen.NONE:
 return
 elif self.PARAM_BY_DEFAULT:
 metafunc.fixturenames.append(self.NAME)
 testgen.parametrize(metafunc, self.NAME, [self.CHOICES[0]])
 else:
 return

[docs]class BrowserEnvironmentMarker(EnvironmentMarker):
 """Browser Envrionment Marker"""
 NAME = 'browser'
 CHOICES = ['firefox', 'chrome', 'ie']

[docs]class TCPEnvironmentMarker(EnvironmentMarker):
 """TCP Environment Marker"""
 NAME = 'tcpstack'
 CHOICES = ['ipv4', 'ipv6']

[docs]def pytest_generate_tests(metafunc):
 from markers.env_markers.provider import ProviderEnvironmentMarker
 markers = [
 BrowserEnvironmentMarker(),
 TCPEnvironmentMarker(),
 ProviderEnvironmentMarker()
]
 for marker in markers:
 marker.process_env_mark(metafunc)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/containers/image_registry.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.containers.image_registry

-*- coding: utf-8 -*-
from functools import partial
import random
from cached_property import cached_property

from navmazing import NavigateToSibling, NavigateToAttribute
from wrapanapi.containers.image_registry import ImageRegistry as ApiImageRegistry

from cfme.common import SummaryMixin, Taggable
from cfme.containers.provider import pol_btn, navigate_and_get_rows,\
 ContainerObjectAllBaseView
from cfme.fixtures import pytest_selenium as sel
from cfme.web_ui import CheckboxTable, toolbar as tb, match_location,\
 PagedTable
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import CFMENavigateStep, navigator, navigate_to

list_tbl = CheckboxTable(table_locator="//div[@id='list_grid']//table")
paged_tbl = PagedTable(table_locator="//div[@id='list_grid']//table")

match_page = partial(match_location, controller='container_image_registry',
 title='Image Registries')

[docs]class ImageRegistry(Taggable, SummaryMixin, Navigatable):

 PLURAL = 'Image Registries'

 def __init__(self, host, provider, appliance=None):
 self.host = host
 self.provider = provider
 Navigatable.__init__(self, appliance=appliance)

 @cached_property
 def mgmt(self):
 return ApiImageRegistry(self.provider.mgmt, self.name, self.host, None)

[docs] def load_details(self, refresh=False):
 navigate_to(self, 'Details')
 if refresh:
 tb.refresh()

 @property
 def name(self):
 return self.host

 @classmethod
[docs] def get_random_instances(cls, provider, count=1, appliance=None):
 """Generating random instances."""
 ir_rows_list = navigate_and_get_rows(provider, cls, count, silent_failure=True)
 random.shuffle(ir_rows_list)
 return [cls(row.host.text, provider, appliance=appliance)
 for row in ir_rows_list]

[docs]class ImageRegistryAllView(ContainerObjectAllBaseView):
 TITLE_TEXT = "Image Registries"

@navigator.register(ImageRegistry, 'All')
[docs]class ImageRegistryAll(CFMENavigateStep):
 VIEW = ImageRegistryAllView
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self):
 self.prerequisite_view.navigation.select('Compute', 'Containers', 'Image Registries')

[docs] def resetter(self):
 from cfme.web_ui import paginator
 tb.select('List View')
 if paginator.page_controls_exist():
 paginator.check_all()
 paginator.uncheck_all()

@navigator.register(ImageRegistry, 'Details')
[docs]class ImageRegistryDetails(CFMENavigateStep):
 prerequisite = NavigateToSibling('All')

[docs] def am_i_here(self):
 return match_page(summary='{} (Summary)'.format(self.obj.host))

[docs] def step(self):
 tb.select('List View')
 sel.click(paged_tbl.find_row_by_cell_on_all_pages(
 {'Host': self.obj.host}))

@navigator.register(ImageRegistry, 'EditTags')
[docs]class ImageRegistryEditTags(CFMENavigateStep):
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 pol_btn('Edit Tags')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/control/explorer/policy_profiles.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.control.explorer »

 Source code for cfme.control.explorer.policy_profiles

-*- coding: utf-8 -*-
from navmazing import NavigateToAttribute
from widgetastic.widget import Text, TextInput
from widgetastic_manageiq import MultiBoxSelect
from widgetastic_patternfly import Button, Input

from . import ControlExplorerView
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import navigator, navigate_to, CFMENavigateStep
from cfme.utils.pretty import Pretty
from cfme.utils.update import Updateable

[docs]class PolicyProfileFormCommon(ControlExplorerView):
 title = Text("#explorer_title_text")

 description = Input(name="description")
 notes = TextInput(name="notes")
 policies = MultiBoxSelect()
 cancel_button = Button("Cancel")

[docs]class NewPolicyProfileView(PolicyProfileFormCommon):
 add_button = Button("Add")

 @property
 def is_displayed(self):
 return (
 self.in_control_explorer and
 self.title.text == "Adding a New Policy Profile" and
 self.policy_profiles.tree.currently_selected == ["All Policy Profiles"]
)

[docs]class EditPolicyProfileView(PolicyProfileFormCommon):
 save_button = Button("Save")

 @property
 def is_displayed(self):
 return (
 self.in_control_explorer and
 self.title.text == 'Editing Policy Profile "{}"'.format(
 self.context["object"].description) and
 self.policy_profiles.tree.currently_selected == [
 "All Policy Profiles",
 self.context["object"].description
]
)

[docs]class PolicyProfileDetailsView(ControlExplorerView):
 title = Text("#explorer_title_text")

 @property
 def is_displayed(self):
 return (
 self.in_control_explorer and
 self.title.text == 'Policy Profile "{}"'.format(self.context["object"].description)
)

[docs]class PolicyProfilesAllView(ControlExplorerView):
 title = Text("#explorer_title_text")

 @property
 def is_displayed(self):
 return (
 self.in_control_explorer and
 self.title.text == "All Policy Profiles"
)

[docs]class PolicyProfile(Updateable, Navigatable, Pretty):

 def __init__(self, description, policies=None, notes=None, appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.description = description
 self.notes = notes
 self.policies = policies

[docs] def create(self):
 view = navigate_to(self, "Add")
 view.fill({
 "description": self.description,
 "notes": self.notes,
 "policies": self.prepared_policies
 })
 view.add_button.click()
 view = self.create_view(PolicyProfileDetailsView)
 assert view.is_displayed
 view.flash.assert_no_error()
 view.flash.assert_message('Policy Profile "{}" was added'.format(self.description))

 @property
 def prepared_policies(self):
 if self.policies is not None:
 return ["{} {}: {}".format(
 policy.PRETTY, policy.TYPE, policy.description) for policy in self.policies]
 else:
 return None

[docs] def update(self, updates):
 """Update this Policy Profile in UI.

 Args:
 updates: Provided by update() context manager.
 cancel: Whether to cancel the update (default False).
 """
 view = navigate_to(self, "Edit")
 changed = view.fill(updates)
 if changed:
 view.save_button.click()
 else:
 view.cancel_button.click()
 for attr, value in updates.items():
 setattr(self, attr, value)
 view = self.create_view(PolicyProfileDetailsView)
 assert view.is_displayed
 view.flash.assert_no_error()
 if changed:
 view.flash.assert_message(
 'Policy Profile "{}" was saved'.format(
 updates.get("description", self.description)))
 else:
 view.flash.assert_message(
 'Edit of Policy Profile "{}" was cancelled by the user'.format(self.description))

[docs] def delete(self, cancel=False):
 """Delete this Policy Profile in UI.

 Args:
 cancel: Whether to cancel the deletion (default False).
 """
 view = navigate_to(self, "Details")
 view.configuration.item_select("Remove this Policy Profile", handle_alert=not cancel)
 if cancel:
 assert view.is_displayed
 view.flash.assert_no_error()
 else:
 view = self.create_view(PolicyProfilesAllView)
 assert view.is_displayed
 view.flash.assert_no_error()
 view.flash.assert_message(
 'Policy Profile "{}": Delete successful'.format(self.description))

 @property
 def exists(self):
 """Check existence of this Policy Profile.

 Returns: :py:class:`bool` signalizing the presence of the Policy Profile in database.
 """
 miq_sets = self.appliance.db.client["miq_sets"]
 return self.appliance.db.client.session\
 .query(miq_sets.description)\
 .filter(
 miq_sets.description == self.description and miq_sets.set_type == "MiqPolicySet")\
 .count() > 0

@navigator.register(PolicyProfile, "Add")
[docs]class PolicyProfileNew(CFMENavigateStep):
 VIEW = NewPolicyProfileView
 prerequisite = NavigateToAttribute("appliance.server", "ControlExplorer")

[docs] def step(self):
 self.view.policy_profiles.tree.click_path("All Policy Profiles")
 self.view.configuration.item_select("Add a New Policy Profile")

@navigator.register(PolicyProfile, "Edit")
[docs]class PolicyProfileEdit(CFMENavigateStep):
 VIEW = EditPolicyProfileView
 prerequisite = NavigateToAttribute("appliance.server", "ControlExplorer")

[docs] def step(self):
 self.view.policy_profiles.tree.click_path("All Policy Profiles", self.obj.description)
 self.view.configuration.item_select("Edit this Policy Profile")

@navigator.register(PolicyProfile, "Details")
[docs]class PolicyProfileDetails(CFMENavigateStep):
 VIEW = PolicyProfileDetailsView
 prerequisite = NavigateToAttribute("appliance.server", "ControlExplorer")

[docs] def step(self):
 self.view.policy_profiles.tree.click_path("All Policy Profiles", self.obj.description)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/markers/uncollect.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for markers.uncollect

"""
uncollect

Used internally to mark a test to be "uncollected"

This mark should be used at any point before or during test collection to
dynamically flag a test to be removed from the list of collected tests.

py.test adds marks to test items a few different ways. When marking in a py.test
hook that takes an ``Item`` or :py:class:`Node <pytest:_pytest.main.Node>` (``Item``
is a subclass of ``Node``), use ``item.add_marker('uncollect')`` or
``item.add_marker(pytest.mark.uncollect)``

When dealing with the test function directly, using the mark decorator is preferred.
In this case, either decorate a test function directly (and have a good argument ready
for adding a test that won't run...), e.g. ``@pytest.mark.uncollect`` before the test
``def``, or instantiate the mark decorator and use it to wrap a test function, e.g.
``pytest.mark.uncollect()(test_function)``

uncollectif

The ``uncollectif`` marker is very special and can cause harm to innocent kittens if used
incorrectly. The ``uncollectif`` marker enables the ability to uncollect a specific test
if a certain condition is evaluated to ``True``. The following is an example:

 .. code-block:: python

 @pytest.mark.uncollectif(lambda: version.current_version() < '5.3')

In this case, when pytest runs the modify items hook, it will evaluate the lambda function
and if it results in ``True``, then the test will be uncollected. Fixtures that are
generated by testgen, such as provider_key, provider_data etc, are also usable inside
the ``collectif`` marker, assuming the fixture name is also a prerequisite for the test
itself. For example:: python

 .. code-block:: python

 @pytest.mark.uncollectif(lambda provider_type: provider_type != 'virtualcenter')
 def test_delete_all_snapshots(test_vm, provider_key, provider_type):
 pass

Here, the fixture provider_type is special as it comes from testgen and is passed to the
lambda for comparison.

Note:
 Be aware, that this cannot be used for any other fixture types. Doing so will break
 pytest and may invalidate your puppies.

"""
import inspect
import pytest

MARKDECORATOR_TYPE = type(pytest.mark.slip)

work around https://github.com/pytest-dev/pytest/issues/2400
[docs]def get_uncollect_function(marker_or_markdecorator):
 if isinstance(marker_or_markdecorator, MARKDECORATOR_TYPE):
 return marker_or_markdecorator.args[0]
 else:
 return list(marker_or_markdecorator)[0].args[0]

[docs]def uncollectif(item):
 """ Evaluates if an item should be uncollected

 Tests markers against a supplied lambda from the marker object to determine
 if the item should be uncollected or not.
 """

 from cfme.utils.pytest_shortcuts import extract_fixtures_values
 marker = item.get_marker('uncollectif')
 if marker:
 from cfme.utils.log import logger
 log_msg = 'Trying uncollecting {}: {}'.format(
 item.name,
 marker.kwargs.get('reason', 'No reason given'))

 try:
 arg_names = inspect.getargspec(get_uncollect_function(marker)).args
 except TypeError:
 logger.debug(log_msg)
 return not bool(marker.args[0])

 try:
 values = extract_fixtures_values(item)
 # The test has already been uncollected
 if arg_names and not values:
 return
 args = [values[arg] for arg in arg_names]
 except KeyError:
 missing_argnames = list(set(arg_names) - set(item._request.funcargnames))
 func_name = item.name
 if missing_argnames:
 raise Exception("You asked for a fixture which wasn't in the function {} "
 "prototype {}".format(func_name, missing_argnames))
 else:
 raise Exception("Failed to uncollect {}, best guess a fixture wasn't "
 "ready".format(func_name))
 retval = marker.args[0](*args)
 if retval:
 logger.debug(log_msg)
 return not retval
 else:
 return True

[docs]def pytest_collection_modifyitems(session, config, items):
 from fixtures.pytest_store import store
 len_collected = len(items)

 new_items = []

 from cfme.utils.path import log_path
 with log_path.join('uncollected.log').open('w') as f:
 for item in items:
 # First filter out all items who have the uncollect mark
 if item.get_marker('uncollect') or not uncollectif(item):
 # if a uncollect marker has been added,
 # give it priority for the explanation
 uncollect = item.get_marker('uncollect')
 marker = uncollect or item.get_marker('uncollectif')
 if marker:
 reason = marker.kwargs.get('reason', "No reason given")
 else:
 reason = None
 f.write("{} - {}\n".format(item.name, reason))
 else:
 new_items.append(item)

 items[:] = new_items

 len_filtered = len(items)
 filtered_count = len_collected - len_filtered
 store.uncollection_stats['uncollectif'] = filtered_count

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/containers/provider.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.containers.provider

import re
import random
from functools import partial
from random import sample
from traceback import format_exc

from navmazing import NavigateToSibling, NavigateToAttribute
from widgetastic_patternfly import (SelectorDropdown, Dropdown, BootstrapSelect,
 Input, Button, Tab)
from widgetastic.widget import Text, View, TextInput
from wrapanapi.utils import eval_strings

from cfme.base.login import BaseLoggedInPage
from cfme.common.provider import BaseProvider, DefaultEndpoint, DefaultEndpointForm

from cfme import exceptions
from cfme.fixtures import pytest_selenium as sel
from cfme.common.provider_views import BeforeFillMixin,\
 ContainersProviderAddView, ContainersProvidersView,\
 ContainersProviderEditView, ProvidersView, ProviderDetailsView
from cfme.base.credential import TokenCredential
from cfme.web_ui import (
 Quadicon, toolbar as tb, InfoBlock, Region, match_location, PagedTable)
from cfme.utils import version
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to
from cfme.utils.browser import ensure_browser_open, browser
from cfme.utils.pretty import Pretty
from cfme.utils.varmeth import variable
from cfme.utils.log import logger
from cfme.utils.wait import wait_for

paged_tbl = PagedTable(table_locator="//div[@id='list_grid']//table")

cfg_btn = partial(tb.select, 'Configuration')
mon_btn = partial(tb.select, 'Monitoring')
pol_btn = partial(tb.select, 'Policy')

details_page = Region(infoblock_type='detail')

match_page = partial(match_location, controller='ems_container',
 title='Containers Providers')

[docs]class ContainersProviderDefaultEndpoint(DefaultEndpoint):
 """Represents Containers Provider default endpoint"""
 credential_class = TokenCredential

 @property
 def view_value_mapping(self):
 out = {
 'hostname': self.hostname,
 'password': self.token,
 'confirm_password': self.token,
 'api_port': self.api_port
 }
 if version.current_version() >= '5.8':
 out['sec_protocol'] = self.sec_protocol
 if self.sec_protocol.lower() == 'ssl trusting custom ca' and \
 hasattr(self, 'get_ca_cert'):
 out['trusted_ca_certificates'] = self.get_ca_cert()
 return out

[docs]class ContainersProviderEndpointsForm(View):
 """
 represents default Containers Provider endpoint form in UI (Add/Edit dialogs)
 """
 @View.nested
 class default(Tab, DefaultEndpointForm, BeforeFillMixin): # NOQA
 TAB_NAME = 'Default'
 sec_protocol = BootstrapSelect('default_security_protocol')
 # trusted_ca_certificates appears only in 5.8
 trusted_ca_certificates = TextInput('default_tls_ca_certs')
 api_port = Input('default_api_port')

 @View.nested
 class hawkular(Tab, BeforeFillMixin): # NOQA
 TAB_NAME = 'Hawkular'
 sec_protocol = BootstrapSelect(id='hawkular_security_protocol')
 # trusted_ca_certificates appears only in 5.8
 trusted_ca_certificates = TextInput('hawkular_tls_ca_certs')
 hostname = Input('hawkular_hostname')
 api_port = Input('hawkular_api_port')
 validate = Button('Validate')

[docs]class ContainersProvider(BaseProvider, Pretty):
 PLURAL = 'Providers'
 provider_types = {}
 in_version = ('5.5', version.LATEST)
 category = "container"
 pretty_attrs = ['name', 'key', 'zone']
 STATS_TO_MATCH = [
 'num_project',
 'num_service',
 'num_replication_controller',
 'num_pod',
 'num_node',
 'num_image_registry',
 'num_container']
 # TODO add 'num_volume'
 string_name = "Containers"
 page_name = "containers"
 detail_page_suffix = 'provider_detail'
 edit_page_suffix = 'provider_edit_detail'
 quad_name = None
 db_types = ["ContainerManager"]
 endpoints_form = ContainersProviderEndpointsForm

 def __init__(
 self,
 name=None,
 key=None,
 zone=None,
 endpoints=None,
 provider_data=None,
 appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.name = name
 self.key = key
 self.zone = zone
 self.endpoints = endpoints
 self.provider_data = provider_data

 @property
 def view_value_mapping(self):
 return {
 'name': self.name,
 'prov_type': self.type,
 'zone': self.zone,
 }

 def _on_detail_page(self):
 """ Returns ``True`` if on the providers detail page, ``False`` if not."""
 ensure_browser_open()
 return sel.is_displayed(
 '//div//h1[contains(., "{} (Summary)")]'.format(self.name))

[docs] def load_details(self, refresh=False):
 navigate_to(self, 'Details')
 if refresh:
 tb.refresh()

[docs] def get_detail(self, *ident):
 """ Gets details from the details infoblock

 Args:
 *ident: An InfoBlock title, followed by the Key name, e.g. "Relationships", "Images"
 Returns: A string representing the contents of the InfoBlock's value.
 """
 navigate_to(self, 'Details')
 return details_page.infoblock.text(*ident)

 @variable(alias='db')
 def num_project(self):
 return self._num_db_generic('container_projects')

 @num_project.variant('ui')
 def num_project_ui(self):
 return int(self.get_detail("Relationships", "Projects"))

 @variable(alias='db')
 def num_service(self):
 return self._num_db_generic('container_services')

 @num_service.variant('ui')
 def num_service_ui(self):
 if self.appliance.version < "5.7":
 name = "Services"
 else:
 name = "Container Services"
 return int(self.get_detail("Relationships", name))

 @variable(alias='db')
 def num_replication_controller(self):
 return self._num_db_generic('container_replicators')

 @num_replication_controller.variant('ui')
 def num_replication_controller_ui(self):
 return int(self.get_detail("Relationships", "Replicators"))

 @variable(alias='db')
 def num_container_group(self):
 return self._num_db_generic('container_groups')

 @num_container_group.variant('ui')
 def num_container_group_ui(self):
 return int(self.get_detail("Relationships", "Pods"))

 @variable(alias='db')
 def num_pod(self):
 # potato tomato
 return self.num_container_group()

 @num_pod.variant('ui')
 def num_pod_ui(self):
 # potato tomato
 return self.num_container_group(method='ui')

 @variable(alias='db')
 def num_node(self):
 return self._num_db_generic('container_nodes')

 @num_node.variant('ui')
 def num_node_ui(self):
 return int(self.get_detail("Relationships", "Nodes"))

 @variable(alias='db')
 def num_container(self):
 # Containers are linked to providers through container definitions and then through pods
 res = self.appliance.db.client.engine.execute(
 "SELECT count(*) "
 "FROM ext_management_systems, container_groups, container_definitions, containers "
 "WHERE containers.container_definition_id=container_definitions.id "
 "AND container_definitions.container_group_id=container_groups.id "
 "AND container_groups.ems_id=ext_management_systems.id "
 "AND ext_management_systems.name='{}'".format(self.name))
 return int(res.first()[0])

 @num_container.variant('ui')
 def num_container_ui(self):
 return int(self.get_detail("Relationships", "Containers"))

 @variable(alias='db')
 def num_image(self):
 return self._num_db_generic('container_images')

 @num_image.variant('ui')
 def num_image_ui(self):
 if self.appliance.version < "5.7":
 name = "Images"
 else:
 name = "Container Images"
 return int(self.get_detail("Relationships", name))

 @variable(alias='db')
 def num_image_registry(self):
 return self._num_db_generic('container_image_registries')

 @num_image_registry.variant('ui')
 def num_image_registry_ui(self):
 return int(self.get_detail("Relationships", "Image Registries"))

[docs] def pods_per_ready_status(self):
 """Grabing the Container Statuses Summary of the pods from API"""
 # TODO: Add later this logic to wrapanapi
 entities = self.mgmt.api.get('pod')[1]['items']
 out = {}
 for entity_j in entities:
 out[entity_j['metadata']['name']] = {
 condition['type']: eval_strings([condition['status']]).pop()
 for condition in entity_j['status'].get('conditions', [])
 }
 return out

@navigator.register(ContainersProvider, 'All')
[docs]class All(CFMENavigateStep):
 VIEW = ContainersProvidersView
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self):
 self.prerequisite_view.navigation.select('Compute', 'Containers', 'Providers')

[docs] def resetter(self):
 # Reset view and selection
 tb.select("Grid View")
 from cfme.web_ui import paginator
 paginator.check_all()
 paginator.uncheck_all()

@navigator.register(ContainersProvider, 'Add')
[docs]class Add(CFMENavigateStep):
 VIEW = ContainersProviderAddView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 cfg_btn(version.pick({
 version.LOWEST: 'Add a New Containers Provider',
 '5.7': 'Add Existing Containers Provider'
 }))

[docs]class LoggingableView(View):

 monitor = Dropdown('Monitoring')

[docs] def get_logging_url(self):

 def report_kibana_failure():
 raise RuntimeError("Kibana not found in the window title or content")

 browser_instance = browser()

 all_windows_before = browser_instance.window_handles
 appliance_window = browser_instance.current_window_handle

 self.monitor.item_select('External Logging')

 all_windows_after = browser_instance.window_handles

 new_windows = set(all_windows_after) - set(all_windows_before)

 if not new_windows:
 raise RuntimeError("No logging window was open!")

 logging_window = new_windows.pop()
 browser_instance.switch_to_window(logging_window)

 logging_url = browser_instance.current_url

 wait_for(lambda: "kibana" in
 browser_instance.title.lower() + " " +
 browser_instance.page_source.lower(),
 fail_func=report_kibana_failure, num_sec=60, delay=5)

 browser_instance.close()
 browser_instance.switch_to_window(appliance_window)

 return logging_url

[docs]class ProviderDetailsView(BaseLoggedInPage, LoggingableView):

 @property
 def is_displayed(self):
 return match_page(summary="{} (Summary)".format(self.obj.name))

@navigator.register(ContainersProvider, 'Details')
[docs]class Details(CFMENavigateStep):
 VIEW = ProviderDetailsView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 sel.click(Quadicon(self.obj.name, self.obj.quad_name))

[docs] def resetter(self):
 tb.select("Summary View")

@navigator.register(ContainersProvider, 'Edit')
[docs]class Edit(CFMENavigateStep):
 VIEW = ContainersProviderEditView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 sel.check(Quadicon(self.obj.name, self.obj.quad_name).checkbox())
 cfg_btn('Edit Selected Containers Provider')

@navigator.register(ContainersProvider, 'EditFromDetails')
[docs]class EditFromDetails(CFMENavigateStep):
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 cfg_btn('Edit this Containers Provider')

@navigator.register(ContainersProvider, 'EditTags')
[docs]class EditTags(CFMENavigateStep):
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 sel.check(Quadicon(self.obj.name, self.obj.quad_name).checkbox())
 pol_btn('Edit Tags')

@navigator.register(ContainersProvider, 'EditTagsFromDetails')
[docs]class EditTagsFromDetails(CFMENavigateStep):
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 pol_btn('Edit Tags')

@navigator.register(ContainersProvider, 'TimelinesFromDetails')
[docs]class TimelinesFromDetails(CFMENavigateStep):
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 mon_btn('Timelines')

@navigator.register(ContainersProvider, 'TopologyFromDetails')
[docs]class TopologyFromDetails(CFMENavigateStep):
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 sel.click(InfoBlock('Overview', 'Topology'))

[docs]class AdHocMetricsView(BaseLoggedInPage):
 filter_dropdown = SelectorDropdown('uib-tooltip', 'Filter by')
 filter_result_header = Text('h5.ng-binding')
 apply_btn = Button("Apply Filters")

 selected_filter = None

 @property
 def is_displayed(self):
 return False

[docs] def wait_for_filter_option_to_load(self):
 wait_for(lambda: bool(self.filter_dropdown.items), delay=5, num_sec=60)

[docs] def wait_for_results_to_load(self):
 wait_for(lambda: bool(int(self.filter_result_header.text.split()[0])),
 delay=5, num_sec=60)

[docs] def apply_filter(self):
 self.apply_btn.click()

[docs] def set_filter(self, desired_filter):
 self.selected_filter = desired_filter
 self.filter_dropdown.fill_with(desired_filter)

[docs] def get_random_filter(self):
 return str(random.choice(self.filter_dropdown.items))

[docs] def get_total_results_count(self):
 return int(self.filter_result_header.text.split()[0])

@navigator.register(ContainersProvider, 'AdHoc')
[docs]class AdHocMain(CFMENavigateStep):
 VIEW = AdHocMetricsView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.monitor.item_select('Ad hoc Metrics')

[docs]class ContainerObjectAllBaseView(ProvidersView):
 """Base class for container object All view.
 TITLE_TEXT should be defined in child.
 """
 summary = Text('//div[@id="main-content"]//h1')
 policy = Dropdown('Policy')
 download = Dropdown('Download')

 @property
 def table(self):
 return self.entities.elements

 @property
 def is_displayed(self):
 return self.summary.text == self.TITLE_TEXT

Common methods:

[docs]class ContainersTestItem(object):
 """This is a generic test item. Especially used for parametrized functions
 """
 __test__ = False

 def __init__(self, obj, polarion_id, **additional_attrs):
 """Args:
 * obj: The container object in this test (e.g. Image)
 * The polarion test case ID
 """
 self.obj = obj
 self.polarion_id = polarion_id
 for name, value in additional_attrs.items():
 self.__setattr__(name, value)

[docs] def pretty_id(self):
 return '{} ({})'.format(
 getattr(self.obj, '__name__', str(self.obj)),
 self.polarion_id)

 @classmethod
[docs] def get_pretty_id(cls, obj):
 """Since sometimes the test object is wrapped within markers,
 it's difficult to find get it inside the args tree.
 hence we use this to get the object and all pretty_id function.

 Args:
 * obj: Either a ContainersTestItem or a marker that include it
 returns:
 str pretty id
 """
 if isinstance(obj, cls):
 return obj.pretty_id()
 elif hasattr(obj, 'args') and hasattr(obj, '__iter__'):
 for arg in obj.args:
 pretty_id = cls.get_pretty_id(arg)
 if pretty_id:
 return pretty_id

[docs]class Labelable(object):
 """Provide the functionality to set labels"""
 _LABEL_NAMEVAL_PATTERN = re.compile(r'^[A-Za-z0-9_.]+$')

[docs] def get_labels(self):
 """List labels"""
 return self.mgmt.list_labels()

[docs] def set_label(self, name, value):

 """Sets a label to the object instance

 Args:
 :var name: the name of the label
 :var value: the value of the label

 Returns:
 self.mgmt.set_label return value.
 """
 assert self._LABEL_NAMEVAL_PATTERN.match(name), \
 'name part ({}) must match the regex pattern {}'.format(
 name, self._LABEL_NAMEVAL_PATTERN.pattern)
 assert self._LABEL_NAMEVAL_PATTERN.match(value), \
 'value part ({}) must match the regex pattern {}'.format(
 value, self._LABEL_NAMEVAL_PATTERN.pattern)
 return self.mgmt.set_label(name, value)

[docs] def remove_label(self, name, silent_failure=False):
 """Remove label by name.
 Args:
 name: name of label
 silent_failure: whether to raise an error or not in case of failure.

 Returns: ``bool`` pass or fail

 Raises:
 :py:class:`LabelNotFoundException`.
 """
 try:
 self.mgmt.delete_label(name)
 return True
 except Exception: # TODO: add appropriate exception in wrapanapi
 failure_signature = format_exc()
 if silent_failure:
 logger.warning(failure_signature)
 return False
 raise exceptions.LabelNotFoundException(failure_signature)

[docs]def navigate_and_get_rows(provider, obj, count, silent_failure=False):
 """Get <count> random rows from the obj list table,
 if <count> is greater that the number of rows, return number of rows.

 Args:
 provider: containers provider
 obj: the containers object
 table: the object's Table object
 count: number of random rows to return
 silent_failure: If True and no records found for obj, it'll
 return None instead of raise exception

 return: list of rows"""

 view = navigate_to(obj, 'All')
 view.toolbar.view_selector.list_button.click()
 if sel.is_displayed_text("No Records Found.") and silent_failure:
 return []
 view.entities.paginator.set_items_per_page(1000)
 rows = list(view.table.rows())
 if not rows:
 return []

 return sample(rows, min(count, len(rows)))

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/optimize/bottlenecks.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.optimize »

 Source code for cfme.optimize.bottlenecks

-*- coding: utf-8 -*-
from navmazing import NavigateToAttribute
from widgetastic.widget import Text, Checkbox, Table, View
from widgetastic_patternfly import Tab, BootstrapSelect
from widgetastic_manageiq import TimelinesChart

from cfme.utils.update import Updateable
from cfme.utils.pretty import Pretty
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep

from . import BottlenecksView

[docs]class BottlenecksTabsView(BottlenecksView):
 title = Text("#explorer_title_text")

 # TODO: add chart widget
 @property
 def is_displayed(self):
 return (
 super(BottlenecksView, self).is_displayed and
 self.title.text == 'Region "Region {}" Bottlenecks Summary'
 .format(self.browser.appliance.server_region()) and
 self.bottlenecks.is_opened and
 self.bottlenecks.tree.currently_selected == ["Bottlenecks"])

 @View.nested
 class summary(Tab): # noqa
 TAB_NAME = 'Summary'
 event_groups = BootstrapSelect('tl_summ_fl_grp1')
 show_host_events = Checkbox(locator='//input[@name="tl_summ_hosts"]')
 time_zone = BootstrapSelect("tl_summ_tz")
 chart = TimelinesChart(locator='//div/*[@class="timeline-pf-chart"]')

 @View.nested
 class report(Tab): # noqa
 TAB_NAME = 'Report'
 event_details = Table("//div[@id='bottlenecks_report_div']/table")
 event_groups = BootstrapSelect('tl_report_fl_grp1')
 show_host_events = Checkbox(locator='//input[@name="tl_report_hosts"]')
 time_zone = BootstrapSelect("tl_report_tz")

[docs]class Bottlenecks(Updateable, Pretty, Navigatable):
 def __init__(self, appliance=None):
 Navigatable.__init__(self, appliance)

@navigator.register(Bottlenecks, 'All')
[docs]class All(CFMENavigateStep):
 prerequisite = NavigateToAttribute('appliance.server', 'Bottlenecks')

 VIEW = BottlenecksTabsView

[docs] def resetter(self):
 """ Set values to default """
 self.view.report.event_groups.fill('<ALL>')
 self.view.report.show_host_events.fill(False)
 self.view.report.time_zone.fill('(GMT+00:00) UTC')
 self.view.summary.event_groups.fill('<ALL>')
 self.view.summary.show_host_events.fill(False)
 self.view.summary.time_zone.fill('(GMT+00:00) UTC')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/markers/crud.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for markers.crud

"""crud: Marker for marking the test as a CRUD test (crud)

Useful for eg. running only crud tests.
Tests will be marked automatically if:

* their name starts with crud_
* their name ends with _crud
* their name contains _crud_
"""
import re

matcher = re.compile(r"^crud_|_crud_|_crud$")
marker = "crud"

[docs]def pytest_configure(config):
 config.addinivalue_line('markers', __doc__.splitlines()[0])

[docs]def pytest_itemcollected(item):
 if matcher.search(item.name) is not None:
 item.add_marker(marker)
 item.extra_keyword_matches.add(marker)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/containers/pod.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.containers.pod

-*- coding: utf-8 -*-
from functools import partial
import random
import itertools
from cached_property import cached_property

from wrapanapi.containers.pod import Pod as ApiPod

from cfme.common import SummaryMixin, Taggable
from cfme.fixtures import pytest_selenium as sel
from cfme.web_ui import toolbar as tb, match_location,\
 PagedTable, CheckboxTable
from cfme.containers.provider import details_page, Labelable,\
 ContainerObjectAllBaseView
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep,\
 navigate_to
from navmazing import NavigateToAttribute, NavigateToSibling

list_tbl = CheckboxTable(table_locator="//div[@id='list_grid']//table")
paged_tbl = PagedTable(table_locator="//div[@id='list_grid']//table")

match_page = partial(match_location, controller='container_group', title='Pods')

[docs]class Pod(Taggable, Labelable, SummaryMixin, Navigatable):

 PLURAL = 'Pods'

 def __init__(self, name, project_name, provider, appliance=None):
 self.name = name
 self.provider = provider
 self.project_name = project_name
 Navigatable.__init__(self, appliance=appliance)

 @cached_property
 def mgmt(self):
 return ApiPod(self.provider.mgmt, self.name, self.project_name)

[docs] def load_details(self, refresh=False):
 navigate_to(self, 'Details')
 if refresh:
 tb.refresh()

[docs] def click_element(self, *ident):
 self.load_details(refresh=True)
 return sel.click(details_page.infoblock.element(*ident))

[docs] def get_detail(self, *ident):
 """ Gets details from the details infoblock

 Args:
 *ident: An InfoBlock title, followed by the Key name, e.g. "Relationships", "Images"
 Returns: A string representing the contents of the InfoBlock's value.
 """
 self.load_details(refresh=True)
 return details_page.infoblock.text(*ident)

 @classmethod
[docs] def get_random_instances(cls, provider, count=1, appliance=None):
 """Generating random instances."""
 pod_list = provider.mgmt.list_container_group()
 random.shuffle(pod_list)
 return [cls(obj.name, obj.project_name, provider, appliance=appliance)
 for obj in itertools.islice(pod_list, count)]

[docs]class PodAllView(ContainerObjectAllBaseView):
 TITLE_TEXT = "Pods"

@navigator.register(Pod, 'All')
[docs]class All(CFMENavigateStep):
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')
 VIEW = PodAllView

[docs] def step(self):
 self.prerequisite_view.navigation.select('Compute', 'Containers', 'Pods')

[docs] def resetter(self):
 from cfme.web_ui import paginator
 # Reset view and selection
 tb.select("List View")
 paginator.check_all()
 paginator.uncheck_all()

@navigator.register(Pod, 'Details')
[docs]class Details(CFMENavigateStep):
 prerequisite = NavigateToSibling('All')

[docs] def am_i_here(self):
 return match_page(summary='{} (Summary)'.format(self.obj.name))

[docs] def step(self):
 tb.select('List View')
 sel.click(paged_tbl.find_row_by_cell_on_all_pages({'Name': self.obj.name,
 'Project Name': self.obj.project_name}))

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/optimize/utilization.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.optimize »

 Source code for cfme.optimize.utilization

from cfme.utils.appliance import Navigatable
from navmazing import NavigateToAttribute
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep

[docs]class Utilization(Navigatable):
 def __init__(self, appliance=None):
 Navigatable.__init__(self, appliance)

@navigator.register(Utilization, 'All')
[docs]class All(CFMENavigateStep):
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self):
 self.prerequisite_view.navigation.select('Optimize', 'Utilization')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/markers/smoke.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for markers.smoke

"""smoke: Mark a test as a smoke test to be run as early as possible

Mark a single test as a smoke test, moving it to the beginning of a test run.

The --halt-on-smoke-test-failure command-line argument will halt after running the smoke tests
if any smoke tests fail.

This mark must be used with caution, as marked tests must be able to run out of order,
and in isolation.

Furthermore, smoke tests are an excellent target for the requires_test mark
since they're run first.

"""
from collections import defaultdict
from time import time

import pytest

[docs]def reporter(config):
 from fixtures.terminalreporter import reporter as lazy_imported_reporter
 return lazy_imported_reporter(config)

[docs]def pytest_addoption(parser):
 group = parser.getgroup("smoke_tests", "smoke test marking")
 group._addoption('--halt-on-smoke-test-failure',
 action="store_true", dest="haltonsmokefail", default=False,
 help="halt the test run if smoke tests fail")

@pytest.mark.trylast
[docs]def pytest_configure(config):
 smoke_tests = SmokeTests(reporter(config))
 config.pluginmanager.register(smoke_tests, 'smoke_tests')
 config.addinivalue_line('markers', __doc__.splitlines()[0])

@pytest.mark.hookwrapper
[docs]def pytest_collection_modifyitems(session, config, items):
 # XXX: This also handles moving long_running tests to the front of the test module
 # There are a few different ways to handle this batter, but rather than building in logic
 # for both smoke and long_running marks to make sure each one reorders tests with respect to
 # the other, it made sense to just combine this here for now and organize these marks better
 # later on.
 yield

 # Split marked and unmarked tests
 split_tests = defaultdict(list)
 for item in items:
 for mark in ('smoke', 'long_running'):
 if mark in item.keywords:
 key = mark
 break
 else:
 key = None

 split_tests[key].append(item)

 # Now rebuild the items list with the smoke tests first, followed by long_running
 # with unmarked tests at the end
 session.items = split_tests['smoke'] + split_tests['long_running'] + split_tests[None]

 if split_tests['smoke']:
 # If there are smoke tests, use the fancy smoke test reporter
 smoke_tests = config.pluginmanager.getplugin('smoke_tests')
 reporter(config).write_sep('=', 'Running smoke tests')
 smoke_tests.start_time = time()
 smoke_tests.halt_on_fail = config.getvalue('haltonsmokefail')

[docs]class SmokeTests(object):
 # state trackers
 run_tests = 0
 failed_tests = 0
 complete = False
 reported = False
 start_time = 0.0
 halt_on_fail = False

 def __init__(self, reporter):
 self.reporter = reporter

[docs] def pytest_runtest_logreport(self, report):
 if 'smoke' in report.keywords and report.when == 'teardown':
 self.run_tests += 1

 if report.outcome == 'failed':
 self.failed_tests += 1

 if self.complete and not self.reported:
 time_taken = time() - self.start_time
 self.reported = True

 if self.failed_tests:
 if self.halt_on_fail:
 pytest.exit('%d smoke tests failed, test run halted' % self.failed_tests)
 else:
 report = ('%d of %d smoke tests failed in %.2f seconds'
 % (self.failed_tests, self.run_tests, time_taken))
 self.reporter.write_sep('-', report, red=True)
 else:
 report = '%d smoke tests passed in %.2f seconds' % (self.run_tests, time_taken)
 self.reporter.write_sep('-', report, green=True)

[docs] def pytest_runtest_teardown(self, item, nextitem):
 # This condition should only be met on the last smoke test, since they were
 # all moved to the top of the test run.
 if item.get_marker('smoke') and not (nextitem and nextitem.get_marker('smoke')):
 self.complete = True

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/containers/provider/kubernetes.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.containers.provider »

 Source code for cfme.containers.provider.kubernetes

from . import ContainersProvider
from wrapanapi.containers.providers.kubernetes import Kubernetes

[docs]class KubernetesProvider(ContainersProvider):
 type_name = "kubernetes"
 mgmt_class = Kubernetes
 db_types = ["Kubernetes::ContainerManager"]

 def __init__(self, name=None, credentials=None, key=None, zone=None, hostname=None, port=None,
 sec_protocol=None, hawkular_sec_protocol=None, provider_data=None, appliance=None):
 super(KubernetesProvider, self).__init__(
 name=name, credentials=credentials, key=key, zone=zone, hostname=hostname, port=port,
 sec_protocol=sec_protocol, hawkular_sec_protocol=hawkular_sec_protocol,
 provider_data=provider_data, appliance=appliance)

 def _form_mapping(self, create=None, **kwargs):
 if self.appliance.version > '5.8.0.3':
 sec_protocol = kwargs.get('sec_protocol')
 else:
 sec_protocol = None
 return {'name_text': kwargs.get('name'),
 'type_select': create and 'Kubernetes',
 'hostname_text': kwargs.get('hostname'),
 'port_text': kwargs.get('port'),
 'sec_protocol': sec_protocol,
 'zone_select': kwargs.get('zone'),
 'hawkular_hostname': kwargs.get('hostname'),
 'hawkular_sec_protocol': kwargs.get('hawkular_sec_protocol')}

 @staticmethod
[docs] def from_config(prov_config, prov_key, appliance=None):
 token_creds = KubernetesProvider.process_credential_yaml_key(
 prov_config['credentials'], cred_type='token')
 return KubernetesProvider(
 name=prov_config['name'],
 credentials={'token': token_creds},
 key=prov_key,
 zone=prov_config['server_zone'],
 hostname=prov_config.get('hostname') or prov_config['ip_address'],
 port=prov_config['port'],
 sec_protocol=prov_config.get('sec_protocol'),
 hawkular_sec_protocol=prov_config.get('hawkular_sec_protocol'),
 provider_data=prov_config,
 appliance=appliance)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/containers/container.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.containers.container

-*- coding: utf-8 -*-
from functools import partial
import random
import itertools

from navmazing import NavigateToSibling, NavigateToAttribute

from widgetastic_manageiq import Accordion, ManageIQTree, View, Table
from widgetastic_patternfly import VerticalNavigation
from widgetastic.widget import Text
from widgetastic.xpath import quote
from widgetastic.utils import Version, VersionPick

from cfme.containers.provider import (details_page, pol_btn, mon_btn,
 ContainerObjectAllBaseView)
from cfme.common import SummaryMixin, Taggable
from cfme.fixtures import pytest_selenium as sel
from cfme.web_ui import CheckboxTable, toolbar as tb, match_location, PagedTable
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import CFMENavigateStep, navigator, navigate_to
from cfme.utils import version

list_tbl = CheckboxTable(table_locator="//div[@id='list_grid']//table")
paged_tbl = PagedTable(table_locator="//div[@id='list_grid']//table")

match_page = partial(match_location, controller='container', title='Containers')

[docs]class Container(Taggable, SummaryMixin, Navigatable):

 PLURAL = 'Containers'

 def __init__(self, name, pod, appliance=None):
 self.name = name
 self.pod = pod
 Navigatable.__init__(self, appliance=appliance)

[docs] def load_details(self, refresh=False):
 navigate_to(self, 'Details')
 if refresh:
 tb.refresh()

[docs] def click_element(self, *ident):
 self.load_details(refresh=True)
 return sel.click(details_page.infoblock.element(*ident))

[docs] def get_detail(self, *ident):
 """ Gets details from the details infoblock
 Args:
 *ident: An InfoBlock title, followed by the Key name, e.g. "Relationships", "Images"
 Returns: A string representing the contents of the InfoBlock's value.
 """
 self.load_details(refresh=True)
 return details_page.infoblock.text(*ident)

 @property
 def project_name(self):
 return self.pod.project_name

 @classmethod
[docs] def get_random_instances(cls, provider, count=1, appliance=None):
 """Generating random instances."""
 containers_list = provider.mgmt.list_container()
 random.shuffle(containers_list)
 return [cls(obj.name, obj.cg_name, appliance=appliance)
 for obj in itertools.islice(containers_list, count)]

[docs]class ContainerAllView(ContainerObjectAllBaseView):
 """Containers All view"""
 summary = Text(VersionPick({
 Version.lowest(): '//h3[normalize-space(.) = {}]'.format(quote('All Containers')),
 '5.8': '//h1[normalize-space(.) = {}]'.format(quote('Containers'))
 }))
 containers = Table(locator="//div[@id='list_grid']//table")

 @View.nested
 class Filters(Accordion): # noqa
 ACCORDION_NAME = "Filters"

 @View.nested
 class Navigation(VerticalNavigation):
 DIV_LINKS_MATCHING = './/div/ul/li/a[contains(text(), {txt})]'

 def __init__(self, parent, logger=None):
 VerticalNavigation.__init__(self, parent, '#Container_def_searches', logger=logger)

 tree = ManageIQTree()

 @property
 def is_displayed(self):
 return self.summary.is_displayed

@navigator.register(Container, 'All')
[docs]class ContainerAll(CFMENavigateStep):
 VIEW = ContainerAllView
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self):
 self.prerequisite_view.navigation.select('Compute', 'Containers', 'Containers')

[docs] def resetter(self):
 if version.current_version() < '5.8':
 self.view.Filters.tree.click_path('All Containers')
 else:
 self.view.Filters.Navigation.select('ALL (Default)')
 tb.select('List View')
 from cfme.web_ui import paginator
 if paginator.page_controls_exist():
 paginator.check_all()
 paginator.uncheck_all()

@navigator.register(Container, 'Details')
[docs]class ContainerDetails(CFMENavigateStep):
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 tb.select('List View')
 sel.click(paged_tbl.find_row_by_cell_on_all_pages(
 {'Name': self.obj.name, 'Pod Name': self.obj.pod}))

@navigator.register(Container, 'EditTags')
[docs]class ContainerEditTags(CFMENavigateStep):
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 pol_btn('Edit Tags')

@navigator.register(Container, 'Timelines')
[docs]class ContainerTimeLines(CFMENavigateStep):
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 mon_btn('Timelines')

@navigator.register(Container, 'Utilization')
[docs]class ContainerUtilization(CFMENavigateStep):
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 mon_btn('Utilization')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/rest/gen_data.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.rest.gen_data

-*- coding: utf-8 -*-
import re

import fauxfactory

from cfme.automate.service_dialogs import DialogCollection
from cfme.exceptions import OptionNotAvailable
from cfme.infrastructure.provider import InfraProvider
from cfme.infrastructure.provider.rhevm import RHEVMProvider
from cfme.infrastructure.provider.virtualcenter import VMwareProvider
from cfme.services.catalogs.catalog import Catalog
from cfme.services.catalogs.catalog_item import CatalogItem
from fixtures.provider import setup_one_by_class_or_skip
from cfme.utils import version
from cfme.utils.log import logger
from cfme.utils.rest import get_vms_in_service
from cfme.utils.virtual_machines import deploy_template
from cfme.utils.wait import wait_for

_TEMPLATE_TORSO = """{
 "AWSTemplateFormatVersion" : "2010-09-09",
 "Description" : "AWS CloudFormation Sample Template Rails_Single_Instance.",

 "Parameters" : {
 "KeyName": {
 "Description" : "Name of an existing EC2 KeyPair to enable SSH access to the instances",
 "Type": "AWS::EC2::KeyPair::KeyName",
 "ConstraintDescription" : "must be the name of an existing EC2 KeyPair."
 }
 }
}
"""

[docs]def service_catalogs(request, rest_api, num=5):
 """Create service catalogs using REST API."""
 scls_data = []
 for _ in range(num):
 uniq = fauxfactory.gen_alphanumeric()
 scls_data.append({
 'name': 'name_{}'.format(uniq),
 'description': 'description_{}'.format(uniq),
 'service_templates': []
 })

 return _creating_skeleton(request, rest_api, 'service_catalogs', scls_data, col_action='add')

[docs]def service_catalog_obj(request, rest_api):
 """Return service catalog object."""
 rest_catalog = service_catalogs(request, rest_api, num=1)[0]
 return Catalog(name=rest_catalog.name, description=rest_catalog.description)

[docs]def categories(request, rest_api, num=1):
 ctg_data = []
 for _ in range(num):
 uniq = fauxfactory.gen_alphanumeric().lower()
 ctg_data.append({
 'name': 'test_category_{}'.format(uniq),
 'description': 'test_category_{}'.format(uniq)
 })

 return _creating_skeleton(request, rest_api, 'categories', ctg_data)

[docs]def tags(request, rest_api, categories):
 # Category id, href or name needs to be specified for creating a new tag resource
 tags = []
 for index, ctg in enumerate(categories):
 uniq = fauxfactory.gen_alphanumeric().lower()
 refs = [{'id': ctg.id}, {'href': ctg.href}, {'name': ctg.name}]
 tags.append({
 'name': 'test_tag_{}'.format(uniq),
 'description': 'test_tag_{}'.format(uniq),
 'category': refs[index % 3]
 })

 return _creating_skeleton(request, rest_api, 'tags', tags, substr_search=True)

[docs]def dialog(appliance):
 service_dialogs = appliance.get(DialogCollection)
 dialog = "dialog_{}".format(fauxfactory.gen_alphanumeric())
 element_data = dict(
 ele_label="ele_{}".format(fauxfactory.gen_alphanumeric()),
 ele_name=fauxfactory.gen_alphanumeric(),
 ele_desc="my ele desc",
 choose_type="Text Box",
 default_text_box="default value"
)
 service_dialog = service_dialogs.create(label=dialog,
 description="my dialog", submit=True, cancel=True,)
 tab = service_dialog.tabs.create(tab_label='tab_' + fauxfactory.gen_alphanumeric(),
 tab_desc="my tab desc")
 box = tab.boxes.create(box_label='box_' + fauxfactory.gen_alphanumeric(),
 box_desc="my box desc")
 box.elements.create(element_data=[element_data])
 return service_dialog

[docs]def services(request, appliance, a_provider, service_dialog=None, service_catalog=None):
 """
 The attempt to add the service entities via web
 """
 service_template = service_templates_ui(
 request,
 appliance,
 service_dialog=service_dialog,
 service_catalog=service_catalog,
 a_provider=a_provider,
 num=1
)

 service_template = service_template[0]
 service_catalog = appliance.rest_api.get_entity(
 'service_catalogs',
 service_template.service_template_catalog_id
)
 template_subcollection = appliance.rest_api.get_entity(
 service_catalog.service_templates,
 service_template.id
)
 template_subcollection.action.order()
 results = appliance.rest_api.response.json()
 service_request = appliance.rest_api.get_entity('service_requests', results['id'])

 def _order_finished():
 service_request.reload()
 return service_request.request_state.lower() == 'finished'

 wait_for(_order_finished, num_sec=2000, delay=10)
 assert 'error' not in service_request.message.lower(), \
 'Provisioning failed with the message `{}`'.format(service_request.message)

 service_name = re.search(
 r'\[({}[0-9-]*)\] '.format(template_subcollection.name), service_request.message).group(1)
 provisioned_service = appliance.rest_api.collections.services.get(name=service_name)

 @request.addfinalizer
 def _finished():
 try:
 provisioned_service.action.delete()
 except Exception:
 # service can be deleted by test
 logger.warning('Failed to delete service `{}`.'.format(service_name))

 # tests expect iterable
 return [provisioned_service]

[docs]def service_data(request, appliance, a_provider, service_dialog=None, service_catalog=None):
 prov_service = services(request, appliance, a_provider, service_dialog, service_catalog).pop()
 prov_vm = get_vms_in_service(appliance.rest_api, prov_service).pop()
 return {'service_name': prov_service.name, 'vm_name': prov_vm.name}

[docs]def rates(request, rest_api, num=3):
 chargeback = rest_api.collections.chargebacks.get(rate_type='Compute')
 data = []
 for _ in range(num):
 req = {
 'description': 'test_rate_{}'.format(fauxfactory.gen_alphanumeric()),
 'source': 'allocated',
 'group': 'cpu',
 'per_time': 'daily',
 'per_unit': 'megahertz',
 'chargeback_rate_id': chargeback.id
 }
 if version.current_version() >= '5.8':
 req['chargeable_field_id'] = chargeback.id
 data.append(req)

 return _creating_skeleton(request, rest_api, 'rates', data)

[docs]def a_provider(request):
 return setup_one_by_class_or_skip(request, InfraProvider)

[docs]def vm(request, a_provider, rest_api):
 provider_rest = rest_api.collections.providers.get(name=a_provider.name)
 vm_name = deploy_template(
 a_provider.key,
 'test_rest_vm_{}'.format(fauxfactory.gen_alphanumeric(length=4)))

 @request.addfinalizer
 def _finished():
 try:
 a_provider.mgmt.delete_vm(vm_name)
 except Exception:
 # vm can be deleted/retired by test
 logger.warning("Failed to delete vm '{}'.".format(vm_name))

 provider_rest.action.refresh()
 wait_for(
 lambda: rest_api.collections.vms.find_by(name=vm_name) or False,
 num_sec=600, delay=5)
 return vm_name

[docs]def service_templates_ui(request, appliance, service_dialog=None, service_catalog=None,
 a_provider=None, num=4):
 if not service_dialog:
 service_dialog = dialog(appliance)
 if not service_catalog:
 service_catalog = service_catalog_obj(request, appliance.rest_api)

 catalog_item_type = 'Generic'
 provisioning_args = {}

 catalog_items = []
 new_names = []
 for _ in range(num):
 if a_provider:
 template, host, datastore, vlan, catalog_item_type = map(
 a_provider.data.get('provisioning').get,
 ('template', 'host', 'datastore', 'vlan', 'catalog_item_type'))

 vm_name = 'test_rest_{}'.format(fauxfactory.gen_alphanumeric())
 provisioning_data = {
 'vm_name': vm_name,
 'host_name': {'name': [host]},
 'datastore_name': {'name': [datastore]}
 }

 if a_provider.one_of(RHEVMProvider):
 provisioning_data['provision_type'] = 'Native Clone'
 provisioning_data['vlan'] = vlan
 catalog_item_type = 'RHEV'
 elif a_provider.one_of(VMwareProvider):
 provisioning_data['provision_type'] = 'VMware'
 provisioning_data['vlan'] = vlan

 provisioning_args = dict(
 catalog_name=template,
 provider=a_provider,
 prov_data=provisioning_data
)

 new_name = 'item_{}'.format(fauxfactory.gen_alphanumeric())
 new_names.append(new_name)
 catalog_items.append(
 CatalogItem(
 item_type=catalog_item_type,
 name=new_name,
 description='my catalog',
 display_in=True,
 catalog=service_catalog,
 dialog=service_dialog,
 **provisioning_args
)
)

 for catalog_item in catalog_items:
 catalog_item.create()

 collection = appliance.rest_api.collections.service_templates

 for new_name in new_names:
 wait_for(lambda: collection.find_by(name=new_name) or False, num_sec=180, delay=10)

 s_tpls = [ent for ent in collection if ent.name in new_names]

 @request.addfinalizer
 def _finished():
 collection.reload()
 to_delete = [ent for ent in collection if ent.name in new_names]
 if to_delete:
 collection.action.delete(*to_delete)

 return s_tpls

[docs]def service_templates_rest(request, appliance, service_dialog=None, service_catalog=None, num=4):
 if not service_dialog:
 service_dialog = dialog(appliance)
 if not service_catalog:
 service_catalog = service_catalog_obj(request, appliance.rest_api)

 catalog_id = appliance.rest_api.collections.service_catalogs.get(name=service_catalog.name).id
 dialog_id = appliance.rest_api.collections.service_dialogs.get(label=service_dialog.label).id

 data = []
 for _ in range(num):
 uniq = fauxfactory.gen_alphanumeric(5)
 data.append({
 "name": 'item_{}'.format(uniq),
 "description": "my catalog {}".format(uniq),
 "service_type": "atomic",
 "prov_type": "generic",
 "display": True,
 "service_template_catalog_id": catalog_id,
 "config_info": {
 "provision": {
 "dialog_id": dialog_id,
 "fqname": "/Service/Provisioning/StateMachines/"
 "ServiceProvision_Template/CatalogItemInitialization"
 },
 "retirement": {
 "dialog_id": dialog_id,
 "fqname": "/Service/Retirement/StateMachines/ServiceRetirement/Default"
 },
 }
 })

 return _creating_skeleton(request, appliance.rest_api, "service_templates", data)

[docs]def service_templates(request, appliance, service_dialog=None, service_catalog=None, num=4):
 tmplt = service_templates_ui if version.current_version() < '5.8' else service_templates_rest
 return tmplt(
 request, appliance, service_dialog=service_dialog, service_catalog=service_catalog, num=num)

[docs]def automation_requests_data(vm, requests_collection=False, approve=True, num=4):
 # for creating automation request using /api/automation_requests
 automation_requests_col = {
 "uri_parts": {
 "namespace": "System",
 "class": "Request",
 "instance": "InspectME",
 "message": "create",
 },
 "parameters": {
 "vm_name": vm,
 },
 "requester": {
 "auto_approve": approve
 }
 }
 # for creating automation request using /api/requests
 requests_col = {
 "options": {
 "request_type": "automation",
 "message": "create",
 "namespace": "System",
 "class_name": "Request",
 "instance_name": "InspectME",
 "attrs": {
 "vm_name": vm,
 "userid": "admin"
 }
 },
 "requester": {
 "user_name": "admin"
 },
 "auto_approve": approve
 }
 data = requests_col if requests_collection else automation_requests_col
 return [data for _ in range(num)]

[docs]def groups(request, rest_api, role, tenant, num=1):
 data = []
 for _ in range(num):
 data.append({
 "description": "group_description_{}".format(fauxfactory.gen_alphanumeric()),
 "role": {"href": role.href},
 "tenant": {"href": tenant.href}
 })

 groups = _creating_skeleton(request, rest_api, "groups", data)
 if num == 1:
 return groups.pop()
 return groups

[docs]def roles(request, rest_api, num=1):
 data = []
 for _ in range(num):
 data.append({"name": "role_name_{}".format(fauxfactory.gen_alphanumeric())})

 roles = _creating_skeleton(request, rest_api, "roles", data)
 if num == 1:
 return roles.pop()
 return roles

[docs]def copy_role(rest_api, orig_name, new_name=None):
 orig_role = rest_api.collections.roles.get(name=orig_name)
 orig_features = orig_role._data.get('features')
 orig_settings = orig_role._data.get('settings')
 if not orig_features and hasattr(orig_role, 'features'):
 features_subcol = orig_role.features
 features_subcol.reload()
 orig_features = features_subcol._data.get('resources')
 if not orig_features:
 raise NotImplementedError('Role copy is not implemented for this version.')
 new_role = rest_api.collections.roles.action.create(
 name=new_name or 'EvmRole-{}'.format(fauxfactory.gen_alphanumeric()),
 features=orig_features,
 settings=orig_settings
)
 return new_role[0]

[docs]def tenants(request, rest_api, num=1):
 parent = rest_api.collections.tenants.get(name='My Company')
 data = []
 for _ in range(num):
 uniq = fauxfactory.gen_alphanumeric()
 data.append({
 'description': 'test_tenants_{}'.format(uniq),
 'name': 'test_tenants_{}'.format(uniq),
 'divisible': 'true',
 'use_config_for_attributes': 'false',
 'parent': {'href': parent.href}
 })

 tenants = _creating_skeleton(request, rest_api, 'tenants', data)
 if num == 1:
 return tenants.pop()
 return tenants

[docs]def users(request, rest_api, num=1):
 data = []
 for _ in range(num):
 data.append({
 "userid": "user_{}".format(fauxfactory.gen_alphanumeric(3)),
 "name": "name_{}".format(fauxfactory.gen_alphanumeric()),
 "password": "pass_{}".format(fauxfactory.gen_alphanumeric(3)),
 "group": {"description": "EvmGroup-user"}
 })

 users = _creating_skeleton(request, rest_api, "users", data)
 if num == 1:
 return users.pop()
 return users

def _creating_skeleton(request, rest_api, col_name, col_data, col_action='create',
 substr_search=False):
 collection = getattr(rest_api.collections, col_name)
 try:
 action = getattr(collection.action, col_action)
 except AttributeError:
 raise OptionNotAvailable(
 "Action `{}` for {} is not implemented in this version".format(col_action, col_name))

 entities = action(*col_data)
 action_response = rest_api.response
 search_str = '%{}%' if substr_search else '{}'
 for entity in col_data:
 if entity.get('name'):
 wait_for(lambda: collection.find_by(
 name=search_str.format(entity.get('name'))) or False, num_sec=180, delay=10)
 elif entity.get('description'):
 wait_for(lambda: collection.find_by(
 description=search_str.format(entity.get('description'))) or False,
 num_sec=180, delay=10)
 else:
 raise NotImplementedError

 # make sure the original list of `entities` is preserved for cleanup
 original_entities = list(entities)

 @request.addfinalizer
 def _finished():
 collection.reload()
 ids = [e.id for e in original_entities]
 delete_entities = [e for e in collection if e.id in ids]
 if delete_entities:
 collection.action.delete(*delete_entities)

 # make sure action response is preserved
 rest_api.response = action_response
 return entities

[docs]def mark_vm_as_template(rest_api, provider, vm_name):
 """
 Function marks vm as template via mgmt and returns template Entity
 Usage:
 mark_vm_as_template(rest_api, provider, vm_name)
 """
 t_vm = rest_api.collections.vms.get(name=vm_name)
 t_vm.action.stop()
 provider.mgmt.wait_vm_stopped(vm_name=vm_name, num_sec=1000)

 provider.mgmt.mark_as_template(vm_name)

 wait_for(
 lambda: rest_api.collections.templates.find_by(name=vm_name).subcount != 0,
 num_sec=700, delay=15)
 return rest_api.collections.templates.get(name=vm_name)

[docs]def arbitration_settings(request, rest_api, num=2):
 data = []
 for _ in range(num):
 uniq = fauxfactory.gen_alphanumeric(5)
 data.append({
 'name': 'test_settings_{}'.format(uniq),
 'display_name': 'Test Settings {}'.format(uniq)})

 return _creating_skeleton(request, rest_api, 'arbitration_settings', data)

[docs]def orchestration_templates(request, rest_api, num=2):
 data = []
 for _ in range(num):
 uniq = fauxfactory.gen_alphanumeric(5)
 data.append({
 'name': 'test_{}'.format(uniq),
 'description': 'Test Template {}'.format(uniq),
 'type': 'OrchestrationTemplateCfn',
 'orderable': False,
 'draft': False,
 'content': _TEMPLATE_TORSO.replace('CloudFormation', uniq)})

 return _creating_skeleton(request, rest_api, 'orchestration_templates', data)

[docs]def arbitration_profiles(request, rest_api, a_provider, num=2):
 provider = rest_api.collections.providers.get(name=a_provider.name)
 data = []
 providers = [{'id': provider.id}, {'href': provider.href}]
 for index in range(num):
 data.append({
 'name': 'test_settings_{}'.format(fauxfactory.gen_alphanumeric(5)),
 'provider': providers[index % 2]
 })

 return _creating_skeleton(request, rest_api, 'arbitration_profiles', data)

[docs]def arbitration_rules(request, rest_api, num=2):
 data = []
 for _ in range(num):
 data.append({
 'description': 'test admin rule {}'.format(fauxfactory.gen_alphanumeric(5)),
 'operation': 'inject',
 'expression': {'EQUAL': {'field': 'User-userid', 'value': 'admin'}}
 })

 return _creating_skeleton(request, rest_api, 'arbitration_rules', data)

[docs]def blueprints(request, rest_api, num=2):
 data = []
 for _ in range(num):
 uniq = fauxfactory.gen_alphanumeric(5)
 data.append({
 'name': 'test_blueprint_{}'.format(uniq),
 'description': 'Test Blueprint {}'.format(uniq),
 'ui_properties': {
 'service_catalog': {},
 'service_dialog': {},
 'automate_entrypoints': {},
 'chart_data_model': {}
 }
 })

 return _creating_skeleton(request, rest_api, 'blueprints', data)

[docs]def conditions(request, rest_api, num=2):
 data = []
 for _ in range(num):
 uniq = fauxfactory.gen_alphanumeric(5)
 data.append({
 'name': 'test_condition_{}'.format(uniq),
 'description': 'Test Condition {}'.format(uniq),
 'expression': {'=': {'field': 'ContainerImage-architecture', 'value': 'dsa'}},
 'towhat': 'ExtManagementSystem',
 'modifier': 'allow'
 })

 return _creating_skeleton(request, rest_api, 'conditions', data)

[docs]def policies(request, rest_api, num=2):
 conditions_response = conditions(request, rest_api, num=2)
 data = []
 for _ in range(num):
 uniq = fauxfactory.gen_alphanumeric(5)
 data.append({
 'name': 'test_policy_{}'.format(uniq),
 'description': 'Test Policy {}'.format(uniq),
 'mode': 'compliance',
 'towhat': 'ManageIQ::Providers::Redhat::InfraManager',
 'conditions_ids': [conditions_response[0].id, conditions_response[1].id],
 'policy_contents': [{
 'event_id': 2,
 'actions': [{'action_id': 1, 'opts': {'qualifier': 'failure'}}]
 }]
 })

 return _creating_skeleton(request, rest_api, 'policies', data)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_images/framework.png
Ul

e.g. Form

Low fevel
* CFME specific
*Fills n fields

search.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/control/simulation.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.control.simulation

-*- coding: utf-8 -*-
from navmazing import NavigateToSibling
from widgetastic.widget import Select
from widgetastic_patternfly import Button

from cfme.base import Server
from cfme.base.login import BaseLoggedInPage
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep

[docs]class ControlSimulationView(BaseLoggedInPage):
 """Basic view for Control/Simulation tab."""
 event_selection = Select(id="event_typ")
 vm_selection = Select(id="filter_typ")
 submit_button = Button("Submit")
 reset_button = Button("Reset")
 # TODO Add simulation results tree. That tree can
 # be shown only after filling aforedefined widgets.

 @property
 def is_displayed(self):
 return (
 self.event_selection.is_displayed and
 self.vm_selection.is_displayed and
 self.submit_button.is_displayed and
 self.reset_button.is_displayed
)

@navigator.register(Server)
[docs]class ControlSimulation(CFMENavigateStep):
 VIEW = ControlSimulationView
 prerequisite = NavigateToSibling("LoggedIn")

[docs] def step(self):
 self.view.navigation.select("Control", "Simulation")

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/markers/manual.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for markers.manual

"""manual: Marker for marking tests asmanual tests."""

from fixtures.pytest_store import store

[docs]def pytest_configure(config):
 config.addinivalue_line("markers", __doc__.splitlines()[0])

[docs]def pytest_addoption(parser):
 """Adds options for the composite uncollection system"""
 parser.addoption("--manual", action="store_true", default=False,
 help="Collect manual tests (only for --collect-only")

[docs]def pytest_collection_modifyitems(session, config, items):
 len_collected = len(items)
 is_manual = config.getvalue('manual')
 items[:] = [item for item in items if bool(item.get_marker('manual')) == is_manual]

 len_filtered = len(items)
 filtered_count = len_collected - len_filtered
 store.uncollection_stats['manual'] = filtered_count

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/markers/requires.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for markers.requires

"""requires_test(test_name_or_nodeid): Mark a test as requiring another test

If another test is required to have run and passed before a suite of tests has
any hope of succeeding, such as a smoke test, apply this mark to those tests.

It takes a test name as the only positional argument. In the event that the
test name is ambiguous, a full py.test nodeid can be used. A test's nodeid can
be found by inspecting the request.node.nodeid attribute inside the required
test item.

"""

import pytest

_no_mark_arg_err = '{} mark required test name or nodeid as first argument'

[docs]def pytest_configure(config):
 config.addinivalue_line("markers", __doc__.splitlines()[0])

def _find_test_in_reports(test_id, reports):
 # nodeids end with the test name, so the description of this mark
 # oversimplifies things a little bit. The actual check for a test
 # match is that any preceding test nodeid ends with the arg passed
 # to the mark, so we can easily match the test name, test nodeid, and
 # anything in between.

 return any([report.nodeid.endswith(test_id) for report in reports])

[docs]def pytest_runtest_setup(item):
 mark = 'requires_test'
 if mark not in item.keywords:
 # mark wasn't invoked, short out
 return
 else:
 try:
 test_id = item.keywords[mark].args[0]
 except IndexError:
 # mark called incorrectly, explode
 raise Exception(_no_mark_arg_err.format(mark))

 reporter = item.config.pluginmanager.getplugin('terminalreporter')
 passed = reporter.stats.get('passed', [])
 failed = reporter.stats.get('failed', [])
 skipped = reporter.stats.get('skipped', [])

 if _find_test_in_reports(test_id, passed):
 # Required test passed, short out
 return

 if _find_test_in_reports(test_id, failed):
 error_verb = 'failed'
 elif _find_test_in_reports(test_id, skipped):
 error_verb = 'was skipped'
 else:
 error_verb = 'not yet run or does not exist'

 errmsg = 'required test {} {}'.format(test_id, error_verb)
 pytest.skip(errmsg)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/containers/route.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.containers.route

-*- coding: utf-8 -*-
import random
import itertools
from functools import partial
from cached_property import cached_property

from wrapanapi.containers.route import Route as ApiRoute

from cfme.common import SummaryMixin, Taggable
from cfme.fixtures import pytest_selenium as sel
from cfme.web_ui import toolbar as tb, match_location,\
 PagedTable, CheckboxTable
from cfme.containers.provider import details_page, Labelable,\
 ContainerObjectAllBaseView
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep,\
 navigate_to
from navmazing import NavigateToAttribute, NavigateToSibling
from cfme.utils.appliance import Navigatable

list_tbl = CheckboxTable(table_locator="//div[@id='list_grid']//table")
paged_tbl = PagedTable(table_locator="//div[@id='list_grid']//table")

match_page = partial(match_location, controller='container_routes', title='Routes')

[docs]class Route(Taggable, Labelable, SummaryMixin, Navigatable):

 PLURAL = 'Routes'

 def __init__(self, name, project_name, provider, appliance=None):
 self.name = name
 self.project_name = project_name
 self.provider = provider
 Navigatable.__init__(self, appliance=appliance)

 @cached_property
 def mgmt(self):
 return ApiRoute(self.provider.mgmt, self.name, self.project_name)

[docs] def load_details(self, refresh=False):
 navigate_to(self, 'Details')
 if refresh:
 tb.refresh()

[docs] def click_element(self, *ident):
 self.load_details(refresh=True)
 return sel.click(details_page.infoblock.element(*ident))

[docs] def get_detail(self, *ident):
 """ Gets details from the details infoblock
 Args:
 *ident: An InfoBlock title, followed by the Key name, e.g. "Relationships", "Images"
 Returns: A string representing the contents of the InfoBlock's value.
 """
 self.load_details(refresh=True)
 return details_page.infoblock.text(*ident)

 @classmethod
[docs] def get_random_instances(cls, provider, count=1, appliance=None):
 """Generating random instances."""
 route_list = provider.mgmt.list_route()
 random.shuffle(route_list)
 return [cls(obj.name, obj.project_name, provider, appliance=appliance)
 for obj in itertools.islice(route_list, count)]

[docs]class RouteAllView(ContainerObjectAllBaseView):
 TITLE_TEXT = "Routes"

@navigator.register(Route, 'All')
[docs]class All(CFMENavigateStep):
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')
 VIEW = RouteAllView

[docs] def step(self):
 self.prerequisite_view.navigation.select('Compute', 'Containers', 'Routes')

[docs] def resetter(self):
 # Reset view and selection
 tb.select("List View")
 from cfme.web_ui import paginator
 paginator.check_all()
 paginator.uncheck_all()

@navigator.register(Route, 'Details')
[docs]class Details(CFMENavigateStep):
 prerequisite = NavigateToSibling('All')

[docs] def am_i_here(self):
 return match_page(summary='{} (Summary)'.format(self.obj.name))

[docs] def step(self):
 tb.select('List View')
 sel.click(paged_tbl.find_row_by_cell_on_all_pages({'Name': self.obj.name,
 'Project Name': self.obj.project_name}))

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/control/explorer/conditions.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.control.explorer »

 Source code for cfme.control.explorer.conditions

-*- coding: utf-8 -*-
from cfme.utils.pretty import Pretty
from cfme.utils.appliance.implementations.ui import navigator, navigate_to, CFMENavigateStep
from navmazing import NavigateToAttribute

from widgetastic.widget import Text, TextInput, Widget
from widgetastic_patternfly import Button, Input

from . import ControlExplorerView
from cfme.utils.appliance import Navigatable
from cfme.utils.update import Updateable
from cfme.utils import version, deferred_verpick, ParamClassName

from cfme.web_ui.expression_editor_widgetastic import ExpressionEditor

[docs]class Expression(Widget):
 ROOT = "div#condition_info_div"

 def __init__(self, parent, type_, logger=None):
 Widget.__init__(self, parent, logger=logger)
 if type_ not in ["Scope", "Expression"]:
 raise ValueError("Type should be Scope or Expression only")
 else:
 self.type = type_

 def __locator__(self):
 return self.ROOT

 @property
 def text_list(self):
 return self.browser.element(self).text.split("\n")

[docs] def read(self):
 """
 In Condition details view Scope and Expression don't have any locator. So we
 have to scrape whole text in the parent div and split it by "\\n". After that in text_list
 we receive something like that:

 .. code-block:: python

 [u'Scope',
 u'COUNT OF VM and Instance.Files > 150',
 u'Expression',
 u'VM and Instance : Boot Time BEFORE "03/04/2014 00:00"',
 u'Notes',
 u'No notes have been entered.',
 u'Assigned to Policies',
 u'This Condition is not assigned to any Policies.']

 To get value of Scope or Expression firstly we find its index in the list and then just
 seek next member.
 """
 index = self.text_list.index(self.type)
 return self.text_list[index + 1]

[docs]class ConditionsAllView(ControlExplorerView):
 title = Text("#explorer_title_text")

 @property
 def is_displayed(self):
 return (
 self.in_control_explorer and
 self.title.text == "All {} Conditions".format(self.context["object"].FIELD_VALUE) and
 self.conditions.is_opened and
 self.conditions.tree.currently_selected == ["All Conditions",
 "{} Conditions".format(self.context["object"].TREE_NODE)]
)

[docs]class ConditionFormCommon(ControlExplorerView):

 title = Text("#explorer_title_text")
 description = Input(name="description")
 scope = ExpressionEditor("//img[@alt='Edit this Scope']")
 expression = ExpressionEditor("//img[@alt='Edit this Expression']")
 notes = TextInput(name="notes")

 cancel_button = Button("Cancel")

[docs]class NewConditionView(ConditionFormCommon):
 add_button = Button("Add")

 @property
 def is_displayed(self):
 return (
 self.in_control_explorer and
 self.title.text == "Adding a new Condition" and
 self.conditions.is_opened and
 self.conditions.tree.currently_selected == ["All Conditions",
 "{} Condition".format(self.context["object"].TREE_NODE)]
)

[docs]class EditConditionView(ConditionFormCommon):
 title = Text("#explorer_title_text")

 save_button = Button("Save")
 reset_button = Button("Reset")

 @property
 def is_displayed(self):
 return (
 self.in_control_explorer and
 self.title.text == '{} "{}"'.format(self.context["object"].FIELD_VALUE,
 self.context["object"].description) and
 self.conditions.is_opened and
 self.conditions.tree.currently_selected == [
 "All Conditions",
 "{} Conditions".format(self.context["object"].TREE_NODE),
 self.context["object"].description
]
)

[docs]class ConditionDetailsView(ControlExplorerView):
 title = Text("#explorer_title_text")
 scope = Expression("Scope")
 expression = Expression("Expression")

 @property
 def is_displayed(self):
 return (
 self.in_control_explorer and
 self.title.text == '{} Condition "{}"'.format(self.context["object"].FIELD_VALUE,
 self.context["object"].description) and
 self.conditions.is_opened
)

[docs]class BaseCondition(Updateable, Navigatable, Pretty):

 TREE_NODE = None
 PRETTY = None
 FIELD_VALUE = None
 _param_name = ParamClassName('description')

 def __init__(self, description, expression=None, scope=None, notes=None, appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.description = description
 self.expression = expression
 self.scope = scope
 self.notes = notes

[docs] def create(self):
 view = navigate_to(self, "Add")
 view.fill({
 "description": self.description,
 "expression": self.expression,
 "scope": self.scope,
 "notes": self.notes
 })
 view.add_button.click()
 view = self.create_view(ConditionDetailsView)
 assert view.is_displayed
 view.flash.assert_no_error()
 view.flash.assert_message('Condition "{}" was added'.format(self.description))

[docs] def update(self, updates):
 """Update this Condition in UI.

 Args:
 updates: Provided by update() context manager.
 cancel: Whether to cancel the update (default False).
 """
 view = navigate_to(self, "Edit")
 view.fill(updates)
 view.save_button.click()
 view = self.create_view(ConditionDetailsView)
 assert view.is_displayed
 view.flash.assert_no_error()
 view.flash.assert_message(
 'Condition "{}" was saved'.format(updates.get("description", self.description)))

[docs] def delete(self, cancel=False):
 """Delete this Condition in UI.

 Args:
 cancel: Whether to cancel the deletion (default False).
 """
 view = navigate_to(self, "Details")
 view.configuration.item_select("Delete this {} Condition".format(self.FIELD_VALUE),
 handle_alert=not cancel)
 if cancel:
 assert view.is_displayed
 view.flash.assert_no_error()
 else:
 view = self.create_view(ConditionsAllView)
 assert view.is_displayed
 view.flash.assert_no_error()
 view.flash.assert_message('Condition "{}": Delete successful'.format(self.description))

[docs] def read_expression(self):
 view = navigate_to(self, "Details")
 assert view.is_displayed
 return view.expression.read()

[docs] def read_scope(self):
 view = navigate_to(self, "Details")
 assert view.is_displayed
 return view.scope.read()

 @property
 def exists(self):
 """Check existence of this Condition.

 Returns: :py:class:`bool` signalizing the presence of the Condition in the database.
 """
 conditions = self.appliance.db.client["conditions"]
 return self.appliance.db.client.session\
 .query(conditions.description)\
 .filter(conditions.description == self.description)\
 .count() > 0

@navigator.register(BaseCondition, "Add")
[docs]class ConditionNew(CFMENavigateStep):
 VIEW = NewConditionView
 prerequisite = NavigateToAttribute("appliance.server", "ControlExplorer")

[docs] def step(self):
 self.view.conditions.tree.click_path(
 "All Conditions",
 "{} Conditions".format(self.obj.TREE_NODE)
)
 self.view.configuration.item_select("Add a New {} Condition".format(self.obj.PRETTY))

@navigator.register(BaseCondition, "Edit")
[docs]class ConditionEdit(CFMENavigateStep):
 VIEW = EditConditionView
 prerequisite = NavigateToAttribute("appliance.server", "ControlExplorer")

[docs] def step(self):
 self.view.conditions.tree.click_path(
 "All Conditions",
 "{} Conditions".format(self.obj.TREE_NODE),
 self.obj.description
)
 self.view.configuration.item_select("Edit this Condition")

@navigator.register(BaseCondition, "Details")
[docs]class ConditionDetails(CFMENavigateStep):
 VIEW = ConditionDetailsView
 prerequisite = NavigateToAttribute("appliance.server", "ControlExplorer")

[docs] def step(self):
 self.view.conditions.tree.click_path(
 "All Conditions",
 "{} Conditions".format(self.obj.TREE_NODE),
 self.obj.description
)

[docs]class HostCondition(BaseCondition):

 TREE_NODE = "Host"
 PRETTY = "Host / Node"
 FIELD_VALUE = "Host / Node"

[docs]class VMCondition(BaseCondition):

 TREE_NODE = "VM and Instance"
 PRETTY = "VM"
 FIELD_VALUE = "VM and Instance"

[docs]class ReplicatorCondition(BaseCondition):

 TREE_NODE = "Replicator"
 PRETTY = "Replicator"
 FIELD_VALUE = "Replicator"

[docs]class PodCondition(BaseCondition):

 TREE_NODE = "Pod"
 PRETTY = "Pod"
 FIELD_VALUE = "Pod"

[docs]class ContainerNodeCondition(BaseCondition):

 TREE_NODE = "Container Node"
 PRETTY = "Node"
 FIELD_VALUE = "Node"

[docs]class ContainerImageCondition(BaseCondition):

 TREE_NODE = "Container Image"
 PRETTY = deferred_verpick({
 version.LOWEST: "Image",
 '5.7': "Container Image",
 })
 FIELD_VALUE = deferred_verpick({
 version.LOWEST: "Image",
 '5.7': "Container Image",
 })

[docs]class ProviderCondition(BaseCondition):

 TREE_NODE = deferred_verpick({
 version.LOWEST: "Container Provider",
 '5.7.2': "Provider",
 })
 PRETTY = "Provider"
 FIELD_VALUE = "Provider"

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/markers/skipper.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for markers.skipper

"""skipper: Autmatically skip tests with certain marks as defined in this module

This doesn't provide any special markers, but it does add behavor to marks defined in
:py:attr:`skip_marks`.

"""
import pytest

#: List of (mark, commandline flag) tuples. When the given mark is used on a test, it will
#: be skipped unless the commandline flag is used. If the mark is already found in py.test's
#: parsed mark expression, no changes will be made for that mark.
skip_marks = [
 ('long_running', '--long-running'),
 ('perf', '--perf')
]

_mark_doc = ('{mark}: Skip tests with the {mark} mark by default, unless {cmdline} commandline '
 'is used or the corresponding mark expression is used (e.g. "py.test -m {mark}")')

[docs]def pytest_addoption(parser):
 group = parser.getgroup('cfme')
 for dest, cmdline_opt in skip_marks:
 group.addoption(cmdline_opt, dest=dest, action='store_true', default=False,
 help="Run tests with the 'pytest.mark.{}' mark, which are skipped by default"
 .format(dest))

[docs]def pytest_configure(config):
 from fixtures.pytest_store import store

 marks_to_skip = []
 mark_expr = [mark.strip(''''"()''') for mark in config.option.markexpr.split()]
 for dest, cmdline_opt in skip_marks:
 ignore_mark = getattr(config.option, dest)
 config.addinivalue_line('markers', _mark_doc.format(mark=dest, cmdline=cmdline_opt))
 # Comparing against the mark_expr split/strip attempts to match just the mark words exactly;
 # if we make a mark called 'not' or 'in', I think we're asking for trouble anyway,
 # so this is probably a sane and simple way to prevent false positive matches
 if dest in mark_expr and ignore_mark:
 # If the mark is in the mark expression already and the commandline flag exists,
 # report the conflict to the terminal
 store.terminalreporter.write_line('{} already in cmdline mark expression, '
 '{} flag ignored'.format(dest, cmdline_opt), yellow=True)
 continue
 elif dest in mark_expr or ignore_mark:
 # No need to log anything if there's no mark_expr / commandline flag conflict
 continue
 else:
 marks_to_skip.append(dest)

 # Build all the marks to skip into one flat mark expression rather than nesting
 skip_mark_expr = ' and '.join(['not {}'.format(mark) for mark in marks_to_skip])

 # modify (or set) the mark expression to exclude tests as configured by the commandline flags
 if skip_mark_expr:
 if config.option.markexpr:
 config.option.markexpr = '({}) and ({})'.format(skip_mark_expr, config.option.markexpr)
 else:
 config.option.markexpr = skip_mark_expr

[docs]def pytest_collection_modifyitems(items):
 # mark all perf tests here so we don't have to maintain the mark in those modules
 for item in items:
 if item.nodeid.startswith('cfme/tests/perf'):
 item.add_marker(pytest.mark.perf)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/containers/image.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.containers.image

-*- coding: utf-8 -*-
from functools import partial
import random
import itertools
from cached_property import cached_property

from navmazing import NavigateToSibling, NavigateToAttribute
from widgetastic_patternfly import Dropdown
from wrapanapi.containers.image import Image as ApiImage

from cfme.common import SummaryMixin, Taggable, PolicyProfileAssignable
from cfme.containers.provider import Labelable, navigate_and_get_rows,\
 ContainerObjectAllBaseView
from cfme.fixtures import pytest_selenium as sel
from cfme.web_ui import toolbar as tb, CheckboxTable, match_location, InfoBlock,\
 flash, PagedTable
from cfme.utils.appliance.implementations.ui import CFMENavigateStep, navigator, navigate_to
from cfme.utils.appliance import Navigatable
from cfme.configure import tasks
from cfme.utils.wait import wait_for, TimedOutError

list_tbl = CheckboxTable(table_locator="//div[@id='list_grid']//table")
paged_tbl = PagedTable(table_locator="//div[@id='list_grid']//table")

match_page = partial(match_location, controller='container_image',
 title='Images')

[docs]class Image(Taggable, Labelable, SummaryMixin, Navigatable, PolicyProfileAssignable):

 PLURAL = 'Container Images'

 def __init__(self, name, image_id, provider, appliance=None):
 self.name = name
 self.id = image_id
 self.provider = provider
 Navigatable.__init__(self, appliance=appliance)

 @cached_property
 def mgmt(self):
 return ApiImage(self.provider.mgmt, self.name, self.sha256)

 # TODO: remove load_details and dynamic usage from cfme.common.Summary when nav is more complete
[docs] def load_details(self, refresh=False):
 navigate_to(self, 'Details')
 if refresh:
 tb.refresh()

[docs] def get_detail(self, *ident):
 """ Gets details from the details infoblock
 Args:
 *ident: Table name and Key name, e.g. "Relationships", "Images"
 Returns: A string representing the contents of the summary's value.
 """
 navigate_to(self, 'Details')
 return InfoBlock.text(*ident)

 @cached_property
 def sha256(self):
 return self.id.split('@')[-1]

[docs] def perform_smartstate_analysis(self, wait_for_finish=False, timeout='7M'):
 """Performing SmartState Analysis on this Image
 """
 navigate_to(self, 'Details')
 tb.select('Configuration', 'Perform SmartState Analysis', invokes_alert=True)
 sel.handle_alert()
 flash.assert_message_contain('Analysis successfully initiated')
 if wait_for_finish:
 try:
 tasks.wait_analysis_finished('Container image analysis',
 'container', timeout=timeout)
 except TimedOutError:
 raise TimedOutError('Timeout exceeded, Waited too much time for SSA to finish ({}).'
 .format(timeout))

 @classmethod
[docs] def get_random_instances(cls, provider, count=1, appliance=None, docker_only=False):
 """Generating random instances. (docker_only: means for docker images only)"""
 # Grab the images from the UI since we have no way to calculate the name by API attributes
 rows = navigate_and_get_rows(provider, cls, count=1000)
 if docker_only:
 docker_image_ids = [img.id for img in provider.mgmt.list_docker_image()]
 rows = filter(lambda r: r.id.text.split('@')[-1] in docker_image_ids,
 rows)
 random.shuffle(rows)
 return [cls(row.name.text, row.id.text, provider, appliance=appliance)
 for row in itertools.islice(rows, count)]

[docs] def check_compliance(self, wait_for_finish=True, timeout=240):
 """Initiates compliance check and waits for it to finish."""
 navigate_to(self, 'Details')
 original_state = self.compliance_status
 tb.select('Policy',
 "Check Compliance of Last Known Configuration",
 invokes_alert=True)
 sel.handle_alert()
 flash.assert_no_errors()
 if wait_for_finish:
 wait_for(
 lambda: self.compliance_status != original_state,
 num_sec=timeout, delay=5, fail_func=sel.refresh,
 message='compliance state of {} still matches {}'
 .format(self.name, original_state)
)
 return self.compliant

 @property
 def compliance_status(self):
 self.summary.reload()
 return self.summary.compliance.status.value.strip()

 @property
 def compliant(self):
 """Check if the image is compliant

 Returns:
 :py:class:`NoneType` if the image was never verified, otherwise :py:class:`bool`
 """
 text = self.compliance_status.lower()
 if text == "never verified":
 return None
 elif text.startswith("non-compliant"):
 return False
 elif text.startswith("compliant"):
 return True
 else:
 raise ValueError("{} is not a known state for compliance".format(text))

[docs]class ImageAllView(ContainerObjectAllBaseView):
 TITLE_TEXT = "Container Images"
 configuration = Dropdown('Configuration')

@navigator.register(Image, 'All')
[docs]class All(CFMENavigateStep):
 VIEW = ImageAllView
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self):
 self.prerequisite_view.navigation.select('Compute', 'Containers', 'Container Images')

[docs] def resetter(self):
 from cfme.web_ui import paginator
 tb.select('Grid View')
 paginator.check_all()
 paginator.uncheck_all()

@navigator.register(Image, 'Details')
[docs]class Details(CFMENavigateStep):
 prerequisite = NavigateToSibling('All')

[docs] def am_i_here(self):
 return match_page(summary='{} (Summary)'.format(self.obj.name))

[docs] def step(self):
 tb.select('List View')
 sel.click(paged_tbl.find_row_by_cell_on_all_pages({'Provider': self.obj.provider.name,
 'Id': self.obj.id}))

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/control/explorer/policies.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.control.explorer »

 Source code for cfme.control.explorer.policies

-*- coding: utf-8 -*-
"""Page model for Control / Explorer"""
from navmazing import NavigateToAttribute
from widgetastic_patternfly import Button, Input
from widgetastic.utils import Version, VersionPick
from widgetastic.widget import Text, Checkbox, TextInput, View

from . import ControlExplorerView
from actions import Action
from cfme.web_ui.expression_editor_widgetastic import ExpressionEditor
from cfme.utils import ParamClassName
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import navigator, navigate_to, CFMENavigateStep
from cfme.utils.pretty import Pretty
from cfme.utils.update import Updateable
from widgetastic_manageiq import (
 BootstrapSwitchSelect, CheckboxSelect, MultiBoxSelect, SummaryFormItem, Dropdown)

[docs]class PoliciesAllView(ControlExplorerView):
 title = Text("#explorer_title_text")

 @property
 def is_displayed(self):
 return (
 self.in_control_explorer and
 self.title.text == "All {} {} Policies".format(
 self.context["object"].PRETTY,
 self.context["object"].TYPE
)
)

[docs]class EditPolicyEventAssignments(ControlExplorerView):
 title = Text("#explorer_title_text")

 events = VersionPick({
 Version.lowest(): CheckboxSelect("policy_info_div"),
 "5.8.1": BootstrapSwitchSelect("policy_info_div")
 })

 cancel_button = Button("Cancel")
 save_button = Button("Save")

 @property
 def is_displayed(self):
 return (
 self.in_control_explorer and
 self.title.text == 'Editing {} {} Policy "{}" Event Assignments'.format(
 self.context["object"].PRETTY,
 self.context["object"].TYPE,
 self.context["object"].description
)
)

[docs]class EditPolicyConditionAssignments(ControlExplorerView):
 title = Text("#explorer_title_text")
 conditions = MultiBoxSelect()
 cancel_button = Button("Cancel")
 save_button = Button("Save")

 @property
 def is_displayed(self):
 return (
 self.in_control_explorer and
 self.title.text == 'Editing {} {} Policy "{}" Condition Assignments'.format(
 self.context["object"].PRETTY,
 self.context["object"].TYPE,
 self.context["object"].description
)
)

[docs]class PolicyFormCommon(ControlExplorerView):

 description = Input(name="description")
 active = Checkbox("active")
 scope = ExpressionEditor()
 notes = TextInput(name="notes")

 cancel_button = Button("Cancel")

[docs]class NewPolicyView(PolicyFormCommon):
 title = Text("#explorer_title_text")

 add_button = Button("Add")

 @property
 def is_displayed(self):
 return (
 self.in_control_explorer and
 self.title.text == "Adding a new {} {} Policy".format(
 self.context["object"].PRETTY, self.context["object"].TYPE) and
 self.policies.is_opened and
 self.policies.tree.currently_selected == ["All {} {} Policies".format(
 self.context["object"].PRETTY, self.context["object"].TYPE)]
)

[docs]class EditPolicyView(PolicyFormCommon):
 title = Text("#explorer_title_text")

 save_button = Button("Save")
 reset_button = Button("Reset")

 @property
 def is_displayed(self):
 return (
 self.in_control_explorer and
 self.title.text == 'Editing {} {} Policy "{}"'.format(
 self.context["object"].PRETTY,
 self.context["object"].TYPE,
 self.context["object"].description
) and
 self.policies.is_opened and
 self.policies.tree.currently_selected == [
 "All Policies",
 "{} Policies".format(self.context["object"].TYPE),
 "{} {} Policies".format(self.context["object"].TREE_NODE,
 self.context["object"].TYPE),
 self.context["object"].description
]
)

[docs]class PolicyDetailsView(ControlExplorerView):
 title = Text("#explorer_title_text")

 type = SummaryFormItem("Basic Information", "Action Type")
 analysis_profile = SummaryFormItem("Analysis Profile", "Assigned Analysis Profile")

 @property
 def is_displayed(self):
 return (
 self.in_control_explorer and
 self.title.text == '{} {} Policy "{}"'.format(self.context["object"].PRETTY,
 self.context["object"].TYPE, self.context["object"].description) and
 self.policies.is_opened and
 self.policies.tree.currently_selected == [
 "All Policies",
 "{} Policies".format(self.context["object"].TYPE),
 "{} {} Policies".format(self.context["object"].TREE_NODE,
 self.context["object"].TYPE),
 self.context["object"].description
]
)

[docs]class ConditionDetailsView(ControlExplorerView):
 title = Text("#explorer_title_text")

 @property
 def is_displayed(self):
 return (
 self.in_control_explorer and
 self.title.text == '{} Condition "{}"'.format(self.context["object"].PRETTY,
 self.context["object"].testing_condition.description) and
 self.policies.is_opened and
 self.policies.tree.currently_selected == [
 "All Policies",
 "{} Policies".format(self.context["object"].TYPE),
 "{} {} Policies".format(self.context["object"].TREE_NODE,
 self.context["object"].TYPE),
 self.context["object"].description,
 self.context["object"].testing_condition.description
]
)

[docs]class EventDetailsToolbar(View):
 """Toolbar widets on the event details page"""
 configuration = Dropdown('Configuration')

[docs]class EventDetailsView(ControlExplorerView):
 title = Text("#explorer_title_text")
 toolbar = View.nested(EventDetailsToolbar)

 @property
 def is_displayed(self):
 return (
 self.in_control_explorer and
 self.title.text == 'Event "{}"'.format(self.context["object"].testing_event)
)

[docs]class EditEventView(ControlExplorerView):
 title = Text("#explorer_title_text")

 true_actions = MultiBoxSelect(
 move_into="choices_chosen_true_div",
 move_from="members_chosen_true_div",
 available_items="choices_chosen_true",
 chosen_items="members_chosen_true"
)

 false_actions = MultiBoxSelect(
 move_into="choices_chosen_false_div",
 move_from="members_chosen_false_div",
 available_items="choices_chosen_false",
 chosen_items="members_chosen_false"
)

 save_button = Button("Save")
 reset_button = Button("Reset")
 cancel_button = Button("Cancel")

 @property
 def is_displayed(self):
 return (
 self.in_control_explorer and
 self.title.text == 'Editing Event "{}"'.format(self.context["object"].testing_event)
)

[docs]class BasePolicy(Updateable, Navigatable, Pretty):
 """This class represents a Policy.

 Example:
 .. code-block:: python

 >>> from cfme.control.explorer.policy import VMCompliancePolicy
 >>> policy = VMCompliancePolicy("policy_description")
 >>> policy.create()
 >>> policy.delete()

 Args:
 description: Policy name.
 active: Whether the policy active or not.
 scope: Policy scope.
 notes: Policy notes.
 """

 TYPE = None
 TREE_NODE = None
 PRETTY = None
 _param_name = ParamClassName('description')

 def __init__(self, description, active=True, scope=None, notes=None, appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.description = description
 self.active = active
 self.scope = scope
 self.notes = notes

 def __str__(self):
 return self.description

[docs] def create(self):
 "Create this Policy in UI."
 view = navigate_to(self, "Add")
 view.fill({
 "description": self.description,
 "active": self.active,
 "scope": self.scope,
 "notes": self.notes
 })
 view.add_button.click()
 view = self.create_view(PolicyDetailsView)
 assert view.is_displayed
 view.flash.assert_no_error()
 view.flash.assert_message('Policy "{}" was added'.format(self.description))

[docs] def update(self, updates):
 """Update this Policy in UI.

 Args:
 updates: Provided by update() context manager.
 cancel: Whether to cancel the update (default False).
 """
 view = navigate_to(self, "Edit")
 changed = view.fill(updates)
 if changed:
 view.save_button.click()
 else:
 view.cancel_button.click()
 for attr, value in updates.items():
 setattr(self, attr, value)
 view = self.create_view(PolicyDetailsView)
 assert view.is_displayed
 view.flash.assert_no_error()
 if changed:
 view.flash.assert_message(
 'Policy "{}" was saved'.format(updates.get("description", self.description)))
 else:
 view.flash.assert_message(
 'Edit of Policy "{}" was cancelled by the user'.format(self.description))

[docs] def delete(self, cancel=False):
 """Delete this Policy in UI.

 Args:
 cancel: Whether to cancel the deletion (default False).
 """
 view = navigate_to(self, "Details")
 view.configuration.item_select("Delete this {} Policy".format(self.PRETTY),
 handle_alert=not cancel)
 if cancel:
 assert view.is_displayed
 view.flash.assert_no_error()
 else:
 view = self.create_view(PoliciesAllView)
 assert view.is_displayed
 view.flash.assert_no_error()

[docs] def copy(self, cancel=False):
 """Copy this Policy in UI.

 Args:
 cancel: Whether to cancel the copying (default False).
 """
 view = navigate_to(self, "Details")
 view.configuration.item_select("Copy this {} Policy".format(self.PRETTY),
 handle_alert=not cancel)
 view = self.create_view(PolicyDetailsView)
 assert view.is_displayed
 view.flash.assert_no_error()
 view.flash.assert_message('Policy "Copy of {}" was added'.format(self.description))
 return type(self)("Copy of {}".format(self.description))

[docs] def assign_events(self, *events, **kwargs):
 """Assign events to this Policy.

 Args:
 events: Events which need to be assigned.
 extend: Do not uncheck existing events.
 """
 events = list(events)
 extend = kwargs.pop("extend", False)
 if extend:
 events += self.assigned_events
 view = navigate_to(self, "Details")
 view.configuration.item_select("Edit this Policy's Event assignments")
 view = self.create_view(EditPolicyEventAssignments)
 assert view.is_displayed
 changed = view.fill({"events": events})
 if changed:
 view.save_button.click()
 else:
 view.cancel_button.click()
 view.flash.assert_no_error()
 view.flash.assert_message('Policy "{}" was saved'.format(self.description))

[docs] def is_event_assigned(self, event):
 return event in self.assigned_events

[docs] def assign_conditions(self, *conditions):
 """Assign conditions to this Policy.

 Args:
 conditions: Conditions which need to be assigned.
 """
 view = navigate_to(self, "Details")
 view.configuration.item_select("Edit this Policy's Condition assignments")
 view = self.create_view(EditPolicyConditionAssignments)
 assert view.is_displayed
 changed = view.fill({"conditions": [condition.description for condition in conditions]})
 if changed:
 view.save_button.click()
 else:
 view.cancel_button.click()
 view.flash.assert_no_error()
 view.flash.assert_message('Policy "{}" was saved'.format(self.description))

[docs] def is_condition_assigned(self, condition):
 self.testing_condition = condition
 view = navigate_to(self, "Condition Details")
 return view.is_displayed

[docs] def assign_actions_to_event(self, event, actions):
 """
 This method takes a list or dict of actions, goes into the policy event and assigns them.
 Actions can be passed both as the objects, but they can be passed also as a string.
 Actions, passed as an object but not created yet, will be created.
 If the specified event is not assigned to the policy, it will be assigned.

 Args:
 event: Name of the event under which the actions will be assigned.
 actions: If :py:class:`list` (or similar), all of these actions will be set under
 TRUE section. If :py:class:`dict`, the action is key and value specifies its
 placement. If it's True, then it will be put in the TRUE section and so on.
 """
 true_actions, false_actions = [], []
 if isinstance(actions, Action):
 true_actions.append(actions)
 elif isinstance(actions, list) or isinstance(actions, tuple) or isinstance(actions, set):
 true_actions.extend(actions)
 elif isinstance(actions, dict):
 for action, is_true in actions.iteritems():
 if is_true:
 true_actions.append(action)
 else:
 false_actions.append(action)
 else:
 raise TypeError("assign_actions_to_event expects, list, tuple, set or dict!")
 # Check whether actions exist
 for action in true_actions + false_actions:
 if isinstance(action, Action):
 if not action.exists:
 action.create()
 assert action.exists, "Could not create action {}!".format(action.description)
 else: # string
 if not Action(action, "Tag").exists:
 raise NameError("Action with name {} does not exist!".format(action))
 # Check whether we have all necessary events assigned
 if not self.is_event_assigned(event):
 self.assign_events(event, extend=True)
 assert self.is_event_assigned(event), "Could not assign event {}!".format(event)
 # And now we can assign actions
 self.testing_event = event
 view = navigate_to(self, "Event Details")
 assert view.is_displayed
 view.toolbar.configuration.item_select("Edit Actions for this Policy Event")
 view = self.create_view(EditEventView)
 assert view.is_displayed
 changed = view.fill({
 "true_actions": [str(action) for action in true_actions],
 "false_actions": [str(action) for action in false_actions]
 })
 if changed:
 view.save_button.click()
 else:
 view.cancel_button.click()
 view.flash.assert_no_error()
 view.flash.assert_message('Actions for Policy Event "{}" were saved'.format(
 event))

 @property
 def exists(self):
 policies = self.appliance.db.client["miq_policies"]
 return self.appliance.db.client.session\
 .query(policies.description)\
 .filter(policies.description == self.description)\
 .count() > 0

 @property
 def assigned_events(self):
 policies = self.appliance.db.client["miq_policies"]
 events = self.appliance.db.client["miq_event_definitions"]
 policy_contents = self.appliance.db.client["miq_policy_contents"]
 session = self.appliance.db.client.session
 policy_id = session.query(policies.id).filter(policies.description == self.description)
 assigned_events = session.query(policy_contents.miq_event_definition_id).filter(
 policy_contents.miq_policy_id == policy_id)
 return [event_name[0] for event_name in session.query(events.description).filter(
 events.id.in_(assigned_events))]

@navigator.register(BasePolicy, "Add")
[docs]class PolicyNew(CFMENavigateStep):
 VIEW = NewPolicyView
 prerequisite = NavigateToAttribute("appliance.server", "ControlExplorer")

[docs] def step(self):
 self.view.policies.tree.click_path(
 "All Policies",
 "{} Policies".format(self.obj.TYPE),
 "{} {} Policies".format(self.obj.TREE_NODE, self.obj.TYPE)
)
 self.view.configuration.item_select("Add a New {} {} Policy".format(self.obj.PRETTY,
 self.obj.TYPE))

@navigator.register(BasePolicy, "Edit")
[docs]class PolicyEdit(CFMENavigateStep):
 VIEW = EditPolicyView
 prerequisite = NavigateToAttribute("appliance.server", "ControlExplorer")

[docs] def step(self):
 self.view.policies.tree.click_path(
 "All Policies",
 "{} Policies".format(self.obj.TYPE),
 "{} {} Policies".format(self.obj.TREE_NODE, self.obj.TYPE),
 self.obj.description
)
 self.view.configuration.item_select("Edit Basic Info, Scope, and Notes")

@navigator.register(BasePolicy, "Details")
[docs]class PolicyDetails(CFMENavigateStep):
 VIEW = PolicyDetailsView
 prerequisite = NavigateToAttribute("appliance.server", "ControlExplorer")

[docs] def step(self):
 self.view.policies.tree.click_path(
 "All Policies",
 "{} Policies".format(self.obj.TYPE),
 "{} {} Policies".format(self.obj.TREE_NODE, self.obj.TYPE),
 self.obj.description
)

@navigator.register(BasePolicy, "Condition Details")
[docs]class PolicyConditionDetails(CFMENavigateStep):
 VIEW = ConditionDetailsView
 prerequisite = NavigateToAttribute("appliance.server", "ControlExplorer")

[docs] def step(self):
 self.view.policies.tree.click_path(
 "All Policies",
 "{} Policies".format(self.obj.TYPE),
 "{} {} Policies".format(self.obj.TREE_NODE, self.obj.TYPE),
 self.obj.description,
 self.obj.testing_condition.description
)

@navigator.register(BasePolicy, "Event Details")
[docs]class PolicyEventDetails(CFMENavigateStep):
 VIEW = EventDetailsView
 prerequisite = NavigateToAttribute("appliance.server", "ControlExplorer")

[docs] def step(self):
 self.view.policies.tree.click_path(
 "All Policies",
 "{} Policies".format(self.obj.TYPE),
 "{} {} Policies".format(self.obj.TREE_NODE, self.obj.TYPE),
 self.obj.description,
 self.obj.testing_event
)

[docs]class HostCompliancePolicy(BasePolicy):

 TYPE = "Compliance"
 TREE_NODE = "Host"
 PRETTY = "Host / Node"

[docs]class VMCompliancePolicy(BasePolicy):

 TYPE = "Compliance"
 TREE_NODE = "Vm"
 PRETTY = "VM and Instance"

[docs]class ReplicatorCompliancePolicy(BasePolicy):

 TYPE = "Compliance"
 TREE_NODE = "Replicator"
 PRETTY = "Replicator"

[docs]class PodCompliancePolicy(BasePolicy):

 TYPE = "Compliance"
 TREE_NODE = "Pod"
 PRETTY = "Pod"

[docs]class ContainerNodeCompliancePolicy(BasePolicy):

 TYPE = "Compliance"
 TREE_NODE = "Container Node"
 PRETTY = "Node"

[docs]class ContainerImageCompliancePolicy(BasePolicy):

 TYPE = "Compliance"
 TREE_NODE = "Container Image"
 PRETTY = "Container Image"

[docs]class HostControlPolicy(BasePolicy):

 TYPE = "Control"
 TREE_NODE = "Host"
 PRETTY = "Host / Node"

[docs]class VMControlPolicy(BasePolicy):

 TYPE = "Control"
 TREE_NODE = "Vm"
 PRETTY = "VM and Instance"

[docs]class ReplicatorControlPolicy(BasePolicy):

 TYPE = "Control"
 TREE_NODE = "Replicator"
 PRETTY = "Replicator"

[docs]class PodControlPolicy(BasePolicy):

 TYPE = "Control"
 TREE_NODE = "Pod"
 PRETTY = "Pod"

[docs]class ContainerNodeControlPolicy(BasePolicy):

 TYPE = "Control"
 TREE_NODE = "Container Node"
 PRETTY = "Node"

[docs]class ContainerImageControlPolicy(BasePolicy):

 TYPE = "Control"
 TREE_NODE = "Container Image"
 PRETTY = "Container Image"

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/markers/polarion.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for markers.polarion

-*- coding: utf-8 -*-
"""polarion(*tcid): Marker for marking tests as automation for polarion test cases."""

[docs]def pytest_configure(config):
 config.addinivalue_line("markers", __doc__.splitlines()[0])

[docs]def extract_polarion_ids(item):
 """Extracts Polarion TC IDs from the test item. Returns None if no marker present."""
 polarion = item.get_marker('polarion')
 if not polarion:
 return None

 return map(str, polarion.args)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/containers/project.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.containers.project

-*- coding: utf-8 -*-
import random
import itertools
from cached_property import cached_property

from wrapanapi.containers.project import Project as ApiProject

from cfme.common import SummaryMixin, Taggable
from cfme.fixtures import pytest_selenium as sel
from cfme.web_ui import toolbar as tb, match_location,\
 PagedTable, CheckboxTable
from cfme.containers.provider import details_page, Labelable,\
 ContainerObjectAllBaseView
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import CFMENavigateStep, navigator,\
 navigate_to
from navmazing import NavigateToAttribute, NavigateToSibling
from functools import partial

list_tbl = CheckboxTable(table_locator="//div[@id='list_grid']//table")
paged_tbl = PagedTable(table_locator="//div[@id='list_grid']//table")

match_page = partial(match_location, controller='container_projects', title='Projects')

[docs]class Project(Taggable, Labelable, SummaryMixin, Navigatable):

 PLURAL = 'Projects'

 def __init__(self, name, provider, appliance=None):
 self.name = name
 self.provider = provider
 Navigatable.__init__(self, appliance=appliance)

 @cached_property
 def mgmt(self):
 return ApiProject(self.provider.mgmt, self.name)

[docs] def load_details(self, refresh=False):
 navigate_to(self, 'Details')
 if refresh:
 tb.refresh()

[docs] def click_element(self, *ident):
 self.load_details(refresh=True)
 return sel.click(details_page.infoblock.element(*ident))

[docs] def get_detail(self, *ident):
 """ Gets details from the details infoblock
 Args:
 *ident: An InfoBlock title, followed by the Key name, e.g. "Relationships", "Images"
 Returns: A string representing the contents of the InfoBlock's value.
 """
 self.load_details(refresh=True)
 return details_page.infoblock.text(*ident)

 @classmethod
[docs] def get_random_instances(cls, provider, count=1, appliance=None):
 """Generating random instances."""
 project_list = provider.mgmt.list_project()
 random.shuffle(project_list)
 return [cls(obj.name, provider, appliance=appliance)
 for obj in itertools.islice(project_list, count)]

[docs]class ProjectAllView(ContainerObjectAllBaseView):
 TITLE_TEXT = "Projects"

@navigator.register(Project, 'All')
[docs]class All(CFMENavigateStep):
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')
 VIEW = ProjectAllView

[docs] def step(self):
 self.prerequisite_view.navigation.select('Compute', 'Containers', 'Projects')

[docs] def resetter(self):
 # Reset view and selection
 tb.select("List View")
 from cfme.web_ui import paginator
 paginator.check_all()
 paginator.uncheck_all()

@navigator.register(Project, 'Details')
[docs]class Details(CFMENavigateStep):
 prerequisite = NavigateToSibling('All')

[docs] def am_i_here(self):
 return match_page(summary='{} (Summary)'.format(self.obj.name))

[docs] def step(self):
 tb.select('List View')
 sel.click(paged_tbl.find_row_by_cell_on_all_pages({'Name': self.obj.name}))

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/control/explorer/alerts.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.control.explorer »

 Source code for cfme.control.explorer.alerts

-*- coding: utf-8 -*-
"""Page model for Control / Explorer"""
from copy import copy
from navmazing import NavigateToAttribute

from widgetastic.widget import Checkbox, Text, View
from widgetastic_manageiq import AlertEmail, SNMPForm, SummaryForm
from widgetastic_patternfly import BootstrapSelect, Button, Input

from . import ControlExplorerView
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import navigator, navigate_to, CFMENavigateStep
from cfme.utils.pretty import Pretty
from cfme.utils.update import Updateable

[docs]class AlertsAllView(ControlExplorerView):
 title = Text("#explorer_title_text")

 @property
 def is_displayed(self):
 return (
 self.in_control_explorer and
 self.title.text == "All Alerts" and
 self.alerts.tree.currently_selected == ["All Alerts"]
)

[docs]class AlertFormCommon(ControlExplorerView):
 description = Input(name="description")
 active = Checkbox("enabled_cb")
 based_on = BootstrapSelect("miq_alert_db")

 @View.nested
 class evaluate(View): # noqa
 type = BootstrapSelect("exp_name")
 # Real Time Performance Parameters
 performance_field = BootstrapSelect("perf_column")
 performance_field_operator = BootstrapSelect("select_operator")
 performance_field_value = Input(name="value_threshold")
 performance_trend = BootstrapSelect("trend_direction")
 performance_time_threshold = BootstrapSelect("rt_time_threshold")
 # Hardware Reconfigured Parameters
 hardware_attribute = BootstrapSelect("select_hdw_attr")
 operator = BootstrapSelect("select_operator")

 def fill(self, values):
 new_values = dict(type=values[0], **values[1])
 return View.fill(self, new_values)

 driving_event = BootstrapSelect("exp_event")
 notification_frequency = BootstrapSelect("repeat_time")
 snmp_trap_send = Checkbox("send_snmp_cb")
 snmp_trap = SNMPForm()
 timeline_event = Checkbox("send_evm_event_cb")
 mgmt_event_send = Checkbox("send_event_cb")
 mgmt_event = Input("event_name")
 cancel_button = Button("Cancel")
 emails_send = Checkbox("send_email_cb")
 emails = AlertEmail()

[docs]class NewAlertView(AlertFormCommon):
 title = Text("#explorer_title_text")

 add_button = Button("Add")

 @property
 def is_displayed(self):
 return (
 self.in_control_explorer and
 self.title.text == "Adding a new Alert" and
 self.alerts.is_opened and
 self.alerts.tree.currently_selected == ["All Alerts"]
)

[docs]class EditAlertView(AlertFormCommon):
 title = Text("#explorer_title_text")

 save_button = Button("Save")
 reset_button = Button("Reset")

 @property
 def is_displayed(self):
 return (
 self.in_control_explorer and
 self.title.text == 'Editing Alert "{}"'.format(self.context["object"].description) and
 self.alerts.is_opened and
 self.alerts.tree.currently_selected == [
 "All Alerts",
 self.context["object"].description
]
)

[docs]class AlertDetailsView(ControlExplorerView):
 title = Text("#explorer_title_text")
 info = SummaryForm("Info")
 hardware_reconfigured_parameters = SummaryForm("Hardware Reconfigured Parameters")

 @property
 def is_displayed(self):
 return (
 self.in_control_explorer and
 self.title.text == 'Alert "{}"'.format(self.context["object"].description) and
 self.alerts.is_opened and
 self.alerts.tree.currently_selected == [
 "All Alerts",
 self.context["object"].description
]
)

[docs]class Alert(Updateable, Navigatable, Pretty):
 """Alert representation object.
 Example:
 >>> alert = Alert("my_alert", timeline_event=True, driving_event="Hourly Timer")
 >>> alert.create()
 >>> alert.delete()

 Args:
 description: Name of the Alert.
 based_on: Cluster, Datastore, Host, Provider, ...
 evaluate: Use it as follows:
 ``("What to Evaluate selection", dict(values="for form"))``.
 If you want to select Nothing, you will therefore pass ``("Nothing", {})``.
 Other example:

 .. code-block:: python

 ("Hardware Reconfigured",
 dict(hw_attribute="Number of CPUs", hw_attribute_operator="Increased")
)
 driving_event: This Alert's driving event (Hourly Timer, ...).
 notification_frequency: 1 Minute, 2 Minutes, ...
 snmp_trap: Whether to send snmp traps.
 emails: Whether to send e-mails. `False` disables, string or list of strings
 with emails enables.
 timeline_event: Whether generate a timeline event.
 mgmt_event: If specified as string, it will reveal the form and types it into the text box.
 If False, then it will be disabled. None - don't care.
 """

 pretty_attrs = ["description", "evaluate"]

 def __init__(self,
 description,
 active=None,
 based_on=None,
 evaluate=None,
 driving_event=None,
 notification_frequency=None,
 snmp_trap=None,
 emails=None,
 timeline_event=None,
 mgmt_event=None,
 appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.description = description
 self.active = active
 self.based_on = based_on
 self.evaluate = evaluate
 self.driving_event = driving_event
 self.notification_frequency = notification_frequency
 self.snmp_trap = snmp_trap
 self.emails = emails
 self.timeline_event = timeline_event
 self.mgmt_event = mgmt_event

[docs] def __str__(self):
 """Conversion to string used when assigning in multibox selector."""
 return self.description

[docs] def create(self):
 """Create this Alert in UI."""
 view = navigate_to(self, "Add")
 self._fill(view)
 view.add_button.click()
 view = self.create_view(AlertDetailsView)
 assert view.is_displayed
 view.flash.assert_no_error()
 view.flash.assert_message('Alert "{}" was added'.format(self.description))

[docs] def update(self, updates, cancel=False):
 """Update this Alert in UI.

 Args:
 updates: Provided by update() context manager.
 cancel: Whether to cancel the update (default False).
 """
 view = navigate_to(self, "Edit")
 for attr, value in updates.items():
 setattr(self, attr, value)
 changed = self._fill(view)
 if changed:
 view.save_button.click()
 else:
 view.cancel_button.click()
 view = self.create_view(AlertDetailsView)
 assert view.is_displayed
 view.flash.assert_no_error()
 if changed:
 view.flash.assert_message(
 'Alert "{}" was saved'.format(updates.get("description", self.description)))
 else:
 view.flash.assert_message(
 'Edit of Alert "{}" was cancelled by the user'.format(self.description))

[docs] def delete(self, cancel=False):
 """Delete this Alert in UI.

 Args:
 cancel: Whether to cancel the deletion (default False).
 """
 view = navigate_to(self, "Details")
 view.configuration.item_select("Delete this Alert", handle_alert=not cancel)
 if cancel:
 assert view.is_displayed
 view.flash.assert_no_error()
 else:
 view = self.create_view(AlertsAllView)
 assert view.is_displayed
 view.flash.assert_no_error()
 view.flash.assert_message('Alert "{}": Delete successful'.format(self.description))

[docs] def copy(self, **updates):
 """Copy this Alert in UI.

 Args:
 updates: updates for the alert.
 """
 view = navigate_to(self, "Copy")
 new_alert = copy(self)
 changed = view.fill(updates)
 if changed:
 view.add_button.click()
 else:
 view.cancel_button.click()
 for attr, value in updates.items():
 setattr(new_alert, attr, value)
 view = new_alert.create_view(AlertDetailsView)
 assert view.is_displayed
 view.flash.assert_no_error()
 if changed:
 view.flash.assert_message(
 'Alert "{}" was added'.format(updates.get("description", new_alert.description)))
 else:
 view.flash.assert_message("Add of new Alert was cancelled by the user")
 return new_alert

 def _fill(self, view):
 """This function prepares the values and fills the form."""
 fill_details = dict(
 description=self.description,
 active=self.active,
 based_on=self.based_on,
 evaluate=self.evaluate,
 driving_event=self.driving_event,
 notification_frequency=self.notification_frequency,
 timeline_event=self.timeline_event,
)
 if self.mgmt_event is not None:
 # We have to check or uncheck the checkbox and then subsequently handle the form fill
 if not self.mgmt_event:
 fill_details["mgmt_event_send"] = False
 fill_details["mgmt_event"] = None
 else:
 fill_details["mgmt_event_send"] = True
 fill_details["mgmt_event"] = self.mgmt_event
 if self.snmp_trap is not None:
 if not self.snmp_trap:
 fill_details["snmp_trap_send"] = False
 fill_details["snmp_trap"] = None
 else:
 fill_details["snmp_trap_send"] = True
 fill_details["snmp_trap"] = self.snmp_trap
 if self.emails is not None:
 if not self.emails:
 fill_details["emails_send"] = False
 fill_details["emails"] = None
 else:
 fill_details["emails_send"] = True
 fill_details["emails"] = self.emails
 return view.fill(fill_details)

 @property
 def exists(self):
 """Check existence of this Alert.

 Returns: :py:class:`bool` signalizing the presence of the Alert in the database.
 """
 alerts = self.appliance.db.client["miq_alerts"]
 return self.appliance.db.client.session\
 .query(alerts.description)\
 .filter(alerts.description == self.description)\
 .count() > 0

@navigator.register(Alert, "Add")
[docs]class AlertNew(CFMENavigateStep):
 VIEW = NewAlertView
 prerequisite = NavigateToAttribute("appliance.server", "ControlExplorer")

[docs] def step(self):
 self.view.alerts.tree.click_path("All Alerts")
 self.view.configuration.item_select("Add a New Alert")

@navigator.register(Alert, "Edit")
[docs]class AlertEdit(CFMENavigateStep):
 VIEW = EditAlertView
 prerequisite = NavigateToAttribute("appliance.server", "ControlExplorer")

[docs] def step(self):
 self.view.alerts.tree.click_path("All Alerts", self.obj.description)
 self.view.configuration.item_select("Edit this Alert")

@navigator.register(Alert, "Details")
[docs]class AlertDetails(CFMENavigateStep):
 VIEW = AlertDetailsView
 prerequisite = NavigateToAttribute("appliance.server", "ControlExplorer")

[docs] def step(self):
 self.view.alerts.tree.click_path("All Alerts", self.obj.description)

@navigator.register(Alert, "Copy")
[docs]class AlertCopy(CFMENavigateStep):
 VIEW = NewAlertView
 prerequisite = NavigateToAttribute("appliance.server", "ControlExplorer")

[docs] def step(self):
 self.view.alerts.tree.click_path("All Alerts", self.obj.description)
 self.view.configuration.item_select("Copy this Alert", handle_alert=True)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/markers/fixtureconf.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for markers.fixtureconf

"""fixtureconf: Marker for passing args and kwargs to test fixtures

Positional and keyword arguments to this marker will be stored on test items
in the _fixtureconf attribute (dict). kwargs will be stored as-is, the args
tuple will be packed into the dict under the 'args' key.

Use the "fixtureconf" fixture in tests to easily access the fixtureconf dict
"""

[docs]def pytest_configure(config):
 config.addinivalue_line('markers', __doc__.splitlines()[0])

[docs]def pytest_runtest_setup(item):
 fixtureconf_mark = item.keywords.get('fixtureconf')
 args = getattr(fixtureconf_mark, 'args', tuple())
 kwargs = getattr(fixtureconf_mark, 'kwargs', dict())
 fixtureconf = dict()
 fixtureconf['args'] = args
 fixtureconf.update(kwargs)
 # "item" becomes "request.node" in fixtures down the line
 # remember to use the request fixture in fixture funcargs
 item._fixtureconf = fixtureconf

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/containers/template.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.containers.template

-*- coding: utf-8 -*-
import random
import itertools
from functools import partial
from cached_property import cached_property

from navmazing import NavigateToAttribute, NavigateToSibling
from wrapanapi.containers.template import Template as ApiTemplate

from cfme.common import SummaryMixin, Taggable
from cfme.containers.provider import Labelable, ContainerObjectAllBaseView
from cfme.fixtures import pytest_selenium as sel
from cfme.web_ui import toolbar as tb, match_location,\
 PagedTable, CheckboxTable
from .provider import details_page
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep,\
 navigate_to

list_tbl = CheckboxTable(table_locator="//div[@id='list_grid']//table")
paged_tbl = PagedTable(table_locator="//div[@id='list_grid']//table")

match_page = partial(match_location, controller='container_templates', title='Container Templates')

[docs]class Template(Taggable, Labelable, SummaryMixin, Navigatable):

 PLURAL = 'Templates'

 def __init__(self, name, project_name, provider, appliance=None):
 self.name = name
 self.project_name = project_name
 self.provider = provider
 Navigatable.__init__(self, appliance=appliance)

 @cached_property
 def mgmt(self):
 return ApiTemplate(self.provider.mgmt, self.name, self.project_name)

[docs] def load_details(self, refresh=False):
 navigate_to(self, 'Details')
 if refresh:
 tb.refresh()

[docs] def click_element(self, *ident):
 self.load_details(refresh=True)
 return sel.click(details_page.infoblock.element(*ident))

[docs] def get_detail(self, *ident):
 """ Gets details from the details infoblock

 Args:
 *ident: An InfoBlock title, followed by the Key name, e.g. "Relationships", "Images"
 Returns: A string representing the contents of the InfoBlock's value.
 """
 self.load_details(refresh=True)
 return details_page.infoblock.text(*ident)

 @classmethod
[docs] def get_random_instances(cls, provider, count=1, appliance=None):
 """Generating random instances."""
 template_list = provider.mgmt.list_template()
 random.shuffle(template_list)
 return [cls(obj.name, obj.project_name, provider, appliance=appliance)
 for obj in itertools.islice(template_list, count)]

[docs]class TemplateAllView(ContainerObjectAllBaseView):
 TITLE_TEXT = "Container Templates"

@navigator.register(Template, 'All')
[docs]class All(CFMENavigateStep):
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')
 VIEW = TemplateAllView

[docs] def step(self):
 self.prerequisite_view.navigation.select('Compute', 'Containers', 'Container Templates')

[docs] def resetter(self):
 # Reset view and selection
 tb.select("List View")
 from cfme.web_ui import paginator
 paginator.check_all()
 paginator.uncheck_all()

@navigator.register(Template, 'Details')
[docs]class Details(CFMENavigateStep):
 prerequisite = NavigateToSibling('All')

[docs] def am_i_here(self):
 return match_page(summary='{} (Summary)'.format(self.obj.name))

[docs] def step(self):
 tb.select('List View')
 sel.click(paged_tbl.find_row_by_cell_on_all_pages({'Name': self.obj.name,
 'Project Name': self.obj.project_name}))

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/control/explorer/actions.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.control.explorer »

 Source code for cfme.control.explorer.actions

-*- coding: utf-8 -*-
"""Page model for Control / Explorer"""
from cached_property import cached_property
from navmazing import NavigateToAttribute

from widgetastic_manageiq import CheckboxSelect, ManageIQTree, MultiBoxSelect, SummaryFormItem
from widgetastic_patternfly import BootstrapSelect, Button, Input

from widgetastic.widget import Checkbox, Text, View

from . import ControlExplorerView
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import navigator, navigate_to, CFMENavigateStep
from cfme.utils.pretty import Pretty
from cfme.utils.update import Updateable

[docs]class ActionsAllView(ControlExplorerView):
 title = Text("#explorer_title_text")

 @property
 def is_displayed(self):
 return (
 self.in_control_explorer and
 self.title.text == "All Actions" and
 self.actions.tree.currently_selected == ["All Actions"]
)

[docs]class RunAnsiblePlaybookFromView(View):
 playbook_catalog_item = BootstrapSelect("service_template_id")

 @View.nested
 class inventory(View): # noqa
 localhost = Checkbox(id="inventory_localhost")
 target_machine = Checkbox(id="inventory_event_target")
 specific_hosts = Checkbox(id="inventory_manual")
 hosts = Input(name="hosts")

[docs]class ActionFormCommon(ControlExplorerView):

 description = Input("description")
 action_type = BootstrapSelect("miq_action_type")
 snapshot_name = Input("snapshot_name")
 analysis_profile = BootstrapSelect("analysis_profile")
 alerts_to_evaluate = MultiBoxSelect()
 snapshot_age = BootstrapSelect("snapshot_age")
 parent_type = BootstrapSelect("parent_type")
 cpu_number = BootstrapSelect("cpu_value")
 memory_amount = Input("memory_value")
 email_sender = Input("from")
 email_recipient = Input("to")
 vcenter_attr_name = Input("attribute")
 vcenter_attr_value = Input("value")
 tag = ManageIQTree("action_tags_treebox")
 remove_tag = CheckboxSelect("action_options_div")
 run_ansible_playbook = View.nested(RunAnsiblePlaybookFromView)
 cancel_button = Button("Cancel")

[docs]class NewActionView(ActionFormCommon):
 title = Text("#explorer_title_text")

 add_button = Button("Add")

 @property
 def is_displayed(self):
 return (
 self.in_control_explorer and
 self.title.text == "Adding a new Action" and
 self.actions.is_opened and
 self.actions.tree.currently_selected == ["All Actions"]
)

[docs]class EditActionView(ActionFormCommon):
 title = Text("#explorer_title_text")

 save_button = Button("Save")
 reset_button = Button("Reset")

 @property
 def is_displayed(self):
 return (
 self.in_control_explorer and
 self.title.text == 'Editing Action "{}"'.format(self.context["object"].description) and
 self.actions.is_opened and
 self.actions.tree.currently_selected == [
 "All Actions",
 self.context["object"].description
]
)

[docs]class ActionDetailsView(ControlExplorerView):
 title = Text("#explorer_title_text")

 type = SummaryFormItem("Basic Information", "Action Type")
 analysis_profile = SummaryFormItem("Analysis Profile", "Assigned Analysis Profile")

 @property
 def is_displayed(self):
 return (
 self.in_control_explorer and
 self.title.text == 'Action "{}"'.format(self.context["object"].description) and
 self.actions.is_opened and
 self.actions.tree.currently_selected == [
 "All Actions",
 self.context["object"].description
]
)

[docs]class Action(Updateable, Navigatable, Pretty):
 """This class represents one Action.

 Example:

 >>> from cfme.control.explorer import Action
 >>> action = Action("some_action",
 ... action_type="Tag",
 ... action_values={"tag": ("My Company Tags", "Service Level", "Gold")}
 >>> action.create()
 >>> action.delete()

 Args:
 description: Action name.
 action_type: Type of the action, value from the dropdown select.
 """
 def __init__(self, description, action_type, action_values=None, appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 action_values = action_values or {}
 self.description = description
 self.action_type = action_type
 self.snapshot_name = action_values.get("snapshot_name")
 self.analysis_profile = action_values.get("analysis_profile")
 self.snapshot_age = action_values.get("snapshot_age")
 self._alerts_to_evaluate = action_values.get("alerts_to_evaluate")
 self.parent_type = action_values.get("parent_type")
 self.categories = action_values.get("categories")
 self.cpu_number = action_values.get("cpu_number")
 self.memory_amount = action_values.get("memory_amount")
 self.email_sender = action_values.get("email_sender")
 self.email_recipient = action_values.get("email_recipient")
 self.vcenter_attr_name = action_values.get("vcenter_attr_name")
 self.vcenter_attr_value = action_values.get("vcenter_attr_value")
 self.tag = action_values.get("tag")
 self.remove_tag = action_values.get("remove_tag")
 self.run_ansible_playbook = action_values.get("run_ansible_playbook")

 def __str__(self):
 return self.description

 @cached_property
 def alerts_to_evaluate(self):
 if self._alerts_to_evaluate is not None:
 return [str(alert) for alert in self._alerts_to_evaluate]
 else:
 return self._alerts_to_evaluate

[docs] def create(self):
 """Create this Action in UI."""
 view = navigate_to(self, "Add")
 view.fill({
 "description": self.description,
 "action_type": self.action_type,
 "snapshot_name": self.snapshot_name,
 "analysis_profile": self.analysis_profile,
 "snapshot_age": self.snapshot_age,
 "alerts_to_evaluate": self.alerts_to_evaluate,
 "parent_type": self.parent_type,
 "categories": self.categories,
 "cpu_number": self.cpu_number,
 "memory_amount": self.memory_amount,
 "email_sender": self.email_sender,
 "email_recipient": self.email_recipient,
 "vcenter_attr_name": self.vcenter_attr_name,
 "vcenter_attr_value": self.vcenter_attr_value,
 "tag": self.tag,
 "remove_tag": self.remove_tag,
 "run_ansible_playbook": self.run_ansible_playbook
 })
 # todo: check whether we can remove ensure_page_safe later
 self.browser.plugin.ensure_page_safe()
 view.add_button.click()
 view = self.create_view(ActionDetailsView)
 assert view.is_displayed
 view.flash.assert_no_error()
 view.flash.assert_message('Action "{}" was added'.format(self.description))

[docs] def update(self, updates):
 """Update this Action in UI.

 Args:
 updates: Provided by update() context manager.
 cancel: Whether to cancel the update (default False).
 """
 view = navigate_to(self, "Edit")
 changed = view.fill(updates)
 if changed:
 view.save_button.click()
 else:
 view.cancel_button.click()
 view = self.create_view(ActionDetailsView, override=updates)
 assert view.is_displayed
 view.flash.assert_no_error()
 if changed:
 view.flash.assert_message(
 'Action "{}" was saved'.format(updates.get("description", self.description)))
 else:
 view.flash.assert_message(
 'Edit of Action "{}" was cancelled by the user'.format(self.description))

[docs] def delete(self, cancel=False):
 """Delete this Action in UI.

 Args:
 cancel: Whether to cancel the deletion (default False).
 """
 view = navigate_to(self, "Details")
 view.configuration.item_select("Delete this Action", handle_alert=not cancel)
 if cancel:
 assert view.is_displayed
 view.flash.assert_no_error()
 else:
 view = self.create_view(ActionsAllView)
 assert view.is_displayed
 view.flash.assert_no_error()
 view.flash.assert_message('Action "{}": Delete successful'.format(self.description))

 @property
 def exists(self):
 """Check existence of this Action.

 Returns: :py:class:`bool` signalizing the presence of the Action in the database.
 """
 actions = self.appliance.db.client["miq_actions"]
 return self.appliance.db.client.session\
 .query(actions.description)\
 .filter(actions.description == self.description)\
 .count() > 0

[docs] def delete_if_exists(self):
 if self.exists:
 self.delete()

@navigator.register(Action, "Add")
[docs]class ActionNew(CFMENavigateStep):
 VIEW = NewActionView
 prerequisite = NavigateToAttribute("appliance.server", "ControlExplorer")

[docs] def step(self):
 self.view.actions.tree.click_path("All Actions")
 self.view.configuration.item_select("Add a new Action")

@navigator.register(Action, "Edit")
[docs]class ActionEdit(CFMENavigateStep):
 VIEW = EditActionView
 prerequisite = NavigateToAttribute("appliance.server", "ControlExplorer")

[docs] def step(self):
 self.view.actions.tree.click_path("All Actions", self.obj.description)
 self.view.configuration.item_select("Edit this Action")

@navigator.register(Action, "Details")
[docs]class ActionDetails(CFMENavigateStep):
 VIEW = ActionDetailsView
 prerequisite = NavigateToAttribute("appliance.server", "ControlExplorer")

[docs] def step(self):
 self.view.actions.tree.click_path("All Actions", self.obj.description)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/markers/meta.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for markers.meta

-*- coding: utf-8 -*-
"""meta(**metadata): Marker for metadata addition.

To add metadata to a test simply pass the kwargs as plugins wish.

You can write your own plugins. They generally live in ``metaplugins/`` directory but you can
define them pretty much everywhere py.test loads modules. Plugin has a name and a set
of callbacks that are called when certain combination of keys is present in the metadata.

To define plugin, do like this:

.. code-block:: python

 @plugin("plugin_name")
 def someaction(plugin_name):
 print(plugin_name) # Will contain value of `plugin_name` key of metadict

This is the simplest usage, where it is supposed that the plugin checks only one key with the
same name s the plugin's name. I won't use this one in the latter examples, I will use the
more verbose one.

.. code-block:: python

 @plugin("plugin_name", keys=["plugin_name", "another_key"])
 def someaction(plugin_name, another_key):
 print(plugin_name) # Will contain value of `plugin_name` key of metadict
 print(another_key) # Similarly this one

This one reacts when the two keys are present. You can make even more complex setups:

.. code-block:: python

 @plugin("plugin_name", keys=["plugin_name"])
 @plugin("plugin_name", ["plugin_name", "another_key"]) # You don't have to write keys=
 def someaction(plugin_name, another_key=None):
 print(plugin_name) # Will contain value of `plugin_name` key of metadict
 print(another_key) # Similarly this one if specified, otherwise None

This created a nonrequired parameter for the action.

You can specify as many actions as you wish per plugin. The only thing that limits you is the
correct action choice. First, all the actions are filtered by present keys in metadata. Then
after this selection, only the action with the most matched keywords is called. Bear this
in your mind. If this is not enough in the future, it can be extended if you wish.

It has a command-line option that allows you to disable certain plugins. Just specify
``--disablemetaplugins a,b,c`` where a, b and c are the plugins that should be disabled

"""
from collections import namedtuple
from kwargify import kwargify
from types import FunctionType

import pytest

from lya import AttrDict

[docs]def pytest_configure(config):
 config.addinivalue_line("markers", __doc__.splitlines()[0])

[docs]def pytest_addoption(parser):
 group = parser.getgroup('Meta plugins')
 group.addoption('--disablemetaplugins',
 action='store',
 default="",
 dest='disable_metaplugins',
 help='Comma-separated list of metaplugins to disable')

@pytest.mark.hookwrapper
[docs]def pytest_pycollect_makeitem(collector, name, obj):
 # Put the meta mark on objects as soon as pytest begins to collect them
 if isinstance(obj, FunctionType) and not hasattr(obj, 'meta'):
 pytest.mark.meta(obj)
 yield

@pytest.mark.hookwrapper
[docs]def pytest_collection_modifyitems(session, config, items):
 from cfme.utils.log import logger
 for item in items:
 try:
 item._metadata = AttrDict(item.function.meta.kwargs)
 except AttributeError:
 logger.warning('AttributeError getting metadata from item: {}'.format(
 str(item.nodeid))
)
 item._metadata = AttrDict()

 meta = item.get_marker("meta")
 if meta is None:
 continue
 metas = reversed([x.kwargs for x in meta]) # Extract the kwargs, reverse the order
 for meta in metas:
 item._metadata.update(meta)
 yield

@pytest.fixture(scope="function")
[docs]def meta(request):
 return request.node._metadata

Plugin = namedtuple('Plugin', ['name', 'metas', 'function', 'kwargs'])

[docs]class PluginContainer(object):
 SETUP = "setup"
 TEARDOWN = "teardown"
 BEFORE_RUN = "before_run"
 AFTER_RUN = "after_run"
 DEFAULT = SETUP

 def __init__(self):
 self._plugins = []

 def __call__(self, name, keys=None, **kwargs):
 if keys is None:
 keys = [name]

 def f(g):
 self._plugins.append(Plugin(name, keys, kwargify(g), kwargs))
 return g # So the markers can be chained
 return f

if "plugin" not in globals():
 plugin = PluginContainer()

[docs]def run_plugins(item, when):

 from cfme.utils.log import logger
 possible_plugins = []
 for plug in plugin._plugins:
 if all([meta in item._metadata.keys() for meta in plug.metas])\
 and plug.kwargs.get("run", plugin.DEFAULT) == when:
 possible_plugins.append(plug)
 by_names = {}
 for plug in possible_plugins:
 if plug.name not in by_names:
 by_names[plug.name] = []
 by_names[plug.name].append(plug)
 disabled_plugins = item.config.getvalue("disable_metaplugins") or ""
 if not disabled_plugins:
 disabled_plugins = []
 else:
 disabled_plugins = [name.strip() for name in disabled_plugins.split(",")]
 for plugin_name, plugin_objects in by_names.iteritems():
 if plugin_name in disabled_plugins:
 logger.info("Ignoring plugin {} due to commandline option".format(plugin_name))
 continue
 plugin_objects.sort(key=lambda p: len(p.metas), reverse=True)
 plug = plugin_objects[0]
 env = {"item": item}
 for meta in plug.metas:
 env[meta] = item._metadata[meta]
 logger.info(
 "Calling metaplugin {}({}) with meta signature {} {}".format(
 plugin_name, plug.function.__name__, str(plug.metas), str(plug.kwargs)))
 plug.function(**env)
 logger.info(
 "Metaplugin {}({}) with meta signature {} {} has finished".format(
 plugin_name, plug.function.__name__, str(plug.metas), str(plug.kwargs)))

[docs]def pytest_runtest_setup(item):
 run_plugins(item, plugin.SETUP)

[docs]def pytest_runtest_teardown(item):
 run_plugins(item, plugin.TEARDOWN)

@pytest.mark.hookwrapper
[docs]def pytest_runtest_call(item):
 run_plugins(item, plugin.BEFORE_RUN)
 try:
 yield
 finally:
 run_plugins(item, plugin.AFTER_RUN)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/metaplugins/blockers.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.metaplugins.blockers

-*- coding: utf-8 -*-
"""A generalized framowork for handling test blockers.

Currently handling Bugzilla nad GitHub issues. For extensions, see this file and
:py:mod:`utils.blockers`.

If you want to mark test with blockers, use meta mark ``blockers`` and specify a list of the
blockers. The blockers can be directly the objects of :py:class:`utils.blockers.Blocker` subclasses,
but you can use just plain strings that will get resolved into the objects when required.

Example comes:

.. code-block:: python

 @pytest.mark.meta(
 blockers=[
 BZ(123456), # Will get resolved to BZ obviously
 GH(1234), # Will get resolved to GH if you have default repo set
 GH("owner/repo:issue"), # Otherwise you need to use this syntax
 # Generic blocker writing - (<engine_name>#<blocker_spec>)
 # These work for any engine that is in :py:mod:`utils.blockers`
 "BZ#123456", # Will resolve to BZ
 "GH#123", # Will resolve to GH (needs default repo specified)
 "GH#owner/repo:123", # Will resolve to GH
 # Shortcut writing
 123456, # Will resolve to BZ
]
)

Íf you want to unskip, then you have to use the full object (``BZ()``) and pass it a kwarg called
``unblock``. When the function in ``unblock`` resolves to a truthy value, the test won't be skipped.
If the blocker does not block, the ``unblock`` is not called. There is also a ``custom_action`` that
will get called if the blocker blocks. if the action does nothing, then it continues with next
actions etc., until it gets to the point that it skips the test because there are blockers.
"""
import pytest

from kwargify import kwargify as _kwargify

from fixtures.artifactor_plugin import fire_art_test_hook
from markers.meta import plugin
from cfme.utils import version
from cfme.utils.blockers import Blocker
from cfme.utils.pytest_shortcuts import extract_fixtures_values

[docs]def kwargify(f):
 """Convert function having only positional args to a function taking dictionary.

 If you pass False or None, a function which always returns False is returned.
 If you pass True, a function which always returns True is returned.
 """
 if f is None or f is False:
 def f():
 return False
 elif f is True:
 def f():
 return True

 return _kwargify(f)

@plugin("blockers", ["blockers"])
[docs]def resolve_blockers(item, blockers):
 if not isinstance(blockers, (list, tuple, set)):
 raise ValueError("Type of the 'blockers' parameter must be one of: list, tuple, set")

 # Prepare the global env for the kwarg insertion
 global_env = dict(
 appliance_version=version.current_version(),
 appliance_downstream=version.appliance_is_downstream(),
 item=item,
 blockers=blockers,
)
 # We will now extend the env with fixtures, so they can be used in the guard functions
 # We will however add only those that are not in the global_env otherwise we could overwrite
 # our own stuff.
 params = extract_fixtures_values(item)
 for funcarg, value in params.iteritems():
 if funcarg not in global_env:
 global_env[funcarg] = value

 # Check blockers
 use_blockers = []
 # Bugzilla shortcut
 blockers = map(lambda b: "BZ#{}".format(b) if isinstance(b, int) else b, blockers)
 for blocker in map(Blocker.parse, blockers):
 if blocker.blocks:
 use_blockers.append(blocker)
 # Unblocking
 discard_blockers = set([])
 for blocker in use_blockers:
 unblock_func = kwargify(blocker.kwargs.get("unblock"))
 local_env = {"blocker": blocker}
 local_env.update(global_env)
 if unblock_func(**local_env):
 discard_blockers.add(blocker)
 for blocker in discard_blockers:
 use_blockers.remove(blocker)
 # We now have those that block testing, so we have to skip
 # Let's go in the order that they were added
 # Custom actions first
 for blocker in use_blockers:
 if "custom_action" in blocker.kwargs:
 action = kwargify(blocker.kwargs["custom_action"])
 local_env = {"blocker": blocker}
 local_env.update(global_env)
 action(**local_env)
 # And then skip
 if use_blockers:
 bugs = [bug.bug_id for bug in use_blockers if hasattr(bug, "bug_id")]
 skip_data = {'type': 'blocker', 'reason': bugs}
 fire_art_test_hook(item, 'skip_test', skip_data=skip_data)
 pytest.skip("Skipping due to these blockers:\n{}".format(
 "\n".join(
 "- {}".format(str(blocker))
 for blocker
 in use_blockers
)
))

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/markers/uses.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for markers.uses

"""uses_*: Provides a set of fixtures used to mark tests for filtering on the command-line.

Tests using these fixtures directly or indirectly can be filtered using py.test's
``-k`` filter argument. For example, run tests that use the ssh client::

 py.test -k uses_ssh

Additionally, tests using one of the fixtures listed in :py:attr:`appliance_marks` will be marked
with `is_appliance`, for easily filtering out appliance tests, e.g::

 py.test -k 'not is_appliance'

All fixtures created by this module will have the ``uses_`` prefix.

Note:
 ``is_appliance`` is a mark that will be dynamically set based on fixtures used,
 but is not a fixture itself.

"""
import pytest

List of fixture marks to create and use for test marking
these are exposed as globals and individually documented
_marks_to_make = [
 'uses_db',
 'uses_event_listener',
 'uses_providers',
 'uses_pxe',
 'uses_ssh',
 'uses_blockers',
]

#: List of fixtures that, when used, indicate an appliance is being tested
#: by applying the ``is_appliance`` mark.
appliance_marks = {
 'uses_db',
 'uses_ssh'
}

##
Create the fixtures that will trigger test marking
##
markdoc = "Fixture which marks a test with the ``{}`` mark"
for mark in _marks_to_make:
 def _markfunc():
 return None
 # Put on a nice docstring...
 _markfunc.__doc__ = markdoc.format(mark)
 globals()[mark] = pytest.fixture(scope="session")(_markfunc)

###
Add fixtures with dependencies here
###
@pytest.fixture(scope="session")
[docs]def uses_cloud_providers(uses_providers):
 """Fixture which marks a test with the ``uses_cloud_providers`` and ``uses_providers`` marks"""
 pass

@pytest.fixture(scope="session")
[docs]def uses_infra_providers(uses_providers):
 """Fixture which marks a test with the ``uses_infra_providers`` and ``uses_providers`` marks"""
 pass

###
Now hook the item collector to apply all the correct marks
###
[docs]def pytest_itemcollected(item):
 """pytest hook that actually does the marking

 See: http://pytest.org/latest/plugins.html#_pytest.hookspec.pytest_collection_modifyitems

 """
 try:
 # Intersect 'uses_' fixture set with the fixtures being used by a test
 mark_fixtures = _uses_fixturenames().intersection(set(item.fixturenames))
 except AttributeError:
 # Test doesn't have fixturenames, make no changes
 return

 for mark in mark_fixtures:
 _add_mark(item, mark)

 # Slap on the is_appliance mark if there's a match
 if appliance_marks.intersection(mark_fixtures):
 _add_mark(item, 'is_appliance')

###
Helpers
###
DRY
def _add_mark(item, mark):
 # Add the mark directly to the item so test introspection is sane
 item.add_marker(mark)
 # Add the mark to extra_keyword_matches so the builtin item collector
 # is able to filter based on this mark
 item.extra_keyword_matches.add(mark)

def _uses_fixturenames():
 # A set of all the names defined in this module named 'uses_*'
 # These should all be fixtures.
 return {mark for mark in globals().keys() if mark.startswith('uses_')}

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/metaplugins/skip.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.metaplugins.skip

-*- coding: utf-8 -*-
"""I missed callable based skipper so here it is."""
from markers.meta import plugin

import pytest
from kwargify import kwargify

from cfme.utils.pytest_shortcuts import extract_fixtures_values

@plugin("skip", keys=["skip"], run=plugin.BEFORE_RUN)
@plugin("skip", keys=["skip", "reason"], run=plugin.BEFORE_RUN)
[docs]def skip_plugin(item, skip, reason="Skipped"):
 if isinstance(skip, bool):
 if skip:
 pytest.skip(reason)
 elif callable(skip):
 skip_kwargified = kwargify(skip)
 if skip_kwargified(**extract_fixtures_values(item)):
 pytest.skip(reason)
 else:
 if bool(skip):
 pytest.skip(reason)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/appliance/implementations/ui.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 		cfme.utils.appliance »

 		cfme.utils.appliance.implementations »

 Source code for cfme.utils.appliance.implementations.ui

-*- coding: utf-8 -*-
import json
import time
from jsmin import jsmin
from inspect import isclass

from cfme.utils.log import logger, create_sublogger
from cfme import exceptions
from time import sleep

from navmazing import Navigate, NavigateStep
from selenium.common.exceptions import (
 ErrorInResponseException, InvalidSwitchToTargetException,
 InvalidElementStateException, WebDriverException, UnexpectedAlertPresentException,
 NoSuchElementException, StaleElementReferenceException)

from cfme.utils.browser import manager
from fixtures.pytest_store import store

from cached_property import cached_property
from widgetastic.browser import Browser, DefaultPlugin
from widgetastic.widget import Text, View
from widgetastic.utils import VersionPick
from cfme.utils.version import Version
from cfme.utils.wait import wait_for

from . import Implementation

VersionPick.VERSION_CLASS = Version

[docs]class ErrorView(View):
 title = Text("//body/h1")
 body = Text("//body/p")

 error_text = Text(
 "//h1[normalize-space(.)='Unexpected error encountered']"
 "/following-sibling::h3[not(fieldset)]"
)

[docs] def get_rails_error(self):
 """Gets the displayed error messages"""
 if self.browser.is_displayed("//body[./h1 and ./p and ./hr and ./address]"):
 try:
 return "{}: {}".format(self.title.text, self.body.text)
 except NoSuchElementException:
 return None
 elif self.browser.is_displayed(
 "//h1[normalize-space(.)='Unexpected error encountered']"):
 try:
 return self.error_text.text
 except NoSuchElementException: # Just in case something goes really wrong
 return None
 return None

[docs]class MiqBrowserPlugin(DefaultPlugin):
 ENSURE_PAGE_SAFE = jsmin('''\
 function isHidden(el) {if(el === null) return true; return el.offsetParent === null;}

 try {
 angular.element('error-modal').hide();
 } catch(err) {
 }

 try {
 return ! ManageIQ.qe.anythingInFlight();
 } catch(err) {
 return (
 ((typeof $ === "undefined") ? true : $.active < 1) &&
 (
 !((!isHidden(document.getElementById("spinner_div"))) &&
 isHidden(document.getElementById("lightbox_div")))) &&
 document.readyState == "complete" &&
 ((typeof checkMiqQE === "undefined") ? true : checkMiqQE('autofocus') < 1) &&
 ((typeof checkMiqQE === "undefined") ? true : checkMiqQE('debounce') < 1) &&
 ((typeof checkAllMiqQE === "undefined") ? true : checkAllMiqQE() < 1)
);
 }
 ''')

 OBSERVED_FIELD_MARKERS = (
 'data-miq_observe',
 'data-miq_observe_date',
 'data-miq_observe_checkbox',
)
 DEFAULT_WAIT = .8

[docs] def ensure_page_safe(self, timeout='10s'):
 # THIS ONE SHOULD ALWAYS USE JAVASCRIPT ONLY, NO OTHER SELENIUM INTERACTION

 def _check():
 result = self.browser.execute_script(self.ENSURE_PAGE_SAFE, silent=True)
 # TODO: Logging
 return bool(result)

 wait_for(_check, timeout=timeout, delay=0.2, silent_failure=True, very_quiet=True)

[docs] def after_keyboard_input(self, element, keyboard_input):
 observed_field_attr = None
 for attr in self.OBSERVED_FIELD_MARKERS:
 observed_field_attr = self.browser.get_attribute(attr, element)
 if observed_field_attr is not None:
 break
 else:
 return

 try:
 attr_dict = json.loads(observed_field_attr)
 interval = float(attr_dict.get('interval', self.DEFAULT_WAIT))
 # Pad the detected interval, as with default_wait
 if interval < self.DEFAULT_WAIT:
 interval = self.DEFAULT_WAIT
 except (TypeError, ValueError):
 # ValueError and TypeError happens if the attribute value couldn't be decoded as JSON
 # ValueError also happens if interval couldn't be coerced to float
 # In either case, we've detected an observed text field and should wait
 self.logger.warning('could not parse %r', observed_field_attr)
 interval = self.DEFAULT_WAIT

 self.logger.debug('observed field detected, pausing for %.1f seconds', interval)
 time.sleep(interval)
 self.browser.plugin.ensure_page_safe()

[docs]class MiqBrowser(Browser):
 def __init__(self, selenium, endpoint, extra_objects=None):
 extra_objects = extra_objects or {}
 extra_objects.update({
 'appliance': endpoint.owner,
 'endpoint': endpoint,
 'store': store,
 })
 super(MiqBrowser, self).__init__(
 selenium,
 plugin_class=MiqBrowserPlugin,
 logger=create_sublogger('MiqBrowser'),
 extra_objects=extra_objects)
 self.window_handle = selenium.current_window_handle

 @property
 def appliance(self):
 return self.extra_objects['appliance']

[docs] def create_view(self, *args, **kwargs):
 return self.appliance.browser.create_view(*args, **kwargs)

 @property
 def product_version(self):
 return self.appliance.version

[docs]def can_skip_badness_test(fn):
 """Decorator for setting a noop"""
 fn._can_skip_badness_test = True
 return fn

[docs]class CFMENavigateStep(NavigateStep):
 VIEW = None

 @cached_property
 def view(self):
 if self.VIEW is None:
 raise AttributeError('{} does not have VIEW specified'.format(type(self).__name__))
 return self.create_view(self.VIEW, additional_context={'object': self.obj})

 @property
 def appliance(self):
 return self.obj.appliance

[docs] def create_view(self, *args, **kwargs):
 return self.appliance.browser.create_view(*args, **kwargs)

[docs] def am_i_here(self):
 try:
 return self.view.is_displayed
 except (AttributeError, NoSuchElementException):
 return False

[docs] def check_for_badness(self, fn, _tries, nav_args, *args, **kwargs):
 if getattr(fn, '_can_skip_badness_test', False):
 # self.log_message('Op is a Nop! ({})'.format(fn.__name__))
 return

 if self.VIEW:
 self.view.flush_widget_cache()
 go_kwargs = kwargs.copy()
 go_kwargs.update(nav_args)
 self.appliance.browser.open_browser(url_key=self.obj.appliance.server.address())

 # check for MiqQE javascript patch on first try and patch the appliance if necessary
 if self.appliance.is_miqqe_patch_candidate and not self.appliance.miqqe_patch_applied:
 self.appliance.patch_with_miqqe()
 self.appliance.browser.quit_browser()
 _tries -= 1
 self.go(_tries, *args, **go_kwargs)

 br = self.appliance.browser

 try:
 br.widgetastic.execute_script('miqSparkleOff();', silent=True)
 except: # noqa
 # miqSparkleOff undefined, so it's definitely off.
 # Or maybe it is alerts? Let's only do this when we get an exception.
 self.appliance.browser.widgetastic.dismiss_any_alerts()
 # If we went so far, let's put diapers on one more miqSparkleOff just to be sure
 # It can be spinning in the back
 try:
 br.widgetastic.execute_script('miqSparkleOff();', silent=True)
 except: # noqa
 pass

 # Check if the page is blocked with blocker_div. If yes, let's headshot the browser right
 # here
 if (
 br.widgetastic.is_displayed("//div[@id='blocker_div' or @id='notification']") or
 br.widgetastic.is_displayed(".modal-backdrop.fade.in")):
 logger.warning("Page was blocked with blocker div on start of navigation, recycling.")
 self.appliance.browser.quit_browser()
 self.go(_tries, *args, **go_kwargs)

 # Check if modal window is displayed
 if (br.widgetastic.is_displayed(
 "//div[contains(@class, 'modal-dialog') and contains(@class, 'modal-lg')]")):
 logger.warning("Modal window was open; closing the window")
 br.widgetastic.click(
 "//button[contains(@class, 'close') and contains(@data-dismiss, 'modal')]")

 # Check if jQuery present
 try:
 br.widgetastic.execute_script("jQuery", silent=True)
 except Exception as e:
 if "jQuery" not in str(e):
 logger.error("Checked for jQuery but got something different.")
 logger.exception(e)
 # Restart some workers
 logger.warning("Restarting UI and VimBroker workers!")
 with self.appliance.ssh_client as ssh:
 # Blow off the Vim brokers and UI workers
 ssh.run_rails_command("\"(MiqVimBrokerWorker.all + MiqUiWorker.all).each &:kill\"")
 logger.info("Waiting for web UI to come back alive.")
 sleep(10) # Give it some rest
 self.appliance.wait_for_web_ui()
 self.appliance.browser.quit_browser()
 self.appliance.browser.open_browser(url_key=self.obj.appliance.server.address())
 self.go(_tries, *args, **go_kwargs)

 # Same with rails errors
 view = br.widgetastic.create_view(ErrorView)
 rails_e = view.get_rails_error()

 if rails_e is not None:
 logger.warning("Page was blocked by rails error, renavigating.")
 logger.error(rails_e)
 # RHEL7 top does not know -M and -a
 logger.debug('Top CPU consumers:')
 logger.debug(store.current_appliance.ssh_client.run_command(
 'top -c -b -n1 | head -30').output)
 logger.debug('Top Memory consumers:')
 logger.debug(store.current_appliance.ssh_client.run_command(
 'top -c -b -n1 -o "%MEM" | head -30').output) # noqa
 logger.debug('Managed known Providers:')
 logger.debug(
 '%r', [prov.key for prov in store.current_appliance.managed_known_providers])
 self.appliance.browser.quit_browser()
 self.appliance.browser.open_browser()
 self.go(_tries, *args, **go_kwargs)
 # If there is a rails error past this point, something is really awful

 # Set this to True in the handlers below to trigger a browser restart
 recycle = False

 # Set this to True in handlers to restart evmserverd on the appliance
 # Includes recycling so you don't need to specify recycle = False
 restart_evmserverd = False

 try:
 self.log_message(
 "Invoking {}, with {} and {}".format(fn.func_name, args, kwargs), level="debug")
 return fn(*args, **kwargs)
 except (KeyboardInterrupt, ValueError):
 # KeyboardInterrupt: Don't block this while navigating
 raise
 except UnexpectedAlertPresentException:
 if _tries == 1:
 # There was an alert, accept it and try again
 br.widgetastic.handle_alert(wait=0)
 self.go(_tries, *args, **go_kwargs)
 else:
 # There was still an alert when we tried again, shoot the browser in the head
 logger.debug('Unxpected alert, recycling browser')
 recycle = True
 except (ErrorInResponseException, InvalidSwitchToTargetException):
 # Unable to switch to the browser at all, need to recycle
 logger.info('Invalid browser state, recycling browser')
 recycle = True
 except exceptions.CFMEExceptionOccured as e:
 # We hit a Rails exception
 logger.info('CFME Exception occured')
 logger.exception(e)
 recycle = True
 except exceptions.CannotContinueWithNavigation as e:
 # The some of the navigation steps cannot succeed
 logger.info('Cannot continue with navigation due to: {}; '
 'Recycling browser'.format(str(e)))
 recycle = True
 except (NoSuchElementException, InvalidElementStateException, WebDriverException,
 StaleElementReferenceException) as e:
 from cfme.web_ui import cfme_exception as cfme_exc # To prevent circular imports
 # First check - if jquery is not found, there can be also another
 # reason why this happened so do not put the next branches in elif
 if isinstance(e, WebDriverException) and "jQuery" in str(e):
 # UI failed in some way, try recycling the browser
 logger.exception(
 "UI failed in some way, jQuery not found, (probably) recycling the browser.")
 recycle = True
 # If the page is blocked, then recycle...
 # TODO .modal-backdrop.fade.in catches the 'About' modal resulting in nav loop
 if (
 br.widgetastic.is_displayed("//div[@id='blocker_div' or @id='notification']") or
 br.widgetastic.is_displayed(".modal-backdrop.fade.in")):
 logger.warning("Page was blocked with blocker div, recycling.")
 recycle = True
 elif cfme_exc.is_cfme_exception():
 logger.exception("CFME Exception before force navigate started!: {}".format(
 cfme_exc.cfme_exception_text()))
 recycle = True
 elif br.widgetastic.is_displayed("//body/h1[normalize-space(.)='Proxy Error']"):
 # 502
 logger.exception("Proxy error detected. Killing browser and restarting evmserverd.")
 req = br.widgetastic.elements("/html/body/p[1]//a")
 req = br.widgetastic.text(req[0]) if req else "No request stated"
 reason = br.widgetastic.elements("/html/body/p[2]/strong")
 reason = br.widgetastic.text(reason[0]) if reason else "No reason stated"
 logger.info("Proxy error: {} / {}".format(req, reason))
 restart_evmserverd = True
 elif br.widgetastic.is_displayed("//body[./h1 and ./p and ./hr and ./address]"):
 # 503 and similar sort of errors
 title = br.widgetastic.text("//body/h1")
 body = br.widgetastic.text("//body/p")
 logger.exception("Application error {}: {}".format(title, body))
 sleep(5) # Give it a little bit of rest
 recycle = True
 elif br.widgetastic.is_displayed("//body/div[@class='dialog' and ./h1 and ./p]"):
 # Rails exception detection
 logger.exception("Rails exception before force navigate started!: %r:%r at %r",
 br.widgetastic.text("//body/div[@class='dialog']/h1"),
 br.widgetastic.text("//body/div[@class='dialog']/p"),
 getattr(manager.browser, 'current_url', "error://dead-browser")
)
 recycle = True
 elif br.widgetastic.elements("//ul[@id='maintab']/li[@class='inactive']") and not\
 br.widgetastic.elements("//ul[@id='maintab']/li[@class='active']/ul/li"):
 # If upstream and is the bottom part of menu is not displayed
 logger.exception("Detected glitch from BZ#1112574. HEADSHOT!")
 recycle = True
 elif not self.obj.appliance.server.logged_in():
 # Session timeout or whatever like that, login screen appears.
 logger.exception("Looks like we are logged out. Try again.")
 recycle = True
 else:
 logger.error("Could not determine the reason for failing the navigation. " +
 " Reraising. Exception: {}".format(str(e)))
 logger.debug(store.current_appliance.ssh_client.run_command(
 'systemctl status evmserverd').output)
 raise

 if restart_evmserverd:
 logger.info("evmserverd restart requested")
 self.appliance.restart_evm_service()
 self.appliance.wait_for_web_ui()
 self.go(_tries, *args, **go_kwargs)

 if recycle or restart_evmserverd:
 self.appliance.browser.quit_browser()
 logger.debug('browser killed on try {}'.format(_tries))
 # If given a "start" nav destination, it won't be valid after quitting the browser
 self.go(_tries, *args, **go_kwargs)

 @can_skip_badness_test
[docs] def resetter(self, *args, **kwargs):
 pass

 @can_skip_badness_test
[docs] def pre_navigate(self, *args, **kwargs):
 pass

 @can_skip_badness_test
[docs] def post_navigate(self, *args, **kwargs):
 pass

[docs] def log_message(self, msg, level="debug"):
 class_name = self.obj.__name__ if isclass(self.obj) else self.obj.__class__.__name__
 str_msg = "[UI-NAV/{}/{}]: {}".format(class_name, self._name, msg)
 getattr(logger, level)(str_msg)

[docs] def construst_message(self, here, resetter, view, duration):
 str_here = "Already Here" if here else "Needed Navigation"
 str_resetter = "Resetter Used" if resetter else "No Resetter"
 str_view = "View Returned" if view else "No View Available"
 return "{}/{}/{} (elapsed {}ms)".format(str_here, str_resetter, str_view, duration)

[docs] def go(self, _tries=0, *args, **kwargs):
 nav_args = {'use_resetter': True}
 self.log_message("Beginning Navigation...", level="info")
 start_time = time.time()
 if _tries > 2:
 # Need at least three tries:
 # 1: login_admin handles an alert or CannotContinueWithNavigation appears.
 # 2: Everything should work. If not, NavigationError.
 raise exceptions.NavigationError(self._name)

 _tries += 1
 for arg in nav_args:
 if arg in kwargs:
 nav_args[arg] = kwargs.pop(arg)
 self.check_for_badness(self.pre_navigate, _tries, nav_args, *args, **kwargs)
 here = False
 resetter_used = False
 try:
 here = self.check_for_badness(self.am_i_here, _tries, nav_args, *args, **kwargs)
 except Exception as e:
 self.log_message(
 "Exception raised [{}] whilst checking if already here".format(e), level="error")
 if not here:
 self.log_message("Prerequiesite Needed")
 self.prerequisite_view = self.prerequisite()
 self.check_for_badness(self.step, _tries, nav_args, *args, **kwargs)
 if nav_args['use_resetter']:
 resetter_used = True
 self.check_for_badness(self.resetter, _tries, nav_args, *args, **kwargs)
 self.check_for_badness(self.post_navigate, _tries, nav_args, *args, **kwargs)
 view = self.view if self.VIEW is not None else None
 duration = int((time.time() - start_time) * 1000)
 self.log_message(self.construst_message(here, resetter_used, view, duration), level="info")
 return view

navigator = Navigate()
navigate_to = navigator.navigate

[docs]class ViaUI(Implementation):
 """UI implementation using the normal ux"""

 def __str__(self):
 return 'UI'

 @cached_property
 def widgetastic(self):
 """This gives us a widgetastic browser."""
 browser = self.open_browser(url_key=self.appliance.server.address())
 wt = MiqBrowser(browser, self)
 manager.add_cleanup(self._reset_cache)
 return wt

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/control/snmp_form.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.control.snmp_form

#!/usr/bin/env python2
-*- coding: utf-8 -*-
"""This file contains useful classes for working with SNMP filling."""

from collections import Mapping

from cfme.web_ui import Select, Form, fill, Input
from cfme.fixtures import pytest_selenium as sel
from cfme.utils.log import logger
from cfme.utils.pretty import Pretty

[docs]class SNMPTrap(Pretty):
 """Nicer representation of the single SNMP trap

 Args:
 oid: SNMP OID
 type: SNMP type
 value: Value (default: `None`)
 """
 pretty_attrs = ['oid', 'type', 'value']

 def __init__(self, oid, type, value=None):
 self.oid = oid
 self.type = type
 self.value = value

 @property
 def as_tuple(self):
 """Return the contents as a tuple used for filling"""
 return (self.oid, self.type, self.value)

[docs]class SNMPTrapField(Pretty):
 """Class representing SNMP trap field consisting of 3 elements - oid, type and value

 Args:
 seq_id: Sequential id of the field. Usually in range 1-10
 """
 pretty_attrs = ['seq_id']

 def __init__(self, seq_id):
 self.seq_id = seq_id

 @property
 def oid_loc(self):
 return Input('oid__{}'.format(self.seq_id))

 @property
 def oid(self):
 return sel.get_attribute(self.oid_loc, "value")

 @oid.setter
 def oid(self, value):
 return fill(self.oid_loc, value)

 @property
 def type_loc(self):
 return Select("//select[@id='var_type__{}']".format(self.seq_id))

 @property
 def type(self):
 return sel.text(self.type_loc.first_selected_option)

 @type.setter
 def type(self, value):
 return fill(self.type_loc, value)

 @property
 def value_loc(self):
 return Input('value__{}'.format(self.seq_id))

 @property
 def value(self):
 return sel.get_attribute(self.value_loc, "value")

 @value.setter
 def value(self, value):
 return fill(self.value_loc, value)

@fill.method((SNMPTrapField, SNMPTrap))
[docs]def fill_snmp_trap_field_trap(field, val):
 return fill(field, val.as_tuple)

@fill.method((SNMPTrapField, tuple))
[docs]def fill_snmp_trap_field_tuple(field, val):
 assert 2 <= len(val) <= 3, "The tuple must be at least 2 items and max 3 items!"
 if len(val) == 2:
 val = val + (None,)
 field.oid, field.type, field.value = val
 logger.debug(' Filling in SNMPTrapField #%d with values %s, %s, %s',
 field.seq_id, field.oid, field.type, field.value)

@fill.method((SNMPTrapField, Mapping)) # dict because we disassemble it in web_ui
[docs]def fill_snmp_trap_field_dict(field, val):
 return fill(field, (val["oid"], val["type"], val.get("value")))

[docs]class SNMPTrapsField(Pretty):
 """Encapsulates all trap fields to simplify form filling

 Args:
 num_fields: How many SNMPTrapField to generate
 """
 pretty_attrs = ['num_fields']

 def __init__(self, num_fields):
 assert num_fields > 0, "You must have at least one field!"
 self.traps = [SNMPTrapField(i + 1) for i in range(num_fields)]

@fill.method((SNMPTrapsField, list))
[docs]def fill_snmp_traps_field_list(field, values):
 assert len(values) <= len(field.traps), "You cannot specify more traps than fields"
 for i, value in enumerate(values):
 fill(field.traps[i], value)

@fill.method((SNMPTrapsField, SNMPTrap))
@fill.method((SNMPTrapsField, tuple))
[docs]def fill_snmp_traps_field_single_trap(field, value):
 fill(field.traps[0], value)

[docs]class SNMPHostsField(object):
 """Class designed for handling the two-type snmp hosts field.

 They can be 3 or just single."""
 @property
 def host_fields(self):
 """Returns list of locators to all host fields"""
 if sel.is_displayed(Input('host')):
 return [Input('host')]
 else:
 return [Input('host_{}'.format(i + 1)) for i in range(3)]

@fill.method((SNMPHostsField, list))
@fill.method((SNMPHostsField, tuple))
[docs]def fill_snmp_hosts_field_list(field, values):
 fields = field.host_fields
 if len(values) > len(fields):
 raise ValueError("You cannot specify more hosts than the form allows!")
 for i, value in enumerate(values):
 fill(fields[i], value)

@fill.method((SNMPHostsField, basestring))
[docs]def fill_snmp_hosts_field_basestr(field, value):
 fill(field, [value])

[docs]class SNMPForm(object):
 """Class encapsulating the most common (and hopefully single) configuration of SNMP form

 Usage:

 form = SNMPForm()
 fill(form, dict(
 hosts=["host1", "host2"],
 traps=[
 ("aaa", "Counter32", 125), # Takes 3-tuples
 ("bbb", "Null"), # 2-tuples with no value specified
 SNMPTrap("ccc", "Gauge32", 256), # objects dtto
 SNMPTrap("ddd", "Null"), # value can be unspecified too
 {"oid": "eee", "type": "Integer", "value": 42} # omg dict too! Yay.
],
 version="v2",
 id="aabcd",
))

 """
 fields = Form(fields=[
 ("hosts", SNMPHostsField()),
 ("version", Select("//select[@id='snmp_version']")),
 ("id", Input('trap_id')),
 ("traps", SNMPTrapsField(10)),
])

@fill.method((SNMPForm, dict))
[docs]def fill_snmp_form(form, values, *rest, **kwrest):
 """I wanted to use dict but that is overrided in web_ui that it disassembles dict to list
 of tuples :("""
 return fill(form.fields, values)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/markers/composite.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for markers.composite

[docs]def pytest_addoption(parser):
 """Adds options for the composite uncollection system"""
 parser.addoption("--composite-uncollect", action="store_true", default=False,
 help="Enables composite uncollecting")
 parser.addoption("--composite-job-name", action="store", default=None,
 help="Overrides the default job name which is derived from the appliance")
 parser.addoption("--composite-template-name", action="store", default=None,
 help="Overrides the default template name which is obtained from trackerbot")
 parser.addoption("--composite-source", action="store", default=None,
 help="Narrow down composite uncollection by providing a source")

[docs]def pytest_collection_modifyitems(session, config, items):
 if not config.getvalue('composite_uncollect'):
 return

 from fixtures.artifactor_plugin import get_test_idents
 from fixtures.pytest_store import store

 from cfme.utils.log import logger
 from cfme.utils.trackerbot import composite_uncollect

 len_collected = len(items)

 new_items = []

 build = store.current_appliance.build

 source = config.getoption('composite_source')
 if not source:
 source = 'jenkins'

 store.terminalreporter.write(
 'Attempting Uncollect for build: {} and source: {}'.format(build, source), bold=True)

 pl = composite_uncollect(build, source)

 if pl:
 for test in pl['tests']:
 pl['tests'][test]['old'] = True

 # Here we pump into artifactor
 # art_client.fire_hook('composite_pump', old_artifacts=pl['tests'])
 for item in items:
 try:
 name, location = get_test_idents(item)
 test_ident = "{}/{}".format(location, name)
 status = pl['tests'][test_ident]['statuses']['overall']

 if status == 'passed':
 logger.info('Uncollecting {} as it passed last time'.format(item.name))
 continue
 else:
 new_items.append(item)
 except:
 new_items.append(item)

 items[:] = new_items

 len_filtered = len(items)
 filtered_count = len_collected - len_filtered
 store.uncollection_stats['composite_uncollect'] = filtered_count

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/control/import_export.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.control.import_export

-*- coding: utf-8 -*-
from cfme.utils.appliance.implementations.ui import navigator, navigate_to, CFMENavigateStep
from navmazing import NavigateToSibling

from widgetastic.widget import Select, ClickableMixin
from widgetastic_patternfly import BootstrapSelect, Button, Input

from cfme.base.login import BaseLoggedInPage
from cfme.base.ui import Server

[docs]class InputButton(Input, ClickableMixin):
 pass

[docs]class ControlImportExportView(BaseLoggedInPage):

 upload_button = InputButton("commit")
 export_button = Button("Export")
 commit_button = Button("Commit")

 upload_file = Input("upload[file]")
 export = BootstrapSelect("dbtype")
 policy_profiles = Select(id="choices_chosen_")

 @property
 def is_displayed(self):
 return (
 self.logged_in_as_current_user and
 self.navigation.currently_selected == ["Control", "Import / Export"]
)

@navigator.register(Server)
[docs]class ControlImportExport(CFMENavigateStep):
 VIEW = ControlImportExportView
 prerequisite = NavigateToSibling("LoggedIn")

[docs] def step(self):
 self.view.navigation.select("Control", "Import / Export")

[docs]def import_file(filename, cancel=False):
 """ Go to Control / Import Export and import given file.

 Args:
 filename: Full path to file to import.
 cancel: Whether to click Cancel instead of commit.
 """
 view = navigate_to(Server, "ControlImportExport")
 assert view.is_displayed
 view.fill({
 "upload_file": filename
 })
 if cancel:
 view.cancel_button.click()
 else:
 view.upload_button.click()
 view.flash.assert_no_error()
 view.flash.assert_message("Press commit to Import")
 view.commit_button.click()

[docs]def is_imported(policy_profile):
 view = navigate_to(Server, "ControlImportExport")
 assert view.is_displayed
 return policy_profile in view.policy_profiles.read()

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/markers/stream_excluder.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for markers.stream_excluder

-*- coding: utf-8 -*-
"""ignore_stream(*streams): Marker for uncollecting the tests based on appliance stream.

Streams are the first two fields from version of the appliance (5.0, 5.1, ...), the nightly upstream
is represented as upstream. If you want to ensure, that the test shall not be collected because it
is not supposed to run on 5.0 and 5.1 streams, just put those streams in the parameters and that
is enough.

It also provides a facility to check the appliance's version/stream for smoke testing.
"""
import pytest

[docs]def get_streams_id():
 from cfme.utils.version import appliance_is_downstream, current_version
 if appliance_is_downstream():
 return {current_version().series(2), "downstream"}
 else:
 return {"upstream"}

[docs]def pytest_addoption(parser):
 group = parser.getgroup('Specific stream smoke testing')
 group.addoption('--check-stream',
 action='store',
 default="",
 type=str,
 dest='check_stream',
 help='You can use our "downstream-53z" and similar ones.')

[docs]def pytest_configure(config):
 config.addinivalue_line("markers", __doc__.splitlines()[0])

[docs]def pytest_itemcollected(item):
 streams_id = get_streams_id()
 marker = item.get_marker("ignore_stream")
 if marker is None:
 return
 if hasattr(item, "callspec"):
 params = item.callspec.params
 else:
 params = {}
 for arg in marker.args:
 if isinstance(arg, (tuple, list)):
 stream, conditions = arg
 else:
 stream = arg
 conditions = {}
 stream = stream.strip().lower()
 if stream in streams_id:
 # Candidate for uncollection
 if not conditions:
 # Just uncollect it right away
 add_mark = True
 else:
 add_mark = True
 for condition_key, condition_value in conditions.iteritems():
 if condition_key not in params:
 continue
 if params[condition_key] == condition_value:
 pass # No change
 else:
 add_mark = False
 if add_mark:
 item.add_marker(pytest.mark.uncollect)

[docs]def pytest_collection_modifyitems(session, config, items):
 # Just to print out the appliance's streams
 from fixtures.terminalreporter import reporter

 from cfme.utils.version import current_stream
 reporter(config).write(
 "\nAppliance's streams: [{}]\n".format(", ".join(get_streams_id())))
 # Bail out if the appliance stream or version do not match
 check_stream = config.getvalue("check_stream").lower().strip()
 if check_stream:
 curr = current_stream()
 if check_stream != curr:
 raise Exception(
 "Stream mismatch - wanted {} but appliance is {}".format(
 check_stream, curr))

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/control/explorer.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.control.explorer

-*- coding: utf-8 -*-
from navmazing import NavigateToSibling
from widgetastic.widget import View
from widgetastic_manageiq import ManageIQTree
from widgetastic_patternfly import Accordion, Dropdown

from cfme.base import Server
from cfme.base.login import BaseLoggedInPage
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep

[docs]class ControlExplorerView(BaseLoggedInPage):

 @property
 def in_control_explorer(self):
 return (
 self.logged_in_as_current_user and
 self.navigation.currently_selected == ['Control', 'Explorer'])

 @property
 def is_displayed(self):
 return self.in_control_explorer and self.configuration.is_displayed

 @View.nested
 class policy_profiles(Accordion): # noqa
 ACCORDION_NAME = "Policy Profiles"

 tree = ManageIQTree()

 @View.nested
 class policies(Accordion): # noqa
 tree = ManageIQTree()

 @View.nested
 class events(Accordion): # noqa
 tree = ManageIQTree()

 @View.nested
 class conditions(Accordion): # noqa
 tree = ManageIQTree()

 @View.nested
 class actions(Accordion): # noqa
 tree = ManageIQTree()

 @View.nested
 class alert_profiles(Accordion): # noqa
 ACCORDION_NAME = "Alert Profiles"

 tree = ManageIQTree()

 @View.nested
 class alerts(Accordion): # noqa
 tree = ManageIQTree()

 configuration = Dropdown("Configuration")

@navigator.register(Server)
[docs]class ControlExplorer(CFMENavigateStep):
 VIEW = ControlExplorerView
 prerequisite = NavigateToSibling("LoggedIn")

[docs] def step(self):
 self.view.navigation.select("Control", "Explorer")

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/control/log.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.control.log

-*- coding: utf-8 -*-
from navmazing import NavigateToSibling
from widgetastic.widget import Text
from widgetastic_patternfly import Button

from cfme.base import Server
from cfme.base.login import BaseLoggedInPage
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep

[docs]class ControlLogView(BaseLoggedInPage):
 """Basic view for Control/Log tab."""
 title = Text(".//div[@id='main-content']//h1")
 subtitle = Text(".//div[@id='main_div']/h3")
 refresh_button = Button(id="refresh_log")
 download_button = Button(id="fetch_log")

 @property
 def is_displayed(self):
 return (
 self.title.text == "Log" and
 "Last 1000 lines from server" in self.subtitle.text and
 self.refresh_button.is_displayed and
 self.download_button.is_displayed
)

@navigator.register(Server)
[docs]class ControlLog(CFMENavigateStep):
 VIEW = ControlLogView
 prerequisite = NavigateToSibling("LoggedIn")

[docs] def step(self):
 self.view.navigation.select("Control", "Log")

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/markers/sauce.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for markers.sauce

"""sauce: Mark a test to run on sauce

Mark a single test to run on sauce.

"""

[docs]def pytest_addoption(parser):
 group = parser.getgroup('cfme')
 group.addoption('--sauce', dest='sauce', action='store_true', default=False,
 help="Run tests with the sauce marker on sauce labs.")

[docs]def pytest_configure(config):
 config.addinivalue_line('markers', __doc__.splitlines()[0])
 if config.option.sauce:
 if config.option.markexpr:
 config.option.markexpr = 'sauce and ({})'.format(config.option.markexpr)
 else:
 config.option.markexpr = 'sauce'

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/cloud/keypairs.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.cloud.keypairs

-*- coding: utf-8 -*-
from navmazing import NavigateToAttribute, NavigateToSibling
from widgetastic.widget import View
from widgetastic.utils import VersionPick, Version
from widgetastic_patternfly import Dropdown, Button, FlashMessages
from widgetastic_manageiq import (
 ItemsToolBarViewSelector, Text, TextInput, Accordion, ManageIQTree, BreadCrumb,
 SummaryTable, BootstrapSelect, ItemNotFound, BaseEntitiesView)

from cfme.common import TagPageView, WidgetasticTaggable
from cfme.base.ui import BaseLoggedInPage
from cfme.exceptions import KeyPairNotFound

from cfme.web_ui import match_location
from cfme.utils.appliance.implementations.ui import navigate_to, navigator, CFMENavigateStep
from cfme.utils.appliance import BaseCollection, BaseEntity
from cfme.utils.wait import wait_for

[docs]class KeyPairToolbar(View):
 policy = Dropdown('Policy')
 configuration = Dropdown('Configuration')
 download = Dropdown('Download')

 view_selector = View.nested(ItemsToolBarViewSelector)

[docs]class KeyPairDetailsToolbar(View):
 policy = Dropdown('Policy')
 configuration = Dropdown('Configuration')
 download = Button(title='Download summary in PDF format')

[docs]class KeyPairDetailsAccordion(View):
 @View.nested
 class properties(Accordion): # noqa
 tree = ManageIQTree()

 @View.nested
 class relationships(Accordion): # noqa
 tree = ManageIQTree()

[docs]class KeyPairDetailsEntities(View):
 breadcrumb = BreadCrumb()
 title = Text('//div[@id="main-content"]//h1')
 flash = FlashMessages('.//div[@id="flash_msg_div"]'
 '/div[@id="flash_text_div" or contains(@class, "flash_text_div")]')
 properties = SummaryTable(title='Properties')
 relationships = SummaryTable(title='Relationships')
 smart_management = SummaryTable(title='Smart Management')

[docs]class KeyPairAddEntities(View):
 breadcrumb = BreadCrumb()
 title = Text('//div[@id="main-content"]//h1')

[docs]class KeyPairAddForm(View):
 name = TextInput(id='name')
 public_key = TextInput(id='public_key')
 provider = BootstrapSelect(id='ems_id')
 add = Button('Add')
 cancel = Button('Cancel')

[docs]class KeyPairView(BaseLoggedInPage):
 """Base view for header and nav checking, navigatable views should inherit this"""
 @property
 def in_keypair(self):
 return(
 self.logged_in_as_current_user and
 self.navigation.currently_selected == ['Compute', 'Clouds', 'Key Pairs'] and
 match_location(controller='auth_key_pair_cloud', title='Key Pairs'))

[docs]class KeyPairAllView(KeyPairView):
 @property
 def is_displayed(self):
 return (
 self.in_keypair and
 self.entities.title.text == 'Key Pairs')

 toolbar = View.nested(KeyPairToolbar)
 including_entities = View.include(BaseEntitiesView, use_parent=True)

[docs]class KeyPairDetailsView(KeyPairView):
 @property
 def is_displayed(self):
 expected_title = '{} (Summary)'.format(self.context['object'].name)
 return (
 self.in_keypair and
 self.entities.title.text == expected_title and
 self.entities.breadcrumb.active_location == expected_title)

 toolbar = View.nested(KeyPairDetailsToolbar)
 sidebar = View.nested(KeyPairDetailsAccordion)
 entities = View.nested(KeyPairDetailsEntities)

[docs]class KeyPairAddView(KeyPairView):
 @property
 def is_displayed(self):
 return (
 self.in_keypair and
 self.entities.breadcrumb.active_location == 'Add New Key Pair' and
 self.entities.title.text == 'Add New Key Pair')

 entities = View.nested(KeyPairAddEntities)
 form = View.nested(KeyPairAddForm)

[docs]class KeyPairCollection(BaseCollection):
 """ Collection object for the :py:class: `cfme.cloud.KeyPair`. """
 def __init__(self, appliance):
 self.appliance = appliance

[docs] def instantiate(self, name, provider, public_key=None):
 return KeyPair(self,
 name=name, provider=provider, public_key=public_key or "")

[docs] def create(self, name, provider, public_key=None, cancel=False):
 """Create new keyPair.

 Args:
 name (str): name of the KeyPair
 public_key (str): RSA Key if present
 provider (str): Cloud Provider
 cancel (boolean): Cancel Keypair creation
 """

 view = navigate_to(self, 'Add')
 changed = view.form.fill({'name': name,
 'public_key': public_key,
 'provider': provider.name
 })
 if cancel and not changed:
 view.form.cancel.click()
 flash_message = 'Add of new Key Pair was cancelled by the user'
 else:
 view.form.add.click()
 flash_message = VersionPick({
 Version.lowest(): 'Creating Key Pair {}'.format(name),
 '5.8': 'Key Pair "{}" created'.format(name)}).pick(self.appliance.version)

 # add/cancel should redirect, new view
 view = self.create_view(KeyPairAllView)
 # TODO BZ 1444520 causing ridiculous redirection times after submitting the form
 wait_for(lambda: view.is_displayed, num_sec=240, delay=2,
 fail_func=view.flush_widget_cache, handle_exception=True)
 assert view.is_displayed
 view.entities.flash.assert_success_message(flash_message)
 return self.instantiate(name, provider, public_key=public_key)

[docs]class KeyPair(BaseEntity, WidgetasticTaggable):
 """ Automate Model page of KeyPairs

 Args:
 name: Name of Keypairs.
 """
 _param_name = "KeyPair"

 def __init__(self, collection, name, provider, public_key=None):
 self.collection = collection
 self.appliance = self.collection.appliance
 self.name = name
 self.provider = provider
 self.public_key = public_key or ""

[docs] def delete(self, cancel=False, wait=False):
 view = navigate_to(self, 'Details')
 view.toolbar.configuration.item_select('Remove this Key Pair',
 handle_alert=(not cancel))
 # cancel doesn't redirect, confirmation does
 view.flush_widget_cache()
 if cancel:
 view = self.create_view(KeyPairDetailsView)
 else:
 view = self.create_view(KeyPairAllView)
 wait_for(lambda: view.is_displayed, fail_condition=False, num_sec=10, delay=1)

 # flash message only displayed if it was deleted
 if not cancel:
 view.entities.flash.assert_no_error()
 view.entities.flash.assert_success_message('Delete initiated for 1 Key Pair')

 if wait:
 def refresh():
 self.provider.refresh_provider_relationships()
 view.browser.refresh()
 view.flush_widget_cache()

 view = navigate_to(self.collection, 'All')

 wait_for(
 lambda: self.name in view.entities.all_entity_names,
 message="Wait keypairs to disappear",
 fail_condition=True,
 num_sec=300,
 delay=5,
 fail_func=refresh
)

 @property
 def exists(self):
 try:
 navigate_to(self, 'Details')
 except KeyPairNotFound:
 return False
 else:
 return True

@navigator.register(KeyPairCollection, 'All')
[docs]class CloudKeyPairs(CFMENavigateStep):
 VIEW = KeyPairAllView
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.navigation.select('Compute', 'Clouds', 'Key Pairs')

@navigator.register(KeyPair, 'Details')
[docs]class Details(CFMENavigateStep):
 VIEW = KeyPairDetailsView
 prerequisite = NavigateToAttribute('collection', 'All')

[docs] def step(self, *args, **kwargs):
 try:
 item = self.prerequisite_view.entities.get_entity(by_name=self.obj.name,
 surf_pages=True)
 except ItemNotFound:
 raise KeyPairNotFound

 item.click()

@navigator.register(KeyPairCollection, 'Add')
[docs]class Add(CFMENavigateStep):
 VIEW = KeyPairAddView
 prerequisite = NavigateToSibling("All")

[docs] def step(self, *args, **kwargs):
 """Raises DropdownItemDisabled from widgetastic_patternfly if no RHOS provider present"""
 self.prerequisite_view.toolbar.configuration.item_select('Add a new Key Pair')

@navigator.register(KeyPair, 'EditTagsFromDetails')
[docs]class EditTagsFromDetails(CFMENavigateStep):
 VIEW = TagPageView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.toolbar.policy.item_select('Edit Tags')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/web_ui/expression_editor_widgetastic.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.web_ui »

 Source code for cfme.web_ui.expression_editor_widgetastic

-*- coding: utf-8 -*-
""" The expression editor present in some locations of CFME.

"""
from functools import partial
from selenium.common.exceptions import NoSuchElementException
from cfme.utils.wait import wait_for, TimedOutError
import re
from cfme.utils.pretty import Pretty

from widgetastic_patternfly import Input, BootstrapSelect, Button
from widgetastic.widget import View
from widgetastic_manageiq import Calendar
from widgetastic.utils import VersionPick, Version

[docs]class ExpressionEditor(View, Pretty):
 """This class enables to embed the expression in a Form.

 Args:
 show_func: Function to call to show the expression if there are more of them.
 """

 @View.nested
 class field_form_view(View): # noqa
 type = BootstrapSelect("chosen_typ")
 field = BootstrapSelect("chosen_field")
 key = BootstrapSelect("chosen_key")
 value = Input(name="chosen_value")
 user_input = Input(name="user_input")

 @View.nested
 class field_date_form(View): # noqa
 dropdown_select = BootstrapSelect("chosen_from_1")
 input_select_date = Calendar(name="miq_date_1_0")
 input_select_time = BootstrapSelect("miq_time_1_0")

 @View.nested
 class count_form_view(View): # noqa
 type = BootstrapSelect("chosen_typ")
 count = BootstrapSelect("chosen_count")
 key = BootstrapSelect("chosen_key")
 value = Input(name="chosen_value")
 user_input = Input(name="user_input")

 @View.nested
 class tag_form_view(View): # noqa
 type = BootstrapSelect("chosen_typ")
 tag = BootstrapSelect("chosen_tag")
 value = BootstrapSelect("chosen_value")
 user_input = Input(name="user_input")

 @View.nested
 class find_form_view(View): # noqa
 type = BootstrapSelect("chosen_typ")
 field = BootstrapSelect("chosen_field")
 skey = BootstrapSelect("chosen_skey")
 value = Input(name="chosen_value")
 check = BootstrapSelect("chosen_check")
 cfield = BootstrapSelect("chosen_cfield")
 ckey = BootstrapSelect("chosen_ckey")
 cvalue = Input(name="chosen_cvalue")

 @View.nested
 class registry_form_view(View): # noqa
 type = BootstrapSelect("chosen_typ")
 key = Input(name="chosen_regkey")
 value = Input(name="chosen_regval")
 operation = BootstrapSelect("chosen_key")
 contents = Input(name="chosen_value")

 @View.nested
 class date_specific_form_view(View): # noqa
 date = Calendar(name="miq_date_1_0")
 time = BootstrapSelect("miq_time_1_0")

 @View.nested
 class date_relative_form_view(View): # noqa
 from_ = BootstrapSelect("chosen_from_1")
 through = BootstrapSelect("chosen_through_1")

 ROOT = "//div[@id='exp_editor_div']"
 MAKE_BUTTON = "//span[not(contains(@style,'none'))]//img[@alt='{}']"
 ATOM_ROOT = "./div[@id='exp_atom_editor_div']"
 EXPRESSIONS_ROOT = "./fieldset/div"
 COMMIT = VersionPick({
 Version.lowest(): "//img[@alt='Commit expression element changes']",
 "5.7.1": Button(title="Commit expression element changes"),
 })
 DISCARD = VersionPick({
 Version.lowest(): "//img[@alt='Discard expression element changes']",
 "5.7.1": Button(title="Discard expression element changes"),
 })
 REMOVE = VersionPick({
 Version.lowest(): ("//span[not(contains(@style, 'none'))]/"
 "/img[@alt='Remove this expression element']"),
 "5.8": Button(title="Remove this expression element"),
 })
 NOT = VersionPick({
 Version.lowest(): ("//span[not(contains(@style, 'none'))]"
 "//img[@alt='Wrap this expression element with a NOT']"),
 "5.8": Button(title="Wrap this expression element with a NOT"),
 })
 OR = VersionPick({
 Version.lowest(): ("//span[not(contains(@style, 'none'))]/"
 "/img[@alt='OR with a new expression element']"),
 "5.8": Button(title="OR with a new expression element"),
 })
 AND = VersionPick({
 Version.lowest(): ("//span[not(contains(@style, 'none'))]/"
 "/img[@alt='AND with a new expression element']"),
 "5.8": Button(title="AND with a new expression element"),
 })
 REDO = VersionPick({
 Version.lowest(): "//img[@alt='Redo']",
 "5.8": Button(title="Redo the last change"),
 })
 UNDO = VersionPick({
 Version.lowest(): "//img[@alt='Undo']",
 "5.8": Button(title="Undo the last change"),
 })
 SELECT_SPECIFIC = "//img[@alt='Click to change to a specific Date/Time format']"
 SELECT_RELATIVE = "//img[@alt='Click to change to a relative Date/Time format']"

 pretty_attrs = ['show_loc']

 def __init__(self, parent, show_loc=None, logger=None):
 View.__init__(self, parent, logger=logger)
 self.show_loc = show_loc

 def __locator__(self):
 return self.ROOT

[docs] def click_undo(self):
 self.browser.click(self.UNDO)

[docs] def click_redo(self):
 self.browser.click(self.REDO)

[docs] def click_and(self):
 self.browser.click(self.AND)

[docs] def click_or(self):
 self.browser.click(self.OR)

[docs] def click_not(self):
 self.browser.click(self.NOT)

[docs] def click_remove(self):
 self.browser.click(self.REMOVE)

[docs] def click_commit(self):
 self.browser.click(self.COMMIT)

[docs] def click_discard(self):
 self.browser.click(self.DISCARD)

[docs] def click_switch_to_relative(self):
 self.browser.click(self.SELECT_RELATIVE)

[docs] def click_switch_to_specific(self):
 self.browser.click(self.SELECT_SPECIFIC)

 @property
 def _atom_root(self):
 return self.browser.element(self.ATOM_ROOT)

 @property
 def _expressions_root(self):
 return self.browser.element(self.EXPRESSIONS_ROOT)

[docs] def select_first_expression(self):
 """There is always at least one (???), so no checking of bounds."""
 self.browser.elements("//a[contains(@id,'exp_')]", parent=self._expressions_root)[0].click()

[docs] def select_expression_by_text(self, text):
 self.browser.click(
 "//a[contains(@id,'exp_')][contains(normalize-space(text()),'{}')]".format(text)
)

[docs] def no_expression_present(self):
 els = self.browser.elements("//a[contains(@id,'exp_')]", parent=self._expressions_root)
 if len(els) > 1:
 return False
 return els[0].text.strip() == "???"

[docs] def any_expression_present(self):
 return not self.no_expression_present()

[docs] def is_editing(self):
 try:
 self.browser.element(
 "//a[contains(@id,'exp_')][contains(normalize-space(text()),'???')]",
 parent=self._expressions_root
)
 return True
 except NoSuchElementException:
 return False

[docs] def delete_whole_expression(self):
 while self.any_expression_present():
 self.select_first_expression()
 self.click_remove()

[docs] def read(self):
 """Returns whole expression as represented visually."""
 return self._expressions_root.text.encode("utf-8").strip()

[docs] def enable_editor(self):
 try:
 el = self.browser.element(self.show_loc)
 wait_for(lambda: el.is_displayed, num_sec=2, delay=0.2)
 el.click()
 except (TimedOutError, NoSuchElementException):
 pass

[docs] def fill(self, expression):
 if self.show_loc is not None:
 self.enable_editor()
 prog = create_program(expression, self)
 before = self._expressions_root.text.encode("utf-8").strip()
 prog()
 after = self._expressions_root.text.encode("utf-8").strip()
 return before != after

[docs] def fill_count(self, count=None, key=None, value=None):
 """ Fills the 'Count of' type of form.

 If the value is unspecified and we are in the advanced search form (user input),
 the user_input checkbox will be checked if the value is None.

 Args:
 count: Name of the field to compare (Host.VMs, ...).
 key: Operation to do (=, <, >=, ...).
 value: Value to check against.
 Returns: See :py:func:`cfme.web_ui.fill`.
 """
 view = self.count_form_view
 view.fill(dict(
 type="Count of",
 count=count,
 key=key,
 value=value
))
 # In case of advanced search box
 if view.user_input.is_displayed:
 user_input = value is None
 view.user_input.fill(user_input)
 self.click_commit()

[docs] def fill_tag(self, tag=None, value=None):
 """ Fills the 'Tag' type of form.

 Args:
 tag: Name of the field to compare.
 value: Value to check against.
 """
 view = self.tag_form_view
 view.fill(dict(
 type="Tag",
 tag=tag,
 value=value
))
 # In case of advanced search box
 if view.user_input.is_displayed:
 user_input = value is None
 view.user_input.fill(user_input)
 self.click_commit()

[docs] def fill_registry(self, key=None, value=None, operation=None, contents=None):
 """ Fills the 'Registry' type of form."""
 view = self.registry_form_view
 view.fill(dict(
 type="Registry",
 key=key,
 value=value,
 operation=operation,
 contents=contents,
))
 self.click_commit()

[docs] def fill_find(self, field=None, skey=None, value=None, check=None, cfield=None, ckey=None,
 cvalue=None):
 view = self.find_form_view
 view.fill(dict(
 type="Find",
 field=field,
 skey=skey,
 value=value,
 check=check,
 cfield=cfield,
 ckey=ckey,
 cvalue=cvalue
))
 self.click_commit()

[docs] def fill_field(self, field=None, key=None, value=None):
 """ Fills the 'Field' type of form.

 Args:
 tag: Name of the field to compare (Host.VMs, ...).
 key: Operation to do (=, <, >=, IS NULL, ...).
 value: Value to check against.
 Returns: See :py:func:`cfme.web_ui.fill`.
 """
 field_norm = field.strip().lower()
 if ("date updated" in field_norm or "date created" in field_norm or
 "boot time" in field_norm or "timestamp" in field_norm):
 no_date = False
 else:
 no_date = True
 view = self.field_form_view
 view.fill(dict(
 type="Field",
 field=field,
 key=key,
 value=value if no_date else None,
))
 # In case of advanced search box
 if view.user_input.is_displayed:
 user_input = value is None
 view.user_input.fill(user_input)
 if not no_date:
 # Flip the right part of form
 view = self.field_date_form
 if (isinstance(value, basestring) and
 not re.match(r"^[0-9]{2}/[0-9]{2}/[0-9]{4}$", value)):
 if not view.dropdown_select.is_displayed:
 self.click_switch_to_relative()
 view.fill({"dropdown_select": value})
 self.click_commit()
 else:
 # Specific selection
 if not view.input_select_date.is_displayed:
 self.click_switch_to_specific()
 if (isinstance(value, tuple) or isinstance(value, list)) and len(value) == 2:
 date, time = value
 elif isinstance(value, basestring): # is in correct format mm/dd/yyyy
 # Date only (for now)
 date = value[:]
 time = None
 else:
 raise TypeError("fill_field expects a 2-tuple (date, time) or string with date")
 # TODO datetime.datetime support
 view.input_select_date.fill(date)
 # Try waiting a little bit for time field
 # If we don't wait, committing the expression will glitch
 try:
 wait_for(lambda: view.input_select_time.is_displayed, num_sec=6)
 # It appeared, so if the time is to be set, we will set it
 # (passing None glitches)
 if time:
 view.input_select_time.fill(time)
 except TimedOutError:
 # Did not appear, ignore that
 pass
 finally:
 # And finally, commit the expression :)
 self.click_commit()
 else:
 self.click_commit()

[docs]def get_func(name, context):
 """ Return callable from this module by its name.

 Args:
 name: Name of the variable containing the callable.
 Returns: Callable from this module
 """
 assert not name.startswith("_"), "Command '{}' is private!".format(name)
 try:
 func = getattr(context, name)
 except AttributeError:
 raise NameError("Could not find function {} to operate the editor!".format(name))
 try:
 func.__call__
 return func
 except AttributeError:
 raise NameError("{} is not callable!".format(name))

[docs]def run_commands(command_list, clear_expression=True, context=None):
 """ Run commands from the command list.

 Command list syntax:
 .. code-block:: python

 [
 "function1", # no args
 "function2", # dtto
 {"fill_fields": {"field1": "value", "field2": "value"}}, # Passes kwargs
 {"do_other_things": [1,2,3]} # Passes args
]

 In YAML:
 .. code-block:: yaml

 - function1
 - function2
 -
 fill_fields:
 field1: value
 field2: value
 -
 do_other_things:
 - 1
 - 2
 - 3

 Args:
 command_list: :py:class:`list` object of the commands
 clear_expression: Whether to clear the expression before entering new one
 (default `True`)
 context: widget object
 """
 assert isinstance(command_list, list) or isinstance(command_list, tuple)
 step_list = []
 for command in command_list:
 if isinstance(command, basestring):
 # Single command, no params
 step_list.append(get_func(command, context))
 elif isinstance(command, dict):
 for key, value in command.iteritems():
 func = get_func(key, context)
 args = []
 kwargs = {}
 if isinstance(value, list) or isinstance(value, tuple):
 args.extend(value)
 elif isinstance(value, dict):
 kwargs.update(value)
 else:
 raise Exception("I use '{}' type here!".format(type(value).__name__))
 step_list.append(partial(func, *args, **kwargs))
 else:
 raise Exception("I cannot process '{}' type here!".format(type(command).__name__))
 if clear_expression:
 context.delete_whole_expression()
 for step in step_list:
 step()

[docs]def create_program(dsl_program, widget_object):
 """ Simple DSL to fill the expression editor.

 Syntax:
 DSL consists from statements. Statements are separated with newline or ;.
 Each statement is a single function call. Functions are called in this module.
 Function without parameters can be called like this:
 function
 or
 function()

 If the function has some parameters, you have to choose whether they are kwargs or args.
 DSL has no string literals, so if you want to call a function with classic parameters:
 function(parameter one, parameter two, you cannot use comma)
 And with kwargs:
 function(username=John Doe, password=top secret)
 You cannot split the statement to multiple lines as the DSL is regexp-based.

 Args:
 dsl_program: Source string with the program.
 Returns: Callable, which fills the expression.
 """
 SIMPLE_CALL = r"^[a-z_A-Z][a-z_A-Z0-9]*$" # noqa
 ARGS_CALL = r"^(?P<name>[a-z_A-Z][a-z_A-Z0-9]*)\((?P<args>.*)\)$" # noqa
 KWARG = r"^[^=]+=.*$" # noqa
 command_list = []
 for i, line in enumerate([x.strip() for x in re.split(r"\n|;", dsl_program)]):
 if len(line) == 0:
 continue
 elif re.match(SIMPLE_CALL, line):
 command_list.append(line)
 continue
 args_match = re.match(ARGS_CALL, line)
 if not args_match:
 raise SyntaxError("Could not resolve statement `{}' on line {}".format(line, i))
 fname = args_match.groupdict()["name"]
 args = [x.strip() for x in args_match.groupdict()["args"].split(",")]
 if len(args) > 0 and len(args[0]) > 0:
 if re.match(KWARG, args[0]):
 # kwargs
 kwargs = dict([map(lambda x: x.strip(), x.split("=", 1)) for x in args])
 command_list.append({fname: kwargs})
 else:
 # Args
 command_list.append({fname: [None if arg == "/None/" else arg for arg in args]})
 else:
 command_list.append(fname)
 return create_program_from_list(command_list, widget_object)

[docs]def create_program_from_list(command_list, widget_object):
 """ Create function which fills the expression from the command list.

 Args:
 command_list: Command list for :py:func:`run_program`
 Returns: Callable, which fills the expression.
 """
 return partial(run_commands, command_list, context=widget_object)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/web_ui/multibox.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.web_ui »

 Source code for cfme.web_ui.multibox

import re
from collections import Sequence, namedtuple

from cfme.fixtures import pytest_selenium as sel
from cfme.web_ui import Select, fill, flash
from cfme.utils.category import CategoryBase, categorize
from cfme.utils.log import logger
from cfme.utils.pretty import Pretty

SelectItem = namedtuple("SelectItem", ["sync", "value", "text"])

[docs]class Sync(CategoryBase):
 pass

[docs]class Async(CategoryBase):
 pass

[docs]class MultiBoxSelect(Pretty):
 """ Common UI element for selecting multiple items.

 Presence in eg. Control/Explorer/New Policy Profile (for selecting policies)

 Args:
 unselected: Locator for the left (unselected) list of items.
 selected: Locator for the right (selected) list of items.
 to_unselected: Locator for a button which moves items from right to left (unselecting)
 to_selected: Locator for a button which moves items from left to right (selecting)
 remove_all: If present, locator for a button which unselects all items (Default None)

 """
 pretty_attrs = ['unselected', 'selected']

 def __init__(self, unselected, selected, to_unselected, to_selected, remove_all=None,
 sync=None, async=None):
 self._unselected = Select(unselected, multi=True)
 self._selected = Select(selected, multi=True)
 self._to_unselected = to_unselected
 self._to_selected = to_selected
 self._remove_all = remove_all
 if bool(sync) ^ bool(async):
 raise TypeError("You have to specify either both or none of (a)sync!")
 self._async = async
 self._sync = sync

 def __str__(self):
 return "{}({}, {})".format(
 type(self).__name__, str(self._unselected), str(self._selected))

 def _move_to_unselected(self):
 """ Clicks the button for moving items from selected to unselected.

 Returns: :py:class:`bool` with success.
 """
 sel.click(sel.element(self._to_unselected))
 return not any(map(flash.is_error, flash.get_all_messages()))

 def _move_to_selected(self):
 """ Clicks the button for moving items from unselected to selected.

 Returns: :py:class:`bool` with success.
 """
 sel.click(sel.element(self._to_selected))
 return not any(map(flash.is_error, flash.get_all_messages()))

 def _select_unselected(self, *items):
 """ Selects items in 'Unselected items' list

 Args:
 *items: Items to select
 """
 for item in items:
 sel.select(self._unselected, item)

 def _select_selected(self, *items):
 """ Selects items in 'Selected items' list

 Args:
 *items: Items to select
 """
 for item in items:
 sel.select(self._selected, item)

 def _clear_selection(self):
 """ Unselects all items in both lists to ensure unwanted items don't travel in between.
 """
 self._unselected.deselect_all()
 self._selected.deselect_all()

[docs] def remove_all(self):
 """ Flush the list of selected items.

 Returns: :py:class:`bool` with success.
 """
 if len(self._selected.options) == 0:
 return # No need to flush
 if self._remove_all is None:
 # Check all selected
 self.remove(*[sel.text(o).encode("utf-8").strip() for o in self._selected.options])
 else:
 sel.click(sel.element(self._remove_all))
 return not any(map(flash.is_error, flash.get_all_messages()))

[docs] def add(self, *values, **kwargs):
 """ Mark items for selection and then clicks the button to select them.

 Args:
 *values: Values to select

 Keywords:
 flush: By using `flush` keyword, the selected items list is flushed prior to selecting
 new ones

 Returns: :py:class:`bool` with success.
 """
 if kwargs.get("flush", False):
 self.remove_all()
 self._clear_selection()
 self._select_unselected(*values)
 if len(self._unselected.all_selected_options) > 0:
 return self._move_to_selected()
 else:
 return True

[docs] def remove(self, *values):
 """ Mark items for deselection and then clicks the button to deselect them.

 Args:
 *values: Values to deselect

 Returns: :py:class:`bool` with success.
 """
 self._clear_selection()
 self._select_selected(*values)
 if len(self._selected.all_selected_options) > 0:
 return self._move_to_unselected()
 else:
 return True

 @property
 def all_selected(self):
 result = []
 for item in self._selected.options:
 sync = None
 desc = sel.text(item).encode("utf-8").lstrip()
 value = sel.get_attribute(item, "value")
 if self._sync: # Or _async, this does not matter, protected in constructor
 # Extract
 sync_res, desc = re.match(r"^\(([AS])\) (.*?)$", desc).groups()
 sync = sync_res == "S"
 result.append(SelectItem(sync=sync, value=value, text=desc))
 return result

 def _set_sync_state(self, state, *values):
 assert self._async and self._sync, "You must set async= and sync=!"
 for value in values:
 self._clear_selection()
 try:
 self._unselected.select_by_visible_text(value)
 self._move_to_selected()
 except sel.NoSuchElementException:
 # Already selected
 pass
 try:
 item = filter(lambda i: i.text == value, self.all_selected)[0]
 except IndexError:
 raise NameError("Could not find {}!".format(value))
 if item.sync != state:
 self._clear_selection()
 self._selected.select_by_value(item.value)
 if state:
 sel.click(self._sync)
 else:
 sel.click(self._async)

[docs] def set_sync(self, *values):
 return self._set_sync_state(True, *values)

[docs] def set_async(self, *values):
 return self._set_sync_state(False, *values)

 @classmethod
[docs] def default(cls):
 """ The most common type of the MultiBoxSelect

 Returns: :py:class:`MultiBoxSelect` instance
 """
 return cls(
 "//select[@id='choices_chosen']",
 "//select[@id='members_chosen']",
 "//a/img[contains(@alt, 'Remove selected')]",
 "//a/img[contains(@alt, 'Move selected')]",
 "//a/img[contains(@alt, 'Remove all')]",
)

 @classmethod
[docs] def categorize(cls, values, sync_l, async_l, dont_care_l):
 """Does categorization of values based on their Sync/Async status.

 Args:
 values: Values to be categorized.
 sync_l: List that will be used for appending the Sync values.
 async_l: List that will be used for appending the Async values.
 dont_care_l: List that will be used for appending all the other values.
 """
 categorize(values, {
 lambda item: isinstance(item, Async): lambda item: async_l.append(str(item)),
 lambda item: isinstance(item, Sync): lambda item: sync_l.append(str(item)),
 "default": lambda item: dont_care_l.append(str(item))
 })

@fill.method((MultiBoxSelect, Sequence))
def _fill_multibox_list(multi, values):
 """ Filler function for MultiBoxSelect

 Designed for `list` styled items, it flushes the selected list and then selects all items
 in provided list.

 Args:
 multi: :py:class:`MultiBoxSelect` to fill
 values: List with items to select

 Returns: :py:class:`bool` with success.
 """
 logger.debug(' Filling in %s with values %s', str(multi), str(values))
 if multi._async:
 sync = []
 async = []
 dont_care = []
 MultiBoxSelect.categorize(values, sync, async, dont_care)
 multi.add(*dont_care, flush=True)
 multi.set_async(*async)
 multi.set_sync(*sync)
 else:
 multi.add(*map(str, values), flush=True)

@fill.method((MultiBoxSelect, basestring))
def _fill_multibox_str(multi, string):
 """ Filler function for MultiBoxSelect

 Designed for `string`. Selects item with the name.

 Args:
 multi: :py:class:`MultiBoxSelect` to fill
 string: String to select

 Returns: :py:class:`bool` with success.
 """
 logger.debug(' Filling in %s with value %s', str(multi), string)
 return multi.add(string)

@fill.method((MultiBoxSelect, dict))
def _fill_multibox_dict(multi, d):
 """ Filler function for MultiBoxSelect

 Designed for `dict` styled items. It expects a dictionary in format:
 >>> {"Some item": True, "Another item": False}
 Where key stands for the item name and value its selection status.
 Any items that have to be unselected will be unselected before selecting the unselected happens.

 Args:
 multi: :py:class:`MultiBoxSelect` to fill
 d: :py:class:`dict` with values.

 Returns: :py:class:`bool` with success.
 """
 enable_list, disable_list = [], []
 for key, value in d.iteritems():
 if value:
 enable_list.append(key)
 else:
 disable_list.append(key)
 logger.debug(' Disabling values %s in %s', str(disable_list), str(multi))
 logger.debug(' Enabling values %s in %s', str(enable_list), str(multi))
 multi.remove(*disable_list)
 if multi._async:
 sync, async, dont_care = [], [], []
 MultiBoxSelect.categorize(enable_list, sync, async, dont_care)
 multi.add(*dont_care)
 multi.set_async(*async)
 multi.set_sync(*sync)
 else:
 multi.add(*map(str, enable_list))

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/cloud/flavor.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.cloud.flavor

""" Page functions for Flavor pages
"""
from navmazing import NavigateToSibling, NavigateToAttribute
from widgetastic.exceptions import NoSuchElementException
from widgetastic_patternfly import Dropdown, Button, View

from cfme.base.ui import BaseLoggedInPage
from cfme.common import TagPageView, WidgetasticTaggable
from cfme.exceptions import FlavorNotFound
from cfme.web_ui import match_location
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import CFMENavigateStep, navigator
from widgetastic_manageiq import (
 ItemsToolBarViewSelector, SummaryTable, Text, Table, PaginationPane, Accordion, ManageIQTree,
 Search, BreadCrumb, BaseNonInteractiveEntitiesView)

[docs]class FlavorView(BaseLoggedInPage):
 @property
 def in_availability_zones(self):
 return (
 self.logged_in_as_current_user and
 self.navigation.currently_selected == ['Compute', 'Clouds', 'Flavors'] and
 match_location(controller='flavor', title='Flavors'))

[docs]class FlavorToolBar(View):
 policy = Dropdown('Policy')
 download = Dropdown('Download')
 view_selector = View.nested(ItemsToolBarViewSelector)

[docs]class FlavorEntities(View):
 title = Text('//div[@id="main-content"]//h1')
 table = Table("//div[@id='gtl_div']//table")
 search = View.nested(Search)

[docs]class FlavorDetailsToolBar(View):
 policy = Dropdown('Policy')
 download = Button(title='Download summary in PDF format')

[docs]class FlavorDetailsAccordion(View):
 @View.nested
 class properties(Accordion): # noqa
 tree = ManageIQTree()

 @View.nested
 class relationships(Accordion): # noqa
 tree = ManageIQTree()

[docs]class FlavorDetailsEntities(View):
 breadcrumb = BreadCrumb()
 title = Text('//div[@id="main-content"]//h1')
 properties = SummaryTable(title='Properties')
 relationships = SummaryTable(title='Relationships')
 smart_management = SummaryTable(title='Smart Management')

[docs]class FlavorAllView(FlavorView):
 @property
 def is_displayed(self):
 return (
 self.in_availability_zones and
 self.entities.title.text == 'Flavors')

 toolbar = FlavorToolBar()
 entities = FlavorEntities()
 paginator = PaginationPane()

[docs]class FlavorDetailsView(FlavorView):
 @property
 def is_displayed(self):
 expected_title = '{} (Summary)'.format(self.context['object'].name)
 expected_provider = self.context['object'].provider.name
 return (
 self.in_availability_zones and
 self.entities.title.text == expected_title and
 self.entities.breadcrumb.active_location == expected_title and
 self.entities.relationships.get_text_of('Cloud Provider') == expected_provider)

 toolbar = FlavorDetailsToolBar()
 sidebar = FlavorDetailsAccordion()
 entities = FlavorDetailsEntities()

[docs]class Flavor(WidgetasticTaggable, Navigatable):
 """
 Flavor class to support navigation
 """
 _param_name = "Flavor"

 def __init__(self, name, provider, appliance=None):
 self.name = name
 self.provider = provider
 Navigatable.__init__(self, appliance=appliance)

@navigator.register(Flavor, 'All')
[docs]class FlavorAll(CFMENavigateStep):
 VIEW = FlavorAllView
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.navigation.select('Compute', 'Clouds', 'Flavors')

@navigator.register(Flavor, 'Details')
[docs]class FlavorDetails(CFMENavigateStep):
 VIEW = FlavorDetailsView
 prerequisite = NavigateToSibling('All')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.toolbar.view_selector.select('List View')
 try:
 row = self.prerequisite_view.paginator.find_row_on_pages(
 self.prerequisite_view.entities.table,
 name=self.obj.name,
 cloud_provider=self.obj.provider.name)
 except NoSuchElementException:
 raise FlavorNotFound('Could not locate flavor "{}" on provider {}'
 .format(self.obj.name, self.obj.provider.name))
 row.click()

@navigator.register(Flavor, 'EditTagsFromDetails')
[docs]class FlavorEditTags(CFMENavigateStep):
 VIEW = TagPageView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.toolbar.policy.item_select('Edit Tags')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/web_ui/timelines.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.web_ui »

 Source code for cfme.web_ui.timelines

from datetime import datetime
from cfme.utils.appliance.implementations.ui import navigate_to

NONE_GROUP = 'NONE'

[docs]class Timelines(object):
 """ Represents Common UI Page for showing generated events
 of different Providers as a timeline.
 UI page contains several drop-down items which are doing filtering of displayed events.
 In this class, there are described several methods to change those filters.
 After each filter change, UI page is reloaded and the displayed events graphic is changed.
 And after each page reload, the displayed events are re-read by this class.
 The main purpose of this class is to check
 whether particular event is displayed or not in timelines page.

 Usage:
 timelines.change_interval('Days')
 timelines.select_event_category('Application')
 timelines.check_detailed_events(True)
 timelines.contains_event('hawkular_deployment.ok')
 """

 def __init__(self, o):
 self._object = o
 self._events = []
 self.reload()

[docs] def change_event_type(self, value):
 self.timelines_view.filter.event_type.select_by_visible_text(value)
 self.timelines_view.filter.apply.click()
 self._reload_events()

[docs] def change_interval(self, value):
 self.timelines_view.filter.time_range.select_by_visible_text(value)
 self.timelines_view.filter.apply.click()
 self._reload_events()

[docs] def change_date(self, value):
 self.timelines_view.filter.time_position.select_by_visible_text(value)
 self.timelines_view.filter.apply.click()
 self._reload_events()

[docs] def check_detailed_events(self, value):
 self.timelines_view.filter.detailed_events.fill(value)
 self.timelines_view.filter.apply.click()
 self._reload_events()

[docs] def select_event_category(self, value):
 self.timelines_view.filter.event_category.select_by_visible_text(value)
 self.timelines_view.filter.apply.click()
 self._reload_events()

[docs] def contains_event(self, event_type, date_after=datetime.min):
 """Checks whether list of events contains provided particular
 'event_type' with data not earlier than provided 'date_after'.
 If 'date_after' is not provided, will use datetime.min.
 """
 if date_after and not isinstance(date_after, datetime):
 raise KeyError("'date_after' should be an instance of date")
 for event in self._events:
 if event.event_type == event_type and datetime.strptime(
 event.date_time, '%Y-%m-%d %H:%M:%S %Z') >= date_after:
 return True
 return False

[docs] def reload(self):
 self.timelines_view = navigate_to(self._object, 'Timelines')
 self._reload_events()

 def _reload_events(self):
 self._events = self.timelines_view.chart.get_events()

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/cloud/provider.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.cloud.provider

""" A model of a Cloud Provider in CFME
"""

from functools import partial

from navmazing import NavigateToSibling, NavigateToAttribute
from widgetastic_manageiq import TimelinesView

from cfme.base.login import BaseLoggedInPage
from cfme.common import TagPageView
from cfme.common.provider_views import (CloudProviderAddView,
 CloudProviderEditView,
 CloudProviderDetailsView,
 CloudProvidersView,
 CloudProvidersDiscoverView,
 ProvidersManagePoliciesView
)
import cfme.fixtures.pytest_selenium as sel
from cfme.common.provider import CloudInfraProvider
from cfme.web_ui import InfoBlock, match_location
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import navigator, navigate_to, CFMENavigateStep
from cfme.utils.log import logger
from cfme.utils.wait import wait_for
from cfme.utils.pretty import Pretty

match_page = partial(match_location, controller='ems_cloud', title='Cloud Providers')

[docs]class CloudProviderTimelinesView(TimelinesView, BaseLoggedInPage):
 @property
 def is_displayed(self):
 return self.logged_in_as_current_user and \
 self.navigation.currently_selected == ['Compute', 'Clouds', 'Providers'] and \
 super(TimelinesView, self).is_displayed

[docs]class CloudProvider(Pretty, CloudInfraProvider):
 """
 Abstract model of a cloud provider in cfme. See EC2Provider or OpenStackProvider.

 Args:
 name: Name of the provider.
 endpoints: one or several provider endpoints like DefaultEndpoint. it should be either dict
 in format dict{endpoint.name, endpoint, endpoint_n.name, endpoint_n}, list of endpoints or
 mere one endpoint
 key: The CFME key of the provider in the yaml.

 Usage:

 credentials = Credential(principal='bad', secret='reallybad')
 endpoint = DefaultEndpoint(hostname='some_host', region='us-west', credentials=credentials)
 myprov = VMwareProvider(name='foo',
 endpoints=endpoint)
 myprov.create()
 """
 provider_types = {}
 category = "cloud"
 pretty_attrs = ['name', 'credentials', 'zone', 'key']
 STATS_TO_MATCH = ['num_template', 'num_vm']
 string_name = "Cloud"
 page_name = "clouds"
 templates_destination_name = "Images"
 vm_name = "Instances"
 template_name = "Images"
 db_types = ["CloudManager"]

 def __init__(self, name=None, endpoints=None, zone=None, key=None, appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.name = name
 self.zone = zone
 self.key = key
 self.endpoints = self._prepare_endpoints(endpoints)

[docs] def as_fill_value(self):
 return self.name

 @property
 def view_value_mapping(self):
 """Maps values to view attrs"""
 return {'name': self.name}

 @staticmethod
[docs] def discover_dict(credential):
 """Returns the discovery credentials dictionary, needs overiding"""
 raise NotImplementedError("This provider doesn't support discovery")

@navigator.register(CloudProvider, 'All')
[docs]class All(CFMENavigateStep):
 VIEW = CloudProvidersView
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self):
 self.prerequisite_view.navigation.select('Compute', 'Clouds', 'Providers')

[docs] def resetter(self):
 tb = self.view.toolbar
 paginator = self.view.entities.paginator
 if 'Grid View' not in tb.view_selector.selected:
 tb.view_selector.select('Grid View')
 if paginator.exists:
 paginator.check_all()
 paginator.uncheck_all()

@navigator.register(CloudProvider, 'Add')
[docs]class New(CFMENavigateStep):
 VIEW = CloudProviderAddView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.toolbar.configuration.item_select('Add a New Cloud Provider')

@navigator.register(CloudProvider, 'Discover')
[docs]class Discover(CFMENavigateStep):
 VIEW = CloudProvidersDiscoverView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.toolbar.configuration.item_select('Discover Cloud Providers')

@navigator.register(CloudProvider, 'Details')
[docs]class Details(CFMENavigateStep):
 VIEW = CloudProviderDetailsView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.entities.get_entity(by_name=self.obj.name, surf_pages=True).click()

@navigator.register(CloudProvider, 'Edit')
[docs]class Edit(CFMENavigateStep):
 VIEW = CloudProviderEditView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.entities.get_entity(by_name=self.obj.name, surf_pages=True).check()
 self.prerequisite_view.toolbar.configuration.item_select('Edit Selected Cloud Provider')

@navigator.register(CloudProvider, 'EditFromDetails')
[docs]class EditFromDetails(CFMENavigateStep):
 VIEW = CloudProviderEditView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.toolbar.configuration.item_select('Edit this Cloud Provider')

@navigator.register(CloudProvider, 'ManagePolicies')
[docs]class ManagePolicies(CFMENavigateStep):
 VIEW = ProvidersManagePoliciesView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.entities.get_entity(by_name=self.obj.name, surf_pages=True).check()
 self.prerequisite_view.toolbar.policy.item_select('Manage Policies')

@navigator.register(CloudProvider, 'ManagePoliciesFromDetails')
[docs]class ManagePoliciesFromDetails(CFMENavigateStep):
 VIEW = ProvidersManagePoliciesView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.toolbar.policy.item_select('Manage Policies')

@navigator.register(CloudProvider, 'EditTags')
[docs]class EditTags(CFMENavigateStep):
 VIEW = TagPageView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.entities.get_entity(by_name=self.obj.name, surf_pages=True).check()
 self.prerequisite_view.toolbar.policy.item_select('Edit Tags')

@navigator.register(CloudProvider, 'EditTagsFromDetails')
[docs]class EditTagsFromDetails(CFMENavigateStep):
 VIEW = TagPageView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.toolbar.policy.item_select('Edit Tags')

@navigator.register(CloudProvider, 'Timelines')
[docs]class Timelines(CFMENavigateStep):
 VIEW = CloudProviderTimelinesView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 mon = self.prerequisite_view.toolbar.monitoring
 mon.item_select('Timelines')

@navigator.register(CloudProvider, 'Instances')
[docs]class Instances(CFMENavigateStep):
 prerequisite = NavigateToSibling('Details')

[docs] def am_i_here(self):
 return match_page(summary='{} (All Instances)'.format(self.obj.name))

[docs] def step(self, *args, **kwargs):
 sel.click(InfoBlock.element('Relationships', 'Instances'))

@navigator.register(CloudProvider, 'Images')
[docs]class Images(CFMENavigateStep):
 prerequisite = NavigateToSibling('Details')

[docs] def am_i_here(self):
 return match_page(summary='{} (All Images)'.format(self.obj.name))

[docs] def step(self, *args, **kwargs):
 sel.click(InfoBlock.element('Relationships', 'Images'))

[docs]def get_all_providers():
 """Returns list of all providers"""
 view = navigate_to(CloudProvider, 'All')
 return [item.name for item in view.entities.get_all(surf_pages=True)]

[docs]def discover(credential, discover_cls, cancel=False):
 """
 Discover cloud providers. Note: only starts discovery, doesn't
 wait for it to finish.

 Args:
 credential (cfme.base.credential.Credential): Discovery credentials.
 cancel (boolean): Whether to cancel out of the discover UI.
 discover_cls: class of the discovery item
 """
 view = navigate_to(CloudProvider, 'Discover')
 if discover_cls:
 view.fill({'discover_type': discover_cls.discover_name})
 view.fields.fill(discover_cls.discover_dict(credential))

 if cancel:
 view.cancel.click()
 else:
 view.start.click()

[docs]def wait_for_a_provider():
 view = navigate_to(CloudProvider, 'All')
 logger.info('Waiting for a provider to appear...')
 wait_for(lambda: int(view.entities.paginator.items_amount), fail_condition=0,
 message="Wait for any provider to appear", num_sec=1000,
 fail_func=view.browser.refresh)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/web_ui/mixins.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.web_ui »

 Source code for cfme.web_ui.mixins

-*- coding: utf-8 -*-
from cfme.fixtures import pytest_selenium as sel
from cfme.web_ui import fill, Form, AngularSelect, Table, toolbar, form_buttons, flash
from xml.sax.saxutils import quoteattr
from cfme.utils.version import current_version

tag_form = Form(
 fields=[
 ('category', AngularSelect('tag_cat')),
 ('tag', AngularSelect('tag_add'))
])

tag_table = Table("//div[@id='assignments_div']//table")

[docs]def add_tag(tag, single_value=False, navigate=True):
 if navigate:
 toolbar.select('Policy', 'Edit Tags')
 if isinstance(tag, (list, tuple)):
 fill_d = {
 "category": tag[0] if not single_value else "{} *".format(tag[0]),
 "tag": tag[1]
 }
 else:
 fill_d = {"tag": tag.display_name}
 if tag.category.single_value:
 fill_d["category"] = "{} *".format(tag.category.display_name)
 else:
 fill_d["category"] = tag.category.display_name
 fill(tag_form, fill_d)
 form_buttons.save()
 flash.assert_success_message('Tag edits were successfully saved')

[docs]def remove_tag(tag):
 toolbar.select('Policy', 'Edit Tags')
 if isinstance(tag, (tuple, list)):
 category, tag_name = tag
 else:
 category = tag.category.display_name
 tag_name = tag.display_name
 row = tag_table.find_row_by_cells({'category': category, 'assigned_value': tag_name},
 partial_check=True)
 sel.click(row[0])
 form_buttons.save()
 flash.assert_success_message('Tag edits were successfully saved')

[docs]def get_tags(tag="My Company Tags"):
 tags = []
 tagpath = "//*[(self::th or self::td) and normalize-space(.)={}]/../.."\
 "//td[img[contains(@src, 'smarttag')]]" if current_version() < '5.8'\
 else "//td[i[contains(@class, 'fa-tag')]]"
 for row in sel.elements(tagpath.format(quoteattr(tag))):
 tags.append(sel.text(row).strip())
 return tags

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/cloud/instance/openstack.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.cloud.instance »

 Source code for cfme.cloud.instance.openstack

-*- coding: utf-8 -*-
from navmazing import NavigateToSibling
from widgetastic.widget import View, NoSuchElementException
from widgetastic_patternfly import Button, BootstrapSelect
from widgetastic_manageiq import CheckboxSelect, Select, Input

from cfme.exceptions import OptionNotAvailable, DestinationNotFound
from cfme.common.vm_views import RightSizeView
from cfme.utils import version, deferred_verpick
from cfme.utils.appliance.implementations.ui import CFMENavigateStep, navigator
from . import Instance, CloudInstanceView

[docs]class OpenStackInstance(Instance):
 # CFME & provider power control options
 START = "Start" # START also covers RESUME and UNPAUSE (same as in CFME 5.4+ web UI)
 POWER_ON = START # For compatibility with the infra objects.
 SUSPEND = "Suspend"
 DELETE = "Delete"
 TERMINATE = deferred_verpick({
 version.LOWEST: 'Terminate',
 '5.6.1': 'Delete',
 })
 # CFME-only power control options
 SOFT_REBOOT = "Soft Reboot"
 HARD_REBOOT = "Hard Reboot"
 # Provider-only power control options
 STOP = "Stop"
 PAUSE = "Pause"
 RESTART = "Restart"
 SHELVE = "Shelve"
 SHELVE_OFFLOAD = "Shelve Offload"

 # CFME power states
 STATE_ON = "on"
 STATE_OFF = "off"
 STATE_ERROR = "non-operational"
 STATE_PAUSED = "paused"
 STATE_SUSPENDED = "suspended"
 STATE_REBOOTING = "reboot_in_progress"
 STATE_SHELVED = "shelved"
 STATE_SHELVED_OFFLOAD = "shelved_offloaded"
 STATE_UNKNOWN = "unknown"
 STATE_ARCHIVED = "archived"
 STATE_TERMINATED = "terminated"

 @property
 def ui_powerstates_available(self):
 return {
 'on': [self.SUSPEND, self.SOFT_REBOOT, self.HARD_REBOOT, self.TERMINATE],
 'off': [self.START, self.TERMINATE]}

 @property
 def ui_powerstates_unavailable(self):
 return {
 'on': [self.START],
 'off': [self.SUSPEND, self.SOFT_REBOOT, self.HARD_REBOOT]}

[docs] def create(self, cancel=False, **prov_fill_kwargs):
 """Provisions an OpenStack instance with the given properties through CFME

 Args:
 cancel: Clicks the cancel button if `True`, otherwise clicks the submit button
 (Defaults to `False`)
 prov_fill_kwargs: dictionary of provisioning field/value pairs
 Note:
 For more optional keyword arguments, see
 :py:data:`cfme.cloud.provisioning.ProvisioningForm`
 """
 super(OpenStackInstance, self).create(form_values=prov_fill_kwargs, cancel=cancel)

[docs] def power_control_from_provider(self, option):
 """Power control the instance from the provider

 Args:
 option: power control action to take against instance

 Raises:
 OptionNotAvailable: option param must have proper value
 """
 if option == OpenStackInstance.START:
 self.provider.mgmt.start_vm(self.name)
 elif option == OpenStackInstance.STOP:
 self.provider.mgmt.stop_vm(self.name)
 elif option == OpenStackInstance.SUSPEND:
 self.provider.mgmt.suspend_vm(self.name)
 elif option == OpenStackInstance.PAUSE:
 self.provider.mgmt.pause_vm(self.name)
 elif option == OpenStackInstance.SHELVE:
 # TODO: rewrite it once wrapanapi will get shelve
 # and shelve_offload methods
 self.provider.mgmt._find_instance_by_name(self.name).shelve()
 elif option == OpenStackInstance.SHELVE_OFFLOAD:
 self.provider.mgmt._find_instance_by_name(self.name).shelve_offload()
 elif option == OpenStackInstance.RESTART:
 self.provider.mgmt.restart_vm(self.name)
 elif option == OpenStackInstance.TERMINATE:
 self.provider.mgmt.delete_vm(self.name)
 else:
 raise OptionNotAvailable(option + " is not a supported action")

[docs]class AddFloatingIPView(CloudInstanceView):
 @View.nested
 class form(View): # noqa
 ip = Select(name='floating_ip')
 submit_button = Button('Submit')
 cancel_button = Button('Cancel')

 @property
 def is_displayed(self):
 # Only the instance name is displayed, cannot confirm provider
 return False

[docs]class RemoveFloatingIPView(CloudInstanceView):
 @View.nested
 class form(View): # noqa
 ip = Select('floating_ip')
 submit_button = Button('Submit')
 cancel_button = Button('Cancel')

 @property
 def is_displayed(self):
 # Only the instance name is displayed, cannot confirm provider
 return False

[docs]class AttachVolumeView(CloudInstanceView):
 @View.nested
 class form(View): # noqa
 volume = BootstrapSelect('volume_id')
 mountpoint = Input(name='device_path')
 submit_button = Button('Submit')
 cancel_button = Button('Cancel')

 @property
 def is_displayed(self):
 # Only the instance name is displayed, cannot confirm provider
 return False

[docs]class DetachVolumeView(CloudInstanceView):
 @View.nested
 class form(View): # noqa
 volume = BootstrapSelect('volume_id')
 submit_button = Button('Submit')
 cancel_button = Button('Cancel')

 @property
 def is_displayed(self):
 # Only the instance name is displayed, cannot confirm provider
 return False

[docs]class EvacuateView(CloudInstanceView):
 @View.nested
 class form(View): # noqa
 auto_select = CheckboxSelect('auto_select_host')
 shared_storage = CheckboxSelect('on_shared_storage')
 submit_button = Button('Submit')
 cancel_button = Button('Cancel')

 @property
 def is_displayed(self):
 # Only the instance name is displayed, cannot confirm provider
 return False

[docs]class MigrateView(CloudInstanceView):
 @View.nested
 class form(View): # noqa
 auto_select = CheckboxSelect('auto_select_host')
 block_migration = CheckboxSelect('block_migration')
 disk_overcommit = CheckboxSelect('disk_over_commit')
 submit_button = Button('Submit')
 cancel_button = Button('Cancel')

 @property
 def is_displayed(self):
 # Only the instance name is displayed, cannot confirm provider
 return False

[docs]class ReconfigureView(CloudInstanceView):
 @View.nested
 class form(View): # noqa
 flavor = BootstrapSelect('flavor')
 submit_button = Button('Submit')
 cancel_button = Button('Cancel')

 @property
 def is_displayed(self):
 # Only the instance name is displayed, cannot confirm provider
 return False

@navigator.register(OpenStackInstance, 'AddFloatingIP')
[docs]class AddFloatingIP(CFMENavigateStep):
 VIEW = AddFloatingIPView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 configuration = self.prerequisite_view.toolbar.configuration
 try:
 configuration.item_select('Associate a Floating IP with this Instance')
 except NoSuchElementException:
 raise DestinationNotFound('Add Floating IP option not available for instance')

@navigator.register(Instance, 'RemoveFloatingIP')
[docs]class RemoveFloatingIP(CFMENavigateStep):
 VIEW = RemoveFloatingIPView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 configuration = self.prerequisite_view.toolbar.configuration
 try:
 configuration.item_select('Disassociate a Floating IP from this Instance')
 except NoSuchElementException:
 raise DestinationNotFound('Remove Floating IP option not available for instance')

@navigator.register(OpenStackInstance, 'AttachVolume')
[docs]class AttachVolume(CFMENavigateStep):
 VIEW = AttachVolumeView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 configuration = self.prerequisite_view.toolbar.configuration
 try:
 configuration.item_select('Attach a Cloud Volume to this Instance')
 except NoSuchElementException:
 raise DestinationNotFound('Attach Cloud Volume option not available for instance')

@navigator.register(OpenStackInstance, 'DetachVolume')
[docs]class DetachVolume(CFMENavigateStep):
 VIEW = DetachVolumeView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 configuration = self.prerequisite_view.toolbar.configuration
 try:
 configuration.item_select('Detach a Cloud Volume from this Instance')
 except NoSuchElementException:
 raise DestinationNotFound('Detach Cloud Volume option not available for instance')

@navigator.register(OpenStackInstance, 'Evacuate')
[docs]class Evacuate(CFMENavigateStep):
 VIEW = EvacuateView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 lifecycle = self.prerequisite_view.toolbar.lifecycle
 try:
 lifecycle.item_select('Evacuate Instance')
 except NoSuchElementException:
 raise DestinationNotFound('Evacuate option not available for instance')

@navigator.register(OpenStackInstance, 'Migrate')
[docs]class Migrate(CFMENavigateStep):
 VIEW = MigrateView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 lifecycle = self.prerequisite_view.toolbar.lifecycle
 try:
 lifecycle.item_select('Migrate Instance')
 except NoSuchElementException:
 raise DestinationNotFound('Migrate option not available for instance')

@navigator.register(Instance, 'Reconfigure')
[docs]class Reconfigure(CFMENavigateStep):
 VIEW = ReconfigureView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 configuration = self.prerequisite_view.toolbar.configuration
 try:
 configuration.item_select('Reconfigure this Instance')
 except NoSuchElementException:
 raise DestinationNotFound('Reconfigure option not available for instance')

@navigator.register(OpenStackInstance, 'RightSize')
[docs]class RightSize(CFMENavigateStep):
 VIEW = RightSizeView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 configuration = self.prerequisite_view.toolbar.configuration
 try:
 configuration.item_select('Right-Size Recommendations')
 except NoSuchElementException:
 raise DestinationNotFound('Right Size option not available for instance')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/web_ui/search.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.web_ui »

 Source code for cfme.web_ui.search

-*- coding: utf-8 -*-
"""This module operates the `Advanced search` box located on multiple pages."""
import re
from functools import partial

from cfme.fixtures import pytest_selenium as sel
from cfme.web_ui import expression_editor as exp_ed
from cfme.web_ui import Input, Region, Select, fill
from cfme.web_ui.form_buttons import FormButton
from cfme.utils.wait import wait_for
from cfme.utils.log import logger

search_box = Region(
 locators=dict(
 # Filter of results, the search field that is normally visible
 search_field=Input("search_text", "search[text]"),

 # The icon buttons for searching
 search_icon='(//button | //a)[(@type="submit" or @data-submit="searchbox") '
 'and span[contains(@class, "fa-search")]]',

 # The arrow opening/closing the advanced search box
 toggle_advanced="(//button | //a)[@id='adv_search']",

 # Container for the advanced search box
 # class changes when visible or hidden, first locator does not indicate visibility
 advanced_search_box="//div[@id='advsearchModal']//div[@class='modal-content']",
 advanced_search_box_visible="//div[@id='advsearchModal' and @class='modal fade in']"
 "//div[@class='modal-content']",

 # Buttons on main view
 apply_filter_button=FormButton(alt="Apply the current filter",
 dimmed_alt='No filter available'),
 load_filter_button=FormButton(alt="Load a filter",
 dimmed_alt="No saved filters or report filters are "
 "available to load"),
 delete_filter_button=FormButton("Delete the filter named", partial_alt=True),
 # No dimmed state for delete button, its removed/added to UI as it becomes relevant
 save_filter_button=FormButton(alt="Save the current filter",
 dimmed_alt='No filter available'),
 reset_filter_button=FormButton(alt="Reset the filter",
 dimmed_alt='No filter available'),

 # There are multiple close button divs, and they swap visibility with @style none/block
 close_button="//div[(@id='advsearchModal' or 'quicksearchbox') "
 "and (normalize-space(@style)='display: block;')]//button[@class='close']"
 "/span[normalize-space(.)='×']",

 # Buttons in the "next step"
 load_filter_dialog_button=FormButton(alt="Load the filter shown above",
 dimmed_alt='Choose a saved filter or report filter '
 'to load'),
 # No dimmed state in UI for save or cancel
 cancel_load_filter_dialog_button=FormButton(alt="Cancel the load"),
 save_filter_dialog_button=FormButton(alt="Save the current search"),
 cancel_save_filter_dialog_button=FormButton(alt="Cancel the save"),

 # If user input requested, this window appears
 quick_search_box="//div[@id='quicksearchbox']",

 # With these buttons
 userinput_apply_filter_button=FormButton(alt="Apply the current filter (Enter)",
 dimmed_alt='No input to apply'),
 userinput_cancel_button=FormButton(alt="Cancel (Esc)"),

 # Elements in Load dialog
 # Selects for selecting the filter
 saved_filter=Select("select#chosen_search"),
 report_filter=Select("select#chosen_report"),

 # Elements in Save dialog
 save_name=Input("search_name"),
 global_search=Input("search_type"),

 # On the main page, this link clears the filters
 clear_advanced_search="//a[contains(@href, 'adv_search_clear')]",
)
)

def _answering_function(answers_dict, text, element):
 """A generic answering function for filling user-input elements

 Args:
 answers_dict: Dictionary with answers. Keys are patterns matched in `text`. If it is string,
 python's `in` operator is used. If it is an object produced by :py:func:`re.compile`,
 then it is matched using its `.match()` method. If matched, element is filled with the
 dict-key's value.
 text: Text that is provided by :py:func:`_process_user_filling`.
 element: Element that is provided by :py:func:`_process_user_filling`.
 """
 for answer_key, answer_value in answers_dict.iteritems():
 if isinstance(answer_key, re._pattern_type):
 if answer_key.match(text) is not None:
 fill(element, str(answer_value))
 return True
 else:
 if answer_key in text:
 fill(element, str(answer_value))
 return True
 else:
 return False

[docs]def has_quick_search_box():
 return sel.is_displayed(search_box.quick_search_box)

[docs]def is_advanced_search_opened():
 """Checks whether the advanced search box is currently opened"""
 # Covers advanced search sub-forms as well - user-input, load, and save
 return any(sel.is_displayed(loc) for loc in
 [search_box.advanced_search_box_visible,
 search_box.quick_search_box,
 search_box.saved_filter,
 search_box.save_name])

[docs]def is_advanced_search_possible():
 """Checks for advanced search possibility in the quadicon view"""
 return sel.is_displayed(search_box.toggle_advanced)

[docs]def is_advanced_filter_applied():
 """Checks whether any filter is in effect on quadicon view"""
 ensure_advanced_search_closed()
 return len(filter(sel.is_displayed, sel.elements(search_box.clear_advanced_search))) > 0

[docs]def ensure_no_filter_applied():
 """If any filter is applied in the quadicon view, it will be disabled."""
 # The expression filter
 if is_advanced_filter_applied():
 logger.debug('search.ensure_no_filter_applied: advanced filter applied, removing')
 # Clear filter using breadcrumb link
 ensure_advanced_search_closed()
 sel.click(search_box.clear_advanced_search)

 # The simple filter
 if len(sel.value(search_box.search_field).strip()) > 0:
 logger.debug('search.ensure_no_filter_applied: simple filter applied, removing')
 sel.set_text(search_box.search_field, "")
 sel.click(search_box.search_icon)

 reset_filter()

[docs]def check_and_click_open():
 """Check for display of advanced search open button and click it"""
 # Look for close button since it overlays the toggle button
 if not sel.is_displayed(search_box.close_button):
 logger.debug('search.check_and_click_open: clicking advanced search toggle')
 sel.click(search_box.toggle_advanced)

[docs]def check_and_click_close():
 """Check for display of advanced search close button and click it"""
 if sel.is_displayed(search_box.close_button):
 logger.debug('search.check_and_click_close: clicking advanced search close')
 sel.click(search_box.close_button)

[docs]def ensure_advanced_search_open():
 """Make sure the advanced search box is opened.

 If the advanced search box is closed, open it if it exists (otherwise exception raised).
 """
 if not is_advanced_search_possible():
 raise Exception("Advanced search is not possible in this location!")
 if not is_advanced_search_opened():
 logger.debug('search.ensure_advanced_search_closed: search was closed, opening')
 sel.click(search_box.toggle_advanced) # Open

 wait_for(is_advanced_search_opened, fail_condition=False, num_sec=10, delay=2,
 fail_func=check_and_click_open, message='Waiting for advanced search to open')

[docs]def ensure_advanced_search_closed():
 """Checks if the advanced search box is open and if it does, closes it."""
 if is_advanced_search_opened():
 logger.debug('search.ensure_advanced_search_closed: search was open, closing')
 sel.click(search_box.close_button)
 wait_for(is_advanced_search_opened, fail_condition=True, num_sec=10, delay=2,
 fail_func=check_and_click_close, message='Waiting for advanced search to close')

[docs]def reset_filter():
 """Clears the filter expression

 Returns result of clicking reset when enabled
 Returns false when reset is button is disabled
 """
 ensure_advanced_search_open()
 if not search_box.reset_filter_button.is_dimmed:
 out = sel.click(search_box.reset_filter_button)
 else:
 out = False

 ensure_advanced_search_closed()
 return out

[docs]def apply_filter():
 """Applies an existing filter"""
 ensure_advanced_search_open()
 if not search_box.apply_filter_button.is_dimmed:
 return sel.click(search_box.apply_filter_button)
 else:
 return False

[docs]def delete_filter(cancel=False):
 """If possible, deletes the currently loaded filter."""
 ensure_advanced_search_open()
 if sel.is_displayed(search_box.delete_filter_button):
 sel.click(search_box.delete_filter_button, wait_ajax=False)
 sel.handle_alert(cancel)
 return True
 else:
 return False

[docs]def normal_search(search_term):
 """Do normal search via the search bar.

 Args:
 search_term: What to search.
 """
 ensure_advanced_search_closed()
 fill(search_box.search_field, search_term)
 sel.click(search_box.search_icon)

[docs]def ensure_normal_search_empty():
 """Makes sure that the normal search field is empty."""
 normal_search('')

[docs]def fill_expression(expression_program):
 """Wrapper to open the box and fill the expression

 Args:
 expression_program: the expression to be filled.
 """
 ensure_advanced_search_open()
 exp_ed.create_program(expression_program)() # Run the expression editing

[docs]def save_filter(expression_program, save_name, global_search=False, cancel=False):
 """Fill the filtering expression and save it

 Args:
 expression_program: the expression to be filled.
 save_name: Name of the filter to be saved with.
 global_search: Whether to check the Global search checkbox.
 cancel: Whether to cancel the save dialog without saving
 """
 fill_expression(expression_program)
 sel.click(search_box.save_filter_button)
 fill(search_box.save_name, save_name)
 fill(search_box.global_search, global_search)
 button = search_box.cancel_save_filter_dialog_button if cancel \
 else search_box.save_filter_dialog_button

 return sel.click(button)

[docs]def load_filter(saved_filter=None, report_filter=None, cancel=False):
 """Load saved filter

 Args:
 saved_filter: `Choose a saved XYZ filter`
 report_filter: `Choose a XYZ report filter`
 cancel: Whether to cancel the load dialog without loading
 """
 ensure_advanced_search_open()
 if search_box.load_filter_button.is_dimmed:
 raise DisabledButtonException('Load Filter button disabled, cannot load filter: {}'
 .format(saved_filter))
 assert saved_filter is not None or report_filter is not None, "At least 1 param required!"
 assert (saved_filter is not None) ^ (report_filter is not None), "You must provide just one!"

 sel.click(search_box.load_filter_button)
 # We apply it to the whole form but it will fill only one of the selects
 if saved_filter is not None:
 fill(search_box.saved_filter, saved_filter)
 else: # No other check needed, covered by those two asserts
 fill(search_box.report_filter, report_filter)
 button = search_box.cancel_load_filter_dialog_button if cancel \
 else search_box.load_filter_dialog_button

 return sel.click(button)

 # todo update flash message handler

def _process_user_filling(fill_callback, cancel_on_user_filling=False):
 """This function handles answering CFME's requests on user input.

 A `fill_callback` function is passed. If the box with user input appears, all requested
 inputs are gathered and iterated over. On each element the `fill_callback` function is called
 with 2 parameters: text which precedes the element itself to do matching, and the element.

 This function does not check return status after `fill_callback` call.

 Args:
 fill_callback: The function to be called on each user input.
 """
 if has_quick_search_box(): # That is the one with user inputs
 if fill_callback is None:
 raise Exception("User should have provided a callback function!")
 if isinstance(fill_callback, dict):
 fill_callback = partial(_answering_function, fill_callback)
 for input in sel.elements(
 {
 "5.4": "//div[@id='user_input_filter']//*[contains(@id, 'value_')]"
 },
 root=sel.element(search_box.quick_search_box)):
 fill_callback(# Let the func fill it
 sel.text(input.find_element_by_xpath("..")), # Parent element's text
 input # The form element
)
 if cancel_on_user_filling:
 sel.click(search_box.userinput_cancel_button)
 else:
 sel.click(search_box.userinput_apply_filter_button)

[docs]def load_and_apply_filter(
 saved_filter=None, report_filter=None, fill_callback=None, cancel_on_user_filling=False):
 """Load the filtering expression and apply it

 Args:
 saved_filter: `Choose a saved XYZ filter`.
 report_filter: `Choose a XYZ report filter`.
 fill_callback: Function to be called for each asked user input.
 """
 ensure_advanced_search_closed()
 ensure_no_filter_applied()
 load_filter(saved_filter, report_filter)
 sel.click(search_box.apply_filter_button)
 _process_user_filling(fill_callback, cancel_on_user_filling)
 ensure_advanced_search_closed()

[docs]def fill_and_apply_filter(expression_program, fill_callback=None, cancel_on_user_filling=False):
 """Fill the filtering expression and apply it

 Args:
 expression_program: Expression to fill to the filter.
 fill_callback: Function to be called for each asked user input
 (:py:func:`_process_user_filling`).
 """
 ensure_advanced_search_closed()
 ensure_no_filter_applied()
 fill_expression(expression_program)
 sel.click(search_box.apply_filter_button)
 _process_user_filling(fill_callback, cancel_on_user_filling)
 ensure_advanced_search_closed()

[docs]def save_and_apply_filter(expression_program, save_name, global_search=False):
 save_filter(expression_program=expression_program, save_name=save_name,
 global_search=global_search)
 apply_filter()
 ensure_advanced_search_closed()

[docs]class DisabledButtonException(Exception):
 def __init__(self, *args, **kwargs):
 Exception.__init__(self, *args, **kwargs)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/cloud/instance/ec2.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.cloud.instance »

 Source code for cfme.cloud.instance.ec2

-*- coding: utf-8 -*-
from cfme.exceptions import OptionNotAvailable
from . import Instance

[docs]class EC2Instance(Instance):
 # CFME & provider power control options
 START = "Start"
 POWER_ON = START # For compatibility with the infra objects.
 STOP = "Stop"
 DELETE = "Delete"
 TERMINATE = 'Delete'
 # CFME-only power control options
 SOFT_REBOOT = "Soft Reboot"
 # Provider-only power control options
 RESTART = "Restart"

 # CFME power states
 STATE_ON = "on"
 STATE_OFF = "off"
 STATE_SUSPENDED = "suspended"
 STATE_TERMINATED = "terminated"
 STATE_ARCHIVED = "archived"
 STATE_UNKNOWN = "unknown"

 @property
 def ui_powerstates_available(self):
 return {
 'on': [self.STOP, self.SOFT_REBOOT, self.TERMINATE],
 'off': [self.START, self.TERMINATE]}

 @property
 def ui_powerstates_unavailable(self):
 return {
 'on': [self.START],
 'off': [self.STOP, self.SOFT_REBOOT]}

[docs] def create(self, cancel=False, **prov_fill_kwargs):
 """Provisions an EC2 instance with the given properties through CFME

 Args:
 cancel: Clicks the cancel button if `True`, otherwise clicks the submit button
 (Defaults to `False`)
 prov_fill_kwargs: dictionary of provisioning field/value pairs
 Note:
 For more optional keyword arguments, see
 :py:data:`cfme.cloud.provisioning.ProvisioningForm`
 """
 super(EC2Instance, self).create(form_values=prov_fill_kwargs, cancel=cancel)

[docs] def power_control_from_provider(self, option):
 """Power control the instance from the provider

 Args:
 option: power control action to take against instance

 Raises:
 OptionNotAvailable: option param must have proper value
 """
 if option == EC2Instance.START:
 self.provider.mgmt.start_vm(self.name)
 elif option == EC2Instance.STOP:
 self.provider.mgmt.stop_vm(self.name)
 elif option == EC2Instance.RESTART:
 self.provider.mgmt.restart_vm(self.name)
 elif option == EC2Instance.TERMINATE:
 self.provider.mgmt.delete_vm(self.name)
 else:
 raise OptionNotAvailable(option + " is not a supported action")

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/web_ui/tabstrip.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.web_ui »

 Source code for cfme.web_ui.tabstrip

-*- coding: utf-8 -*-
""" The tab strip manipulation which appears in Configure / Configuration and possibly other pages.

Usage:

 import cfme.web_ui.tabstrip as tabs
 tabs.select_tab("Authentication")
 print(is_tab_selected("Authentication"))
 print(get_selected_tab())

"""
from collections import Mapping, OrderedDict

import cfme.fixtures.pytest_selenium as sel
from cfme import web_ui
from cfme.utils.log import logger
from cfme.utils.pretty import Pretty

Entry point
There have been different types of the entry points throughout the history, sometimes even
different versions in one build.
_entry_loc = "|".join([
 "//div[contains(@class, 'ui-tabs')]",
 "//ul[contains(@class, 'nav-tabs')]",
 "//ul[contains(@class, 'ui-tabs-nav') or @class='tab2' or @class='tab3']",
 "//ul[@id='tab' and @class='tab']"])

def _root():
 """ Returns the div element encapsulating whole tab strip as an entry point.

 Returns: :py:class:`list` of :py:class:`cfme.fixtures.pytest_selenium.WebElement`.
 """
 return sel.elements(_entry_loc)

[docs]def get_all_tabs():
 """ Return list of all tabs present.

 Returns: :py:class:`list` of :py:class:`str` Displayed names.
 """
 return [opt.text.strip().encode("utf-8") for opt in sel.elements(".//li/a", root=_root())]

[docs]def get_selected_tab():
 """ Return currently selected tab.

 Returns: :py:class:`str` Displayed name
 """
 return sel.element(
 ".//li[@aria-selected='true' or contains(@class, 'active')]/a", root=_root())\
 .text\
 .strip()\
 .encode("utf-8")

[docs]def is_tab_element_selected(element):
 """ Determine whether the passed element is selected.

 This function takes the element, climbs to its parent and looks whether the
 aria-selected attribute contains true. If yes, element is selected.

 Args:
 element: WebElement with the link (a)
 Returns: :py:class:`bool`
 """
 aria = sel.element("..", root=element).get_attribute("aria-selected")
 if aria is not None:
 return "true" in aria.lower()
 else:
 return sel.element("..", root=element)\
 .get_attribute("class")\
 .lower() in {"active", "active-single"}

[docs]def is_tab_selected(ident_string):
 """ Determine whether the element identified by passed name is selected.

 Args:
 ident_string: Identification string (displayed name) of the tab button.
 Returns: :py:class:`bool`
 """
 return is_tab_element_selected(get_clickable_tab(ident_string))

[docs]def get_clickable_tab(ident_string):
 """ Returns the relevant tab element that can be clicked on.

 Args:
 ident_string: The text diplayed on the tab.
 """
 return sel.element(
 ".//li/a[contains(normalize-space(text()), '{}')]".format(ident_string), root=_root())

[docs]def select_tab(ident_string):
 """ Clicks on the tab with text from ident_string.

 Clicks only if it's not actually selected.

 Args:
 ident_string: The text displayed on the tab.

 """
 if not is_tab_selected(ident_string):
 return sel.click(get_clickable_tab(ident_string))

class _TabStripField(Pretty):
 """A form field type for use in TabStripForms"""

 pretty_attrs = ['ident_string', 'arg']

 def __init__(self, ident_string, arg, default_when_no_tabs=False):
 self.ident_string = ident_string
 self.arg = arg
 self.default_when_no_tabs = default_when_no_tabs

 def locate(self):
 if len(get_all_tabs()) == 0:
 if self.default_when_no_tabs:
 # There is no tabstrip and this is the proper "tab"
 return self.arg
 else:
 # A different tab but given the fact that this one is "hidden", bail out
 raise ValueError('Requested tab {} is not displayed'.format(self.ident_string))
 select_tab(self.ident_string)
 return self.arg

 def __getattr__(self, name):
 self.locate()
 return getattr(self.arg, name)

@web_ui.fill.method((_TabStripField, object))
def _fill_tabstrip(tabstrip_field, value):
 logger.debug(' Navigating to tabstrip %s', tabstrip_field.ident_string)
 web_ui.fill(tabstrip_field.locate(), value)

In a fight between _TabStripField and object, _TabStripField should win,
since it always delegates back to fill
web_ui.fill.prefer((_TabStripField, object), (object, Mapping))

[docs]class TabStripForm(web_ui.Form):
 """
 A class for interacting with tabstrip-contained Form elements on pages.

 This behaves exactly like a :py:class:`Form`, but is able to deal with form
 elements being broken up into tabs, accessible via a tab strip.

 Args:
 fields: A list of field name/locator tuples (same as Form implementation)
 tab_fields: A dict with tab names as keys, and each key's value being a list of
 field name/locator tuples. The ordering of fields within a tab is guaranteed
 (as it is with the normal Form) but the ordering of tabs is not guaranteed by default.
 If such ordering is needed, tab_fields can be a ``collections.OrderedDict``.
 identifying_loc: A locator which should be present if the form is visible.
 order: If specified, specifies order of the tabs. Can be lower number than number of tabs,
 remaining values will be complemented.
 fields_end: Same as fields, but these are appended at the end of generated fields instead.

 Usage:

 provisioning_form = web_ui.TabStripForm(
 tab_fields={
 'Request': [
 ('email', Input("requester__owner_email")),
 ('first_name', Input("requester__owner_first_name")),
 ('last_name', Input("requester__owner_last_name")),
 ('notes', '//textarea[@id="requester__request_notes"]'),
],
 'Catalog': [
 ('instance_name', Input("service__vm_name")),
 ('instance_description', '//textarea[@id="service__vm_description"]'),
]
 }
)

 Each tab's fields will be exposed by their name on the resulting instance just like fields
 on a Form. Don't use duplicate field names in the ``tab_fields`` dict.

 Forms can then be filled in like so::

 request_info = {
 'email': 'your@email.com',
 'first_name': 'First',
 'last_name': 'Last',
 'notes': 'Notes about this request',
 'instance_name': 'An instance name',
 'instance_description': 'This is my instance!',
 }
 web_ui.fill(provisioning_form, request_info)

 """

 def __init__(
 self, fields=None, tab_fields=None, identifying_loc=None, order=None, fields_end=None):
 fields = fields or list()
 new_tab_fields = OrderedDict()
 flags_per_tab = {}
 for key, value in tab_fields.iteritems():
 if isinstance(key, tuple):
 field_name, flags = key
 flags = {f: True for f in flags}
 else:
 field_name = key
 flags = {}
 new_tab_fields[field_name] = value
 flags_per_tab[field_name] = flags
 tab_fields = new_tab_fields
 if order is None:
 order = tab_fields.keys()
 else:
 order = list(order)
 if len(order) > len(tab_fields.keys()):
 raise ValueError("More order items passed than there is in real!")
 if len(order) < len(tab_fields.keys()):
 remaining_keys = set(tab_fields.keys()) - set(order)
 for key in remaining_keys:
 order.append(key)
 for tab_ident in order:
 field = tab_fields[tab_ident]
 for field_name, field_locator in field:
 fields.append(
 (field_name, _TabStripField(
 tab_ident, field_locator, **flags_per_tab[tab_ident])))
 if fields_end is not None:
 fields.extend(fields_end)
 super(TabStripForm, self).__init__(fields, identifying_loc)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/cloud/instance/azure.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.cloud.instance »

 Source code for cfme.cloud.instance.azure

-*- coding: utf-8 -*-
from cfme.exceptions import OptionNotAvailable
from cfme.utils import version, deferred_verpick
from . import Instance

[docs]class AzureInstance(Instance):
 # CFME & provider power control options Added by Jeff Teehan on 5-16-2016
 START = "Start"
 POWER_ON = START # For compatibility with the infra objects.
 STOP = "Stop"
 SUSPEND = "Suspend"
 DELETE = "Delete"
 TERMINATE = deferred_verpick({
 version.LOWEST: 'Terminate',
 '5.6.1': 'Delete',
 })
 # CFME-only power control options
 SOFT_REBOOT = "Soft Reboot"
 # Provider-only power control options
 RESTART = "Restart"

 # CFME power states
 STATE_ON = "on"
 STATE_OFF = "off"
 STATE_SUSPENDED = "suspended"
 STATE_TERMINATED = "terminated"
 STATE_UNKNOWN = "unknown"
 STATE_ARCHIVED = "archived"

 @property
 def ui_powerstates_available(self):
 return {
 'on': [self.STOP, self.SUSPEND, self.SOFT_REBOOT, self.TERMINATE],
 'off': [self.START, self.TERMINATE]}

 @property
 def ui_powerstates_unavailable(self):
 return {
 'on': [self.START],
 'off': [self.STOP, self.SUSPEND, self.SOFT_REBOOT]}

[docs] def create(self, cancel=False, **prov_fill_kwargs):
 """Provisions an Azure instance with the given properties through CFME

 Args:
 cancel: Clicks the cancel button if `True`, otherwise clicks the submit button
 (Defaults to `False`)
 prov_fill_kwargs: dictionary of provisioning field/value pairs
 Note:
 For more optional keyword arguments, see
 :py:data:`cfme.cloud.provisioning.ProvisioningForm`
 """
 super(AzureInstance, self).create(form_values=prov_fill_kwargs, cancel=cancel)

[docs] def power_control_from_provider(self, option):
 """Power control the instance from the provider

 Args:
 option: power control action to take against instance

 Raises:
 OptionNotAvailable: option param must have proper value
 """
 if option == AzureInstance.START:
 self.provider.mgmt.start_vm(self.name)
 elif option == AzureInstance.STOP:
 self.provider.mgmt.stop_vm(self.name)
 elif option == AzureInstance.RESTART:
 self.provider.mgmt.restart_vm(self.name)
 elif option == AzureInstance.SUSPEND:
 self.provider.mgmt.suspend_vm(self.name)
 elif option == AzureInstance.TERMINATE:
 self.provider.mgmt.delete_vm(self.name)
 else:
 raise OptionNotAvailable(option + " is not a supported action")

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/web_ui/accordion.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.web_ui »

 Source code for cfme.web_ui.accordion

"""A set of functions for dealing with accordions in the UI.

Usage:

 Using Accordions is simply a case of either selecting it to return the element,
 or using the built in click method. As shown below::

 acc = web_ui.accordion

 acc.click('Diagnostics')
 acc.is_active('Diagnostics')
"""

from xml.sax.saxutils import quoteattr, unescape

import cfme.fixtures.pytest_selenium as sel
from cfme.exceptions import AccordionItemNotFound
from cfme.web_ui import Tree, BootstrapTreeview
from cfme.utils import version
from cfme.utils.log import logger
from cfme.utils.wait import wait_for

DHX_ITEM = 'div[contains(@class, "dhx_acc_item") or @class="topbar"]'
DHX_LABEL = '*[contains(@class, "dhx_acc_item_label") or contains(@data-remote, "true")]'
DHX_ARROW = 'div[contains(@class, "dhx_acc_item_arrow")]'
NEW_ACC = '//div[@id="accordion"]//h4[@class="panel-title"]//a[normalize-space(.)={}]'

[docs]def locate(name):
 """ Returns an accordion by name

 Args:
 name: The name of the accordion.
 Returns: A web element of the selected accordion.
 """
 xpath = version.pick({
 version.LOWEST: '//{}/{}//span[normalize-space(.)="{}"]'.format(
 DHX_ITEM, DHX_LABEL, name),
 '5.5.0.6': NEW_ACC.format(unescape(quoteattr(name)))})
 return xpath

[docs]def click(name):
 """ Clicks an accordion and returns it

 Args:
 name: The name of the accordion.
 Returns: A web element of the clicked accordion.
 """
 try:
 el = sel.element(locate(name))
 if not is_active(name):
 return sel.click(el)
 except sel.NoSuchElementException:
 raise AccordionItemNotFound("Accordion item '{}' not found!".format(name))

[docs]def refresh(name):
 """ Closes and opens accordion

 Args:
 name: The name of the accordion.
 Returns: A web element of the clicked accordion.
 """

 try:
 el = sel.element(locate(name))
 if is_active(name):
 sel.click(el)

 for _ in range(3):
 if sel.is_alert_present():
 alert = sel.get_alert()
 alert.accept()

 if not is_active(name):
 sel.click(el, wait_ajax=False)
 continue
 else:
 return el
 except sel.NoSuchElementException:
 raise AccordionItemNotFound("Accordion item '{}' not found!".format(name))

def _get_accordion_collapsed(name):
 """ Returns if an accordion is collapsed or not, used with is_active

 Args:
 name: The name of the accordion
 Returns: ``True`` if the accordion is open, ``False`` if it is closed.
 """

 if version.current_version() < '5.5.0.6':
 root = sel.element(locate(name))
 # It seems there are two possibilities, so let's handle both.
 loc = "|".join([
 "./{}/{}".format(DHX_LABEL, DHX_ARROW),
 "../{}".format(DHX_ARROW)])
 el = sel.element(loc, root=root)
 class_att = sel.get_attribute(el, 'class').split(" ")
 return "item_opened" in class_att
 else:
 class_att = sel.get_attribute(sel.element(locate(name)), 'class').split(" ")
 return "collapsed" not in class_att

[docs]def is_active(name):
 """ Checks if an accordion is currently open

 Note: Only works on traditional accordions.

 Args:
 name: The name of the accordion.
 Returns: ``True`` if the button is depressed, ``False`` if not.
 """

 try:
 return _get_accordion_collapsed(name)
 except sel.NoSuchElementException:
 raise AccordionItemNotFound("Accordion item '{}' not found!".format(name))

DYNATREE = "../../..//div[@class='panel-body']//ul[@class='dynatree-container']"
TREEVIEW = '../../..//div[contains(@class, "treeview")]'
ANY_TREE = '|'.join([DYNATREE, TREEVIEW])

[docs]def tree(name, *path):
 """Get underlying Tree() object. And eventually click path.

 If the accordion is not active, will be clicked.
 Attention! The object is 'live' so when it's obscured, it won't work!

 Usage:
 accordion.tree("Something").click_path("level 1", "level 2")
 accordion.tree("Something", "level 1", "level 2") # is the same

 Args:
 *path: If specified, it will directly pass these parameters into click_path of Tree.
 Otherwise it returns the Tree object.
 """
 try:
 if not is_active(name):
 logger.debug('Clicking accordion item %s because it is not active.', name)
 click(name)
 except AccordionItemNotFound:
 logger.debug('Clicking accordion item %s because AccordionItemNotFound raised.', name)
 click(name)

 locator = locate(name)
 # Wait a bit for any of the trees to appear
 wait_for(
 lambda: sel.is_displayed(ANY_TREE, root=locator),
 quiet=True, silent_failure=True, delay=0.2, timeout=5)
 if sel.is_displayed(DYNATREE, root=locator):
 # Dynatree detected
 tree = Tree(sel.element(DYNATREE, root=locator))
 elif sel.is_displayed(TREEVIEW, root=locator):
 # treeview detected
 el = sel.element(TREEVIEW, root=locator)
 tree_id = sel.get_attribute(el, 'id')
 tree = BootstrapTreeview(tree_id)
 else:
 raise TypeError('None of the supported trees was detected.')

 if path:
 return tree.click_path(*path)
 else:
 return tree

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/cloud/instance/image.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.cloud.instance »

 Source code for cfme.cloud.instance.image

from navmazing import NavigateToAttribute, NavigateToSibling
from widgetastic.widget import View, Text
from widgetastic_patternfly import Button, Dropdown, FlashMessages
from widgetastic_manageiq import (
 ItemsToolBarViewSelector, SummaryTable, ItemNotFound, BaseEntitiesView)

from cfme.exceptions import ImageNotFound
from cfme.common import WidgetasticTaggable, TagPageView
from cfme.common.vm import Template
from cfme.common.vm_views import (
 EditView, SetOwnershipView, ManagePoliciesView, PolicySimulationView, BasicProvisionFormView)
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import navigate_to, CFMENavigateStep, navigator
from . import CloudInstanceView, InstanceAccordion

[docs]class ImageToolbar(View):
 """
 Toolbar view for image collection
 """
 reload = Button(title='Reload current display')
 configuration = Dropdown('Configuration')
 lifecycle = Dropdown('Lifecycle')
 policy = Dropdown('Policy')
 download = Dropdown('Download')

 view_selector = View.nested(ItemsToolBarViewSelector)

[docs]class ImageDetailsToolbar(View):
 """
 Toolbar view for image collection
 """
 reload = Button(title='Reload current display')
 configuration = Dropdown('Configuration')
 lifecycle = Dropdown('Lifecycle')
 policy = Dropdown('Policy')
 download = Button(title='Download summary in PDF format')

[docs]class ImageDetailsEntities(View):
 title = Text('//div[@id="main-content"]//h1//span[@id="explorer_title_text"]')
 flash = FlashMessages('.//div[@id="flash_msg_div"]'
 '/div[@id="flash_text_div" or contains(@class, "flash_text_div")]')
 properties = SummaryTable(title='Properties')
 lifecycle = SummaryTable(title='Lifecycle')
 relationships = SummaryTable(title='Relationships')
 compliance = SummaryTable(title='Compliance')
 power_management = SummaryTable(title='Power Management')
 security = SummaryTable(title='Security')
 configuration = SummaryTable(title='Configuration')
 smart_management = SummaryTable(title='Smart Management')

[docs]class ImageAllView(CloudInstanceView):
 """View for the Image collection"""
 toolbar = View.nested(ImageToolbar)
 sidebar = View.nested(InstanceAccordion)
 including_entities = View.include(BaseEntitiesView, use_parent=True)

 @property
 def is_displayed(self):
 return (
 self.in_cloud_instance and
 self.sidebar.images.is_opened and
 self.sidebar.images.tree.selected_item.text == 'All Images' and
 self.entities.title.text == 'All Images')

[docs]class ImageProviderAllView(CloudInstanceView):
 """View for the Image collection"""
 toolbar = View.nested(ImageToolbar)
 sidebar = View.nested(InstanceAccordion)
 including_entities = View.include(BaseEntitiesView, use_parent=True)

 @property
 def is_displayed(self):
 expected_title = 'Images under Provider "{}"'.format(self.context['object'].provider.name)
 accordion = self.sidebar.images_by_provider
 return (
 self.in_cloud_instance and
 accordion.is_opened and
 accordion.tree.selected_item.text == self.context['object'].provider.name and
 self.entities.title.text == expected_title)

[docs]class ImageDetailsView(CloudInstanceView):
 """View for an Image"""
 toolbar = View.nested(ImageToolbar)
 sidebar = View.nested(InstanceAccordion)
 entities = View.nested(ImageDetailsEntities)
 tag = SummaryTable(title='Smart Management') # to satisfy WidgetasticTagable, CHANGEME

 @property
 def is_displayed(self):
 accordion = self.sidebar.images_by_provider
 relationships = self.entities.relationships
 return (
 self.in_cloud_instance and
 accordion.is_opened and
 accordion.tree.selected_item.text == self.context['object'].provider.name and
 relationships.get_text_of('Cloud Provider') == self.context['object'].provider.name and
 self.entities.title.text == 'Image "{}"'.format(self.context['object'].name))

[docs]class ImageProvisionView(CloudInstanceView):
 """
 View for provisioning image, built from common provisioning form.
 No before_fill, image already selected
 """
 @View.nested
 class form(BasicProvisionFormView): # noqa
 """Tabs from BasicProvisionFormView, just adding buttons
 """
 submit = Button('Submit') # Submit for 2nd page, tabular form
 cancel = Button('Cancel')

 @property
 def is_displayed(self):
 prov_name = self.context['object'].provider.name
 return (
 self.in_cloud_instance and
 self.form.is_displayed and
 self.form.catalog.catalog_name.currently_selected == self.context['object'].name and
 len(self.form.catalog.catalog_name.read_content()) == 1 and
 self.form.catalog.catalog_name.read_content()[0].get('Provider', None) == prov_name)

[docs]class Image(Template, Navigatable, WidgetasticTaggable):
 ALL_LIST_LOCATION = "clouds_images"
 TO_OPEN_EDIT = "Edit this Image"
 QUADICON_TYPE = "image"

 def __init__(self, name, provider, template_name=None, appliance=None):
 super(Image, self).__init__(name=name, provider=provider, template_name=template_name)
 Navigatable.__init__(self, appliance=appliance)

 @property
 def exists(self):
 """Whether the image exists in CFME"""
 try:
 navigate_to(self, 'Details')
 except ImageNotFound:
 return False
 return True

@navigator.register(Image, 'All')
[docs]class ImageAll(CFMENavigateStep):
 VIEW = ImageAllView
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.navigation.select('Compute', 'Clouds', 'Instances')
 self.view.sidebar.images.tree.click_path('All Images')

@navigator.register(Image, 'AllForProvider')
[docs]class ImageAllForProvider(CFMENavigateStep):
 VIEW = ImageProviderAllView
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.navigation.select('Compute', 'Clouds', 'Instances')
 self.view.sidebar.images_by_provider.tree.click_path('Images by Provider',
 self.obj.provider.name)

@navigator.register(Image, 'Details')
[docs]class ImageDetails(CFMENavigateStep):
 VIEW = ImageDetailsView
 prerequisite = NavigateToSibling('AllForProvider')

[docs] def step(self):
 self.prerequisite_view.toolbar.view_selector.select('List View')
 try:
 row = self.prerequisite_view.entities.get_entity(by_name=self.obj.name, surf_pages=True)
 except ItemNotFound:
 raise ImageNotFound('Failed to locate image with name "{}"'.format(self.obj.name))
 row.click()

@navigator.register(Image, 'ProvisionImage')
[docs]class ImageProvisionImage(CFMENavigateStep):
 VIEW = ImageProvisionView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.toolbar.lifecycle.item_select('Provision Instances using this Image')

@navigator.register(Image, 'Edit')
[docs]class ImageEdit(CFMENavigateStep):
 VIEW = EditView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.toolbar.configuration.item_select('Edit this Image')

@navigator.register(Image, 'SetOwnership')
[docs]class ImageSetOwnership(CFMENavigateStep):
 VIEW = SetOwnershipView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.toolbar.configuration.item_select('Set Ownership')

@navigator.register(Image, 'ManagePolicies')
[docs]class ImageManagePolicies(CFMENavigateStep):
 VIEW = ManagePoliciesView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.toolbar.policy.item_select('Manage Policies')

@navigator.register(Image, 'PolicySimulation')
[docs]class ImagePolicySimulation(CFMENavigateStep):
 VIEW = PolicySimulationView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.toolbar.policy.item_select('Policy Simulation')

@navigator.register(Image, 'EditTagsFromDetails')
[docs]class ImageEditTags(CFMENavigateStep):
 VIEW = TagPageView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.toolbar.policy.item_select('Edit Tags')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/web_ui/utilization.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.web_ui »

 Source code for cfme.web_ui.utilization

import calendar
from datetime import datetime, timedelta
from functools import partial

import re
from cfme import web_ui
from cfme.fixtures import pytest_selenium as sel
from cfme.web_ui import Table, toolbar as tb, flash
from wrapanapi.hawkular import MetricEnumCounter, MetricEnumGauge
from cfme.utils import attributize_string
from cfme.utils.browser import ensure_browser_open
from cfme.utils.units import Unit

mon_btn = partial(tb.select, 'Monitoring')
CHARTS = "//*[contains(@class, 'chart_parent')]"

[docs]def value_of(text_value, remove_comma=True):
 """Converts string value to Int, Float or String
 Args:
 remove_comma: When we set this value as True,
 removes all comma from the string. Default True
 """
 if remove_comma:
 text_value = text_value.replace(',', '')
 # Try parsing a number
 try:
 return int(text_value)
 except (ValueError, TypeError):
 try:
 return float(text_value)
 except (ValueError, TypeError):
 try:
 return Unit.parse(text_value)
 except ValueError:
 return text_value

[docs]def round_double(value, precision=2):
 """Round double value with precision limit"""
 if value:
 return round(value, precision)
 return value

[docs]class Utilization(object):
 """Utilization class is the top level class for chart management in Middleware.
 We have to create Utilization with reference of any page which has
 `Utilization >> Monitoring` tab. Reference page must have implemented
 `load_utilization_page()` function which will take to Monitoring page.
 """

 def __init__(self, o):
 self._object = o
 self._charts = []
 self.reload()

 def __repr__(self):
 return "<Utilization {}>".format(", ".join(self._charts))

[docs] def load_utilization_page(self, refresh=True):
 ensure_browser_open()
 self._object.load_details(refresh=refresh)
 mon_btn("Utilization")

 @property
 def page(self):
 """Returns page object of caller"""
 return self._object

[docs] def reload(self, force_reload=False):
 """Reload the entire page"""
 self.load_utilization_page(refresh=force_reload)
 self._reload(force_reload)

 def _reload(self, force_reload=False):
 if not force_reload and len(self._charts) > 0:
 return
 # remove old charts
 for chart_id in self._charts:
 try:
 delattr(self, chart_id)
 except AttributeError:
 pass
 self._charts = []
 # load available charts
 for chart in sel.elements(CHARTS):
 chart_text = sel.text_sane(chart.find_element_by_class_name('card-pf-title'))
 chart_id = attributize_string(chart_text.strip())
 chart_object = LineChart(chart_id=chart_id, name=chart_text, utilization_object=self)
 setattr(self, chart_id, chart_object)
 self._charts.append(chart_id)

[docs] def __iter__(self):
 """This enables you to iterate through like it was a dictionary, just without .iteritems"""
 for chart_id in self._charts:
 yield (chart_id, getattr(self, chart_id))

 @property
 def charts(self):
 """Returns available charts on monitoring page"""
 return self._charts

[docs]class LineChart(object):
 """LineChart supports to do actions on line chart"""
 LEGENDS = "//*[name()='g']//*[contains(@class, 'c3-legend-item ') or @class='c3-legend-item']"
 # Map shorten UI key and table key
 # When we have long name in chart legend, name will be shorten with '...'.
 # In table header will be with full name. To map both places we have introduced this map
 # You have to put entry like, "shorten_name": "actual_name"
 key_ui_table_map = {
 "delivering_message": "delivering_message_count",
 "durable_subscripti": "durable_subscription_count",
 "non_durable_messag": "non_durable_messages_count",
 "non_durable_subscr": "non_durable_subscription_count",
 }

 @classmethod
 def _get_ui_key(cls, key):
 ui_key = cls.key_ui_table_map.get(key)
 if ui_key:
 return ui_key
 return key

 def __init__(self, chart_id, name, utilization_object):
 self.id = chart_id
 self.name = name
 self._utz_object = utilization_object
 self._legends = []
 self._c_lines = []
 self._c_object = None
 self._option = Option(o=self)

 def __repr__(self):
 return "<LineChart '{}':{}>".format(self.name, ", ".join(self._legends))

 @property
 def option(self):
 """Gives option object as property"""
 return self._option

 @property
 def is_on_chart_page(self):
 """Returns True we we are in detailed chart page, otherwise False"""
 if len(sel.text_sane(sel.elements(CHARTS))) == 0:
 return False
 if sel.text_sane(sel.element(CHARTS).find_element_by_tag_name('h2')) == self.name \
 and len(sel.elements(
 "//table[contains(@class, 'table')]//th[normalize-space(.)='Date/Time']")) == 1:
 return True
 return False

[docs] def load_chart_reference(self, force_reload=False):
 """Takes current page to chart detailed page"""
 if self.is_on_chart_page and not force_reload:
 return
 if not self.is_on_chart_page:
 self._utz_object.reload()
 self._c_object = None
 if not self.is_on_chart_page:
 root_objs = sel.elements(CHARTS)
 for root_obj in root_objs:
 if sel.text_sane(root_obj.find_element_by_tag_name('h2')) == self.name:
 root_obj.find_element_by_tag_name("a").click()
 sel.wait_for_ajax()
 self._c_object = sel.element(CHARTS)
 break
 else:
 self._c_object = sel.element(CHARTS)
 if self._c_object is None:
 raise RuntimeError("Unable to get detail page of '{}'".format(self.name))
 # remove old legends and load new legends
 for legend_id in self._legends:
 try:
 delattr(self, legend_id)
 except AttributeError:
 pass
 self._legends = []
 # load available legends
 for legend in sel.elements(self.LEGENDS):
 legend_text = sel.text_sane(legend)
 # changing legend name to full name with pre defined map
 legend_id = self._get_ui_key(attributize_string(legend_text.strip()))
 legend_object = Legend(name=legend_text, legend_object=legend)
 setattr(self, legend_id, legend_object)
 self._legends.append(legend_id)
 self._c_lines = self._c_object\
 .find_elements_by_xpath("//*[name()='g']//*[contains(@class, 'c3-target') "
 "and contains(@class, 'c3-chart-line')]")

[docs] def __iter__(self):
 """This enables you to iterate through like it was a dictionary, just without .iteritems"""
 self.load_chart_reference()
 for legend_id in self._legends:
 yield (legend_id, getattr(self, legend_id))

 @property
 def legends(self):
 """Returns available legends on chart"""
 self.load_chart_reference()
 return self._legends

[docs] def num_legend(self, only_enabled=True):
 """Returns number of available legends on chart
 Args:
 only_enabled: by default True, returns only enabled count when we pass True
 """
 self.load_chart_reference()
 if not only_enabled:
 return len(self._c_lines)
 num_line = 0
 for line in self._c_lines:
 if 'opacity: 1' in line.get_attribute('style'):
 num_line += 1
 return num_line

 @classmethod
 def _get_tooltip(cls, lines, circle_index):
 for line in lines:
 cir = line.find_elements_by_tag_name("circle")[circle_index]
 if 'opacity: 1' in cir.get_attribute('style'):
 sel.move_to_element(cir)
 return sel.element('//*[contains(@class, "c3-tooltip-container")]')
 return None

 @property
 def has_warning(self):
 self.load_chart_reference()
 for msg in flash.get_messages():
 if msg.level is "warning":
 return True
 return False

[docs] def list_data_chart(self, raw=False):
 """Returns list of data from chart"""
 self.load_chart_reference()
 data = []
 lines = []
 if self.has_warning:
 return data
 if self.num_legend(only_enabled=True) == 0:
 raise RuntimeError("There is no legend enabled!")
 for _line in self._c_lines:
 if 'opacity: 1' in _line.get_attribute('style'):
 lines.append(_line)
 line = lines[0]
 # %m/%d/%Y %H:%M:%S %Z
 if self.option.get_interval(force_visible_text=True) == Option.IN_HOURLY:
 _date = self.option.get_date()
 date_format = "{} {}:00 UTC".format(_date, "{}")
 elif self.option.get_interval(force_visible_text=True) == Option.IN_MOST_RECENT_HOUR:
 _date = self.option.get_range().split(" ", 1)[0].split("-")
 date_format = "{}/{}/{} {} UTC".format(_date[1], _date[2], _date[0], "{}")
 elif self.option.get_interval(force_visible_text=True) == Option.IN_DAILY:
 _year = self.option.get_date().split('/')[-1]
 date_format = "{}/{} 00:00:00 UTC".format("{}", _year)
 else:
 raise RuntimeError("Unsupported interval:{}"
 .format(self.option.get_interval(force_visible_text=True)))
 if raw:
 time_format = "datetime"
 else:
 time_format = "timestamp"
 for cir_index in range(len(line.find_elements_by_tag_name("circle"))):
 tp = self._get_tooltip(lines=lines, circle_index=cir_index)
 # NOTE: If all data in ZERO value(bottom of x axis),
 # tooltip is not working via "move_to_element", returns ''
 if tp and not sel.text_content(tp) == '':
 _date = sel.text_content(tp.find_element_by_tag_name('th'))
 if not raw:
 # Format: %m/%d/%Y %H:%M:%S %Z
 _date = self._timestamp(
 datetime.strptime(date_format.format(_date), "%m/%d/%Y %H:%M:%S %Z"))
 _data = {time_format: _date}
 # ignore duplicate values for timestamp
 if not next((item for item in data if item.get(time_format) == _date), None):
 for _row in tp.find_elements_by_xpath(
 "//tr[contains(@class, 'c3-tooltip-name')]"):
 _key = attributize_string(
 sel.text_content(_row.find_element_by_class_name('name')))
 # changing legend name to full name with pre defined map
 _key = self._get_ui_key(_key)
 _value = round_double(value_of(
 sel.text_content(_row.find_element_by_class_name('value'))))
 _data[_key] = _value
 data.append(_data)
 return data

[docs] def list_data_table(self, raw=False):
 """Returns list of data from table"""
 self.load_chart_reference()
 data = []
 if self.has_warning:
 return data
 table = Table(table_locator="//table[contains(@class, 'table')]")
 headers = []
 for header in table.headers:
 headers.append(attributize_string(sel.text_sane(header)))
 for row in table.rows():
 _data = {}
 for header in headers:
 if header == "datetime":
 _datetime = sel.text_sane(row[header])
 if raw:
 _data[header] = _datetime
 else:
 # sample 10/19/16 15:23:38 UTC
 _data['timestamp'] = self._timestamp(
 datetime.strptime(_datetime, "%m/%d/%y %H:%M:%S %Z"))
 else:
 _value = round_double(value_of(sel.text_sane(row[header])))
 _data[header] = None if _value == '' else _value
 data.append(_data)
 return data

 @classmethod
 def _timestamp(cls, dt, end_time=False):
 """Returns UTC timestamp with milliseconds
 Args:
 dt: datetime object
 end_time: when you pass end_time True adds 999 milliseconds with final result
 """
 _timestamp = calendar.timegm(dt.utctimetuple()) * 1000
 if end_time:
 return _timestamp + 999
 return _timestamp

 @classmethod
 def _update_mgmt_data(cls, key, raw_data, pre_final_data=None):
 pre_final_data = pre_final_data or []
 final_data = []
 for _raw_data in raw_data:
 if not _raw_data.get('empty', True):
 _pre_dict = next((item for item in pre_final_data
 if item.get('timestamp') == _raw_data.get('start')),
 {'timestamp': _raw_data.get('start')})
 _pre_dict.update({key: round_double(_raw_data.get('avg'))})
 final_data.append(_pre_dict)
 return final_data

[docs] def list_data_mgmt(self):
 """Returns data from wrapanapi for the chart option selected"""
 self.load_chart_reference()
 dt = datetime.now()
 dt = dt.replace(hour=0, minute=0, second=0, microsecond=0)
 if self.option.get_interval(force_visible_text=True) == Option.IN_DAILY:
 bucket_duration = "1d"
 # sample date: 10/25/2016
 t_dt = datetime.strptime(self.option.get_date(), '%m/%d/%Y')
 dt = dt.replace(year=t_dt.year, month=t_dt.month, day=t_dt.day)
 start_dt = dt - timedelta(days=int(self.option.get_week()))
 stop_dt = dt.replace(hour=23, minute=59, second=59) - timedelta(days=1)
 elif self.option.get_interval(force_visible_text=True) == Option.IN_HOURLY:
 bucket_duration = "1h"
 # sample date: 10/25/2016
 t_dt = datetime.strptime(self.option.get_date(), '%m/%d/%Y')
 start_dt = dt.replace(year=t_dt.year, month=t_dt.month, day=t_dt.day)
 stop_dt = start_dt.replace(hour=23, minute=59, second=59)
 elif self.option.get_interval(force_visible_text=True) == Option.IN_MOST_RECENT_HOUR:
 bucket_duration = "1mn"
 # sample date: 2016-10-26 07:15:48 UTC to 2016-10-26 07:30:48 UTC
 date_range = self.option.get_range().split("to")
 start_dt = datetime.strptime(date_range[0].strip(), "%Y-%m-%d %H:%M:%S %Z")
 stop_dt = datetime.strptime(date_range[1].strip(), "%Y-%m-%d %H:%M:%S %Z")
 start = self._timestamp(dt=start_dt)
 end = self._timestamp(dt=stop_dt, end_time=True)
 return self._list_data_mgmt(start=start, end=end, bucket_duration=bucket_duration)

 def _list_data_mgmt(self, start, end, bucket_duration):
 page = self._utz_object.page
 mgmt = page.provider.mgmt
 page_type = page.taggable_type
 if page_type == "MiddlewareServer":
 feed_id = page.feed
 server_name = page.name
 raw_gauge_server = partial(mgmt.metric.list_gauge_server, feed_id=feed_id,
 server_id=server_name, bucket_duration=bucket_duration,
 start=start, end=end)
 raw_counter_server = partial(mgmt.metric.list_counter_server, feed_id=feed_id,
 server_id=server_name, bucket_duration=bucket_duration,
 start=start, end=end)
 elif page_type == "MiddlewareDatasource":
 feed_id = page.server.feed
 server_name = page.server.name
 resource_id = re.search(r'Datasource \[(.*?)\]', page.name).group(1)
 raw_gauge_ds = partial(mgmt.metric.list_gauge_datasource, feed_id=feed_id,
 server_id=server_name, resource_id=resource_id,
 bucket_duration=bucket_duration, start=start, end=end)
 elif page_type == "MiddlewareMessaging":
 feed_id = page.server.feed
 server_name = page.server.name
 if page.name.startswith("JMS Topic"):
 resource_id = re.search(r'JMS Topic \[(.*?)\]', page.name).group(1)
 is_topic = True
 elif page.name.startswith("JMS Queue"):
 resource_id = re.search(r'JMS Queue \[(.*?)\]', page.name).group(1)
 is_topic = False
 raw_jms = partial(mgmt.metric.list_jms, feed_id=feed_id, server_id=server_name,
 name=resource_id, bucket_duration=bucket_duration, start=start,
 end=end)

 # MiddlewareServer
 if self.id == "jvm_heap_usage_bytes" and page_type == "MiddlewareServer":
 raw_used = raw_gauge_server(metric_enum=MetricEnumGauge.SVR_MEM_HEAP_USED)
 raw_max = raw_gauge_server(metric_enum=MetricEnumGauge.SVR_MEM_HEAP_MAX)
 raw_committed = raw_gauge_server(metric_enum=MetricEnumGauge.SVR_MEM_HEAP_COMMITTED)
 # merge all data
 final_data = self._update_mgmt_data(key='used', raw_data=raw_used)
 final_data = self._update_mgmt_data(key='maximum', raw_data=raw_max,
 pre_final_data=final_data)
 final_data = self._update_mgmt_data(key='committed', raw_data=raw_committed,
 pre_final_data=final_data)
 return final_data
 # MiddlewareServer
 elif self.id == 'jvm_non_heap_usage_bytes' and page_type == "MiddlewareServer":
 raw_used = raw_gauge_server(metric_enum=MetricEnumGauge.SVR_MEM_NON_HEAP_USED)
 raw_committed = raw_gauge_server(metric_enum=MetricEnumGauge.SVR_MEM_NON_HEAP_COMMITTED)
 # merge all data
 final_data = self._update_mgmt_data(key='used', raw_data=raw_used)
 final_data = self._update_mgmt_data(key='committed', raw_data=raw_committed,
 pre_final_data=final_data)
 return final_data
 # MiddlewareServer
 elif self.id == 'gc_duration_ms' and page_type == "MiddlewareServer":
 raw_duration = raw_counter_server(
 metric_enum=MetricEnumCounter.SVR_MEM_ACCUMULATED_GC_DURATION, rate=True)
 return self._update_mgmt_data(key='duration', raw_data=raw_duration)
 # MiddlewareServer
 elif self.id == 'web_sessions' and page_type == "MiddlewareServer":
 raw_active = raw_gauge_server(
 metric_enum=MetricEnumGauge.SVR_WEB_AGGREGATED_ACTIVE_WEB_SESSIONS)
 raw_expired = raw_counter_server(
 metric_enum=MetricEnumCounter.SVR_WEB_AGGREGATED_EXPIRED_WEB_SESSIONS)
 raw_rejected = raw_counter_server(
 metric_enum=MetricEnumCounter.SVR_WEB_AGGREGATED_REJECTED_WEB_SESSIONS)
 final_data = self._update_mgmt_data(key='active', raw_data=raw_active)
 final_data = self._update_mgmt_data(key='expired', raw_data=raw_expired,
 pre_final_data=final_data)
 final_data = self._update_mgmt_data(key='rejected', raw_data=raw_rejected,
 pre_final_data=final_data)
 return final_data
 # MiddlewareServer
 elif self.id == 'transactions' and page_type == "MiddlewareServer":
 raw_committed = raw_counter_server(
 metric_enum=MetricEnumCounter.SVR_TXN_NUMBER_OF_COMMITTED_TRANSACTIONS)
 raw_timedout = raw_counter_server(
 metric_enum=MetricEnumCounter.SVR_TXN_NUMBER_OF_TIMED_OUT_TRANSACTIONS)
 raw_heuristic = raw_counter_server(
 metric_enum=MetricEnumCounter.SVR_TXN_NUMBER_OF_HEURISTICS)
 raw_application_failure = raw_counter_server(
 metric_enum=MetricEnumCounter.SVR_TXN_NUMBER_OF_APPLICATION_ROLLBACKS)
 raw_aborted = raw_counter_server(
 metric_enum=MetricEnumCounter.SVR_TXN_NUMBER_OF_ABORTED_TRANSACTIONS)
 raw_resource_failure = raw_counter_server(
 metric_enum=MetricEnumCounter.SVR_TXN_NUMBER_OF_RESOURCE_ROLLBACKS)
 final_data = self._update_mgmt_data(key='committed', raw_data=raw_committed)
 final_data = self._update_mgmt_data(key='timedout', raw_data=raw_timedout,
 pre_final_data=final_data)
 final_data = self._update_mgmt_data(key='heuristic', raw_data=raw_heuristic,
 pre_final_data=final_data)
 final_data = self._update_mgmt_data(key='application_failure',
 raw_data=raw_application_failure,
 pre_final_data=final_data)
 final_data = self._update_mgmt_data(key='aborted', raw_data=raw_aborted,
 pre_final_data=final_data)
 final_data = self._update_mgmt_data(key='resource_failure',
 raw_data=raw_resource_failure,
 pre_final_data=final_data)
 return final_data
 # MiddlewareDatasource
 elif self.id == 'availability_connections' and page_type == "MiddlewareDatasource":
 raw_available = raw_gauge_ds(metric_enum=MetricEnumGauge.DS_POOL_AVAILABLE_COUNT)
 raw_in_use = raw_gauge_ds(metric_enum=MetricEnumGauge.DS_POOL_IN_USE_COUNT)
 raw_time_out = raw_gauge_ds(metric_enum=MetricEnumGauge.DS_POOL_TIMED_OUT)
 final_data = self._update_mgmt_data(key='available', raw_data=raw_available)
 final_data = self._update_mgmt_data(key='in_use', raw_data=raw_in_use,
 pre_final_data=final_data)
 final_data = self._update_mgmt_data(key='timeout', raw_data=raw_time_out,
 pre_final_data=final_data)
 return final_data
 # MiddlewareDatasource
 elif self.id == 'responsiveness_ms' and page_type == "MiddlewareDatasource":
 raw_get_time_avg = raw_gauge_ds(metric_enum=MetricEnumGauge.DS_POOL_AVERAGE_GET_TIME)
 raw_creation_time_avg = raw_gauge_ds(
 metric_enum=MetricEnumGauge.DS_POOL_AVERAGE_CREATION_TIME)
 raw_wait_time_max = raw_gauge_ds(metric_enum=MetricEnumGauge.DS_POOL_MAX_WAIT_TIME)
 final_data = self._update_mgmt_data(key='get_time_avg', raw_data=raw_get_time_avg)
 final_data = self._update_mgmt_data(key='creation_time_avg',
 raw_data=raw_creation_time_avg,
 pre_final_data=final_data)
 final_data = self._update_mgmt_data(key='wait_time_max', raw_data=raw_wait_time_max,
 pre_final_data=final_data)
 return final_data
 # MiddlewareMessaging
 elif self.id == 'messages' and page_type == "MiddlewareMessaging":
 if is_topic:
 raw_delivering_message_count = raw_jms(
 metric_enum=MetricEnumGauge.JMS_TOPIC_DELIVERING_COUNT)
 raw_durable_message_count = raw_jms(
 metric_enum=MetricEnumGauge.JMS_TOPIC_DURABLE_MESSAGE_COUNT)
 raw_messages_count = raw_jms(
 metric_enum=MetricEnumGauge.JMS_TOPIC_MESSAGE_COUNT)
 raw_messages_added = raw_jms(
 metric_enum=MetricEnumCounter.JMS_TOPIC_MESSAGES_ADDED)
 raw_non_durable_messages_count = raw_jms(
 metric_enum=MetricEnumGauge.JMS_TOPIC_NON_DURABLE_MESSAGE_COUNT)
 final_data = self._update_mgmt_data(key='delivering_message_count',
 raw_data=raw_delivering_message_count)
 final_data = self._update_mgmt_data(key='durable_message_count',
 raw_data=raw_durable_message_count,
 pre_final_data=final_data)
 final_data = self._update_mgmt_data(key='message_count',
 raw_data=raw_messages_count,
 pre_final_data=final_data)
 final_data = self._update_mgmt_data(key='messages_added',
 raw_data=raw_messages_added,
 pre_final_data=final_data)
 final_data = self._update_mgmt_data(key='non_durable_messages_count',
 raw_data=raw_non_durable_messages_count,
 pre_final_data=final_data)
 return final_data
 else:
 raw_delivering_message_count = raw_jms(
 metric_enum=MetricEnumGauge.JMS_QUEUE_DELIVERING_COUNT)
 raw_messages_count = raw_jms(metric_enum=MetricEnumGauge.JMS_QUEUE_MESSAGE_COUNT)
 raw_messages_added = raw_jms(metric_enum=MetricEnumCounter.JMS_QUEUE_MESSAGES_ADDED)
 final_data = self._update_mgmt_data(key='delivering_message_count',
 raw_data=raw_delivering_message_count)
 final_data = self._update_mgmt_data(key='message_count',
 raw_data=raw_messages_count,
 pre_final_data=final_data)
 final_data = self._update_mgmt_data(key='messages_added',
 raw_data=raw_messages_added,
 pre_final_data=final_data)
 return final_data
 # MiddlewareMessaging
 elif self.id == 'subscribers' and page_type == "MiddlewareMessaging":
 raw_durable_subscription_count = raw_jms(
 metric_enum=MetricEnumGauge.JMS_TOPIC_DURABLE_SUBSCRIPTION_COUNT)
 raw_non_durable_subscription_count = raw_jms(
 metric_enum=MetricEnumGauge.JMS_TOPIC_NON_DURABLE_SUBSCRIPTION_COUNT)
 raw_subscription_count = raw_jms(
 metric_enum=MetricEnumGauge.JMS_TOPIC_SUBSCRIPTION_COUNT)
 final_data = self._update_mgmt_data(key='durable_subscription_count',
 raw_data=raw_durable_subscription_count)
 final_data = self._update_mgmt_data(key='non_durable_subscription_count',
 raw_data=raw_non_durable_subscription_count,
 pre_final_data=final_data)
 final_data = self._update_mgmt_data(key='subscription_count',
 raw_data=raw_subscription_count,
 pre_final_data=final_data)
 return final_data
 # MiddlewareMessaging
 elif self.id == 'consumers' and page_type == "MiddlewareMessaging":
 raw_consumers_count = raw_jms(metric_enum=MetricEnumGauge.JMS_QUEUE_CONSUMER_COUNT)
 final_data = self._update_mgmt_data(key='consumers_count',
 raw_data=raw_consumers_count)
 return final_data
 else:
 raise RuntimeError("For this chart list_data_mgmt, not implemented")

[docs]class Option(object):
 """Option class used to control options on chart page"""
 DD_BASE = "//dt[normalize-space(.)='{}']/following-sibling::dd"
 RANGE = DD_BASE.format("Range")
 TIME_PROFILE = DD_BASE.format("Time Profile")

 # Interval options
 IN_DAILY = "Daily"
 IN_HOURLY = "Hourly"
 IN_MOST_RECENT_HOUR = "Most Recent Hour"

 # Week options
 WK_1_WEEK = "1 Week"
 WK_2_WEEK = "2 Weeks"
 WK_3_WEEK = "3 Weeks"
 WK_4_WEEK = "4 Weeks"

 # Minute options
 MN_10_MINUTE = "10 Minutes"
 MN_15_MINUTE = "15 Minutes"
 MN_30_MINUTE = "30 Minutes"
 MN_45_MINUTE = "45 Minutes"
 MN_60_MINUTE = "1 Hour"

 def __init__(self, o):
 self._object = o
 self._interval = web_ui.AngularSelect(loc="perf_typ")
 self._date = web_ui.Calendar(name="miq_date_1")
 self._week = web_ui.AngularSelect(loc="perf_days")
 self._minute = web_ui.AngularSelect(loc="perf_minutes")

[docs] def get_date(self):
 """Returns selected date from options"""
 self._object.load_chart_reference()
 if sel.is_displayed(self._date):
 return sel.value(self._date)
 return None

 def _get_value(self, element, force_visible_text):
 self._object.load_chart_reference()
 if not sel.is_displayed(element):
 return None
 if force_visible_text:
 return element.first_selected_option_text
 return element.first_selected_option.value

[docs] def get_interval(self, force_visible_text=False):
 """
 Returns selected interval from options

 Args:
 force_visible_text: default it is False and returns internal value. If you want to get
 visible text pass this value as True
 """

 return self._get_value(element=self._interval, force_visible_text=force_visible_text)

[docs] def get_minute(self, force_visible_text=False):
 """
 Returns selected minute from options

 Args:
 force_visible_text: default it is False and returns internal value. If you want to get
 visible text pass this value as True
 """

 return self._get_value(element=self._minute, force_visible_text=force_visible_text)

[docs] def get_week(self, force_visible_text=False):
 """
 Returns selected week from options

 Args:
 force_visible_text: default it is False and returns internal value. If you want to get
 visible text pass this value as True
 """

 return self._get_value(element=self._week, force_visible_text=force_visible_text)

 def _get_dd(self, element_xpath):
 self._object.load_chart_reference()
 if len(sel.elements(element_xpath)) == 0:
 return None
 return sel.element(element_xpath).text

[docs] def get_range(self):
 """Returns selected range from options"""
 return self._get_dd(element_xpath=self.RANGE)

[docs] def get_time_profile(self):
 """Returns selected time profile from options"""
 return self._get_dd(element_xpath=self.TIME_PROFILE)

[docs] def to_string(self):
 """Returns selected options as string"""
 if self.get_interval() == self.IN_DAILY:
 return "interval:{}, date:{}, week:{}, time_profile:{}".format(self.get_interval(),
 self.get_date(),
 self.get_week(True),
 self.get_time_profile())
 elif self.get_interval() == self.IN_HOURLY:
 return "interval:{}, date:{}, time_profile:{}".format(self.get_interval(),
 self.get_date(),
 self.get_time_profile())
 elif self.get_interval() == self.IN_MOST_RECENT_HOUR:
 return "interval:{}, date:{}, minute:{}, time_profile:{}"\
 .format(self.get_interval(), self.get_date(), self.get_minute(),
 self.get_time_profile())
 else:
 raise RuntimeError("Unknown interval:[{}]".format(self.get_interval()))

 def _set(self, op_interval=None, op_date=None, op_week=None, op_minute=None,
 force_by_text=False):
 self._object.load_chart_reference()
 if op_interval and op_interval != self.get_interval(force_visible_text=force_by_text):
 if force_by_text:
 self._interval.select_by_visible_text(op_interval)
 else:
 self._interval.select_by_value(op_interval)
 sel.wait_for_ajax()
 if op_date and op_date != self.get_date():
 web_ui.fill(self._date, op_date)
 sel.wait_for_ajax()
 if op_week and op_week != self.get_week(force_visible_text=force_by_text):
 if force_by_text:
 self._week.select_by_visible_text(op_week)
 else:
 self._week.select_by_value(op_week)
 sel.wait_for_ajax()
 if op_minute and op_minute != self.get_minute(force_visible_text=force_by_text):
 if force_by_text:
 self._minute.select_by_visible_text(op_minute)
 else:
 self._minute.select_by_value(op_minute)
 sel.wait_for_ajax()
 self._object.load_chart_reference(force_reload=True)

[docs] def set_by_visible_text(self, op_interval=None, op_date=None, op_week=None, op_minute=None):
 """Set options by visible text
 Args:
 op_minute: Minute option
 op_date: Date option, date format should be as 'MM/DD/YYYY', ie: 11/21/2016
 op_interval: Set interval
 op_week: Set week
 """
 self._set(op_interval=op_interval, op_date=op_date, op_week=op_week, op_minute=op_minute,
 force_by_text=True)

[docs] def set_by_value(self, op_interval=None, op_date=None, op_week=None, op_minute=None):
 """Set options by internal value
 Args:
 op_minute: Minute option
 op_date: Date option, date format should be as 'MM/DD/YYYY', ie: 11/21/2016
 op_interval: Set interval
 op_week: Set week
 """
 self._set(op_interval=op_interval, op_date=op_date, op_week=op_week, op_minute=op_minute,
 force_by_text=False)

[docs]class Legend(object):
 """This class used to control/read legends """

 def __init__(self, name, legend_object):
 self._name = name
 self._l_object = legend_object

 def __repr__(self):
 return "<Legend '{}'>".format(self._name)

 @property
 def name(self):
 """User friendly name of the legend"""
 return self._name

 @property
 def is_active(self):
 """Returns True if the legend is on active state, otherwise False"""
 return 'c3-legend-item-hidden' not in self._l_object.get_attribute('class')

[docs] def set_active(self, active=True):
 """Enable or Disable legend

 Args:
 active: When we set True, Enables the legend. When we set False disables the legend.
 Default True
 """

 if active is not self.is_active:
 self._l_object.click()

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/cloud/tenant.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.cloud.tenant

""" Page functions for Tenant pages

:var list_page: A :py:class:`cfme.web_ui.Region` object describing elements on the list page.
:var details_page: A :py:class:`cfme.web_ui.Region` object describing elements on the detail page.
"""
from navmazing import NavigateToSibling, NavigateToAttribute
from widgetastic.exceptions import NoSuchElementException
from widgetastic.utils import VersionPick
from widgetastic.widget import View
from widgetastic_patternfly import BootstrapNav, Button, Dropdown, FlashMessages, Input
from widgetastic_manageiq import (
 Accordion, BootstrapSelect, BreadCrumb, ItemsToolBarViewSelector, PaginationPane, Search,
 SummaryTable, Table, Text, BaseNonInteractiveEntitiesView)

from cfme.base.ui import BaseLoggedInPage
from cfme.common import TagPageView, WidgetasticTaggable
from cfme.exceptions import TenantNotFound, DestinationNotFound
from cfme.web_ui import match_location
from cfme.utils.appliance import BaseCollection, BaseEntity
from cfme.utils.appliance.implementations.ui import CFMENavigateStep, navigator, navigate_to
from cfme.utils.log import logger
from cfme.utils.wait import wait_for, TimedOutError
from cfme.utils.version import Version

[docs]class TenantToolbar(View):
 """The toolbar on the tenants page"""
 configuration = Dropdown('Configuration')
 policy = Dropdown('Policy')
 download = Dropdown('Download')

 view_selector = View.nested(ItemsToolBarViewSelector)

[docs]class TenantDetailsToolbar(View):
 """The toolbar on the tenant details page"""
 configuration = Dropdown('Configuration')
 policy = Dropdown('Policy')
 download = Button('Download summary in PDF format')

[docs]class TenantDetailsAccordion(View):
 """The accordion on the details page"""
 @View.nested
 class properties(Accordion): # noqa
 nav = BootstrapNav('//div[@id="ems_prop"]//ul')

 @View.nested
 class relationships(Accordion): # noqa
 nav = BootstrapNav('//div[@id="ems_rel"]//ul')

[docs]class TenantEntities(View):
 """The entities on the main list page"""
 title = Text('//div[@id="main-content"]//h1')
 table = Table('//div[@id="list_grid"]//table')
 search = View.nested(Search)
 # element attributes changed from id to class in upstream-fine+, capture both with locator
 flash = FlashMessages('.//div[@id="flash_msg_div"]'
 '/div[@id="flash_text_div" or contains(@class, "flash_text_div")]')

[docs]class TenantDetailsEntities(View):
 """The entities on the details page"""
 breadcrumb = BreadCrumb()
 title = Text('//div[@id="main-content"]//h1')
 relationships = SummaryTable(title='Relationships')
 quotas = SummaryTable(title='Quotas')
 smart_management = SummaryTable(title='Smart Management')
 # element attributes changed from id to class in upstream-fine+, capture both with locator
 flash = FlashMessages('.//div[@id="flash_msg_div"]'
 '/div[@id="flash_text_div" or contains(@class, "flash_text_div")]')

[docs]class TenantEditEntities(View):
 """The entities on the add/edit page"""
 breadcrumb = BreadCrumb()
 title = Text('//div[@id="main-content"]//h1')

[docs]class TenantEditTagEntities(View):
 """The entities on the edit tags page"""
 breadcrumb = BreadCrumb()
 title = Text('#explorer_title_text')
 included_widgets = View.include(BaseNonInteractiveEntitiesView, use_parent=True)

[docs]class TenantView(BaseLoggedInPage):
 """A base view for all the Tenant pages"""
 @property
 def in_tenants(self):
 """Determine if the Tenants page is currently open"""
 return (
 self.logged_in_as_current_user and
 self.navigation.currently_selected == ['Compute', 'Clouds', 'Tenants'] and
 # TODO: Needs to be converted once there's a Widgetastic alternative
 match_location(controller='cloud_tenant', title='Cloud Tenants'))

[docs]class TenantAllView(TenantView):
 """The all tenants page"""
 toolbar = View.nested(TenantToolbar)
 entities = View.nested(TenantEntities)
 paginator = PaginationPane()

 @property
 def is_displayed(self):
 """This is page currently being displayed"""
 return self.in_tenants and self.entities.title.text == 'Cloud Tenants'

[docs]class TenantDetailsView(TenantView):
 """The details page for a tenant"""
 toolbar = View.nested(TenantDetailsToolbar)
 sidebar = View.nested(TenantDetailsAccordion)
 entities = View.nested(TenantDetailsEntities)

 @property
 def is_displayed(self):
 """Is this page currently being displayed"""
 expected_title = '{} (Summary)'.format(self.context['object'].name)
 return (
 self.in_tenants and
 self.entities.title.text == expected_title and
 self.entities.breadcrumb.active_location == expected_title)

[docs]class TenantAddForm(View):
 """The form on the Add page"""
 cloud_provider = BootstrapSelect(id='ems_id')
 name = Input('name')
 save_button = VersionPick({
 Version.lowest(): Button('Save'),
 Version.latest(): Button('Add')
 })
 reset_button = Button('Reset')
 cancel_button = Button('Cancel')

[docs]class TenantAddView(TenantView):
 """The add page for tenants"""
 entities = View.nested(TenantEditEntities)
 form = View.nested(TenantAddForm)

 @property
 def is_displayed(self):
 """Is this page currently being displayed"""
 expected_title = 'Add New Cloud Tenant'
 return (
 self.in_tenants and
 self.entities.title.text == expected_title and
 self.entities.breadcrumb.active_location == expected_title)

[docs]class TenantEditForm(View):
 """The form on the Edit page"""
 name = Input('name')
 save_button = Button('Save')
 reset_button = Button('Reset')
 cancel_button = Button('Cancel')

[docs]class TenantEditView(TenantView):
 """The edit page for tenants"""
 entities = View.nested(TenantEditEntities)
 form = View.nested(TenantEditForm)

 @property
 def is_displayed(self):
 """Is this page currently being displayed"""
 expected_title = 'Edit Cloud Tenant "{}"'.format(self.context['object'].name)
 return (
 self.in_tenants and
 self.entities.title.text == expected_title and
 self.entities.breadcrumb.active_location == expected_title)

[docs]class TenantCollection(BaseCollection):
 """Collection object for the :py:class:`cfme.cloud.tenant.Tenant`."""

 def __init__(self, appliance):
 self.appliance = appliance

[docs] def instantiate(self, name, provider):
 return Tenant(self, name, provider)

[docs] def create(self, name, provider, wait=True):
 """Add a cloud Tenant from the UI and return the Tenant object"""
 page = navigate_to(self, 'Add')
 changed = page.form.fill({
 'cloud_provider': provider.name,
 'name': name
 })
 if changed:
 page.form.save_button.click()
 else:
 page.form.cancel_button.click()

 all_view = self.create_view(TenantAllView)
 wait_for(lambda: all_view.is_displayed, num_sec=120, delay=3,
 fail_func=all_view.flush_widget_cache, handle_exception=True)

 if not changed:
 if self.appliance.version >= '5.8':
 msg = 'Add of Cloud Tenant was cancelled by the user'
 else:
 msg = 'Add of new Cloud Tenant was cancelled by the user'
 all_view.entities.flash.assert_success_message(msg)
 else:
 all_view.entities.flash.assert_success_message(
 'Cloud Tenant "{}" created'.format(name))

 tenant = self.instantiate(name, provider)

 if wait:
 def refresh():
 """Refresh a few things"""
 tenant.provider.refresh_provider_relationships()
 all_view.flush_widget_cache()
 self.browser.refresh()

 wait_for(lambda: tenant.exists, timeout=600,
 message='Wait for cloud tenant to appear',
 delay=10, fail_func=refresh)

 return tenant

[docs] def delete(self, *tenants):
 """Delete one or more Tenants from the list of the Tenants

 Args:
 list of the `cfme.cloud.tenant.Tenant` objects
 """

 tenants = list(tenants)
 checked_tenants = []
 view = navigate_to(self, 'All')
 # double check we're in List View
 view.toolbar.view_selector.select('List View')
 if not view.entities.table.is_displayed:
 raise ValueError('No Tenants found')
 for row in view.entities.table:
 for tenant in tenants:
 if tenant.name == row.name.text:
 checked_tenants.append(tenant)
 row[0].check()
 break
 if set(tenants) == set(checked_tenants):
 break
 if set(tenants) != set(checked_tenants):
 raise ValueError('Some tenants were not found in the UI')
 view.toolbar.configuration.item_select('Delete Cloud Tenants', handle_alert=True)
 for tenant in tenants:
 tenant.wait_for_disappear()
 view.entities.flash.assert_no_error()

 # TODO: Assert deletion flash message for selected tenants
 # it is not shown in current UI, so not asserting

[docs]class Tenant(BaseEntity, WidgetasticTaggable):
 '''Tenant Class'''
 _param_name = 'Tenant'

 def __init__(self, collection, name, provider):
 """Base class for a Tenant"""
 self.name = name
 self.provider = provider
 self.collection = collection
 self.appliance = self.collection.appliance

[docs] def wait_for_disappear(self, timeout=300):
 self.provider.refresh_provider_relationships()
 try:
 return wait_for(lambda: self.exists,
 fail_condition=True,
 timeout=timeout,
 message='Wait for cloud tenant to disappear',
 delay=10,
 fail_func=self.browser.refresh)
 except TimedOutError:
 logger.error('Timed out waiting for tenant to disappear, continuing')

[docs] def wait_for_appear(self, timeout=600):
 self.provider.refresh_provider_relationships()
 return wait_for(lambda: self.exists, timeout=timeout, delay=10,
 message='Wait for cloud tenant to appear', fail_func=self.browser.refresh)

[docs] def update(self, updates):
 view = navigate_to(self, 'Edit')
 updated_name = updates.get('name', self.name + '_edited')
 view.form.fill({'name': updated_name})
 view.form.save_button.click()
 self.provider.refresh_provider_relationships()
 return wait_for(lambda: self.exists, fail_condition=False, timeout=600,
 message='Wait for cloud tenant to appear', delay=10,
 fail_func=self.browser.refresh)

[docs] def delete(self, wait=True):
 """Delete the tenant"""

 try:
 view = navigate_to(self, 'Details')
 except NoSuchElementException as ex:
 # Catch general navigation exceptions and raise
 raise TenantNotFound(
 'Exception while navigating to Tenant details: {}'.format(ex))
 view.toolbar.configuration.item_select('Delete Cloud Tenant')

 result = view.entities.flash.assert_success_message(
 'Delete initiated for 1 Cloud Tenant.')
 if wait:
 self.provider.refresh_provider_relationships()
 result = self.wait_for_disappear(600)
 return result

 @property
 def exists(self):
 try:
 navigate_to(self, 'Details')
 except NoSuchElementException:
 return False
 else:
 return True

@navigator.register(TenantCollection, 'All')
[docs]class TenantAll(CFMENavigateStep):
 VIEW = TenantAllView
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self, *args, **kwargs):
 """Go to the All page"""
 self.prerequisite_view.navigation.select('Compute', 'Clouds', 'Tenants')

[docs] def resetter(self):
 """Reset the view"""
 self.view.toolbar.view_selector.select('List View')
 if self.view.entities.table.is_displayed:
 self.view.paginator.check_all()
 self.view.paginator.uncheck_all()

@navigator.register(Tenant, 'Details')
[docs]class TenantDetails(CFMENavigateStep):
 VIEW = TenantDetailsView
 prerequisite = NavigateToAttribute('collection', 'All')

[docs] def step(self, *args, **kwargs):
 """Navigate to the details page"""
 self.prerequisite_view.toolbar.view_selector.select('List View')
 row = self.prerequisite_view.paginator.find_row_on_pages(
 self.prerequisite_view.entities.table, name=self.obj.name)
 row.click()

[docs] def resetter(self):
 """Reset the view"""
 self.view.browser.refresh()

@navigator.register(TenantCollection, 'Add')
[docs]class TenantAdd(CFMENavigateStep):
 VIEW = TenantAddView
 prerequisite = NavigateToSibling('All')

[docs] def step(self, *args, **kwargs):
 """Navigate to the Add page"""
 if self.obj.appliance.version >= '5.7':
 self.prerequisite_view.toolbar.configuration.item_select('Create Cloud Tenant')
 else:
 raise DestinationNotFound('Cannot add Cloud Tenants in CFME < 5.7')

@navigator.register(Tenant, 'Edit')
[docs]class TenantEdit(CFMENavigateStep):
 VIEW = TenantEditView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self, *args, **kwargs):
 """Navigate to the edit page"""
 if self.obj.appliance.version >= '5.7':
 self.prerequisite_view.toolbar.configuration.item_select('Edit Cloud Tenant')
 else:
 raise DestinationNotFound('Cannot edit Cloud Tenants in CFME < 5.7')

@navigator.register(Tenant, 'EditTagsFromDetails')
[docs]class TenantEditTags(CFMENavigateStep):
 VIEW = TagPageView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self, *args, **kwargs):
 """Navigate to the edit tags page"""
 self.prerequisite_view.toolbar.policy.item_select('Edit Tags')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/web_ui/jstimelines.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.web_ui »

 Source code for cfme.web_ui.jstimelines

"""
A Timelines object represents the Timelines widget in CFME using JS integration
instead of relying on WebElements

Args:
 loc: A locator for the Timelines element, usually the div with
 id miq_timeline.
"""
import os
import re

import cfme.fixtures.pytest_selenium as sel
from cfme.utils.pretty import Pretty

[docs]class Object(Pretty):
 """
 A generic timelines object.

 Args:
 element: A WebElement for the event.
 """
 pretty_attrs = ['element']

 def __init__(self, element):
 self.element = element

[docs] def locate(self):
 return self.element

[docs]class Event(Object):
 """
 An event object.
 """
 window_loc = '//div[@class="timeline-event-bubble-title"]/../..'
 close_button = "{}/div[contains(@style, 'close-button')]".format(window_loc)
 data_block = '{}//div[@class="timeline-event-bubble-body"]'.format(window_loc)

 @property
 def image(self):
 """ Returns the image name of an event. """
 icon = self.element['_icon']
 return os.path.split(icon)[1]

[docs] def block_info(self):
 """ Attempts to return a dict with the information from the popup. """
 data = {}

 elem = self.element['_description'].replace("
", "\n")
 elem = elem.replace("
", "\n")
 elem = re.sub('<.*?>', '', elem)

 text_elements = elem.split("\n")
 for line in text_elements:
 line += " "
 kv = line.split(": ")
 if len(kv) == 1:
 if ':' not in kv[0]:
 data['title'] = kv[0].strip()
 else:
 data[kv[0]] = None
 else:
 data[kv[0]] = kv[1].strip()
 return data

def _list_events():
 try:
 soutput = sel.execute_script('return tl._bands[0]._eventSource._events._events._a')
 return soutput
 except sel.WebDriverException:
 return []

[docs]def find_visible_events_for_vm(vm_name):
 """ Finds all events for a given vm.

 Args:
 vm_name: The vm name.
 """
 events_list = []
 for event in events():
 info = event.block_info()
 if info.get('title') == vm_name:
 events_list.append(event)
 return events_list

[docs]def events():
 """ A generator yielding all events. """
 for el in _list_events():
 yield Event(el)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/cloud/stack.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.cloud.stack

from navmazing import NavigateToSibling, NavigateToAttribute
from widgetastic.widget import View
from widgetastic.exceptions import NoSuchElementException
from widgetastic_patternfly import Button, Dropdown, FlashMessages, BootstrapNav
from widgetastic_manageiq import (
 Accordion, BreadCrumb, ItemsToolBarViewSelector, PaginationPane, Search,
 SummaryTable, Table, Text)

from cfme.base.ui import BaseLoggedInPage
from cfme.common import TagPageView, WidgetasticTaggable
from cfme.exceptions import CandidateNotFound
from cfme.web_ui import match_location
from cfme.utils.appliance import BaseCollection, BaseEntity
from cfme.utils.appliance.implementations.ui import navigator, navigate_to, CFMENavigateStep
from cfme.utils.pretty import Pretty
from cfme.utils.wait import wait_for

[docs]class StackToolbar(View):
 """The toolbar on the stacks page"""
 configuration = Dropdown('Configuration')
 policy = Dropdown('Policy')
 lifecycle = Dropdown('Lifecycle')
 download = Dropdown('Download')

 view_selector = View.nested(ItemsToolBarViewSelector)

[docs]class StackDetailsToolbar(View):
 """The toolbar on the stacks detail page"""
 configuration = Dropdown('Configuration')
 policy = Dropdown('Policy')
 lifecycle = Dropdown('Lifecycle')
 download = Button('Download summary in PDF format')

[docs]class StackSubpageToolbar(View):
 """The toolbar on the sub pages, like resources and security groups"""
 show_summary = Button('Show {} Summary') # TODO How to get name in there?
 configuration = Dropdown('Configuration')
 policy = Dropdown('Policy')
 lifecycle = Dropdown('Lifecycle')

[docs]class StackDetailsAccordion(View):
 """The accordion on the details page"""
 @View.nested
 class properties(Accordion): # noqa
 nav = BootstrapNav('//div[@id="stack_prop"]//ul')

 @View.nested
 class relationships(Accordion): # noqa
 nav = BootstrapNav('//div[@id="stack_rel"]//ul')

[docs]class StackEntities(View):
 """The entties on the main list page"""
 title = Text('//div[@id="main-content"]//h1')
 table = Table("//div[@id='gtl_div']//table")
 search = View.nested(Search)
 # element attributes changed from id to class in upstream-fine+, capture both with locator
 flash = FlashMessages('.//div[@id="flash_msg_div"]'
 '/div[@id="flash_text_div" or contains(@class, "flash_text_div")]')

[docs]class StackDetailsEntities(View):
 """The entties on the detail page"""
 breadcrumb = BreadCrumb()
 title = Text('//div[@id="main-content"]//h1')
 properties = SummaryTable(title='Properties')
 lifecycle = SummaryTable(title='Lifecycle')
 relationships = SummaryTable(title='Relationships')
 smart_management = SummaryTable(title='Smart Management')
 # element attributes changed from id to class in upstream-fine+, capture both with locator
 flash = FlashMessages('.//div[@id="flash_msg_div"]'
 '/div[@id="flash_text_div" or contains(@class, "flash_text_div")]')

[docs]class StackSecurityGroupsEntities(View):
 """The entities of the resources page"""
 breadcrumb = BreadCrumb()
 title = Text('//div[@id="main-content"]//h1')
 security_groups = Table('//div[@id="list_grid"]//table')
 # element attributes changed from id to class in upstream-fine+, capture both with locator
 flash = FlashMessages('.//div[@id="flash_msg_div"]'
 '/div[@id="flash_text_div" or contains(@class, "flash_text_div")]')

[docs]class StackParametersEntities(View):
 """The entities of the resources page"""
 breadcrumb = BreadCrumb()
 title = Text('//div[@id="main-content"]//h1')
 parameters = Table('//div[@id="list_grid"]//table')
 # element attributes changed from id to class in upstream-fine+, capture both with locator
 flash = FlashMessages('.//div[@id="flash_msg_div"]'
 '/div[@id="flash_text_div" or contains(@class, "flash_text_div")]')

[docs]class StackOutputsEntities(View):
 """The entities of the resources page"""
 breadcrumb = BreadCrumb()
 title = Text('//div[@id="main-content"]//h1')
 outputs = Table('//div[@id="list_grid"]//table')
 # element attributes changed from id to class in upstream-fine+, capture both with locator
 flash = FlashMessages('.//div[@id="flash_msg_div"]'
 '/div[@id="flash_text_div" or contains(@class, "flash_text_div")]')

[docs]class StackResourcesEntities(View):
 """The entities of the resources page"""
 breadcrumb = BreadCrumb()
 title = Text('//div[@id="main-content"]//h1')
 resources = Table('//div[@id="list_grid"]//table')
 # element attributes changed from id to class in upstream-fine+, capture both with locator
 flash = FlashMessages('.//div[@id="flash_msg_div"]'
 '/div[@id="flash_text_div" or contains(@class, "flash_text_div")]')

[docs]class StackView(BaseLoggedInPage):
 """The base view for header and nav checking"""
 @property
 def in_stacks(self):
 """Determine if the Stacks page is currently open"""
 return (
 self.logged_in_as_current_user and
 self.navigation.currently_selected == ['Compute', 'Clouds', 'Stacks'] and
 # TODO: Needs to be converted once there's a Widgetastic alternative
 match_location(controller='orchestration_stack', title='Stacks'))

[docs]class StackAllView(StackView):
 """The main list page"""
 toolbar = View.nested(StackToolbar)
 entities = View.nested(StackEntities)
 paginator = PaginationPane()

 @property
 def is_displayed(self):
 """Is this page currently being displayed"""
 return self.in_stacks and self.entities.title.text == 'Orchestration Stacks'

[docs]class StackDetailsView(StackView):
 """The detail page"""
 toolbar = View.nested(StackDetailsToolbar)
 sidebar = View.nested(StackDetailsAccordion)
 entities = View.nested(StackDetailsEntities)

 @property
 def is_displayed(self):
 """Is this page currently being displayed"""
 expected_title = '{} (Summary)'.format(self.context['object'].name)
 return (
 self.in_stacks and
 self.entities.title.text == expected_title and
 self.entities.breadcrumb.active_location == expected_title)

[docs]class StackSecurityGroupsView(StackView):
 """The resources page"""
 toolbar = View.nested(StackSubpageToolbar)
 sidebar = View.nested(StackDetailsAccordion)
 entities = View.nested(StackSecurityGroupsEntities)

 @property
 def is_displayed(self):
 """Is this page currently being displayed"""
 expected_title = '{} (Security Groups)'.format(self.context['object'].name)
 return (
 self.in_stacks and
 self.entities.title.text == expected_title and
 self.entities.breadcrumb.active_location == expected_title)

[docs]class StackParametersView(StackView):
 """The resources page"""
 toolbar = View.nested(StackSubpageToolbar)
 sidebar = View.nested(StackDetailsAccordion)
 entities = View.nested(StackParametersEntities)

 @property
 def is_displayed(self):
 """Is this page currently being displayed"""
 expected_title = '{} (Parameters)'.format(self.context['object'].name)
 return (
 self.in_stacks and
 self.entities.title.text == expected_title and
 self.entities.breadcrumb.active_location == expected_title)

[docs]class StackOutputsView(StackView):
 """The resources page"""
 toolbar = View.nested(StackSubpageToolbar)
 sidebar = View.nested(StackDetailsAccordion)
 entities = View.nested(StackOutputsEntities)

 @property
 def is_displayed(self):
 """Is this page currently being displayed"""
 expected_title = '{} (Outputs)'.format(self.context['object'].name)
 return (
 self.in_stacks and
 self.entities.title.text == expected_title and
 self.entities.breadcrumb.active_location == expected_title)

[docs]class StackResourcesView(StackView):
 """The resources page"""
 toolbar = View.nested(StackSubpageToolbar)
 sidebar = View.nested(StackDetailsAccordion)
 entities = View.nested(StackResourcesEntities)

 @property
 def is_displayed(self):
 """Is this page currently being displayed"""
 expected_title = '{} (Resources)'.format(self.context['object'].name)
 return (
 self.in_stacks and
 self.entities.title.text == expected_title and
 self.entities.breadcrumb.active_location == expected_title)

[docs]class StackCollection(BaseCollection):
 """Collection class for cfme.cloud.stack.Stack"""

 def __init__(self, appliance):
 self.appliance = appliance

[docs] def instantiate(self, name, provider, quad_name=None):
 return Stack(self, name, provider, quad_name=quad_name)

[docs] def delete(self, *stacks):
 stacks = list(stacks)
 checked_stacks = list()

 view = navigate_to(self, 'All')
 view.toolbar.view_selector.select('List View')

 for stack in stacks:
 try:
 row = view.paginator.find_row_on_pages(view.entities.table, name=stack.name)
 row[0].check()
 checked_stacks.append(stack)
 except NoSuchElementException:
 break

 if set(stacks) == set(checked_stacks):
 view.toolbar.configuration.item_select('Remove Orchestration Stacks', handle_alert=True)
 view.entities.flash.assert_no_error()
 flash_msg = \
 'Delete initiated for {} Orchestration Stacks from the CFME Database'.format(
 len(stacks))
 view.entities.flash.assert_success_message(flash_msg)

 for stack in stacks:
 wait_for(lambda: not stack.exists, num_sec=15 * 60,
 delay=30, message='Wait for stack to be deleted')
 else:
 raise ValueError('Some Stacks not found in the UI')

[docs]class Stack(Pretty, BaseEntity, WidgetasticTaggable):
 _param_name = "Stack"
 pretty_attrs = ['name']

 def __init__(self, collection, name, provider, quad_name=None):
 self.name = name
 self.quad_name = quad_name or 'stack'
 self.provider = provider
 self.collection = collection
 self.appliance = self.collection.appliance

 @property
 def exists(self):
 view = navigate_to(self.collection, 'All')
 view.toolbar.view_selector.select('List View')
 try:
 view.paginator.find_row_on_pages(view.entities.table, name=self.name)
 return True
 except NoSuchElementException:
 return False

[docs] def delete(self):
 """Delete the stack from detail view"""
 view = navigate_to(self, 'Details')
 view.toolbar.configuration.item_select('Remove this Orchestration Stack', handle_alert=True)
 view.entities.flash.assert_success_message('The selected Orchestration Stacks was deleted')

 def refresh():
 """Refresh the view"""
 if self.provider:
 self.provider.refresh_provider_relationships()
 view.browser.selenium.refresh()
 view.flush_widget_cache()

 wait_for(lambda: not self.exists, fail_condition=False, fail_func=refresh, num_sec=15 * 60,
 delay=30, message='Wait for stack to be deleted')

[docs] def wait_for_exists(self):
 """Wait for the row to show up"""
 view = navigate_to(self.collection, 'All')

 def refresh():
 """Refresh the view"""
 if self.provider:
 self.provider.refresh_provider_relationships()
 view.browser.refresh()
 view.flush_widget_cache()

 wait_for(lambda: self.exists, fail_condition=False, fail_func=refresh, num_sec=15 * 60,
 delay=30, message='Wait for stack to exist')

[docs] def retire_stack(self, wait=True):
 view = navigate_to(self.collection, 'All')
 view.toolbar.view_selector.select('List View')
 row = view.paginator.find_row_on_pages(view.entities.table, name=self.name)
 row[0].check()
 view.toolbar.lifecycle.item_select('Retire selected Orchestration Stacks',
 handle_alert=True)
 view.entities.flash.assert_success_message('Retirement initiated for 1 Orchestration'
 ' Stack from the CFME Database')
 if wait:
 def refresh():
 """Refresh the view"""
 if self.provider:
 self.provider.refresh_provider_relationships()
 view.browser.refresh()
 view.flush_widget_cache()

 wait_for(lambda: not self.exists, fail_condition=False, fail_func=refresh, delay=30,
 num_sec=15 * 60, message='Wait for stack to be deleted')

@navigator.register(StackCollection, 'All')
[docs]class All(CFMENavigateStep):
 VIEW = StackAllView
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self, *args, **kwargs):
 """Go to the all page"""
 self.prerequisite_view.navigation.select('Compute', 'Clouds', 'Stacks')

[docs] def resetter(self):
 """Reset the view"""
 self.view.toolbar.view_selector.select('Grid View')
 self.view.paginator.check_all()
 self.view.paginator.uncheck_all()

@navigator.register(Stack, 'Details')
[docs]class Details(CFMENavigateStep):
 VIEW = StackDetailsView
 prerequisite = NavigateToAttribute('collection', 'All')

[docs] def step(self, *args, **kwargs):
 """Go to the details page"""
 self.prerequisite_view.toolbar.view_selector.select('List View')
 row = self.prerequisite_view.paginator.find_row_on_pages(
 self.prerequisite_view.entities.table, name=self.obj.name)
 row.click()

@navigator.register(Stack, 'EditTagsFromDetails')
[docs]class EditTags(CFMENavigateStep):
 VIEW = TagPageView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self, *args, **kwargs):
 """Go to the edit tags screen"""
 self.prerequisite_view.toolbar.policy.item_select('Edit Tags')

@navigator.register(Stack, 'RelationshipSecurityGroups')
[docs]class RelationshipsSecurityGroups(CFMENavigateStep):
 VIEW = StackSecurityGroupsView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.sidebar.relationships.open()
 try:
 self.prerequisite_view.sidebar.relationships.nav.select(
 title='Show all Security Groups')
 except NoSuchElementException:
 raise CandidateNotFound('No security groups for stack, cannot navigate')

@navigator.register(Stack, 'RelationshipParameters')
[docs]class RelationshipParameters(CFMENavigateStep):
 VIEW = StackParametersView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.sidebar.relationships.open()
 try:
 self.prerequisite_view.sidebar.relationships.nav.select(title='Show all Parameters')
 except NoSuchElementException:
 raise CandidateNotFound('No parameters for stack, cannot navigate')

@navigator.register(Stack, 'RelationshipOutputs')
[docs]class RelationshipOutputs(CFMENavigateStep):
 VIEW = StackOutputsView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.sidebar.relationships.open()
 try:
 self.prerequisite_view.sidebar.relationships.nav.select(title='Show all Outputs')
 except NoSuchElementException:
 raise CandidateNotFound('No outputs for stack, cannot navigate')

@navigator.register(Stack, 'RelationshipResources')
[docs]class RelationshipResources(CFMENavigateStep):
 VIEW = StackResourcesView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.sidebar.relationships.open()
 try:
 self.prerequisite_view.sidebar.relationships.nav.select(title='Show all Resources')
 except NoSuchElementException:
 raise CandidateNotFound('No resources for stack, cannot navigate')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/web_ui/splitter.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.web_ui »

 Source code for cfme.web_ui.splitter

from cfme.fixtures import pytest_selenium as sel

[docs]def pull_splitter_left():
 sel.click("//span[@class='fa fa-angle-left']")

[docs]def pull_splitter_right():
 sel.click("//span[@class='fa fa-angle-right']")

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/cloud/availability_zone.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.cloud.availability_zone

""" A page functions for Availability Zone
"""
from navmazing import NavigateToSibling, NavigateToAttribute
from widgetastic.widget import View
from widgetastic.exceptions import NoSuchElementException
from widgetastic_patternfly import Dropdown, Button

from cfme.base.login import BaseLoggedInPage
from cfme.common import TagPageView, WidgetasticTaggable
from cfme.exceptions import AvailabilityZoneNotFound
from cfme.web_ui import match_location
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import CFMENavigateStep, navigator
from widgetastic_manageiq import (
 TimelinesView, ItemsToolBarViewSelector, Text, Table, Search, PaginationPane, BreadCrumb,
 SummaryTable, Accordion, ManageIQTree)

[docs]class AvailabilityZoneToolBar(View):
 """View containing the toolbar widgets"""
 policy = Dropdown('Policy')
 download = Dropdown('Download') # Title attribute, no displayed text

 view_selector = View.nested(ItemsToolBarViewSelector)

[docs]class AvailabilityZoneDetailsToolBar(View):
 """View containing the toolbar widgets"""
 policy = Dropdown('Policy')
 monitoring = Dropdown('Monitoring')
 download = Button(title='Download summary in PDF format') # Title attribute, no displayed text

 view_selector = View.nested(ItemsToolBarViewSelector)

[docs]class AvailabilityZoneEntities(View):
 """View containing the widgets for the main content pane"""
 title = Text('//div[@id="main-content"]//h1')
 table = Table("//div[@id='gtl_div']//table")
 search = View.nested(Search)

[docs]class AvailabilityZoneDetailsEntities(View):
 """View containing the widgets for the main content pane on the details page"""
 breadcrumb = BreadCrumb()
 title = Text('//div[@id="main-content"]//h1')
 relationships = SummaryTable(title='Relationships')
 smart_management = SummaryTable(title='Smart Management')

[docs]class AvailabilityZoneDetailsAccordion(View):
 """View containing the accordion widgets for the left side pane on details view"""
 @View.nested
 class properties(Accordion): # noqa
 tree = ManageIQTree()

 @View.nested
 class relationships(Accordion): # noqa
 tree = ManageIQTree()

[docs]class AvailabilityZoneView(BaseLoggedInPage):
 """Bare bones base view for page header matching"""
 @property
 def in_availability_zones(self):
 return (
 self.logged_in_as_current_user and
 self.navigation.currently_selected == ['Compute', 'Clouds', 'Availability Zones'] and
 match_location(controller='availability_zone', title='Availability Zones'))

[docs]class AvailabilityZoneAllView(AvailabilityZoneView):
 """Collect the view components into a single view"""
 @property
 def is_displayed(self):
 return(
 self.in_availability_zones and
 self.entities.title.text == 'Availability Zones')

 toolbar = View.nested(AvailabilityZoneToolBar)
 entities = View.nested(AvailabilityZoneEntities)
 paginator = PaginationPane()

[docs]class AvailabilityZoneDetailsView(AvailabilityZoneView):
 """Collect the view components into a single view"""
 @property
 def is_displayed(self):
 expected_title = "{} (Summary)".format(self.context['object'].name)
 expected_detail = self.context['object'].provider.name
 return (
 self.in_availability_zones and
 self.entities.title.text == expected_title and
 self.entities.relationships.get_text_of('Cloud Provider') == expected_detail)

 toolbar = View.nested(AvailabilityZoneDetailsToolBar)
 sidebar = View.nested(AvailabilityZoneDetailsAccordion)
 entities = View.nested(AvailabilityZoneDetailsEntities)

[docs]class CloudAvailabilityZoneTimelinesView(TimelinesView, AvailabilityZoneView):
 @property
 def is_displayed(self):
 return (
 self.in_availability_zones and
 self.breadcrumb.active_location == 'Timelines' and
 "{} (Summary)".format(self.context['object'].name) in self.breadcrumb.locations and
 super(TimelinesView, self).is_displayed)

[docs]class AvailabilityZone(WidgetasticTaggable, Navigatable):
 _param_name = "AvailabilityZone"

 def __init__(self, name, provider, appliance=None):
 self.name = name
 self.provider = provider
 Navigatable.__init__(self, appliance=appliance)

@navigator.register(AvailabilityZone, 'All')
[docs]class AvailabilityZoneAll(CFMENavigateStep):
 VIEW = AvailabilityZoneAllView
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.navigation.select('Compute', 'Clouds', 'Availability Zones')

@navigator.register(AvailabilityZone, 'Details')
[docs]class AvailabilityZoneDetails(CFMENavigateStep):
 VIEW = AvailabilityZoneDetailsView
 prerequisite = NavigateToSibling('All')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.toolbar.view_selector.select('List View')
 try:
 row = self.prerequisite_view.paginator.find_row_on_pages(
 self.prerequisite_view.entities.table,
 name=self.obj.name,
 cloud_provider=self.obj.provider.name)
 except NoSuchElementException:
 raise AvailabilityZoneNotFound('Could not locate Availability Zone "{}" on provider {}'
 .format(self.obj.name, self.obj.provider.name))
 row.click()

@navigator.register(AvailabilityZone, 'EditTagsFromDetails')
[docs]class AvailabilityZoneEditTags(CFMENavigateStep):
 VIEW = TagPageView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.toolbar.policy.item_select('Edit Tags')

@navigator.register(AvailabilityZone, 'Timelines')
[docs]class AvailabilityZoneTimelines(CFMENavigateStep):
 VIEW = CloudAvailabilityZoneTimelinesView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.toolbar.monitoring.item_select('Timelines')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/cloud/instance.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.cloud.instance

from navmazing import NavigateToSibling, NavigateToAttribute
from riggerlib import recursive_update
from widgetastic.widget import View
from widgetastic_patternfly import Dropdown, Button
from widgetastic_manageiq import ManageIQTree, TimelinesView, Accordion

from cfme.base.login import BaseLoggedInPage
from cfme.common import TagPageView
from cfme.common.vm import VM
from cfme.common.vm_views import (
 ProvisionView, VMToolbar, VMEntities, VMDetailsEntities, RetirementView, EditView,
 SetOwnershipView, ManagementEngineView, ManagePoliciesView,
 PolicySimulationView)
from cfme.exceptions import InstanceNotFound, ItemNotFound
from cfme.web_ui import flash, match_location
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import navigate_to, CFMENavigateStep, navigator
from cfme.utils.log import logger
from cfme.utils.wait import wait_for

[docs]class InstanceDetailsToolbar(View):
 """
 The toolbar on the details screen for an instance
 """
 reload = Button(title='Reload current display')
 configuration = Dropdown('Configuration')
 policy = Dropdown('Policy')
 lifecycle = Dropdown('Lifecycle')
 monitoring = Dropdown('Monitoring')
 power = Dropdown('Instance Power Functions') # title
 download = Button(title='Download summary in PDF format')
 access = Dropdown("Access")

[docs]class InstanceAccordion(View):
 """
 The accordion on the instances page
 """
 @View.nested
 class instances_by_provider(Accordion): # noqa
 ACCORDION_NAME = 'Instances by Provider'
 tree = ManageIQTree()

 @View.nested
 class images_by_provider(Accordion): # noqa
 ACCORDION_NAME = 'Images by Provider'
 tree = ManageIQTree()

 @View.nested
 class instances(Accordion): # noqa
 ACCORDION_NAME = 'Instances'
 tree = ManageIQTree()

 @View.nested
 class images(Accordion): # noqa
 ACCORDION_NAME = 'Images'
 tree = ManageIQTree()

[docs]class CloudInstanceView(BaseLoggedInPage):
 """Base view for header/nav check, inherit for navigatable views"""
 @property
 def in_cloud_instance(self):
 return (self.logged_in_as_current_user and
 self.navigation.currently_selected == ['Compute', 'Clouds', 'Instances'] and
 match_location(controller='vm_cloud', title='Instances'))

[docs]class InstanceAllView(CloudInstanceView):
 """
 The collection page for instances
 """
 @property
 def is_displayed(self):
 return (
 self.in_cloud_instance and
 self.entities.title.text == 'All Instances' and
 self.sidebar.instances.is_opened)

 toolbar = View.nested(VMToolbar)
 sidebar = View.nested(InstanceAccordion)
 including_entities = View.include(VMEntities, use_parent=True)

[docs]class InstanceProviderAllView(CloudInstanceView):
 @property
 def is_displayed(self):
 return (
 self.in_cloud_instance and
 self.entities.title.text == 'Instances under Provider "{}"'
 .format(self.context['object'].provider.name) and
 self.sidebar.instances_by_provider.is_opened)

 toolbar = View.nested(VMToolbar)
 sidebar = View.nested(InstanceAccordion)
 including_entities = View.include(VMEntities, use_parent=True)

 @View.nested
 class instances_by_provider(Accordion): # noqa
 ACCORDION_NAME = 'Instances by Provider'
 tree = ManageIQTree()

[docs]class InstanceDetailsView(CloudInstanceView):
 @property
 def is_displayed(self):
 expected_name = self.context['object'].name
 expected_provider = self.context['object'].provider.name
 try:
 # Not displayed when the instance is archived
 relationship_provider_name = self.relationships_detail.get_text_of('Cloud Provider')
 except NameError:
 logger.warning('No "Cloud Provider" Relationship, assume instance view not displayed')
 return False
 return (
 self.in_cloud_instance and
 self.entities.title.text == 'Instance "{}"'.format(expected_name) and
 relationship_provider_name == expected_provider)

 toolbar = View.nested(InstanceDetailsToolbar)
 sidebar = View.nested(InstanceAccordion)
 entities = View.nested(VMDetailsEntities)

[docs]class InstanceTimelinesView(CloudInstanceView, TimelinesView):
 @property
 def is_displayed(self):
 return (
 super(CloudInstanceView, self).in_cloud_instance and
 super(TimelinesView, self).is_displayed)

[docs]class Instance(VM, Navigatable):
 """Represents a generic instance in CFME. This class is used if none of the inherited classes
 will match.

 Args:
 name: Name of the instance
 provider: :py:class:`cfme.cloud.provider.Provider` object
 template_name: Name of the template to use for provisioning
 appliance: :py:class: `utils.appliance.IPAppliance` object
 Note:
 This class cannot be instantiated. Use :py:func:`instance_factory` instead.
 """
 ALL_LIST_LOCATION = "clouds_instances"
 TO_RETIRE = "Retire this Instance"
 QUADICON_TYPE = "instance"
 VM_TYPE = "Instance"
 PROVISION_CANCEL = 'Add of new VM Provision Request was cancelled by the user'
 PROVISION_START = ('VM Provision Request was Submitted, you will be notified when your VMs '
 'are ready')

 REMOVE_SINGLE = 'Remove Instance'

 TO_OPEN_EDIT = "Edit this Instance"

 def __init__(self, name, provider, template_name=None, appliance=None):
 super(Instance, self).__init__(name=name, provider=provider, template_name=template_name)
 Navigatable.__init__(self, appliance=appliance)

[docs] def create(self, form_values, cancel=False):
 """Provisions an instance with the given properties through CFME

 Args:
 form_values: dictionary of form values for provisioning, structured into tabs

 Note:
 Calling create on a sub-class of instance will generate the properly formatted
 dictionary when the correct fields are supplied.
 """
 view = navigate_to(self, 'Provision')

 # Only support 1 security group for now
 # TODO: handle multiple
 if 'environment' in form_values and 'security_groups' in form_values['environment'] and \
 isinstance(form_values['environment']['security_groups'], (list, tuple)):

 first_group = form_values['environment']['security_groups'][0]
 recursive_update(form_values, {'environment': {'security_groups': first_group}})

 view.form.fill(form_values)

 if cancel:
 view.form.cancel_button.click()
 # Redirects to Instance All
 view = self.browser.create_view(InstanceAllView)
 wait_for(lambda: view.is_displayed, timeout=10, delay=2, message='wait for redirect')
 view.entities.flash.assert_success_message(self.PROVISION_CANCEL)
 view.entities.flash.assert_no_error()
 else:
 view.form.submit_button.click()
 # TODO this redirects to service.request, create_view on it when it exists for flash
 wait_for(flash.get_messages, fail_condition=[], timeout=10, delay=2,
 message='wait for Flash Success')
 flash.assert_success_message(self.PROVISION_START)

[docs] def update(self, values, cancel=False, reset=False):
 """Update cloud instance

 Args:
 values: Dictionary of form key/value pairs
 cancel: Boolean, cancel the form submission
 reset: Boolean, reset form after fill - returns immediately after reset
 Note:
 The edit form contains a 'Reset' button - if this is c
 """
 view = navigate_to(self, 'Edit')
 # form is the view's parent
 view.form.fill(values)
 if reset:
 view.form.reset_button.click()
 return
 else:
 button = view.form.cancel_button if cancel else view.form.submit_button
 button.click()

[docs] def on_details(self, force=False):
 """A function to determine if the browser is already on the proper instance details page.

 An instance may not be assigned to a provider if archived or orphaned
 If no provider is listed, default to False since we may be on the details page
 for an instance on the wrong provider.
 """
 if not force:
 return self.browser.create_view(InstanceDetailsView).is_displayed
 else:
 navigate_to(self, 'Details')
 return True

[docs] def get_vm_via_rest(self):
 # Try except block, because instances collection isn't available on 5.4
 try:
 instance = self.appliance.rest_api.collections.instances.get(name=self.name)
 except AttributeError:
 raise Exception("Collection instances isn't available")
 else:
 return instance

[docs] def get_collection_via_rest(self):
 return self.appliance.rest_api.collections.instances

[docs] def wait_for_instance_state_change(self, desired_state, timeout=900):
 """Wait for an instance to come to desired state.

 This function waits just the needed amount of time thanks to wait_for.

 Args:
 desired_state: A string or list of strings indicating desired state
 timeout: Specify amount of time (in seconds) to wait until TimedOutError is raised
 """

 def _looking_for_state_change():
 view = navigate_to(self, 'Details')
 current_state = view.entities.power_management.get_text_of("Power State")
 logger.info('Current Instance state: {}'.format(current_state))
 logger.info('Desired Instance state: {}'.format(desired_state))
 if isinstance(desired_state, (list, tuple)):
 return current_state in desired_state
 else:
 return current_state == desired_state

 return wait_for(_looking_for_state_change, num_sec=timeout, delay=15,
 message='Checking for instance state change',
 fail_func=self.provider.refresh_provider_relationships,
 handle_exception=True)

[docs] def find_quadicon(self, **kwargs):
 """Find and return a quadicon belonging to a specific instance

 TODO: remove this method and refactor callers to use view entities instead

 Args:
 Returns: entity of appropriate type
 """
 view = navigate_to(self, 'All')
 view.toolbar.view_selector.select('Grid View')

 try:
 return view.entities.get_entity(by_name=self.name, surf_pages=True)
 except ItemNotFound:
 raise InstanceNotFound("Instance '{}' not found in UI!".format(self.name))

 @property
 def exists(self):
 try:
 navigate_to(self, 'Details')
 return True
 except InstanceNotFound:
 return False

[docs] def power_control_from_cfme(self, *args, **kwargs):
 """Power controls a VM from within CFME using details or collection

 Raises:
 InstanceNotFound: the instance wasn't found when navigating
 OptionNotAvailable: option param is not visible or enabled
 """
 # TODO push this to common.vm when infra vm classes have widgets
 if not kwargs.get('option'):
 raise ValueError('Need to provide option for power_control_from_cfme, no default.')

 if kwargs.get('from_details', True):
 view = navigate_to(self, 'Details')
 else:
 view = navigate_to(self, 'AllForProvider')
 view.toolbar.view_selector.select('List View')
 try:
 row = view.entities.get_entity(by_name=self.name)
 except ItemNotFound:
 raise InstanceNotFound('Failed to find instance in table: {}'.format(self.name))
 row.check()

 # cancel is the kwarg, when true we want item_select to dismiss the alert, flip the bool
 view.toolbar.power.item_select(kwargs.get('option'),
 handle_alert=not kwargs.get('cancel', False))

[docs] def set_ownership(self, user=None, group=None, click_cancel=False, click_reset=False):
 """Set instance ownership

 TODO: collapse this back to common.vm after both subclasses converted to widgetastic
 Args:
 user (str): username for ownership
 group (str): groupname for ownership
 click_cancel (bool): Whether to cancel form submission
 click_reset (bool): Whether to reset form after filling
 """
 view = navigate_to(self, 'SetOwnership')
 fill_result = view.form.fill({
 'user_name': user,
 'group_name': group})
 if not fill_result:
 view.flash.assert_no_error()
 view.form.cancel_button.click()
 view = self.create_view(InstanceDetailsView)
 view.flash.assert_success_message('Set Ownership was cancelled by the user')
 view.flash.assert_no_error()
 return

 # Only if form changed
 if click_reset:
 view.form.reset_button.click()
 view.flash.assert_message('All changes have been reset', 'warning')
 # Cancel after reset
 assert view.form.is_displayed
 view.form.cancel_button.click()
 elif click_cancel:
 view.form.cancel_button.click()
 view.flash.assert_success_message('Set Ownership was cancelled by the user')
 view.flash.assert_no_error()
 else:
 # save the form
 view.form.save_button.click()
 view = self.create_view(InstanceDetailsView)
 view.flash.assert_success_message('Ownership saved for selected {}'
 .format(self.VM_TYPE))
 view.flash.assert_no_error()

[docs] def unset_ownership(self):
 """Remove user ownership and return group to EvmGroup-Administrator"""
 view = navigate_to(self, 'SetOwnership')
 fill_result = view.form.fill({
 'user_name': '<No Owner>', 'group_name': 'EvmGroup-administrator'
 })
 if fill_result:
 view.form.save_button.click()
 msg = 'Ownership saved for selected {}'.format(self.VM_TYPE)
 else:
 view.form.cancel_button.click()
 logger.warning('No change during unset_ownership')
 msg = 'Set Ownership was cancelled by the user'

 view = self.create_view(InstanceDetailsView)
 view.flash.assert_no_error()
 view.flash.assert_success_message(msg)

@navigator.register(Instance, 'All')
[docs]class All(CFMENavigateStep):
 VIEW = InstanceAllView
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self):
 self.prerequisite_view.navigation.select('Compute', 'Clouds', 'Instances')
 self.view.sidebar.instances.tree.click_path('All Instances')

[docs] def resetter(self, *args, **kwargs):
 # If a filter was applied, it will persist through navigation and needs to be cleared
 if self.view.adv_search_clear.is_displayed:
 logger.debug('Clearing advanced search filter')
 self.view.adv_search_clear.click()
 self.view.toolbar.reload.click()

@navigator.register(Instance, 'AllForProvider')
[docs]class AllForProvider(CFMENavigateStep):
 VIEW = InstanceProviderAllView
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.navigation.select('Compute', 'Clouds', 'Instances')
 self.view.sidebar.instances_by_provider.tree.click_path('Instances by Provider',
 self.obj.provider.name)

[docs] def resetter(self, *args, **kwargs):
 # If a filter was applied, it will persist through navigation and needs to be cleared
 if self.view.adv_search_clear.is_displayed:
 logger.debug('Clearing advanced search filter')
 self.view.adv_search_clear.click()
 self.view.toolbar.reload.click()

@navigator.register(Instance, 'Details')
[docs]class Details(CFMENavigateStep):
 VIEW = InstanceDetailsView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.toolbar.view_selector.select('List View')
 try:
 row = self.prerequisite_view.entities.get_entity(by_name=self.obj.name, surf_pages=True)
 except ItemNotFound:
 raise InstanceNotFound('Failed to locate instance with name "{}"'.format(self.obj.name))
 row.click()

[docs] def resetter(self, *args, **kwargs):
 self.view.toolbar.reload.click()

@navigator.register(Instance, 'Edit')
[docs]class Edit(CFMENavigateStep):
 VIEW = EditView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.toolbar.configuration.item_select('Edit this Instance')

@navigator.register(Instance, 'EditManagementEngineRelationship')
[docs]class EditManagementEngineRelationship(CFMENavigateStep):
 VIEW = ManagementEngineView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self, *args, **kwargs):
 configuration = self.prerequisite_view.toolbar.configuration
 configuration.item_select('Edit Management Engine Relationship')

@navigator.register(Instance, 'EditTagsFromDetails')
[docs]class EditTags(CFMENavigateStep):
 VIEW = TagPageView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.toolbar.policy.item_select('Edit Tags')

@navigator.register(Instance, 'ManagePolicies')
[docs]class ManagePolicies(CFMENavigateStep):
 VIEW = ManagePoliciesView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.toolbar.policy.item_select('Manage Policies')

@navigator.register(Instance, 'Provision')
[docs]class Provision(CFMENavigateStep):
 VIEW = ProvisionView
 prerequisite = NavigateToSibling('All')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.toolbar.lifecycle.item_select('Provision Instances')

@navigator.register(Instance, 'PolicySimulation')
[docs]class PolicySimulation(CFMENavigateStep):
 VIEW = PolicySimulationView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.toolbar.policy.item_select('Policy Simulation')

@navigator.register(Instance, 'SetOwnership')
[docs]class SetOwnership(CFMENavigateStep):
 VIEW = SetOwnershipView
 prerequisite = NavigateToSibling('Details')

 # No am_i_here because the page only indicates name and not provider
[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.toolbar.configuration.item_select('Set Ownership')

@navigator.register(Instance, 'SetRetirement')
[docs]class SetRetirement(CFMENavigateStep):
 VIEW = RetirementView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.toolbar.lifecycle.item_select('Set Retirement Date')

@navigator.register(Instance, 'Timelines')
[docs]class Timelines(CFMENavigateStep):
 VIEW = InstanceTimelinesView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.toolbar.monitoring.item_select('Timelines')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/web_ui/topology.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.web_ui »

 Source code for cfme.web_ui.topology

import re
from cfme.fixtures import pytest_selenium as sel
from selenium.common.exceptions import ElementNotVisibleException, StaleElementReferenceException
from cfme.utils import attributize_string
from cfme.utils.browser import ensure_browser_open
from wait_for import wait_for

[docs]class Topology(object):
 LEGENDS = '//kubernetes-topology-icon'
 ELEMENTS = '//kubernetes-topology-graph//*[name()="g"]'
 LINES = '//kubernetes-topology-graph//*[name()="line"]'

 def __init__(self, o):
 self._object = o
 self._legends = []
 self._elements = []
 self._lines = []
 self._el_ref = None
 self.search_box = None
 self.display_names = None
 self.reload()

 def __repr__(self):
 return "<Topology {}>".format(", ".join(self._legends))

[docs] def reload(self):
 ensure_browser_open()
 self._object.load_topology_page()
 self._reload()

[docs] def refresh(self):
 ensure_browser_open()
 sel.click("//button[contains(., 'Refresh')]")
 self._reload()

 def _is_el_movement_stopped(self):
 _el = TopologyElement(o=self, element=sel.elements(self.ELEMENTS)[-1])
 if _el.x == self._el_ref.x and _el.y == self._el_ref.y:
 return True
 self._el_ref = _el
 return False

[docs] def reload_elements(self):
 self._elements = []
 self._lines = []
 if len(sel.elements(self.ELEMENTS)) > 0:
 self._el_ref = TopologyElement(o=self, element=sel.elements(self.ELEMENTS)[-1])
 wait_for(lambda: self._is_el_movement_stopped(), delay=2, num_sec=30)

 for element in sel.elements(self.ELEMENTS):
 self._elements.append(TopologyElement(o=self, element=element))
 # load lines
 for line in sel.elements(self.LINES):
 self._lines.append(TopologyLine(element=line))

 def _reload(self):
 self._legends = []
 self.search_box = TopologySearchBox()
 self.display_names = TopologyDisplayNames()
 # load elements
 # we have to wait few seconds, initial few seconds elements are moving
 self.reload_elements()
 # load legends
 # remove old legends
 for legend_id in self._legends:
 try:
 delattr(self, legend_id)
 except AttributeError:
 pass
 # load available legends
 for legend in sel.elements(self.LEGENDS):
 legend_text = sel.text_sane(legend.find_element_by_tag_name('label'))
 legend_id = attributize_string(legend_text.strip())
 legend_object = TopologyLegend(name=legend_text, element=legend)
 setattr(self, legend_id, legend_object)
 self._legends.append(legend_id)

[docs] def __iter__(self):
 """This enables you to iterate through like it was a dictionary, just without .iteritems"""
 for legend_id in self._legends:
 yield (legend_id, getattr(self, legend_id))

 @property
 def legends(self):
 return self._legends

[docs] def elements(self, element_type=None):
 if element_type:
 return [el for el in self._elements if el.type == element_type]
 return self._elements

[docs] def lines(self, connection=None):
 if connection:
 return [ln for ln in self._lines if ln.connection == connection]
 return self._lines

[docs]class TopologyLegend(object):
 def __init__(self, name, element):
 self._name = name
 self._element = element

 @property
 def name(self):
 return self._name

 @property
 def is_active(self):
 return 'active' in self._element.get_attribute('class')

[docs] def set_active(self, active=True):
 if active != self.is_active:
 self._element.click()

[docs]class TopologyDisplayNames(object):
 DISPLAY_NAME = '|'.join([
 "//*[contains(@class, 'container_topology')]//label[contains(., 'Display Names')]/input",
 '//*[@id="box_display_names"]']) # [0] is not working on containers topology

 def __init__(self):
 self._el = sel.element(self.DISPLAY_NAME)

 @property
 def is_enabled(self):
 return self._el.is_selected()

[docs] def enable(self, enable=True):
 if self.is_enabled != enable:
 self._el.click()

[docs] def disable(self):
 self.enable(enable=False)

[docs]class TopologySearchBox(object):
 SEARCH_BOX = "//input[@id='search_topology']|//input[@id='search']"
 SEARCH_CLEAR = "//button[contains(@class, 'clear')]"
 SEARCH_SUBMIT = "//button[contains(@class, 'search-topology-button')]"

[docs] def clear(self):
 try:
 sel.element(self.SEARCH_CLEAR).click()
 except ElementNotVisibleException:
 pass

[docs] def submit(self):
 sel.element(self.SEARCH_SUBMIT).click()

[docs] def text(self, submit=True, text=None):
 if text is not None:
 self.clear()
 sel.element(self.SEARCH_BOX).send_keys(text)
 if submit:
 self.submit()
 else:
 return sel.element(self.SEARCH_BOX).text

[docs]class TopologyElement(object):
 def __init__(self, o, element):
 if element is None:
 raise KeyError('Element should not be None')
 self.sel_element = element
 self._object = o
 el_data = re.search('Name: (.*) Type: (.*) Status: (.*)', element.text)
 if len(el_data.groups()) != 3:
 raise RuntimeError('Unexpected element')
 self.name = el_data.group(1)
 self.type = el_data.group(2)
 self.status = el_data.group(3)
 self.x = round(float(element.get_attribute('cx')), 1)
 self.y = round(float(element.get_attribute('cy')), 1)

 def __repr__(self):
 return "<TopologyElement name:{}, type:{}, status:{}, x:{}, y:{}, is_hidden:{}>".format(
 self.name, self.type, self.status, self.x, self.y, self.is_hidden)

 @property
 def is_hidden(self):
 return 'opacity: 0.2' in self.sel_element.get_attribute('style')

 @property
 def parents(self):
 elements = []
 for line in [_line for _line in self._object.lines()
 if _line.x2 == self.x and _line.y2 == self.y]:
 for _el in self._object.elements():
 if _el.x == line.x1 and _el.y == line.y1:
 elements.append(_el)
 return elements

 @property
 def children(self):
 elements = []
 for line in [_line for _line in self._object.lines()
 if _line.x1 == self.x and _line.y1 == self.y]:
 for _el in self._object.elements():
 if _el.x == line.x2 and _el.y == line.y2:
 elements.append(_el)
 return elements

[docs] def double_click(self):
 sel.double_click(self.sel_element)

[docs] def is_displayed(self):
 try:
 return self.sel_element.is_displayed()
 except StaleElementReferenceException:
 return False

[docs]class TopologyLine(object):
 def __init__(self, element):
 if element is None:
 raise KeyError('Element should not be None')
 self.connection = element.get_attribute('class')
 self.x1 = round(float(element.get_attribute('x1')), 1)
 self.x2 = round(float(element.get_attribute('x2')), 1)
 self.y1 = round(float(element.get_attribute('y1')), 1)
 self.y2 = round(float(element.get_attribute('y2')), 1)

 def __repr__(self):
 return "<TopologyLine Connection:{}, x1,y1:{},{}, x2,y2:{},{}>".format(
 self.connection, self.x1, self.y1, self.x2, self.y2)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/intelligence/reports/widgets/report_widgets.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.intelligence.reports »

 		cfme.intelligence.reports.widgets »

 Source code for cfme.intelligence.reports.widgets.report_widgets

-*- coding: utf-8 -*-
"""Page model for Cloud Intel / Reports / Dashboard Widgets / Reports"""
from widgetastic_manageiq import Calendar
from widgetastic_patternfly import BootstrapSelect

from cfme.utils.appliance.implementations.ui import navigator
from . import (
 BaseDashboardReportWidget,
 BaseDashboardWidgetFormCommon,
 BaseEditDashboardWidgetStep,
 BaseEditDashboardWidgetView,
 BaseNewDashboardWidgetStep,
 BaseNewDashboardWidgetView
)

[docs]class ReportWidgetFormCommon(BaseDashboardWidgetFormCommon):

 # Report Options
 filter = BootstrapSelect("filter_typ")
 subfilter = BootstrapSelect("subfilter_typ")
 repfilter = BootstrapSelect("repfilter_typ")
 column1 = BootstrapSelect("chosen_pivot1")
 column2 = BootstrapSelect("chosen_pivot2")
 column3 = BootstrapSelect("chosen_pivot3")
 column4 = BootstrapSelect("chosen_pivot4")
 row_count = BootstrapSelect("row_count")
 # Timer
 run = BootstrapSelect("timer_typ")
 every = BootstrapSelect("timer_hours")
 time_zone = BootstrapSelect("time_zone")
 starting_date = Calendar("miq_date_1")
 starting_hour = BootstrapSelect("start_hour")
 starting_minute = BootstrapSelect("start_min")

[docs]class NewReportWidgetView(BaseNewDashboardWidgetView, ReportWidgetFormCommon):
 pass

[docs]class EditReportWidgetView(BaseEditDashboardWidgetView, ReportWidgetFormCommon):
 pass

[docs]class ReportWidget(BaseDashboardReportWidget):

 TYPE = "Reports"
 TITLE = "Report"
 pretty_attrs = ["description", "filter", "visibility"]

 def __init__(self, title, description=None, active=None, filter=None, columns=None, rows=None,
 timer=None, visibility=None):
 self.title = title
 self.description = description
 self.active = active
 self.filter, self.subfilter, self.repfilter = filter
 for i in range(1, 5):
 try:
 setattr(self, "column{}".format(i), columns[i])
 except IndexError:
 setattr(self, "column{}".format(i), None)
 self.rows = rows
 self.timer = timer
 self.visibility = visibility

 @property
 def fill_dict(self):
 return {
 "widget_title": self.title,
 "description": self.description,
 "active": self.active,
 "filter": self.filter,
 "subfilter": self.subfilter,
 "repfilter": self.repfilter,
 "column1": self.column1,
 "column2": self.column2,
 "column3": self.column3,
 "column4": self.column4,
 "run": self.timer.get("run"),
 "every": self.timer.get("hours"),
 "time_zone": self.timer.get("time_zone"),
 "starting_date": self.timer.get("starting_date"),
 "starting_hour": self.timer.get("starting_hour"),
 "starting_minute": self.timer.get("starting_minute"),
 "rows": self.rows,
 "visibility": self.visibility
 }

@navigator.register(ReportWidget, "Add")
[docs]class NewReportWidget(BaseNewDashboardWidgetStep):
 VIEW = NewReportWidgetView

@navigator.register(ReportWidget, "Edit")
[docs]class EditReportWidget(BaseEditDashboardWidgetStep):
 VIEW = EditReportWidgetView

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/services/catalogs/ansible_catalog_item.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.services.catalogs »

 Source code for cfme.services.catalogs.ansible_catalog_item

from navmazing import NavigateToAttribute, NavigateToSibling
from widgetastic.utils import Parameter, ParametrizedLocator, ParametrizedString
from widgetastic.widget import Checkbox, Table, Text, View
from widgetastic_manageiq import FileInput, SummaryForm, SummaryTable
from widgetastic_patternfly import (
 BootstrapSelect as VanillaBootstrapSelect,
 BootstrapSwitch,
 Button,
 Input,
 Tab
)

from cfme.services.catalogs.catalog_item import AllCatalogItemView
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import navigate_to, navigator, CFMENavigateStep
from cfme.utils.update import Updateable
from cfme.utils.wait import wait_for
from . import ServicesCatalogView
from cfme.common import WidgetasticTaggable, TagPageView

[docs]class BootstrapSelect(VanillaBootstrapSelect):
 """BootstrapSelect widget for Ansible Playbook Catalog Item form.

 BootstrapSelect widgets don't have `data-id` attribute in this form, so we have to override ROOT
 locator.

 """
 ROOT = ParametrizedLocator('.//select[normalize-space(@name)={@id|quote}]/..')

[docs]class ActionsCell(View):
 edit = Button(
 **{"ng-click": ParametrizedString(
 "vm.editKeyValue('{@tab}', this.key, this.key_value, $index)")}
)
 delete = Button(
 **{"ng-click": ParametrizedString(
 "vm.removeKeyValue('{@tab}', this.key, this.key_value, $index)")}
)

 def __init__(self, parent, tab, logger=None):
 View.__init__(self, parent, logger=logger)
 self.tab = parent.parent.parent.parent.tab

[docs]class AnsibleExtraVariables(View):
 """Represents extra variables part of ansible service catalog edit form.

 Args:
 tab (str): tab name where this view is located. Can be "provisioning" or "retirement".

 """

 variable = Input(name=ParametrizedString("{@tab}_key"))
 default_value = Input(name=ParametrizedString("{@tab}_value"))
 add = Button(**{"ng-click": ParametrizedString("vm.addKeyValue('{@tab}')")})
 variables_table = Table(
 ".//div[@id='variables_div']//table",
 column_widgets={"Actions": ActionsCell(tab=Parameter("@tab"))}
)

 def __init__(self, parent, tab, logger=None):
 View.__init__(self, parent, logger=logger)
 self.tab = tab

 def _values_to_remove(self, values):
 return list(set(self.all_vars) - set(values))

 def _values_to_add(self, values):
 return list(set(values) - set(self.all_vars))

[docs] def fill(self, values):
 """

 Args:
 values (list): [] to remove all vars or [("var", "value"), ...] to fill the view.

 """
 if set(values) == set(self.all_vars):
 return False
 else:
 for value in self._values_to_remove(values):
 rows = list(self.variables_table)
 for row in rows:
 if row[0].text == value[0]:
 row["Actions"].widget.delete.click()
 break
 for value in self._values_to_add(values):
 self.variable.fill(value[0])
 self.default_value.fill(value[1])
 self.add.click()
 return True

 @property
 def all_vars(self):
 if self.variables_table.is_displayed:
 return [(row["Variable"].text, row["Default value"].text) for
 row in self.variables_table]
 else:
 return []

[docs] def read(self):
 return self.all_vars

[docs]class AnsibleCatalogItemForm(ServicesCatalogView):
 title = Text(".//span[@id='explorer_title_text']")
 name = Input("name")
 description = Input("description")
 display_in_catalog = BootstrapSwitch(name="display")
 catalog = BootstrapSelect("catalog_id")

 @View.nested
 class provisioning(Tab): # noqa
 repository = BootstrapSelect("provisioning_repository_id")
 playbook = BootstrapSelect("provisioning_playbook_id")
 machine_credential = BootstrapSelect("provisioning_machine_credential_id")
 cloud_type = BootstrapSelect("provisioning_cloud_type")
 hosts = Input("provisioning_inventory")
 escalate_privilege = BootstrapSwitch("provisioning_become_enabled")
 verbosity = BootstrapSelect("provisioning_verbosity")
 use_exisiting = Checkbox(locator=".//label[normalize-space(.)='Use Existing']/input")
 create_new = Checkbox(locator=".//label[normalize-space(.)='Create New']/input")
 provisioning_dialog_id = BootstrapSelect("provisioning_dialog_id")
 provisioning_dialog_name = Input(name="vm.provisioning_dialog_name")
 extra_vars = AnsibleExtraVariables(tab="provisioning")

 @View.nested
 class retirement(Tab): # noqa
 # TODO Somehow need to handle a modal window
 copy_from_provisioning = Button("Copy from provisioning")
 repository = BootstrapSelect("retirement_repository_id")
 playbook = BootstrapSelect("retirement_playbook_id")
 machine_credential = BootstrapSelect("retirement_machine_credential_id")
 cloud_type = BootstrapSelect("retirement_cloud_type")
 hosts = Input("retirement_inventory")
 escalate_privilege = BootstrapSwitch("retirement_become_enabled")
 verbosity = BootstrapSelect("retirement_verbosity")
 remove_resources = BootstrapSelect("vm.catalogItemModel.retirement_remove_resources")
 extra_vars = AnsibleExtraVariables(tab="retirement")

 cancel = Button("Cancel")

[docs]class SelectCatalogItemTypeView(ServicesCatalogView):
 title = Text(".//span[@id='explorer_title_text']")
 catalog_item_type = BootstrapSelect("st_prov_type", can_hide_on_select=True)
 add = Button("Add")
 cancel = Button("Cancel")

 @property
 def is_displayed(self):
 return (
 self.in_explorer and
 self.title.text == "Adding a new Service Catalog Item" and
 self.catalog_item_type.is_displayed
)

[docs]class AddAnsibleCatalogItemView(AnsibleCatalogItemForm):
 add = Button("Add")

 @property
 def is_displayed(self):
 return False

[docs]class EditAnsibleCatalogItemView(AnsibleCatalogItemForm):
 save = Button("Save")
 reset = Button("Reset")

 @property
 def is_displayed(self):
 return False

[docs]class DetailsEntitiesAnsibleCatalogItemView(View):
 title = Text(".//span[@id='explorer_title_text']")
 basic_information = SummaryForm("Basic Information")
 custom_image = FileInput("upload_image")
 upload = Button("Upload")
 smart_management = SummaryTable("Smart Management")

 @View.nested
 class provisioning(Tab): # noqa
 info = SummaryForm("Provisioning Info")
 variables_and_default_values = Table(".//div[@id='provisioning']//table")

 @View.nested
 class retirement(Tab): # noqa
 info = SummaryForm("Retirement Info")
 variables_and_default_values = Table(".//div[@id='retirement']//table")

[docs]class DetailsAnsibleCatalogItemView(ServicesCatalogView):
 """Has to be in view standards, changed for WidgetasticTaggable.get_tags()"""
 entities = View.nested(DetailsEntitiesAnsibleCatalogItemView)

 @property
 def is_displayed(self):
 return (
 self.in_explorer and
 self.entities.title.text == 'Service Catalog Item "{}"'.format(
 self.context["object"].name
)
)

[docs]class AnsiblePlaybookCatalogItem(Updateable, Navigatable, WidgetasticTaggable):
 """Represents Ansible Playbook catalog item.

 Example:

 .. code-block:: python

 from cfme.services.catalogs.ansible_catalog_item import AnsiblePlaybookCatalogItem
 catalog_item = AnsiblePlaybookCatalogItem(
 "some_catalog_name",
 "some_description",
 provisioning={
 "repository": "Some repository",
 "playbook": "some_playbook.yml",
 "machine_credential": "CFME Default Credential",
 "create_new": True,
 "provisioning_dialog_name": "some_dialog",
 "extra_vars": [("some_var", "some_value")]
 }
)
 catalog_item.create()
 catalog_item.delete()

 Args:
 name (str): catalog item name
 description (str): catalog item description
 provisioning (dict): provisioning data
 catalog (py:class:`cfme.services.catalogs.catalog.Catalog`): catalog object
 display_in_catalog (bool): whether this playbook displayed in catalog
 retirement (dict): retirement data
 """

 def __init__(self, name, description, provisioning, display_in_catalog=None, catalog=None,
 retirement=None, appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.name = name
 self.description = description
 self.display_in_catalog = display_in_catalog
 self.catalog = catalog
 self.provisioning = provisioning
 self.retirement = retirement

[docs] def create(self):
 view = navigate_to(self, "Add")
 view.fill({
 "name": self.name,
 "description": self.description,
 "display_in_catalog": self.display_in_catalog,
 "catalog": getattr(self.catalog, "name", None),
 })
 view.provisioning.fill({
 "repository": self.provisioning["repository"]
 })
 # After filling "repository" we have to wait for a while until other widgets appeared
 wait_for(lambda: view.provisioning.playbook.is_displayed, delay=0.5, num_sec=2)
 view.provisioning.fill({
 "playbook": self.provisioning["playbook"],
 "machine_credential": self.provisioning["machine_credential"],
 "cloud_type": self.provisioning.get("cloud_type"),
 "hosts": self.provisioning.get("hosts"),
 "escalate_privilege": self.provisioning.get("escalate_privilege"),
 "verbosity": self.provisioning.get("verbosity"),
 "use_exisiting": self.provisioning.get("use_exisiting"),
 "create_new": self.provisioning.get("create_new"),
 "provisioning_dialog_id": self.provisioning.get("provisioning_dialog_id"),
 "extra_vars": self.provisioning.get("extra_vars"),
 "provisioning_dialog_name": self.provisioning.get("provisioning_dialog_name")
 })
 if self.retirement is not None:
 view.retirement.fill({
 "repository": self.retirement["repository"]
 })
 wait_for(lambda: view.retirement.playbook.is_displayed, delay=0.5, num_sec=2)
 view.retirement.fill({
 "playbook": self.retirement["playbook"],
 "machine_credential": self.retirement["machine_credential"],
 "cloud_type": self.retirement.get("cloud_type"),
 "hosts": self.retirement.get("hosts"),
 "escalate_privilege": self.retirement.get("escalate_privilege"),
 "verbosity": self.retirement.get("verbosity"),
 "extra_vars": self.retirement.get("extra_vars")
 })
 view.add.click()
 view = self.create_view(AllCatalogItemView)
 assert view.is_displayed
 view.flash.assert_success_message("Catalog Item {} was added".format(self.name))

[docs] def update(self, updates):
 view = navigate_to(self, "Edit")
 general_changed = view.fill({
 "name": updates.get("name"),
 "description": updates.get("description"),
 "display_in_catalog": updates.get("display_in_catalog"),
 "catalog": getattr(updates.get("catalog"), "name", None),
 "provisioning": updates.get("provisioning")
 })
 retirement_changed = False
 if "retirement" in updates:
 view.retirement.fill({
 "repository": updates["retirement"]["repository"]
 })
 wait_for(lambda: view.retirement.playbook.is_displayed, delay=0.5, num_sec=2)
 view.retirement.fill({
 "playbook": updates["retirement"]["playbook"],
 "machine_credential": updates["retirement"]["machine_credential"],
 "cloud_type": updates["retirement"].get("cloud_type"),
 "hosts": updates["retirement"].get("hosts"),
 "escalate_privilege": updates["retirement"].get("escalate_privilege"),
 "verbosity": updates["retirement"].get("verbosity")
 })
 retirement_changed = True
 if general_changed or retirement_changed:
 view.save.click()
 msg = "Catalog Item {} was saved".format(updates.get("name", self.name))
 else:
 view.cancel.click()
 msg = "Edit of Catalog Item {} was cancelled by the user".format(self.name)
 view = self.create_view(DetailsAnsibleCatalogItemView, override=updates)
 assert view.is_displayed
 view.flash.assert_success_message(msg)

[docs] def delete(self, cancel=False):
 view = navigate_to(self, "Details")
 view.configuration.item_select("Remove Catalog Item", handle_alert=not cancel)
 if cancel:
 assert view.is_displayed
 view.flash.assert_no_error()
 else:
 view = self.create_view(AllCatalogItemView)
 assert view.is_displayed
 view.flash.assert_success_message("The selected Catalog Item was deleted")

 @property
 def exists(self):
 try:
 navigate_to(self, "Details")
 except Exception:
 return False
 else:
 return True

@navigator.register(AnsiblePlaybookCatalogItem, "All")
[docs]class All(CFMENavigateStep):
 VIEW = AllCatalogItemView
 prerequisite = NavigateToAttribute("appliance.server", "ServicesCatalog")

[docs] def step(self):
 self.view.catalog_items.tree.click_path("All Catalog Items")

@navigator.register(AnsiblePlaybookCatalogItem, "Details")
[docs]class Details(CFMENavigateStep):
 VIEW = DetailsAnsibleCatalogItemView
 prerequisite = NavigateToSibling("All")

[docs] def step(self):
 tree = self.prerequisite_view.catalog_items.tree
 tree.click_path(
 "All Catalog Items",
 getattr(self.obj.catalog, "name", "Unassigned"),
 self.obj.name
)

@navigator.register(AnsiblePlaybookCatalogItem, "PickItemType")
[docs]class PickItemType(CFMENavigateStep):
 VIEW = SelectCatalogItemTypeView
 prerequisite = NavigateToSibling("All")

[docs] def step(self):
 self.prerequisite_view.configuration.item_select("Add a New Catalog Item")

@navigator.register(AnsiblePlaybookCatalogItem, "Add")
[docs]class Add(CFMENavigateStep):
 VIEW = AddAnsibleCatalogItemView
 prerequisite = NavigateToSibling("PickItemType")

[docs] def step(self):
 self.prerequisite_view.catalog_item_type.select_by_visible_text("Ansible Playbook")

@navigator.register(AnsiblePlaybookCatalogItem, "Edit")
[docs]class Edit(CFMENavigateStep):
 VIEW = EditAnsibleCatalogItemView
 prerequisite = NavigateToSibling("Details")

[docs] def step(self):
 self.prerequisite_view.configuration.item_select("Edit this Item")

@navigator.register(AnsiblePlaybookCatalogItem, 'EditTagsFromDetails')
[docs]class EditTags(CFMENavigateStep):
 VIEW = TagPageView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.policy.item_select('Edit Tags')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/intelligence/reports/widgets/menu_widgets.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.intelligence.reports »

 		cfme.intelligence.reports.widgets »

 Source code for cfme.intelligence.reports.widgets.menu_widgets

-*- coding: utf-8 -*-
"""Page model for Cloud Intel / Reports / Dashboard Widgets / Menus"""
from widgetastic_manageiq import MenuShortcutsPicker

from cfme.utils.appliance.implementations.ui import navigator
from . import (
 BaseDashboardReportWidget,
 BaseDashboardWidgetFormCommon,
 BaseEditDashboardWidgetStep,
 BaseEditDashboardWidgetView,
 BaseNewDashboardWidgetStep,
 BaseNewDashboardWidgetView
)

[docs]class MenuWidgetFormCommon(BaseDashboardWidgetFormCommon):

 menu_shortcuts = MenuShortcutsPicker(
 "form_filter_div",
 select_id="add_shortcut",
 names_locator=".//input[starts-with(@name, 'shortcut_desc_')]",
 remove_locator=".//input[@value={}]/../a[@title='Remove this Shortcut']"
)

[docs]class NewMenuWidgetView(BaseNewDashboardWidgetView, MenuWidgetFormCommon):
 pass

[docs]class EditMenuWidgetView(BaseEditDashboardWidgetView, MenuWidgetFormCommon):
 pass

[docs]class MenuWidget(BaseDashboardReportWidget):

 TYPE = "Menus"
 TITLE = "Menu"
 pretty_attrs = ["description", "shortcuts", "visibility"]

 def __init__(self, title, description=None, active=None, shortcuts=None, visibility=None):
 self.title = title
 self.description = description
 self.active = active
 self.shortcuts = shortcuts
 self.visibility = visibility

 @property
 def fill_dict(self):
 return {
 "widget_title": self.title,
 "description": self.description,
 "active": self.active,
 "menu_shortcuts": self.shortcuts,
 "visibility": self.visibility
 }

@navigator.register(MenuWidget, "Add")
[docs]class NewMenuWidget(BaseNewDashboardWidgetStep):
 VIEW = NewMenuWidgetView

@navigator.register(MenuWidget, "Edit")
[docs]class EditMenuWidget(BaseEditDashboardWidgetStep):
 VIEW = EditMenuWidgetView

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/services/catalogs/service_catalogs.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.services.catalogs »

 Source code for cfme.services.catalogs.service_catalogs

from widgetastic.widget import Text
from widgetastic_patternfly import Button, Input, BootstrapSelect
from widgetastic.exceptions import NoSuchElementException
from navmazing import NavigateToAttribute, NavigateToSibling
from cfme.utils.update import Updateable
from cfme.utils.pretty import Pretty
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to
from cfme.base import Server

from . import ServicesCatalogView

[docs]class OrderForm(ServicesCatalogView):
 title = Text('#explorer_title_text')

 timeout = Input(name='stack_timeout')
 db_user = Input(name="param_DBUser__protected")
 db_root_password = Input(name='param_DBRootPassword__protected')
 select_instance_type = BootstrapSelect("param_InstanceType")
 stack_name = Input(name='stack_name')
 stack_timeout = Input(name='stack_timeout')
 resource_group = BootstrapSelect("resource_group")
 mode = BootstrapSelect('deploy_mode')
 vm_name = Input(name="param_virtualMachineName")
 vm_user = Input(name='param_adminUserName')
 vm_password = Input(name="param_adminPassword__protected")
 vm_size = BootstrapSelect('param_virtualMachineSize')
 user_image = BootstrapSelect("param_userImageName")
 os_type = BootstrapSelect('param_operatingSystemType')
 key_name = Input(name="param_KeyName")
 ssh_location = Input(name="param_SSHLocation")

 flavor = Input(name='param_flavor')
 image = Input(name="param_image")
 key = Input(name='param_key')
 private_network = Input(name="param_private_network")
 default_select_value = BootstrapSelect('service_level')

 machine_credential = BootstrapSelect("credential")
 hosts = Input(name="hosts")

[docs]class ServiceCatalogsView(ServicesCatalogView):
 title = Text("#explorer_title_text")

 @property
 def is_displayed(self):
 return (
 self.in_explorer and
 self.title.text == 'All Services' and
 self.service_catalogs.is_opened and
 self.service_catalogs.tree.currently_selected == ["All Services"])

[docs]class ServiceCatalogsDefaultView(ServicesCatalogView):
 title = Text("#explorer_title_text")

 @property
 def is_displayed(self):
 return (
 self.in_explorer and
 self.title.text == 'All Services' and
 self.service_catalogs.is_opened)

[docs]class DetailsServiceCatalogView(ServicesCatalogView):
 title = Text("#explorer_title_text")

 order_button = Button("Order")

 @property
 def is_displayed(self):
 return (
 self.in_explorer and self.service_catalogs.is_opened and
 self.title.text == 'Service "{}"'.format(self.context['object'].name)
)

[docs]class OrderServiceCatalogView(OrderForm):
 submit_button = Button('Submit')

 @property
 def is_displayed(self):
 return (
 self.in_explorer and self.service_catalogs.is_opened and
 self.title.text == 'Order Service "{}"'.format(self.context['object'].name)
)

[docs]class ServiceCatalogs(Updateable, Pretty, Navigatable):

 def __init__(self, catalog=None, name=None, stack_data=None,
 dialog_values=None, ansible_dialog_values=None, appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.catalog = catalog
 self.name = name
 self.stack_data = stack_data
 self.dialog_values = dialog_values
 self.ansible_dialog_values = ansible_dialog_values

[docs] def order(self):
 view = navigate_to(self, 'Order')
 if self.stack_data:
 view.fill(self.stack_data)
 if self.dialog_values:
 view.fill(self.dialog_values)
 if self.ansible_dialog_values:
 view.fill(self.ansible_dialog_values)
 view.submit_button.click()
 # Request page is displayed after this hence not asserting for view
 view.flash.assert_success_message("Order Request was Submitted")

@navigator.register(Server)
[docs]class ServiceCatalogsDefault(CFMENavigateStep):
 VIEW = ServiceCatalogsDefaultView

 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self):
 self.prerequisite_view.navigation.select('Services', 'Catalogs')

@navigator.register(ServiceCatalogs, 'All')
[docs]class ServiceCatalogsAll(CFMENavigateStep):
 VIEW = ServiceCatalogsView

 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self):
 self.prerequisite_view.navigation.select('Services', 'Catalogs')
 self.view.service_catalogs.tree.click_path("All Services")

@navigator.register(ServiceCatalogs, 'Details')
[docs]class ServiceCatalogDetails(CFMENavigateStep):
 VIEW = DetailsServiceCatalogView

 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 try:
 self.prerequisite_view.service_catalogs.tree.click_path("All Services",
 self.obj.catalog.name, self.obj.name)
 except:
 raise NoSuchElementException()

@navigator.register(ServiceCatalogs, 'Order')
[docs]class ServiceCatalogOrder(CFMENavigateStep):
 VIEW = OrderServiceCatalogView

 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.order_button.click()

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/intelligence/reports/widgets/rss_widgets.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.intelligence.reports »

 		cfme.intelligence.reports.widgets »

 Source code for cfme.intelligence.reports.widgets.rss_widgets

-*- coding: utf-8 -*-
"""Page model for Cloud Intel / Reports / Dashboard Widgets / RSS Feeds"""
from widgetastic.widget import TextInput
from widgetastic_manageiq import Calendar
from widgetastic_patternfly import BootstrapSelect

from cfme.utils.appliance.implementations.ui import navigator
from . import (
 BaseDashboardReportWidget,
 BaseDashboardWidgetFormCommon,
 BaseEditDashboardWidgetStep,
 BaseEditDashboardWidgetView,
 BaseNewDashboardWidgetStep,
 BaseNewDashboardWidgetView
)

[docs]class RSSWidgetFormCommon(BaseDashboardWidgetFormCommon):
 # RSS Feed Options
 type = BootstrapSelect("feed_type")
 url = BootstrapSelect("rss_feed")
 external = TextInput("txt_url")
 rows = BootstrapSelect("row_count")
 # Timer
 run = BootstrapSelect("timer_typ")
 every = BootstrapSelect("timer_hours")
 time_zone = BootstrapSelect("time_zone")
 starting_date = Calendar("miq_date_1")
 starting_hour = BootstrapSelect("start_hour")
 starting_minute = BootstrapSelect("start_min")

[docs]class NewRSSWidgetView(BaseNewDashboardWidgetView, RSSWidgetFormCommon):
 pass

[docs]class EditRSSWidgetView(BaseEditDashboardWidgetView, RSSWidgetFormCommon):
 pass

[docs]class RSSFeedWidget(BaseDashboardReportWidget):

 TYPE = "RSS Feeds"
 TITLE = "RSS Feed"
 pretty_attrs = ["title", "description", "type", "feed", "visibility"]

 def __init__(self,
 title, description=None, active=None, type=None, feed=None, external=None, rows=None,
 timer=None, visibility=None):
 self.title = title
 self.description = description
 self.active = active
 self.type = type
 self.feed = feed
 self.external = external
 self.rows = rows
 self.timer = timer or {}
 self.visibility = visibility

 @property
 def fill_dict(self):
 return {
 "widget_title": self.title,
 "description": self.description,
 "active": self.active,
 "type": self.type,
 "url": self.feed,
 "external": self.external,
 "rows": self.rows,
 "run": self.timer.get("run"),
 "every": self.timer.get("hours"),
 "time_zone": self.timer.get("time_zone"),
 "starting_date": self.timer.get("starting_date"),
 "starting_hour": self.timer.get("starting_hour"),
 "starting_minute": self.timer.get("starting_minute"),
 "visibility": self.visibility
 }

@navigator.register(RSSFeedWidget, "Add")
[docs]class NewRSSWidget(BaseNewDashboardWidgetStep):
 VIEW = NewRSSWidgetView

@navigator.register(RSSFeedWidget, "Edit")
[docs]class EditRSSWidget(BaseEditDashboardWidgetStep):
 VIEW = EditRSSWidgetView

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/services/dashboard/ssui.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.services.dashboard »

 Source code for cfme.services.dashboard.ssui

from navmazing import NavigateToAttribute, NavigateToSibling
from widgetastic.widget import Text
from widgetastic_manageiq import SSUIPrimarycard, SSUIAggregatecard, SSUIlist

from cfme.base.ssui import SSUIBaseLoggedInPage
from cfme.utils.appliance.implementations.ssui import (
 navigator,
 SSUINavigateStep,
 navigate_to,
 ViaSSUI
)

from . import Dashboard

[docs]class DashboardView(SSUIBaseLoggedInPage):
 title = Text(locator='//li[@class="active"]')
 dashboard_card = SSUIPrimarycard()
 aggregate_card = SSUIAggregatecard()

[docs] def in_dashboard(self):
 return (
 self.logged_in_as_current_user and
 self.navigation.currently_selected == ["", "Dashboard"] and
 self.dashboard_card.is_displayed)

 @property
 def is_displayed(self):
 return self.in_dashboard

[docs]class MyServiceForm(SSUIBaseLoggedInPage):

 service = SSUIlist(list_name='serviceList')

[docs]class MyServicesView(MyServiceForm):
 title = Text(locator='//li[@class="active"]')

[docs] def in_myservices(self):
 return (
 self.logged_in_as_current_user and
 self.navigation.currently_selected == ["", "My Services"])

 @property
 def is_displayed(self):
 return self.in_myservices and self.title.text == "My Services"

@Dashboard.total_service.external_implementation_for(ViaSSUI)
[docs]def total_service(self):
 """Returns the count of total services(Integer) displayed on dashboard"""

 view = navigate_to(self, 'DashboardAll')
 total_services = view.dashboard_card.get_count('Total Services')
 view = navigate_to(self, 'TotalServices')
 view.flash.assert_no_error()
 view = self.create_view(MyServicesView)
 assert view.is_displayed
 return total_services

@Dashboard.total_request.external_implementation_for(ViaSSUI)
[docs]def total_request(self):
 """Total Request cannot be clicked so this method just
 returns the total number of requests displayed on dashboard.
 """

 view = navigate_to(self, 'DashboardAll')
 total_requests = view.dashboard_card.get_count('Total Requests')
 return total_requests

@Dashboard.retiring_soon.external_implementation_for(ViaSSUI)
[docs]def retiring_soon(self):
 """Returns the count of retiring soon services displayed on dashboard"""

 view = navigate_to(self, 'DashboardAll')
 retiring_services = view.aggregate_card.get_count('Retiring Soon')
 view = navigate_to(self, 'RetiringSoon')
 view.flash.assert_no_error()
 view = self.create_view(MyServicesView)
 assert view.is_displayed
 return retiring_services

@Dashboard.current_services.external_implementation_for(ViaSSUI)
[docs]def current_service(self):
 """Returns the count of active services displayed on dashboard"""

 view = navigate_to(self, 'DashboardAll')
 current_services = view.aggregate_card.get_count('Current Services')
 view = navigate_to(self, 'CurrentServices')
 view.flash.assert_no_error()
 view = self.create_view(MyServicesView)
 assert view.is_displayed
 return current_services

@Dashboard.retired_services.external_implementation_for(ViaSSUI)
[docs]def retired_service(self):
 """Returns the count of retired services displayed on dashboard"""

 view = navigate_to(self, 'DashboardAll')
 retired_services = view.aggregate_card.get_count('Retired Services')
 view = navigate_to(self, 'RetiredServices')
 view.flash.assert_no_error()
 view = self.create_view(MyServicesView)
 assert view.is_displayed
 return retired_services

@Dashboard.monthly_charges.external_implementation_for(ViaSSUI)
[docs]def monthly_charges(self):
 """Returns the chargeback data displayed on dashboard"""

 view = navigate_to(self, 'DashboardAll')
 return view.aggregate_card.get_count('Monthly Charges - This Month To Date')

@navigator.register(Dashboard, 'DashboardAll')
[docs]class DashboardAll(SSUINavigateStep):
 VIEW = DashboardView

 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.navigation.select('Dashboard')

@navigator.register(Dashboard, 'TotalServices')
[docs]class TotalServices(SSUINavigateStep):
 VIEW = MyServicesView

 prerequisite = NavigateToSibling('DashboardAll')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.dashboard_card.click_at("Total Services")

@navigator.register(Dashboard, 'RetiringSoon')
[docs]class RetiringSoon(SSUINavigateStep):
 VIEW = MyServicesView

 prerequisite = NavigateToSibling('DashboardAll')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.aggregate_card.click_at("Retiring Soon")

@navigator.register(Dashboard, 'CurrentServices')
[docs]class CurrentServices(SSUINavigateStep):
 VIEW = MyServicesView

 prerequisite = NavigateToSibling('DashboardAll')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.aggregate_card.click_at("Current Services")

@navigator.register(Dashboard, 'RetiredServices')
[docs]class RetiredServices(SSUINavigateStep):
 VIEW = MyServicesView

 prerequisite = NavigateToSibling('DashboardAll')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.aggregate_card.click_at("Retired Services")

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/intelligence/chargeback/assignments.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.intelligence.chargeback »

 Source code for cfme.intelligence.chargeback.assignments

-*- coding: utf-8 -*-
Page model for Intel->Chargeback->Assignments.

from . import ChargebackView
from navmazing import NavigateToSibling, NavigateToAttribute
from widgetastic.widget import Text
from widgetastic_manageiq import Table
from widgetastic_manageiq.hacks import BootstrapSelectByLocator
from widgetastic_patternfly import BootstrapSelect, Button, FlashMessages
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import navigator, navigate_to, CFMENavigateStep
from cfme.utils.pretty import Pretty
from cfme.utils.update import Updateable

[docs]class AssignmentsAllView(ChargebackView):
 title = Text("#explorer_title_text")

 @property
 def is_displayed(self):
 return (
 self.in_chargeback and
 self.title.text == "All Assignments"
)

[docs]class AssignmentsView(ChargebackView):
 title = Text("#explorer_title_text")
 flash = FlashMessages('.//div[@id="flash_msg_div"]/div[@id="flash_text_div" or '
 'contains(@class, "flash_text_div")]')
 save_button = Button("Save")
 reset_button = Button("Reset")

 @property
 def is_displayed(self):
 return (
 self.in_chargeback and
 self.title.text == '"{}" Rate Assignments'.format(
 self.context["object"].description) and
 self.assignments.is_opened and
 self.rates.tree.currently_selected == [
 "{} Rate Assignments",
 self.context["object"].description
]
)

 assign_to = BootstrapSelect(id="cbshow_typ")
 tag_category = BootstrapSelect(id='cbtag_cat')
 docker_labels = BootstrapSelect(id='cblabel_key')
 _table_locator = '//h3[contains(text(),"Selections")]/following-sibling::table'
 _table_widget_locator = './/div[contains(@class, "bootstrap-select")]'

 selections = Table(locator=_table_locator,
 column_widgets={'Rate': BootstrapSelectByLocator(locator=_table_widget_locator)},
 assoc_column=0)

[docs]class Assign(Updateable, Pretty, Navigatable):
 """
 Model of Chargeback Assignment page in cfme.

 Args:
 assign_to: Assign the chargeback rate to entities such as VM,Provider,datastore or the
 Enterprise itself.
 tag_category: Tag category of the entity
 selections: Selection of a particular entity to which the rate is to be assigned.
 Eg:If the chargeback rate is to be assigned to providers,select which of the managed
 providers the rate is to be assigned.

 Usage:
 enterprise = Assign(
 assign_to="The Enterprise",
 selections={
 'Enterprise': {'Rate': 'Default'}
 })
 enterprise.computeassign()

 """
 def __init__(self, assign_to=None,
 tag_category=None,
 docker_labels=None,
 selections=None,
 appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.assign_to = assign_to
 self.tag_category = tag_category
 self.docker_labels = docker_labels
 self.selections = selections

[docs] def storageassign(self):
 view = navigate_to(self, 'Storage')
 self._fill(view)
 view.save_button.click()
 view.flash.assert_no_error()
 view.flash.assert_message('Rate Assignments saved')

[docs] def computeassign(self):
 view = navigate_to(self, 'Compute')
 self._fill(view)
 view.save_button.click()
 view.flash.assert_no_error()
 view.flash.assert_message('Rate Assignments saved')

 def _fill(self, view):
 """This function prepares the values and fills the form."""
 fill_details = dict(
 assign_to=self.assign_to,
 tag_category=self.tag_category,
 docker_labels=self.docker_labels,
 selections=self.selections,
)
 return view.fill(fill_details)

@navigator.register(Assign, 'All')
[docs]class AssignAll(CFMENavigateStep):
 prerequisite = NavigateToAttribute('appliance.server', 'IntelChargeback')
 VIEW = AssignmentsAllView

[docs] def step(self):
 self.view.assignments.tree.click_path(
 "Assignments"
)

@navigator.register(Assign, 'Storage')
[docs]class AssignStorage(CFMENavigateStep):
 prerequisite = NavigateToSibling('All')
 VIEW = AssignmentsView

[docs] def step(self):
 self.view.assignments.tree.click_path(
 "Assignments", "Storage")

@navigator.register(Assign, 'Compute')
[docs]class AssignCompute(CFMENavigateStep):
 prerequisite = NavigateToSibling('All')
 VIEW = AssignmentsView

[docs] def step(self):
 self.view.assignments.tree.click_path(
 "Assignments", "Compute")

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/services/catalogs/catalog_item.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.services.catalogs »

 Source code for cfme.services.catalogs.catalog_item

from types import NoneType

from navmazing import NavigateToAttribute, NavigateToSibling
from widgetastic.widget import Text, Checkbox, View
from widgetastic_patternfly import Button, Input, BootstrapSelect, CandidateNotFound, Tab
from widgetastic_manageiq import Table, ManageIQTree

from cfme.common import WidgetasticTaggable, TagPageView
from cfme.fixtures import pytest_selenium as sel
from cfme.provisioning import provisioning_form as request_form
from cfme.web_ui import tabstrip
from cfme.utils.update import Updateable
from cfme.utils.pretty import Pretty
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to
from cfme.utils import version
from . import ServicesCatalogView

[docs]class BasicInfoForm(ServicesCatalogView):
 title = Text('#explorer_title_text')

 name = Input(name='name')
 description = Input(name='description')
 display = Checkbox(name='display')
 select_catalog = BootstrapSelect('catalog_id')
 select_dialog = BootstrapSelect('dialog_id')
 select_orch_template = BootstrapSelect('template_id')
 select_provider = BootstrapSelect('manager_id')
 select_config_template = BootstrapSelect('template_id')
 field_entry_point = Input(name='fqname')
 retirement_entry_point = Input(name='retire_fqname')
 select_resource = BootstrapSelect('resource_id')
 tree = ManageIQTree('automate_treebox')
 cancel_button = Button('Cancel')

[docs]class ButtonGroupForm(ServicesCatalogView):
 title = Text('#explorer_title_text')

 btn_group_text = Input(name='name')
 btn_group_hvr_text = Input(name='description')
 btn_image = BootstrapSelect('button_image')

[docs]class ButtonForm(ServicesCatalogView):
 title = Text('#explorer_title_text')

 btn_text = Input(name='name')
 btn_hvr_text = Input(name='description')
 select_dialog = BootstrapSelect('dialog_id')
 system_process = BootstrapSelect('instance_name')
 request = Input(name='object_request')
 btn_image = BootstrapSelect('button_image')

[docs]class AllCatalogItemView(ServicesCatalogView):
 title = Text("#explorer_title_text")

 @property
 def is_displayed(self):
 return self.in_explorer and self.title.text == 'All Service Catalog Items' and \
 self.catalog_items.is_opened and \
 self.catalog_items.tree.currently_selected == ["All Catalog Items"]

[docs]class DetailsCatalogItemView(ServicesCatalogView):
 title = Text("#explorer_title_text")

 @property
 def is_displayed(self):
 return self.in_explorer and self.catalog_items.is_opened and \
 self.title.text == 'Service Catalog Item "{}"'.format(self.context['object'].name)

[docs]class CatalogForm(BasicInfoForm):
 select_item_type = BootstrapSelect('st_prov_type', can_hide_on_select=True)

 @property
 def is_displayed(self):
 return self.in_explorer and self.catalog_items.is_opened and \
 self.title.text == "Adding a new Service Catalog Item"

[docs] def before_filling(self):
 item_type = self.context['object'].provider_type or \
 self.context['object'].item_type or 'Generic'
 self.select_item_type.select_by_visible_text(item_type)
 self.flush_widget_cache()

[docs]class AddCatalogItemView(CatalogForm):
 template_table = Table('//div[@id="prov_vm_div"]/table')
 apply_button = Button('Apply')
 add_button = Button("Add")

 @property
 def is_displayed(self):
 return self.in_explorer and self.catalog_items.is_opened and \
 self.title.text == "Adding a new Service Catalog Item"

[docs]class EditCatalogItemView(BasicInfoForm):
 save_button = Button('Save')
 reset_button = Button('Reset')

 @property
 def is_displayed(self):
 return self.in_explorer and self.catalog_items.is_opened and \
 self.title.text == "Editing Service Catalog Item {}".format(self.context['object'].name)

[docs]class AddButtonGroupView(ButtonGroupForm):

 add_button = Button("Add")

 @property
 def is_displayed(self):
 return self.in_explorer and self.catalog_items.is_opened and \
 self.title.text == "Adding a new Button Group"

[docs]class AddButtonView(ButtonForm):

 add_button = Button("Add")

 @property
 def is_displayed(self):
 return self.in_explorer and self.catalog_items.is_opened and \
 self.title.text == "Adding a new Button"

[docs]class CatalogBundleFormView(ServicesCatalogView):
 title = Text('#explorer_title_text')

 @View.nested
 class basic_info(Tab): # noqa
 TAB_NAME = "Basic Info"
 name = Input(name='name')
 description = Input(name='description')
 display = Checkbox(name='display')
 select_catalog = BootstrapSelect('catalog_id')
 select_dialog = BootstrapSelect('dialog_id')
 select_orch_template = BootstrapSelect('template_id')
 select_provider = BootstrapSelect('manager_id')
 select_config_template = BootstrapSelect('template_id')
 field_entry_point = Input(name='fqname')
 retirement_entry_point = Input(name='retire_fqname')
 tree = ManageIQTree('automate_treebox')

 @View.nested
 class resources(Tab): # noqa
 select_resource = BootstrapSelect('resource_id')

[docs]class AddCatalogBundleView(CatalogBundleFormView):
 cancel_button = Button('Cancel')
 apply_button = Button('Apply')
 add_button = Button("Add")

 @property
 def is_displayed(self):
 return self.in_explorer and self.catalog_items.is_opened and \
 self.title.text == "Adding a new Catalog Bundle"

[docs]class EditCatalogBundleView(CatalogBundleFormView):
 save_button = Button('Save')
 reset_button = Button('Reset')

 @property
 def is_displayed(self):
 return self.in_explorer and self.catalog_items.is_opened and \
 self.title.text == 'Editing Catalog Bundle "{}"'.format(self.obj.name)

[docs]class CatalogItem(Updateable, Pretty, Navigatable, WidgetasticTaggable):

 def __init__(self, name=None, description=None, item_type=None,
 vm_name=None, display_in=False, catalog=None, dialog=None,
 catalog_name=None, orch_template=None, provider_type=None,
 provider=None, config_template=None, prov_data=None,
 domain="ManageIQ (Locked)", appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.name = name
 self.description = description
 self.item_type = item_type
 self.vm_name = vm_name
 self.display_in = display_in
 self.catalog = catalog
 self.dialog = dialog
 self.catalog_name = catalog_name
 self.orch_template = orch_template
 self.provider = provider
 self.config_template = config_template
 self.provider_type = provider_type
 self.provisioning_data = prov_data
 self.domain = domain

[docs] def create(self):
 view = navigate_to(self, 'Add')
 # Need to provide the (optional) provider name to the form, not the object
 provider_formvalue = None
 if self.item_type == 'Orchestration':
 provider_formvalue = self.provider.name
 elif self.item_type == 'AnsibleTower':
 provider_formvalue = self.provider
 # For tests where orchestration template is None
 view.before_filling()
 view.fill({'name': self.name,
 'description': self.description,
 'display': self.display_in,
 'select_catalog': self.catalog.name,
 'select_dialog': self.dialog,
 'select_orch_template': self.orch_template.template_name
 if self.orch_template else None,
 'select_provider': provider_formvalue,
 'select_config_template': self.config_template})

 if view.field_entry_point.value == "":
 view.fill({'field_entry_point': 'a'})
 view.tree.click_path(
 "Datastore", self.domain, "Service", "Provisioning",
 "StateMachines", "ServiceProvision_Template", "CatalogItemInitialization")
 view.apply_button.click()
 if self.appliance.version >= "5.7" and self.item_type == "AnsibleTower":
 view.fill({'retirement_entry_point': 'b'})
 view.tree.click_path(
 "Datastore", self.domain, "Service", "Retirement",
 "StateMachines", "ServiceRetirement", "Generic")
 view.apply_button.click()

 if self.catalog_name is not None \
 and self.provisioning_data is not None \
 and not isinstance(self.provider, NoneType):
 tabstrip.select_tab("Request Info")
 tabstrip.select_tab("Catalog")
 row = view.template_table.row(name=self.catalog_name, provider=self.provider.name)
 row.click()
 request_form.fill(self.provisioning_data)
 view.add_button.click()
 view.flash.assert_success_message('Service Catalog Item "{}" was added'.format(self.name))
 view = self.create_view(AllCatalogItemView)
 assert view.is_displayed

[docs] def update(self, updates):
 view = navigate_to(self, 'Edit')
 changed = view.fill(updates)
 if changed:
 view.save_button.click()
 else:
 view.cancel_button.click()
 view = self.create_view(DetailsCatalogItemView, override=updates)
 assert view.is_displayed
 if changed:
 view.flash.assert_message(
 'Service Catalog Item "{}" was saved'.format(updates.get('name', self.name)))
 else:
 view.flash.assert_message(
 'Edit of Catalog Item"{}" was cancelled by the user'.format(self.name))

[docs] def delete(self):
 view = navigate_to(self, "Details")
 view.configuration.item_select(
 version.pick({
 version.LOWEST: 'Remove Item from the VMDB',
 '5.7': 'Remove Catalog Item'}),
 handle_alert=True)
 view = self.create_view(AllCatalogItemView)
 assert view.is_displayed
 view.flash.assert_success_message('The selected Catalog Item was deleted')

[docs] def add_button_group(self):
 view = navigate_to(self, 'AddButtonGroup')
 view.fill({'btn_group_text': "group_text",
 'btn_group_hvr_text': "descr",
 'btn_image': "Button Image 1"})
 view.add_button.click()
 view = self.create_view(DetailsCatalogItemView)
 assert view.is_displayed
 view.flash.assert_success_message('Buttons Group "descr" was added')

[docs] def add_button(self):
 view = navigate_to(self, 'AddButton')
 view.fill({'btn_text': "btn_text",
 'btn_hvr_text': "btn_descr",
 'btn_image': "Button Image 1",
 'select_dialog': self.dialog,
 'system_process': "Request",
 'request': "InspectMe"})
 view.add_button.click()
 view = self.create_view(DetailsCatalogItemView)
 sel.sleep(5)
 assert view.is_displayed
 view.flash.assert_success_message('Button "btn_descr" was added')

 @property
 def exists(self):
 try:
 navigate_to(self, 'Details')
 return True
 except CandidateNotFound:
 return False

[docs]class CatalogBundle(CatalogItem, Navigatable):

 def __init__(self, name=None, description=None, display_in=None,
 catalog=None, dialog=None, catalog_items=None, appliance=None):
 self.catalog_items = catalog_items
 super(CatalogBundle, self).__init__(
 name=name,
 description=description,
 display_in=display_in,
 catalog=catalog,
 dialog=dialog
)
 Navigatable.__init__(self, appliance=appliance)

[docs] def create(self):
 view = navigate_to(self, 'BundleAdd')
 domain = "ManageIQ (Locked)"
 view.basic_info.fill({
 'name': self.name,
 'description': self.description,
 'display': self.display_in,
 'select_catalog': self.catalog.name,
 'select_dialog': self.dialog
 })
 if view.basic_info.field_entry_point.value == "":
 view.basic_info.fill({'field_entry_point': ''})
 view.basic_info.tree.click_path(
 "Datastore", domain, "Service", "Provisioning",
 "StateMachines", "ServiceProvision_Template", "CatalogItemInitialization")
 view.apply_button.click()
 for cat_item in self.catalog_items:
 view.resources.fill({'select_resource': cat_item})
 view.add_button.click()
 view.flash.assert_success_message('Catalog Bundle "{}" was added'.format(self.name))
 view = self.create_view(AllCatalogItemView)
 assert view.is_displayed
 view.flash.assert_no_error()

[docs] def update(self, updates):
 view = navigate_to(self, 'BundleEdit')
 changed = view.resources.fill({'select_resource': updates.get('catalog_items')})
 if changed:
 view.save_button.click()
 else:
 view.cancel_button.click()
 if changed:
 view.flash.assert_success_message(
 'Catalog Bundle "{}" was saved'.format(updates.get('name', self.name)))
 else:
 view.flash.assert_success_message(
 'Edit of Catalog Bundle"{}" was cancelled by the user'.format(self.name))
 view = self.create_view(DetailsCatalogItemView, override=updates)
 assert view.is_displayed
 view.flash.assert_no_error()

@navigator.register(CatalogItem, 'All')
[docs]class All(CFMENavigateStep):
 VIEW = AllCatalogItemView

 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self):
 self.prerequisite_view.navigation.select('Services', 'Catalogs')
 self.view.catalog_items.tree.click_path('All Catalog Items')

@navigator.register(CatalogItem, 'Details')
[docs]class Details(CFMENavigateStep):
 VIEW = DetailsCatalogItemView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.catalog_items.tree.click_path("All Catalog Items",
 self.obj.catalog.name, self.obj.name)

@navigator.register(CatalogItem, 'Add')
[docs]class Add(CFMENavigateStep):
 VIEW = AddCatalogItemView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.configuration.item_select('Add a New Catalog Item')

@navigator.register(CatalogItem, 'Edit')
[docs]class Edit(CFMENavigateStep):
 VIEW = EditCatalogItemView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.configuration.item_select('Edit this Item')

@navigator.register(CatalogItem, 'AddButtonGroup')
[docs]class AddButtonGroup(CFMENavigateStep):
 VIEW = AddButtonGroupView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.configuration.item_select('Add a new Button Group')

@navigator.register(CatalogItem, 'AddButton')
[docs]class AddButton(CFMENavigateStep):
 VIEW = AddButtonView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.configuration.item_select('Add a new Button')

@navigator.register(CatalogItem, 'EditTagsFromDetails')
[docs]class EditTags(CFMENavigateStep):
 VIEW = TagPageView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.policy.item_select('Edit Tags')

@navigator.register(CatalogBundle, 'BundleAll')
[docs]class BundleAll(CFMENavigateStep):
 VIEW = AllCatalogItemView
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self):
 self.prerequisite_view.navigation.select('Services', 'Catalogs')
 self.view.catalog_items.tree.click_path('All Catalog Items')

@navigator.register(CatalogBundle, 'BundleDetails')
[docs]class BundleDetails(CFMENavigateStep):
 VIEW = DetailsCatalogItemView
 prerequisite = NavigateToSibling('BundleAll')

[docs] def step(self):
 self.prerequisite_view.catalog_items.tree.click_path("All Catalog Items",
 self.obj.catalog.name, self.obj.name)

@navigator.register(CatalogBundle, 'BundleAdd')
[docs]class BundleAdd(CFMENavigateStep):
 VIEW = AddCatalogBundleView
 prerequisite = NavigateToSibling('BundleAll')

[docs] def step(self):
 self.prerequisite_view.configuration.item_select('Add a New Catalog Bundle')

@navigator.register(CatalogBundle, 'BundleEdit')
[docs]class BundleEdit(CFMENavigateStep):
 VIEW = EditCatalogBundleView
 prerequisite = NavigateToSibling('BundleDetails')

[docs] def step(self):
 self.prerequisite_view.configuration.item_select('Edit this Item')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/intelligence/reports/widgets/chart_widgets.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.intelligence.reports »

 		cfme.intelligence.reports.widgets »

 Source code for cfme.intelligence.reports.widgets.chart_widgets

-*- coding: utf-8 -*-
"""Page model for Cloud Intel / Reports / Dashboard Widgets / Charts"""
from widgetastic_manageiq import Calendar
from widgetastic_patternfly import BootstrapSelect

from cfme.utils.appliance.implementations.ui import navigator
from . import (
 BaseDashboardReportWidget,
 BaseDashboardWidgetFormCommon,
 BaseEditDashboardWidgetStep,
 BaseEditDashboardWidgetView,
 BaseNewDashboardWidgetStep,
 BaseNewDashboardWidgetView
)

[docs]class ChartWidgetFormCommon(BaseDashboardWidgetFormCommon):
 # Chart Report
 filter = BootstrapSelect("repfilter_typ")
 # Timer
 run = BootstrapSelect("timer_typ")
 every = BootstrapSelect("timer_hours")
 time_zone = BootstrapSelect("time_zone")
 starting_date = Calendar("miq_date_1")
 starting_hour = BootstrapSelect("start_hour")
 starting_minute = BootstrapSelect("start_min")

[docs]class NewChartWidgetView(BaseNewDashboardWidgetView, ChartWidgetFormCommon):
 pass

[docs]class EditChartWidgetView(BaseEditDashboardWidgetView, ChartWidgetFormCommon):
 pass

[docs]class ChartWidget(BaseDashboardReportWidget):

 TYPE = "Charts"
 TITLE = "Chart"
 pretty_attrs = ["title", "description", "filter", "visibility"]

 def __init__(self,
 title, description=None, active=None, filter=None, timer=None, visibility=None):
 self.title = title
 self.description = description
 self.active = active
 self.filter = filter
 self.timer = timer
 self.visibility = visibility

 @property
 def fill_dict(self):
 return {
 "widget_title": self.title,
 "description": self.description,
 "active": self.active,
 "filter": self.filter,
 "run": self.timer.get("run"),
 "every": self.timer.get("hours"),
 "time_zone": self.timer.get("time_zone"),
 "starting_date": self.timer.get("starting_date"),
 "starting_hour": self.timer.get("starting_hour"),
 "starting_minute": self.timer.get("starting_minute"),
 "visibility": self.visibility
 }

@navigator.register(ChartWidget, "Add")
[docs]class NewChartWidget(BaseNewDashboardWidgetStep):
 VIEW = NewChartWidgetView

@navigator.register(ChartWidget, "Edit")
[docs]class EditChartWidget(BaseEditDashboardWidgetStep):
 VIEW = EditChartWidgetView

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/services/myservice/ui.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.services.myservice »

 Source code for cfme.services.myservice.ui

from navmazing import NavigateToAttribute, NavigateToSibling
from widgetastic.widget import Text, View
from widgetastic_manageiq import Accordion, ManageIQTree, Calendar, SummaryTable
from widgetastic_patternfly import Input, BootstrapSelect, Dropdown, Button, CandidateNotFound, Tab

from cfme.base.login import BaseLoggedInPage
from cfme.common import TagPageView
from cfme.fixtures import pytest_selenium as sel
from cfme.services.myservice import MyService
from cfme.services.requests import RequestsView
from cfme.utils.appliance import current_appliance
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to, ViaUI
from cfme.utils.wait import wait_for
from cfme.web_ui import Quadicon

[docs]class MyServicesView(BaseLoggedInPage):
[docs] def in_myservices(self):
 return (
 self.logged_in_as_current_user and
 self.navigation.currently_selected == ['Services', 'MyServices'])

 @property
 def is_displayed(self):
 return (
 self.in_myservices and
 self.configuration.is_displayed and not
 self.myservice.is_dimmed)

 @View.nested
 class myservice(Accordion): # noqa
 ACCORDION_NAME = "Services"

 tree = ManageIQTree()

 # TODO drop '_btn' suffix
 reload = Button(title='Reload current display')
 configuration = Dropdown('Configuration')
 policy_btn = Dropdown('Policy')
 lifecycle_btn = Dropdown('Lifecycle')
 download_choice = Dropdown('Download')

[docs]class ServiceRetirementForm(MyServicesView):
 title = Text('#explorer_title_text')

 retirement_date = Calendar('retirementDate')
 retirement_warning = BootstrapSelect('retirement_warn')

[docs]class ServiceEditForm(MyServicesView):
 title = Text('#explorer_title_text')

 name = Input(name='name')
 description = Input(name='description')

[docs]class SetOwnershipForm(MyServicesView):
 title = Text('#explorer_title_text')

 select_owner = BootstrapSelect('user_name')
 select_group = BootstrapSelect('group_name')

[docs]class MyServiceDetailsToolbar(View):
 """View of toolbar widgets to nest"""
 reload = Button(title='Reload current display')

[docs]class MyServiceDetailView(MyServicesView):
 title = Text("#explorer_title_text")
 toolbar = View.nested(MyServiceDetailsToolbar)

 @View.nested
 class details(Tab): # noqa
 properties = SummaryTable(title='Properties')
 lifecycle = SummaryTable(title='Lifecycle')
 relationships = SummaryTable(title='Relationships')
 vm = SummaryTable(title='Totals for Service VMs ')
 smart_mgmt = SummaryTable(title='Smart Management')

 @View.nested
 class provisioning(Tab): # noqa
 results = SummaryTable(title='Results')
 plays = SummaryTable(title='Plays')
 details = SummaryTable(title='Details')
 credentials = SummaryTable(title='Credentials')
 standart_output = Text('.//div[@id="provisioning"]//pre')

 @View.nested
 class retirement(Tab): # noqa
 results = SummaryTable(title='Results')
 plays = SummaryTable(title='Plays')
 details = SummaryTable(title='Details')
 credentials = SummaryTable(title='Credentials')
 standart_output = Text('.//div[@id="provisioning"]//pre')

 @property
 def is_displayed(self):
 return (
 self.in_myservices and
 self.myservice.is_opened and
 self.title.text == 'Service "{}"'.format(self.context['object'].name))

[docs]class EditMyServiceView(ServiceEditForm):
 title = Text("#explorer_title_text")

 save_button = Button('Save')
 reset_button = Button('Reset')
 cancel_button = Button('Cancel')

 @property
 def is_displayed(self):
 return (
 self.in_myservices and
 self.myservice.is_opened and
 self.title.text == 'Editing Service "{}"'.format(self.context['object'].name)
)

[docs]class SetOwnershipView(SetOwnershipForm):
 title = Text("#explorer_title_text")

 save_button = Button('Save')

 @property
 def is_displayed(self):
 return (
 self.in_myservices and
 self.myservice.is_opened and
 self.title.text == 'Set Ownership of Service "{}"'.format(self.context['object'].name))

[docs]class ServiceRetirementView(ServiceRetirementForm):
 title = Text("#explorer_title_text")

 save_button = Button('Save')

 @property
 def is_displayed(self):
 return (
 self.in_myservices and
 self.myservice.is_opened and
 self.myservice.tree.currently_selected == self.context['object'].name and
 self.title.text == 'Set/Remove retirement date for Service')

[docs]class ReconfigureServiceView(SetOwnershipForm):
 title = Text("#explorer_title_text")

 submit_button = Button('Submit')

 @property
 def is_displayed(self):
 return (
 self.in_myservices and
 self.myservice.is_opened and
 self.title.text == 'Reconfigure Service "{}"'.format(self.context['object'].name)
)

@MyService.retire.external_implementation_for(ViaUI)
[docs]def retire(self):
 view = navigate_to(self, 'Details')
 view.lifecycle_btn.item_select("Retire this Service", handle_alert=True)
 view.flash.assert_no_error()
 if self.appliance.version < '5.8':
 view.flash.assert_success_message(
 'Retirement initiated for 1 Service from the {} Database'.format(
 current_appliance.product_name))
 # wait for service to retire
 wait_for(
 lambda: view.details.lifecycle.get_text_of("Retirement State") == 'Retired',
 fail_func=view.toolbar.reload.click,
 num_sec=10 * 60, delay=3,
 message='Service Retirement wait')

@MyService.retire_on_date.external_implementation_for(ViaUI)
[docs]def retire_on_date(self, retirement_date):
 view = navigate_to(self, 'SetRetirement')
 view.retirement_date.fill(retirement_date)
 view.save_button.click()
 view = navigate_to(self, 'Details')
 wait_for(
 lambda: view.details.lifecycle.get_text_of("Retirement State") == 'Retired',
 fail_func=view.toolbar.reload.click,
 num_sec=10 * 60, delay=3,
 message='Service Retirement wait')

@MyService.update.external_implementation_for(ViaUI)
[docs]def update(self, updates):
 view = navigate_to(self, 'Edit')
 changed = view.fill_with(updates, on_change=view.save_button, no_change=view.cancel_button)
 view.flash.assert_no_error()
 if changed:
 view.flash.assert_success_message(
 'Service "{}" was saved'.format(updates.get('name', self.name)))
 else:
 view.flash.assert_success_message(
 'Edit of Service "{}" was cancelled by the user'.format(
 updates.get('description', self.description)))
 view = self.create_view(MyServiceDetailView, override=updates)
 assert view.is_displayed

@MyService.exists.external_implementation_for(ViaUI)
[docs]def exists(self):
 try:
 navigate_to(self, 'Details')
 return True
 except CandidateNotFound:
 return False

@MyService.delete.external_implementation_for(ViaUI)
[docs]def delete(self):
 view = navigate_to(self, 'Details')
 view.configuration.item_select('Remove Service', handle_alert=True)
 view = self.create_view(MyServicesView)
 view.flash.assert_no_error()
 assert view.is_displayed
 view.flash.assert_success_message(
 'Service "{}": Delete successful'.format(self.name))

@MyService.set_ownership.external_implementation_for(ViaUI)
[docs]def set_ownership(self, owner, group):
 view = navigate_to(self, 'SetOwnership')
 view.fill({'select_owner': owner,
 'select_group': group})
 view.save_button.click()
 view = self.create_view(MyServiceDetailView)
 assert view.is_displayed
 view.flash.assert_no_error()
 view.flash.assert_success_message('Ownership saved for selected Service')

@MyService.edit_tags.external_implementation_for(ViaUI)
[docs]def edit_tags(self, tag, value):
 view = navigate_to(self, 'EditTagsFromDetails')
 view.fill({'select_tag': tag,
 'select_value': value})
 view.save_button.click()
 view = self.create_view(MyServiceDetailView)
 assert view.is_displayed
 view.flash.assert_no_error()
 view.flash.assert_success_message('Tag edits were successfully saved')

@MyService.check_vm_add.external_implementation_for(ViaUI)
[docs]def check_vm_add(self, add_vm_name):
 view = navigate_to(self, 'Details')
 # TODO - replace Quadicon later
 quadicon = Quadicon(add_vm_name, "vm")
 sel.click(quadicon)
 view.flash.assert_no_error()

@MyService.download_file.external_implementation_for(ViaUI)
[docs]def download_file(self, extension):
 view = navigate_to(self, 'All')
 view.download_choice.item_select("Download as {}".format(extension))
 view.flash.assert_no_error()

@MyService.reconfigure_service.external_implementation_for(ViaUI)
[docs]def reconfigure_service(self):
 view = navigate_to(self, 'Reconfigure')
 view.submit_button.click()
 view = self.create_view(RequestsView)
 assert view.is_displayed
 view.flash.assert_no_error()

@navigator.register(MyService, 'All')
[docs]class MyServiceAll(CFMENavigateStep):
 VIEW = MyServicesView

 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.navigation.select('Services', 'My Services')

@navigator.register(MyService, 'Details')
[docs]class MyServiceDetails(CFMENavigateStep):
 VIEW = MyServiceDetailView

 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 path_start = "Active Services" if self.appliance.version > '5.8' else "All Services"
 self.prerequisite_view.myservice.tree.click_path(path_start, self.obj.name)

@navigator.register(MyService, 'Edit')
[docs]class MyServiceEdit(CFMENavigateStep):
 VIEW = EditMyServiceView

 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.configuration.item_select('Edit this Service')

@navigator.register(MyService, 'SetOwnership')
[docs]class MyServiceSetOwnership(CFMENavigateStep):
 VIEW = SetOwnershipView

 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.configuration.item_select('Set Ownership')

@navigator.register(MyService, 'EditTagsFromDetails')
[docs]class MyServiceEditTags(CFMENavigateStep):
 VIEW = TagPageView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.policy_btn.item_select('Edit Tags')

@navigator.register(MyService, 'SetRetirement')
[docs]class MyServiceSetRetirement(CFMENavigateStep):
 VIEW = ServiceRetirementView

 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 if self.appliance.version < '5.8':
 self.prerequisite_view.lifecycle_btn.item_select('Set Retirement Date')
 else:
 self.prerequisite_view.lifecycle_btn.item_select(
 'Set Retirement Dates for this Service')

@navigator.register(MyService, 'Reconfigure')
[docs]class MyServiceReconfigure(CFMENavigateStep):
 VIEW = ReconfigureServiceView

 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.configuration.item_select('Reconfigure this Service')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/web_ui/expression_editor.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.web_ui »

 Source code for cfme.web_ui.expression_editor

-*- coding: utf-8 -*-
""" The expression editor present in some locations of CFME.

"""
from functools import partial
from selenium.common.exceptions import NoSuchElementException
from multimethods import singledispatch

from cfme.utils.wait import wait_for, TimedOutError
import cfme.fixtures.pytest_selenium as sel
from cfme.web_ui import Anything, Calendar, Form, Input, Region, AngularSelect, fill
import re
import sys
import types
from cfme.utils.pretty import Pretty

def _make_button(title):
 return "//span[not(contains(@style,'none'))]//img[@alt='{}']".format(title)

def _root():
 return sel.element("//div[@id='exp_editor_div']")

def _atom_root():
 return sel.element("./div[@id='exp_atom_editor_div']", root=_root())

def _expressions_root():
 return sel.element("./fieldset/div", root=_root())

###
Buttons container
buttons = Region(
 locators=dict(
 commit="//button[@title='Commit expression element changes']",
 discard="//button[@title='Discard expression element changes']",
 remove="//span[@id='exp_buttons_on']//*[@title='Remove this expression element']",
 NOT="//span[not(contains(@style, 'none'))]" +
 "//img[@alt='Wrap this expression element with a NOT']",
 OR="//span[not(contains(@style, 'none'))]//img[@alt='OR with a new expression element']",
 AND="//span[not(contains(@style, 'none'))]//img[@alt='AND with a new expression element']",
 redo="(//button | //a)[@title='Re-apply the previous change']",
 undo="(//button | //a)[@title='Undo the last change']",
 select_specific="//img[@alt='Click to change to a specific Date/Time format']",
 select_relative="//img[@alt='Click to change to a relative Date/Time format']",
)
)

###
Buttons for operationg the expression concatenation
#
[docs]def click_undo():
 sel.click(buttons.undo)

[docs]def click_redo():
 sel.click(buttons.redo)

[docs]def click_and():
 sel.click(buttons.AND)

[docs]def click_or():
 sel.click(buttons.OR)

[docs]def click_not():
 sel.click(buttons.NOT)

[docs]def click_remove():
 sel.click(buttons.remove)

###
Buttons for operating the atomic expressions
#
[docs]def click_commit():
 sel.click(buttons.commit)

[docs]def click_discard():
 sel.click(buttons.discard)

###
Functions for operating the selection of the expressions
#
[docs]def select_first_expression():
 """ There is always at least one (???), so no checking of bounds.

 """
 sel.click(sel.elements("//a[contains(@id,'exp_')]", root=_expressions_root())[0])

[docs]def select_expression_by_text(text):
 sel.click(
 sel.element(
 "//a[contains(@id,'exp_')][contains(normalize-space(text()),'{}')]".format(text),
 root=_expressions_root()
)
)

[docs]def no_expression_present():
 els = sel.elements("//a[contains(@id,'exp_')]", root=_expressions_root())
 if len(els) > 1:
 return False
 return els[0].text.strip() == "???"

[docs]def any_expression_present():
 return not no_expression_present()

[docs]def is_editing():
 try:
 sel.element(
 "//a[contains(@id,'exp_')][contains(normalize-space(text()),'???')]",
 root=_expressions_root()
)
 return True
 except NoSuchElementException:
 return False

[docs]def delete_whole_expression():
 while any_expression_present():
 select_first_expression()
 click_remove()

[docs]def get_expression_as_text():
 """ Returns whole expression as represented visually.

 """
 return sel.text("//div[@id='exp_editor_div']/fieldset/div").encode("utf-8").strip()

###
Form handling
#
field_form = Form(
 fields=[
 ("type", AngularSelect("chosen_typ")),
 ("field", AngularSelect("chosen_field")),
 ("key", AngularSelect("chosen_key")),
 ("value", Input("chosen_value")),
 ("user_input", Input("user_input")),
]
)

field_date_form = Form(
 fields=[
 ("dropdown_select", AngularSelect("chosen_from_1")),
 ("input_select_date", Calendar("miq_date_1_0")),
 ("input_select_time", AngularSelect("miq_time_1_0"))
]
)

count_form = Form(
 fields=[
 ("type", AngularSelect("chosen_typ")),
 ("count", AngularSelect("chosen_count")),
 ("key", AngularSelect("chosen_key", exact=True)),
 ("value", Input("chosen_value")),
 ("user_input", Input("user_input")),
]
)

tag_form = Form(
 fields=[
 ("type", AngularSelect("chosen_typ")),
 ("tag", AngularSelect("chosen_tag")),
 ("value", AngularSelect("chosen_value")),
 ("user_input", Input("user_input")),
]
)

find_form = Form(
 fields=[
 ("type", AngularSelect("chosen_typ")),
 ("field", AngularSelect("chosen_field")),
 ("skey", AngularSelect("chosen_skey")),
 ("value", "#chosen_value"),
 ("check", AngularSelect("chosen_check")),
 ("cfield", AngularSelect("chosen_cfield", exact=True)),
 ("ckey", AngularSelect("chosen_ckey")),
 ("cvalue", Input("chosen_cvalue")),
]
)

registry_form = Form(
 fields=[
 ("type", AngularSelect("chosen_typ")),
 ("key", Input("chosen_regkey")),
 ("value", Input("chosen_regval")),
 ("operation", AngularSelect("chosen_key")),
 ("contents", Input("chosen_value")),
]
)

date_switch_buttons = Region(
 locators=dict(
 to_relative="//img[@alt='Click to change to a relative Date/Time format']",
 to_specific="//img[@alt='Click to change to a specific Date/Time format']"
)
)

date_specific_form = Form(
 fields=[
 ("date", Calendar("miq_date_1_0")),
 ("time", AngularSelect("miq_time_1_0")),
]
)

date_relative_form = Form(
 fields=[
 ("from", AngularSelect("chosen_from_1")),
 ("through", AngularSelect("chosen_through_1")),
]
)

###
Fill commands
#
[docs]def fill_count(count=None, key=None, value=None):
 """ Fills the 'Count of' type of form.

 If the value is unspecified and we are in the advanced search form (user input), the user_input
 checkbox will be checked if the value is None.

 Args:
 count: Name of the field to compare (Host.VMs, ...).
 key: Operation to do (=, <, >=, ...).
 value: Value to check against.
 Returns: See :py:func:`cfme.web_ui.fill`.
 """
 fill(
 count_form,
 dict(
 type="Count of",
 count=count,
 key=key,
 value=int(value) if value is not None else value,
),
)
 # In case of advanced search box
 if sel.is_displayed(field_form.user_input):
 user_input = value is None
 else:
 user_input = None
 fill(field_form.user_input, user_input)
 sel.click(buttons.commit)

[docs]def fill_tag(tag=None, value=None):
 """ Fills the 'Tag' type of form.

 Args:
 tag: Name of the field to compare.
 value: Value to check against.
 Returns: See :py:func:`cfme.web_ui.fill`.
 """
 fill(
 tag_form,
 dict(
 type="Tag",
 tag=tag,
 value=value,
),
)
 # In case of advanced search box
 if sel.is_displayed(field_form.user_input):
 user_input = value is None
 else:
 user_input = None
 fill(field_form.user_input, user_input)
 sel.click(buttons.commit)

[docs]def fill_registry(key=None, value=None, operation=None, contents=None):
 """ Fills the 'Registry' type of form."""
 return fill(
 registry_form,
 dict(
 type="Registry",
 key=key,
 value=value,
 operation=operation,
 contents=contents,
),
 action=buttons.commit
)

[docs]def fill_find(field=None, skey=None, value=None, check=None, cfield=None, ckey=None, cvalue=None):
 fill(
 find_form,
 dict(
 type="Find",
 field=field,
 skey=skey,
 value=value,
 check=check,
 cfield=cfield,
 ckey=ckey,
 cvalue=cvalue,))
 sel.click(buttons.commit)

[docs]def fill_field(field=None, key=None, value=None):
 """ Fills the 'Field' type of form.

 Args:
 tag: Name of the field to compare (Host.VMs, ...).
 key: Operation to do (=, <, >=, IS NULL, ...).
 value: Value to check against.
 Returns: See :py:func:`cfme.web_ui.fill`.
 """
 field_norm = field.strip().lower()
 if "date updated" in field_norm or "date created" in field_norm or "boot time" in field_norm:
 no_date = False
 else:
 no_date = True
 fill(
 field_form,
 dict(
 type="Field",
 field=field,
 key=key,
 value=value if no_date else None,
),
)
 # In case of advanced search box
 if sel.is_displayed(field_form.user_input):
 user_input = value is None
 else:
 user_input = None
 fill(field_form.user_input, user_input)
 if not no_date:
 # Flip the right part of form
 if isinstance(value, basestring) and not re.match(r"^[0-9]{2}/[0-9]{2}/[0-9]{4}$", value):
 if not sel.is_displayed(field_date_form.dropdown_select):
 sel.click(date_switch_buttons.to_relative)
 fill(field_date_form, {"dropdown_select": value})
 sel.click(buttons.commit)
 else:
 # Specific selection
 if not sel.is_displayed(field_date_form.input_select_date):
 sel.click(date_switch_buttons.to_specific)
 if (isinstance(value, tuple) or isinstance(value, list)) and len(value) == 2:
 date, time = value
 elif isinstance(value, basestring): # is in correct format mm/dd/yyyy
 # Date only (for now)
 date = value[:]
 time = None
 else:
 raise TypeError("fill_field expects a 2-tuple (date, time) or string with date")
 # TODO datetime.datetime support
 fill(field_date_form.input_select_date, date)
 # Try waiting a little bit for time field
 # If we don't wait, committing the expression will glitch
 try:
 wait_for(lambda: sel.is_displayed(field_date_form.input_select_time), num_sec=6)
 # It appeared, so if the time is to be set, we will set it (passing None glitches)
 if time:
 fill(field_date_form.input_select_time, time)
 except TimedOutError:
 # Did not appear, ignore that
 pass
 finally:
 # And finally, commit the expression :)
 sel.click(buttons.commit)
 else:
 sel.click(buttons.commit)

###
Processor for YAML commands
#
_banned_commands = {"get_func", "run_commands", "dsl_parse", "create_program_from_dsl"}

[docs]def get_func(name):
 """ Return callable from this module by its name.

 Args:
 name: Name of the variable containing the callable.
 Returns: Callable from this module
 """
 assert name not in _banned_commands, "Command '{}' is not permitted!".format(name)
 assert not name.startswith("_"), "Command '{}' is private!".format(name)
 try:
 func = getattr(sys.modules[__name__], name)
 except AttributeError:
 raise NameError("Could not find function {} to operate the editor!".format(name))
 try:
 func.__call__
 return func
 except AttributeError:
 raise NameError("{} is not callable!".format(name))

[docs]def run_commands(command_list, clear_expression=True):
 """ Run commands from the command list.

 Command list syntax:
 .. code-block:: python

 [
 "function1", # no args
 "function2", # dtto
 {"fill_fields": {"field1": "value", "field2": "value"}}, # Passes kwargs
 {"do_other_things": [1,2,3]} # Passes args
]

 In YAML:
 .. code-block:: yaml

 - function1
 - function2
 -
 fill_fields:
 field1: value
 field2: value
 -
 do_other_things:
 - 1
 - 2
 - 3

 Args:
 command_list: :py:class:`list` object of the commands
 clear_expression: Whether to clear the expression before entering new one (default `True`)
 """
 assert isinstance(command_list, list) or isinstance(command_list, tuple)
 step_list = []
 for command in command_list:
 if isinstance(command, basestring):
 # Single command, no params
 step_list.append(get_func(command))
 elif isinstance(command, dict):
 for key, value in command.iteritems():
 func = get_func(key)
 args = []
 kwargs = {}
 if isinstance(value, list) or isinstance(value, tuple):
 args.extend(value)
 elif isinstance(value, dict):
 kwargs.update(value)
 else:
 raise Exception("I use '{}' type here!".format(type(value).__name__))
 step_list.append(partial(func, *args, **kwargs))
 else:
 raise Exception("I cannot process '{}' type here!".format(type(command).__name__))
 if clear_expression:
 delete_whole_expression()
 for step in step_list:
 step()

@singledispatch
def create_program(source):
 """ Wrong call

 """
 raise TypeError("Program code wrong! You must specify string (DSL), command list or None!")

@create_program.method(basestring)
def _create_program_from_dsl(dsl_program):
 """ Simple DSL to fill the expression editor.

 Syntax:
 DSL consists from statements. Statements are separated with newline or ;.
 Each statement is a single function call. Functions are called in this module.
 Function without parameters can be called like this:
 function
 or
 function()

 If the function has some parameters, you have to choose whether they are kwargs or args.
 DSL has no string literals, so if you want to call a function with classic parameters:
 function(parameter one, parameter two, you cannot use comma)
 And with kwargs:
 function(username=John Doe, password=top secret)
 You cannot split the statement to multiple lines as the DSL is regexp-based.

 Args:
 dsl_program: Source string with the program.
 Returns: Callable, which fills the expression.
 """
 SIMPLE_CALL = r"^[a-z_A-Z][a-z_A-Z0-9]*$"
 ARGS_CALL = r"^(?P<name>[a-z_A-Z][a-z_A-Z0-9]*)\((?P<args>.*)\)$"
 KWARG = r"^[^=]+=.*$"
 command_list = []
 for i, line in enumerate([x.strip() for x in re.split(r"\n|;", dsl_program)]):
 if len(line) == 0:
 continue
 elif re.match(SIMPLE_CALL, line):
 command_list.append(line)
 continue
 args_match = re.match(ARGS_CALL, line)
 if not args_match:
 raise SyntaxError("Could not resolve statement `{}' on line {}".format(line, i))
 fname = args_match.groupdict()["name"]
 args = [x.strip() for x in args_match.groupdict()["args"].split(",")]
 if len(args) > 0 and len(args[0]) > 0:
 if re.match(KWARG, args[0]):
 # kwargs
 kwargs = dict([map(lambda x: x.strip(), x.split("=", 1)) for x in args])
 command_list.append({fname: kwargs})
 else:
 # Args
 command_list.append({fname: [None if arg == "/None/" else arg for arg in args]})
 else:
 command_list.append(fname)
 return create_program(command_list)

@create_program.method(list)
@create_program.method(tuple)
def _create_program_from_list(command_list):
 """ Create function which fills the expression from the command list.

 Args:
 command_list: Command list for :py:func:`run_program`
 Returns: Callable, which fills the expression.
 """
 return partial(run_commands, command_list)

@create_program.method(types.NoneType)
def _create_program_from_none(none):
 return lambda: none

[docs]class Expression(Pretty):
 """This class enables to embed the expression in a Form.

 Args:
 show_func: Function to call to show the expression if there are more of them.
 """
 pretty_attrs = ['show_func']

 def __init__(self, show_func=lambda: None):
 self.show_func = show_func

@fill.method((Expression, Anything))
def _fill_expression(e, p):
 e.show_func()
 prog = create_program(p)
 prog()

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/services/myservice/ssui.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.services.myservice »

 Source code for cfme.services.myservice.ssui

from navmazing import NavigateToAttribute, NavigateToSibling
from widgetastic.widget import Text
from widgetastic_manageiq import SSUIlist, SSUIDropdown
from widgetastic_patternfly import Input, Button

from cfme.base.ssui import SSUIBaseLoggedInPage
from cfme.utils.appliance.implementations.ssui import (
 navigator,
 SSUINavigateStep,
 navigate_to,
 ViaSSUI
)

from . import MyService

[docs]class MyServicesView(SSUIBaseLoggedInPage):
 title = Text(locator='//li[@class="active"]')
 service = SSUIlist(list_name='serviceList')

[docs] def in_myservices(self):
 return (
 self.logged_in_as_current_user and
 self.navigation.currently_selected == ["", "My Services"])

 @property
 def is_displayed(self):
 return self.in_myservices and self.title.text == "My Services"

[docs]class DetailsMyServiceView(MyServicesView):
 title = Text(locator='//li[@class="active"]')

 @property
 def is_displayed(self):
 return (self.in_myservices and
 self.title.text in {self.context['object'].name, 'Service Details'})

 configuration = SSUIDropdown('Configuration')
 policy_btn = SSUIDropdown('Policy')
 lifecycle_btn = SSUIDropdown('Lifecycle')
 power_operations = SSUIDropdown('Download')

[docs]class ServiceEditForm(MyServicesView):
 title = Text(locator='//li[@class="active"]')

 name = Input(name='name')
 description = Input(name='description')

[docs]class EditMyServiceView(ServiceEditForm):
 title = Text(locator='//li[@class="active"]')

 save_button = Button('Save')
 reset_button = Button('Reset')
 cancel_button = Button('Cancel')

 @property
 def is_displayed(self):
 return (
 self.in_myservices and
 self.title.text == "Edit Service"
)

@MyService.update.external_implementation_for(ViaSSUI)
[docs]def update(self, updates):
 view = navigate_to(self, 'Edit')
 view.fill_with(updates, on_change=view.save_button, no_change=view.cancel_button)
 view.flash.assert_no_error()
 view = self.create_view(DetailsMyServiceView, override=updates)
 assert view.is_displayed

 # TODO - implement notifications and then assert.

@navigator.register(MyService, 'All')
[docs]class MyServiceAll(SSUINavigateStep):
 VIEW = MyServicesView

 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.navigation.select('My Services')

@navigator.register(MyService, 'Details')
[docs]class Details(SSUINavigateStep):
 VIEW = DetailsMyServiceView

 prerequisite = NavigateToSibling('All')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.service.click_at(self.obj.name)

@navigator.register(MyService, 'Edit')
[docs]class MyServiceEdit(SSUINavigateStep):
 VIEW = EditMyServiceView

 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.configuration.item_select('Edit')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/intelligence/chargeback/rates.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.intelligence.chargeback »

 Source code for cfme.intelligence.chargeback.rates

-*- coding: utf-8 -*-
Page model for Intel->Chargeback->Rates.

from . import ChargebackView
from cached_property import cached_property
from navmazing import NavigateToSibling, NavigateToAttribute
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import navigator, navigate_to, CFMENavigateStep
from cfme.utils.pretty import Pretty
from cfme.utils.update import Updateable
from widgetastic.utils import ParametrizedLocator, ParametrizedString
from widgetastic.widget import Text, ParametrizedView
from widgetastic_manageiq import Select
from widgetastic_patternfly import Button, Input, Dropdown

[docs]class RatesView(ChargebackView):
 title = Text("#explorer_title_text")

 @property
 def is_displayed(self):
 return (
 self.in_chargeback and self.configuration.is_displayed and
 self.title.text == "Compute Chargeback Rates"
)

 configuration = Dropdown('Configuration')

[docs]class RatesDetailView(ChargebackView):
 title = Text("#explorer_title_text")

 @property
 def is_displayed(self):
 return (
 self.in_chargeback and self.configuration.is_displayed and
 self.title.text == 'Compute Chargeback Rate "{}"'.format(
 self.context["object"].description) and
 self.rates.is_opened and
 self.rates.tree.currently_selected == [
 "Compute Chargeback Rates",
 self.context["object"].description
]
)

 configuration = Dropdown('Configuration')

[docs]class AddComputeChargebackView(RatesView):
 title = Text('#explorer_title_text')

 description = Input(id='description')
 currency = Select(id='currency')

 @ParametrizedView.nested
 class fields(ParametrizedView): # noqa
 PARAMETERS = ('name',)
 ROOT = ParametrizedLocator('.//tr[./td[contains(normalize-space(.), {name|quote})]]')

 @cached_property
 def row_id(self):
 attr = self.browser.get_attribute(
 'id',
 './td/select[starts-with(@id, "per_time_")]',
 parent=self)
 return int(attr.rsplit('_', 1)[-1])

 @cached_property
 def sub_row_id(self):
 attr = self.browser.get_attribute(
 'id',
 './td/input[starts-with(@id, "fixed_rate_")]',
 parent=self)
 return int(attr.rsplit('_', 1)[-1])

 per_time = Select(id=ParametrizedString('per_time_{@row_id}'))
 per_unit = Select(id=ParametrizedString('per_unit_{@row_id}'))
 start = Input(id=ParametrizedString('start_{@row_id}_{@sub_row_id}'))
 finish = Input(id=ParametrizedString('finish_{@row_id}_{@sub_row_id}'))
 fixed_rate = Input(id=ParametrizedString('fixed_rate_{@row_id}_{@sub_row_id}'))
 variable_rate = Input(id=ParametrizedString('variable_rate_{@row_id}_{@sub_row_id}'))
 action_add = Button(title='Add a new tier')
 action_delete = Button(title='Remove the tier')

 add_button = Button(title='Add')
 cancel_button = Button(title='Cancel')

 @property
 def is_displayed(self):
 return (
 self.in_chargeback and
 self.title.text == 'Compute Chargeback Rates' and
 self.description.is_displayed)

[docs]class EditComputeChargebackView(AddComputeChargebackView):

 save_button = Button(title='Save Changes')
 reset_button = Button(title='Reset Changes')

 @property
 def is_displayed(self):
 return (
 self.in_chargeback and
 self.title.text == 'Compute Chargeback Rate "{}"'.format(self.obj.description))

[docs]class StorageChargebackView(RatesView):
 @property
 def is_displayed(self):
 return (
 self.in_chargeback and
 self.title.text == 'Storage Chargeback Rates')

[docs]class AddStorageChargebackView(AddComputeChargebackView):
 @property
 def is_displayed(self):
 return (
 self.in_chargeback and
 self.title.text == 'Storage Chargeback Rates' and
 self.description.is_displayed)

[docs]class EditStorageChargebackView(EditComputeChargebackView):
 @property
 def is_displayed(self):
 return (
 self.in_chargeback and
 self.title.text == 'Storage Chargeback Rate "{}"'.format(self.obj.description))

[docs]class ComputeRate(Updateable, Pretty, Navigatable):
 """This class represents a Compute Chargeback rate.

 Example:
 .. code-block:: python

 >>> import cfme.intelligence.chargeback.rates as rates
 >>> rate = rates.ComputeRate(description=desc,
 fields={'Used CPU':
 {'per_time': 'Hourly', 'variable_rate': '3'},
 'Used Disk I/O':
 {'per_time': 'Hourly', 'variable_rate': '2'},
 'Used Memory':
 {'per_time': 'Hourly', 'variable_rate': '2'}})
 >>> rate.create()
 >>> rate.delete()

 Args:
 description: Rate description
 currency: Rate currency
 fields : Rate fields
 """

 pretty_attrs = ['description']

 def __init__(self, description=None,
 currency=None,
 fields=None,
 appliance=None,
):
 Navigatable.__init__(self, appliance=appliance)
 self.description = description
 self.currency = currency
 self.fields = fields

 def __getitem__(self, name):
 return self.fields.get(name)

[docs] def create(self):
 # Create a rate in UI
 view = navigate_to(self, 'New')
 view.fill_with({'description': self.description,
 'currency': self.currency,
 'fields': self.fields},
 on_change=view.add_button,
 no_change=view.cancel_button)

 view.flash.assert_success_message('Chargeback Rate "{}" was added'.format(
 self.description))

[docs] def update(self, updates):
 # Update a rate in UI
 view = navigate_to(self, 'Edit')
 view.fill_with(updates,
 on_change=view.save_button,
 no_change=view.cancel_button)

 view.flash.assert_success_message('Chargeback Rate "{}" was saved'.format(
 updates.get('description')))

[docs] def delete(self):
 # Delete a rate in UI
 view = navigate_to(self, 'Details')
 view.configuration.item_select('Remove from the VMDB', handle_alert=True)
 view.flash.assert_success_message('Chargeback Rate "{}": Delete successful'.format(
 self.description))

[docs]class StorageRate(ComputeRate):
 # Methods and form for this are similar to that of ComputeRate, but navigation is different
 # from that of ComputeRate.
 pretty_attrs = ['description']

@navigator.register(ComputeRate, 'All')
[docs]class ComputeRateAll(CFMENavigateStep):
 VIEW = RatesView
 prerequisite = NavigateToAttribute('appliance.server', 'IntelChargeback')

[docs] def step(self):
 self.view.rates.tree.click_path(
 "Rates",
 "Compute"
)

@navigator.register(ComputeRate, 'New')
[docs]class ComputeRateNew(CFMENavigateStep):
 VIEW = AddComputeChargebackView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.view.configuration.item_select("Add a new Chargeback Rate")

@navigator.register(ComputeRate, 'Details')
[docs]class ComputeRateDetails(CFMENavigateStep):
 VIEW = RatesDetailView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.view.rates.tree.click_path(
 "Rates",
 "Compute", self.obj.description
)

@navigator.register(ComputeRate, 'Edit')
[docs]class ComputeRateEdit(CFMENavigateStep):
 VIEW = EditComputeChargebackView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.view.configuration.item_select("Edit this Chargeback Rate")

@navigator.register(StorageRate, 'All')
[docs]class StorageRateAll(CFMENavigateStep):
 VIEW = StorageChargebackView
 prerequisite = NavigateToAttribute('appliance.server', 'IntelChargeback')

[docs] def step(self):
 self.view.rates.tree.click_path(
 "Rates",
 "Storage"
)

@navigator.register(StorageRate, 'New')
[docs]class StorageRateNew(CFMENavigateStep):
 VIEW = AddStorageChargebackView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.view.configuration.item_select("Add a new Chargeback Rate")

@navigator.register(StorageRate, 'Details')
[docs]class StorageRateDetails(CFMENavigateStep):
 VIEW = RatesDetailView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.view.rates.tree.click_path(
 "Rates",
 "Storage", self.obj.description
)

@navigator.register(StorageRate, 'Edit')
[docs]class StorageRateEdit(CFMENavigateStep):
 VIEW = EditStorageChargebackView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.view.configuration.item_select("Edit this Chargeback Rate")

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/services/requests.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.services.requests

-*- coding: utf-8 -*-
from navmazing import NavigateToAttribute, NavigateToSibling
from widgetastic.widget import Text, Table, Checkbox, View
from widgetastic_manageiq import BreadCrumb, SummaryForm, SummaryFormItem, PaginationPane, Button
from widgetastic_patternfly import Input, Tab, BootstrapTreeview

from cfme.base.login import BaseLoggedInPage
from cfme.common.vm_views import ProvisionView, BasicProvisionFormView
from cfme.exceptions import RequestException, ItemNotFound
from cfme.utils.log import logger
from cfme.utils.appliance import BaseCollection, BaseEntity
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to
from cfme.utils.varmeth import variable
from cfme.utils.wait import wait_for

[docs]class RequestCollection(BaseCollection):
 """The appliance collection of requests"""
 def __init__(self, appliance):
 self.appliance = appliance

[docs] def instantiate(self, description=None, cells=None, partial_check=False):
 """Create a request object"""
 return Request(self, description=description, cells=cells, partial_check=partial_check)

[docs]class Request(BaseEntity):
 """
 Class describes request row from Services - Requests page
 """

 REQUEST_FINISHED_STATES = {'Migrated', 'Finished'}

 def __init__(self, collection, description=None, cells=None, partial_check=False):
 """
 Args:
 description: by default we'll be checking Description column to find required row
 cells: cells used to find required row in table
 partial_check: greedy search or not?
 """
 self.collection = collection
 self.appliance = self.collection.appliance
 self.description = description
 self.partial_check = partial_check
 self.cells = cells or {'Description': self.description}
 self.row = None

 # TODO Replace varmeth with Sentaku one day
 @variable(alias='rest')
 def wait_for_request(self):
 def _finished():
 self.rest.reload()
 return self.rest.request_state.title() in self.REQUEST_FINISHED_STATES

 wait_for(_finished, num_sec=1800, delay=20, message="Request finished")

 @wait_for_request.variant('ui')
 def wait_for_request_ui(self):
 def _finished():
 self.update(method='ui')
 return self.row.request_state.text in self.REQUEST_FINISHED_STATES

 wait_for(_finished, num_sec=1200, delay=10, message="Request finished")

 @property
 def rest(self):
 if self.partial_check:
 matching_requests = self.appliance.rest_api.collections.requests.find_by(
 description='%{}%'.format(self.cells['Description']))
 else:
 matching_requests = self.appliance.rest_api.collections.requests.find_by(
 description=self.cells['Description'])
 if len(matching_requests) > 1:
 raise RequestException(
 'Multiple requests with matching \"{}\" '
 'found - be more specific!'.format(
 self.description))
 elif len(matching_requests) == 0:
 raise ItemNotFound(
 'Nothing matching "{}" with partial_check={} was found'.format(
 self.cells['Description'], self.partial_check))
 else:
 self.description = matching_requests[0].description
 return matching_requests[0]

[docs] def get_request_row_from_ui(self):
 """Opens CFME UI and return table_row object"""
 view = navigate_to(self.collection, 'All')
 self.row = view.find_request(self.rest.description, partial_check=False)
 return self.row

[docs] def get_request_id(self):
 return self.rest.request_id

 @variable(alias='rest')
 def exists(self):
 """If our Request exists in CFME"""
 try:
 return self.rest.exists
 except ItemNotFound:
 return False

 @property
 def status(self):
 self.update()
 return self.rest.status

 @property
 def request_state(self):
 self.update()
 return self.rest.request_state

 @exists.variant('ui')
 def exists_ui(self):
 """
 Checks if Request if shown in CFME UI.
 Request might be removed from CFME UI but present in DB

 """
 view = navigate_to(self.collection, 'All')
 return bool(view.find_request(self.cells, self.partial_check))

 @variable(alias='rest')
 def update(self):
 """Updates Request object details - last message, status etc
 """
 self.rest.reload()
 self.description = self.rest.description
 self.cells = {'Description': self.description}

 @update.variant('ui')
 def update_ui(self):
 view = navigate_to(self.collection, 'All')
 view.toolbar.reload.click()
 self.row = view.find_request(cells=self.cells, partial_check=self.partial_check)

 @variable(alias='rest')
 def approve_request(self, reason):
 """Approves request with specified reason
 Args:
 reason: Reason for approving the request.
 cancel: Whether to cancel the approval.
 """
 self.rest.action.approve(reason=reason)

 @approve_request.variant('ui')
 def approve_request_ui(self, reason, cancel=False):
 view = navigate_to(self, 'Approve')
 view.reason.fill(reason)
 if not cancel:
 view.submit.click()
 else:
 view.breadcrumb.click_location(view.breadcrumb.locations[1], handle_alert=True)
 view.flash.assert_no_error()

 @variable(alias='rest')
 def deny_request(self, reason):
 """Opens the specified request and deny it.
 Args:
 reason: Reason for denying the request.
 cancel: Whether to cancel the denial.
 """
 self.rest.action.deny(reason=reason)

 @deny_request.variant('ui')
 def deny_request_ui(self, reason, cancel=False):
 view = navigate_to(self, 'Deny')
 view.reason.fill(reason)
 if not cancel:
 view.submit.click()
 else:
 view.breadcrumb.click_location(view.breadcrumb.locations[1], handle_alert=True)
 view.flash.assert_no_error()

[docs] def remove_request(self, cancel=False):
 """Opens the specified request and deletes it - removes from UI
 Args:
 cancel: Whether to cancel the deletion.
 """
 view = navigate_to(self, 'Details')
 view.toolbar.delete.click()
 view.browser.handle_alert(cancel=cancel, wait=10.0)
 view.browser.plugin.ensure_page_safe()

 @variable(alias='rest')
 def is_finished(self):
 """Helper function checks if a request is completed
 """
 self.update()
 return self.rest.request_state.title() in self.REQUEST_FINISHED_STATES

 @is_finished.variant('ui')
 def is_finished_ui(self):
 self.update(method='ui')
 return self.row.request_state.text in self.REQUEST_FINISHED_STATES

 @variable(alias='rest')
 def is_succeeded(self):
 return self.is_finished() and self.rest.status.title() == 'Ok'

 @is_succeeded.variant('ui')
 def is_succeeded_ui(self):
 return self.is_finished(method=('ui')) and self.row.status.text == 'Ok'

[docs] def copy_request(self, values=None, cancel=False):
 """Copies the request and edits if needed
 """
 view = navigate_to(self, 'Copy')
 view.form.fill(values)
 if not cancel:
 view.form.submit_button.click()
 else:
 view.cancel_button.click()
 view.flash.assert_no_error()
 # The way we identify request is a description which is based on vm_name,
 # no need returning Request obj if name is the same => raw request copy
 if 'vm_name' in values.keys():
 return Request(description=values['vm_name'], partial_check=True)

[docs] def edit_request(self, values, cancel=False):
 """Opens the request for editing and saves or cancels depending on success.
 """
 view = navigate_to(self, 'Edit')
 if view.form.fill(values):
 if not cancel:
 view.form.submit_button.click()
 self.update()
 else:
 view.cancel_button.click()
 else:
 logger.debug('Nothing was changed in current request')
 view.flash.assert_no_error()

[docs]class RequestsToolbar(View):
 """Toolbar on the requests view"""
 reload = Button(title='Reload the current display')

[docs]class RequestBasicView(BaseLoggedInPage):
 title = Text('//div[@id="main-content"]//h1')
 toolbar = View.nested(RequestsToolbar)

 @property
 def in_requests(self):
 return self.logged_in_as_current_user

 # TODO uncomment after BZ 1472844 is fixed
 # and self.navigation.currently_selected == ['Services', 'Requests'] and

[docs]class RequestsView(RequestBasicView):
 table = Table(locator='//*[@id="list_grid"]/table')
 paginator = PaginationPane()

[docs] def find_request(self, cells, partial_check=False):
 """Finds the request and returns the row element
 Args:
 cells: Search data for the requests table.
 partial_check: If to use the ``__contains`` operator
 Returns: row
 """
 contains = '' if not partial_check else '__contains'
 column_list = self.table.attributized_headers
 for key in cells.keys():
 for column_name, column_text in column_list.items():
 if key == column_text:
 cells['{}{}'.format(column_name, contains)] = cells.pop(key)
 break

 # TODO Replace Paginator with paginator_pane after 1450002 gets resolved
 from cfme.web_ui import paginator
 for page in paginator.pages():
 rows = list(self.table.rows(**cells))
 if len(rows) == 0:
 # row not on this page, assume it has yet to appear
 # it might be nice to add an option to fail at this point
 continue
 elif len(rows) > 1:
 raise RequestException(
 'Multiple requests with matching content found - be more specific!')
 else:
 # found the row!
 row = rows[0]
 logger.debug(' Request Message: %s', row.last_message.text)
 return row
 else:
 raise Exception("The requst specified by {} not found!".format(str(cells)))

 @property
 def is_displayed(self):
 return self.in_requests and self.title.text == 'Requests'

[docs]class RequestDetailsToolBar(RequestsView):
 copy = Button(title='Copy original Request')
 edit = Button(title='Edit the original Request')
 delete = Button(title='Delete this Request')
 approve = Button(title='Approve this Request')
 deny = Button(title='Deny this Request')

[docs]class RequestDetailsView(RequestsView):

 @View.nested
 class details(View): # noqa
 request_details = SummaryForm('Request Details')

 @View.nested
 class request(Tab): # noqa
 TAB_NAME = 'Request'
 email = SummaryFormItem('Request Information', 'E-Mail')
 first_name = SummaryFormItem('Request Information', 'First Name')
 last_name = SummaryFormItem('Request Information', 'Last Name')
 notes = SummaryFormItem('Request Information', 'Notes')
 manager_name = SummaryFormItem('Manager', 'Name')

 @View.nested
 class purpose(Tab): # noqa
 TAB_NAME = 'Purpose'
 apply_tags = BootstrapTreeview('all_tags_treebox')

 @View.nested
 class catalog(Tab): # noqa
 TAB_NAME = 'Catalog'
 filter_template = SummaryFormItem('Select', 'Filter')
 name = SummaryFormItem('Select', 'Name')
 provision_type = SummaryFormItem('Select', 'Provision Type')
 linked_clone = Checkbox(id='service__linked_clone')
 vm_count = SummaryFormItem('Number of VMs', 'Count')
 instance_count = SummaryFormItem('Number of Instances', 'Count')
 vm_name = SummaryFormItem('Naming', 'VM Name')
 instance_name = SummaryFormItem('Naming', 'Instance Name')
 vm_description = SummaryFormItem('Naming', 'VM Description')

 @View.nested
 class environment(Tab): # noqa
 TAB_NAME = 'Environment'

 automatic_placement = Checkbox(name='environment__placement_auto')
 # Azure
 virtual_private_cloud = SummaryFormItem('Placement - Options', 'Virtual Private Cloud')
 cloud_subnet = SummaryFormItem('Placement - Options', 'Cloud Subnet')
 security_groups = SummaryFormItem('Placement - Options', 'Security Groups')
 resource_groups = SummaryFormItem('Placement - Options', 'Resource Groups')
 public_ip_address = SummaryFormItem('Placement - Options', 'Public IP Address ')
 # GCE
 availability_zone = SummaryFormItem('Placement - Options', 'Availability Zones')
 cloud_network = SummaryFormItem('Placement - Options', 'Cloud Network')
 # Infra
 datacenter = SummaryFormItem('Datacenter', 'Name')
 cluster = SummaryFormItem('Cluster', 'Name')
 resource_pool = SummaryFormItem('Resource Pool', 'Name')
 folder = SummaryFormItem('Folder', 'Name')
 host_filter = SummaryFormItem('Host', 'Filter')
 host_name = SummaryFormItem('Host', 'Name')
 datastore_storage_profile = SummaryFormItem('Datastore', 'Storage Profile')
 datastore_filter = SummaryFormItem('Datastore', 'Filter')
 datastore_name = SummaryFormItem('Datastore', 'Name')

 @View.nested
 class hardware(Tab): # noqa
 num_cpus = SummaryFormItem('Hardware', 'Number of CPUS')
 memory = SummaryFormItem('Hardware', 'Startup Memory (MB)')
 dynamic_memory = SummaryFormItem('Hardware', 'Dynamic Memory')
 vm_limit_cpu = SummaryFormItem('VM Limits', 'CPU (%)')
 vm_reserve_cpu = SummaryFormItem('VM Reservations', 'CPU (%)')

 @View.nested
 class network(Tab): # noqa
 vlan = SummaryFormItem('Network Adapter Information', 'vLan')

 @View.nested
 class properties(Tab): # noqa
 instance_type = SummaryFormItem('Properties', 'Instance Type')
 boot_disk_size = SummaryFormItem('Properties', 'Boot Disk Size ')
 is_preemtible = Checkbox(name='hardware__is_preemptible')

 @View.nested
 class customize(Tab): # noqa
 username = SummaryFormItem('Credentials', 'Username')
 ip_mode = SummaryFormItem('IP Address Information', 'Address Mode')
 hostname = SummaryFormItem('IP Address Information', 'Address Mode')
 subnet_mask = SummaryFormItem('IP Address Information', 'Subnet Mask')
 gateway = SummaryFormItem('IP Address Information', 'Gateway')
 dns_server_list = SummaryFormItem('DNS', 'DNS Server list')
 dns_suffix_list = SummaryFormItem('DNS', 'DNS Suffix list')
 subnet_mask = SummaryFormItem('IP Address Information', 'Subnet Mask')
 customize_template = SummaryFormItem('Customize Template', 'Script Name')

 @View.nested
 class schedule(Tab): # noqa
 when_provision = SummaryFormItem('Schedule Info', 'When to Provision')
 stateless = Checkbox(name='shedule__stateless')
 power_on = SummaryFormItem('Lifespan', 'Power on virtual machines after creation')
 retirement = SummaryFormItem('Lifespan', 'Time until Retirement')
 retirement_warning = SummaryFormItem('Lifespan', 'Retirement Warning')

 @property
 def is_displayed(self):
 return (self.in_requests and
 self.title.text == self.context['object'].rest.description)

 breadcrumb = BreadCrumb()
 toolbar = RequestDetailsToolBar()

[docs]class RequestApprovalView(RequestDetailsView):

 reason = Input(name='reason')
 submit = Button(title='Submit')
 cancel = Button(title="Cancel this provisioning request")

 @property
 def is_displayed(self):
 try:
 return (
 self.breadcrumb.locations[1] == self.context['object'].rest.description and
 self.breadcrumb.locations[2] == 'Request Approval')
 except Exception:
 return False

[docs]class RequestDenialView(RequestDetailsView):

 reason = Input(name='reason')
 submit = Button(title='Submit')
 cancel = Button(title="Cancel this provisioning request")

 @property
 def is_displayed(self):
 try:
 return (
 self.breadcrumb.locations[1] == self.context['object'].rest.description and
 self.breadcrumb.locations[2] == 'Request Denial')
 except Exception:
 return False

[docs]class RequestProvisionView(ProvisionView):

 @View.nested
 class form(BasicProvisionFormView): # noqa
 submit_button = Button('Submit') # Submit for 2nd page, tabular form
 cancel_button = Button('Cancel')

 @property
 def is_displayed(self):
 try:
 return self.breadcrumb.locations[1] == self.context['object'].rest.description
 except Exception:
 return False

[docs]class RequestEditView(RequestProvisionView):

 @property
 def is_displayed(self):
 try:
 return (
 self.breadcrumb.locations[1] == self.context['object'].rest.description and
 self.breadcrumb.locations[2] == 'Edit VM Provision')
 except Exception:
 return False

[docs]class RequestCopyView(RequestProvisionView):

 @property
 def is_displayed(self):
 try:
 return (
 self.breadcrumb.locations[1] == self.context['object'].rest.description and
 self.breadcrumb.locations[2] == 'Copy of VM Provision Request')
 except Exception:
 return False

@navigator.register(RequestCollection, 'All')
[docs]class RequestAll(CFMENavigateStep):
 VIEW = RequestsView
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.navigation.select('Services', 'Requests')

@navigator.register(Request, 'Details')
[docs]class RequestDetails(CFMENavigateStep):
 VIEW = RequestDetailsView
 prerequisite = NavigateToAttribute('collection', 'All')

[docs] def step(self, *args, **kwargs):
 try:
 return self.prerequisite_view.table.row(description=self.obj.rest.description).click()
 except (NameError, TypeError):
 logger.warning('Exception caught, could not match Request')

@navigator.register(Request, 'Edit')
[docs]class EditRequest(CFMENavigateStep):
 VIEW = RequestEditView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 return self.prerequisite_view.toolbar.edit.click()

@navigator.register(Request, 'Copy')
[docs]class CopyRequest(CFMENavigateStep):
 VIEW = RequestCopyView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 return self.prerequisite_view.toolbar.copy.click()

@navigator.register(Request, 'Approve')
[docs]class ApproveRequest(CFMENavigateStep):
 VIEW = RequestApprovalView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 return self.prerequisite_view.toolbar.approve.click()

@navigator.register(Request, 'Deny')
[docs]class DenyRequest(CFMENavigateStep):
 VIEW = RequestDenialView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 return self.prerequisite_view.toolbar.deny.click()

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/intelligence/reports/dashboards.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.intelligence.reports »

 Source code for cfme.intelligence.reports.dashboards

-*- coding: utf-8 -*-
"""Page model for Cloud Intel / Reports / Dashboards"""
from navmazing import NavigateToAttribute, NavigateToSibling
from widgetastic.widget import Text, Checkbox
from widgetastic_manageiq import SummaryFormItem, DashboardWidgetsPicker
from widgetastic_patternfly import Button, Input

from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to
from cfme.utils.pretty import Pretty
from cfme.utils.update import Updateable
from . import CloudIntelReportsView

[docs]class DashboardAllGroupsView(CloudIntelReportsView):
 title = Text("#explorer_title_text")

 @property
 def is_displayed(self):
 return (
 self.in_intel_reports and
 self.title.text == 'Dashboards for "{}"'.format(self.context["object"].group) and
 self.dashboards.is_opened and
 self.dashboards.tree.currently_selected == [
 "All Dashboards",
 "All Groups",
 self.context["object"].group
]
)

[docs]class DashboardFormCommon(CloudIntelReportsView):
 title = Text("#explorer_title_text")
 basic_information = Text(".//div[@id='form_div']/h3")
 name = Input(name="name")
 tab_title = Input(name="description")
 locked = Checkbox("locked")
 sample_dashboard = Text(".//div[@id='form_widgets_div']/h3")
 widgets = DashboardWidgetsPicker(
 "form_widgets_div",
 select_id="widget",
 names_locator=".//a[starts-with(@id, 'w_')]/..",
 remove_locator=".//div[contains(@title, {})]//a/i"
)
 cancel_button = Button("Cancel")

[docs]class NewDashboardView(DashboardFormCommon):
 add_button = Button("Add")

 @property
 def is_displayed(self):
 return (
 self.in_intel_reports and
 self.title.text == "Adding a new dashboard" and
 self.dashboards.is_opened and
 self.dashboards.tree.currently_selected == [
 "All Dashboards",
 "All Groups",
 self.context["object"].group
]
)

[docs]class EditDashboardView(DashboardFormCommon):
 save_button = Button("Save")
 reset_button = Button("Reset")

 @property
 def is_displayed(self):
 return (
 self.in_intel_reports and
 self.title.text == "Editing Dashboard {}".format(self.context["object"].name) and
 self.dashboards.is_opened and
 self.dashboards.tree.currently_selected == [
 "All Dashboards",
 "All Groups",
 self.context["object"].group,
 self.context["object"].name
]
)

[docs]class EditDefaultDashboardView(EditDashboardView):

 @property
 def is_displayed(self):
 return (
 self.in_intel_reports and
 self.title.text == "Editing Dashboard {}".format(self.context["object"].name) and
 self.dashboards.is_opened and
 self.dashboards.tree.currently_selected == [
 "All Dashboards",
 "{} ({})".format(self.context["object"].title, self.context["object"].name)
]
)

[docs]class DashboardDetailsView(CloudIntelReportsView):
 SAMPLE_DASHBOARD_ROOT = ".//div[@id='modules']"
 ITEM_TITLE_LOCATOR = ".//h3[contains(@class, 'panel-title')]"
 title = Text("#explorer_title_text")
 name = SummaryFormItem("Basic Information", "Name")
 tab_title = SummaryFormItem("Basic Information", "Tab Title")

 @property
 def selected_items(self):
 items = []
 for el in self.browser.elements(self.ITEM_TITLE_LOCATOR, self.SAMPLE_DASHBOARD_ROOT):
 items.append(self.browser.text(el))
 return items

 @property
 def is_displayed(self):
 return (
 self.in_intel_reports and
 self.title.text == 'Dashboard "{} ({})"'.format(
 self.context["object"].title,
 self.context["object"].name
) and
 self.dashboards.is_opened and
 self.dashboards.tree.currently_selected == [
 "All Dashboards",
 "All Groups",
 self.context["object"].group,
 self.context["object"].name
]
)

[docs]class DefaultDashboardDetailsView(DashboardDetailsView):

 @property
 def is_displayed(self):
 return (
 self.in_intel_reports and
 self.title.text == 'Dashboard "{} ({})"'.format(
 self.context["object"].title,
 self.context["object"].name
) and
 self.dashboards.is_opened and
 self.dashboards.tree.currently_selected == [
 "All Dashboards",
 "{} ({})".format(self.context["object"].title, self.context["object"].name)
]
)

[docs]class Dashboard(Updateable, Pretty, Navigatable):
 pretty_attrs = ["name", "group", "title", "widgets"]

 def __init__(self, name, group, title=None, locked=None, widgets=None, appliance=None):
 Navigatable.__init__(self, appliance)
 self.name = name
 self.title = title
 self.locked = locked
 self.widgets = widgets
 self._group = group

 @property
 def group(self):
 return self._group

[docs] def create(self, cancel=False):
 """Create this Dashboard in the UI."""
 view = navigate_to(self, "Add")
 view.fill({
 "name": self.name,
 "tab_title": self.title,
 "locked": self.locked,
 "widgets": self.widgets
 })
 view.add_button.click()
 view = self.create_view(DashboardAllGroupsView)
 assert view.is_displayed
 view.flash.assert_no_error()
 view.flash.assert_message('Dashboard "{}" was saved'.format(self.name))

[docs] def update(self, updates):
 """Update this Dashboard in the UI.

 Args:
 updates: Provided by update() context manager.
 """
 view = navigate_to(self, "Edit")
 changed = view.fill(updates)
 if changed:
 view.save_button.click()
 else:
 view.cancel_button.click()
 for attr, value in updates.items():
 setattr(self, attr, value)
 view = self.create_view(DashboardDetailsView)
 assert view.is_displayed
 view.flash.assert_no_error()
 if changed:
 view.flash.assert_message('Dashboard "{}" was saved'.format(self.name))
 else:
 view.flash.assert_message(
 'Edit of Dashboard "{}" was cancelled by the user'.format(self.name))

[docs] def delete(self, cancel=False):
 """Delete this Dashboard in the UI.

 Args:
 cancel: Whether to cancel the deletion (default False).
 """
 view = navigate_to(self, "Details")
 view.configuration.item_select(
 "Delete this Dashboard from the Database",
 handle_alert=not cancel
)
 if cancel:
 assert view.is_displayed
 view.flash.assert_no_error()
 else:
 view = self.create_view(DashboardAllGroupsView)
 assert view.is_displayed
 view.flash.assert_no_error()

[docs]class DefaultDashboard(Updateable, Pretty, Navigatable):
 pretty_attrs = ["name", "title", "widgets"]

 def __init__(self, title="Default Dashboard", locked=None, widgets=None, appliance=None):
 Navigatable.__init__(self, appliance)
 self.title = title
 self.locked = locked
 self.widgets = widgets

 @property
 def name(self):
 """Name of Default Dashboard cannot be changed."""
 return "default"

[docs] def update(self, updates):
 """Update Default Dashboard in the UI.

 Args:
 updates: Provided by update() context manager.
 """
 view = navigate_to(self, "Edit")
 changed = view.fill(updates)
 if changed:
 view.save_button.click()
 else:
 view.cancel_button.click()
 view = self.create_view(DefaultDashboardDetailsView)
 assert view.is_displayed
 if changed:
 view.flash.assert_success_message('Dashboard "{}" was saved'.format(self.name))
 else:
 view.flash.assert_success_message(
 'Edit of Dashboard "{}" was cancelled by the user'.format(self.name))

@navigator.register(Dashboard, "Add")
[docs]class DashboardNew(CFMENavigateStep):
 VIEW = NewDashboardView
 prerequisite = NavigateToAttribute("appliance.server", "CloudIntelReports")

[docs] def step(self):
 self.prerequisite_view.dashboards.tree.click_path(
 "All Dashboards",
 "All Groups",
 self.obj.group
)
 self.prerequisite_view.configuration.item_select("Add a new Dashboard")

@navigator.register(Dashboard, "Edit")
[docs]class DashboardEdit(CFMENavigateStep):
 VIEW = EditDashboardView
 prerequisite = NavigateToSibling("Details")

[docs] def step(self):
 self.prerequisite_view.configuration.item_select("Edit this Dashboard")

@navigator.register(DefaultDashboard, "Edit")
[docs]class DefaultDashboardEdit(CFMENavigateStep):
 VIEW = EditDefaultDashboardView
 prerequisite = NavigateToSibling("Details")

[docs] def step(self):
 self.prerequisite_view.configuration.item_select("Edit this Dashboard")

@navigator.register(Dashboard, "Details")
[docs]class DashboardDetails(CFMENavigateStep):
 VIEW = DashboardDetailsView
 prerequisite = NavigateToAttribute("appliance.server", "CloudIntelReports")

[docs] def step(self):
 self.prerequisite_view.dashboards.tree.click_path(
 "All Dashboards",
 "All Groups",
 self.obj.group,
 self.obj.name
)

@navigator.register(DefaultDashboard, "Details")
[docs]class DefaultDashboardDetails(CFMENavigateStep):
 VIEW = DefaultDashboardDetailsView
 prerequisite = NavigateToAttribute("appliance.server", "CloudIntelReports")

[docs] def step(self):
 self.prerequisite_view.dashboards.tree.click_path(
 "All Dashboards",
 "{} ({})".format(self.obj.title, self.obj.name)
)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/services/myservice.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.services.myservice

import sentaku

from cfme.utils.appliance import Navigatable
from cfme.common import WidgetasticTaggable
from cfme.utils.update import Updateable

[docs]class MyService(Updateable, Navigatable, WidgetasticTaggable, sentaku.modeling.ElementMixin):
 """
 My Service main class to context switch between ui
 and ssui. All the below methods are implemented in both ui
 and ssui side .
 """

 update = sentaku.ContextualMethod()
 retire = sentaku.ContextualMethod()
 retire_on_date = sentaku.ContextualMethod()
 exists = sentaku.ContextualMethod()
 delete = sentaku.ContextualMethod()
 set_ownership = sentaku.ContextualMethod()
 edit_tags = sentaku.ContextualMethod()
 check_vm_add = sentaku.ContextualMethod()
 download_file = sentaku.ContextualMethod()
 reconfigure_service = sentaku.ContextualMethod()

 def __init__(self, appliance, name=None, description=None, vm_name=None):
 self.appliance = appliance
 self.name = name
 self.description = description
 self.vm_name = vm_name
 self.parent = self.appliance.context

from . import ui, ssui # NOQA last for import cycles
sentaku.register_external_implementations_in(ui, ssui)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/intelligence/reports/import_export.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.intelligence.reports »

 Source code for cfme.intelligence.reports.import_export

-*- coding: utf-8 -*-
from widgetastic_manageiq import Table
from widgetastic_patternfly import Button, Input
from widgetastic.widget import Select, ClickableMixin, Checkbox, Text
from cfme.utils.appliance.implementations.ui import navigator, navigate_to, CFMENavigateStep
from cfme.base.ui import Server
from navmazing import NavigateToAttribute
from . import CloudIntelReportsView

[docs]class InputButton(Input, ClickableMixin):
 pass

[docs]class ImportExportCommonForm(CloudIntelReportsView):

 title = Text("#explorer_title_text")
 subtitle = Text(locator=".//div[@id='main_div']/h2")
 upload_file = Input("upload[file]")
 items_for_export = Select(id="choices_chosen")

 upload_button = InputButton("commit")
 export_button = Button("Export")

[docs]class ImportExportCustomReportsView(ImportExportCommonForm):

 overwrite = Checkbox("overwrite")

 @property
 def is_displayed(self):
 return (
 self.in_intel_reports and
 self.title.text == "Import / Export" and
 self.subtitle.text == "Custom Reports" and
 self.import_export.tree.currently_selected == ["Import / Export", "Custom Reports"]
)

[docs]class ImportExportWidgetsView(ImportExportCommonForm):

 @property
 def is_displayed(self):
 return (
 self.in_intel_reports and
 self.title.text == "Import / Export" and
 self.subtitle.text == "Widgets" and
 self.import_export.tree.currently_selected == ["Import / Export", "Widgets"]
)

[docs]class ImportExportWidgetsCommitView(CloudIntelReportsView):

 title = Text("#explorer_title_text")
 table = Table(".//form[@id='import-widgets-form']/table")
 commit_button = InputButton("commit")
 cancel_button = InputButton("cancel")

 @property
 def is_displayed(self):
 return (
 self.in_intel_reports and
 self.title.text == "Import / Export" and
 self.import_export.tree.currently_selected == ["Import / Export", "Widgets"]
)

@navigator.register(Server)
[docs]class ImportExportCustomReports(CFMENavigateStep):
 VIEW = ImportExportCustomReportsView
 prerequisite = NavigateToAttribute("appliance.server", "CloudIntelReports")

[docs] def step(self):
 self.view.import_export.tree.click_path("Import / Export", "Custom Reports")

@navigator.register(Server)
[docs]class ImportExportWidgets(CFMENavigateStep):
 VIEW = ImportExportWidgetsView
 prerequisite = NavigateToAttribute("appliance.server", "CloudIntelReports")

[docs] def step(self):
 self.view.import_export.tree.click_path("Import / Export", "Widgets")

[docs]def export_reports(*custom_report_names):
 view = navigate_to(Server, "ImportExportCustomReports")
 assert view.is_displayed
 view.fill({
 "items_for_export": list(custom_report_names)
 })
 view.export_button.click()

[docs]def import_reports(filename, overwrite=False):
 view = navigate_to(Server, "ImportExportCustomReports")
 assert view.is_displayed
 view.fill({
 "overwrite": overwrite,
 "upload_file": filename
 })
 view.upload_button.click()
 view.flash.assert_no_error()

[docs]def export_widgets(*widget_names):
 view = navigate_to(Server, "ImportExportWidgets")
 assert view.is_displayed
 view.fill({
 "items_for_export": list(widget_names)
 })
 view.export_button.click()

[docs]def import_widgets(filename, overwrite=False):
 view = navigate_to(Server, "ImportExportWidgets")
 assert view.is_displayed
 view.fill({
 "overwrite": overwrite,
 "upload_file": filename
 })
 view.upload_button.click()
 view = view.browser.create_view(ImportExportWidgetsCommitView)
 assert view.is_displayed
 view.flash.assert_success_message("Import file was uploaded successfully")
 view.table.check_all()
 view.commit_button.click()
 view = view.browser.create_view(ImportExportWidgetsView)
 assert view.is_displayed
 view.flash.assert_success_message("Widgets imported successfully")

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/services/catalogs/catalog.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.services.catalogs »

 Source code for cfme.services.catalogs.catalog

from widgetastic.utils import Parameter
from widgetastic.widget import Text
from widgetastic_manageiq import MultiBoxSelect
from widgetastic_patternfly import Button, Input
from navmazing import NavigateToAttribute, NavigateToSibling

from cfme.common import TagPageView, WidgetasticTaggable
from cfme.utils.update import Updateable
from cfme.utils.pretty import Pretty
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to
from cfme.utils import version

from . import ServicesCatalogView

[docs]class CatalogsMultiBoxSelect(MultiBoxSelect):
 move_into_button = Button(title=Parameter("@move_into"))
 move_from_button = Button(title=Parameter("@move_from"))

[docs]class CatalogForm(ServicesCatalogView):
 title = Text('#explorer_title_text')

 name = Input(name='name')
 description = Input(name="description")
 assign_catalog_items = CatalogsMultiBoxSelect(
 move_into="Move Selected buttons right",
 move_from="Move Selected buttons left",
 available_items="available_fields",
 chosen_items="selected_fields"
)

 save_button = Button('Save')
 cancel_button = Button('Cancel')

[docs]class CatalogsView(ServicesCatalogView):
 title = Text("#explorer_title_text")

 @property
 def is_displayed(self):
 return (
 self.in_explorer and
 self.title.text == 'All Catalogs' and
 self.catalogs.is_opened and
 self.catalogs.tree.currently_selected == ["All Catalogs"])

[docs]class DetailsCatalogView(ServicesCatalogView):
 title = Text("#explorer_title_text")

 @property
 def is_displayed(self):
 return (
 self.in_explorer and self.catalogs.is_opened and
 self.title.text == 'Catalog "{}"'.format(self.context['object'].name)
)

[docs]class AddCatalogView(CatalogForm):

 add_button = Button("Add")

 @property
 def is_displayed(self):
 return (
 self.in_explorer and self.catalogs.is_opened and
 self.title.text == "Adding a new Catalog"
)

[docs]class EditCatalogView(CatalogForm):

 save_button = Button('Save')
 reset_button = Button('Reset')

 @property
 def is_displayed(self):
 return (
 self.in_explorer and self.catalogs.is_opened and
 self.title.text == "Editing Catalog {}".format(self.name)
)

[docs]class Catalog(Updateable, Pretty, Navigatable, WidgetasticTaggable):

 def __init__(self, name=None, description=None, items=None, appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.name = name
 self.description = description
 self.items = items

[docs] def create(self):
 view = navigate_to(self, 'Add')
 view.fill({
 'name': self.name,
 'description': self.description,
 'assign_catalog_items': self.items
 })
 view.add_button.click()
 view.flash.assert_success_message('Catalog "{}" was saved'.format(self.name))
 view = self.create_view(CatalogsView)
 assert view.is_displayed
 view.flash.assert_no_error()

[docs] def update(self, updates):
 view = navigate_to(self, 'Edit')
 changed = view.fill(updates)
 if changed:
 view.save_button.click()
 else:
 view.cancel_button.click()
 view = self.create_view(DetailsCatalogView, override=updates)
 assert view.is_displayed
 view.flash.assert_no_error()
 if changed:
 view.flash.assert_message(
 'Catalog "{}" was saved'.format(updates.get('name', self.name)))
 else:
 view.flash.assert_message(
 'Edit of Catalog "{}" was cancelled by the user'.format(self.name))

[docs] def delete(self):
 view = navigate_to(self, "Details")
 view.configuration.item_select(
 version.pick({
 version.LOWEST: 'Remove Item from the VMDB',
 '5.7': 'Remove Catalog'}),
 handle_alert=True)
 view = self.create_view(CatalogsView)
 assert view.is_displayed
 view.flash.assert_no_error()
 view.flash.assert_success_message(
 'Catalog "{}": Delete successful'.format(self.description or self.name))

 @property
 def exists(self):
 try:
 navigate_to(self, 'Details')
 return True
 # web_ui.Table.click_row_by_cells throws a NameError exception on no match
 except NameError:
 return False

@navigator.register(Catalog, 'All')
[docs]class All(CFMENavigateStep):
 VIEW = CatalogsView

 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self):
 self.prerequisite_view.navigation.select('Services', 'Catalogs')
 self.view.catalogs.tree.click_path("All Catalogs")

@navigator.register(Catalog, 'Add')
[docs]class Add(CFMENavigateStep):
 VIEW = AddCatalogView

 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.configuration.item_select('Add a New Catalog')

@navigator.register(Catalog, 'Details')
[docs]class Details(CFMENavigateStep):
 VIEW = DetailsCatalogView

 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.catalogs.tree.click_path("All Catalogs", self.obj.name)

@navigator.register(Catalog, 'Edit')
[docs]class Edit(CFMENavigateStep):
 VIEW = EditCatalogView

 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.configuration.item_select('Edit this Item')

@navigator.register(Catalog, 'EditTagsFromDetails')
[docs]class EditTagsFromDetails(CFMENavigateStep):
 VIEW = TagPageView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.toolbar.policy.item_select('Edit Tags')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/intelligence/reports/saved.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.intelligence.reports »

 Source code for cfme.intelligence.reports.saved

-*- coding: utf-8 -*-
from widgetastic.widget import Text
from widgetastic_manageiq import Table, PaginationPane
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to
from navmazing import NavigateToSibling

from . import CloudIntelReportsView
from .reports import CustomSavedReportDetailsView

[docs]class AllSavedReportsView(CloudIntelReportsView):
 title = Text("#explorer_title_text")
 table = Table(".//div[@id='records_div']/table")
 paginator = PaginationPane()

 @property
 def is_displayed(self):
 return (
 self.in_intel_reports and
 self.saved_reports.is_opened and
 self.saved_reports.tree.currently_selected == ["All Saved Reports"] and
 self.title.text == "All Saved Reports"
)

[docs]class SavedReportDetailsView(CustomSavedReportDetailsView):

 @property
 def is_displayed(self):
 return (
 self.in_intel_reports and
 self.saved_reports.is_opened and
 self.saved_reports.tree.currently_selected == ([
 "All Reports",
 self.context["object"].name,
 self.context["object"].run_at_datetime
]) and
 self.title.text == 'Saved Report "{}"'.format(self.context["object"].name)
)

[docs]class SavedReportView(AllSavedReportsView):

 @property
 def is_displayed(self):
 return (
 self.in_intel_reports and
 self.saved_reports.is_opened and
 self.saved_reports.tree.currently_selected == [
 "All Saved Reports",
 self.context["object"].name
] and
 self.title.text == 'Saved Report "{}"'.format(self.context["object"].name)
)

[docs]class SavedReport(Navigatable):

 def __init__(self, name, run_at_datetime, queued_datetime_in_title, appliance=None):
 Navigatable.__init__(self, appliance)
 self.name = name
 self.run_at_datetime = run_at_datetime
 self.queued_datetime_in_title = queued_datetime_in_title

[docs] def delete(self, cancel=False):
 view = navigate_to(self, "Details")
 view.configuration.item_select(
 "Delete this Saved Report from the Database",
 handle_alert=not cancel
)
 if cancel:
 assert view.is_displayed
 view.flash.assert_no_error()
 else:
 view.flash.assert_no_error()
 view.flash.assert_message("Successfully deleted Saved Report from the CFME Database")

@navigator.register(SavedReport, "Details")
[docs]class ScheduleDetails(CFMENavigateStep):
 VIEW = SavedReportDetailsView
 prerequisite = NavigateToSibling("All")

[docs] def step(self):
 self.view.saved_reports.tree.click_path(
 "Saved Reports",
 "All Saved Reports",
 self.obj.name,
 self.obj.run_at_datetime
)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/services/catalogs.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.services.catalogs

from navmazing import NavigateToSibling
from widgetastic.widget import View
from widgetastic_manageiq import Accordion, ManageIQTree
from widgetastic_patternfly import Dropdown, FlashMessages

from cfme.base.login import BaseLoggedInPage
from cfme.base import Server
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep

[docs]class ServicesCatalogView(BaseLoggedInPage):

 @property
 def in_explorer(self):
 return (
 self.logged_in_as_current_user and
 self.navigation.currently_selected == ['Services', 'Catalogs'])

 @property
 def is_displayed(self):
 return self.in_explorer and self.configuration.is_displayed and not self.catalogs.is_dimmed

 @View.nested
 class service_catalogs(Accordion): # noqa
 ACCORDION_NAME = "Service Catalogs"

 tree = ManageIQTree()

 @View.nested
 class catalog_items(Accordion): # noqa
 ACCORDION_NAME = "Catalog Items"

 tree = ManageIQTree()

 @View.nested
 class orchestration_templates(Accordion): # noqa
 ACCORDION_NAME = "Orchestration Templates"

 tree = ManageIQTree()

 @View.nested
 class catalogs(Accordion): # noqa
 tree = ManageIQTree()

 configuration = Dropdown('Configuration')
 policy = Dropdown('Policy')
 flash = FlashMessages(".//div[@id='flash_msg_div']/div")

@navigator.register(Server)
[docs]class ServicesCatalog(CFMENavigateStep):
 VIEW = ServicesCatalogView
 prerequisite = NavigateToSibling("LoggedIn")

[docs] def step(self):
 self.view.navigation.select("Services", "Catalogs")

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/intelligence/reports/menus.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.intelligence.reports »

 Source code for cfme.intelligence.reports.menus

-*- coding: utf-8 -*-
"""Module handling report menus contents"""
from contextlib import contextmanager
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import navigate_to, navigator, CFMENavigateStep
from widgetastic.widget import Text
from widgetastic_manageiq import ManageIQTree, FolderManager
from widgetastic_patternfly import Button
from navmazing import NavigateToAttribute

from . import CloudIntelReportsView, ReportsMultiBoxSelect

[docs]class EditReportMenusView(CloudIntelReportsView):
 title = Text("#explorer_title_text")
 reports_tree = ManageIQTree("menu_roles_treebox")
 # Buttons
 save_button = Button("Save")
 reset_button = Button("Reset")
 default_button = Button("Default")
 cancel_button = Button("Cancel")
 commit_button = Button("Commit")
 discard_button = Button("Discard")

 manager = FolderManager(".//div[@id='folder_lists']/table")
 report_select = ReportsMultiBoxSelect(
 move_into="Move selected reports right",
 move_from="Move selected reports left",
 available_items="available_reports",
 chosen_items="selected_reports"
)

 @property
 def is_displayed(self):
 return (
 self.in_intel_reports and
 self.title.text == 'Editing EVM Group "{}"'.format(self.context["object"].group) and
 self.edit_report_menus.is_opened and
 self.edit_report_menus.tree.currently_selected == [
 "All EVM Groups",
 self.context["object"].group
]
)

[docs]class ReportMenu(Navigatable):
 """
 This is a fake class mainly needed for navmazing navigation.

 """
 def __init__(self, appliance=None):
 Navigatable.__init__(self, appliance)
 self.group = None

[docs] def go_to_group(self, group_name):
 self.group = group_name
 view = navigate_to(self, "EditReportMenus")
 assert view.is_displayed
 return view

[docs] def get_folders(self, group):
 """Returns list of folders for given user group.

 Args:
 group: User group to check.
 """
 view = self.go_to_group(group)
 view.reports_tree.click_path("Top Level")
 return view.manager.fields

[docs] def get_subfolders(self, group, folder):
 """Returns list of sub-folders for given user group and folder.

 Args:
 group: User group to check.
 folder: Folder to read.
 """
 view = self.go_to_group(group)
 view.reports_tree.click_path("Top Level", folder)
 return view.manager.fields

[docs] def add_folder(self, group, folder):
 """Adds a folder under top-level.

 Args:
 group: User group.
 folder: Name of the new folder.
 """
 with self.manage_folder() as top_level:
 top_level.add(folder)

[docs] def add_subfolder(self, group, folder, subfolder):
 """Adds a subfolder under specified folder.

 Args:
 group: User group.
 folder: Name of the folder.
 subfolder: Name of the new subdfolder.
 """
 with self.manage_folder(folder) as fldr:
 fldr.add(subfolder)

[docs] def reset_to_default(self, group):
 """Clicks the `Default` button.

 Args:
 group: Group to set to Default
 """
 view = self.go_to_group(group)
 view.default_button.click()
 view.save_button.click()

 @contextmanager
[docs] def manage_subfolder(self, group, folder, subfolder):
 """Context manager to use when modifying the subfolder contents.

 You can use manager's :py:meth:`FolderManager.bail_out` classmethod to end and discard the
 changes done inside the with block.

 Args:
 group: User group.
 folder: Parent folder name.
 subfolder: Subfolder name to manage.
 Returns: Context-managed :py:class: `widgetastic_manageiq.MultiBoxSelect` instance
 """
 view = self.go_to_group(group)
 view.reports_tree.click_path("Top Level", folder, subfolder)
 try:
 yield view.report_select
 except FolderManager._BailOut:
 view.discard_button.click()
 except Exception:
 # In case of any exception, nothing will be saved
 view.discard_button.click()
 raise # And reraise the exception
 else:
 # If no exception happens, save!
 view.commit_button.click()
 view.save_button.click()

 @contextmanager
[docs] def manage_folder(self, group, folder=None):
 """Context manager to use when modifying the folder contents.

 You can use manager's :py:meth:`FolderManager.bail_out` classmethod to end and discard the
 changes done inside the with block. This context manager does not give the manager as a
 value to the with block so you have to import and use the :py:class:`FolderManager` class
 manually.

 Args:
 group: User group.
 folder: Which folder to manage. If None, top-level will be managed.
 Returns: Context-managed :py:class:`widgetastic_manageiq.FolderManager` instance
 """
 view = self.go_to_group(group)
 if folder is None:
 view.reports_tree.click_path("Top Level")
 else:
 view.reports_tree.click_path("Top Level", folder)
 try:
 yield view.manager
 except FolderManager._BailOut:
 view.manager.discard()
 except Exception:
 # In case of any exception, nothing will be saved
 view.manager.discard()
 raise # And reraise the exception
 else:
 # If no exception happens, save!
 view.manager.commit()
 view.save_button.click()

@navigator.register(ReportMenu)
[docs]class EditReportMenus(CFMENavigateStep):
 VIEW = EditReportMenusView
 prerequisite = NavigateToAttribute("appliance.server", "CloudIntelReports")

[docs] def step(self):
 self.view.edit_report_menus.tree.click_path(
 "All EVM Groups",
 self.obj.group
)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/services/catalogs/orchestration_template.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.services.catalogs »

 Source code for cfme.services.catalogs.orchestration_template

-*- coding: utf-8 -*-
from widgetastic.widget import Text, Checkbox
from widgetastic_patternfly import BootstrapSelect, Button, Input
from widgetastic_manageiq import ScriptBox, Table
from navmazing import NavigateToAttribute, NavigateToSibling
from cfme.common import TagPageView, WidgetasticTaggable
from cfme.utils.update import Updateable
from cfme.utils.pretty import Pretty
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to

from . import ServicesCatalogView

[docs]class OrchestrationTemplatesView(ServicesCatalogView):
 title = Text("#explorer_title_text")

 @property
 def is_displayed(self):
 return (
 super(OrchestrationTemplatesView, self).is_displayed and
 self.title.text == 'All Orchestration Templates' and
 self.orchestration_templates.is_opened and
 self.orchestration_templates.tree.currently_selected == ["All Orchestration Templates"])

[docs]class CopyTemplateForm(ServicesCatalogView):
 title = Text('#explorer_title_text')

 name = Input(name='name')
 description = Input(name="description")
 draft = Checkbox(name='draft')
 content = ScriptBox(locator="//pre[@class=' CodeMirror-line ']/span")

 cancel_button = Button('Cancel')

[docs]class TemplateForm(CopyTemplateForm):

 template_type = BootstrapSelect("type")

[docs]class AddTemplateView(TemplateForm):

 add_button = Button("Add")

 @property
 def is_displayed(self):
 return (
 self.title.text == "Adding a new Orchestration Template" and
 self.orchestration_templates.is_opened
)

[docs]class EditTemplateView(TemplateForm):

 save_button = Button('Save')
 reset_button = Button('Reset')

 @property
 def is_displayed(self):
 return (
 self.title.text == "Editing {}".format(self.obj.name) and
 self.orchestration_templates.is_opened
)

[docs]class CopyTemplateView(CopyTemplateForm):

 add_button = Button("Add")

 @property
 def is_displayed(self):
 return (
 self.is_displayed and
 self.title.text == "Copying {}".format(self.obj.name) and
 self.orchestration_templates.is_opened
)

[docs]class DetailsTemplateView(ServicesCatalogView):

 @property
 def is_displayed(self):
 """ Removing last 's' character from template_type.
 For ex. 'CloudFormation Templates' -> 'CloudFormation Template'"""
 return (
 self.title.text == '{} "{}"'.format(self.obj.template_type[:-1],
 self.obj.template_name) and
 self.orchestration_templates.is_opened
)

[docs]class TemplateTypeView(ServicesCatalogView):

 templates = Table("//table[@class='table table-striped table-bordered "
 "table-hover table-selectable]'")

 @property
 def is_displayed(self):
 return (
 self.title.text == 'All {}'.format(self.obj.template_type) and
 self.orchestration_templates.is_opened
)

[docs]class DialogForm(ServicesCatalogView):
 title = Text('#explorer_title_text')

 name = Input(name='dialog_name')

[docs]class AddDialogView(DialogForm):

 add_button = Button("Save")

 @property
 def is_displayed(self):
 return (
 self.title.text == 'Adding a new Service Dialog from '
 'Orchestration Template "{}"'.format(self.obj.name) and
 self.orchestration_templates.is_opened
)

[docs]class OrchestrationTemplate(Updateable, Pretty, Navigatable, WidgetasticTaggable):

 def __init__(self, template_type=None, template_name=None, description=None,
 draft=None, content=None, appliance=None):
 Navigatable.__init__(self, appliance)
 self.template_type = template_type
 self.template_name = template_name
 self.description = description
 self.draft = draft
 self.content = content

[docs] def create(self, content):
 view = navigate_to(self, "AddTemplate")
 if self.template_type == "CloudFormation Templates":
 temp_type = "Amazon CloudFormation"
 elif self.template_type == "Heat Templates":
 temp_type = "OpenStack Heat"
 elif self.template_type == "Azure Templates":
 temp_type = "Microsoft Azure"
 else:
 raise Exception("ERROR template_type needs to be one of the above")
 view.fill({'name': self.template_name,
 'description': self.description,
 'template_type': temp_type,
 'content': content})
 view.add_button.click()
 view.flash.assert_success_message('Orchestration Template '
 '"{}" was saved'.format(self.template_name))

[docs] def update(self, updates):
 view = navigate_to(self, "Edit")
 view.fill({'description': updates.get('description'),
 'name': updates.get('template_name'),
 'draft': updates.get('draft'),
 'content': updates.get('content')})
 view.save_button.click()
 view.flash.assert_success_message('Orchestration Template "{}" was saved'.format(
 self.template_name))

[docs] def delete(self):
 view = navigate_to(self, "Details")
 view.configuration.item_select("Remove this Orchestration Template", handle_alert=True)
 view.flash.assert_success_message('Orchestration Template "{}" was deleted.'.format(
 self.template_name))

[docs] def delete_all_templates(self):
 view = navigate_to(self, "TemplateType")
 from cfme.web_ui import paginator
 paginator.check_all()
 view.configuration.item_select("Remove selected Orchestration Templates", handle_alert=True)

[docs] def copy_template(self, template_name, content, draft=None, description=None):
 view = navigate_to(self, "CopyTemplate")
 view.fill({'name': template_name,
 'content': content,
 'draft': draft,
 'description': description
 })
 view.add_button.click()
 view.flash.assert_success_message('Orchestration Template "{}" was saved'.format(
 template_name))

[docs] def create_service_dialog_from_template(self, dialog_name, template_name):
 view = navigate_to(self, "AddDialog")
 view.fill({'name': dialog_name})
 view.add_button.click()
 view.flash.assert_success_message('Service Dialog "{}" was successfully created'.format(
 dialog_name))
 return template_name

@navigator.register(OrchestrationTemplate, 'All')
[docs]class All(CFMENavigateStep):
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

 VIEW = OrchestrationTemplatesView

[docs] def step(self):
 self.prerequisite_view.navigation.select('Services', 'Catalogs')
 self.view.orchestration_templates.tree.click_path("All Orchestration Templates")

[docs] def am_i_here(self, *args, **kwargs):
 return self.view.is_displayed

@navigator.register(OrchestrationTemplate, 'Details')
[docs]class Details(CFMENavigateStep):
 prerequisite = NavigateToSibling('All')

 VIEW = DetailsTemplateView

[docs] def step(self):
 self.view.orchestration_templates.tree.click_path("All Orchestration Templates",
 self.obj.template_type, self.obj.template_name)

[docs] def am_i_here(self, *args, **kwargs):
 return self.view.is_displayed

@navigator.register(OrchestrationTemplate, 'TemplateType')
[docs]class TemplateType(CFMENavigateStep):
 prerequisite = NavigateToSibling('All')

 VIEW = TemplateTypeView

[docs] def step(self):
 self.view.orchestration_templates.tree.click_path("All Orchestration Templates",
 self.obj.template_type)

@navigator.register(OrchestrationTemplate, 'AddDialog')
[docs]class AddDialog(CFMENavigateStep):
 prerequisite = NavigateToSibling('Details')

 VIEW = AddDialogView

[docs] def step(self):
 self.view.configuration.item_select('Create Service Dialog from Orchestration Template')

@navigator.register(OrchestrationTemplate, 'Edit')
[docs]class EditTemplate(CFMENavigateStep):
 prerequisite = NavigateToSibling('Details')

 VIEW = EditTemplateView

[docs] def step(self):
 self.view.configuration.item_select("Edit this Orchestration Template")

@navigator.register(OrchestrationTemplate, 'AddTemplate')
[docs]class AddTemplate(CFMENavigateStep):
 prerequisite = NavigateToSibling('TemplateType')

 VIEW = AddTemplateView

[docs] def step(self):
 self.view.configuration.item_select("Create new Orchestration Template")

@navigator.register(OrchestrationTemplate, 'CopyTemplate')
[docs]class CopyTemplate(CFMENavigateStep):
 prerequisite = NavigateToSibling('Details')

 VIEW = CopyTemplateView

[docs] def step(self):
 self.view.configuration.item_select("Copy this Orchestration Template")

@navigator.register(OrchestrationTemplate, 'EditTagsFromDetails')
[docs]class EditTagsFromDetails(CFMENavigateStep):
 VIEW = TagPageView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.policy.item_select('Edit Tags')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/log_validator.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.log_validator

import re
import pytest

from ssh import SSHTail
from cfme.utils.log import logger

[docs]class LogValidator(object):
 """
 Log content validator class provides methods
 to fix the log content before test is started,
 and validate the content of log during test execution,
 according to predefined patterns.
 Predefined patterns are:

 * Logs which should be skipped. Skip further checks on particular line if matched
 * Logs which should cause failure of test.
 * Logs which are expected to be matched, otherwise fail.

 The priority of patterns to be checked are defined in above order.
 Skipping patterns have priority over other ones,
 to be possible to skip particular ERROR log,
 but fail for wider range of other ERRORs.

 Args:
 remote_filename: path to the remote log file
 skip_patterns: array of skip regex patterns
 failure_patterns: array of failure regex patterns
 matched_patterns: array of expected regex patterns to be matched

 Usage:
 .. code-block:: python
 evm_tail = LogValidator('/var/www/miq/vmdb/log/evm.log',
 skip_patterns=['PARTICULAR_ERROR'],
 failure_patterns=['.*ERROR.*'],
 matched_patterns=['PARTICULAR_INFO'])
 evm_tail.fix_before_start()
 evm_tail.validate_logs()
 """

 def __init__(self, remote_filename, **kwargs):
 self.skip_patterns = kwargs.pop('skip_patterns', [])
 self.failure_patterns = kwargs.pop('failure_patterns', [])
 self.matched_patterns = kwargs.pop('matched_patterns', [])

 self._remote_file_tail = SSHTail(remote_filename, **kwargs)
 self.matches = {}

[docs] def fix_before_start(self):
 self._remote_file_tail.set_initial_file_end()

[docs] def validate_logs(self):
 for line in self._remote_file_tail:
 if self._check_skip_logs(line):
 continue
 self._check_fail_logs(line)
 self._check_match_logs(line)
 self._verify_match_logs()

 def _check_skip_logs(self, line):
 for pattern in self.skip_patterns:
 if re.match(pattern, line):
 logger.info('Skip pattern {} was matched on line {},\
 so skipping this line'.format(pattern, line))
 return True
 return False

 def _check_fail_logs(self, line):
 for pattern in self.failure_patterns:
 if re.match(pattern, line):
 pytest.fail('Failure pattern {} was matched on line {}'.format(pattern, line))

 def _check_match_logs(self, line):
 for pattern in self.matched_patterns:
 if re.match(pattern, line):
 logger.info('Expected pattern {} was matched on line {}'.format(pattern, line))
 self.matches[pattern] = True

 def _verify_match_logs(self):
 for pattern in self.matched_patterns:
 if pattern not in self.matches:
 pytest.fail('Expected pattern {} did not match'.format(pattern))

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/stats.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.stats

[docs]def tol_check(ref, compare, min_error=0.05, low_val_correction=3.0):
 """Tolerance check

 The tolerance check is very simple. In essence it checks to ensure
 that the ``compare`` value is within ``min_error`` percentage of the ``ref`` value.
 However there are special conditions.

 If the ref value is zero == the compare value we will alwys return True to avoid
 calculation overhead.

 If the ref value is zero we check if the compare value is below the low_val_correction
 threshold.

 The low value correction is also used if ref is small. In this case, if one minus the
 difference of the ref and low value correction / reference value yields greater error
 correction, then this is used.

 For example, if the reference was 1 and the compare was 2, with a min_error set to the
 default, the tolerance check would return False. At low values this is probably undesirable
 and so, the low_val_correction allows for a greater amount of error at low values.
 As an example, with the lvc set to 3, the allowe error would be much higher, allowing the
 tolerance check to pass.

 The lvc will only take effect if the error it produces is greater than the ``min_error``.

 Args:
 ref: The reference value
 compare: The comparison value
 min_error: The minimum allowed error
 low_val_correction: A correction value for lower values
 """
 if ref == compare:
 return True, min_error
 elif ref == 0:
 return compare <= low_val_correction, low_val_correction
 else:
 compared_value = float(compare)
 reference_value = float(ref)
 relational_error = 1.0 - ((reference_value - low_val_correction) / reference_value)
 tolerance = max([relational_error, min_error])
 difference = abs(reference_value - compared_value)
 difference_error = difference / reference_value
 return difference_error <= tolerance, tolerance

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/ocp_cli.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.ocp_cli

from cfme.utils.conf import credentials
from cfme.utils.log import logger
from cfme.utils.ssh import SSHClient

[docs]class OcpCli(object):
 """This class provides CLI functionality for Openshift provider.
 """
 def __init__(self, provider):

 provider_cfme_data = provider.get_yaml_data()
 self.hostname = provider_cfme_data['hostname']
 creds = provider_cfme_data.get('ssh_creds')

 if not creds:
 raise Exception('Could not find ssh_creds in provider\'s cfme data.')
 if isinstance(creds, dict):
 self.username = creds.get('username')
 self.password = creds.get('password')
 else:
 self.username = credentials[creds].get('username')
 self.password = credentials[creds].get('password')

 with SSHClient(hostname=self.hostname, username=self.username,
 password=self.password, look_for_keys=True) as ssh_client:
 self.ssh_client = ssh_client
 self.ssh_client.load_system_host_keys()

 self._command_counter = 0
 self.log_line_limit = 500

[docs] def run_command(self, *args, **kwargs):
 logger.info('{} - Running SSH Command#{} : {}'
 .format(self.hostname, self._command_counter, args[0]))
 results = self.ssh_client.run_command(*args, **kwargs)
 results_short = results[:max((self.log_line_limit, len(results)))]
 if results.success:
 logger.info('{} - Command#{} - Succeed: {}'
 .format(self.hostname, self._command_counter, results_short))
 else:
 logger.warning('{} - Command#{} - Failed: {}'
 .format(self.hostname, self._command_counter, results_short))
 self._command_counter += 1
 return results

[docs] def close(self):
 self.ssh_client.close()

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/ext_auth.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.ext_auth

-*- coding: utf-8 -*-
import fauxfactory
from time import sleep

from cfme.configure.configuration import (
 DatabaseAuthSetting, ExternalAuthSetting, get_ntp_servers, set_ntp_servers)
from cfme.utils import appliance
from cfme.utils.browser import ensure_browser_open
from cfme.utils.conf import credentials
from cfme.utils.ssh import SSHClient
from cfme.utils.appliance import get_or_create_current_appliance
from cfme.utils.path import conf_path

[docs]def disable_external_auth(auth_mode):
 if 'ipa' in auth_mode:
 disable_external_auth_ipa()
 elif 'openldap' in auth_mode:
 disable_external_auth_openldap()
 else:
 raise Exception("'auth_mode' is not within the expected values for ext_auth, "
 "ipa or openldap..")

[docs]def setup_external_auth_ipa(**data):
 """Sets up the appliance for an external authentication with IPA.

 Keywords:
 get_groups: Get User Groups from External Authentication (httpd).
 ipaserver: IPA server address.
 iparealm: Realm.
 credentials: Key of the credential in credentials.yaml
 """
 connect_kwargs = {
 'username': credentials['host_default']['username'],
 'password': credentials['host_default']['password'],
 'hostname': data['ipaserver'],
 }
 current_appliance = get_or_create_current_appliance()
 appliance_name = 'cfmeappliance{}'.format(fauxfactory.gen_alpha(7).lower())
 appliance_address = current_appliance.address
 appliance_fqdn = '{}.{}'.format(appliance_name, data['iparealm'].lower())
 with SSHClient(**connect_kwargs) as ipaserver_ssh:
 ipaserver_ssh.run_command('cp /etc/hosts /etc/hosts_bak')
 ipaserver_ssh.run_command("sed -i -r '/^{}/d' /etc/hosts".format(appliance_address))
 command = 'echo "{}\t{}" >> /etc/hosts'.format(appliance_address, appliance_fqdn)
 ipaserver_ssh.run_command(command)
 with current_appliance.ssh_client as ssh:
 result = ssh.run_command('appliance_console_cli --host {}'.format(appliance_fqdn)).success
 if not current_appliance.is_pod:
 assert result
 else:
 # appliance_console_cli fails when calls hostnamectl --host. it seems docker issue
 # raise BZ ?
 assert str(ssh.run_command('hostname')).rstrip() == appliance_fqdn

 ensure_browser_open()
 appliance.current_appliance.server.login_admin()
 if data["ipaserver"] not in get_ntp_servers():
 set_ntp_servers(data["ipaserver"])
 sleep(120)
 auth = ExternalAuthSetting(get_groups=data.pop("get_groups", False))
 auth.setup()
 creds = credentials.get(data.pop("credentials"), {})
 data.update(**creds)
 assert ssh.run_command(
 "appliance_console_cli --ipaserver {ipaserver} --iparealm {iparealm} "
 "--ipaprincipal {principal} --ipapassword {password}".format(**data)
)
 appliance.current_appliance.server.login_admin()

[docs]def setup_external_auth_openldap(**data):
 """Sets up the appliance for an external authentication with OpenLdap.

 Keywords:
 get_groups: Get User Groups from External Authentication (httpd).
 ipaserver: IPA server address.
 iparealm: Realm.
 credentials: Key of the credential in credentials.yaml
 """
 connect_kwargs = {
 'username': credentials['host_default']['username'],
 'password': credentials['host_default']['password'],
 'hostname': data['ipaddress'],
 }
 current_appliance = get_or_create_current_appliance()
 appliance_name = 'cfmeappliance{}'.format(fauxfactory.gen_alpha(7).lower())
 appliance_address = current_appliance.address
 appliance_fqdn = '{}.{}'.format(appliance_name, data['domain_name'])
 with SSHClient(**connect_kwargs) as ldapserver_ssh:
 # updating the /etc/hosts is a workaround due to the
 # https://bugzilla.redhat.com/show_bug.cgi?id=1360928
 command = 'echo "{}\t{}" >> /etc/hosts'.format(appliance_address, appliance_fqdn)
 ldapserver_ssh.run_command(command)
 ldapserver_ssh.get_file(remote_file=data['cert_filepath'],
 local_path=conf_path.strpath)
 ensure_browser_open()
 appliance.current_appliance.server.login_admin()
 auth = ExternalAuthSetting(get_groups=data.pop("get_groups", True))
 auth.setup()
 current_appliance.configure_appliance_for_openldap_ext_auth(appliance_fqdn)
 appliance.current_appliance.server.logout()

[docs]def disable_external_auth_ipa():
 """Unconfigure external auth."""
 current_appliance = get_or_create_current_appliance()
 with current_appliance.ssh_client as ssh:
 ensure_browser_open()
 appliance.current_appliance.server.login_admin()
 auth = DatabaseAuthSetting()
 auth.update()
 assert ssh.run_command("appliance_console_cli --uninstall-ipa")
 current_appliance.wait_for_web_ui()
 appliance.current_appliance.server.logout()

[docs]def disable_external_auth_openldap():
 auth = DatabaseAuthSetting()
 auth.update()
 sssd_conf = '/etc/sssd/sssd.conf'
 httpd_auth = '/etc/pam.d/httpd-auth'
 manageiq_remoteuser = '/etc/httpd/conf.d/manageiq-remote-user.conf'
 manageiq_ext_auth = '/etc/httpd/conf.d/manageiq-external-auth.conf'
 command = 'rm -rf {} && rm -rf {} && rm -rf {} && rm -rf {}'.format(
 sssd_conf, httpd_auth, manageiq_ext_auth, manageiq_remoteuser)
 current_appliance = get_or_create_current_appliance()
 with current_appliance.ssh_client as ssh:
 assert ssh.run_command(command)
 ssh.run_command('systemctl restart evmserverd')
 get_or_create_current_appliance().wait_for_web_ui()
 appliance.current_appliance.server.logout()

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/update.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.update

from contextlib import contextmanager
from copy import copy

from cfme.web_ui import fill

[docs]def public_fields(o):
 """
 Returns: a dict of fields whose name don't start with underscore.
 """
 if not hasattr(o, '__dict__'):
 return dict()
 return dict((key, value) for key, value in o.__dict__.iteritems()
 if not key.startswith('_'))

[docs]def all_public_fields_equal(a, b):
 return public_fields(a) == public_fields(b)

[docs]def updates(old, new):
 """
 Return a dict of fields that are different between old and new.
 """

 d = {}
 o = public_fields(old)
 for k, v in public_fields(new).items():
 if not v == o[k]:
 d[k] = v
 return d

[docs]class Updateable(object):
 """
 A mixin that helps make an object easily updateable. Two Updateables
 are equal if all their public fields are equal.
 """

 def __eq__(self, other):
 return all_public_fields_equal(self, other)

@contextmanager
[docs]def update(o, **kwargs):
 """
 Update an object and then sync it with an external application.

 It will copy the object into whatever is named in the 'as'
 clause, run the 'with' code block (which presumably alters the
 object). Then the update() method on the original object will be
 called with a dict containing only changed fields, and kwargs
 passed to this function.

 If an exception is thrown by update(), the original object will be restored,
 otherwise the updated object will be returned.

 Usage:

 with update(myrecord):
 myrecord.lastname = 'Smith'

 """
 cp = copy(o)

 # let the block presumably mutate o
 yield
 # swap the states of o and cp so that cp is the updated one
 o.__dict__, cp.__dict__ = cp.__dict__, o.__dict__

 o_updates = updates(o, cp)
 if o_updates:
 o.update(o_updates, **kwargs)
 # if update succeeds, have o reflect the changes that are now in cp
 o.__dict__ = cp.__dict__

@fill.method((object, Updateable))
def _fill_with_updateable(o, u, **kw):
 fill(o, u.__dict__, **kw)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/smtp_collector_client.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.smtp_collector_client

-*- coding: utf-8 -*-

from cfme.utils.timeutil import parsetime
import requests

[docs]class SMTPCollectorClient(object):
 """Client for smtp_collector.py script

 Args:
 host: Host where collector runs (Default: localhost)
 port: Port where the collector query interface listens (Default: 1026)

 """
 def __init__(self, host="localhost", port=1026):
 self._host = host
 self._port = port

 def _query(self, method, path, **params):
 return method("http://{}:{}/{}".format(self._host, self._port, path), params=params)

[docs] def clear_database(self):
 """Clear the database in collector

 Returns: :py:class:`bool`
 """
 return self._query(requests.delete, "messages").json()

[docs] def set_test_name(self, test_name):
 """Set the test name for folder name in the collector.

 Args:
 test_name: Name to set
 Returns: :py:class:`bool` with result.
 """
 return self._query(requests.get, "set_test_name", test_name=test_name).json()

[docs] def get_emails(self, **filter):
 """Get emails. Eventually apply filtering on SQLite level

 Time variables can be passed as instances of :py:class:`utils.timeutil.parsetime`. That
 carries out the necessary conversion automatically.

 _like args - see SQLite's LIKE operator syntax

 Keywords:
 from_address: E-mail matches.
 to_address: E-mail matches.
 subject: Subject matches exactly.
 subject_like: Subject is LIKE.
 time_from: E-mails arrived since this time.
 time_to: E-mail arrived before this time.
 text: Text matches exactly.
 text_like: Text is LIKE.

 Returns: List of dicts with e-mails matching the criteria.
 """
 if filter.get("time_from") is not None:
 if isinstance(filter["time_from"], parsetime):
 filter["time_from"] = filter["time_from"].to_request_format()
 if filter.get("time_to") is not None:
 if isinstance(filter["time_to"], parsetime):
 filter["time_to"] = filter["time_to"].to_request_format()
 return self._query(requests.get, "messages", **filter).json()

[docs] def get_html_report(self):
 return self._query(requests.get, "messages.html").text.strip()

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/pytest_shortcuts.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.pytest_shortcuts

-*- coding: utf-8 -*-

[docs]def extract_fixtures_values(item):
 """Extracts names and values of all the fixtures that the test has.

 Args:
 item: py.test test item
 Returns:
 :py:class:`dict` with fixtures and their values.
 """
 if hasattr(item, "callspec"):
 return item.callspec.params
 else:
 # Some of the test items do not have this, so fall back
 # This can cause some problems if the fixtures are used in the guards in this case, but
 # that will tell use where is the problem and we can then find it out properly.
 return {}

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/perf_message_stats.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.perf_message_stats

-*- coding: utf-8 -*
"""Functions for performance analysis/charting of the backend messages and top_output from an
appliance.
"""
from cfme.utils.log import logger
from cfme.utils.path import log_path
from cfme.utils.perf import convert_top_mem_to_mib
from cfme.utils.perf import generate_statistics
from datetime import datetime
import dateutil.parser as du_parser
from datetime import timedelta
from time import time
import csv
import numpy
import os
import pygal
import subprocess
import re

Regular Expressions to capture relevant information from each log line:

[----] I, [2014-03-04T08:11:14.320377 #3450:b15814] INFO -- :
log_stamp = re.compile(r'\[----\]\s[IWE],\s\[([0-9\-]+)T([0-9\:\.]+)\s#([0-9]+):[0-9a-z]+\]')
[----] .* MIQ(*)
miqmsg = re.compile(r'\[----\].*MIQ\(([a-zA-Z0-9\._]*)\)')
Command: [*]
miqmsg_cmd = re.compile(r'Command:\s\[([a-zA-Z0-9\._\:]*)\]')
Message id: [*]
miqmsg_id = re.compile(r'Message\sid:\s\[([0-9]*)\]')
Args: [*]
miqmsg_args = re.compile(
 r'Args:\s\[([A-Za-z0-9\{\}\(\)\[\]\s\\\-\:\"\'\,\=\<\>_\/\.\@\?\%\&\#]*)\]')
Dequeued in: [*] seconds
miqmsg_deq = re.compile(r'Dequeued\sin:\s\[([0-9\.]*)\]\sseconds')
Delivered in [*] seconds
miqmsg_del = re.compile(r'Delivered\sin\s\[([0-9\.]*)\]\sseconds')

Worker related regular expressions:
MIQ(PriorityWorker) ID [15], PID [6461]
miqwkr = re.compile(r'MIQ\(([A-Za-z]*)\)\sID\s\[([0-9]*)\],\sPID\s\[([0-9]*)\]')
with ID: [21]
miqwkr_id = re.compile(r'with\sID:\s\[([0-9]*)\]')
For use with workers exiting, such as authentication failures:
miqwkr_id_2 = re.compile(r'ID\s\[([0-9]*)\]')

top regular expressions
Cpu(s): 13.7%us, 1.2%sy, 2.1%ni, 80.0%id, 1.7%wa, 0.0%hi, 0.1%si, 1.3%st
miq_cpu = re.compile(r'Cpu\(s\)\:\s+([0-9\.]*)%us,\s+([0-9\.]*)%sy,\s+([0-9\.]*)%ni,\s+'
 r'([0-9\.]*)%id,\s+([0-9\.]*)%wa,\s+([0-9\.]*)%hi,\s+([0-9\.]*)%si,\s+([0-9\.]*)%st')
Mem: 5990952k total, 4864016k used, 1126936k free, 441444k buffers
miq_mem = re.compile(r'Mem:\s+([0-9]*)k\stotal,\s+([0-9]*)k\sused,\s+([0-9]*)k\sfree,\s+'
 r'([0-9]*)k\sbuffers')
Swap: 9957368k total, 0k used, 9957368k free, 1153156k cached
miq_swap = re.compile(r'Swap:\s+([0-9]*)k\stotal,\s+([0-9]*)k\sused,\s+([0-9]*)k\sfree,\s+'
 r'([0-9]*)k\scached')
PID PPID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
17526 2320 root 30 10 324m 9.8m 2444 S 0.0 0.2 0:09.38 /var/www/miq/vmdb/lib/workers/bin/worker.rb
miq_top = re.compile(r'([0-9]+)\s+[0-9]+\s+[A-Za-z0-9]+\s+[0-9]+\s+[0-9\-]+\s+([0-9\.mg]+)\s+'
 r'([0-9\.mg]+)\s+([0-9\.mg]+)\s+[SRDZ]\s+([0-9\.]+)\s+([0-9\.]+)')

[docs]def evm_to_messages(evm_file, filters):
 test_start = ''
 test_end = ''
 line_count = 0
 messages = {}
 msg_cmds = {}

 runningtime = time()
 evmlogfile = open(evm_file, 'r')
 evm_log_line = evmlogfile.readline()
 while evm_log_line:
 line_count += 1
 evm_log_line = evm_log_line.strip()

 miqmsg_result = miqmsg.search(evm_log_line)
 if miqmsg_result:

 # Obtains the first timestamp in the log file
 if test_start == '':
 ts, pid = get_msg_timestamp_pid(evm_log_line)
 test_start = ts

 # A message was first put on the queue, this starts its queuing time
 if (miqmsg_result.group(1) == 'MiqQueue.put'):

 msg_cmd = get_msg_cmd(evm_log_line)
 msg_id = get_msg_id(evm_log_line)
 if msg_id:
 ts, pid = get_msg_timestamp_pid(evm_log_line)
 test_end = ts
 messages[msg_id] = MiqMsgStat()
 messages[msg_id].msg_id = msg_id
 messages[msg_id].msg_id = '\'' + msg_id + '\''
 messages[msg_id].msg_cmd = msg_cmd
 messages[msg_id].pid_put = pid
 messages[msg_id].puttime = ts
 msg_args = get_msg_args(evm_log_line)
 if msg_args is False:
 logger.debug('Could not obtain message args line #: %s', line_count)
 else:
 messages[msg_id].msg_args = msg_args
 else:
 logger.error('Could not obtain message id, line #: %s', line_count)

 elif (miqmsg_result.group(1) == 'MiqQueue.get_via_drb'):
 msg_id = get_msg_id(evm_log_line)
 if msg_id:
 if msg_id in messages:
 ts, pid = get_msg_timestamp_pid(evm_log_line)
 test_end = ts
 messages[msg_id].pid_get = pid
 messages[msg_id].gettime = ts
 messages[msg_id].deq_time = get_msg_deq(evm_log_line)
 else:
 logger.error('Message ID not in dictionary: %s', msg_id)
 else:
 logger.error('Could not obtain message id, line #: %s', line_count)

 elif (miqmsg_result.group(1) == 'MiqQueue.delivered'):
 msg_id = get_msg_id(evm_log_line)
 if msg_id:
 ts, pid = get_msg_timestamp_pid(evm_log_line)
 test_end = ts
 if msg_id in messages:
 messages[msg_id].del_time = get_msg_del(evm_log_line)
 messages[msg_id].total_time = messages[msg_id].deq_time + \
 messages[msg_id].del_time
 else:
 logger.error('Message ID not in dictionary: %s', msg_id)
 else:
 logger.error('Could not obtain message id, line #: %s', line_count)

 if (line_count % 100000) == 0:
 timediff = time() - runningtime
 runningtime = time()
 logger.info('Count {} : Parsed 100000 lines in %s', line_count, timediff)

 evm_log_line = evmlogfile.readline()

 # I tried to avoid two loops but this reduced the complexity of filtering on messages.
 # By filtering over messages, we can better display what is occuring under the covers, as a
 # daily rollup is picked up off the queue different than a hourly rollup, etc
 for msg in sorted(messages.keys()):
 msg_args = messages[msg].msg_args
 # Determine if the pattern matches and append to the command if it does
 for p_filter in filters:
 results = filters[p_filter].search(msg_args.strip())
 if results:
 messages[msg].msg_cmd = '{}{}'.format(messages[msg].msg_cmd, p_filter)
 break
 msg_cmd = messages[msg].msg_cmd
 if msg_cmd not in msg_cmds:
 msg_cmds[msg_cmd] = {}
 msg_cmds[msg_cmd]['total'] = []
 msg_cmds[msg_cmd]['queue'] = []
 msg_cmds[msg_cmd]['execute'] = []
 if messages[msg].total_time != 0:
 msg_cmds[msg_cmd]['total'].append(round(messages[msg].total_time, 2))
 msg_cmds[msg_cmd]['queue'].append(round(messages[msg].deq_time, 2))
 msg_cmds[msg_cmd]['execute'].append(round(messages[msg].del_time, 2))

 return messages, msg_cmds, test_start, test_end, line_count

[docs]def evm_to_workers(evm_file):
 # Use grep to reduce # of lines to sort through
 p = subprocess.Popen(['grep', 'Interrupt\\|MIQ([A-Za-z]*) ID\\|"evm_worker_uptime_exceeded\\|'
 '"evm_worker_memory_exceeded\\|"evm_worker_stop\\|Worker exiting.', evm_file],
 stdout=subprocess.PIPE)
 greppedevmlog, err = p.communicate()
 greppedevmlog = greppedevmlog.strip()

 evmlines = greppedevmlog.split('\n')

 workers = {}
 wkr_upt_exc = 0
 wkr_mem_exc = 0
 wkr_stp = 0
 wkr_int = 0
 wkr_ext = 0
 for evm_log_line in evmlines:
 ts, pid = get_msg_timestamp_pid(evm_log_line)

 miqwkr_result = miqwkr.search(evm_log_line)
 if miqwkr_result:
 workerid = int(miqwkr_result.group(2))
 if workerid not in workers:
 workers[workerid] = MiqWorker()
 workers[workerid].worker_type = miqwkr_result.group(1)
 workers[workerid].pid = miqwkr_result.group(3)
 workers[workerid].worker_id = int(workerid)
 workers[workerid].start_ts = datetime.strptime(ts, '%Y-%m-%d %H:%M:%S.%f')
 elif 'evm_worker_uptime_exceeded' in evm_log_line:
 miqwkr_id_result = miqwkr_id.search(evm_log_line)
 if miqwkr_id_result:
 workerid = int(miqwkr_id_result.group(1))
 if workerid in workers:
 if not workers[workerid].terminated:
 wkr_upt_exc += 1
 workers[workerid].terminated = 'evm_worker_uptime_exceeded'
 workers[workerid].end_ts = datetime.strptime(ts, '%Y-%m-%d %H:%M:%S.%f')
 elif 'evm_worker_memory_exceeded' in evm_log_line:
 miqwkr_id_result = miqwkr_id.search(evm_log_line)
 if miqwkr_id_result:
 workerid = int(miqwkr_id_result.group(1))
 if workerid in workers:
 if not workers[workerid].terminated:
 wkr_mem_exc += 1
 workers[workerid].terminated = 'evm_worker_memory_exceeded'
 workers[workerid].end_ts = datetime.strptime(ts, '%Y-%m-%d %H:%M:%S.%f')
 elif 'evm_worker_stop' in evm_log_line:
 miqwkr_id_result = miqwkr_id.search(evm_log_line)
 if miqwkr_id_result:
 workerid = int(miqwkr_id_result.group(1))
 if workerid in workers:
 if not workers[workerid].terminated:
 wkr_stp += 1
 workers[workerid].terminated = 'evm_worker_stop'
 workers[workerid].end_ts = datetime.strptime(ts, '%Y-%m-%d %H:%M:%S.%f')
 elif 'Interrupt' in evm_log_line:
 for workerid in workers:
 if not workers[workerid].end_ts:
 wkr_int += 1
 workers[workerid].terminated = 'Interrupted'
 workers[workerid].end_ts = datetime.strptime(ts, '%Y-%m-%d %H:%M:%S.%f')
 elif 'Worker exiting.' in evm_log_line:
 miqwkr_id_2_result = miqwkr_id_2.search(evm_log_line)
 if miqwkr_id_2_result:
 workerid = int(miqwkr_id_2_result.group(1))
 if workerid in workers:
 if not workers[workerid].terminated:
 wkr_ext += 1
 workers[workerid].terminated = 'Worker Exited'
 workers[workerid].end_ts = datetime.strptime(ts, '%Y-%m-%d %H:%M:%S.%f')

 return workers, wkr_mem_exc, wkr_upt_exc, wkr_stp, wkr_int, wkr_ext, len(evmlines)

[docs]def split_appliance_charts(top_appliance, charts_dir):
 # Automatically split top_output data roughly per day
 minutes_in_a_day = 24 * 60
 size_data = len(top_appliance['datetimes'])
 start_hour = top_appliance['datetimes'][0][11:13]
 start_minute = top_appliance['datetimes'][0][14:16]
 bracket_end = minutes_in_a_day - ((int(start_hour) * 60) + int(start_minute))

 if size_data > minutes_in_a_day:
 # Greater than one day worth of data, split
 file_names = [generate_appliance_charts(top_appliance, charts_dir, 0, bracket_end)]
 for start_bracket in range(bracket_end, len(top_appliance['datetimes']), minutes_in_a_day):
 if (start_bracket + minutes_in_a_day) > size_data:
 end_index = size_data - 1
 else:
 end_index = start_bracket + minutes_in_a_day
 file_names.append(generate_appliance_charts(top_appliance, charts_dir, start_bracket,
 end_index))
 return file_names
 else:
 # Less than one day worth of data, do not split
 return [generate_appliance_charts(top_appliance, charts_dir, 0, size_data - 1)]

[docs]def generate_appliance_charts(top_appliance, charts_dir, start_index, end_index):
 cpu_chart_file = '/{}-app-cpu.svg'.format(top_appliance['datetimes'][start_index])
 mem_chart_file = '/{}-app-mem.svg'.format(top_appliance['datetimes'][start_index])

 lines = {}
 lines['Idle'] = top_appliance['cpuid'][start_index:end_index]
 lines['User'] = top_appliance['cpuus'][start_index:end_index]
 lines['System'] = top_appliance['cpusy'][start_index:end_index]
 lines['Nice'] = top_appliance['cpuni'][start_index:end_index]
 lines['Wait'] = top_appliance['cpuwa'][start_index:end_index]
 # lines['Hi'] = top_appliance['cpuhi'][start_index:end_index] # IRQs %
 # lines['Si'] = top_appliance['cpusi'][start_index:end_index] # Soft IRQs %
 # lines['St'] = top_appliance['cpust'][start_index:end_index] # Steal CPU %
 line_chart_render('CPU Usage', 'Date Time', 'Percent',
 top_appliance['datetimes'][start_index:end_index], lines, charts_dir.join(cpu_chart_file),
 True)

 lines = {}
 lines['Memory Total'] = top_appliance['memtot'][start_index:end_index]
 lines['Memory Free'] = top_appliance['memfre'][start_index:end_index]
 lines['Memory Used'] = top_appliance['memuse'][start_index:end_index]
 lines['Swap Used'] = top_appliance['swause'][start_index:end_index]
 lines['cached'] = top_appliance['cached'][start_index:end_index]
 line_chart_render('Memory Usage', 'Date Time', 'KiB',
 top_appliance['datetimes'][start_index:end_index], lines, charts_dir.join(mem_chart_file))
 return cpu_chart_file, mem_chart_file

[docs]def generate_hourly_charts_and_csvs(hourly_buckets, charts_dir):
 for cmd in sorted(hourly_buckets):
 current_csv = 'hourly_' + cmd + '.csv'
 csv_rawdata_path = log_path.join('csv_output', current_csv)

 logger.info('Writing %s csvs/charts', cmd)
 output_file = csv_rawdata_path.open('w', ensure=True)
 csvwriter = csv.DictWriter(output_file, fieldnames=MiqMsgBucket().headers,
 delimiter=',', quotechar='\'', quoting=csv.QUOTE_MINIMAL)
 csvwriter.writeheader()
 for dt in sorted(hourly_buckets[cmd].keys()):
 linechartxaxis = []
 avgdeqtimings = []
 mindeqtimings = []
 maxdeqtimings = []
 avgdeltimings = []
 mindeltimings = []
 maxdeltimings = []
 cmd_put = []
 cmd_get = []

 sortedhr = sorted(hourly_buckets[cmd][dt].keys())
 for hr in sortedhr:
 linechartxaxis.append(str(hr))
 bk = hourly_buckets[cmd][dt][hr]

 avgdeqtimings.append(round(bk.avg_deq, 2))
 mindeqtimings.append(round(bk.min_deq, 2))
 maxdeqtimings.append(round(bk.max_deq, 2))
 avgdeltimings.append(round(bk.avg_del, 2))
 mindeltimings.append(round(bk.min_del, 2))
 maxdeltimings.append(round(bk.max_del, 2))
 cmd_put.append(bk.total_put)
 cmd_get.append(bk.total_get)
 bk.date = dt
 bk.hour = hr
 csvwriter.writerow(dict(bk))

 lines = {}
 lines['Put ' + cmd] = cmd_put
 lines['Get ' + cmd] = cmd_get
 line_chart_render(cmd + ' Command Put/Get Count', 'Hour during ' + dt,
 '# Count of Commands', linechartxaxis, lines,
 charts_dir.join('/{}-{}-cmdcnt.svg'.format(cmd, dt)))

 lines = {}
 lines['Average Dequeue Timing'] = avgdeqtimings
 lines['Min Dequeue Timing'] = mindeqtimings
 lines['Max Dequeue Timing'] = maxdeqtimings
 line_chart_render(cmd + ' Dequeue Timings', 'Hour during ' + dt, 'Time (s)',
 linechartxaxis, lines, charts_dir.join('/{}-{}-dequeue.svg'.format(cmd, dt)))

 lines = {}
 lines['Average Deliver Timing'] = avgdeltimings
 lines['Min Deliver Timing'] = mindeltimings
 lines['Max Deliver Timing'] = maxdeltimings
 line_chart_render(cmd + ' Deliver Timings', 'Hour during ' + dt, 'Time (s)',
 linechartxaxis, lines, charts_dir.join('/{}-{}-deliver.svg'.format(cmd, dt)))
 output_file.close()

[docs]def generate_raw_data_csv(rawdata_dict, csv_file_name):
 csv_rawdata_path = log_path.join('csv_output', csv_file_name)
 output_file = csv_rawdata_path.open('w', ensure=True)
 csvwriter = csv.DictWriter(output_file, fieldnames=rawdata_dict[rawdata_dict.keys()[0]].headers,
 delimiter=',', quotechar='\'', quoting=csv.QUOTE_MINIMAL)
 csvwriter.writeheader()
 sorted_rd_keys = sorted(rawdata_dict.keys())
 for key in sorted_rd_keys:
 csvwriter.writerow(dict(rawdata_dict[key]))

[docs]def generate_total_time_charts(msg_cmds, charts_dir):
 for cmd in sorted(msg_cmds):
 logger.info('Generating Total Time Chart for %s', cmd)
 lines = {}
 lines['Total Time'] = msg_cmds[cmd]['total']
 lines['Queue'] = msg_cmds[cmd]['queue']
 lines['Execute'] = msg_cmds[cmd]['execute']
 line_chart_render(cmd + ' Total Time', 'Message #', 'Time (s)', [], lines,
 charts_dir.join('/{}-total.svg'.format(cmd)))

[docs]def generate_worker_charts(workers, top_workers, charts_dir):
 for worker in top_workers:
 logger.info('Generating Charts for Worker: %s Type: %s',
 worker, workers[worker].worker_type)
 worker_name = '{}-{}'.format(worker, workers[worker].worker_type)

 lines = {}
 lines['Virt Mem'] = top_workers[worker]['virt']
 lines['Res Mem'] = top_workers[worker]['res']
 lines['Shared Mem'] = top_workers[worker]['share']
 line_chart_render(worker_name, 'Date Time', 'Memory in MiB',
 top_workers[worker]['datetimes'], lines,
 charts_dir.join('/{}-Memory.svg'.format(worker_name)))

 lines = {}
 lines['CPU %'] = top_workers[worker]['cpu_per']
 line_chart_render(worker_name, 'Date Time', 'CPU Usage', top_workers[worker]['datetimes'],
 lines, charts_dir.join('/{}-CPU.svg'.format(worker_name)))

[docs]def get_first_miqtop(top_log_file):
 # Find first miqtop log line
 p = subprocess.Popen(['grep', '-m', '1', '^miqtop\:', top_log_file], stdout=subprocess.PIPE)
 greppedtop, err = p.communicate()
 str_start = greppedtop.index('is->')
 miqtop_time = du_parser.parse(greppedtop[str_start:], fuzzy=True, ignoretz=True)
 timezone_offset = int(greppedtop[str_start + 34:str_start + 37])
 miqtop_time = miqtop_time - timedelta(hours=timezone_offset)
 return miqtop_time, timezone_offset

[docs]def get_msg_args(log_line):
 miqmsg_args_result = miqmsg_args.search(log_line)
 if miqmsg_args_result:
 return miqmsg_args_result.group(1)
 else:
 return False

[docs]def get_msg_cmd(log_line):
 miqmsg_cmd_result = miqmsg_cmd.search(log_line)
 if miqmsg_cmd_result:
 return miqmsg_cmd_result.group(1)
 else:
 return False

[docs]def get_msg_del(log_line):
 miqmsg_del_result = miqmsg_del.search(log_line)
 if miqmsg_del_result:
 return float(miqmsg_del_result.group(1))
 else:
 return False

[docs]def get_msg_deq(log_line):
 miqmsg_deq_result = miqmsg_deq.search(log_line)
 if miqmsg_deq_result:
 return float(miqmsg_deq_result.group(1))
 else:
 return False

[docs]def get_msg_id(log_line):
 miqmsg_id_result = miqmsg_id.search(log_line)
 if miqmsg_id_result:
 return miqmsg_id_result.group(1)
 else:
 return False

[docs]def get_msg_timestamp_pid(log_line):
 # Obtains the timestamp and pid
 ts_result = log_stamp.search(log_line)
 if ts_result:
 dt_evm = '{} {}'.format(ts_result.group(1), ts_result.group(2))
 return dt_evm, ts_result.group(3)
 else:
 return False, 0

[docs]def hour_bucket_init(init):
 if init:
 return MiqMsgBucket()
 else:
 return {}

[docs]def line_chart_render(title, xtitle, ytitle, x_labels, lines, fname, stacked=False):
 if stacked:
 line_chart = pygal.StackedLine()
 else:
 line_chart = pygal.Line()
 line_chart.title = title
 line_chart.x_title = xtitle
 line_chart.y_title = ytitle
 line_chart.title_font_size = 8
 line_chart.legend_font_size = 8
 line_chart.truncate_legend = 26
 line_chart.x_labels = x_labels
 sortedlines = sorted(lines.keys())
 for line in sortedlines:
 line_chart.add(line, lines[line])
 line_chart.render_to_file(str(fname))

[docs]def messages_to_hourly_buckets(messages, test_start, test_end):
 hr_bkt = {}
 # Hour buckets look like: hr_bkt[msg_cmd][msg_date][msg_hour] = MiqMsgBucket()
 for msg in messages:
 # put on queue, deals with queuing:
 msg_cmd = messages[msg].msg_cmd
 putdate = messages[msg].puttime[:10]
 puthour = messages[msg].puttime[11:13]
 if msg_cmd not in hr_bkt:
 hr_bkt[msg_cmd] = provision_hour_buckets(test_start, test_end)

 hr_bkt[msg_cmd][putdate][puthour].total_put += 1
 hr_bkt[msg_cmd][putdate][puthour].sum_deq += messages[msg].deq_time
 if (hr_bkt[msg_cmd][putdate][puthour].min_deq == 0 or
 hr_bkt[msg_cmd][putdate][puthour].min_deq > messages[msg].deq_time):
 hr_bkt[msg_cmd][putdate][puthour].min_deq = messages[msg].deq_time
 if (hr_bkt[msg_cmd][putdate][puthour].max_deq == 0 or
 hr_bkt[msg_cmd][putdate][puthour].max_deq < messages[msg].deq_time):
 hr_bkt[msg_cmd][putdate][puthour].max_deq = messages[msg].deq_time
 hr_bkt[msg_cmd][putdate][puthour].avg_deq = \
 hr_bkt[msg_cmd][putdate][puthour].sum_deq / hr_bkt[msg_cmd][putdate][puthour].total_put

 # Get time is when the message is delivered
 getdate = messages[msg].gettime[:10]
 gethour = messages[msg].gettime[11:13]

 hr_bkt[msg_cmd][getdate][gethour].total_get += 1
 hr_bkt[msg_cmd][getdate][gethour].sum_del += messages[msg].del_time
 if (hr_bkt[msg_cmd][getdate][gethour].min_del == 0 or
 hr_bkt[msg_cmd][getdate][gethour].min_del > messages[msg].del_time):
 hr_bkt[msg_cmd][getdate][gethour].min_del = messages[msg].del_time
 if (hr_bkt[msg_cmd][getdate][gethour].max_del == 0 or
 hr_bkt[msg_cmd][getdate][gethour].max_del < messages[msg].del_time):
 hr_bkt[msg_cmd][getdate][gethour].max_del = messages[msg].del_time

 hr_bkt[msg_cmd][getdate][gethour].avg_del = \
 hr_bkt[msg_cmd][getdate][gethour].sum_del / hr_bkt[msg_cmd][getdate][gethour].total_get
 return hr_bkt

[docs]def messages_to_statistics_csv(messages, statistics_file_name):
 all_statistics = []
 for msg_id in messages:
 msg = messages[msg_id]

 added = False
 if len(all_statistics) > 0:
 for msg_statistics in all_statistics:
 if msg_statistics.cmd == msg.msg_cmd:

 if msg.del_time > 0:
 msg_statistics.delivertimes.append(float(msg.del_time))
 msg_statistics.gets += 1
 msg_statistics.dequeuetimes.append(float(msg.deq_time))
 msg_statistics.totaltimes.append(float(msg.total_time))
 msg_statistics.puts += 1
 added = True
 break

 if not added:
 msg_statistics = MiqMsgLists()
 msg_statistics.cmd = msg.msg_cmd
 if msg.del_time > 0:
 msg_statistics.delivertimes.append(float(msg.del_time))
 msg_statistics.gets = 1
 msg_statistics.dequeuetimes.append(float(msg.deq_time))
 msg_statistics.totaltimes.append(float(msg.total_time))
 msg_statistics.puts = 1
 all_statistics.append(msg_statistics)

 csvdata_path = log_path.join('csv_output', statistics_file_name)
 outputfile = csvdata_path.open('w', ensure=True)

 try:
 csvfile = csv.writer(outputfile)
 metrics = ['samples', 'min', 'avg', 'median', 'max', 'std', '90', '99']
 measurements = ['deq_time', 'del_time', 'total_time']
 headers = ['cmd', 'puts', 'gets']
 for measurement in measurements:
 for metric in metrics:
 headers.append('{}_{}'.format(measurement, metric))

 csvfile.writerow(headers)

 # Contents of CSV
 for msg_statistics in sorted(all_statistics, key=lambda x: x.cmd):
 if msg_statistics.gets > 1:
 logger.debug('Samples/Avg/90th/Std: %s: %s : %s : %s,Cmd: %s',
 str(len(msg_statistics.totaltimes)).rjust(7),
 str(round(numpy.average(msg_statistics.totaltimes), 3)).rjust(7),
 str(round(numpy.percentile(msg_statistics.totaltimes, 90), 3)).rjust(7),
 str(round(numpy.std(msg_statistics.totaltimes), 3)).rjust(7),
 msg_statistics.cmd)
 stats = [msg_statistics.cmd, msg_statistics.puts, msg_statistics.gets]
 stats.extend(generate_statistics(msg_statistics.dequeuetimes, 3))
 stats.extend(generate_statistics(msg_statistics.delivertimes, 3))
 stats.extend(generate_statistics(msg_statistics.totaltimes, 3))
 csvfile.writerow(stats)
 finally:
 outputfile.close()

[docs]def provision_hour_buckets(test_start, test_end, init=True):
 buckets = {}
 start_date = datetime.strptime(test_start[:10], '%Y-%m-%d')
 end_date = datetime.strptime(test_end[:10], '%Y-%m-%d')
 start_hr = int(test_start[11:13])
 end_hr = int(test_end[11:13]) + 1

 delta_date = end_date - start_date
 for dates in range(delta_date.days + 1):
 new_date = start_date + timedelta(days=dates)
 buckets[new_date.strftime('%Y-%m-%d')] = {}

 sorteddt = sorted(buckets.keys())
 for date in sorteddt:
 if date == test_start[:10]:
 if date == test_end[:10]:
 for hr in range(start_hr, end_hr):
 buckets[date][str(hr).zfill(2)] = hour_bucket_init(init)
 else:
 for hr in range(start_hr, 24):
 buckets[date][str(hr).zfill(2)] = hour_bucket_init(init)
 elif date == test_end[:10]:
 for hr in range(end_hr):
 buckets[date][str(hr).zfill(2)] = hour_bucket_init(init)
 else:
 for hr in range(24):
 buckets[date][str(hr).zfill(2)] = hour_bucket_init(init)
 if init:
 buckets[''] = {}
 buckets[''][''] = MiqMsgBucket()
 return buckets

[docs]def top_to_appliance(top_file):
 # Find first miqtop log line
 miqtop_time, timezone_offset = get_first_miqtop(top_file)

 runningtime = time()
 grep_pattern = '^top\s\-\s\\|^miqtop\:\\|^Cpu(s)\:\\|^Mem\:\\|^Swap\:'
 # Use grep to reduce # of lines to sort through
 p = subprocess.Popen(['grep', grep_pattern, top_file], stdout=subprocess.PIPE)
 greppedtop, err = p.communicate()
 timediff = time() - runningtime
 logger.info('Grepped top_output for CPU/Mem/Swap & time data in %s', timediff)

 top_lines = greppedtop.strip().split('\n')
 line_count = 0

 top_keys = ['datetimes', 'cpuus', 'cpusy', 'cpuni', 'cpuid', 'cpuwa', 'cpuhi', 'cpusi', 'cpust',
 'memtot', 'memuse', 'memfre', 'buffer', 'swatot', 'swause', 'swafre', 'cached']
 top_app = dict((key, []) for key in top_keys)

 cur_time = None
 miqtop_ahead = True
 runningtime = time()
 for top_line in top_lines:
 line_count += 1
 if 'top - ' in top_line:
 # top - 11:00:43
 cur_hour = int(top_line[6:8])
 cur_min = int(top_line[9:11])
 cur_sec = int(top_line[12:14])
 if miqtop_ahead:
 # Have not found miqtop date/time yet so we must rely on miqtop date/time "ahead"
 if cur_hour <= miqtop_time.hour:
 cur_time = miqtop_time.replace(hour=cur_hour, minute=cur_min, second=cur_sec) \
 - timedelta(hours=timezone_offset)
 else:
 # miqtop_time is ahead by date
 logger.info('miqtop_time is ahead by one day')
 cur_time = miqtop_time - timedelta(days=1)
 cur_time = cur_time.replace(hour=cur_hour, minute=cur_min, second=cur_sec) \
 - timedelta(hours=timezone_offset)
 else:
 cur_time = miqtop_time.replace(hour=cur_hour, minute=cur_min, second=cur_sec) \
 - timedelta(hours=timezone_offset)
 elif 'miqtop: ' in top_line:
 miqtop_ahead = False
 # miqtop: .* is-> Mon Jan 26 08:57:39 EST 2015 -0500
 str_start = top_line.index('is->')
 miqtop_time = du_parser.parse(top_line[str_start:], fuzzy=True, ignoretz=True)
 # Time logged in top is the system's time which is ahead/behind by the timezone offset
 timezone_offset = int(top_line[str_start + 34:str_start + 37])
 miqtop_time = miqtop_time - timedelta(hours=timezone_offset)
 elif 'Cpu(s): ' in top_line:
 miq_cpu_result = miq_cpu.search(top_line)
 if miq_cpu_result:
 top_app['datetimes'].append(str(cur_time))
 top_app['cpuus'].append(float(miq_cpu_result.group(1).strip()))
 top_app['cpusy'].append(float(miq_cpu_result.group(2).strip()))
 top_app['cpuni'].append(float(miq_cpu_result.group(3).strip()))
 top_app['cpuid'].append(float(miq_cpu_result.group(4).strip()))
 top_app['cpuwa'].append(float(miq_cpu_result.group(5).strip()))
 top_app['cpuhi'].append(float(miq_cpu_result.group(6).strip()))
 top_app['cpusi'].append(float(miq_cpu_result.group(7).strip()))
 top_app['cpust'].append(float(miq_cpu_result.group(8).strip()))
 else:
 logger.error('Issue with miq_cpu regex: %s', top_line)
 elif 'Mem: ' in top_line:
 miq_mem_result = miq_mem.search(top_line)
 if miq_mem_result:
 top_app['memtot'].append(round(float(miq_mem_result.group(1).strip()) / 1024, 2))
 top_app['memuse'].append(round(float(miq_mem_result.group(2).strip()) / 1024, 2))
 top_app['memfre'].append(round(float(miq_mem_result.group(3).strip()) / 1024, 2))
 top_app['buffer'].append(round(float(miq_mem_result.group(4).strip()) / 1024, 2))
 else:
 logger.error('Issue with miq_mem regex: %s', top_line)
 elif 'Swap: ' in top_line:
 miq_swap_result = miq_swap.search(top_line)
 if miq_swap_result:
 top_app['swatot'].append(round(float(miq_swap_result.group(1).strip()) / 1024, 2))
 top_app['swause'].append(round(float(miq_swap_result.group(2).strip()) / 1024, 2))
 top_app['swafre'].append(round(float(miq_swap_result.group(3).strip()) / 1024, 2))
 top_app['cached'].append(round(float(miq_swap_result.group(4).strip()) / 1024, 2))
 else:
 logger.error('Issue with miq_swap regex: %s', top_line)
 else:
 logger.error('Issue with grepping of top file:%s', top_line)
 if (line_count % 20000) == 0:
 timediff = time() - runningtime
 runningtime = time()
 logger.info('Count {} : Parsed 20000 lines in %s', line_count, timediff)
 return top_app, len(top_lines)

[docs]def top_to_workers(workers, top_file):
 # Find first miqtop log line
 miqtop_time, timezone_offset = get_first_miqtop(top_file)

 runningtime = time()
 grep_pids = ''
 for wkr in workers:
 grep_pids = '{}^{}\s\\|'.format(grep_pids, workers[wkr].pid)
 grep_pattern = '{}^top\s\-\s\\|^miqtop\:'.format(grep_pids)
 # Use grep to reduce # of lines to sort through
 p = subprocess.Popen(['grep', grep_pattern, top_file], stdout=subprocess.PIPE)
 greppedtop, err = p.communicate()
 timediff = time() - runningtime
 logger.info('Grepped top_output for pids & time data in %s', timediff)

 # This is very ugly because miqtop does include the date but top does not
 # Also pids can be duplicated, so careful attention to detail on when a pid starts and ends
 top_lines = greppedtop.strip().split('\n')
 line_count = 0
 top_workers = {}
 cur_time = None
 miqtop_ahead = True
 runningtime = time()
 for top_line in top_lines:
 line_count += 1
 if 'top - ' in top_line:
 # top - 11:00:43
 cur_hour = int(top_line[6:8])
 cur_min = int(top_line[9:11])
 cur_sec = int(top_line[12:14])
 if miqtop_ahead:
 # Have not found miqtop time yet so we must rely on miqtop time "ahead"
 if cur_hour <= miqtop_time.hour:
 cur_time = miqtop_time.replace(hour=cur_hour, minute=cur_min, second=cur_sec) \
 - timedelta(hours=timezone_offset)
 else:
 # miqtop_time is ahead by date
 logger.info('miqtop_time is ahead by one day')
 cur_time = miqtop_time - timedelta(days=1)
 cur_time = cur_time.replace(hour=cur_hour, minute=cur_min, second=cur_sec) \
 - timedelta(hours=timezone_offset)
 else:
 cur_time = miqtop_time.replace(hour=cur_hour, minute=cur_min, second=cur_sec) \
 - timedelta(hours=timezone_offset)
 elif 'miqtop: ' in top_line:
 miqtop_ahead = False
 # miqtop: .* is-> Mon Jan 26 08:57:39 EST 2015 -0500
 str_start = top_line.index('is->')
 miqtop_time = du_parser.parse(top_line[str_start:], fuzzy=True, ignoretz=True)
 # Time logged in top is the system's time which is ahead/behind by the timezone offset
 timezone_offset = int(top_line[str_start + 34:str_start + 37])
 miqtop_time = miqtop_time - timedelta(hours=timezone_offset)
 else:
 top_results = miq_top.search(top_line)
 if top_results:
 top_pid = top_results.group(1)
 top_virt = convert_top_mem_to_mib(top_results.group(2))
 top_res = convert_top_mem_to_mib(top_results.group(3))
 top_share = convert_top_mem_to_mib(top_results.group(4))
 top_cpu_per = float(top_results.group(5))
 top_mem_per = float(top_results.group(6))
 for worker in workers:
 if workers[worker].pid == top_pid:
 if cur_time > workers[worker].start_ts and \
 (workers[worker].end_ts == '' or cur_time < workers[worker].end_ts):
 w_id = workers[worker].worker_id
 if w_id not in top_workers:
 top_workers[w_id] = {}
 top_workers[w_id]['datetimes'] = []
 top_workers[w_id]['virt'] = []
 top_workers[w_id]['res'] = []
 top_workers[w_id]['share'] = []
 top_workers[w_id]['cpu_per'] = []
 top_workers[w_id]['mem_per'] = []
 top_workers[w_id]['datetimes'].append(str(cur_time))
 top_workers[w_id]['virt'].append(top_virt)
 top_workers[w_id]['res'].append(top_res)
 top_workers[w_id]['share'].append(top_share)
 top_workers[w_id]['cpu_per'].append(top_cpu_per)
 top_workers[w_id]['mem_per'].append(top_mem_per)
 break
 else:
 logger.error('Issue with miq_top regex or grepping of top file:%s', top_line)
 if (line_count % 20000) == 0:
 timediff = time() - runningtime
 runningtime = time()
 logger.info('Count %s : Parsed 20000 lines in %s', line_count, timediff)
 return top_workers, len(top_lines)

[docs]def perf_process_evm(evm_file, top_file):
 msg_filters = {
 '-hourly': re.compile(r'\"[0-9\-]*T[0-9\:]*Z\",\s\"hourly\"'),
 '-daily': re.compile(r'\"[0-9\-]*T[0-9\:]*Z\",\s\"daily\"'),
 '-EmsRedhat': re.compile(r'\[\[\"EmsRedhat\"\,\s[0-9]*\]\]'),
 '-EmsVmware': re.compile(r'\[\[\"EmsVmware\"\,\s[0-9]*\]\]'),
 '-EmsAmazon': re.compile(r'\[\[\"EmsAmazon\"\,\s[0-9]*\]\]'),
 '-EmsOpenstack': re.compile(r'\[\[\"EmsOpenstack\"\,\s[0-9]*\]\]')
 }

 starttime = time()
 initialtime = starttime

 logger.info('----------- Parsing evm log file for messages -----------')
 messages, msg_cmds, test_start, test_end, msg_lc = evm_to_messages(evm_file, msg_filters)
 timediff = time() - starttime
 logger.info('----------- Completed Parsing evm log file -----------')
 logger.info('Parsed %s lines of evm log file for messages in %s', msg_lc, timediff)
 logger.info('Total # of Messages: %d', len(messages))
 logger.info('Total # of Commands: %d', len(msg_cmds))
 logger.info('Start Time: %s', test_start)
 logger.info('End Time: %s', test_end)

 logger.info('----------- Parsing evm log file for workers -----------')
 starttime = time()
 workers, wkr_mem_exc, wkr_upt_exc, wkr_stp, wkr_int, wkr_ext, wkr_lc = evm_to_workers(evm_file)
 timediff = time() - starttime
 logger.info('----------- Completed Parsing evm log for workers -----------')
 logger.info('Parsed %s lines of evm log file for workers in %s', wkr_lc, timediff)
 logger.info('Total # of Workers: %d', len(workers))
 logger.info('# Workers Memory Exceeded: %s', wkr_mem_exc)
 logger.info('# Workers Uptime Exceeded: %s', wkr_upt_exc)
 logger.info('# Workers Exited: %s', wkr_ext)
 logger.info('# Workers Stopped: %s', wkr_stp)
 logger.info('# Workers Interrupted: %s', wkr_int)

 logger.info('----------- Parsing top_output log file for Appliance Metrics -----------')
 starttime = time()
 top_appliance, tp_lc = top_to_appliance(top_file)
 timediff = time() - starttime
 logger.info('----------- Completed Parsing top_output log -----------')
 logger.info('Parsed %s lines of top_output file for Appliance Metrics in %s', tp_lc,
 timediff)

 logger.info('----------- Parsing top_output log file for worker CPU/Mem -----------')
 starttime = time()
 top_workers, tp_lc = top_to_workers(workers, top_file)
 timediff = time() - starttime
 logger.info('----------- Completed Parsing top_output log -----------')
 logger.info('Parsed %s lines of top_output file for workers in %s', tp_lc, timediff)

 charts_dir = log_path.join('charts')
 if not os.path.exists(str(charts_dir)):
 os.mkdir(str(charts_dir))

 logger.info('----------- Generating Raw Data csv files -----------')
 starttime = time()
 generate_raw_data_csv(messages, 'queue-rawdata.csv')
 generate_raw_data_csv(workers, 'workers-rawdata.csv')
 timediff = time() - starttime
 logger.info('Generated Raw Data csv files in: %s', timediff)

 logger.info('----------- Generating Hourly Buckets -----------')
 starttime = time()
 hr_bkt = messages_to_hourly_buckets(messages, test_start, test_end)
 timediff = time() - starttime
 logger.info('Generated Hourly Buckets in: %s', timediff)

 logger.info('----------- Generating Hourly Charts and csvs -----------')
 starttime = time()
 generate_hourly_charts_and_csvs(hr_bkt, charts_dir)
 timediff = time() - starttime
 logger.info('Generated Hourly Charts and csvs in: %s', timediff)

 logger.info('----------- Generating Total Time Charts -----------')
 starttime = time()
 generate_total_time_charts(msg_cmds, charts_dir)
 timediff = time() - starttime
 logger.info('Generated Total Time Charts in: %s', timediff)

 logger.info('----------- Generating Appliance Charts -----------')
 starttime = time()
 app_chart_files = split_appliance_charts(top_appliance, charts_dir)
 timediff = time() - starttime
 logger.info('Generated Appliance Charts in: %s', timediff)

 logger.info('----------- Generating Worker Charts -----------')
 starttime = time()
 generate_worker_charts(workers, top_workers, charts_dir)
 timediff = time() - starttime
 logger.info('Generated Worker Charts in: %s', timediff)

 logger.info('----------- Generating Message Statistics -----------')
 starttime = time()
 messages_to_statistics_csv(messages, 'queue-statistics.csv')
 timediff = time() - starttime
 logger.info('Generated Message Statistics in: %s', timediff)

 logger.info('----------- Writing html files for report -----------')
 # Write an index.html file for fast switching between graphs:
 html_index = log_path.join('index.html').open('w', ensure=True)
 cmd = hr_bkt.keys()[0]
 html_index.write(
 '<html>\n'
 '<title>Performance Worker/Message Metrics</title>\n'
 '<frameset cols="17%,83%">\n'
 ' <frame src="msg_menu.html" name="menu"/>\n'
 ' <frame src="charts/{}-{}-dequeue.svg" name="showframe" />\n'
 '</frameset>\n'
 '</html>'.format(cmd, sorted(hr_bkt[cmd].keys())[-1]))
 html_index.close()

 # Write the side bar menu html file
 html_menu = log_path.join('msg_menu.html').open('w', ensure=True)
 html_menu.write('<html>\n')
 html_menu.write('')

 html_menu.write('Appliance:
')
 for cpu_mem_charts in app_chart_files:
 html_menu.write('{} CPU | '.format(
 cpu_mem_charts[0][1:11], cpu_mem_charts[0]))
 html_menu.write('Memory
'.format(
 cpu_mem_charts[1]))

 html_menu.write('Worker CPU/Memory
')
 html_menu.write('Parsed {} lines for messages
'.format(msg_lc))
 html_menu.write('Start Time: {}
'.format(test_start))
 html_menu.write('End Time: {}
'.format(test_end))
 html_menu.write('Message Count: {}
'.format(len(messages)))
 html_menu.write('Command Count: {}
'.format(len(msg_cmds)))

 html_menu.write('Parsed {} lines for workers
'.format(wkr_lc))
 html_menu.write('Total Workers: {}
'.format(len(workers)))
 html_menu.write('Workers Memory Exceeded: {}
'.format(wkr_mem_exc))
 html_menu.write('Workers Uptime Exceeded: {}
'.format(wkr_upt_exc))
 html_menu.write('Workers Exited: {}
'.format(wkr_ext))
 html_menu.write('Workers Stopped: {}
'.format(wkr_stp))
 html_menu.write('Workers Interrupted: {}
'.format(wkr_int))

 html_menu.write('messages-rawdata.csv
')
 html_menu.write('messages-statistics.csv
')
 html_menu.write('workers-rawdata.csv

')

 # Sorts by the the messages which have the most, descending
 for cmd in sorted(msg_cmds, key=lambda x: len(msg_cmds[x]['total']), reverse=True):
 html_menu.write('<a href="csv_output/hourly_{}.csv"'
 'target="showframe">{}
'.format(cmd, cmd))
 html_menu.write(''
 'Total Messages: {}
'.format(cmd, len(msg_cmds[cmd]['total'])))
 for dt in sorted(hr_bkt[cmd].keys()):
 if dt == '':
 html_menu.write('Queued: ')
 else:
 html_menu.write('{}: '.format(dt))
 html_menu.write(''
 'cnt | '.format(cmd, dt))
 html_menu.write(''
 'deq | '.format(cmd, dt))
 html_menu.write(''
 'del
'.format(cmd, dt))
 html_menu.write('
')
 html_menu.write('')
 html_menu.write('</html>')
 html_menu.close()

 html_wkr_menu = log_path.join('worker_menu.html').open('w', ensure=True)
 html_wkr_menu.write('<html>\n')
 html_wkr_menu.write('')

 html_wkr_menu.write('Appliance:
')
 for cpu_mem_charts in app_chart_files:
 html_wkr_menu.write('{}-CPU | '.format(
 cpu_mem_charts[0][1:11], cpu_mem_charts[0]))
 html_wkr_menu.write('Memory
'.format(
 cpu_mem_charts[1]))

 html_wkr_menu.write('Message Latencies
')
 html_wkr_menu.write('Parsed {} lines for messages
'.format(msg_lc))
 html_wkr_menu.write('Start Time: {}
'.format(test_start))
 html_wkr_menu.write('End Time: {}
'.format(test_end))
 html_wkr_menu.write('Message Count: {}
'.format(len(messages)))
 html_wkr_menu.write('Command Count: {}
'.format(len(msg_cmds)))

 html_wkr_menu.write('Parsed {} lines for workers
'.format(wkr_lc))
 html_wkr_menu.write('Total Workers: {}
'.format(len(workers)))
 html_wkr_menu.write('Workers Memory Exceeded: {}
'.format(wkr_mem_exc))
 html_wkr_menu.write('Workers Uptime Exceeded: {}
'.format(wkr_upt_exc))
 html_wkr_menu.write('Workers Exited: {}
'.format(wkr_ext))
 html_wkr_menu.write('Workers Stopped: {}
'.format(wkr_stp))
 html_wkr_menu.write('Workers Interrupted: {}
'.format(wkr_int))

 html_wkr_menu.write('messages-rawdata.csv
')
 html_wkr_menu.write(''
 'messages-statistics.csv
')
 html_wkr_menu.write('workers-rawdata.csv

')

 html_wkr_menu.write('Running Workers:
')
 w_type = ''
 for worker_id in sorted(workers, key=lambda x: workers[x].worker_type):
 if workers[worker_id].terminated == '':
 if not w_type == workers[worker_id].worker_type:
 w_type = workers[worker_id].worker_type
 html_wkr_menu.write('{}
'.format(w_type))
 worker_name = '{}-{}'.format(worker_id, workers[worker_id].worker_type)
 html_wkr_menu.write('{} - '.format(worker_id))
 html_wkr_menu.write('CPU'
 ' | '.format(worker_name))
 html_wkr_menu.write('Memory
'
 ''.format(worker_name))

 html_wkr_menu.write('
Terminated Workers:
')
 w_type = ''
 for worker_id in sorted(workers, key=lambda x: workers[x].worker_type):
 if not workers[worker_id].terminated == '':
 if not w_type == workers[worker_id].worker_type:
 w_type = workers[worker_id].worker_type
 html_wkr_menu.write('
{}
'.format(w_type))
 worker_name = '{}-{}'.format(worker_id, workers[worker_id].worker_type)
 html_wkr_menu.write('{} - '.format(worker_id))
 html_wkr_menu.write('CPU'
 ' | '.format(worker_name))
 html_wkr_menu.write('Memory
'
 ''.format(worker_name))
 html_wkr_menu.write('{}
'.format(workers[worker_id].terminated))
 html_wkr_menu.write('')
 html_wkr_menu.write('</html>')
 html_wkr_menu.close()

 timediff = time() - initialtime
 logger.info('----------- Finished -----------')
 logger.info('Total time processing evm log file and generating report: %s', timediff)

[docs]class MiqMsgStat(object):

 def __init__(self):
 self.headers = ['msg_id', 'msg_cmd', 'msg_args', 'pid_put', 'pid_get', 'puttime', 'gettime',
 'deq_time', 'del_time', 'total_time']
 self.msg_id = ''
 self.msg_cmd = ''
 self.msg_args = ''
 self.pid_put = ''
 self.pid_get = ''
 self.puttime = ''
 self.gettime = ''
 self.deq_time = 0.0
 self.del_time = 0.0
 self.total_time = 0.0

 def __iter__(self):
 for header in self.headers:
 yield header, getattr(self, header)

 def __str__(self):
 return self.msg_cmd + ' : ' + self.msg_args + ' : ' + self.pid_put + ' : ' + self.pid_get \
 + ' : ' + self.puttime + ' : ' + self.gettime + ' : ' + str(self.deq_time) + ' : ' + \
 str(self.del_time) + ' : ' + str(self.total_time)

[docs]class MiqMsgLists(object):

 def __init__(self):
 self.cmd = ''
 self.puts = 0
 self.gets = 0
 self.dequeuetimes = []
 self.delivertimes = []
 self.totaltimes = []

[docs]class MiqMsgBucket(object):
 def __init__(self):
 self.headers = ['date', 'hour', 'total_put', 'total_get', 'sum_deq', 'min_deq', 'max_deq',
 'avg_deq', 'sum_del', 'min_del', 'max_del', 'avg_del']
 self.date = ''
 self.hour = ''
 self.total_put = 0
 self.total_get = 0
 self.sum_deq = 0.0
 self.min_deq = 0.0
 self.max_deq = 0.0
 self.avg_deq = 0.0
 self.sum_del = 0.0
 self.min_del = 0.0
 self.max_del = 0.0
 self.avg_del = 0.0

 def __iter__(self):
 for header in self.headers:
 yield header, getattr(self, header)

 def __str__(self):
 return self.date + ' : ' + self.hour + ' : ' + str(self.total_put) \
 + ' : ' + str(self.total_get) + ' : ' + str(self.sum_deq) + ' : ' + str(self.min_deq) \
 + ' : ' + str(self.max_deq) + ' : ' + str(self.avg_deq) + ' : ' + str(self.sum_del) \
 + ' : ' + str(self.min_del) + ' : ' + str(self.max_del) + ' : ' + str(self.avg_del)

[docs]class MiqWorker(object):

 def __init__(self):
 self.headers = ['worker_id', 'worker_type', 'pid', 'start_ts', 'end_ts', 'terminated']
 self.worker_id = 0
 self.worker_type = ''
 self.pid = ''
 self.start_ts = ''
 self.end_ts = ''
 self.terminated = ''

 def __iter__(self):
 for header in self.headers:
 yield header, getattr(self, header)

 def __str__(self):
 return self.worker_id + ' : ' + self.worker_type + ' : ' + self.pid + ' : ' + \
 str(self.start_ts) + ' : ' + str(self.end_ts) + ' : ' + self.terminated

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/rest.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.rest

-*- coding: utf-8 -*-
"""Helper functions for tests using REST API."""

[docs]def assert_response(rest_obj, success=None, http_status=None, results_num=None):
 """Asserts that the response HTTP status code and content is as expected."""

 # check if `rest_obj` is an object with attribute referencing rest_api instance
 rest_api = rest_obj.rest_api if hasattr(rest_obj, 'rest_api') else rest_obj

 last_response = rest_api.response

 if http_status:
 assert last_response.status_code == http_status
 else:
 assert last_response

 try:
 content = last_response.json()
 except Exception:
 if last_response.status_code == 204:
 # 204 == No Content: check that message-body is empty and return
 assert not last_response.text.strip()
 return
 else:
 raise AssertionError("No content returned")

 def _check_result(result):
 if success is not None:
 assert 'success' in result
 assert result['success'] is success
 elif 'success' in result and last_response:
 # expect True if 'success' is present and HTTP status is success
 assert result['success']

 if 'results' in content:
 results = content['results']
 if results_num is not None:
 assert len(results) == results_num
 for result in results:
 _check_result(result)
 else:
 _check_result(content)

[docs]def get_vms_in_service(rest_api, service):
 """Gets list of vm entities associated with the service."""
 service.vms.reload()
 # return entities under /api/vms, not under /api/services/:id/vms subcollection
 # where "actions" are not available
 return [rest_api.get_entity('vms', vm['id']) for vm in service.vms.all]

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/units.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.units

-*- coding: utf-8 -*-
import math
import re

TODO: Split the 1000 and 1024 factor out. Now it is not an issue as it is used FOR COMPARISON ONLY
FACTOR = 1024
PREFIXES = ['', 'K', 'M', 'G', 'T', 'P']
FACTORS = {prefix: int(math.pow(FACTOR, i)) for i, prefix in enumerate(PREFIXES)}

UNITS = ['Byte', 'Bytes', 'B', 'b', 'Hz']

EQUAL_UNITS = {
 'B': ('Byte', 'Bytes')
}

Sanity check
for target_unit, units in EQUAL_UNITS.iteritems():
 assert target_unit in UNITS
 for unit in units:
 assert unit in UNITS

REGEXP = re.compile(
 r'^\s*(\d+(?:\.\d+)?)\s*({})?({})\s*$'.format('|'.join(PREFIXES), '|'.join(UNITS)))

[docs]class Unit(object):
 """This class serves for simple comparison of numbers that have units.

 Imagine you pull a text value from the UI. 2 GB. By doing ``Unit.parse('2 GB')`` you get an
 instance of :py:class:`Unit`, which is comparable.

 You can compare two :py:class:`Unit` instances or you can compare :py:class:`Unit` with
 :py:class:`int`, :py:class:`float` or any :py:class:`str` as long as it can go through the
 :py:meth:`Unit.parse`.

 If you compare :py:class:`Unit` only (or a string that gets subsequently parsed), it also takes
 the kind of the unit it is, you cannot compare bytes with hertzes. It then calculates the
 absolute value in the base units and that gets compared.

 If you compare with a number, it does it like it was the number of the same unit. So eg.
 doing::

 Unit.parse('2 GB') == 2 *1024 * 1024 * 1024 `` is True

 """
 __slots__ = ['number', 'prefix', 'unit_type']

 @classmethod
[docs] def parse(cls, s):
 s = str(s)
 match = REGEXP.match(s)
 if match is None:
 raise ValueError('{} is not a proper value to be parsed!'.format(repr(s)))
 number, prefix, unit_type = match.groups()
 # Check if it isnt just an another name for another unit.
 for target_unit, units in EQUAL_UNITS.iteritems():
 if unit_type in units:
 unit_type = target_unit
 return cls(float(number), prefix, unit_type)

 def __init__(self, number, prefix, unit_type):
 self.number = float(number)
 self.prefix = prefix
 self.unit_type = unit_type

 @property
 def absolute(self):
 return self.number * FACTORS[self.prefix]

 def _as_same_unit(self, int_or_float):
 return type(self)(int_or_float, PREFIXES[0], self.unit_type)

 def __cmp__(self, other):
 if isinstance(other, basestring):
 other = self.parse(other)
 elif isinstance(other, (int, float)):
 other = self._as_same_unit(other)
 elif not isinstance(other, Unit):
 raise TypeError('Incomparable types {} and {}'.format(type(self), type(other)))
 # other is instance of this class too now
 if self.unit_type != other.unit_type:
 raise TypeError('Incomparable units {} and {}'.format(self.unit_type, other.unit_type))

 return cmp(self.absolute, other.absolute)

 def __float__(self):
 return self.absolute

 def __int__(self):
 return int(self.absolute)

 def __repr__(self):
 return '{}({}, {}, {})'.format(
 type(self).__name__, repr(self.number), repr(self.prefix), repr(self.unit_type))

 def __str__(self):
 return '{} {}{}'.format(self.number, self.prefix, self.unit_type)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/ipmi.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.ipmi

import subprocess
from cfme.utils.wait import wait_for

[docs]class IPMI():
 """ Utility to access IPMI via CLI.

 The IPMI utility uses the ``ipmitool`` package to access the remote management
 card of a server.

 .. note: ``ipmitool`` is not a standard tool and will need to be installed separately.

 .. warning These commands do not gracefully shutdown a machine. The immediately remove
 power to a machine. Use with caution.

 Args:
 hostname: The hostname of the remote management console.
 username: The username for the remote management console.
 password: The password tied to the username.
 interface_type: A string giving the ``interface_type`` to pass to the CLI.
 timeout: The number of seconds to wait before giving up on a command.
 Returns: A :py:class:`IPMI` instnace.

 """
 def __init__(self, hostname, username, password, interface_type="lan", timeout=30):
 self.hostname = hostname
 self.username = username
 self.password = password
 self.interface_type = interface_type
 cmd_args = ['ipmitool']
 cmd_args.extend(['-H', self.hostname])
 cmd_args.extend(['-U', self.username])
 cmd_args.extend(['-P', self.password])
 cmd_args.extend(['-I', self.interface_type])
 self.cmd_args = cmd_args
 self.timeout = timeout

[docs] def is_power_on(self):
 """ Checks if the power is on.

 Returns: ``True`` if power is on, ``False`` if not.
 """
 command = "chassis power status"
 output = self._run_command(command)

 if "Chassis Power is on" in output:
 return True
 elif "Chassis Power is off" in output:
 return False
 else:
 raise IPMIException("Unexpected command output: {}".format(output))

[docs] def power_off(self):
 """ Turns the power off.

 Returns: ``True`` if power is off, ``False`` if not.
 """
 if not self.is_power_on():
 return True
 else:
 return self._change_power_state(power_on=False)

[docs] def power_on(self):
 """ Turns the power on.

 Returns: ``True`` if power is on, ``False`` if not.
 """
 if self.is_power_on():
 return True
 else:
 return self._change_power_state(power_on=True)

[docs] def power_reset(self):
 """ Turns the power off.

 Returns: ``True`` if power reset initiated, ``False`` if not.
 """
 if not self.is_power_on():
 return self.power_on()
 else:
 command = "chassis power reset"
 output = self._run_command(command)
 if "Reset" in output:
 return True
 else:
 raise Exception("Unexpected command output: {}".format(output))

 def _change_power_state(self, power_on=True):
 """ Changes the power state of a machine.

 Args:
 power_on: A boolean. ``True`` to request the power be turned on,
 ``False`` to turn it off.

 Returns: ``True`` if operation was successful, ``False`` if not.
 """
 if power_on:
 command = "chassis power on"
 else:
 command = "chassis power off"
 output = self._run_command(command)

 if "Chassis Power Control: Up/On" in output and power_on:
 return True
 elif "Chassis Power Control: Down/Off" in output and not power_on:
 return True
 else:
 raise Exception("Unexpected command output: {}".format(output))

 def _run_command(self, command):
 """ Builds the command arguments from the command string.

 Args:
 command: An IPMI command to be passed to the CLI as a string.
 As an example, "chassis power on".
 Returns: The string output from the command's stdout.
 """

 command_args = self.cmd_args + command.split(" ")
 return self._run_ipmi(command_args)

 def _run_ipmi(self, command_args):
 """ Runs the actual IPMI command

 Args:
 command_args: A list of command arguments to be send to ``ipmitool``.
 Returns: The string output from the command's stdout.
 Raises:
 IPMIException: If the return code is non zero.
 """
 proc = subprocess.Popen(command_args, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
 wait_for(proc.poll, fail_condition=None, num_sec=self.timeout)
 if proc.returncode == 0:
 return proc.stdout.read()
 else:
 raise IPMIException("Unexpected failure: {}".format(proc.stderr.read()))

[docs]class IPMIException(Exception):
 """
 Raised during :py:meth:`_run_ipmi` if the error code is non zero.
 """
 pass

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_static/framework.png
Ul

e.g. Form

Low fevel
* CFME specific
*Fills n fields

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-close.png

_static/down.png

_static/ajax-loader.gif

_static/up.png

_modules/cfme/utils/ftp.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.ftp

-*- coding: utf-8 -*-
""" FTP manipulation library

@author: Milan Falešník <mfalesni@redhat.com>
"""
import fauxfactory
import ftplib
import re
from datetime import datetime
from time import strptime, mktime
try:
 from cStringIO import StringIO
except ImportError:
 from StringIO import StringIO

[docs]class FTPException(Exception):
 pass

[docs]class FTPDirectory(object):
 """ FTP FS Directory encapsulation

 This class represents one directory.
 Contains pointers to all child directories (self.directories)
 and also all files in current directory (self.files)

 """
 def __init__(self, client, name, items, parent_dir=None, time=None):
 """ Constructor

 Args:
 client: ftplib.FTP instance
 name: Name of this directory
 items: Content of this directory
 parent_dir: Pointer to a parent directory to maintain hierarchy. None if root
 time: Time of this object
 """
 self.client = client
 self.parent_dir = parent_dir
 self.time = time
 self.name = name
 self.files = []
 self.directories = []
 for item in items:
 if isinstance(item, dict): # Is a directory
 self.directories.append(FTPDirectory(self.client,
 item["dir"],
 item["content"],
 parent_dir=self,
 time=item["time"]))
 else:
 self.files.append(FTPFile(self.client, item[0], self, item[1]))

 @property
 def path(self):
 """
 Returns:
 whole path for this directory

 """
 if self.parent_dir:
 return self.parent_dir.path + self.name + "/"
 else:
 return self.name

 def __repr__(self):
 return "<FTPDirectory {}>".format(self.path)

[docs] def cd(self, path):
 """ Change to a directory

 Changes directory to a path specified by parameter path. There are three special cases:
 / - climbs by self.parent_dir up in the hierarchy until it reaches root element.
 . - does nothing
 .. - climbs one level up in hierarchy, if present, otherwise does the same as preceeding.

 Args:
 path: Path to change

 """
 if path == ".":
 return self
 elif path == "..":
 result = self
 if result.parent_dir:
 result = result.parent_dir
 return result
 elif path == "/":
 result = self
 while result.parent_dir:
 result = result.parent_dir
 return result

 enter = path.strip("/").split("/", 1)
 remainder = None
 if len(enter) == 2:
 enter, remainder = enter
 for item in self.directories:
 if item.name == enter:
 if remainder:
 return item.cd("/".join(remainder))
 else:
 return item
 raise FTPException("Directory {}{} does not exist!".format(self.path, enter))

[docs] def search(self, by, files=True, directories=True):
 """ Recursive search by string or regexp.

 Searches throughout all the filesystem structure from top till the bottom until
 it finds required files or dirctories.
 You can specify either plain string or regexp. String search does classic ``in``,
 regexp matching is done by exact matching (by.match).

 Args:
 by: Search string or regexp
 files: Whether look for files
 directories: Whether look for directories
 Returns:
 List of all objects found in FS

 """

 def _scan(what, in_what):
 if isinstance(what, re._pattern_type):
 return what.match(in_what) is not None
 else:
 return what in in_what

 results = []
 if files:
 for f in self.files:
 if _scan(by, f.name):
 results.append(f)
 for d in self.directories:
 if directories:
 if _scan(by, d.name):
 results.append(d)
 results.extend(d.search(by, files=files, directories=directories))
 return results

[docs]class FTPFile(object):
 """ FTP FS File encapsulation

 This class represents one file in the FS hierarchy.
 It encapsulates mainly its position in FS and adds the possibility
 of downloading the file.
 """
 def __init__(self, client, name, parent_dir, time):
 """ Constructor

 Args:
 client: ftplib.FTP instance
 name: File name (without path)
 parent_dir: Directory in which this file is
 """
 self.client = client
 self.parent_dir = parent_dir
 self.name = name
 self.time = time

 @property
 def path(self):
 """
 Returns:
 whole path for this file

 """
 if self.parent_dir:
 return self.parent_dir.path + self.name
 else:
 return self.name

 @property
 def local_time(self):
 """
 Returns:
 time modified to match local computer's time zone

 """
 return self.client.dt + self.time

 def __repr__(self):
 return "<FTPFile {}>".format(self.path)

[docs] def retr(self, callback):
 """ Retrieve file

 Wrapper around ftplib.FTP.retrbinary().
 This function cd's to the directory where this file is present, then calls the
 FTP's retrbinary() function with provided callable and then cd's back where it started
 to keep it consistent.

 Args:
 callback: Any callable that accepts one parameter as the data

 Raises:
 AssertionError: When any of the CWD or CDUP commands fail.
 ftplib.error_perm: When retrbinary call of ftplib fails
 """
 dirs, f = self.path.rsplit("/", 1)
 dirs = dirs.lstrip("/").split("/")
 # Dive in
 for d in dirs:
 assert self.client.cwd(d), "Could not change into the directory {}!".format(d)
 self.client.retrbinary(f, callback)
 # Dive out
 for d in dirs:
 assert self.client.cdup(), "Could not get out of directory {}!".format(d)

[docs] def download(self, target=None):
 """ Download file into this machine

 Wrapper around self.retr function. It downloads the file from remote filesystem
 into local filesystem. Name is either preserved original, or can be changed.

 Args:
 target: Target file name (None to preserver the original)
 """
 if target is None:
 target = self.name
 with open(target, "wb") as output:
 self.retr(output.write)

[docs]class FTPClient(object):
 """ FTP Client encapsulation

 This class provides basic encapsulation around ftplib's FTP class.
 It wraps some methods and allows to easily delete whole directory or walk
 through the directory tree.

 Usage:

 >>> from utils.ftp import FTPClient
 >>> ftp = FTPClient("host", "user", "password")
 >>> only_files_with_EVM_in_name = ftp.filesystem.search("EVM", directories=False)
 >>> only_files_by_regexp = ftp.filesystem.search(re.compile("regexp"), directories=False)
 >>> some_directory = ftp.filesystem.cd("a/b/c") # cd's to this directory
 >>> root = some_directory.cd("/")

 Always going through filesystem property is a bit slow as it parses the structure on each use.
 If you are sure that the structure will remain intact between uses, you can do as follows
 to save the time::

 >>> fs = ftp.filesystem

 Let's download some files::

 >>> for f in ftp.filesystem.search("IMPORTANT_FILE", directories=False):
 ... f.download() # To pickup its original name
 ... f.download("custom_name")

 We finished the testing, so we don't need the content of the directory::

 >>> ftp.recursively_delete()

 And it's gone.

 """

 def __init__(self, host, login, password, upload_dir="/"):
 """ Constructor

 Args:
 host: FTP server host
 login: FTP login
 password: FTP password
 """
 self.host = host
 self.login = login
 self.password = password
 self.ftp = None
 self.dt = None
 self.upload_dir = upload_dir
 self.connect()
 self.update_time_difference()

[docs] def connect(self):
 self.ftp = ftplib.FTP(self.host)
 self.ftp.login(self.login, self.password)

[docs] def update_time_difference(self):
 """ Determine the time difference between the FTP server and this computer.

 This is done by uploading a fake file, reading its time and deleting it.
 Then the self.dt variable captures the time you need to ADD to the remote
 time or SUBTRACT from local time.

 The FTPFile object carries this automatically as it has .local_time property
 which adds the client's .dt to its time.

 """
 TIMECHECK_FILE_NAME = fauxfactory.gen_alphanumeric(length=16)
 void_file = StringIO(fauxfactory.gen_alpha())
 self.cwd(self.upload_dir)
 assert "Transfer complete" in self.storbinary(TIMECHECK_FILE_NAME, void_file),\
 "Could not upload a file for time checking with name {}!".format(TIMECHECK_FILE_NAME)
 void_file.close()
 now = datetime.now()
 for d, name, time in self.ls():
 if name == TIMECHECK_FILE_NAME:
 self.dt = now - time
 self.dele(TIMECHECK_FILE_NAME)
 self.cwd("/")
 return True
 raise FTPException("The timecheck file was not found in the current FTP directory")

[docs] def ls(self):
 """ Lists the content of a directory.

 Returns:
 List of all items in current directory
 Return format is [(is_dir?, "name", remote_time), ...]

 """
 result = []

 def _callback(line):
 is_dir = line.upper().startswith("D")
 # Max 8, then the final is file which can contain something blank
 fields = re.split(r"\s+", line, maxsplit=8)
 # This is because how informations in LIST are presented
 # Nov 11 12:34 filename (from the end)
 date = strptime(str(datetime.now().year) + " " + fields[-4] + " " + fields[-3] + " " +
 fields[-2],
 "%Y %b %d %H:%M")
 # convert time.struct_time into datetime
 date = datetime.fromtimestamp(mktime(date))
 result.append((is_dir, fields[-1], date))

 self.ftp.dir(_callback)
 return result

[docs] def pwd(self):
 """ Get current directory

 Returns:
 Current directory

 Raises:
 AssertionError: PWD command fails
 """
 result = self.ftp.sendcmd("PWD")
 assert "is the current directory" in result, "PWD command failed"
 x, d, y = result.strip().split("\"")
 return d.strip()

[docs] def cdup(self):
 """ Goes one level up in directory hierarchy (cd ..)

 """
 return self.ftp.sendcmd("CDUP")

[docs] def mkd(self, d):
 """ Create a directory

 Args:
 d: Directory name

 Returns:
 Success of the action

 """
 try:
 return self.ftp.sendcmd("MKD {}".format(d)).startswith("250")
 except ftplib.error_perm:
 return False

[docs] def rmd(self, d):
 """ Remove a directory

 Args:
 d: Directory name

 Returns:
 Success of the action

 """
 try:
 return self.ftp.sendcmd("RMD {}".format(d)).startswith("250")
 except ftplib.error_perm:
 return False

[docs] def dele(self, f):
 """ Remove a file

 Args:
 f: File name

 Returns:
 Success of the action

 """
 try:
 return self.ftp.sendcmd("DELE {}".format(f)).startswith("250")
 except ftplib.error_perm:
 return False

[docs] def cwd(self, d):
 """ Enter a directory

 Args:
 d: Directory name

 Returns:
 Success of the action

 """
 try:
 return self.ftp.sendcmd("CWD {}".format(d)).startswith("250")
 except ftplib.error_perm:
 return False

[docs] def close(self):
 """ Finish work and close connection

 """
 self.ftp.quit()
 self.ftp.close()
 self.ftp = None

[docs] def retrbinary(self, f, callback):
 """ Download file

 You need to specify the callback function, which accepts one parameter
 (data), to be processed.

 Args:
 f: Requested file name
 callback: Callable with one parameter accepting the data
 """
 return self.ftp.retrbinary("RETR {}".format(f), callback)

[docs] def storbinary(self, f, file_obj):
 """ Store file

 You need to specify the file object.

 Args:
 f: Requested file name
 file_obj: File object to be stored
 """
 return self.ftp.storbinary("STOR {}".format(f), file_obj)

[docs] def recursively_delete(self, d=None):
 """ Recursively deletes content of pwd

 WARNING: Destructive!

 Args:
 d: Directory to enter (None for not entering - root directory)
 d: str or None

 Raises:
 AssertionError: When some of the FTP commands fail.
 """
 # Enter the directory
 if d:
 assert self.cwd(d), "Could not enter directory {}".format(d)
 # Work in it
 for isdir, name, time in self.ls():
 if isdir:
 self.recursively_delete(name)
 else:
 assert self.dele(name), "Could not delete {}!".format(name)
 # Go out of it
 if d:
 # Go to parent directory
 assert self.cdup(), "Could not go to parent directory of {}!".format(d)
 # And delete it
 assert self.rmd(d), "Could not remove directory {}!".format(d)

[docs] def tree(self, d=None):
 """ Walks the tree recursively and creates a tree

 Base structure is a list. List contains directory content and the type decides whether
 it's a directory or a file:
 - tuple: it's a file, therefore it represents file's name and time
 - dict: it's a directory. Then the dict structure is as follows::

 dir: directory name
 content: list of directory content (recurse)

 Args:
 d: Directory to enter(None for no entering - root directory)

 Returns:
 Directory structure in lists nad dicts.

 Raises:
 AssertionError: When some of the FTP commands fail.
 """
 # Enter the directory
 items = []
 if d:
 assert self.cwd(d), "Could not enter directory {}".format(d)
 # Work in it
 for isdir, name, time in self.ls():
 if isdir:
 items.append({"dir": name, "content": self.tree(name), "time": time})
 else:
 items.append((name, time))
 # Go out of it
 if d:
 # Go to parent directory
 assert self.cdup(), "Could not go to parent directory of {}!".format(d)
 return items

 @property
 def filesystem(self):
 """ Returns the object structure of the filesystem

 Returns:
 Root directory

 """
 return FTPDirectory(self, "/", self.tree())

 # Context management methods
[docs] def __enter__(self):
 """ Entering the context does nothing, because the client is already connected

 """
 return self

[docs] def __exit__(self, type, value, traceback):
 """ Exiting the context means just calling .close() on the client.

 """
 self.close()

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/path.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.path

"""Project path helpers

Contains `py.path.local`_ objects for accessing common project locations.

Paths rendered below will be different in your local environment.

.. _py.path.local: http://pylib.readthedocs.org/en/latest/path.html
"""

import imp
from py.path import local

_cfme_package_dir = local(imp.find_module('cfme')[1])

#: The project root, ``cfme_tests/``
project_path = _cfme_package_dir.dirpath()

#: conf yaml storage, ``cfme_tests/conf/``
conf_path = project_path.join('conf')

#: datafile storage, ``cfme_tests/data/``
data_path = project_path.join('data')

#: doc root, where these file came from! ``cfme_tests/docs/``
docs_path = project_path.join('docs')

#: log storage, ``cfme_tests/log/``
log_path = project_path.join('log')

#: results path for performance tests, ``cfme_tests/results/``
results_path = project_path.join('results')

#: patch files (diffs)
patches_path = data_path.join('patches')

#: interactive scripts, ``cfme_tests/scripts/``
scripts_path = project_path.join('scripts')

#: interactive scripts' data, ``cfme_tests/scripts/data``
scripts_data_path = scripts_path.join('data')

#: jinja2 templates, use with ``jinja2.FileSystemLoader``
template_path = data_path.join('templates')

#: orchestration datafile storage, ``cfme_tests/data/orchestration``
orchestration_path = data_path.join('orchestration')

#: resource files root directory, ``cfme_tests/data/resources``
resources_path = data_path.join('resources')

#: middleware provider resource files path, ``cfme_tests/data/resources/middleware``
middleware_resources_path = resources_path.join('middleware')

[docs]def get_rel_path(absolute_path_str):
 """Get a relative path for object in the project root

 Args:
 absolute_path_str: An absolute path to a file anywhere under `project_path`

 Note:

 This will be a no-op for files that are not in `project_path`

 """
 target_path = local(absolute_path_str)
 # relto returns empty string when no path parts are relative
 return target_path.relto(project_path) or absolute_path_str

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_modules/cached_property.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cached_property

-*- coding: utf-8 -*-

__author__ = 'Daniel Greenfeld'
__email__ = 'pydanny@gmail.com'
__version__ = '1.3.0'
__license__ = 'BSD'

from time import time
import threading

class cached_property(object):
 """
 A property that is only computed once per instance and then replaces itself
 with an ordinary attribute. Deleting the attribute resets the property.
 Source: https://github.com/bottlepy/bottle/commit/fa7733e075da0d790d809aa3d2f53071897e6f76
 """ # noqa

 def __init__(self, func):
 self.__doc__ = getattr(func, '__doc__')
 self.func = func

 def __get__(self, obj, cls):
 if obj is None:
 return self
 value = obj.__dict__[self.func.__name__] = self.func(obj)
 return value

class threaded_cached_property(object):
 """
 A cached_property version for use in environments where multiple threads
 might concurrently try to access the property.
 """

 def __init__(self, func):
 self.__doc__ = getattr(func, '__doc__')
 self.func = func
 self.lock = threading.RLock()

 def __get__(self, obj, cls):
 if obj is None:
 return self

 obj_dict = obj.__dict__
 name = self.func.__name__
 with self.lock:
 try:
 # check if the value was computed before the lock was acquired
 return obj_dict[name]
 except KeyError:
 # if not, do the calculation and release the lock
 return obj_dict.setdefault(name, self.func(obj))

class cached_property_with_ttl(object):
 """
 A property that is only computed once per instance and then replaces itself
 with an ordinary attribute. Setting the ttl to a number expresses how long
 the property will last before being timed out.
 """

 def __init__(self, ttl=None):
 if callable(ttl):
 func = ttl
 ttl = None
 else:
 func = None
 self.ttl = ttl
 self._prepare_func(func)

 def __call__(self, func):
 self._prepare_func(func)
 return self

 def __get__(self, obj, cls):
 if obj is None:
 return self

 now = time()
 obj_dict = obj.__dict__
 name = self.__name__
 try:
 value, last_updated = obj_dict[name]
 except KeyError:
 pass
 else:
 ttl_expired = self.ttl and self.ttl < now - last_updated
 if not ttl_expired:
 return value

 value = self.func(obj)
 obj_dict[name] = (value, now)
 return value

 def __delete__(self, obj):
 obj.__dict__.pop(self.__name__, None)

 def __set__(self, obj, value):
 obj.__dict__[self.__name__] = (value, time())

 def _prepare_func(self, func):
 self.func = func
 if func:
 self.__doc__ = func.__doc__
 self.__name__ = func.__name__
 self.__module__ = func.__module__

Aliases to make cached_property_with_ttl easier to use
cached_property_ttl = cached_property_with_ttl
timed_cached_property = cached_property_with_ttl

class threaded_cached_property_with_ttl(cached_property_with_ttl):
 """
 A cached_property version for use in environments where multiple threads
 might concurrently try to access the property.
 """

 def __init__(self, ttl=None):
 super(threaded_cached_property_with_ttl, self).__init__(ttl)
 self.lock = threading.RLock()

 def __get__(self, obj, cls):
 with self.lock:
 return super(threaded_cached_property_with_ttl, self).__get__(obj,
 cls)

Alias to make threaded_cached_property_with_ttl easier to use
threaded_cached_property_ttl = threaded_cached_property_with_ttl
timed_threaded_cached_property = threaded_cached_property_with_ttl

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/plus.png

_modules/py/_path/local.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for py._path.local

"""
local path implementation.
"""
from __future__ import with_statement

from contextlib import contextmanager
import sys, os, re, atexit, io
import py
from py._path import common
from py._path.common import iswin32, fspath
from stat import S_ISLNK, S_ISDIR, S_ISREG

from os.path import abspath, normcase, normpath, isabs, exists, isdir, isfile, islink, dirname

if sys.version_info > (3,0):
 def map_as_list(func, iter):
 return list(map(func, iter))
else:
 map_as_list = map

class Stat(object):
 def __getattr__(self, name):
 return getattr(self._osstatresult, "st_" + name)

 def __init__(self, path, osstatresult):
 self.path = path
 self._osstatresult = osstatresult

 @property
 def owner(self):
 if iswin32:
 raise NotImplementedError("XXX win32")
 import pwd
 entry = py.error.checked_call(pwd.getpwuid, self.uid)
 return entry[0]

 @property
 def group(self):
 """ return group name of file. """
 if iswin32:
 raise NotImplementedError("XXX win32")
 import grp
 entry = py.error.checked_call(grp.getgrgid, self.gid)
 return entry[0]

 def isdir(self):
 return S_ISDIR(self._osstatresult.st_mode)

 def isfile(self):
 return S_ISREG(self._osstatresult.st_mode)

 def islink(self):
 st = self.path.lstat()
 return S_ISLNK(self._osstatresult.st_mode)

class PosixPath(common.PathBase):
 def chown(self, user, group, rec=0):
 """ change ownership to the given user and group.
 user and group may be specified by a number or
 by a name. if rec is True change ownership
 recursively.
 """
 uid = getuserid(user)
 gid = getgroupid(group)
 if rec:
 for x in self.visit(rec=lambda x: x.check(link=0)):
 if x.check(link=0):
 py.error.checked_call(os.chown, str(x), uid, gid)
 py.error.checked_call(os.chown, str(self), uid, gid)

 def readlink(self):
 """ return value of a symbolic link. """
 return py.error.checked_call(os.readlink, self.strpath)

 def mklinkto(self, oldname):
 """ posix style hard link to another name. """
 py.error.checked_call(os.link, str(oldname), str(self))

 def mksymlinkto(self, value, absolute=1):
 """ create a symbolic link with the given value (pointing to another name). """
 if absolute:
 py.error.checked_call(os.symlink, str(value), self.strpath)
 else:
 base = self.common(value)
 # with posix local paths '/' is always a common base
 relsource = self.__class__(value).relto(base)
 reldest = self.relto(base)
 n = reldest.count(self.sep)
 target = self.sep.join(('..',)*n + (relsource,))
 py.error.checked_call(os.symlink, target, self.strpath)

def getuserid(user):
 import pwd
 if not isinstance(user, int):
 user = pwd.getpwnam(user)[2]
 return user

def getgroupid(group):
 import grp
 if not isinstance(group, int):
 group = grp.getgrnam(group)[2]
 return group

FSBase = not iswin32 and PosixPath or common.PathBase

class LocalPath(FSBase):
 """ object oriented interface to os.path and other local filesystem
 related information.
 """
 class ImportMismatchError(ImportError):
 """ raised on pyimport() if there is a mismatch of __file__'s"""

 sep = os.sep
 class Checkers(common.Checkers):
 def _stat(self):
 try:
 return self._statcache
 except AttributeError:
 try:
 self._statcache = self.path.stat()
 except py.error.ELOOP:
 self._statcache = self.path.lstat()
 return self._statcache

 def dir(self):
 return S_ISDIR(self._stat().mode)

 def file(self):
 return S_ISREG(self._stat().mode)

 def exists(self):
 return self._stat()

 def link(self):
 st = self.path.lstat()
 return S_ISLNK(st.mode)

 def __init__(self, path=None, expanduser=False):
 """ Initialize and return a local Path instance.

 Path can be relative to the current directory.
 If path is None it defaults to the current working directory.
 If expanduser is True, tilde-expansion is performed.
 Note that Path instances always carry an absolute path.
 Note also that passing in a local path object will simply return
 the exact same path object. Use new() to get a new copy.
 """
 if path is None:
 self.strpath = py.error.checked_call(os.getcwd)
 else:
 try:
 path = fspath(path)
 except TypeError:
 raise ValueError("can only pass None, Path instances "
 "or non-empty strings to LocalPath")
 if expanduser:
 path = os.path.expanduser(path)
 self.strpath = abspath(path)

 def __hash__(self):
 return hash(self.strpath)

 def __eq__(self, other):
 s1 = fspath(self)
 try:
 s2 = fspath(other)
 except TypeError:
 return False
 if iswin32:
 s1 = s1.lower()
 try:
 s2 = s2.lower()
 except AttributeError:
 return False
 return s1 == s2

 def __ne__(self, other):
 return not (self == other)

 def __lt__(self, other):
 return fspath(self) < fspath(other)

 def __gt__(self, other):
 return fspath(self) > fspath(other)

 def samefile(self, other):
 """ return True if 'other' references the same file as 'self'.
 """
 other = fspath(other)
 if not isabs(other):
 other = abspath(other)
 if self == other:
 return True
 if iswin32:
 return False # there is no samefile
 return py.error.checked_call(
 os.path.samefile, self.strpath, other)

 def remove(self, rec=1, ignore_errors=False):
 """ remove a file or directory (or a directory tree if rec=1).
 if ignore_errors is True, errors while removing directories will
 be ignored.
 """
 if self.check(dir=1, link=0):
 if rec:
 # force remove of readonly files on windows
 if iswin32:
 self.chmod(0o700, rec=1)
 py.error.checked_call(py.std.shutil.rmtree, self.strpath,
 ignore_errors=ignore_errors)
 else:
 py.error.checked_call(os.rmdir, self.strpath)
 else:
 if iswin32:
 self.chmod(0o700)
 py.error.checked_call(os.remove, self.strpath)

 def computehash(self, hashtype="md5", chunksize=524288):
 """ return hexdigest of hashvalue for this file. """
 try:
 try:
 import hashlib as mod
 except ImportError:
 if hashtype == "sha1":
 hashtype = "sha"
 mod = __import__(hashtype)
 hash = getattr(mod, hashtype)()
 except (AttributeError, ImportError):
 raise ValueError("Don't know how to compute %r hash" %(hashtype,))
 f = self.open('rb')
 try:
 while 1:
 buf = f.read(chunksize)
 if not buf:
 return hash.hexdigest()
 hash.update(buf)
 finally:
 f.close()

 def new(self, **kw):
 """ create a modified version of this path.
 the following keyword arguments modify various path parts::

 a:/some/path/to/a/file.ext
 xx drive
 xxxxxxxxxxxxxxxxx dirname
 xxxxxxxx basename
 xxxx purebasename
 xxx ext
 """
 obj = object.__new__(self.__class__)
 if not kw:
 obj.strpath = self.strpath
 return obj
 drive, dirname, basename, purebasename,ext = self._getbyspec(
 "drive,dirname,basename,purebasename,ext")
 if 'basename' in kw:
 if 'purebasename' in kw or 'ext' in kw:
 raise ValueError("invalid specification %r" % kw)
 else:
 pb = kw.setdefault('purebasename', purebasename)
 try:
 ext = kw['ext']
 except KeyError:
 pass
 else:
 if ext and not ext.startswith('.'):
 ext = '.' + ext
 kw['basename'] = pb + ext

 if ('dirname' in kw and not kw['dirname']):
 kw['dirname'] = drive
 else:
 kw.setdefault('dirname', dirname)
 kw.setdefault('sep', self.sep)
 obj.strpath = normpath(
 "%(dirname)s%(sep)s%(basename)s" % kw)
 return obj

 def _getbyspec(self, spec):
 """ see new for what 'spec' can be. """
 res = []
 parts = self.strpath.split(self.sep)

 args = filter(None, spec.split(','))
 append = res.append
 for name in args:
 if name == 'drive':
 append(parts[0])
 elif name == 'dirname':
 append(self.sep.join(parts[:-1]))
 else:
 basename = parts[-1]
 if name == 'basename':
 append(basename)
 else:
 i = basename.rfind('.')
 if i == -1:
 purebasename, ext = basename, ''
 else:
 purebasename, ext = basename[:i], basename[i:]
 if name == 'purebasename':
 append(purebasename)
 elif name == 'ext':
 append(ext)
 else:
 raise ValueError("invalid part specification %r" % name)
 return res

 def dirpath(self, *args, **kwargs):
 """ return the directory path joined with any given path arguments. """
 if not kwargs:
 path = object.__new__(self.__class__)
 path.strpath = dirname(self.strpath)
 if args:
 path = path.join(*args)
 return path
 return super(LocalPath, self).dirpath(*args, **kwargs)

 def join(self, *args, **kwargs):
 """ return a new path by appending all 'args' as path
 components. if abs=1 is used restart from root if any
 of the args is an absolute path.
 """
 sep = self.sep
 strargs = [fspath(arg) for arg in args]
 strpath = self.strpath
 if kwargs.get('abs'):
 newargs = []
 for arg in reversed(strargs):
 if isabs(arg):
 strpath = arg
 strargs = newargs
 break
 newargs.insert(0, arg)
 for arg in strargs:
 arg = arg.strip(sep)
 if iswin32:
 # allow unix style paths even on windows.
 arg = arg.strip('/')
 arg = arg.replace('/', sep)
 strpath = strpath + sep + arg
 obj = object.__new__(self.__class__)
 obj.strpath = normpath(strpath)
 return obj

 def open(self, mode='r', ensure=False, encoding=None):
 """ return an opened file with the given mode.

 If ensure is True, create parent directories if needed.
 """
 if ensure:
 self.dirpath().ensure(dir=1)
 if encoding:
 return py.error.checked_call(io.open, self.strpath, mode, encoding=encoding)
 return py.error.checked_call(open, self.strpath, mode)

 def _fastjoin(self, name):
 child = object.__new__(self.__class__)
 child.strpath = self.strpath + self.sep + name
 return child

 def islink(self):
 return islink(self.strpath)

 def check(self, **kw):
 if not kw:
 return exists(self.strpath)
 if len(kw) == 1:
 if "dir" in kw:
 return not kw["dir"] ^ isdir(self.strpath)
 if "file" in kw:
 return not kw["file"] ^ isfile(self.strpath)
 return super(LocalPath, self).check(**kw)

 _patternchars = set("*?[" + os.path.sep)
 def listdir(self, fil=None, sort=None):
 """ list directory contents, possibly filter by the given fil func
 and possibly sorted.
 """
 if fil is None and sort is None:
 names = py.error.checked_call(os.listdir, self.strpath)
 return map_as_list(self._fastjoin, names)
 if isinstance(fil, py.builtin._basestring):
 if not self._patternchars.intersection(fil):
 child = self._fastjoin(fil)
 if exists(child.strpath):
 return [child]
 return []
 fil = common.FNMatcher(fil)
 names = py.error.checked_call(os.listdir, self.strpath)
 res = []
 for name in names:
 child = self._fastjoin(name)
 if fil is None or fil(child):
 res.append(child)
 self._sortlist(res, sort)
 return res

 def size(self):
 """ return size of the underlying file object """
 return self.stat().size

 def mtime(self):
 """ return last modification time of the path. """
 return self.stat().mtime

 def copy(self, target, mode=False, stat=False):
 """ copy path to target.

 If mode is True, will copy copy permission from path to target.
 If stat is True, copy permission, last modification
 time, last access time, and flags from path to target.
 """
 if self.check(file=1):
 if target.check(dir=1):
 target = target.join(self.basename)
 assert self!=target
 copychunked(self, target)
 if mode:
 copymode(self.strpath, target.strpath)
 if stat:
 copystat(self, target)
 else:
 def rec(p):
 return p.check(link=0)
 for x in self.visit(rec=rec):
 relpath = x.relto(self)
 newx = target.join(relpath)
 newx.dirpath().ensure(dir=1)
 if x.check(link=1):
 newx.mksymlinkto(x.readlink())
 continue
 elif x.check(file=1):
 copychunked(x, newx)
 elif x.check(dir=1):
 newx.ensure(dir=1)
 if mode:
 copymode(x.strpath, newx.strpath)
 if stat:
 copystat(x, newx)

 def rename(self, target):
 """ rename this path to target. """
 target = fspath(target)
 return py.error.checked_call(os.rename, self.strpath, target)

 def dump(self, obj, bin=1):
 """ pickle object into path location"""
 f = self.open('wb')
 try:
 py.error.checked_call(py.std.pickle.dump, obj, f, bin)
 finally:
 f.close()

 def mkdir(self, *args):
 """ create & return the directory joined with args. """
 p = self.join(*args)
 py.error.checked_call(os.mkdir, fspath(p))
 return p

 def write_binary(self, data, ensure=False):
 """ write binary data into path. If ensure is True create
 missing parent directories.
 """
 if ensure:
 self.dirpath().ensure(dir=1)
 with self.open('wb') as f:
 f.write(data)

 def write_text(self, data, encoding, ensure=False):
 """ write text data into path using the specified encoding.
 If ensure is True create missing parent directories.
 """
 if ensure:
 self.dirpath().ensure(dir=1)
 with self.open('w', encoding=encoding) as f:
 f.write(data)

 def write(self, data, mode='w', ensure=False):
 """ write data into path. If ensure is True create
 missing parent directories.
 """
 if ensure:
 self.dirpath().ensure(dir=1)
 if 'b' in mode:
 if not py.builtin._isbytes(data):
 raise ValueError("can only process bytes")
 else:
 if not py.builtin._istext(data):
 if not py.builtin._isbytes(data):
 data = str(data)
 else:
 data = py.builtin._totext(data, sys.getdefaultencoding())
 f = self.open(mode)
 try:
 f.write(data)
 finally:
 f.close()

 def _ensuredirs(self):
 parent = self.dirpath()
 if parent == self:
 return self
 if parent.check(dir=0):
 parent._ensuredirs()
 if self.check(dir=0):
 try:
 self.mkdir()
 except py.error.EEXIST:
 # race condition: file/dir created by another thread/process.
 # complain if it is not a dir
 if self.check(dir=0):
 raise
 return self

 def ensure(self, *args, **kwargs):
 """ ensure that an args-joined path exists (by default as
 a file). if you specify a keyword argument 'dir=True'
 then the path is forced to be a directory path.
 """
 p = self.join(*args)
 if kwargs.get('dir', 0):
 return p._ensuredirs()
 else:
 p.dirpath()._ensuredirs()
 if not p.check(file=1):
 p.open('w').close()
 return p

 def stat(self, raising=True):
 """ Return an os.stat() tuple. """
 if raising == True:
 return Stat(self, py.error.checked_call(os.stat, self.strpath))
 try:
 return Stat(self, os.stat(self.strpath))
 except KeyboardInterrupt:
 raise
 except Exception:
 return None

 def lstat(self):
 """ Return an os.lstat() tuple. """
 return Stat(self, py.error.checked_call(os.lstat, self.strpath))

 def setmtime(self, mtime=None):
 """ set modification time for the given path. if 'mtime' is None
 (the default) then the file's mtime is set to current time.

 Note that the resolution for 'mtime' is platform dependent.
 """
 if mtime is None:
 return py.error.checked_call(os.utime, self.strpath, mtime)
 try:
 return py.error.checked_call(os.utime, self.strpath, (-1, mtime))
 except py.error.EINVAL:
 return py.error.checked_call(os.utime, self.strpath, (self.atime(), mtime))

 def chdir(self):
 """ change directory to self and return old current directory """
 try:
 old = self.__class__()
 except py.error.ENOENT:
 old = None
 py.error.checked_call(os.chdir, self.strpath)
 return old

 @contextmanager
 def as_cwd(self):
 """ return context manager which changes to current dir during the
 managed "with" context. On __enter__ it returns the old dir.
 """
 old = self.chdir()
 try:
 yield old
 finally:
 old.chdir()

 def realpath(self):
 """ return a new path which contains no symbolic links."""
 return self.__class__(os.path.realpath(self.strpath))

 def atime(self):
 """ return last access time of the path. """
 return self.stat().atime

 def __repr__(self):
 return 'local(%r)' % self.strpath

 def __str__(self):
 """ return string representation of the Path. """
 return self.strpath

 def chmod(self, mode, rec=0):
 """ change permissions to the given mode. If mode is an
 integer it directly encodes the os-specific modes.
 if rec is True perform recursively.
 """
 if not isinstance(mode, int):
 raise TypeError("mode %r must be an integer" % (mode,))
 if rec:
 for x in self.visit(rec=rec):
 py.error.checked_call(os.chmod, str(x), mode)
 py.error.checked_call(os.chmod, self.strpath, mode)

 def pypkgpath(self):
 """ return the Python package path by looking for the last
 directory upwards which still contains an __init__.py.
 Return None if a pkgpath can not be determined.
 """
 pkgpath = None
 for parent in self.parts(reverse=True):
 if parent.isdir():
 if not parent.join('__init__.py').exists():
 break
 if not isimportable(parent.basename):
 break
 pkgpath = parent
 return pkgpath

 def _ensuresyspath(self, ensuremode, path):
 if ensuremode:
 s = str(path)
 if ensuremode == "append":
 if s not in sys.path:
 sys.path.append(s)
 else:
 if s != sys.path[0]:
 sys.path.insert(0, s)

 def pyimport(self, modname=None, ensuresyspath=True):
 """ return path as an imported python module.

 If modname is None, look for the containing package
 and construct an according module name.
 The module will be put/looked up in sys.modules.
 if ensuresyspath is True then the root dir for importing
 the file (taking __init__.py files into account) will
 be prepended to sys.path if it isn't there already.
 If ensuresyspath=="append" the root dir will be appended
 if it isn't already contained in sys.path.
 if ensuresyspath is False no modification of syspath happens.
 """
 if not self.check():
 raise py.error.ENOENT(self)

 pkgpath = None
 if modname is None:
 pkgpath = self.pypkgpath()
 if pkgpath is not None:
 pkgroot = pkgpath.dirpath()
 names = self.new(ext="").relto(pkgroot).split(self.sep)
 if names[-1] == "__init__":
 names.pop()
 modname = ".".join(names)
 else:
 pkgroot = self.dirpath()
 modname = self.purebasename

 self._ensuresyspath(ensuresyspath, pkgroot)
 __import__(modname)
 mod = sys.modules[modname]
 if self.basename == "__init__.py":
 return mod # we don't check anything as we might
 # we in a namespace package ... too icky to check
 modfile = mod.__file__
 if modfile[-4:] in ('.pyc', '.pyo'):
 modfile = modfile[:-1]
 elif modfile.endswith('$py.class'):
 modfile = modfile[:-9] + '.py'
 if modfile.endswith(os.path.sep + "__init__.py"):
 if self.basename != "__init__.py":
 modfile = modfile[:-12]
 try:
 issame = self.samefile(modfile)
 except py.error.ENOENT:
 issame = False
 if not issame:
 raise self.ImportMismatchError(modname, modfile, self)
 return mod
 else:
 try:
 return sys.modules[modname]
 except KeyError:
 # we have a custom modname, do a pseudo-import
 mod = py.std.types.ModuleType(modname)
 mod.__file__ = str(self)
 sys.modules[modname] = mod
 try:
 py.builtin.execfile(str(self), mod.__dict__)
 except:
 del sys.modules[modname]
 raise
 return mod

 def sysexec(self, *argv, **popen_opts):
 """ return stdout text from executing a system child process,
 where the 'self' path points to executable.
 The process is directly invoked and not through a system shell.
 """
 from subprocess import Popen, PIPE
 argv = map_as_list(str, argv)
 popen_opts['stdout'] = popen_opts['stderr'] = PIPE
 proc = Popen([str(self)] + argv, **popen_opts)
 stdout, stderr = proc.communicate()
 ret = proc.wait()
 if py.builtin._isbytes(stdout):
 stdout = py.builtin._totext(stdout, sys.getdefaultencoding())
 if ret != 0:
 if py.builtin._isbytes(stderr):
 stderr = py.builtin._totext(stderr, sys.getdefaultencoding())
 raise py.process.cmdexec.Error(ret, ret, str(self),
 stdout, stderr,)
 return stdout

 def sysfind(cls, name, checker=None, paths=None):
 """ return a path object found by looking at the systems
 underlying PATH specification. If the checker is not None
 it will be invoked to filter matching paths. If a binary
 cannot be found, None is returned
 Note: This is probably not working on plain win32 systems
 but may work on cygwin.
 """
 if isabs(name):
 p = py.path.local(name)
 if p.check(file=1):
 return p
 else:
 if paths is None:
 if iswin32:
 paths = py.std.os.environ['Path'].split(';')
 if '' not in paths and '.' not in paths:
 paths.append('.')
 try:
 systemroot = os.environ['SYSTEMROOT']
 except KeyError:
 pass
 else:
 paths = [re.sub('%SystemRoot%', systemroot, path)
 for path in paths]
 else:
 paths = py.std.os.environ['PATH'].split(':')
 tryadd = []
 if iswin32:
 tryadd += os.environ['PATHEXT'].split(os.pathsep)
 tryadd.append("")

 for x in paths:
 for addext in tryadd:
 p = py.path.local(x).join(name, abs=True) + addext
 try:
 if p.check(file=1):
 if checker:
 if not checker(p):
 continue
 return p
 except py.error.EACCES:
 pass
 return None
 sysfind = classmethod(sysfind)

 def _gethomedir(cls):
 try:
 x = os.environ['HOME']
 except KeyError:
 try:
 x = os.environ["HOMEDRIVE"] + os.environ['HOMEPATH']
 except KeyError:
 return None
 return cls(x)
 _gethomedir = classmethod(_gethomedir)

 #"""
 #special class constructors for local filesystem paths
 #"""
 def get_temproot(cls):
 """ return the system's temporary directory
 (where tempfiles are usually created in)
 """
 return py.path.local(py.std.tempfile.gettempdir())
 get_temproot = classmethod(get_temproot)

 def mkdtemp(cls, rootdir=None):
 """ return a Path object pointing to a fresh new temporary directory
 (which we created ourself).
 """
 import tempfile
 if rootdir is None:
 rootdir = cls.get_temproot()
 return cls(py.error.checked_call(tempfile.mkdtemp, dir=str(rootdir)))
 mkdtemp = classmethod(mkdtemp)

 def make_numbered_dir(cls, prefix='session-', rootdir=None, keep=3,
 lock_timeout = 172800): # two days
 """ return unique directory with a number greater than the current
 maximum one. The number is assumed to start directly after prefix.
 if keep is true directories with a number less than (maxnum-keep)
 will be removed.
 """
 if rootdir is None:
 rootdir = cls.get_temproot()

 nprefix = normcase(prefix)
 def parse_num(path):
 """ parse the number out of a path (if it matches the prefix) """
 nbasename = normcase(path.basename)
 if nbasename.startswith(nprefix):
 try:
 return int(nbasename[len(nprefix):])
 except ValueError:
 pass

 # compute the maximum number currently in use with the
 # prefix
 lastmax = None
 while True:
 maxnum = -1
 for path in rootdir.listdir():
 num = parse_num(path)
 if num is not None:
 maxnum = max(maxnum, num)

 # make the new directory
 try:
 udir = rootdir.mkdir(prefix + str(maxnum+1))
 except py.error.EEXIST:
 # race condition: another thread/process created the dir
 # in the meantime. Try counting again
 if lastmax == maxnum:
 raise
 lastmax = maxnum
 continue
 break

 # put a .lock file in the new directory that will be removed at
 # process exit
 if lock_timeout:
 lockfile = udir.join('.lock')
 mypid = os.getpid()
 if hasattr(lockfile, 'mksymlinkto'):
 lockfile.mksymlinkto(str(mypid))
 else:
 lockfile.write(str(mypid))
 def try_remove_lockfile():
 # in a fork() situation, only the last process should
 # remove the .lock, otherwise the other processes run the
 # risk of seeing their temporary dir disappear. For now
 # we remove the .lock in the parent only (i.e. we assume
 # that the children finish before the parent).
 if os.getpid() != mypid:
 return
 try:
 lockfile.remove()
 except py.error.Error:
 pass
 atexit.register(try_remove_lockfile)

 # prune old directories
 if keep:
 for path in rootdir.listdir():
 num = parse_num(path)
 if num is not None and num <= (maxnum - keep):
 lf = path.join('.lock')
 try:
 t1 = lf.lstat().mtime
 t2 = lockfile.lstat().mtime
 if not lock_timeout or abs(t2-t1) < lock_timeout:
 continue # skip directories still locked
 except py.error.Error:
 pass # assume that it means that there is no 'lf'
 try:
 path.remove(rec=1)
 except KeyboardInterrupt:
 raise
 except: # this might be py.error.Error, WindowsError ...
 pass

 # make link...
 try:
 username = os.environ['USER'] #linux, et al
 except KeyError:
 try:
 username = os.environ['USERNAME'] #windows
 except KeyError:
 username = 'current'

 src = str(udir)
 dest = src[:src.rfind('-')] + '-' + username
 try:
 os.unlink(dest)
 except OSError:
 pass
 try:
 os.symlink(src, dest)
 except (OSError, AttributeError, NotImplementedError):
 pass

 return udir
 make_numbered_dir = classmethod(make_numbered_dir)

def copymode(src, dest):
 """ copy permission from src to dst. """
 py.std.shutil.copymode(src, dest)

def copystat(src, dest):
 """ copy permission, last modification time, last access time, and flags from src to dst."""
 py.std.shutil.copystat(str(src), str(dest))

def copychunked(src, dest):
 chunksize = 524288 # half a meg of bytes
 fsrc = src.open('rb')
 try:
 fdest = dest.open('wb')
 try:
 while 1:
 buf = fsrc.read(chunksize)
 if not buf:
 break
 fdest.write(buf)
 finally:
 fdest.close()
 finally:
 fsrc.close()

def isimportable(name):
 if name and (name[0].isalpha() or name[0] == '_'):
 name = name.replace("_", '')
 return not name or name.isalnum()

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/attr/_make.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for attr._make

from __future__ import absolute_import, division, print_function

import hashlib
import linecache

from operator import itemgetter

from . import _config
from ._compat import PY2, iteritems, isclass, iterkeys, metadata_proxy
from .exceptions import (
 DefaultAlreadySetError,
 FrozenInstanceError,
 NotAnAttrsClassError,
)

This is used at least twice, so cache it here.
_obj_setattr = object.__setattr__
_init_convert_pat = "__attr_convert_{}"
_init_factory_pat = "__attr_factory_{}"
_tuple_property_pat = " {attr_name} = property(itemgetter({index}))"
_empty_metadata_singleton = metadata_proxy({})

class _Nothing(object):
 """
 Sentinel class to indicate the lack of a value when ``None`` is ambiguous.

 All instances of `_Nothing` are equal.
 """
 def __copy__(self):
 return self

 def __deepcopy__(self, _):
 return self

 def __eq__(self, other):
 return other.__class__ == _Nothing

 def __ne__(self, other):
 return not self == other

 def __repr__(self):
 return "NOTHING"

 def __hash__(self):
 return 0xdeadbeef

NOTHING = _Nothing()
"""
Sentinel to indicate the lack of a value when ``None`` is ambiguous.
"""

def attr(default=NOTHING, validator=None,
 repr=True, cmp=True, hash=None, init=True,
 convert=None, metadata={}):
 """
 Create a new attribute on a class.

 .. warning::

 Does *not* do anything unless the class is also decorated with
 :func:`attr.s`!

 :param default: A value that is used if an ``attrs``-generated ``__init__``
 is used and no value is passed while instantiating or the attribute is
 excluded using ``init=False``.

 If the value is an instance of :class:`Factory`, its callable will be
 used to construct a new value (useful for mutable datatypes like lists
 or dicts).

 If a default is not set (or set manually to ``attr.NOTHING``), a value
 must be supplied when instantiating; otherwise a :exc:`TypeError`
 will be raised.

 The default can also be set using decorator notation as shown below.

 :type default: Any value.

 :param validator: :func:`callable` that is called by ``attrs``-generated
 ``__init__`` methods after the instance has been initialized. They
 receive the initialized instance, the :class:`Attribute`, and the
 passed value.

 The return value is *not* inspected so the validator has to throw an
 exception itself.

 If a ``list`` is passed, its items are treated as validators and must
 all pass.

 Validators can be globally disabled and re-enabled using
 :func:`get_run_validators`.

 The validator can also be set using decorator notation as shown below.

 :type validator: ``callable`` or a ``list`` of ``callable``\ s.

 :param bool repr: Include this attribute in the generated ``__repr__``
 method.
 :param bool cmp: Include this attribute in the generated comparison methods
 (``__eq__`` et al).
 :param hash: Include this attribute in the generated ``__hash__``
 method. If ``None`` (default), mirror *cmp*'s value. This is the
 correct behavior according the Python spec. Setting this value to
 anything else than ``None`` is *discouraged*.
 :type hash: ``bool`` or ``None``
 :param bool init: Include this attribute in the generated ``__init__``
 method. It is possible to set this to ``False`` and set a default
 value. In that case this attributed is unconditionally initialized
 with the specified default value or factory.
 :param callable convert: :func:`callable` that is called by
 ``attrs``-generated ``__init__`` methods to convert attribute's value
 to the desired format. It is given the passed-in value, and the
 returned value will be used as the new value of the attribute. The
 value is converted before being passed to the validator, if any.
 :param metadata: An arbitrary mapping, to be used by third-party
 components. See :ref:`extending_metadata`.

 .. versionchanged:: 17.1.0 *validator* can be a ``list`` now.
 .. versionchanged:: 17.1.0
 hash is ``None`` and therefore mirrors *cmp* by default .
 """
 if hash is not None and hash is not True and hash is not False:
 raise TypeError(
 "Invalid value for hash. Must be True, False, or None."
)
 return _CountingAttr(
 default=default,
 validator=validator,
 repr=repr,
 cmp=cmp,
 hash=hash,
 init=init,
 convert=convert,
 metadata=metadata,
)

def _make_attr_tuple_class(cls_name, attr_names):
 """
 Create a tuple subclass to hold `Attribute`s for an `attrs` class.

 The subclass is a bare tuple with properties for names.

 class MyClassAttributes(tuple):
 __slots__ = ()
 x = property(itemgetter(0))
 """
 attr_class_name = "{}Attributes".format(cls_name)
 attr_class_template = [
 "class {}(tuple):".format(attr_class_name),
 " __slots__ = ()",
]
 if attr_names:
 for i, attr_name in enumerate(attr_names):
 attr_class_template.append(_tuple_property_pat.format(
 index=i,
 attr_name=attr_name,
))
 else:
 attr_class_template.append(" pass")
 globs = {"itemgetter": itemgetter}
 eval(compile("\n".join(attr_class_template), "", "exec"), globs)
 return globs[attr_class_name]

def _transform_attrs(cls, these):
 """
 Transforms all `_CountingAttr`s on a class into `Attribute`s and saves the
 list in `__attrs_attrs__`.

 If *these* is passed, use that and don't look for them on the class.
 """
 super_cls = []
 for c in reversed(cls.__mro__[1:-1]):
 sub_attrs = getattr(c, "__attrs_attrs__", None)
 if sub_attrs is not None:
 super_cls.extend(a for a in sub_attrs if a not in super_cls)
 if these is None:
 ca_list = [(name, attr)
 for name, attr
 in cls.__dict__.items()
 if isinstance(attr, _CountingAttr)]
 else:
 ca_list = [(name, ca)
 for name, ca
 in iteritems(these)]

 non_super_attrs = [
 Attribute.from_counting_attr(name=attr_name, ca=ca)
 for attr_name, ca
 in sorted(ca_list, key=lambda e: e[1].counter)
]
 attr_names = [a.name for a in super_cls + non_super_attrs]

 AttrsClass = _make_attr_tuple_class(cls.__name__, attr_names)

 cls.__attrs_attrs__ = AttrsClass(super_cls + [
 Attribute.from_counting_attr(name=attr_name, ca=ca)
 for attr_name, ca
 in sorted(ca_list, key=lambda e: e[1].counter)
])

 had_default = False
 for a in cls.__attrs_attrs__:
 if these is None and a not in super_cls:
 setattr(cls, a.name, a)
 if had_default is True and a.default is NOTHING and a.init is True:
 raise ValueError(
 "No mandatory attributes allowed after an attribute with a "
 "default value or factory. Attribute in question: {a!r}"
 .format(a=a)
)
 elif had_default is False and \
 a.default is not NOTHING and \
 a.init is not False:
 had_default = True

def _frozen_setattrs(self, name, value):
 """
 Attached to frozen classes as __setattr__.
 """
 raise FrozenInstanceError()

def _frozen_delattrs(self, name):
 """
 Attached to frozen classes as __delattr__.
 """
 raise FrozenInstanceError()

def attributes(maybe_cls=None, these=None, repr_ns=None,
 repr=True, cmp=True, hash=None, init=True,
 slots=False, frozen=False, str=False):
 r"""
 A class decorator that adds `dunder
 <https://wiki.python.org/moin/DunderAlias>`_\ -methods according to the
 specified attributes using :func:`attr.ib` or the *these* argument.

 :param these: A dictionary of name to :func:`attr.ib` mappings. This is
 useful to avoid the definition of your attributes within the class body
 because you can't (e.g. if you want to add ``__repr__`` methods to
 Django models) or don't want to.

 If *these* is not ``None``, ``attrs`` will *not* search the class body
 for attributes.

 :type these: :class:`dict` of :class:`str` to :func:`attr.ib`

 :param str repr_ns: When using nested classes, there's no way in Python 2
 to automatically detect that. Therefore it's possible to set the
 namespace explicitly for a more meaningful ``repr`` output.
 :param bool repr: Create a ``__repr__`` method with a human readable
 represantation of ``attrs`` attributes..
 :param bool str: Create a ``__str__`` method that is identical to
 ``__repr__``. This is usually not necessary except for
 :class:`Exception`\ s.
 :param bool cmp: Create ``__eq__``, ``__ne__``, ``__lt__``, ``__le__``,
 ``__gt__``, and ``__ge__`` methods that compare the class as if it were
 a tuple of its ``attrs`` attributes. But the attributes are *only*
 compared, if the type of both classes is *identical*!
 :param hash: If ``None`` (default), the ``__hash__`` method is generated
 according how *cmp* and *frozen* are set.

 1. If *both* are True, ``attrs`` will generate a ``__hash__`` for you.
 2. If *cmp* is True and *frozen* is False, ``__hash__`` will be set to
 None, marking it unhashable (which it is).
 3. If *cmp* is False, ``__hash__`` will be left untouched meaning the
 ``__hash__`` method of the superclass will be used (if superclass is
 ``object``, this means it will fall back to id-based hashing.).

 Although not recommended, you can decide for yourself and force
 ``attrs`` to create one (e.g. if the class is immutable even though you
 didn't freeze it programmatically) by passing ``True`` or not. Both of
 these cases are rather special and should be used carefully.

 See the `Python documentation \
 <https://docs.python.org/3/reference/datamodel.html#object.__hash__>`_
 and the `GitHub issue that led to the default behavior \
 <https://github.com/python-attrs/attrs/issues/136>`_ for more details.
 :type hash: ``bool`` or ``None``
 :param bool init: Create a ``__init__`` method that initialiazes the
 ``attrs`` attributes. Leading underscores are stripped for the
 argument name. If a ``__attrs_post_init__`` method exists on the
 class, it will be called after the class is fully initialized.
 :param bool slots: Create a slots_-style class that's more
 memory-efficient. See :ref:`slots` for further ramifications.
 :param bool frozen: Make instances immutable after initialization. If
 someone attempts to modify a frozen instance,
 :exc:`attr.exceptions.FrozenInstanceError` is raised.

 Please note:

 1. This is achieved by installing a custom ``__setattr__`` method
 on your class so you can't implement an own one.

 2. True immutability is impossible in Python.

 3. This *does* have a minor a runtime performance :ref:`impact
 <how-frozen>` when initializing new instances. In other words:
 ``__init__`` is slightly slower with ``frozen=True``.

 4. If a class is frozen, you cannot modify ``self`` in
 ``__attrs_post_init__`` or a self-written ``__init__``. You can
 circumvent that limitation by using
 ``object.__setattr__(self, "attribute_name", value)``.

 .. _slots: https://docs.python.org/3.5/reference/datamodel.html#slots

 .. versionadded:: 16.0.0 *slots*
 .. versionadded:: 16.1.0 *frozen*
 .. versionadded:: 16.3.0 *str*, and support for ``__attrs_post_init__``.
 .. versionchanged::
 17.1.0 *hash* supports ``None`` as value which is also the default
 now.
 """
 def wrap(cls):
 if getattr(cls, "__class__", None) is None:
 raise TypeError("attrs only works with new-style classes.")

 if repr is False and str is True:
 raise ValueError(
 "__str__ can only be generated if a __repr__ exists."
)

 if slots:
 # Only need this later if we're using slots.
 if these is None:
 ca_list = [name
 for name, attr
 in cls.__dict__.items()
 if isinstance(attr, _CountingAttr)]
 else:
 ca_list = list(iterkeys(these))
 _transform_attrs(cls, these)

 # Can't just re-use frozen name because Python's scoping. :(
 # Can't compare function objects because Python 2 is terrible. :(
 effectively_frozen = _has_frozen_superclass(cls) or frozen
 if repr is True:
 cls = _add_repr(cls, ns=repr_ns)
 if str is True:
 cls.__str__ = cls.__repr__
 if cmp is True:
 cls = _add_cmp(cls)

 if hash is not True and hash is not False and hash is not None:
 raise TypeError(
 "Invalid value for hash. Must be True, False, or None."
)
 elif hash is False or (hash is None and cmp is False):
 pass
 elif hash is True or (hash is None and cmp is True and frozen is True):
 cls = _add_hash(cls)
 else:
 cls.__hash__ = None

 if init is True:
 cls = _add_init(cls, effectively_frozen)
 if effectively_frozen is True:
 cls.__setattr__ = _frozen_setattrs
 cls.__delattr__ = _frozen_delattrs
 if slots is True:
 # slots and frozen require __getstate__/__setstate__ to work
 cls = _add_pickle(cls)
 if slots is True:
 cls_dict = dict(cls.__dict__)
 cls_dict["__slots__"] = tuple(ca_list)
 for ca_name in ca_list:
 # It might not actually be in there, e.g. if using 'these'.
 cls_dict.pop(ca_name, None)
 cls_dict.pop("__dict__", None)

 qualname = getattr(cls, "__qualname__", None)
 cls = type(cls)(cls.__name__, cls.__bases__, cls_dict)
 if qualname is not None:
 cls.__qualname__ = qualname

 return cls

 # attrs_or class type depends on the usage of the decorator. It's a class
 # if it's used as `@attributes` but ``None`` if used # as `@attributes()`.
 if maybe_cls is None:
 return wrap
 else:
 return wrap(maybe_cls)

if PY2:
 def _has_frozen_superclass(cls):
 """
 Check whether *cls* has a frozen ancestor by looking at its
 __setattr__.
 """
 return (
 getattr(
 cls.__setattr__, "__module__", None
) == _frozen_setattrs.__module__ and
 cls.__setattr__.__name__ == _frozen_setattrs.__name__
)
else:
 def _has_frozen_superclass(cls):
 """
 Check whether *cls* has a frozen ancestor by looking at its
 __setattr__.
 """
 return cls.__setattr__ == _frozen_setattrs

def _attrs_to_tuple(obj, attrs):
 """
 Create a tuple of all values of *obj*'s *attrs*.
 """
 return tuple(getattr(obj, a.name) for a in attrs)

def _add_hash(cls, attrs=None):
 """
 Add a hash method to *cls*.
 """
 if attrs is None:
 attrs = [a
 for a in cls.__attrs_attrs__
 if a.hash is True or (a.hash is None and a.cmp is True)]

 def hash_(self):
 """
 Automatically created by attrs.
 """
 return hash(_attrs_to_tuple(self, attrs))

 cls.__hash__ = hash_
 return cls

def _add_cmp(cls, attrs=None):
 """
 Add comparison methods to *cls*.
 """
 if attrs is None:
 attrs = [a for a in cls.__attrs_attrs__ if a.cmp]

 def attrs_to_tuple(obj):
 """
 Save us some typing.
 """
 return _attrs_to_tuple(obj, attrs)

 def eq(self, other):
 """
 Automatically created by attrs.
 """
 if other.__class__ is self.__class__:
 return attrs_to_tuple(self) == attrs_to_tuple(other)
 else:
 return NotImplemented

 def ne(self, other):
 """
 Automatically created by attrs.
 """
 result = eq(self, other)
 if result is NotImplemented:
 return NotImplemented
 else:
 return not result

 def lt(self, other):
 """
 Automatically created by attrs.
 """
 if isinstance(other, self.__class__):
 return attrs_to_tuple(self) < attrs_to_tuple(other)
 else:
 return NotImplemented

 def le(self, other):
 """
 Automatically created by attrs.
 """
 if isinstance(other, self.__class__):
 return attrs_to_tuple(self) <= attrs_to_tuple(other)
 else:
 return NotImplemented

 def gt(self, other):
 """
 Automatically created by attrs.
 """
 if isinstance(other, self.__class__):
 return attrs_to_tuple(self) > attrs_to_tuple(other)
 else:
 return NotImplemented

 def ge(self, other):
 """
 Automatically created by attrs.
 """
 if isinstance(other, self.__class__):
 return attrs_to_tuple(self) >= attrs_to_tuple(other)
 else:
 return NotImplemented

 cls.__eq__ = eq
 cls.__ne__ = ne
 cls.__lt__ = lt
 cls.__le__ = le
 cls.__gt__ = gt
 cls.__ge__ = ge

 return cls

def _add_repr(cls, ns=None, attrs=None):
 """
 Add a repr method to *cls*.
 """
 if attrs is None:
 attrs = [a for a in cls.__attrs_attrs__ if a.repr]

 def repr_(self):
 """
 Automatically created by attrs.
 """
 real_cls = self.__class__
 if ns is None:
 qualname = getattr(real_cls, "__qualname__", None)
 if qualname is not None:
 class_name = qualname.rsplit(">.", 1)[-1]
 else:
 class_name = real_cls.__name__
 else:
 class_name = ns + "." + real_cls.__name__

 return "{0}({1})".format(
 class_name,
 ", ".join(a.name + "=" + repr(getattr(self, a.name))
 for a in attrs)
)
 cls.__repr__ = repr_
 return cls

def _add_init(cls, frozen):
 """
 Add a __init__ method to *cls*. If *frozen* is True, make it immutable.
 """
 attrs = [a for a in cls.__attrs_attrs__
 if a.init or a.default is not NOTHING]

 # We cache the generated init methods for the same kinds of attributes.
 sha1 = hashlib.sha1()
 sha1.update(repr(attrs).encode("utf-8"))
 unique_filename = "<attrs generated init {0}>".format(
 sha1.hexdigest()
)

 script, globs = _attrs_to_script(
 attrs,
 frozen,
 getattr(cls, "__attrs_post_init__", False),
)
 locs = {}
 bytecode = compile(script, unique_filename, "exec")
 attr_dict = dict((a.name, a) for a in attrs)
 globs.update({
 "NOTHING": NOTHING,
 "attr_dict": attr_dict,
 })
 if frozen is True:
 # Save the lookup overhead in __init__ if we need to circumvent
 # immutability.
 globs["_cached_setattr"] = _obj_setattr
 eval(bytecode, globs, locs)
 init = locs["__init__"]

 # In order of debuggers like PDB being able to step through the code,
 # we add a fake linecache entry.
 linecache.cache[unique_filename] = (
 len(script),
 None,
 script.splitlines(True),
 unique_filename
)
 cls.__init__ = init
 return cls

def _add_pickle(cls):
 """
 Add pickle helpers, needed for frozen and slotted classes
 """
 def _slots_getstate__(obj):
 """
 Play nice with pickle.
 """
 return tuple(getattr(obj, a.name) for a in fields(obj.__class__))

 def _slots_setstate__(obj, state):
 """
 Play nice with pickle.
 """
 __bound_setattr = _obj_setattr.__get__(obj, Attribute)
 for a, value in zip(fields(obj.__class__), state):
 __bound_setattr(a.name, value)

 cls.__getstate__ = _slots_getstate__
 cls.__setstate__ = _slots_setstate__
 return cls

def fields(cls):
 """
 Returns the tuple of ``attrs`` attributes for a class.

 The tuple also allows accessing the fields by their names (see below for
 examples).

 :param type cls: Class to introspect.

 :raise TypeError: If *cls* is not a class.
 :raise attr.exceptions.NotAnAttrsClassError: If *cls* is not an ``attrs``
 class.

 :rtype: tuple (with name accesors) of :class:`attr.Attribute`

 .. versionchanged:: 16.2.0 Returned tuple allows accessing the fields
 by name.
 """
 if not isclass(cls):
 raise TypeError("Passed object must be a class.")
 attrs = getattr(cls, "__attrs_attrs__", None)
 if attrs is None:
 raise NotAnAttrsClassError(
 "{cls!r} is not an attrs-decorated class.".format(cls=cls)
)
 return attrs

def validate(inst):
 """
 Validate all attributes on *inst* that have a validator.

 Leaves all exceptions through.

 :param inst: Instance of a class with ``attrs`` attributes.
 """
 if _config._run_validators is False:
 return

 for a in fields(inst.__class__):
 v = a.validator
 if v is not None:
 v(inst, a, getattr(inst, a.name))

def _attrs_to_script(attrs, frozen, post_init):
 """
 Return a script of an initializer for *attrs* and a dict of globals.

 The globals are expected by the generated script.

 If *frozen* is True, we cannot set the attributes directly so we use
 a cached ``object.__setattr__``.
 """
 lines = []
 if frozen is True:
 lines.append(
 # Circumvent the __setattr__ descriptor to save one lookup per
 # assignment.
 "_setattr = _cached_setattr.__get__(self, self.__class__)"
)

 def fmt_setter(attr_name, value_var):
 return "_setattr('%(attr_name)s', %(value_var)s)" % {
 "attr_name": attr_name,
 "value_var": value_var,
 }

 def fmt_setter_with_converter(attr_name, value_var):
 conv_name = _init_convert_pat.format(attr_name)
 return "_setattr('%(attr_name)s', %(conv)s(%(value_var)s))" % {
 "attr_name": attr_name,
 "value_var": value_var,
 "conv": conv_name,
 }
 else:
 def fmt_setter(attr_name, value):
 return "self.%(attr_name)s = %(value)s" % {
 "attr_name": attr_name,
 "value": value,
 }

 def fmt_setter_with_converter(attr_name, value_var):
 conv_name = _init_convert_pat.format(attr_name)
 return "self.%(attr_name)s = %(conv)s(%(value_var)s)" % {
 "attr_name": attr_name,
 "value_var": value_var,
 "conv": conv_name,
 }

 args = []
 attrs_to_validate = []

 # This is a dictionary of names to validator and converter callables.
 # Injecting this into __init__ globals lets us avoid lookups.
 names_for_globals = {}

 for a in attrs:
 if a.validator:
 attrs_to_validate.append(a)
 attr_name = a.name
 arg_name = a.name.lstrip("_")
 has_factory = isinstance(a.default, Factory)
 if has_factory and a.default.takes_self:
 maybe_self = "self"
 else:
 maybe_self = ""
 if a.init is False:
 if has_factory:
 init_factory_name = _init_factory_pat.format(a.name)
 if a.convert is not None:
 lines.append(fmt_setter_with_converter(
 attr_name,
 init_factory_name + "({0})".format(maybe_self)))
 conv_name = _init_convert_pat.format(a.name)
 names_for_globals[conv_name] = a.convert
 else:
 lines.append(fmt_setter(
 attr_name,
 init_factory_name + "({0})".format(maybe_self)
))
 names_for_globals[init_factory_name] = a.default.factory
 else:
 if a.convert is not None:
 lines.append(fmt_setter_with_converter(
 attr_name,
 "attr_dict['{attr_name}'].default"
 .format(attr_name=attr_name)
))
 conv_name = _init_convert_pat.format(a.name)
 names_for_globals[conv_name] = a.convert
 else:
 lines.append(fmt_setter(
 attr_name,
 "attr_dict['{attr_name}'].default"
 .format(attr_name=attr_name)
))
 elif a.default is not NOTHING and not has_factory:
 args.append(
 "{arg_name}=attr_dict['{attr_name}'].default".format(
 arg_name=arg_name,
 attr_name=attr_name,
)
)
 if a.convert is not None:
 lines.append(fmt_setter_with_converter(attr_name, arg_name))
 names_for_globals[_init_convert_pat.format(a.name)] = a.convert
 else:
 lines.append(fmt_setter(attr_name, arg_name))
 elif has_factory:
 args.append("{arg_name}=NOTHING".format(arg_name=arg_name))
 lines.append("if {arg_name} is not NOTHING:"
 .format(arg_name=arg_name))
 init_factory_name = _init_factory_pat.format(a.name)
 if a.convert is not None:
 lines.append(" " + fmt_setter_with_converter(attr_name,
 arg_name))
 lines.append("else:")
 lines.append(" " + fmt_setter_with_converter(
 attr_name,
 init_factory_name + "({0})".format(maybe_self)
))
 names_for_globals[_init_convert_pat.format(a.name)] = a.convert
 else:
 lines.append(" " + fmt_setter(attr_name, arg_name))
 lines.append("else:")
 lines.append(" " + fmt_setter(
 attr_name,
 init_factory_name + "({0})".format(maybe_self)
))
 names_for_globals[init_factory_name] = a.default.factory
 else:
 args.append(arg_name)
 if a.convert is not None:
 lines.append(fmt_setter_with_converter(attr_name, arg_name))
 names_for_globals[_init_convert_pat.format(a.name)] = a.convert
 else:
 lines.append(fmt_setter(attr_name, arg_name))

 if attrs_to_validate: # we can skip this if there are no validators.
 names_for_globals["_config"] = _config
 lines.append("if _config._run_validators is True:")
 for a in attrs_to_validate:
 val_name = "__attr_validator_{}".format(a.name)
 attr_name = "__attr_{}".format(a.name)
 lines.append(" {}(self, {}, self.{})".format(
 val_name, attr_name, a.name))
 names_for_globals[val_name] = a.validator
 names_for_globals[attr_name] = a
 if post_init:
 lines.append("self.__attrs_post_init__()")

 return """\
def __init__(self, {args}):
 {lines}
""".format(
 args=", ".join(args),
 lines="\n ".join(lines) if lines else "pass",
), names_for_globals

class Attribute(object):
 """
 Read-only representation of an attribute.

 :attribute name: The name of the attribute.

 Plus *all* arguments of :func:`attr.ib`.
 """
 __slots__ = (
 "name", "default", "validator", "repr", "cmp", "hash", "init",
 "convert", "metadata",
)

 def __init__(self, name, default, validator, repr, cmp, hash, init,
 convert=None, metadata=None):
 # Cache this descriptor here to speed things up later.
 bound_setattr = _obj_setattr.__get__(self, Attribute)

 bound_setattr("name", name)
 bound_setattr("default", default)
 bound_setattr("validator", validator)
 bound_setattr("repr", repr)
 bound_setattr("cmp", cmp)
 bound_setattr("hash", hash)
 bound_setattr("init", init)
 bound_setattr("convert", convert)
 bound_setattr("metadata", (metadata_proxy(metadata) if metadata
 else _empty_metadata_singleton))

 def __setattr__(self, name, value):
 raise FrozenInstanceError()

 @classmethod
 def from_counting_attr(cls, name, ca):
 inst_dict = {
 k: getattr(ca, k)
 for k
 in Attribute.__slots__
 if k not in (
 "name", "validator", "default",
) # exclude methods
 }
 return cls(name=name, validator=ca._validator, default=ca._default,
 **inst_dict)

 # Don't use _add_pickle since fields(Attribute) doesn't work
 def __getstate__(self):
 """
 Play nice with pickle.
 """
 return tuple(getattr(self, name) if name != "metadata"
 else dict(self.metadata)
 for name in self.__slots__)

 def __setstate__(self, state):
 """
 Play nice with pickle.
 """
 bound_setattr = _obj_setattr.__get__(self, Attribute)
 for name, value in zip(self.__slots__, state):
 if name != "metadata":
 bound_setattr(name, value)
 else:
 bound_setattr(name, metadata_proxy(value) if value else
 _empty_metadata_singleton)

_a = [Attribute(name=name, default=NOTHING, validator=None,
 repr=True, cmp=True, hash=(name != "metadata"), init=True)
 for name in Attribute.__slots__]

Attribute = _add_hash(
 _add_cmp(_add_repr(Attribute, attrs=_a), attrs=_a),
 attrs=[a for a in _a if a.hash]
)

class _CountingAttr(object):
 """
 Intermediate representation of attributes that uses a counter to preserve
 the order in which the attributes have been defined.

 Internal data structure of the attrs library. Running into is most
 likely the result of a bug like a forgotten `@attr.s` decorator.
 """
 __slots__ = ("counter", "_default", "repr", "cmp", "hash", "init",
 "metadata", "_validator", "convert")
 __attrs_attrs__ = tuple(
 Attribute(name=name, default=NOTHING, validator=None,
 repr=True, cmp=True, hash=True, init=True)
 for name
 in ("counter", "_default", "repr", "cmp", "hash", "init",)
) + (
 Attribute(name="metadata", default=None, validator=None,
 repr=True, cmp=True, hash=False, init=True),
)
 cls_counter = 0

 def __init__(self, default, validator, repr, cmp, hash, init, convert,
 metadata):
 _CountingAttr.cls_counter += 1
 self.counter = _CountingAttr.cls_counter
 self._default = default
 # If validator is a list/tuple, wrap it using helper validator.
 if validator and isinstance(validator, (list, tuple)):
 self._validator = and_(*validator)
 else:
 self._validator = validator
 self.repr = repr
 self.cmp = cmp
 self.hash = hash
 self.init = init
 self.convert = convert
 self.metadata = metadata

 def validator(self, meth):
 """
 Decorator that adds *meth* to the list of validators.

 Returns *meth* unchanged.

 .. versionadded:: 17.1.0
 """
 if self._validator is None:
 self._validator = meth
 else:
 self._validator = and_(self._validator, meth)
 return meth

 def default(self, meth):
 """
 Decorator that allows to set the default for an attribute.

 Returns *meth* unchanged.

 :raises DefaultAlreadySetError: If default has been set before.

 .. versionadded:: 17.1.0
 """
 if self._default is not NOTHING:
 raise DefaultAlreadySetError()

 self._default = Factory(meth, takes_self=True)

 return meth

_CountingAttr = _add_cmp(_add_repr(_CountingAttr))

@attributes(slots=True, init=False)
class Factory(object):
 """
 Stores a factory callable.

 If passed as the default value to :func:`attr.ib`, the factory is used to
 generate a new value.

 :param callable factory: A callable that takes either none or exactly one
 mandatory positional argument depending on *takes_self*.
 :param bool takes_self: Pass the partially initialized instance that is
 being initialized as a positional argument.

 .. versionadded:: 17.1.0 *takes_self*
 """
 factory = attr()
 takes_self = attr()

 def __init__(self, factory, takes_self=False):
 """
 `Factory` is part of the default machinery so if we want a default
 value here, we have to implement it ourselves.
 """
 self.factory = factory
 self.takes_self = takes_self

def make_class(name, attrs, bases=(object,), **attributes_arguments):
 """
 A quick way to create a new class called *name* with *attrs*.

 :param name: The name for the new class.
 :type name: str

 :param attrs: A list of names or a dictionary of mappings of names to
 attributes.
 :type attrs: :class:`list` or :class:`dict`

 :param tuple bases: Classes that the new class will subclass.

 :param attributes_arguments: Passed unmodified to :func:`attr.s`.

 :return: A new class with *attrs*.
 :rtype: type

 .. versionadded:: 17.1.0 *bases*
 """
 if isinstance(attrs, dict):
 cls_dict = attrs
 elif isinstance(attrs, (list, tuple)):
 cls_dict = dict((a, attr()) for a in attrs)
 else:
 raise TypeError("attrs argument must be a dict or a list.")

 return attributes(**attributes_arguments)(type(name, bases, cls_dict))

These are required by whithin this module so we define them here and merely
import into .validators.

@attributes(slots=True, hash=True)
class _AndValidator(object):
 """
 Compose many validators to a single one.
 """
 _validators = attr()

 def __call__(self, inst, attr, value):
 for v in self._validators:
 v(inst, attr, value)

def and_(*validators):
 """
 A validator that composes multiple validators into one.

 When called on a value, it runs all wrapped validators.

 :param validators: Arbitrary number of validators.
 :type validators: callables

 .. versionadded:: 17.1.0
 """
 vals = []
 for validator in validators:
 vals.extend(
 validator._validators if isinstance(validator, _AndValidator)
 else [validator]
)

 return _AndValidator(tuple(vals))

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 All modules for which code is available

		attr._make

		cached_property

		cfme.ansible.credentials

		cfme.ansible.playbooks

		cfme.ansible.repositories

		cfme.automate

		cfme.automate.buttons

		cfme.automate.dialog_box

		cfme.automate.dialog_element

		cfme.automate.dialog_tab

		cfme.automate.explorer

		cfme.automate.explorer.common

		cfme.automate.explorer.domain

		cfme.automate.explorer.instance

		cfme.automate.explorer.klass

		cfme.automate.explorer.method

		cfme.automate.explorer.namespace

		cfme.automate.import_export

		cfme.automate.provisioning_dialogs

		cfme.automate.service_dialogs

		cfme.automate.simulation

		cfme.base

		cfme.base.credential

		cfme.base.login

		cfme.base.ssui

		cfme.base.ui

		cfme.cloud.availability_zone

		cfme.cloud.flavor

		cfme.cloud.instance

		cfme.cloud.instance.azure

		cfme.cloud.instance.ec2

		cfme.cloud.instance.gce

		cfme.cloud.instance.image

		cfme.cloud.instance.openstack

		cfme.cloud.keypairs

		cfme.cloud.provider

		cfme.cloud.provider.azure

		cfme.cloud.provider.ec2

		cfme.cloud.provider.gce

		cfme.cloud.provider.openstack

		cfme.cloud.stack

		cfme.cloud.tenant

		cfme.common

		cfme.common.host_views

		cfme.common.provider

		cfme.common.provider_views

		cfme.common.vm

		cfme.common.vm_console

		cfme.common.vm_views

		cfme.configure.about

		cfme.configure.access_control

		cfme.configure.configuration

		cfme.configure.configuration.analysis_profile

		cfme.configure.configuration.region_settings

		cfme.configure.documentation

		cfme.configure.settings

		cfme.configure.tasks

		cfme.containers.container

		cfme.containers.image

		cfme.containers.image_registry

		cfme.containers.node

		cfme.containers.overview

		cfme.containers.pod

		cfme.containers.project

		cfme.containers.provider

		cfme.containers.provider.kubernetes

		cfme.containers.provider.openshift

		cfme.containers.replicator

		cfme.containers.route

		cfme.containers.service

		cfme.containers.template

		cfme.containers.topology

		cfme.containers.volume

		cfme.control.explorer

		cfme.control.explorer.actions

		cfme.control.explorer.alert_profiles

		cfme.control.explorer.alerts

		cfme.control.explorer.conditions

		cfme.control.explorer.policies

		cfme.control.explorer.policy_profiles

		cfme.control.import_export

		cfme.control.log

		cfme.control.simulation

		cfme.control.snmp_form

		cfme.dashboard

		cfme.exceptions

		cfme.fixtures.base

		cfme.fixtures.cli

		cfme.fixtures.configure_auth_mode

		cfme.fixtures.model_collections

		cfme.fixtures.pytest_selenium

		cfme.fixtures.rdb

		cfme.fixtures.service_fixtures

		cfme.fixtures.smtp

		cfme.fixtures.tag

		cfme.fixtures.vm_name

		cfme.fixtures.vporizer

		cfme.infrastructure.cluster

		cfme.infrastructure.config_management

		cfme.infrastructure.datastore

		cfme.infrastructure.deployment_roles

		cfme.infrastructure.host

		cfme.infrastructure.networking

		cfme.infrastructure.openstack_node

		cfme.infrastructure.provider

		cfme.infrastructure.provider.openstack_infra

		cfme.infrastructure.provider.rhevm

		cfme.infrastructure.provider.scvmm

		cfme.infrastructure.provider.virtualcenter

		cfme.infrastructure.pxe

		cfme.infrastructure.resource_pool

		cfme.infrastructure.virtual_machines

		cfme.intelligence.chargeback

		cfme.intelligence.chargeback.assignments

		cfme.intelligence.chargeback.rates

		cfme.intelligence.reports

		cfme.intelligence.reports.dashboards

		cfme.intelligence.reports.import_export

		cfme.intelligence.reports.menus

		cfme.intelligence.reports.reports

		cfme.intelligence.reports.saved

		cfme.intelligence.reports.schedules

		cfme.intelligence.reports.widgets

		cfme.intelligence.reports.widgets.chart_widgets

		cfme.intelligence.reports.widgets.menu_widgets

		cfme.intelligence.reports.widgets.report_widgets

		cfme.intelligence.reports.widgets.rss_widgets

		cfme.intelligence.rss

		cfme.metaplugins.blockers

		cfme.metaplugins.server_roles

		cfme.metaplugins.skip

		cfme.middleware.datasource

		cfme.middleware.deployment

		cfme.middleware.domain

		cfme.middleware.messaging

		cfme.middleware.provider

		cfme.middleware.provider.hawkular

		cfme.middleware.provider.middleware_views

		cfme.middleware.server

		cfme.middleware.server_group

		cfme.middleware.topology

		cfme.networks.balancer

		cfme.networks.cloud_network

		cfme.networks.network_port

		cfme.networks.network_router

		cfme.networks.provider

		cfme.networks.security_group

		cfme.networks.subnet

		cfme.networks.views

		cfme.optimize

		cfme.optimize.bottlenecks

		cfme.optimize.utilization

		cfme.provisioning

		cfme.rest.gen_data

		cfme.scripting.appliance

		cfme.scripting.disable_bytecode

		cfme.scripting.quickstart

		cfme.scripting.runtest

		cfme.scripting.setup_ansible

		cfme.scripting.setup_env

		cfme.scripting.tests.test_quickstart

		cfme.services.catalogs

		cfme.services.catalogs.ansible_catalog_item

		cfme.services.catalogs.catalog

		cfme.services.catalogs.catalog_item

		cfme.services.catalogs.orchestration_template

		cfme.services.catalogs.service_catalogs

		cfme.services.dashboard

		cfme.services.dashboard.ssui

		cfme.services.myservice

		cfme.services.myservice.ssui

		cfme.services.myservice.ui

		cfme.services.requests

		cfme.services.workloads

		cfme.storage.object_store

		cfme.storage.volume

		cfme.test_framework.appliance_police

		cfme.test_framework.config

		cfme.test_framework.pytest_plugin

		cfme.test_framework.sprout.client

		cfme.test_framework.sprout.plugin

		cfme.utils

		cfme.utils.apidoc

		cfme.utils.appliance

		cfme.utils.appliance.db

		cfme.utils.appliance.implementations

		cfme.utils.appliance.implementations.ssui

		cfme.utils.appliance.implementations.ui

		cfme.utils.appliance.plugin

		cfme.utils.appliance.services

		cfme.utils.blockers

		cfme.utils.browser

		cfme.utils.bz

		cfme.utils.category

		cfme.utils.datafile

		cfme.utils.db

		cfme.utils.error

		cfme.utils.events

		cfme.utils.ext_auth

		cfme.utils.ftp

		cfme.utils.generators

		cfme.utils.grafana

		cfme.utils.hosts

		cfme.utils.ipmi

		cfme.utils.log

		cfme.utils.log_validator

		cfme.utils.net

		cfme.utils.ocp_cli

		cfme.utils.path

		cfme.utils.perf

		cfme.utils.perf_message_stats

		cfme.utils.pretty

		cfme.utils.providers

		cfme.utils.pytest_shortcuts

		cfme.utils.quote

		cfme.utils.rest

		cfme.utils.smem_memory_monitor

		cfme.utils.smtp_collector_client

		cfme.utils.soft_get

		cfme.utils.ssh

		cfme.utils.stats

		cfme.utils.testgen

		cfme.utils.timeutil

		cfme.utils.tracer

		cfme.utils.trackerbot

		cfme.utils.units

		cfme.utils.update

		cfme.utils.varmeth

		cfme.utils.version

		cfme.utils.video

		cfme.utils.virtual_machines

		cfme.utils.workloads

		cfme.web_ui

		cfme.web_ui.accordion

		cfme.web_ui.cfme_exception

		cfme.web_ui.expression_editor

		cfme.web_ui.expression_editor_widgetastic

		cfme.web_ui.flash

		cfme.web_ui.form_buttons

		cfme.web_ui.history

		cfme.web_ui.jstimelines

		cfme.web_ui.listaccordion

		cfme.web_ui.mixins

		cfme.web_ui.multibox

		cfme.web_ui.paginator

		cfme.web_ui.search

		cfme.web_ui.splitter

		cfme.web_ui.tabstrip

		cfme.web_ui.timelines

		cfme.web_ui.toolbar

		cfme.web_ui.topology

		cfme.web_ui.utilization

		fixtures.appliance

		fixtures.appliance_update

		fixtures.artifactor_plugin

		fixtures.blockers

		fixtures.browser

		fixtures.cfme_data

		fixtures.datafile

		fixtures.dev_branch

		fixtures.disable_forgery_protection

		fixtures.events

		fixtures.fixtureconf

		fixtures.log

		fixtures.maximized

		fixtures.merkyl

		fixtures.middleware_log

		fixtures.nelson

		fixtures.node_annotate

		fixtures.page_screenshots

		fixtures.parallelizer

		fixtures.parallelizer.hooks

		fixtures.parallelizer.parallelizer_tester

		fixtures.parallelizer.remote

		fixtures.perf

		fixtures.portset

		fixtures.prov_filter

		fixtures.provider

		fixtures.pytest_store

		fixtures.qa_contact

		fixtures.randomness

		fixtures.rbac

		fixtures.screenshots

		fixtures.soft_assert

		fixtures.ssh_client

		fixtures.templateloader

		fixtures.terminalreporter

		fixtures.ui_coverage

		fixtures.version_file

		fixtures.version_info

		fixtures.video

		fixtures.virtual_machine

		fixtures.widgets

		fixtures.xunit_tools

		github.MainClass

		markers.composite

		markers.crud

		markers.env

		markers.env_markers.provider

		markers.fixtureconf

		markers.manual

		markers.meta

		markers.polarion

		markers.requires

		markers.sauce

		markers.skipper

		markers.smoke

		markers.stream_excluder

		markers.uncollect

		markers.uses

		mock.mock

		namedtuple_Option

		namedtuple_Outcome

		namedtuple_Plugin

		namedtuple_SelectItem

		namedtuple_TemplateInfo

		namedtuple_TimedCommand

		namedtuple_vpor_data_instance

		navmazing

		py._path.local

		sentaku.context

		widgetastic.utils

		widgetastic.widget

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/appliance/plugin.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 		cfme.utils.appliance »

 Source code for cfme.utils.appliance.plugin

-*- coding: utf-8 -*-
from weakref import WeakKeyDictionary, proxy

import attr
from cached_property import cached_property

[docs]class AppliancePluginException(Exception):
 """Base class for all custom exceptions raised from plugins."""

@attr.s(slots=True)
[docs]class AppliancePluginDescriptor(object):
 cls = attr.ib()
 args = attr.ib()
 kwargs = attr.ib()
 cache = attr.ib(init=False, default=attr.Factory(WeakKeyDictionary), repr=False)

 def __get__(self, o, t=None):
 if o is None:
 return self

 if o not in self.cache:
 self.cache[o] = self.cls(o, *self.args, **self.kwargs)

 return self.cache[o]

@attr.s
[docs]class AppliancePlugin(object):
 """Base class for all appliance plugins.

 Usage:

 .. code-block:: python

 class IPAppliance(object):
 # ...

 foo = FooPlugin.declare(parameter='value')

 Instance of such plugin is then created upon first access.
 """
 appliance = attr.ib(repr=False, convert=proxy)

 @cached_property
 def logger(self):
 # TODO: Change when appliance gets its own
 from cfme.utils.log import logger
 return logger

 @classmethod
[docs] def declare(cls, **kwargs):
 return AppliancePluginDescriptor(cls, (), kwargs)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/navmazing.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for navmazing

"""A simplified navigation framework with prerequisite, object and intelligence support.

An example is below::

 from navmazing import Navigate, NavigateStep, NavigateToSibling

 navigate = Navigate()

 class Provider(object):
 def __init__(self, name):
 self.name = name

 @navigate.register(Provider, 'New')
 class AddANewProvider(NavigateStep)
 prerequisite = NavigateToSibling('All')

 def step(self):
 click('Add New Button')

 @navigate.register(Provider, 'All')
 class ShowAllProviders(NavigateStep)
 def am_i_here(self):
 return check_if_i_am_already_on_page()

 def step(self):
 click('All button')

"""
import inspect
from operator import attrgetter

class NavigationDestinationNotFound(Exception):
 """Simple Exception when navigations can't be found"""
 def __init__(self, name, cls, possibilities):
 self.name = name
 self.cls = cls
 self.possibilities = possibilities

 def __str__(self):
 return ("Couldn't find the destination [{}] with the given class [{}]"
 " the following were available [{}]").format(
 self.name, self.cls, ", ".join(sorted(list(self.possibilities))))

class NavigationTriesExceeded(Exception):
 """Simple Exception when navigations can't be found"""
 def __init__(self, name):
 self.name = name

 def __str__(self):
 return "Navigation failed to reach [{}] in the specificed tries".format(
 self.name)

class Navigate(object):
 def __init__(self):
 """Initializes the destination dictionary for the Navigate object """
 self.dest_dict = {}

 def register(self, cls, name=None):
 """Decorator that registers a class with an optional name"""
 def f(obj):
 """This is part of the decorator class

 This function is returned and run with the class it decorates as the obj argument.
 The destination name is either the supplied name, or the class name of the NavigateStep
 object.
 """
 destination_name = name or obj.__name__
 obj._name = destination_name
 self.dest_dict[cls, destination_name] = obj
 return obj
 return f

 def get_class(self, cls_or_obj, name):
 cls = type(cls_or_obj) if not inspect.isclass(cls_or_obj) else cls_or_obj
 for class_ in cls.__mro__:
 try:
 nav = self.dest_dict[class_, name]
 except KeyError:
 continue
 else:
 break
 else:
 raise NavigationDestinationNotFound(name, cls.__name__,
 self.list_destinations(cls))

 return nav

 def navigate(self, cls_or_obj, name, *args, **kwargs):
 """This function performs the navigation

 We first determine if we have a class of an instance and find the class
 either way. We then walk the MRO for the class and attempt to find a matching
 destination name in the dest_dict. KeyErrors are expected and accepted. This
 allows us to override a destination in a subclass if we so desire, as the MRO
 walk means we will always go to the overridden version first.

 In any case, we instantiate the NavigateStep object there and then with the
 information we have been given, namely the object that we are using as context
 and this Navigate object. We next try to run the .go() method of the NavigateStep object

 If we exhaust the MRO and we have still not found a match, we raise an exception.
 """
 nav = self.get_class(cls_or_obj, name)
 return nav(cls_or_obj, self).go(0, *args, **kwargs)

 def list_destinations(self, cls_or_obj):
 """Lists all available destinations for a given object

 This function lists all available destinations for a given object. If the object
 overrides a destination, only the overridden one will be displayed.
 """
 destinations = set()
 cls = type(cls_or_obj) if not isinstance(cls_or_obj, type) else cls_or_obj
 for _class in cls.__mro__[::-1]:
 for the_class, name in self.dest_dict:
 if the_class == _class:
 destinations.add(name)
 return destinations

class NavigateToObject(object):
 """This is a helper descriptor for navigation destinations which are on another class/object.

 For instance, imagine you have a different object that has a 'ViewAll', destination that
 needs to be visited before you can click on 'New'. In this instance, you would need to make the
 'New' destination use 'ViewAll' as a prerequisite. As this would need no other special
 input, we can use NavigateToObject as a helper. This will set prerequisite to be a
 callable that will navigate to the prerequisite step on the other object.
 """
 def __init__(self, other_obj, target, obj=None):
 self.target = target
 self.obj = obj
 self.other_obj = other_obj

 def __get__(self, obj, owner):
 if self.obj is None:
 return type(self)(self.other_obj, self.target, obj or owner)
 else:
 return self

 def __call__(self):
 return self.obj.navigate_obj.navigate(self.other_obj, self.target)

class NavigateToSibling(object):
 """This is a helper descriptor for navigation destinations which are linked to the same class.

 For instance, imagine you have an object that has a 'ViewAll', destination that needs to
 be visited before you can click on 'New'. In this instance, you would need to make the
 'New' destination use 'ViewAll' as a prerequisite. As this would need no other special
 input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
 callable that will navigate to the prerequisite step.
 """
 def __init__(self, target, obj=None):
 self.target = target
 self.obj = obj

 def __get__(self, obj, owner):
 if self.obj is None:
 return type(self)(self.target, obj or owner)
 else:
 return self

 def __call__(self):
 return self.obj.navigate_obj.navigate(self.obj.obj, self.target)

class NavigateToAttribute(object):
 """This is a helper descriptor for destinations which are linked to an attribute of the object.

 For instance, imagine you have an object that has an attribute(parent) which has a 'ViewAll',
 destination that needs to be visited before you can click on 'New'. In this instance,
 you would need to make the 'New' destination use 'ViewAll' as a prerequisite. As this
 would need no other special input, we can use NavigateToAttribute as a helper, supplying
 only the name of the attribute which stores the object to be used in the navigation,
 and the destination name. This will set prerequisite to be a callable that will navigate
 to the prerequisite step.
 """
 def __init__(self, attr_name, target, obj=None):
 self.target = target
 self.obj = obj
 self.attr_name = attr_name
 self._get_attr = attrgetter(attr_name)

 def __get__(self, obj, owner):
 if self.obj is None:
 return type(self)(self.attr_name, self.target, obj or owner)
 else:
 return self

 def __call__(self):
 attr = self._get_attr(self.obj.obj)
 return self.obj.navigate_obj.navigate(attr, self.target)

class NavigateStep(object):
 """A Navigation Step object

 The NavigateStep object runs through several key stages
 1) It checks to see if we are already at that navigation step, if so, we return
 2) It runs the prerequisite to see if there is a step that is required to be run
 before this one.
 3) It runs the step function to navigate to the current step after the prerequisite has been
 completed
 """
 _default_tries = 3

 def __init__(self, obj, navigate_obj):
 """ NavigateStep object.

 A NavigateStep object should always recieve the object it is linked to
 and this is stored in the obj attribute. The navigate_obj is the Navigate() instance
 that the destination is registered against. This allows it to navigate inside pre-requisites
 using the NavigateToSibling and NavigateToAttribute helpers described above.
 """
 self.obj = obj
 self.navigate_obj = navigate_obj

 def am_i_here(self, *args, **kwargs):
 """Describes if the navigation is already at the requested destination.

 This is a default and is generally overridden.
 """
 return False

 def resetter(self, *args, **kwargs):
 """Describes any steps required to reset the view after navigating or if already there.

 This is a default and is generally overridden.
 """
 pass

 def prerequisite(self, *args, **kwargs):
 """Describes a step that must be carried our prior to this one.

 This often calls a previous navigate_to, often using one of the helpers, NavigateToSibling
 which will navigate to a given destination using the same object, or NavigateToAttribute
 which will navigate to a destination against an object describe by the attribute of the
 parent object.

 This is a default and is generally overridden.
 """
 pass

 def step(self, *args, **kwargs):
 """Describes the work to be done to get to the destination after the prequisite is met.

 This is a default and is generally overridden.
 """
 return

 def do_nav(self, _tries, *args, **kwargs):
 """Describes how the navigation should take place."""
 try:
 self.step(*args, **kwargs)
 except:
 self.go(_tries, *args, **kwargs)

 def pre_navigate(self, _tries, *args, **kwargs):
 """Describes steps that takes place before any prerequisite or navigation takes place.

 This is a default and is generally overridden.
 """
 if _tries > self._default_tries:
 raise NavigationTriesExceeded(self._name)
 else:
 return

 def post_navigate(self, _tries, *args, **kwargs):
 """Describes steps that takes place before any prerequisite after navigation takes place.

 This is a default and is generally overridden.
 """
 return

 def go(self, _tries=0, *args, **kwargs):
 """Describes the flow of navigation."""
 _tries += 1
 self.pre_navigate(_tries, *args, **kwargs)
 print("NAVIGATE: Checking if already at {}".format(self._name))
 here = False
 try:
 here = self.am_i_here(*args, **kwargs)
 except Exception as e:
 print("NAVIGATE: Exception raised [{}] whilst checking if already at {}".format(
 e, self._name))
 if here:
 print("NAVIGATE: Already at {}".format(self._name))
 else:
 print("NAVIGATE: I'm not at {}".format(self._name))
 self.parent = self.prerequisite(*args, **kwargs)
 print("NAVIGATE: Heading to destination {}".format(self._name))
 self.do_nav(_tries, *args, **kwargs)
 self.resetter(*args, **kwargs)
 self.post_navigate(_tries, *args, **kwargs)

navigate = Navigate()

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/infrastructure/provider/openstack_infra.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.infrastructure.provider »

 Source code for cfme.infrastructure.provider.openstack_infra

from navmazing import NavigateToSibling
from widgetastic.widget import View, Text
from widgetastic_patternfly import Tab, Input, BootstrapSelect, Button
from widgetastic_manageiq import Checkbox, RadioGroup, FileInput, Table
from wrapanapi.openstack_infra import OpenstackInfraSystem

from cfme.infrastructure.provider import InfraProvider
from cfme.common.provider import EventsEndpoint, SSHEndpoint, DefaultEndpoint, DefaultEndpointForm
from cfme.common.provider_views import BeforeFillMixin, ProviderNodesView
from cfme.exceptions import DestinationNotFound
from cfme.utils.appliance.implementations.ui import navigate_to, CFMENavigateStep, navigator

[docs]class RHOSEndpoint(DefaultEndpoint):
 @property
 def view_value_mapping(self):
 return {'security_protocol': self.security_protocol,
 'hostname': self.hostname,
 'api_port': getattr(self, 'api_port', None)
 }

[docs]class OpenStackInfraEndpointForm(View):
 @View.nested
 class default(Tab, DefaultEndpointForm, BeforeFillMixin): # NOQA
 TAB_NAME = 'Default'
 security_protocol = BootstrapSelect('default_security_protocol')
 api_port = Input('default_api_port')

 @View.nested
 class events(Tab, BeforeFillMixin): # NOQA
 TAB_NAME = 'Events'
 event_stream = RadioGroup(locator='//div[@id="amqp"]')
 # below controls which appear only if amqp is chosen
 hostname = Input('amqp_hostname')
 api_port = Input('amqp_api_port')
 security_protocol = BootstrapSelect('amqp_security_protocol')
 change_password = Text(locator='.//a[normalize-space(.)="Change stored password"]')

 username = Input('amqp_userid')
 password = Input('amqp_password')
 confirm_password = Input('amqp_verify')

 validate = Button('Validate')

 @View.nested
 class rsa_keypair(Tab, BeforeFillMixin): # NOQA
 TAB_NAME = 'RSA key pair'

 username = Input('ssh_keypair_userid')
 private_key = FileInput(locator='.//input[@id="ssh_keypair_password"]')
 change_key = Text(locator='.//a[normalize-space(.)="Change stored private key"]')

[docs]class OpenstackInfraProvider(InfraProvider):
 STATS_TO_MATCH = ['num_template', 'num_host']
 type_name = "openstack_infra"
 mgmt_class = OpenstackInfraSystem
 db_types = ["Openstack::InfraManager"]
 endpoints_form = OpenStackInfraEndpointForm
 bad_credentials_error_msg = (
 'Credential validation was not successful: ',
 'Login failed due to a bad username or password.'
)

 def __init__(self, name=None, endpoints=None, key=None, hostname=None, ip_address=None,
 start_ip=None, end_ip=None, provider_data=None, appliance=None):
 super(OpenstackInfraProvider, self).__init__(name=name, endpoints=endpoints, key=key,
 provider_data=provider_data,
 appliance=appliance)
 self.hostname = hostname
 self.start_ip = start_ip
 self.end_ip = end_ip
 if ip_address:
 self.ip_address = ip_address

 @property
 def view_value_mapping(self):
 return {
 'name': self.name,
 'prov_type': 'OpenStack Platform Director',
 }

[docs] def has_nodes(self):
 details_view = navigate_to(self, 'Details')
 try:
 details_view.contents.relationships.get_text_of('Hosts')
 return False
 except NameError:
 return int(details_view.contents.relationships.get_text_of('Hosts / Nodes')) > 0

 @classmethod
[docs] def from_config(cls, prov_config, prov_key, appliance=None):
 endpoints = {}
 for endp in prov_config['endpoints']:
 for expected_endpoint in (RHOSEndpoint, EventsEndpoint, SSHEndpoint):
 if expected_endpoint.name == endp:
 endpoints[endp] = expected_endpoint(**prov_config['endpoints'][endp])

 if prov_config.get('discovery_range'):
 start_ip = prov_config['discovery_range']['start']
 end_ip = prov_config['discovery_range']['end']
 else:
 start_ip = end_ip = prov_config.get('ipaddress')
 return cls(
 name=prov_config['name'],
 endpoints=endpoints,
 key=prov_key,
 start_ip=start_ip,
 end_ip=end_ip,
 appliance=appliance)

[docs] def register(self, file_path):
 """Register new nodes (Openstack)
 Fill a form for new host with json file format
 This function is valid only for RHOS10 and above

 Args:
 file_path: file path of json file with new node details, navigation
 MUST be from a specific self
 """
 view = navigate_to(self, 'RegisterNodes')
 view.fill({'file': file_path})
 view.register.click()
 exp_msg = 'Nodes were added successfully. Refresh queued.'
 self.create_view(ProviderNodesView).flash.assert_success_message(exp_msg)

[docs] def scale_down(self):
 """Scales down provider"""
 view = navigate_to(self, 'ScaleDown')
 view.checkbox.click()
 view.scale_down.click()
 self.create_view(ProviderNodesView).flash.assert_no_error()

[docs] def scale_out(self, increase_by=1):
 """Scale out Openstack Infra provider
 Args:
 increase_by - count of nodes to be added to infra provider
 """
 view = navigate_to(self, 'ScaleOut')
 curr_compute_count = int(view.compute_count.value)
 view.compute_count.fill(curr_compute_count + increase_by)
 view.scale.click()
 self.create_view(ProviderNodesView).flash.assert_no_error()

[docs] def node_exist(self, name='my_node'):
 """" registered imported host exist
 This function is valid only for RHOS10 and above

 Args:
 name: by default name is my_name Input self, name of the new node,
 looking for the host in Ironic clients, compare the record found with
 hosts list in CFME DB

 Returns: boolean value if host found
 """
 nodes = self.mgmt.list_node()
 nodes_dict = {i.name: i for i in nodes}
 query = self.appliance.db.client.session.query(
 self.appliance.db.client['hosts'], 'guid')
 node_uuid = str(nodes_dict[name])
 for db_node in query.all():
 return db_node.hosts.name == str(node_uuid.uuid)

@navigator.register(OpenstackInfraProvider, 'ProviderNodes')
[docs]class ProviderNodes(CFMENavigateStep):
 VIEW = ProviderNodesView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 view = self.prerequisite_view
 try:
 view.contents.relationships.click_at('Nodes')
 except NameError:
 raise DestinationNotFound("Nodes aren't present on details page of this provider")

[docs]class ProviderRegisterNodesView(View):
 """
 represents Register Nodes view
 """
 file = FileInput(locator='//input[@id="nodes_json_file"]')
 register = Button(value='Register')
 cancel = Button(value='Cancel')

 @property
 def is_displayed(self):
 return False

[docs]class ProviderScaleDownView(View):
 """
 represents Scale down view
 """
 table = Table(locator='//div[contains(@class, "form-horizontal")]//table')
 checkbox = Checkbox(name='host_ids[]')
 scale_down = Button('Scale Down')
 cancel = Button('Cancel')

 @property
 def is_displayed(self):
 return False

[docs]class ProviderScaleOutView(View):
 """
 represents Scale view
 """

 compute_count = Input(name='ComputeCount')
 scale = Button('Scale')
 cancel = Button('Cancel')

 @property
 def is_displayed(self):
 return False

@navigator.register(OpenstackInfraProvider, 'RegisterNodes')
[docs]class ProviderRegisterNodes(CFMENavigateStep):
 VIEW = ProviderRegisterNodesView
 prerequisite = NavigateToSibling('ProviderNodes')

[docs] def step(self):
 self.prerequisite_view.toolbar.configuration.item_select('Register Nodes')

@navigator.register(OpenstackInfraProvider, 'ScaleDown')
[docs]class ProviderScaleDown(CFMENavigateStep):
 VIEW = ProviderScaleDownView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 item_title = 'Scale this Infrastructure Provider down'
 self.prerequisite_view.toolbar.configuration.item_select(item_title)

@navigator.register(OpenstackInfraProvider, 'ScaleOut')
[docs]class ProviderScaleOut(CFMENavigateStep):
 VIEW = ProviderScaleOutView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 item_title = 'Scale this Infrastructure Provider'
 self.prerequisite_view.toolbar.configuration.item_select(item_title)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/appliance/services.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 		cfme.utils.appliance »

 Source code for cfme.utils.appliance.services

-*- coding: utf-8 -*-
import attr
from cfme.utils.quote import quote
from cfme.utils.wait import wait_for
from .plugin import AppliancePlugin, AppliancePluginException

[docs]class SystemdException(AppliancePluginException):
 pass

@attr.s
[docs]class SystemdService(AppliancePlugin):
 unit_name = attr.ib()

 def _run_service_command(self, command, expected_exit_code=None):
 with self.appliance.ssh_client as ssh:
 status, output = ssh.run_command('systemctl {} {}'.format(
 quote(command), quote(self.unit_name)))

 if expected_exit_code is not None and status != expected_exit_code:
 # TODO: Bring back address
 msg = 'Failed to {} {}\nError: {}'.format(
 command, self.unit_name, output)
 self.logger.error(msg)
 raise SystemdException(msg)

 return status

[docs] def stop(self):
 self._run_service_command('stop', expected_exit_code=0)

[docs] def start(self):
 self._run_service_command('start', expected_exit_code=0)

[docs] def restart(self):
 self._run_service_command('restart', expected_exit_code=0)

[docs] def enable(self):
 self._run_service_command('enable', expected_exit_code=0)

 @property
 def running(self):
 return self._run_service_command("status") == 0

[docs] def wait_for_running(self, timeout=600):
 result, wait = wait_for(lambda: self.running, num_sec=timeout,
 fail_condition=False, delay=10)
 return result

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/infrastructure/provider/scvmm.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.infrastructure.provider »

 Source code for cfme.infrastructure.provider.scvmm

from widgetastic_patternfly import BootstrapSelect, Input

from cfme.common.provider import DefaultEndpoint, DefaultEndpointForm
from . import InfraProvider
from wrapanapi.scvmm import SCVMMSystem

[docs]class SCVMMEndpoint(DefaultEndpoint):
 @property
 def view_value_mapping(self):
 return {'hostname': self.hostname,
 'security_protocol': getattr(self, 'security_protocol', None),
 'realm': getattr(self, 'security_realm', None)
 }

[docs]class SCVMMEndpointForm(DefaultEndpointForm):
 security_protocol = BootstrapSelect(id='default_security_protocol')
 realm = Input('realm') # appears when Kerberos is chosen in security_protocol

[docs]class SCVMMProvider(InfraProvider):
 STATS_TO_MATCH = ['num_template', 'num_vm']
 type_name = "scvmm"
 mgmt_class = SCVMMSystem
 db_types = ["Microsoft::InfraManager"]
 endpoints_form = SCVMMEndpointForm
 discover_dict = {"scvmm": True}
 bad_credentials_error_msg = (
 'Credential validation was not successful: '
 'Unable to connect: WinRM::WinRMAuthorizationError'
)

 def __init__(self, name=None, endpoints=None, key=None, zone=None, hostname=None,
 ip_address=None, start_ip=None, end_ip=None, provider_data=None, appliance=None):
 super(SCVMMProvider, self).__init__(
 name=name, endpoints=endpoints, zone=zone, key=key, provider_data=provider_data,
 appliance=appliance)
 self.hostname = hostname
 self.start_ip = start_ip
 self.end_ip = end_ip
 if ip_address:
 self.ip_address = ip_address

 @property
 def view_value_mapping(self):
 return {
 'name': self.name,
 'prov_type': 'Microsoft System Center VMM',
 }

[docs] def deployment_helper(self, deploy_args):
 """ Used in utils.virtual_machines """
 values = {}
 if 'host_group' not in deploy_args:
 values['host_group'] = self.data.get("host_group", "All Hosts")
 if 'cpu' not in deploy_args:
 values['cpu'] = self.data.get("cpu", 0)
 if 'ram' not in deploy_args:
 values['ram'] = self.data.get("ram", 0)
 return values

 @classmethod
[docs] def from_config(cls, prov_config, prov_key, appliance=None):
 endpoint = SCVMMEndpoint(**prov_config['endpoints']['default'])

 if prov_config.get('discovery_range'):
 start_ip = prov_config['discovery_range']['start']
 end_ip = prov_config['discovery_range']['end']
 else:
 start_ip = end_ip = prov_config.get('ipaddress')
 return cls(
 name=prov_config['name'],
 endpoints={endpoint.name: endpoint},
 key=prov_key,
 start_ip=start_ip,
 end_ip=end_ip,
 appliance=appliance)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/appliance/implementations.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 		cfme.utils.appliance »

 Source code for cfme.utils.appliance.implementations

from cfme.utils.browser import manager
from cfme.utils.log import logger

[docs]class Implementation(object):
 """UI implementation using the normal ux"""
 def __init__(self, owner):
 self.owner = owner

 @property
 def appliance(self):
 return self.owner

 def __str__(self):
 return 'ViaUI'

[docs] def open_browser(self, url_key=None):
 # TODO: self.appliance.server.address() instead of None
 return manager.ensure_open(url_key)

[docs] def quit_browser(self):
 manager.quit()
 try:
 del self.widgetastic
 except AttributeError:
 pass

 def _reset_cache(self):
 try:
 del self.widgetastic
 except AttributeError:
 pass

[docs] def create_view(self, view_class, additional_context=None):
 """Method that is used to instantiate a Widgetastic View.

 Views may define ``LOCATION`` on them, that implies a :py:meth:`force_navigate` call with
 ``LOCATION`` as parameter.

 Args:
 view_class: A view class, subclass of ``widgetastic.widget.View``
 additional_context: Additional informations passed to the view (user name, VM name, ...)
 which is also passed to the :py:meth:`force_navigate` in case when navigation is
 requested.

 Returns:
 An instance of the ``view_class``
 """
 additional_context = additional_context or {}
 view = view_class(
 self.widgetastic,
 additional_context=additional_context,
 logger=logger)

 return view

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/metaplugins/server_roles.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.metaplugins.server_roles

-*- coding: utf-8 -*-
"""Set server roles based on a list of roles attached to the test using metadata plugin.

If you want to specify certain roles that have to be set,
you can use this type of decoration::

 @pytest.mark.meta(server_roles="+automate")
 def test_appliance_roles():
 assert foo

This takes the current list from cfme_data.yaml and modifies
it by the server_roles keyword. If prefixed with + or nothing, it adds,
if prefixed with -, it removes the role. It can be combined either
in string and in list, so these lines are functionally equivalent::

 "+automate -foo bar" # (add automate and bar, remove foo)
 ["+automate", "-foo", "bar"]

If you specify the server_roles as ``None``, then all roles
are flushed and the list contains only user_interface role.

Roles can be pulled from the cfme_data fixture using yaml selectors,
which will do a 'set' with the list of roles found at the target path::

 @pytest.mark.meta(server_roles=('level1', 'sublevel2'), server_roles_mode='cfmedata')
 def test_appliance_roles():
 assert len(get_server_roles()) == 3

Which corresponds to this yaml layout::

 level1:
 sublevel2:
 - database_operations
 - user_interface
 - web_services

To ensure the appliance has the default roles::

 @pytest.mark.fixtureconf(server_roles="default")
 def test_appliance_roles():
 do(test)

For a list of server role names currently exposed in the CFME interface,
see keys of :py:data:`cfme.configure.configuration.server_roles`.
"""
from markers.meta import plugin

from cfme.configure.configuration import get_server_roles, set_server_roles, server_roles
from cfme.utils.conf import cfme_data

available_roles = {field[0] for field in server_roles.fields}

@plugin("server_roles", keys=["server_roles"]) # Could be omitted but I want to keep it clear
@plugin("server_roles", keys=["server_roles", "server_roles_mode"])
[docs]def add_server_roles(server_roles, server_roles_mode="add"):
 # Disable all server roles
 # and then figure out which ones should be enabled
 roles_with_vals = {k: False for k in available_roles}
 if server_roles is None:
 # Only user interface
 roles_with_vals['user_interface'] = True
 elif server_roles == "default":
 # The ones specified in YAML
 roles_list = cfme_data["server_roles"]["sets"]["default"]
 roles_with_vals.update({k: True for k in roles_list})
 elif server_roles_mode == "add":
 # The ones that are already enabled and enable/disable the ones specified
 # -server_role, +server_role or server_role
 roles_with_vals = get_server_roles()
 if isinstance(server_roles, basestring):
 server_roles = server_roles.split(' ')
 for role in server_roles:
 if role.startswith('-'):
 roles_with_vals[role[1:]] = False
 elif role.startswith('+'):
 roles_with_vals[role[1:]] = True
 else:
 roles_with_vals[role] = True
 elif server_roles_mode == "cfmedata":
 roles_list = cfme_data
 # Drills down into cfme_data YAML by selector, expecting a list
 # of roles at the end. A KeyError here probably means the YAML
 # selector is wrong
 for selector in server_roles:
 roles_list = roles_list[selector]
 roles_with_vals.update({k: True for k in roles_list})
 else:
 raise Exception('No server role changes defined.')

 if not available_roles.issuperset(set(roles_with_vals)):
 unknown_roles = ', '.join(set(roles_with_vals) - available_roles)
 raise Exception('Unknown server role(s): {}'.format(unknown_roles))

 set_server_roles(**roles_with_vals)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/appliance/implementations/ssui.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 		cfme.utils.appliance »

 		cfme.utils.appliance.implementations »

 Source code for cfme.utils.appliance.implementations.ssui

from jsmin import jsmin
from navmazing import Navigate, NavigateStep
from selenium.common.exceptions import NoSuchElementException
from widgetastic.browser import Browser, DefaultPlugin

from cached_property import cached_property
from fixtures.pytest_store import store
from cfme.utils.browser import manager
from cfme.utils.log import logger, create_sublogger
from cfme.utils.wait import wait_for

from . import Implementation

[docs]class MiqSSUIBrowser(Browser):
 def __init__(self, selenium, endpoint, extra_objects=None):
 extra_objects = extra_objects or {}
 extra_objects.update({
 'appliance': endpoint.owner,
 'endpoint': endpoint,
 'store': store,
 })
 super(MiqSSUIBrowser, self).__init__(
 selenium,
 plugin_class=MiqSSUIBrowserPlugin,
 logger=create_sublogger('MiqSSUIBrowser'),
 extra_objects=extra_objects)
 self.window_handle = selenium.current_window_handle

 @property
 def appliance(self):
 return self.extra_objects['appliance']

[docs] def create_view(self, *args, **kwargs):
 return self.appliance.ssui.create_view(*args, **kwargs)

 @property
 def product_version(self):
 return self.appliance.version

[docs]class MiqSSUIBrowserPlugin(DefaultPlugin):

 ENSURE_PAGE_SAFE = jsmin('''
 function checkProgressBar() {
 try {
 return $('#ngProgress').attr('style').indexOf('width: 0%') > -1;
 } catch(err) {
 // Not ready yet
 return false;
 }
 }

 function checkJquery() {
 if(typeof $ == 'undefined') {
 return true;
 } else {
 return !($.active > 0);
 }
 }

 return checkProgressBar() && checkJquery();''')

[docs] def ensure_page_safe(self, timeout='20s'):
 # THIS ONE SHOULD ALWAYS USE JAVASCRIPT ONLY, NO OTHER SELENIUM INTERACTION

 def _check():
 result = self.browser.execute_script(self.ENSURE_PAGE_SAFE, silent=True)
 # TODO: Logging
 return bool(result)

 wait_for(_check, timeout=timeout, delay=2, silent_failure=True, very_quiet=True)

[docs] def after_keyboard_input(self, element, keyboard_input):
 self.browser.plugin.ensure_page_safe()

[docs]class SSUINavigateStep(NavigateStep):
 VIEW = None

 @cached_property
 def view(self):
 if self.VIEW is None:
 raise AttributeError('{} does not have VIEW specified'.format(type(self).__name__))
 return self.create_view(self.VIEW, additional_context={'object': self.obj})

 @property
 def appliance(self):
 return self.obj.appliance

[docs] def create_view(self, *args, **kwargs):
 return self.appliance.ssui.create_view(*args, **kwargs)

[docs] def am_i_here(self):
 try:
 return self.view.is_displayed
 except (AttributeError, NoSuchElementException):
 return False

[docs] def pre_navigate(self, *args, **kwargs):
 self.appliance.browser.open_browser(url_key=self.obj.appliance.server.address())

[docs] def do_nav(self, _tries=0, *args, **kwargs):
 """Describes how the navigation should take place."""
 try:
 self.step(*args, **kwargs)
 except Exception as e:
 logger.error(e)
 raise
 self.go(_tries, *args, **kwargs)

[docs] def go(self, _tries=0):
 _tries += 1
 self.pre_navigate(_tries)
 logger.debug("SSUI-NAVIGATE: Checking if already at {}".format(self._name))
 here = False
 try:
 here = self.am_i_here()
 except Exception as e:
 logger.debug(
 "SSUI-NAVIGATE: Exception raised [{}] whilst checking if already at {}".format(
 e, self._name))
 if here:
 logger.debug("SSUI-NAVIGATE: Already at {}".format(self._name))
 else:
 logger.debug("SSUI-NAVIGATE: I'm not at {}".format(self._name))
 self.prerequisite_view = self.prerequisite()
 logger.debug("SSUI-NAVIGATE: Heading to destination {}".format(self._name))
 self.do_nav(_tries)
 self.resetter()
 self.post_navigate(_tries)
 if self.VIEW is not None:
 return self.view

navigator = Navigate()
navigate_to = navigator.navigate

[docs]class ViaSSUI(Implementation):
 def __str__(self):
 return 'SSUI'

 @cached_property
 def widgetastic(self):
 """This gives us a widgetastic browser."""
 # TODO: Make this a property that could watch for browser change?
 browser = self.open_browser(url_key=self.appliance.server.address())
 wt = MiqSSUIBrowser(browser, self)
 manager.add_cleanup(self._reset_cache)
 return wt

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/infrastructure/provider/rhevm.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.infrastructure.provider »

 Source code for cfme.infrastructure.provider.rhevm

from widgetastic.widget import View, Text
from widgetastic_patternfly import Tab, Input, BootstrapSwitch, Button

from cfme.common.provider_views import BeforeFillMixin
from cfme.utils import version
from . import InfraProvider
from cfme.common.provider import CANDUEndpoint, DefaultEndpoint, DefaultEndpointForm
from wrapanapi.rhevm import RHEVMSystem
from cfme.exceptions import ItemNotFound

[docs]class RHEVMEndpoint(DefaultEndpoint):
 @property
 def view_value_mapping(self):
 return {'hostname': self.hostname,
 'api_port': getattr(self, 'api_port', None),
 'verify_tls': version.pick({version.LOWEST: None,
 '5.8': getattr(self, 'verify_tls', None)}),
 'ca_certs': version.pick({version.LOWEST: None,
 '5.8': getattr(self, 'ca_certs', None)})
 }

[docs]class RHEVMEndpointForm(View):
 @View.nested
 class default(Tab, DefaultEndpointForm, BeforeFillMixin): # NOQA
 TAB_NAME = 'Default'
 api_port = Input('default_api_port')
 verify_tls = BootstrapSwitch(id='default_tls_verify')
 ca_certs = Input('default_tls_ca_certs')

 @View.nested
 class candu(Tab, BeforeFillMixin): # NOQA
 TAB_NAME = 'C & U Database'
 hostname = Input('metrics_hostname')
 api_port = Input('metrics_api_port')
 database_name = Input('metrics_database_name')
 username = Input('metrics_userid')
 password = Input('metrics_password')
 confirm_password = Input('metrics_verify')
 change_password = Text(locator='.//a[normalize-space(.)="Change stored password"]')

 validate = Button('Validate')

[docs]class RHEVMProvider(InfraProvider):
 type_name = "rhevm"
 mgmt_class = RHEVMSystem
 db_types = ["Redhat::InfraManager"]
 endpoints_form = RHEVMEndpointForm
 discover_dict = {"rhevm": True}
 # xpath locators for elements, to be used by selenium
 _console_connection_status_element = '//*[@id="connection-status"]'
 _canvas_element = '//*[@id="remote-console"]/canvas'
 _ctrl_alt_del_xpath = '//*[@id="ctrlaltdel"]'
 _fullscreen_xpath = '//*[@id="fullscreen"]'
 bad_credentials_error_msg = 'Cannot complete login due to an incorrect user name or password.'

 def __init__(self, name=None, endpoints=None, zone=None, key=None, hostname=None,
 ip_address=None, start_ip=None, end_ip=None, provider_data=None, appliance=None):
 super(RHEVMProvider, self).__init__(
 name=name, endpoints=endpoints, zone=zone, key=key, provider_data=provider_data,
 appliance=appliance)
 self.hostname = hostname
 self.start_ip = start_ip
 self.end_ip = end_ip
 if ip_address:
 self.ip_address = ip_address

 @property
 def view_value_mapping(self):
 return {
 'name': self.name,
 'prov_type': version.pick({version.LOWEST: 'Red Hat Enterprise Virtualization Manager',
 '5.7.1': 'Red Hat Virtualization Manager',
 '5.7.3': 'Red Hat Virtualization',
 '5.8': 'Red Hat Virtualization Manager',
 '5.8.0.10': 'Red Hat Virtualization'}),
 }

[docs] def deployment_helper(self, deploy_args):
 """ Used in utils.virtual_machines """
 if 'default_cluster' not in deploy_args:
 return {'cluster': self.data['default_cluster']}
 return {}

 @classmethod
[docs] def from_config(cls, prov_config, prov_key, appliance=None):
 endpoints = {}
 for endp in prov_config['endpoints']:
 for expected_endpoint in (RHEVMEndpoint, CANDUEndpoint):
 if expected_endpoint.name == endp:
 endpoints[endp] = expected_endpoint(**prov_config['endpoints'][endp])

 if prov_config.get('discovery_range'):
 start_ip = prov_config['discovery_range']['start']
 end_ip = prov_config['discovery_range']['end']
 else:
 start_ip = end_ip = prov_config.get('ipaddress')
 return cls(name=prov_config['name'],
 endpoints=endpoints,
 zone=prov_config.get('server_zone', 'default'),
 key=prov_key,
 start_ip=start_ip,
 end_ip=end_ip,
 appliance=appliance)

 # Following methods will only work if the remote console window is open
 # and if selenium focused on it. These will not work if the selenium is
 # focused on Appliance window.
[docs] def get_console_connection_status(self):
 try:
 return self.appliance.browser.widgetastic.selenium.find_element_by_xpath(
 self._console_connection_status_element).text
 except:
 raise ItemNotFound("Element not found on screen, is current focus on console window?")

[docs] def get_remote_console_canvas(self):
 try:
 return self.appliance.browser.widgetastic.selenium.find_element_by_xpath(
 self._canvas_element)
 except:
 raise ItemNotFound("Element not found on screen, is current focus on console window?")

[docs] def get_console_ctrl_alt_del_btn(self):
 try:
 return self.appliance.browser.widgetastic.selenium.find_element_by_xpath(
 self._ctrl_alt_del_xpath)
 except:
 raise ItemNotFound("Element not found on screen, is current focus on console window?")

[docs] def get_console_fullscreen_btn(self):
 try:
 return self.appliance.browser.widgetastic.selenium.find_element_by_xpath(
 self._fullscreen_xpath)
 except:
 raise ItemNotFound("Element not found on screen, is current focus on console window?")

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/appliance/db.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 		cfme.utils.appliance »

 Source code for cfme.utils.appliance.db

import attr
from cached_property import cached_property
import fauxfactory
from textwrap import dedent

from cfme.utils import db, conf, clear_property_cache, datafile
from cfme.utils.path import scripts_path
from cfme.utils.version import LATEST
from cfme.utils.wait import wait_for

from .plugin import AppliancePlugin, AppliancePluginException

[docs]class ApplianceDBException(AppliancePluginException):
 """Basic Exception for Appliance DB object"""
 pass

@attr.s
[docs]class ApplianceDB(AppliancePlugin):
 """Holder for appliance DB related methods and functions"""
 _ssh_client = attr.ib(default=None)

 # Until this needs a version pick, make it an attr
 postgres_version = 'rh-postgresql95'
 service_name = '{}-postgresql'.format(postgres_version)

 @cached_property
 def client(self):
 # slightly crappy: anything that changes self.address should also del(self.client)
 return db.Db(self.address)

 @cached_property
 def address(self):
 # pulls the db address from the appliance by default, falling back to the appliance
 # ip address (and issuing a warning) if that fails. methods that set up the internal
 # db should set db_address to something else when they do that
 if self.appliance.db_host:
 return self.appliance.db_host
 try:
 db_addr = self.appliance.wait_for_host_address()
 if db_addr is None:
 return self.appliance.address
 db_addr = db_addr.strip()
 ip_addr = self.appliance.ssh_client.run_command('ip address show')
 if db_addr in ip_addr.output or db_addr.startswith('127') or 'localhost' in db_addr:
 # address is local, use the appliance address
 return self.appliance.address
 else:
 return db_addr
 except (IOError, KeyError) as exc:
 self.logger.error('Unable to pull database address from appliance')
 self.logger.error(exc)
 return self.appliance.address

 @property
 def is_partition_extended(self):
 return self.appliance.ssh_client.run_command(
 "ls /var/www/miq/vmdb/.db_partition_extended") == 0

[docs] def extend_partition(self):
 """Extends the /var partition with DB while shrinking the unused /repo partition"""
 if self.is_partition_extended:
 return
 with self.appliance.ssh_client as ssh:
 rc, out = ssh.run_command("df -h")
 self.logger.info("File systems before extending the DB partition:\n{}".format(out))
 ssh.run_command("umount /repo")
 ssh.run_command("lvreduce --force --size -9GB /dev/mapper/VG--CFME-lv_repo")
 ssh.run_command("mkfs.xfs -f /dev/mapper/VG--CFME-lv_repo")
 ssh.run_command("lvextend --resizefs --size +9GB /dev/mapper/VG--CFME-lv_var")
 ssh.run_command("mount -a")
 rc, out = ssh.run_command("df -h")
 self.logger.info("File systems after extending the DB partition:\n{}".format(out))
 ssh.run_command("touch /var/www/miq/vmdb/.db_partition_extended")

[docs] def drop(self):
 """ Drops the vmdb_production database

 Note: EVM service has to be stopped for this to work.
 """
 def _db_dropped():
 rc, out = self.appliance.ssh_client.run_command(
 'systemctl restart {}-postgresql'.format(self.postgres_version), timeout=60)
 assert rc == 0, "Failed to restart postgres service: {}".format(out)
 self.appliance.ssh_client.run_command('dropdb vmdb_production', timeout=15)
 rc, out = self.appliance.ssh_client.run_command(
 "psql -l | grep vmdb_production | wc -l", timeout=15)
 return rc == 0
 wait_for(_db_dropped, delay=5, timeout=60, message="drop the vmdb_production DB")

 @property
 def ssh_client(self, **connect_kwargs):
 # Not lazycached to allow for the db address changing
 if self.is_internal:
 return self.appliance.ssh_client
 else:
 if self._ssh_client is None:
 self._ssh_client = self.appliance.ssh_client(hostname=self.address)
 return self._ssh_client

[docs] def backup(self, database_path="/tmp/evm_db.backup"):
 """Backup VMDB database

 """
 from . import ApplianceException
 self.logger.info('Backing up database')
 status, output = self.appliance.ssh_client.run_rake_command(
 'evm:db:backup:local --trace -- --local-file "{}" --dbname vmdb_production'.format(
 database_path))
 if status != 0:
 msg = 'Failed to backup database'
 self.logger.error(msg)
 raise ApplianceException(msg)

[docs] def restore(self, database_path="/tmp/evm_db.backup"):
 """Restore VMDB database

 """
 from . import ApplianceException
 self.logger.info('Restoring database')
 status, output = self.appliance.ssh_client.run_rake_command(
 'evm:db:restore:local --trace -- --local-file "{}"'.format(database_path))
 if status != 0:
 msg = 'Failed to restore database on appl {}, output is {}'.format(self.address,
 output)
 self.logger.error(msg)
 raise ApplianceException(msg)
 if self.appliance.version > '5.8':
 status, output = self.ssh_client.run_command("fix_auth --databaseyml -i {}".format(
 conf.credentials['database'].password), timeout=45)
 if status != 0:
 self.logger.error("Failed to change invalid db password: {}".format(output))

[docs] def setup(self, **kwargs):
 """Configure database

 On downstream appliances, invokes the internal database setup.
 On all appliances waits for database to be ready.

 """
 self.logger.info('Starting DB setup')
 if self.appliance.version != LATEST:
 # We only execute this on downstream appliances.
 # TODO: Handle external DB setup. Probably pop the db_address and decide on that one.
 self.enable_internal(**kwargs)
 else:
 # Ensure the evmserverd is on on the upstream appliance
 if not self.appliance.evmserverd.running:
 self.appliance.evmserverd.start()
 self.appliance.evmserverd.enable() # just to be sure here.
 self.appliance.wait_for_web_ui()

 # Make sure the database is ready
 wait_for(func=lambda: self.is_ready,
 message='appliance db ready', delay=20, num_sec=1200)

 self.logger.info('DB setup complete')

[docs] def loosen_pgssl(self, with_ssl=False):
 """Loosens postgres connections"""

 self.logger.info('Loosening postgres permissions')

 # Init SSH client
 client = self.appliance.ssh_client

 # set root password
 cmd = "psql -d vmdb_production -c \"alter user {} with password '{}'\"".format(
 conf.credentials['database']['username'], conf.credentials['database']['password']
)
 client.run_command(cmd)

 # back up pg_hba.conf
 scl = self.postgres_version
 client.run_command('mv /opt/rh/{scl}/root/var/lib/pgsql/data/pg_hba.conf '
 '/opt/rh/{scl}/root/var/lib/pgsql/data/pg_hba.conf.sav'.format(scl=scl))

 if with_ssl:
 ssl = 'hostssl all all all cert map=sslmap'
 else:
 ssl = ''

 # rewrite pg_hba.conf
 write_pg_hba = dedent("""\
 cat > /opt/rh/{scl}/root/var/lib/pgsql/data/pg_hba.conf <<EOF
 local all postgres,root trust
 host all all 0.0.0.0/0 md5
 {ssl}
 EOF
 """.format(ssl=ssl, scl=scl))
 client.run_command(write_pg_hba)
 client.run_command("chown postgres:postgres "
 "/opt/rh/{scl}/root/var/lib/pgsql/data/pg_hba.conf".format(scl=scl))

 # restart postgres
 status, out = client.run_command("systemctl restart {scl}-postgresql".format(scl=scl))
 return status

[docs] def enable_internal(self, region=0, key_address=None, db_password=None, ssh_password=None):
 """Enables internal database

 Args:
 region: Region number of the CFME appliance.
 key_address: Address of CFME appliance where key can be fetched.

 Note:
 If key_address is None, a new encryption key is generated for the appliance.
 """
 self.logger.info('Enabling internal DB (region {}) on {}.'.format(region, self.address))
 self.address = self.appliance.address
 clear_property_cache(self, 'client')

 client = self.ssh_client

 # Defaults
 db_password = db_password or conf.credentials['database']['password']
 ssh_password = ssh_password or conf.credentials['ssh']['password']

 if self.appliance.has_cli:
 # use the cli
 if key_address:
 status, out = client.run_command(
 'appliance_console_cli --region {0} --internal --fetch-key {1} -p {2} -a {3}'
 .format(region, key_address, db_password, ssh_password)
)
 else:
 status, out = client.run_command(
 'appliance_console_cli --region {} --internal --force-key -p {}'
 .format(region, db_password)
)
 else:
 # no cli, use the enable internal db script
 rbt_repl = {
 'miq_lib': '/var/www/miq/lib',
 'region': region,
 'postgres_version': self.postgres_version
 }

 # Find and load our rb template with replacements
 rbt = datafile.data_path_for_filename('enable-internal-db.rbt', scripts_path.strpath)
 rb = datafile.load_data_file(rbt, rbt_repl)

 # sent rb file over to /tmp
 remote_file = '/tmp/{}'.format(fauxfactory.gen_alphanumeric())
 client.put_file(rb.name, remote_file)

 # Run the rb script, clean it up when done
 status, out = client.run_command('ruby {}'.format(remote_file))
 client.run_command('rm {}'.format(remote_file))

 return status, out

[docs] def enable_external(self, db_address, region=0, db_name=None, db_username=None,
 db_password=None):
 """Enables external database

 Args:
 db_address: Address of the external database
 region: Number of region to join
 db_name: Name of the external DB
 db_username: Username to access the external DB
 db_password: Password to access the external DB

 Returns a tuple of (exitstatus, script_output) for reporting, if desired
 """
 self.logger.info('Enabling external DB (db_address {}, region {}) on {}.'
 .format(db_address, region, self.address))
 # reset the db address and clear the cached db object if we have one
 self.address = db_address
 clear_property_cache(self, 'client')

 # default
 db_name = db_name or 'vmdb_production'
 db_username = db_username or conf.credentials['database']['username']
 db_password = db_password or conf.credentials['database']['password']

 client = self.ssh_client

 if self.appliance.has_cli:
 # copy v2 key
 master_client = client(hostname=self.address)
 rand_filename = "/tmp/v2_key_{}".format(fauxfactory.gen_alphanumeric())
 master_client.get_file("/var/www/miq/vmdb/certs/v2_key", rand_filename)
 client.put_file(rand_filename, "/var/www/miq/vmdb/certs/v2_key")

 # enable external DB with cli
 status, out = client.run_command(
 'appliance_console_cli '
 '--hostname {0} --region {1} --dbname {2} --username {3} --password {4}'.format(
 self.address, region, db_name, db_username, db_password
)
)
 else:
 # no cli, use the enable external db script
 rbt_repl = {
 'miq_lib': '/var/www/miq/lib',
 'host': self.address,
 'region': region,
 'database': db_name,
 'username': db_username,
 'password': db_password
 }

 # Find and load our rb template with replacements
 rbt = datafile.data_path_for_filename('enable-internal-db.rbt', scripts_path.strpath)
 rb = datafile.load_data_file(rbt, rbt_repl)

 # Init SSH client and sent rb file over to /tmp
 remote_file = '/tmp/{}'.format(fauxfactory.gen_alphanumeric())
 client.put_file(rb.name, remote_file)

 # Run the rb script, clean it up when done
 status, out = client.run_command('ruby {}'.format(remote_file))
 client.run_command('rm {}'.format(remote_file))

 if status != 0:
 self.logger.error('error enabling external db')
 self.logger.error(out)
 msg = ('Appliance {} failed to enable external DB running on {}'
 .format(self.appliance.address, db_address))
 self.logger.error(msg)
 from . import ApplianceException
 raise ApplianceException(msg)

 return status, out

 @property
 def is_dedicated_active(self):
 return_code, output = self.appliance.ssh_client.run_command(
 "systemctl status {}-postgresql.service | grep running".format(
 self.postgres_version))
 return return_code == 0

[docs] def wait_for(self, timeout=600):
 """Waits for appliance database to be ready

 Args:
 timeout: Number of seconds to wait until timeout (default ``180``)
 """
 wait_for(func=lambda: self.is_ready,
 message='appliance.db.is_ready',
 delay=20,
 num_sec=timeout)

 @property
 def is_enabled(self):
 """Is database enabled"""
 if self.address is None:
 return False
 return True

 @property
 def is_internal(self):
 """Is database internal"""
 if self.address == self.appliance.address:
 return True
 return False

 @property
 def is_ready(self):
 """Is database ready"""
 # Using 'and' chain instead of all(...) to
 # prevent calling more things after a step fails
 return self.is_online and self.has_database and self.has_tables

 @property
 def is_online(self):
 """Is database online"""
 db_check_command = ('psql -U postgres -t -c "select now()" postgres')
 result = self.ssh_client.run_command(db_check_command)
 return result.rc == 0

 @property
 def has_database(self):
 """Does database have a database defined"""
 db_check_command = ('psql -U postgres -t -c "SELECT datname FROM pg_database '
 'WHERE datname LIKE \'vmdb_%\';" postgres | grep -q vmdb_production')
 result = self.ssh_client.run_command(db_check_command)
 return result.rc == 0

 @property
 def has_tables(self):
 """Does database have tables defined"""
 db_check_command = ('psql -U postgres -t -c "SELECT * FROM information_schema.tables '
 'WHERE table_schema = \'public\';" vmdb_production | grep -q vmdb_production')
 result = self.ssh_client.run_command(db_check_command)
 return result.rc == 0

[docs] def start_db_service(self):
 """Starts the postgresql service via systemctl"""
 self.logger.info('Starting service: {}'.format(self.service_name))
 with self.ssh_client as ssh:
 result = ssh.run_command('systemctl start {}'.format(self.service_name))
 assert result.success, 'Failed to start {}'.format(self.service_name)
 self.logger.info('Started service: {}'.format(self.service_name))

[docs] def stop_db_service(self):
 """Starts the postgresql service via systemctl"""
 service = '{}-postgresql'.format(self.postgres_version)
 self.logger.info('Stopping {}'.format(service))
 with self.ssh_client as ssh:
 result = ssh.run_command('systemctl stop {}'.format(self.service_name))
 assert result.success, 'Failed to stop {}'.format(service)
 self.logger.info('Stopped {}'.format(service))

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/infrastructure/config_management.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.infrastructure.config_management

from functools import partial

from cached_property import cached_property
from navmazing import NavigateToSibling, NavigateToAttribute

from cfme.base.credential import Credential as BaseCredential
import cfme.fixtures.pytest_selenium as sel
import cfme.web_ui.flash as flash
import cfme.web_ui.tabstrip as tabs
import cfme.web_ui.toolbar as tb
from cfme.web_ui import (
 accordion, Quadicon, Form, Input, fill, form_buttons, mixins, Table, Region,
 AngularSelect, match_location
)
from cfme.utils import version, conf
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to
from cfme.utils.log import logger
from cfme.utils.pretty import Pretty
from cfme.utils.update import Updateable
from cfme.utils.wait import wait_for

properties_form = Form(
 fields=[
 ('name_text', Input('name')),
 ('type_select', AngularSelect("provider_type")),
 ('url_text', Input('url')),
 ('ssl_checkbox', Input('verify_ssl'))
])

credential_form = Form(
 fields=[
 ('principal_text', Input('log_userid')),
 ('secret_pass', Input('log_password')),
 ('verify_secret_pass', Input('log_verify')),
 ('validate_btn', form_buttons.validate)
])

[docs]def cfm_mgr_table():
 return Table("//div[@id='main_div']//div[@id='list_grid']/table")

page = Region(locators={
 'list_table_config_profiles': cfm_mgr_table(),
 'list_table_config_systems': cfm_mgr_table()})

add_manager_btn = form_buttons.FormButton('Add')
edit_manager_btn = form_buttons.FormButton('Save')
cfg_btn = partial(tb.select, 'Configuration')
RELOAD_LOC = "//button[@name='summary_reload']"

match_page = partial(match_location, controller='provider_foreman',
 title='Red Hat Satellite Provider')

[docs]class ConfigManager(Updateable, Pretty, Navigatable):
 """
 This is base class for Configuration manager objects (Red Hat Satellite, Foreman, Ansible Tower)

 Args:
 name: Name of the config. manager
 url: URL, hostname or IP of the config. manager
 ssl: Boolean value; `True` if SSL certificate validity should be checked, `False` otherwise
 credentials: Credentials to access the config. manager
 key: Key to access the cfme_data yaml data (same as `name` if not specified)

 Usage:
 Use Satellite or AnsibleTower classes instead.
 """

 pretty_attr = ['name', 'url']
 type = None

 def __init__(self, name=None, url=None, ssl=None, credentials=None, key=None, appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.name = name
 self.url = url
 self.ssl = ssl
 self.credentials = credentials
 self.key = key or name

 def _form_mapping(self, create=None, **kwargs):
 provider_type = None if self.appliance.version >= '5.8' else (create and self.type)
 return {'name_text': kwargs.get('name'),
 'type_select': provider_type,
 'url_text': kwargs.get('url'),
 'ssl_checkbox': kwargs.get('ssl')}

[docs] class Credential(BaseCredential, Updateable):
 pass

 def _submit(self, cancel, submit_button):
 if cancel:
 form_buttons.cancel()
 else:
 submit_button()
 flash.assert_no_errors()

[docs] def create(self, cancel=False, validate_credentials=True, validate=True, force=False):
 """Creates the manager through UI

 Args:
 cancel (bool): Whether to cancel out of the creation. The cancel is done
 after all the information present in the manager has been filled in the UI.
 validate_credentials (bool): Whether to validate credentials - if True and the
 credentials are invalid, an error will be raised.
 validate (bool): Whether we want to wait for the manager's data to load
 and show up in it's detail page. True will also wait, False will only set it up.
 force (bool): Whether to force the creation even if the manager already exists.
 True will try anyway; False will check for its existence and leave, if present.
 """
 def config_profiles_loaded():
 # Workaround - without this, validation of provider failed
 config_profiles_names = [prof.name for prof in self.config_profiles]
 logger.info(
 "UI: %s\nYAML: %s",
 set(config_profiles_names), set(self.yaml_data['config_profiles']))
 return all(
 [cp in config_profiles_names for cp in self.yaml_data['config_profiles']])

 if not force and self.exists:
 return
 navigate_to(self, 'Add')
 fill(properties_form, self._form_mapping(create=True, **self.__dict__))
 fill(credential_form, self.credentials, validate=validate_credentials)
 self._submit(cancel, add_manager_btn)
 if not cancel:
 flash.assert_message_match(self._refresh_flash_msg)
 if validate:
 try:
 self.yaml_data['config_profiles']
 except KeyError as e:
 logger.exception(e)
 raise

 wait_for(
 config_profiles_loaded,
 fail_func=self.refresh_relationships,
 handle_exception=True,
 num_sec=180, delay=30)

[docs] def update(self, updates, cancel=False, validate_credentials=False):
 """Updates the manager through UI

 args:
 updates (dict): Data to change.
 cancel (bool): Whether to cancel out of the update. The cancel is done
 after all the new information has been filled in the UI.
 validate_credentials (bool): Whether to validate credentials - if True and the
 credentials are invalid, an error will be raised.

 Note:
 utils.update use is recommended over use of this method.
 """
 navigate_to(self, 'Edit')
 # Workaround - without this, update was failing on downstream appliance
 sel.wait_for_ajax()
 sel.wait_for_element(properties_form.name_text)

 fill(properties_form, self._form_mapping(**updates))
 fill(credential_form, updates.get('credentials'), validate=validate_credentials)
 self._submit(cancel, edit_manager_btn)
 name = updates['name'] or self.name
 if not cancel:
 flash.assert_message_match('{} Provider "{}" was updated'.format(self.type, name))

 self.__dict__.update(**updates)

[docs] def delete(self, cancel=False, wait_deleted=True, force=False):
 """Deletes the manager through UI

 Args:
 cancel (bool): Whether to cancel out of the deletion, when the alert pops up.
 wait_deleted (bool): Whether we want to wait for the manager to disappear from the UI.
 True will wait; False will only delete it and move on.
 force (bool): Whether to try to delete the manager even though it doesn't exist.
 True will try to delete it anyway; False will check for its existence and leave,
 if not present.
 """
 if not force and not self.exists:
 return
 navigate_to(self, 'All')
 sel.check(Quadicon(self.quad_name, None).checkbox())
 item_text = version.pick({'5.6': 'Remove selected items from the VMDB',
 '5.7': 'Remove selected items'})
 cfg_btn(item_text, invokes_alert=True)

 sel.handle_alert(cancel)
 if not cancel:
 flash_msg = version.pick({'5.6': 'Delete initiated for 1 provider',
 '5.7': 'Delete initiated for 1 Provider'})

 flash.assert_message_match(flash_msg)
 if wait_deleted:
 wait_for(func=lambda: self.exists, fail_condition=True, delay=15, num_sec=60)

 @property
 def _refresh_flash_msg(self):
 return version.pick({'5.7': 'Refresh Provider initiated for 1 provider ({})'.
 format(self.type),
 '5.8': 'Refresh Provider initiated for 1 provider'})

 @property
 def exists(self):
 """Returns whether the manager exists in the UI or not"""
 navigate_to(self, 'All')
 if (Quadicon.any_present() and
 Quadicon(self.quad_name, None).exists):
 return True
 return False

[docs] def refresh_relationships(self, cancel=False):
 """Refreshes relationships and power states of this manager"""
 navigate_to(self, 'All')

 sel.check(Quadicon(self.quad_name, None).checkbox())
 cfg_btn('Refresh Relationships and Power states', invokes_alert=True)

 sel.handle_alert(cancel)
 if not cancel:
 flash.assert_message_match(self._refresh_flash_msg)

 def _does_profile_exist(self):
 return sel.is_displayed(page.list_table_config_profiles)

 @property
 def config_profiles(self):
 """Returns 'ConfigProfile' configuration profiles (hostgroups) available on this manager"""
 navigate_to(self, 'Details')
 # TODO - remove it later.Workaround for BZ 1452425
 tb.select('List View')
 wait_for(self._does_profile_exist, num_sec=300, delay=20, fail_func=sel.refresh)
 config_profiles = []
 for row in page.list_table_config_profiles.rows():
 if self.type == 'Ansible Tower':
 name = row['name'].text
 else:
 name = row['Description'].text
 config_profiles.append(ConfigProfile(name=name, manager=self))
 return config_profiles

 @property
 def systems(self):
 """Returns 'ConfigSystem' configured systems (hosts) available on this manager"""
 return reduce(lambda x, y: x + y, [prof.systems for prof in self.config_profiles])

 @property
 def yaml_data(self):
 """Returns yaml data for this manager"""
 return conf.cfme_data.configuration_managers[self.key]

 @classmethod
[docs] def load_from_yaml(cls, key):
 """Returns 'ConfigManager' object loaded from yamls, based on its key"""
 data = conf.cfme_data.configuration_managers[key]
 creds = conf.credentials[data['credentials']]
 return cls(
 name=data['name'],
 url=data['url'],
 ssl=data['ssl'],
 credentials=cls.Credential(
 principal=creds['username'], secret=creds['password']),
 key=key)

 @property
 def quad_name(self):
 if version.current_version() >= '5.8' and self.type == 'Ansible Tower':
 return '{} Automation Manager'.format(self.name)
 else:
 return '{} Configuration Manager'.format(self.name)

[docs]def get_config_manager_from_config(cfg_mgr_key):
 cfg_mgr = conf.cfme_data.get('configuration_managers', {})[cfg_mgr_key]
 if cfg_mgr['type'] == 'satellite':
 return Satellite.load_from_yaml(cfg_mgr_key)
 elif cfg_mgr['type'] == 'ansible':
 return AnsibleTower.load_from_yaml(cfg_mgr_key)
 else:
 raise Exception("Unknown configuration manager key")

@fill.method((Form, ConfigManager.Credential))
def _fill_credential(form, cred, validate=None):
 """How to fill in a credential. Validates the credential if that option is passed in."""
 fill(credential_form, {'principal_text': cred.principal,
 'secret_pass': cred.secret,
 'verify_secret_pass': cred.verify_secret,
 'validate_btn': validate})
 if validate:
 flash.assert_no_errors()

[docs]class ConfigProfile(Pretty, Navigatable):
 """Configuration profile object (foreman-side hostgroup)

 Args:
 name: Name of the profile
 manager: ConfigManager object which this profile is bound to
 """
 pretty_attrs = ['name', 'manager']

 def __init__(self, name, manager, appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.name = name
 self.manager = manager

 @property
 def systems(self):
 """Returns 'ConfigSystem' objects that are active under this profile"""
 navigate_to(self, 'Details')
 # ajax wait doesn't work here
 _title_loc = "//span[contains(@id, 'explorer_title_text') " \
 "and contains(normalize-space(text()), 'Configured Systems')]"
 sel.wait_for_element(_title_loc)

 # Unassigned config profile has no tabstrip
 if "unassigned" not in self.name.lower():
 tabs.select_tab("Configured Systems")

 if sel.is_displayed(page.list_table_config_systems):
 row_key = 'hostname'
 return [ConfigSystem(row[row_key].text, self) for row in
 page.list_table_config_systems.rows()]
 return list()

[docs]class ConfigSystem(Pretty, Navigatable):

 pretty_attrs = ['name', 'manager_key']

 def __init__(self, name, profile, appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.name = name
 self.profile = profile

[docs] def tag(self, tag):
 """Tags the system by given tag"""
 navigate_to(self, 'EditTags')
 fill(mixins.tag_form, {'category': 'Cost Center *', 'tag': 'Cost Center 001'})
 # ---
 mixins.add_tag(tag, navigate=False)

[docs] def untag(self, tag):
 """Removes the selected tag off the system"""
 navigate_to(self, 'EditTags')
 mixins.remove_tag(tag)

 @property
 def tags(self):
 """Returns a list of this system's active tags"""
 navigate_to(self, 'EditTags')
 return mixins.get_tags()

[docs]class Satellite(ConfigManager):
 """
 Configuration manager object (Red Hat Satellite, Foreman)

 Args:
 name: Name of the Satellite/Foreman configuration manager
 url: URL, hostname or IP of the configuration manager
 ssl: Boolean value; `True` if SSL certificate validity should be checked, `False` otherwise
 credentials: Credentials to access the config. manager
 key: Key to access the cfme_data yaml data (same as `name` if not specified)

 Usage:
 Create provider:
 .. code-block:: python

 satellite_cfg_mgr = Satellite('my_satellite', 'my-satellite.example.com',
 ssl=False, ConfigManager.Credential(principal='admin',
 secret='testing'), key='satellite_yaml_key')
 satellite_cfg_mgr.create()

 Update provider:
 .. code-block:: python

 with update(satellite_cfg_mgr):
 satellite_cfg_mgr.name = 'new_satellite_name'

 Delete provider:
 .. code-block:: python

 satellite_cfg_mgr.delete()
 """

 def __init__(self, name=None, url=None, ssl=None, credentials=None, key=None):
 super(Satellite, self).__init__(name=name, url=url, ssl=ssl, credentials=credentials,
 key=key)
 self.name = name
 self.url = url
 self.ssl = ssl
 self.credentials = credentials
 self.key = key or name

 @cached_property
 def type(self):
 """Returns presumed type of the manager based on CFME version

 Note:
 We cannot actually know the type of the provider from the UI.
 This represents the supported type by CFME version and is to be used in navigation.
 """
 return version.pick({version.LOWEST: 'Red Hat Satellite', version.LATEST: 'Foreman'})

[docs]class AnsibleTower(ConfigManager):
 """
 Configuration manager object (Ansible Tower)

 Args:
 name: Name of the Ansible Tower configuration manager
 url: URL, hostname or IP of the configuration manager
 ssl: Boolean value; `True` if SSL certificate validity should be checked, `False` otherwise
 credentials: Credentials to access the config. manager
 key: Key to access the cfme_data yaml data (same as `name` if not specified)

 Usage:
 Create provider:
 .. code-block:: python

 tower_cfg_mgr = AnsibleTower('my_tower', 'https://my-tower.example.com/api/v1',
 ssl=False, ConfigManager.Credential(principal='admin',
 secret='testing'), key='tower_yaml_key')
 tower_cfg_mgr.create()

 Update provider:
 .. code-block:: python

 with update(tower_cfg_mgr):
 tower_cfg_mgr.name = 'new_tower_name'

 Delete provider:
 .. code-block:: python

 tower_cfg_mgr.delete()
 """

 type = 'Ansible Tower'

 def __init__(self, name=None, url=None, ssl=None, credentials=None, key=None):
 super(AnsibleTower, self).__init__(name=name, url=url, ssl=ssl, credentials=credentials,
 key=key)
 self.name = name
 self.url = url
 self.ssl = ssl
 self.credentials = credentials
 self.key = key or name

@navigator.register(ConfigManager, 'All')
[docs]class MgrAll(CFMENavigateStep):
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self):
 if self.obj.appliance.version < '5.8' or self.obj.type != 'Ansible Tower':
 self.prerequisite_view.navigation.select('Configuration', 'Management')
 else:
 self.prerequisite_view.navigation.select('Automation', 'Ansible Tower', 'Explorer')

[docs] def resetter(self):
 if self.obj.appliance.version >= '5.8' and self.obj.type == 'Ansible Tower':
 accordion.tree('Providers', 'All Ansible Tower Providers')
 else:
 accordion.tree('Providers', 'All Configuration Manager Providers')
 tb.select('Grid View')

[docs] def am_i_here(self):
 if self.obj.appliance.version >= '5.8' and self.obj.type == 'Ansible Tower':
 page = 'All Ansible Tower Providers'
 else:
 page = 'All Configuration Manager Providers'
 return match_page(summary=page)

@navigator.register(ConfigManager, 'Add')
[docs]class MgrAdd(CFMENavigateStep):
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 cfg_btn('Add a new Provider')

@navigator.register(ConfigManager, 'Edit')
[docs]class MgrEdit(CFMENavigateStep):
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 sel.check(Quadicon(self.obj.quad_name, None).checkbox())
 cfg_btn('Edit Selected item')

@navigator.register(ConfigManager, 'Details')
[docs]class MgrDetails(CFMENavigateStep):
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 sel.click(Quadicon(self.obj.quad_name, None))

[docs] def am_i_here(self):
 return any((match_page(summary='Configuration Profiles under Red Hat Satellite '
 'Provider "{} Configuration Manager"'.format(self.obj.name)),
 match_page(summary='Inventory Groups under Ansible Tower Provider'
 ' "{} Configuration Manager"'.format(self.obj.name))))

@navigator.register(ConfigManager, 'EditFromDetails')
[docs]class MgrEditFromDetails(CFMENavigateStep):
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 cfg_btn('Edit this Provider')

todo: not sure whether this works or not. it seems it wasn't used for a long time
@navigator.register(ConfigProfile, 'Details')
[docs]class Details(CFMENavigateStep):
 prerequisite = NavigateToAttribute('manager', 'Details')

[docs] def step(self):
 tb.select('List View'),
 page.list_table_config_profiles.click_cell('Description', self.obj.name)

@navigator.register(ConfigSystem, 'All')
[docs]class SysAll(CFMENavigateStep):
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self):
 self.prerequisite_view.navigation.select('Configuration', 'Management')

[docs] def resetter(self):
 accordion.tree('Configured Systems', 'All Configured Systems')
 tb.select('Grid View')

[docs] def am_i_here(self):
 return match_page(summary='All Configured Systems')

@navigator.register(ConfigSystem, 'Provision')
[docs]class SysProvision(CFMENavigateStep):
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 sel.check(Quadicon(self.obj.name, None))
 cfg_btn('Provision Configured Systems')

@navigator.register(ConfigSystem, 'EditTags')
[docs]class SysEditTags(CFMENavigateStep):
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 sel.check(Quadicon(self.obj.name, None))
 cfg_btn('Edit Tags')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/error.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.error

"""Handles errors based on something beyond the type. You can match
error messages with regular expressions. You can also extend the
matching behavior however you like. By default, strings are treated
as regex and matched against the message of the error. Functions are
passed the error and if the function returns 'truthy', then the error
is caught.

Usage:

 from cfme.utils import error
 with error.expected('foo'):
 x = 1
 raise Exception('oh noes foo happened!') # this will be caught because regex matches

 with error.expected('foo'):
 raise Exception('oh noes bar happened!') # this will bubble up because it doesn't match

 with error.expected('foo'):
 pass # an error will be thrown because we expected an error but there wasn't one.

"""

from contextlib import contextmanager
import re
from multimethods import singledispatch
from collections import Callable

@singledispatch
def match(o, e):
 """Returns true if the object matches the exception."""
 raise NotImplementedError("Don't know how to match {} to an error".format(type(o)))

@match.method(type)
def _exception(cls_e, e):
 """Simulates normal except: clauses by matching the exception type"""
 return isinstance(e, cls_e)

@match.method(Callable)
def _callable(f, e):
 """Pass the exception to the callable, if the callable returns truthy,
 then it's a match."""
 return f(e)

[docs]def regex(expr, e):
 """Search the message of the exception using the regex expr"""
 p = re.compile(expr)
 return p.search(str(e))

@match.method(basestring)
def _str(s, e):
 """Treat string as a regex and match it against the Exception's
 message."""
 return regex(s, e)

[docs]class UnexpectedSuccessException(Exception):
 """An error that is thrown when something we expected to fail didn't
 fail."""
 pass

@contextmanager
[docs]def handler(f):
 """Handles errors based on more than just their type. Any matching
 error will be caught, the rest will be allowed to propagate up the
 stack."""
 try:
 yield
 except Exception as e:
 if not match(f, e):
 raise e

@contextmanager
[docs]def expected(f):
 """Inverts error handling. If the enclosed block doesn't raise an
 error, it will raise one. If it raises a matching error, it will
 return normally. If it raises a non-matching error, that error
 will be allowed to propagate up the stack.

 """
 try:
 yield
 raise UnexpectedSuccessException(
 "Expected error matching '{}' but got success instead.".format(f))
 except UnexpectedSuccessException:
 raise
 except Exception as e:
 if not match(f, e):
 raise e

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/infrastructure/resource_pool.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.infrastructure.resource_pool

""" A model of an Infrastructure Resource pool in CFME

:var page: A :py:class:`cfme.web_ui.Region` object describing common elements on the
 Resource pool pages.
"""
from navmazing import NavigateToSibling, NavigateToAttribute
from widgetastic.widget import View
from widgetastic.exceptions import NoSuchElementException
from widgetastic_patternfly import Button, Dropdown, FlashMessages

from cfme.base.ui import BaseLoggedInPage
from cfme.common import TagPageView, WidgetasticTaggable
from cfme.exceptions import ResourcePoolNotFound
from cfme.web_ui import match_location
from cfme.utils.pretty import Pretty
from cfme.utils.providers import get_crud
from cfme.utils.wait import wait_for
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to
from widgetastic_manageiq import (
 ItemsToolBarViewSelector, ManageIQTree, PaginationPane, Text, Table, Search, BreadCrumb,
 SummaryTable, Accordion)

[docs]class ResourcePoolToolbar(View):
 """The toolbar on the main page"""
 configuration = Dropdown('Configuration')
 policy = Dropdown('Policy')
 download = Dropdown('Download')

 view_selector = View.nested(ItemsToolBarViewSelector)

[docs]class ResourcePoolDetailsToolbar(View):
 """The toolbar on the details page"""
 configuration = Dropdown('Configuration')
 policy = Dropdown('Policy')
 download = Button(title='Download summary in PDF format')

[docs]class ResourcePoolDetailsAccordion(View):
 """The accordian on the details page"""
 @View.nested
 class properties(Accordion): # noqa
 tree = ManageIQTree()

 @View.nested
 class relationships(Accordion): # noqa
 tree = ManageIQTree()

[docs]class ResourcePoolEntities(View):
 """Entities on the main list page"""
 title = Text('//div[@id="main-content"]//h1')
 table = Table("//div[@id='list_grid']//table")
 search = View.nested(Search)
 # element attributes changed from id to class in upstream-fine+, capture both with locator
 flash = FlashMessages('.//div[@id="flash_msg_div"]'
 '/div[@id="flash_text_div" or contains(@class, "flash_text_div")]')

[docs]class ResourcePoolDetailsEntities(View):
 """Entities on the details page"""
 breadcrumb = BreadCrumb()
 title = Text('//div[@id="main-content"]//h1')
 properties = SummaryTable(title='Properties')
 relationships = SummaryTable(title='Relationships')
 smart_management = SummaryTable(title='Smart Management')

[docs]class ResourcePoolView(BaseLoggedInPage):
 """Base view for header and nav checking, navigatable views should inherit this"""
 @property
 def in_resource_pool(self):
 nav_chain = ['Compute', 'Infrastructure', 'Resource Pools']
 return (
 self.logged_in_as_current_user and
 self.navigation.currently_selected == nav_chain and
 # TODO: Also needs to be converted to Widgetastic
 match_location(controller='resource_pool', title='Resource Pools'))

[docs]class ResourcePoolAllView(ResourcePoolView):
 """The "all" view -- a list of app the resource pools"""
 @property
 def is_displayed(self):
 return (
 self.in_resource_pool and
 self.entities.title.text == 'Resource Pools')

 toolbar = View.nested(ResourcePoolToolbar)
 entities = View.nested(ResourcePoolEntities)
 paginator = PaginationPane()

[docs]class ResourcePoolDetailsView(ResourcePoolView):
 """The details page of a resource pool"""
 @property
 def is_displayed(self):
 """Is this page being displayed?"""
 expected_title = '{} (Summary)'.format(self.context['object'].name)
 return (
 self.in_resource_pool and
 self.entities.title.text == expected_title and
 self.entities.breadcrumb.active_location == expected_title)

 toolbar = View.nested(ResourcePoolDetailsToolbar)
 sidebar = View.nested(ResourcePoolDetailsAccordion)
 entities = View.nested(ResourcePoolDetailsEntities)

[docs]class ResourcePool(Pretty, Navigatable, WidgetasticTaggable):
 """ Model of an infrastructure Resource pool in cfme

 Args:
 name: Name of the Resource pool.
 provider_key: Name of the provider this resource pool is attached to.

 Note:
 If given a provider_key, it will navigate through ``Infrastructure/Providers`` instead
 of the direct path through ``Infrastructure/Resourcepool``.
 """
 pretty_attrs = ['name', 'provider_key']

 def __init__(self, name=None, provider_key=None, appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.quad_name = 'resource_pool'
 self.name = name
 if provider_key:
 self.provider = get_crud(provider_key, appliance=appliance)
 else:
 self.provider = None

 def _get_context(self):
 context = {'resource_pool': self}
 if self.provider:
 context['provider'] = self.provider
 return context

[docs] def delete(self, cancel=True, wait=False):
 """Deletes a resource pool from CFME

 :param cancel: Whether or not to cancel the deletion, defaults to True
 :param wait: Whether or not to wait for the delete, defaults to False
 """
 view = navigate_to(self, 'Details')
 item_name = 'Remove Resource Pool'
 view.toolbar.configuration.item_select(item_name, handle_alert=not cancel)

 # cancel doesn't redirect, confirmation does
 view.flush_widget_cache()
 if cancel:
 view = self.create_view(ResourcePoolDetailsView)
 else:
 view = self.create_view(ResourcePoolAllView)
 wait_for(lambda: view.is_displayed, fail_condition=False, num_sec=10, delay=1)

 # flash message only displayed if it was deleted
 if not cancel:
 msg = 'The selected Resource Pools was deleted'
 view.entities.flash.assert_success_message(msg)

 if wait:
 def refresh():
 if self.provider:
 self.provider.refresh_provider_relationships()
 view.browser.selenium.refresh()
 view.flush_widget_cache()

 wait_for(lambda: not self.exists, fail_condition=False, fail_func=refresh, num_sec=500,
 message='Wait for resource pool to be deleted')

[docs] def wait_for_exists(self):
 """Wait for the resource pool to be created"""
 view = navigate_to(self, 'All')

 def refresh():
 if self.provider:
 self.provider.refresh_provider_relationships()
 view.browser.selenium.refresh()
 view.flush_widget_cache()

 wait_for(lambda: self.exists, fail_condition=False, num_sec=1000, fail_func=refresh,
 message='Wait resource pool to appear')

[docs] def get_detail(self, *ident):
 """ Gets details from the details infoblock

 The function first ensures that we are on the detail page for the specific resource pool.

 Args:
 ident: An InfoBlock title, followed by the Key name, e.g. "Properties"
 Returns:
 returns: A string representing the contents of the InfoBlock's value.
 """
 view = navigate_to(self, 'Details')
 table = None
 if ident[0] == 'Properties':
 table = view.properties
 elif ident[0] == 'Relationships':
 table = view.relationships
 elif ident[0] == 'Smart Management':
 table = view.smart_management
 if table:
 return table.get_text_of(ident[1])
 return None

 @property
 def exists(self):
 view = navigate_to(self, 'All')
 try:
 view.toolbar.view_selector.select('List View')
 view.paginator.find_row_on_pages(view.entities.table, name=self.name)
 return True
 except NoSuchElementException:
 return False

@navigator.register(ResourcePool, 'All')
[docs]class All(CFMENavigateStep):
 """A navigation step for the All page"""
 VIEW = ResourcePoolAllView
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.navigation.select('Compute', 'Infrastructure', 'Resource Pools')

[docs] def resetter(self):
 """Reset view and selection"""
 self.view.toolbar.view_selector.select('Grid View')
 self.view.paginator.check_all()
 self.view.paginator.uncheck_all()

@navigator.register(ResourcePool, 'Details')
[docs]class Details(CFMENavigateStep):
 """A navigation step for the Details page"""
 VIEW = ResourcePoolDetailsView
 prerequisite = NavigateToSibling('All')

[docs] def step(self, *args, **kwargs):
 """Navigate to the item"""
 self.prerequisite_view.toolbar.view_selector.select('List View')
 try:
 row = self.prerequisite_view.paginator.find_row_on_pages(
 self.prerequisite_view.entities.table,
 name=self.obj.name
)
 except NoSuchElementException:
 raise ResourcePoolNotFound('Resource pool {} not found'.format(self.obj.name))
 row.click()

@navigator.register(ResourcePool, 'EditTagsFromDetails')
[docs]class EditTagsFromDetails(CFMENavigateStep):
 VIEW = TagPageView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.toolbar.policy.item_select('Edit Tags')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/db.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.db

from collections import Mapping
from contextlib import contextmanager
from itertools import izip

from cached_property import cached_property
from sqlalchemy import MetaData, create_engine, event, inspect
from sqlalchemy.exc import ArgumentError, DisconnectionError, InvalidRequestError
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker
from sqlalchemy.pool import Pool

from fixtures.pytest_store import store
from cfme.utils import conf
from cfme.utils.log import logger

@event.listens_for(Pool, "checkout")
[docs]def ping_connection(dbapi_connection, connection_record, connection_proxy):
 """ping_connection event hook, used to reconnect db sessions that time out

 Note:

 See also: :ref:`Connection Invalidation <sqlalchemy:pool_connection_invalidation>`

 """
 cursor = dbapi_connection.cursor()
 try:
 cursor.execute("SELECT 1")
 except StandardError:
 raise DisconnectionError
 cursor.close()

[docs]class Db(Mapping):
 """Helper class for interacting with a CFME database using SQLAlchemy

 Args:
 hostname: base url to be used (default is from current_appliance)
 credentials: name of credentials to use from :py:attr:`utils.conf.credentials`
 (default ``database``)

 Provides convient attributes to common sqlalchemy objects related to this DB,
 as well as a Mapping interface to access and reflect database tables. Where possible,
 attributes are cached.

 Db objects support getting tables by name via the mapping interface::

 table = db['table_name']

 Usage:

 # Usually used to query the DB for info, here's a common query
 for vm in db.session.query(db['vms']).all():
 print(vm.name)
 print(vm.guid)

 # List comprehension to get all templates
 [(vm.name, vm.guid) for vm in session.query(db['vms']).all() if vm.template is True]

 # Use the transaction manager for write operations:
 with db.transaction:
 db.session.query(db['vms']).all().delete()

 Note:

 Creating a table object requires a call to the database so that SQLAlchemy can do
 reflection to determine the table's structure (columns, keys, indices, etc). On
 a latent connection, this can be extremely slow, which will affect methods that return
 tables, like the mapping interface or :py:meth:`values`.

 """
 def __init__(self, hostname=None, credentials=None, port=None):
 self._table_cache = {}
 self.hostname = hostname or store.current_appliance.db.address
 self.port = port or store.current_appliance.db_port

 self.credentials = credentials or conf.credentials['database']

[docs] def __getitem__(self, table_name):
 """Access tables as items contained in this db

 Usage:

 # To get a table called 'table_name':
 db['table_name']

 This may return ``None`` in the case where a table is found but reflection fails.

 """
 try:
 return self._table(table_name)
 except InvalidRequestError:
 raise KeyError('Table {} could not be found'.format(table_name))

[docs] def __iter__(self):
 """Iterator of table names in this db"""
 return self.keys()

[docs] def __len__(self):
 """Number of tables in this db"""
 return len(self.table_names)

[docs] def __contains__(self, table_name):
 """Whether or not the named table is in this db"""
 return table_name in self.table_names

[docs] def keys(self):
 """Iterator of table names in this db"""
 return (table_name for table_name in self.table_names)

[docs] def items(self):
 """Iterator of ``(table_name, table)`` pairs"""
 return izip(self.keys(), self.values())

[docs] def values(self):
 """Iterator of tables in this db"""
 return (self[table_name] for table_name in self.table_names)

[docs] def get(self, table_name, default=None):
 """table getter

 Args:
 table_name: Name of the table to get
 default: Default value to return if ``table_name`` is not found.

 Returns: a table if ``table_name`` exists, otherwise 'None' or the passed-in default

 """
 try:
 return self[table_name]
 except KeyError:
 return default

[docs] def copy(self):
 """Copy this database instance, keeping the same credentials and hostname"""
 return type(self)(self.hostname, self.credentials)

[docs] def __eq__(self, other):
 """Check if this db is equal to another db"""
 try:
 return self.hostname == other.hostname
 except:
 return False

[docs] def __ne__(self, other):
 """Check if this db is not equal to another db"""
 return not self == other

 @cached_property
 def engine(self):
 """The :py:class:`Engine <sqlalchemy:sqlalchemy.engine.Engine>` for this database

 It uses pessimistic disconnection handling, checking that the database is still
 connected before executing commands.

 """
 return create_engine(self.db_url, echo_pool=True)

 @cached_property
 def sessionmaker(self):
 """A :py:class:`sessionmaker <sqlalchemy:sqlalchemy.orm.session.sessionmaker>`

 Used to make new sessions with this database, as needed.

 """
 return sessionmaker(bind=self.engine)

 @cached_property
 def table_base(self):
 """Base class for all tables returned by this database

 This base class is created using
 :py:class:`declarative_base <sqlalchemy:sqlalchemy.ext.declarative.declarative_base>`.
 """
 return declarative_base(metadata=self.metadata)

 @cached_property
 def metadata(self):
 """:py:class:`MetaData <sqlalchemy:sqlalchemy.schema.MetaData>` for this database

 This can be used for introspection of reflected items.

 Note:

 Tables that haven't been reflected won't show up in metadata. To reflect a table,
 use :py:meth:`reflect_table`.

 """
 return MetaData(bind=self.engine)

 @cached_property
 def db_url(self):
 """The connection URL for this database, including credentials"""
 template = "postgresql://{username}:{password}@{host}:{port}/vmdb_production"
 result = template.format(host=self.hostname, port=self.port, **self.credentials)
 logger.info("[DB] db_url is %s", result)
 return result

 @cached_property
 def table_names(self):
 """A sorted list of table names available in this database."""
 # rails table names follow similar rules as pep8 identifiers; expose them as such
 return sorted(inspect(self.engine).get_table_names())

 @cached_property
 def session(self):
 """Returns a :py:class:`Session <sqlalchemy:sqlalchemy.orm.session.Session>`

 This is used for database queries. For writing to the database, start a
 :py:meth:`transaction`.

 Note:

 This attribute is cached. In cases where a new session needs to be explicitly created,
 use :py:meth:`sessionmaker`.

 """
 return self.sessionmaker(autocommit=True)

 @property
 @contextmanager
 def transaction(self):
 """Context manager for simple transaction management

 Sessions understand the concept of transactions, and provider context managers to
 handle conditionally committing or rolling back transactions as needed.

 Note:

 Sessions automatically commit transactions by default. For predictable results when
 writing to the database, use the transaction manager.

 Usage:

 with db.transaction:
 db.session.do_something()

 """
 with self.session.begin():
 yield

[docs] def reflect_table(self, table_name):
 """Populate :py:attr:`metadata` with information on a table

 Args:
 table_name: The name of a table to reflect

 """
 self.metadata.reflect(only=[table_name])

 def _table(self, table_name):
 """Retrieves, reflects, and caches table objects

 Actual implementation of __getitem__
 """
 try:
 return self._table_cache[table_name]
 except KeyError:
 self.reflect_table(table_name)
 table = self.metadata.tables[table_name]
 table_dict = {
 '__table__': table,
 '__tablename__': table_name
 }

 try:
 table_cls = type(str(table_name), (self.table_base,), table_dict)
 self._table_cache[table_name] = table_cls
 return table_cls
 except ArgumentError:
 # This usually happens on join tables with no PKs
 logger.info('Unable to create table class for table "{}"'.format(table_name))
 return None

@contextmanager
[docs]def database_on_server(hostname, **kwargs):
 db_obj = Db(hostname=hostname, **kwargs)
 yield db_obj

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/infrastructure/provider.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.infrastructure.provider

""" A model of an Infrastructure Provider in CFME
"""
from widgetastic.utils import Fillable

from cached_property import cached_property
from navmazing import NavigateToSibling, NavigateToObject
from widgetastic_manageiq import BreadCrumb, BaseEntitiesView, View

from cfme.base.ui import Server
from cfme.common import TagPageView
from cfme.common.provider import CloudInfraProvider
from cfme.common.provider_views import (InfraProviderAddView,
 InfraProviderEditView,
 InfraProviderDetailsView,
 ProviderTimelinesView,
 InfraProvidersDiscoverView,
 ProvidersManagePoliciesView,
 InfraProvidersView)
from cfme.fixtures import pytest_selenium as sel
from cfme.infrastructure.cluster import ClusterCollection, ClusterView, ClusterToolbar
from cfme.infrastructure.host import Host
from cfme.utils import conf, version
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to
from cfme.utils.log import logger
from cfme.utils.pretty import Pretty
from cfme.utils.varmeth import variable
from cfme.utils.wait import wait_for

[docs]class ProviderClustersView(ClusterView):
 """The all view page for clusters open from provider detail page"""
 @property
 def is_displayed(self):
 """Determine if this page is currently being displayed"""
 return (
 self.logged_in_as_current_user and
 self.entities.title.text == '{p}(All Clusters)'.format(p=self.context['object'].name))

 toolbar = View.nested(ClusterToolbar)
 breadcrumb = BreadCrumb()
 including_entities = View.include(BaseEntitiesView, use_parent=True)

[docs]class InfraProvider(Pretty, CloudInfraProvider, Fillable):
 """
 Abstract model of an infrastructure provider in cfme. See VMwareProvider or RHEVMProvider.

 Args:
 name: Name of the provider.
 details: a details record (see VMwareDetails, RHEVMDetails inner class).
 key: The CFME key of the provider in the yaml.
 endpoints: one or several provider endpoints like DefaultEndpoint. it should be either dict
 in format dict{endpoint.name, endpoint, endpoint_n.name, endpoint_n}, list of endpoints or
 mere one endpoint
 Usage:
 credentials = Credential(principal='bad', secret='reallybad')
 endpoint = DefaultEndpoint(hostname='some_host', api_port=65536, credentials=credentials)
 myprov = VMwareProvider(name='foo',
 region='us-west-1'
 endpoints=endpoint)
 myprov.create()

 """
 provider_types = {}
 category = "infra"
 pretty_attrs = ['name', 'key', 'zone']
 STATS_TO_MATCH = ['num_template', 'num_vm', 'num_datastore', 'num_host', 'num_cluster']
 string_name = "Infrastructure"
 page_name = "infrastructure"
 templates_destination_name = "Templates"
 db_types = ["InfraManager"]

 def __init__(
 self, name=None, endpoints=None, key=None, zone=None, provider_data=None,
 appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.name = name
 self.endpoints = self._prepare_endpoints(endpoints)
 self.key = key
 self.provider_data = provider_data
 self.zone = zone
 self.template_name = "Templates"

 @cached_property
 def vm_name(self):
 return version.pick({
 version.LOWEST: "VMs and Instances",
 '5.7.1': "Virtual Machines"})

 @variable(alias='db')
 def num_datastore(self):
 """ Returns the providers number of templates, as shown on the Details page."""
 results = list(self.appliance.db.client.engine.execute(
 'SELECT DISTINCT storages.name, hosts.ems_id '
 'FROM ext_management_systems ems, hosts, storages st, host_storages hst'
 'WHERE hosts.id=hst.host_id AND '
 'st.id=hst.storage_id AND '
 'hosts.ems_id=ems.id AND '
 'ems.name=\'{}\''.format(self.name)))
 return len(results)

 @num_datastore.variant('ui')
 def num_datastore_ui(self):
 return int(self.get_detail("Relationships", "Datastores"))

 @variable(alias='rest')
 def num_host(self):
 provider = self.appliance.rest_api.collections.providers.find_by(name=self.name)[0]
 num_host = 0
 for host in self.appliance.rest_api.collections.hosts:
 if host['ems_id'] == provider.id:
 num_host += 1
 return num_host

 @num_host.variant('db')
 def num_host_db(self):
 ext_management_systems = self.appliance.db.client["ext_management_systems"]
 hosts = self.appliance.db.client["hosts"]
 hostlist = list(self.appliance.db.client.session.query(hosts.name)
 .join(ext_management_systems, hosts.ems_id == ext_management_systems.id)
 .filter(ext_management_systems.name == self.name))
 return len(hostlist)

 @num_host.variant('ui')
 def num_host_ui(self):
 try:
 num = self.get_detail("Relationships", 'Hosts')
 except sel.NoSuchElementException:
 logger.error("Couldn't find number of hosts using key [Hosts] trying Nodes")
 num = self.get_detail("Relationships", 'Nodes')
 return int(num)

 @variable(alias='rest')
 def num_cluster(self):
 provider = self.appliance.rest_api.collections.providers.find_by(name=self.name)[0]
 num_cluster = 0
 for cluster in self.appliance.rest_api.collections.clusters:
 if cluster['ems_id'] == provider.id:
 num_cluster += 1
 return num_cluster

 @num_cluster.variant('db')
 def num_cluster_db(self):
 """ Returns the providers number of templates, as shown on the Details page."""
 ext_management_systems = self.appliance.db.client["ext_management_systems"]
 clusters = self.appliance.db.client["ems_clusters"]
 clulist = list(self.appliance.db.client.session.query(clusters.name)
 .join(ext_management_systems,
 clusters.ems_id == ext_management_systems.id)
 .filter(ext_management_systems.name == self.name))
 return len(clulist)

 @num_cluster.variant('ui')
 def num_cluster_ui(self):
 num = self.get_detail("Relationships", 'Clusters')
 return int(num)

[docs] def discover(self): # todo: move this to provider collections
 """
 Begins provider discovery from a provider instance

 Usage:
 discover_from_config(utils.providers.get_crud('rhevm'))
 """
 discover(self, cancel=False, start_ip=self.start_ip, end_ip=self.end_ip)

 @property
 def hosts(self):
 """Returns list of :py:class:`cfme.infrastructure.host.Host` that should belong to this
 provider according to the YAML
 """
 result = []
 for host in self.get_yaml_data().get("hosts", []):
 creds = conf.credentials.get(host["credentials"], {})
 cred = Host.Credential(
 principal=creds["username"],
 secret=creds["password"],
 verify_secret=creds["password"],
)
 result.append(Host(name=host["name"],
 credentials=cred,
 provider=self))
 return result

[docs] def get_clusters(self):
 """returns the list of clusters belonging to the provider"""
 view = navigate_to(self, 'Clusters')
 col = self.appliance.get(ClusterCollection)
 return [col.instantiate(e.name, self) for e in view.entities.get_all(surf_pages=True)]

[docs] def as_fill_value(self):
 return self.name

 @property
 def view_value_mapping(self):
 return {'name': self.name}

@navigator.register(Server, 'InfraProviders')
@navigator.register(InfraProvider, 'All')
[docs]class All(CFMENavigateStep):
 VIEW = InfraProvidersView
 prerequisite = NavigateToObject(Server, 'LoggedIn')

[docs] def step(self):
 self.prerequisite_view.navigation.select('Compute', 'Infrastructure', 'Providers')

[docs] def resetter(self):
 # Reset view and selection
 tb = self.view.toolbar
 paginator = self.view.entities.paginator
 if 'Grid View' not in tb.view_selector.selected:
 tb.view_selector.select('Grid View')
 if paginator.exists:
 paginator.check_all()
 paginator.uncheck_all()

@navigator.register(InfraProvider, 'Add')
[docs]class Add(CFMENavigateStep):
 VIEW = InfraProviderAddView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.toolbar.configuration.item_select('Add a New '
 'Infrastructure Provider')

@navigator.register(InfraProvider, 'Discover')
[docs]class Discover(CFMENavigateStep):
 VIEW = InfraProvidersDiscoverView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.toolbar.configuration.item_select('Discover '
 'Infrastructure Providers')

@navigator.register(InfraProvider, 'Details')
[docs]class Details(CFMENavigateStep):
 VIEW = InfraProviderDetailsView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.entities.get_entity(by_name=self.obj.name, surf_pages=True).click()

[docs] def resetter(self):
 # Reset view and selection
 if version.current_version() >= '5.7': # no view selector in 5.6
 view_selector = self.view.toolbar.view_selector
 if view_selector.selected != 'Summary View':
 view_selector.select('Summary View')

@navigator.register(InfraProvider, 'ManagePolicies')
[docs]class ManagePolicies(CFMENavigateStep):
 VIEW = ProvidersManagePoliciesView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.entities.get_entity(by_name=self.obj.name, surf_pages=True).check()
 self.prerequisite_view.toolbar.policy.item_select('Manage Policies')

@navigator.register(InfraProvider, 'ManagePoliciesFromDetails')
[docs]class ManagePoliciesFromDetails(CFMENavigateStep):
 VIEW = ProvidersManagePoliciesView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.toolbar.policy.item_select('Manage Policies')

@navigator.register(InfraProvider, 'EditTags')
[docs]class EditTags(CFMENavigateStep):
 VIEW = TagPageView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.entities.get_entity(by_name=self.obj.name, surf_pages=True).check()
 self.prerequisite_view.toolbar.policy.item_select('Edit Tags')

@navigator.register(InfraProvider, 'EditTagsFromDetails')
[docs]class EditTagsFromDetails(CFMENavigateStep):
 VIEW = TagPageView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.toolbar.policy.item_select('Edit Tags')

@navigator.register(InfraProvider, 'Edit')
[docs]class Edit(CFMENavigateStep):
 VIEW = InfraProviderEditView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.entities.get_entity(by_name=self.obj.name, surf_pages=True).check()
 self.prerequisite_view.toolbar.configuration.item_select('Edit Selected '
 'Infrastructure Providers')

@navigator.register(InfraProvider, 'Timelines')
[docs]class Timelines(CFMENavigateStep):
 VIEW = ProviderTimelinesView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 mon = self.prerequisite_view.toolbar.monitoring
 mon.item_select('Timelines')

@navigator.register(InfraProvider, 'Clusters')
[docs]class DetailsFromProvider(CFMENavigateStep):
 VIEW = ProviderClustersView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self, *args, **kwargs):
 """Navigate to the correct view"""
 self.prerequisite_view.contents.relationships.click_at('Clusters')

[docs]def get_all_providers():
 """Returns list of all providers"""
 view = navigate_to(InfraProvider, 'All')
 return [item.name for item in view.entities.get_all(surf_pages=True)]

[docs]def discover(discover_cls, cancel=False, start_ip=None, end_ip=None):
 """
 Discover infrastructure providers. Note: only starts discovery, doesn't
 wait for it to finish.

 Args:
 discover_cls: Instance of provider class
 cancel: Whether to cancel out of the discover UI.
 start_ip: String start of the IP range for discovery
 end_ip: String end of the IP range for discovery
 """
 form_data = {}
 if discover_cls:
 form_data.update(discover_cls.discover_dict)

 if start_ip:
 for idx, octet in enumerate(start_ip.split('.'), start=1):
 key = 'from_ip{idx}'.format(idx=idx)
 form_data.update({key: octet})
 if end_ip:
 end_octet = end_ip.split('.')[-1]
 form_data.update({'to_ip4': end_octet})

 view = navigate_to(InfraProvider, 'Discover')
 view.fill(form_data)
 if cancel:
 view.cancel.click()
 else:
 view.start.click()

[docs]def wait_for_a_provider():
 view = navigate_to(InfraProvider, 'All')
 logger.info('Waiting for a provider to appear...')
 wait_for(lambda: int(view.entities.paginator.items_amount), fail_condition=0,
 message="Wait for any provider to appear", num_sec=1000,
 fail_func=view.browser.refresh)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/virtual_machines.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.virtual_machines

"""Helper functions related to the creation and destruction of virtual machines and instances
"""
import pytest

from cfme.utils.providers import get_crud
from fixtures.pytest_store import store
from novaclient.exceptions import OverLimit as OSOverLimit
from ovirtsdk.infrastructure.errors import RequestError as RHEVRequestError
from ssl import SSLError
from cfme.utils.log import logger
from cfme.utils.mgmt_system import exceptions

def _vm_cleanup(mgmt, vm_name):
 """Separated to make the logic able to propagate the exceptions directly."""
 try:
 logger.info("VM/Instance status: %s", mgmt.vm_status(vm_name))
 except Exception as f:
 logger.error(
 "Could not retrieve VM/Instance status: %s: %s", type(f).__name__, str(f))
 logger.info('Attempting cleanup on VM/instance %s', vm_name)
 try:
 if mgmt.does_vm_exist(vm_name):
 # Stop the vm first
 logger.warning('Destroying VM/instance %s', vm_name)
 if mgmt.delete_vm(vm_name):
 logger.info('VM/instance %s destroyed', vm_name)
 else:
 logger.error('Error destroying VM/instance %s', vm_name)
 except Exception as f:
 logger.error(
 'Could not destroy VM/instance %s (%s: %s)', vm_name, type(f).__name__, str(f))

[docs]def deploy_template(provider_key, vm_name, template_name=None, timeout=900, **deploy_args):
 """
 Args:
 provider_key: Provider key on which the VM is to be created
 vm_name: Name of the VM to be deployed
 template_name: Name of the template that the VM is deployed from
 timeout: the timeout for template deploy
 """
 allow_skip = deploy_args.pop("allow_skip", ())
 if isinstance(allow_skip, dict):
 skip_exceptions = allow_skip.keys()
 callable_mapping = allow_skip
 elif isinstance(allow_skip, basestring) and allow_skip.lower() == "default":
 skip_exceptions = (OSOverLimit, RHEVRequestError, exceptions.VMInstanceNotCloned, SSLError)
 callable_mapping = {}
 else:
 skip_exceptions = allow_skip
 callable_mapping = {}
 provider_crud = get_crud(provider_key)

 deploy_args.update(vm_name=vm_name)

 if template_name is None:
 try:
 deploy_args.update(template=provider_crud.data['small_template'])
 except KeyError:
 raise ValueError('small_template not defined for Provider {} in cfme_data.yaml'.format(
 provider_key))
 else:
 deploy_args.update(template=template_name)

 deploy_args.update(provider_crud.deployment_helper(deploy_args))

 logger.info("Getting ready to deploy VM/instance %s from template %s on provider %s",
 vm_name, deploy_args['template'], provider_crud.data['name'])
 try:
 try:
 logger.debug("Deploy args: %s", deploy_args)
 vm_name = provider_crud.mgmt.deploy_template(timeout=timeout, **deploy_args)
 logger.info("Provisioned VM/instance %s", vm_name) # instance ID in case of EC2
 except Exception as e:
 logger.error('Could not provisioning VM/instance %s (%s: %s)',
 vm_name, type(e).__name__, str(e))
 _vm_cleanup(provider_crud.mgmt, vm_name)
 raise
 except skip_exceptions as e:
 e_c = type(e)
 if e_c in callable_mapping and not callable_mapping[e_c](e):
 raise
 # Make it visible also in the log.
 store.write_line(
 "Skipping due to a provider error: {}: {}\n".format(e_c.__name__, str(e)), purple=True)
 logger.exception(e)
 pytest.skip("{}: {}".format(e_c.__name__, str(e)))
 return vm_name

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/infrastructure/deployment_roles.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.infrastructure.deployment_roles

""" A model of an Infrastructure Deployment roles in CFME"""

from functools import partial

from navmazing import NavigateToAttribute, NavigateToSibling
from widgetastic.exceptions import NoSuchElementException
from widgetastic.utils import Version, VersionPick
from widgetastic.widget import ParametrizedView, View
from widgetastic_manageiq import (Accordion,
 BaseEntitiesView,
 BaseListEntity,
 BaseQuadIconEntity,
 BaseTileIconEntity,
 BootstrapSelect,
 BootstrapTreeview,
 BreadCrumb,
 CompareToolBarActionsView,
 ItemsToolBarViewSelector,
 JSBaseEntity,
 NonJSBaseEntity,
 SummaryTable,
 Table,
 Text
)
from widgetastic_patternfly import (BootstrapNav,
 Button,
 Dropdown,
 FlashMessages
)

from cfme.base.ui import BaseLoggedInPage
from cfme.exceptions import ItemNotFound, RoleNotFound
from cfme.infrastructure.provider.openstack_infra import OpenstackInfraProvider
from cfme.utils.appliance.implementations.ui import CFMENavigateStep, navigator, navigate_to
from cfme.utils.appliance import BaseCollection, BaseEntity

[docs]class DeploymentRoleToolbar(View):
 """The toolbar on the Deployment Role page"""
 configuration = Dropdown('Configuration')
 policy = Dropdown('Policy')
 download = Dropdown('Download')
 view_selector = View.nested(ItemsToolBarViewSelector)

[docs]class DeploymentRoleDetailsToolbar(View):
 """The toolbar on the Deployment Role details page"""
 configuration = Dropdown('Configuration')
 policy = Dropdown('Policy')
 monitoring = Dropdown('Monitoring')
 download = Button(title='Download summary in PDF format')

[docs]class DeploymentRoleComparisonToolbar(View):
 """The toolbar on Comparison Page of roles"""
 actions = View.nested(CompareToolBarActionsView)
 download = Dropdown('Download')

[docs]class DeploymentRoleDetailsAccordion(View):
 """The accordion on the Deployment Role details page"""

 @View.nested
 class properties(Accordion): # noqa
 nav = BootstrapNav('//div[@id="ems_prop"]//ul')

 @View.nested
 class relationships(Accordion): # noqa
 nav = BootstrapNav('//div[@id="ems_rel"]//ul')

[docs]class DepRoleQuadIconEntity(BaseQuadIconEntity):
 @property
 def data(self):
 return self.browser.get_attribute("alt", self.QUADRANT.format(pos="a"))

[docs]class DepRoleTileIconEntity(BaseTileIconEntity):
 quad_icon = ParametrizedView.nested(DepRoleQuadIconEntity)

[docs]class DepRoleListEntity(BaseListEntity):
 pass

[docs]class NonJSDepRoleEntity(NonJSBaseEntity):
 quad_entity = DepRoleQuadIconEntity
 list_entity = DepRoleListEntity
 tile_entity = DepRoleTileIconEntity

[docs]def DeploymentRoleEntity(): # noqa
 """Temporary wrapper for Deployment Role Entity during transition to JS based Entity """
 return VersionPick({
 Version.lowest(): NonJSDepRoleEntity,
 '5.9': JSBaseEntity,
 })

[docs]class DeploymentRoleEntitiesView(BaseEntitiesView):
 """The entities on the main list Deployment Role page"""

 @property
 def entity_class(self):
 return DeploymentRoleEntity().pick(self.browser.product_version)

[docs]class DeploymentRoleDetailsEntities(View):
 """The entities on the Deployment Role details page"""
 breadcrumb = BreadCrumb()
 relationships = SummaryTable(title='Relationships')
 total_for_node = SummaryTable(title='Totals for Nodes')
 total_for_vm = SummaryTable(title='Totals for VMs')
 smart_management = SummaryTable(title='Smart Management')

[docs]class DeploymentRoleComparisonEntities(View):
 """The entities on compare Deployment role page"""
 breadcrumb = BreadCrumb()
 table = Table('//*[@id="compare-grid"]/table')

[docs]class DeploymentRoleView(BaseLoggedInPage):
 """A base view for all the Deployment Role pages"""
 title = Text('.//div[@id="center_div" or @id="main-content"]//h1')
 flash = FlashMessages(
 './/div[@id="flash_msg_div"]/div[@id="flash_text_div" or '
 'contains(@class, "flash_text_div")]')

 @property
 def in_dep_role(self):
 """Determine if the Deployment page is currently open"""
 return (
 self.logged_in_as_current_user and
 self.navigation.currently_selected == ['Compute', 'Infrastructure',
 'Deployment Roles'])

[docs]class DeploymentRoleAllView(DeploymentRoleView):
 """The all Deployment Role page"""
 toolbar = View.nested(DeploymentRoleToolbar)
 including_entities = View.include(DeploymentRoleEntitiesView, use_parent=True)

 @property
 def is_displayed(self):
 """This is page currently being displayed"""
 return (
 self.in_dep_role and
 (self.title.text == 'Deployment Roles' or
 self.title.text == 'All Cluster / Deployment Role'))

[docs]class DeploymentRoleAllForProviderView(DeploymentRoleView):
 """The Deployment Role for Provider page"""
 breadcrumb = BreadCrumb()
 toolbar = View.nested(DeploymentRoleToolbar)
 sidebar = View.nested(DeploymentRoleDetailsAccordion)
 including_entities = View.include(DeploymentRoleEntitiesView, use_parent=True)

 @property
 def is_displayed(self):
 """Is this page currently being displayed"""
 expected_title = '{} (All Deployment Roles)'.format(self.context['object'].provider.name)

 return (
 self.logged_in_as_current_user and
 self.breadcrumb.active_location == expected_title)

[docs]class DeploymentRoleDetailsView(DeploymentRoleView):
 """The details page for a Deployment Roles"""
 toolbar = View.nested(DeploymentRoleDetailsToolbar)
 sidebar = View.nested(DeploymentRoleDetailsAccordion)
 entities = View.nested(DeploymentRoleDetailsEntities)

 @property
 def is_displayed(self):
 """Is this page currently being displayed"""
 expected_title = '{} (Summary)'.format(self.context['object'].name)
 return (
 self.in_dep_role and
 self.title.text == expected_title and
 self.entities.breadcrumb.active_location == expected_title)

[docs]class DeploymentRoleComparisonView(DeploymentRoleView):
 """The page for comparison of Deployment Role"""
 toolbar = View.nested(DeploymentRoleComparisonToolbar)
 entities = View.nested(DeploymentRoleComparisonEntities)

 @property
 def is_displayed(self):
 """Is this page currently being displayed"""
 expected_title = 'Compare Cluster / Deployment Role'
 return (
 self.in_dep_role and
 self.title.text == expected_title and
 self.entities.breadcrumb.active_location == expected_title)

[docs]class DeploymentRoleEditTagsView(DeploymentRoleView):
 """The edit tags of Deployment Role"""
 breadcrumb = BreadCrumb()
 title = Text('#explorer_title_text')
 select_tag = BootstrapSelect('tag_cat')
 select_value = BootstrapSelect('tag_add')
 save_button = Button('Save')
 reset_button = Button('Reset')
 cancel = Button('Cancel')

 @property
 def is_displayed(self):
 """Is this page currently being displayed"""
 return (
 self.in_dep_role and
 self.breadcrumb.active_location == 'Tag Assignment')

[docs]class DeploymentRoleManagePoliciesView(DeploymentRoleView):
 """Deployment role Manage Policies view."""
 breadcrumb = BreadCrumb()
 policies = BootstrapTreeview("protectbox")
 save_button = Button("Save")
 reset_button = Button("Reset")
 cancel_button = Button("Cancel")

 @property
 def is_displayed(self):
 """Is this page currently displayed"""
 return (
 self.in_dep_role and
 (self.breadcrumb.active_location == "'Cluster / Deployment Role' Policy Assignment" or
 self.breadcrumb.active_location == "'Deployment Role' Policy Assignment")
)

[docs]class DeploymentRoleCollection(BaseCollection):
 """Collection object for the :py:class:'cfme.infrastructure.deployment_role.DeploymentRoles'"""

 def __init__(self, appliance):
 self.appliance = appliance

[docs] def instantiate(self, name, provider):
 return DeploymentRoles(self, name, provider)

[docs] def all(self, provider):
 view = navigate_to(self, 'All')
 roles = [self.instantiate(name=item.name, provider=provider)
 for item in view.entities.get_all()]
 return roles

[docs] def delete(self, *roles):
 """Delete one or more Deployment Role from list of Deployment Roles

 Args:
 One or Multiple 'cfme.infrastructure.deployment_role.DeploymentRoles' objects
 """

 view = navigate_to(self, 'All')

 if view.entities.get_all(surf_pages=True) and roles:
 for role in roles:
 try:
 view.entities.get_entity(role.name).check()
 except ItemNotFound:
 raise RoleNotFound("Deployment role {} not found".format(role.name))

 view.toolbar.configuration.item_select('Remove selected items',
 handle_alert=True)

 assert view.is_displayed
 flash_msg = ("Delete initiated for {} Clusters / Deployment Roles from the CFME "
 "Database".format(len(roles)))
 view.flash.assert_success_message(flash_msg)
 else:
 raise RoleNotFound('No Deployment Role for Deletion')

[docs]class DeploymentRoles(BaseEntity):
 """ Model of an infrastructure deployment roles in cfme

 Args:
 name: Name of the role.
 provider: provider this role is attached to
 (deployment roles available only for Openstack!).
 """
 # TODO: add deployment role creation method with cli

 def __init__(self, collection, name, provider):
 self.name = name
 self.provider = provider
 self.collection = collection
 self.appliance = self.collection.appliance

 if not provider.one_of(OpenstackInfraProvider):
 raise NotImplementedError('Deployment roles available only '
 'for Openstack provider')

[docs] def delete(self, cancel=False):
 view = navigate_to(self, 'Details')
 view.toolbar.configuration.item_select('Remove item',
 handle_alert=not cancel)

 if not cancel:
 view = self.create_view(DeploymentRoleAllView)
 assert view.is_displayed
 view.flash.assert_success_message("The selected Clusters / "
 "Deployment Roles was deleted")

@navigator.register(DeploymentRoleCollection, 'All')
[docs]class All(CFMENavigateStep):
 VIEW = DeploymentRoleAllView
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self):
 nav_select = partial(self.prerequisite_view.navigation.select, 'Compute', 'Infrastructure')
 try:
 nav_select('Deployment Roles')
 except NoSuchElementException:
 nav_select('Clusters / Deployment Roles')

@navigator.register(DeploymentRoles, 'Details')
[docs]class Details(CFMENavigateStep):
 VIEW = DeploymentRoleDetailsView
 prerequisite = NavigateToAttribute('collection', 'All')

[docs] def step(self, *args, **kwargs):
 """Navigate to the details page of Role"""
 try:
 self.prerequisite_view.entities.get_entity(by_name=self.obj.name,
 surf_pages=True).click()
 except ItemNotFound:
 raise RoleNotFound("Deployment Role {} not found".format(self.obj.name))

@navigator.register(DeploymentRoles, 'AllForProvider')
[docs]class AllForProvider(CFMENavigateStep):
 VIEW = DeploymentRoleAllForProviderView
 prerequisite = NavigateToAttribute('provider', 'Details')

[docs] def step(self):
 try:
 self.prerequisite_view.contents.relationships.click_at('Deployment Roles')
 except NameError:
 self.prerequisite_view.contents.relationships.click_at('Clusters / Deployment Roles')

@navigator.register(DeploymentRoles, 'DetailsFromProvider')
[docs]class DetailsFromProvider(CFMENavigateStep):
 VIEW = DeploymentRoleDetailsView
 prerequisite = NavigateToSibling('AllForProvider')

[docs] def step(self):
 try:
 self.prerequisite_view.entities.get_entity(by_name=self.obj.name).click()
 except ItemNotFound:
 raise RoleNotFound("Deployment Role {} not found".format(self.obj.name))

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/hosts.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.hosts

"""
utils.hosts

"""
import socket

from cfme.utils import conf
from cfme.utils.log import logger
from cfme.utils.update import update
from cfme.infrastructure import host

[docs]def get_host_data_by_name(provider_key, host_name):
 for host_obj in conf.cfme_data.get('management_systems', {})[provider_key].get('hosts', []):
 if host_name == host_obj['name']:
 return host_obj
 return None

[docs]def setup_host_creds(provider_key, host_name, remove_creds=False, ignore_errors=False):
 try:
 host_data = get_host_data_by_name(provider_key, host_name)
 test_host = host.Host(name=host_name)
 if not test_host.has_valid_credentials:
 logger.info("Setting up creds for host: %s", host_name)
 with update(test_host):
 if test_host.ip_address is None:
 test_host.ip_address = socket.gethostbyname_ex(host_name)[2][0]
 test_host.credentials = host.get_credentials_from_config(host_data['credentials'])
 elif test_host.has_valid_credentials and remove_creds:
 with update(test_host):
 test_host.credentials = host.Host.Credential(principal="", secret="",
 verify_secret="")
 except Exception as e:
 if not ignore_errors:
 raise e

[docs]def setup_all_provider_hosts_credentials():
 for provider_key in conf.cfme_data.get('management_systems', {}):
 if 'hosts' in conf.cfme_data.get('management_systems', {})[provider_key]:
 for yamlhost in conf.cfme_data.get('management_systems', {})[provider_key]['hosts']:
 setup_host_creds(provider_key, yamlhost['name'])

[docs]def setup_providers_hosts_credentials(provider_key, ignore_errors=False):
 if provider_key in conf.cfme_data.get('management_systems', {}):
 if 'hosts' in conf.cfme_data.get('management_systems', {})[provider_key]:
 for yamlhost in conf.cfme_data.get('management_systems', {})[provider_key]['hosts']:
 setup_host_creds(provider_key, yamlhost['name'], ignore_errors=ignore_errors)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/infrastructure/host.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.infrastructure.host

-*- coding: utf-8 -*-
"""A model of an Infrastructure Host in CFME."""

from navmazing import NavigateToSibling, NavigateToAttribute
from manageiq_client.api import APIException
from selenium.common.exceptions import NoSuchElementException

from cfme.base.credential import Credential as BaseCredential
from cfme.common import PolicyProfileAssignable, WidgetasticTaggable, TagPageView
from cfme.common.host_views import (
 HostAddView,
 HostDetailsView,
 HostDiscoverView,
 HostDriftAnalysis,
 HostDriftHistory,
 HostEditView,
 HostManagePoliciesView,
 HostsView,
 HostTimelinesView
)
from cfme.exceptions import ItemNotFound
from cfme.infrastructure.datastore import HostAllDatastoresView
from cfme.utils import conf
from cfme.utils.appliance import Navigatable
from cfme.utils.appliance.implementations.ui import CFMENavigateStep, navigate_to, navigator
from cfme.utils.ipmi import IPMI
from cfme.utils.log import logger
from cfme.utils.pretty import Pretty
from cfme.utils.update import Updateable
from cfme.utils.wait import wait_for

[docs]class Host(Updateable, Pretty, Navigatable, PolicyProfileAssignable, WidgetasticTaggable):
 """Model of an infrastructure host in cfme.

 Args:
 name: Name of the host.
 hostname: Hostname of the host.
 ip_address: The IP address as a string.
 custom_ident: The custom identifiter.
 host_platform: Included but appears unused in CFME at the moment.
 ipmi_address: The IPMI address.
 mac_address: The mac address of the system.
 credentials (:py:class:`Credential`): see Credential inner class.
 ipmi_credentials (:py:class:`Credential`): see Credential inner class.

 Usage:

 myhost = Host(name='vmware',
 credentials=Provider.Credential(principal='admin', secret='foobar'))
 myhost.create()

 """
 pretty_attrs = ['name', 'hostname', 'ip_address', 'custom_ident']

 def __init__(self, name=None, hostname=None, ip_address=None, custom_ident=None,
 host_platform=None, ipmi_address=None, mac_address=None, credentials=None,
 ipmi_credentials=None, interface_type='lan', provider=None, appliance=None):
 Navigatable.__init__(self, appliance=appliance)
 self.name = name
 self.quad_name = 'host'
 self.hostname = hostname
 self.ip_address = ip_address
 self.custom_ident = custom_ident
 self.host_platform = host_platform
 self.ipmi_address = ipmi_address
 self.mac_address = mac_address
 self.credentials = credentials
 self.ipmi_credentials = ipmi_credentials
 self.interface_type = interface_type
 self.db_id = None
 self.provider = provider

[docs] class Credential(BaseCredential, Updateable):
 """Provider credentials

 Args:
 **kwargs: If using IPMI type credential, ipmi = True"""

 def __init__(self, **kwargs):
 super(Host.Credential, self).__init__(**kwargs)
 self.ipmi = kwargs.get('ipmi')

[docs] def create(self, cancel=False, validate_credentials=False):
 """Creates a host in the UI.

 Args:
 cancel (bool): Whether to cancel out of the creation. The cancel is done after all the
 information present in the Host has been filled in the UI.
 validate_credentials (bool): Whether to validate credentials - if True and the
 credentials are invalid, an error will be raised.
 """
 view = navigate_to(self, "Add")
 view.fill({
 "name": self.name,
 "hostname": self.hostname or self.ip_address,
 "host_platform": self.host_platform,
 "custom_ident": self.custom_ident,
 "ipmi_address": self.ipmi_address,
 "mac_address": self.mac_address
 })
 if self.credentials is not None:
 view.endpoints.default.fill(self.credentials.view_value_mapping)
 if validate_credentials:
 view.endpoints.default.validate_button.click()
 if self.ipmi_credentials is not None:
 view.endpoints.ipmi.fill(self.ipmi_credentials.view_value_mapping)
 if validate_credentials:
 view.endpoints.ipmi.validate_button.click()
 if not cancel:
 view.add_button.click()
 flash_message = 'Host / Node " {}" was added'.format(self.name)
 else:
 view.cancel_button.click()
 flash_message = "Add of new Host / Node was cancelled by the user"
 view = self.create_view(HostsView)
 assert view.is_displayed
 view.flash.assert_success_message(flash_message)

[docs] def update(self, updates, validate_credentials=False):
 """Updates a host in the UI. Better to use utils.update.update context manager than call
 this directly.

 Args:
 updates (dict): fields that are changing.
 """

 view = navigate_to(self, "Edit")
 changed = view.fill({
 "name": updates.get("name"),
 "hostname": updates.get("hostname") or updates.get("ip_address"),
 "custom_ident": updates.get("custom_ident"),
 "ipmi_address": updates.get("ipmi_address"),
 "mac_address": updates.get("mac_address")
 })
 credentials = updates.get("credentials")
 ipmi_credentials = updates.get("ipmi_credentials")
 credentials_changed = False
 ipmi_credentials_changed = False
 if credentials is not None:
 if view.change_stored_password.is_displayed:
 view.change_stored_password.click()
 credentials_changed = view.endpoints.default.fill(credentials.view_value_mapping)
 if validate_credentials:
 view.endpoints.default.validate_button.click()
 if ipmi_credentials is not None:
 if view.change_stored_password.is_displayed:
 view.change_stored_password.click()
 ipmi_credentials_changed = view.endpoints.ipmi.fill(ipmi_credentials.view_value_mapping)
 if validate_credentials:
 view.endpoints.ipmi.validate_button.click()
 changed = any([changed, credentials_changed, ipmi_credentials_changed])
 if changed:
 view.save_button.click()
 logger.debug("Trying to save update for host with id: %s", str(self.get_db_id))
 view = self.create_view(HostDetailsView)
 view.flash.assert_success_message(
 'Host / Node "{}" was saved'.format(updates.get("name", self.name)))
 else:
 view.cancel_button.click()
 view.flash.assert_success_message(
 'Edit of Host / Node "{}" was cancelled by the user'.format(
 updates.get("name", self.name)))

[docs] def delete(self, cancel=True):
 """Deletes this host from CFME.

 Args:
 cancel (bool): Whether to cancel the deletion, defaults to True
 """
 view = navigate_to(self, "Details")
 view.toolbar.configuration.item_select("Remove item", handle_alert=not cancel)
 if not cancel:
 view = self.create_view(HostsView)
 assert view.is_displayed
 view.flash.assert_success_message("The selected Hosts / Nodes was deleted")

[docs] def load_details(self, refresh=False):
 """To be compatible with the Taggable and PolicyProfileAssignable mixins.

 Args:
 refresh (bool): Whether to perform the page refresh, defaults to False
 """
 view = navigate_to(self, "Details")
 if refresh:
 view.browser.refresh()
 view.flush_widget_cache()

[docs] def execute_button(self, button_group, button, handle_alert=False):
 view = navigate_to(self, "Details")
 view.toolbar.custom_button(button_group).item_select(button, handle_alert=handle_alert)

[docs] def power_on(self):
 view = navigate_to(self, "Details")
 view.toolbar.power.item_select("Power On", handle_alert=True)

[docs] def power_off(self):
 view = navigate_to(self, "Details")
 view.toolbar.power.item_select("Power Off", handle_alert=True)

[docs] def get_power_state(self):
 return self.get_detail("Properties", "Power State")

[docs] def refresh(self, cancel=False):
 """Perform 'Refresh Relationships and Power States' for the host.

 Args:
 cancel (bool): Whether the action should be cancelled, default to False
 """
 view = navigate_to(self, "Details")
 view.toolbar.configuration.item_select("Refresh Relationships and Power States",
 handle_alert=cancel)

[docs] def wait_for_host_state_change(self, desired_state, timeout=300):
 """Wait for Host to come to desired state. This function waits just the needed amount of
 time thanks to wait_for.

 Args:
 desired_state (str): 'on' or 'off'
 timeout (int): Specify amount of time (in seconds) to wait until TimedOutError is raised
 """
 view = navigate_to(self, "All")

 def _looking_for_state_change():
 entity = view.entities.get_entity(by_name=self.name)
 return "currentstate-{}".format(desired_state) in entity.data['state']

 return wait_for(
 _looking_for_state_change,
 fail_func=view.browser.refresh,
 num_sec=timeout
)

[docs] def get_ipmi(self):
 return IPMI(
 hostname=self.ipmi_address,
 username=self.ipmi_credentials.principal,
 password=self.ipmi_credentials.secret,
 interface_type=self.interface_type
)

[docs] def get_detail(self, title, field):
 """Gets details from the details summary tables.

 Args:
 title (str): Summary Table title
 field (str): Summary table field name

 Returns: A string representing the entities of the SummaryTable's value.
 """
 view = navigate_to(self, "Details")
 return getattr(view.entities, title.lower().replace(" ", "_")).get_text_of(field)

 @property
 def exists(self):
 """Checks if the host exists in the UI.

 Returns: :py:class:`bool`
 """
 view = navigate_to(self, "All")
 try:
 view.entities.get_entity(by_name=self.name, surf_pages=True)
 except ItemNotFound:
 return False
 else:
 return True

 @property
 def has_valid_credentials(self):
 """Checks if host has valid credentials save.

 Returns: :py:class:`bool`
 """
 view = navigate_to(self, "All")
 entity = view.entities.get_entity(by_name=self.name, surf_pages=True)
 return entity.data['creds'].strip().lower() == "checkmark"

[docs] def update_credentials_rest(self, credentials):
 """ Updates host's credentials via rest api

 Args:
 credentials (dict) : credentials from yaml file
 Returns: ``True`` if credentials are saved and valid; ``False`` otherwise
 """
 # TODO: Move to Sentaku
 try:
 host = self.appliance.rest_api.collections.hosts.get(name=self.name)
 host.action.edit(credentials={"userid": credentials.principal,
 "password": credentials.secret})
 except APIException:
 return False

[docs] def get_datastores(self):
 """Gets list of all datastores used by this host.

 Returns: :py:class:`list` of datastores names
 """
 host_details_view = navigate_to(self, "Details")
 host_details_view.entities.relationships.click_at("Datastores")
 datastores_view = self.create_view(HostAllDatastoresView)
 assert datastores_view.is_displayed
 return [entity.name for entity in datastores_view.entites.get_all_()]

 @property
 def get_db_id(self):
 if self.db_id is None:
 self.db_id = self.appliance.host_id(self.name)
 return self.db_id
 else:
 return self.db_id

[docs] def run_smartstate_analysis(self):
 """Runs smartstate analysis on this host.

 Note:
 The host must have valid credentials already set up for this to work.
 """
 view = navigate_to(self, "Details")
 view.toolbar.configuration.item_select("Perform SmartState Analysis", handle_alert=True)
 view.flash.assert_success_message('"{}": Analysis successfully initiated'.format(self.name))

[docs] def check_compliance(self, timeout=240):
 """Initiates compliance check and waits for it to finish."""
 view = navigate_to(self, "Details")
 original_state = self.compliance_status
 view.toolbar.policy.item_select("Check Compliance of Last Known Configuration",
 handle_alert=True)
 view.flash.assert_no_error()
 wait_for(
 lambda: self.compliance_status != original_state,
 num_sec=timeout, delay=5, message="compliance of {} checked".format(self.name)
)

 @property
 def compliance_status(self):
 """Returns the title of the compliance SummaryTable. The title contains datetime so it can
 be compared.

 Returns:
 :py:class:`NoneType` if no title is present (no compliance checks before), otherwise str
 """
 view = navigate_to(self, "Details")
 view.browser.refresh()
 return self.get_detail("Compliance", "Status")

 @property
 def is_compliant(self):
 """Check if the Host is compliant.

 Returns:
 :py:class:`bool`
 """
 text = self.compliance_status.strip().lower()
 if text.startswith("non-compliant"):
 return False
 elif text.startswith("compliant"):
 return True
 else:
 raise ValueError("{} is not a known state for compliance".format(text))

[docs] def equal_drift_results(self, drift_section, section, *indexes):
 """Compares drift analysis results of a row specified by it's title text.

 Args:
 drift_section (str): Title text of the row to compare
 section (str): Accordion section where the change happened
 indexes: Indexes of results to compare starting with 0 for first row (latest result).
 Compares all available drifts, if left empty (default)

 Note:
 There have to be at least 2 drift results available for this to work.

 Returns:
 :py:class:`bool`
 """

 def _select_rows(indexes):
 for i in indexes:
 drift_history_view.history_table[i][0].click()

 # mark by indexes or mark all
 details_view = navigate_to(self, "Details")
 details_view.entities.relationships.click_at("Drift History")
 drift_history_view = self.create_view(HostDriftHistory)
 assert drift_history_view.is_displayed
 if indexes:
 _select_rows(indexes)
 else:
 # We can't compare more than 10 drift results at once
 # so when selecting all, we have to limit it to the latest 10
 rows_number = len(list(drift_history_view.history_table.rows()))
 if rows_number > 10:
 _select_rows(range(10))
 else:
 _select_rows(range(rows_number))
 drift_history_view.analyze_button.click()
 drift_analysis_view = self.create_view(HostDriftAnalysis)
 assert drift_analysis_view.is_displayed
 drift_analysis_view.drift_sections.check_node(section)
 drift_analysis_view.apply_button.click()
 if not drift_analysis_view.toolbar.all_attributes.active:
 drift_analysis_view.toolbar.all_attributes.click()
 return drift_analysis_view.drift_analysis(drift_section).is_changed

@navigator.register(Host)
[docs]class All(CFMENavigateStep):
 VIEW = HostsView
 prerequisite = NavigateToAttribute("appliance.server", "LoggedIn")

[docs] def step(self):
 try:
 self.prerequisite_view.navigation.select("Compute", "Infrastructure", "Hosts")
 except NoSuchElementException:
 self.prerequisite_view.navigation.select("Compute", "Infrastructure", "Nodes")

@navigator.register(Host)
[docs]class Details(CFMENavigateStep):
 VIEW = HostDetailsView
 prerequisite = NavigateToSibling("All")

[docs] def step(self):
 self.prerequisite_view.entities.get_entity(by_name=self.obj.name, surf_pages=True).click()

@navigator.register(Host)
[docs]class Edit(CFMENavigateStep):
 VIEW = HostEditView
 prerequisite = NavigateToSibling("Details")

[docs] def step(self):
 self.prerequisite_view.toolbar.configuration.item_select("Edit this item")

@navigator.register(Host)
[docs]class Add(CFMENavigateStep):
 VIEW = HostAddView
 prerequisite = NavigateToSibling("All")

[docs] def step(self):
 self.prerequisite_view.toolbar.configuration.item_select("Add a New item")

@navigator.register(Host)
[docs]class Discover(CFMENavigateStep):
 VIEW = HostDiscoverView
 prerequisite = NavigateToSibling("All")

[docs] def step(self):
 self.prerequisite_view.toolbar.configuration.item_select("Discover items")

@navigator.register(Host)
[docs]class PolicyAssignment(CFMENavigateStep):
 VIEW = HostManagePoliciesView
 prerequisite = NavigateToSibling("Details")

[docs] def step(self):
 self.prerequisite_view.toolbar.policy.item_select("Manage Policies")

@navigator.register(Host)
[docs]class Provision(CFMENavigateStep):
 prerequisite = NavigateToSibling("Details")

[docs] def step(self):
 self.prerequisite_view.toolbar.lifecycle.item_select("Provision this item")

@navigator.register(Host)
[docs]class Timelines(CFMENavigateStep):
 VIEW = HostTimelinesView
 prerequisite = NavigateToSibling("Details")

[docs] def step(self):
 self.prerequisite_view.toolbar.monitoring.item_select("Timelines")

@navigator.register(Host)
[docs]class EditTagsFromDetails(CFMENavigateStep):
 VIEW = TagPageView
 prerequisite = NavigateToSibling("Details")

[docs] def step(self):
 self.prerequisite_view.toolbar.policy.item_select('Edit Tags')

[docs]def get_credentials_from_config(credential_config_name):
 creds = conf.credentials[credential_config_name]
 return Host.Credential(principal=creds["username"], secret=creds["password"])

[docs]def get_from_config(provider_config_name):
 """Creates a Host object given a yaml entry in cfme_data.

 Usage:
 get_from_config('esx')

 Returns: A Host object that has methods that operate on CFME
 """
 # TODO: Include provider key in YAML and include provider object when creating
 prov_config = conf.cfme_data.get('management_hosts', {})[provider_config_name]
 credentials = get_credentials_from_config(prov_config['credentials'])
 ipmi_credentials = get_credentials_from_config(prov_config['ipmi_credentials'])
 ipmi_credentials.ipmi = True
 return Host(
 name=prov_config['name'],
 hostname=prov_config['hostname'],
 ip_address=prov_config['ipaddress'],
 custom_ident=prov_config.get('custom_ident'),
 host_platform=prov_config.get('host_platform'),
 ipmi_address=prov_config['ipmi_address'],
 mac_address=prov_config['mac_address'],
 interface_type=prov_config.get('interface_type', 'lan'),
 credentials=credentials,
 ipmi_credentials=ipmi_credentials
)

[docs]def wait_for_a_host():
 """Waits for any host to appear in the UI."""
 view = navigate_to(Host, "All")
 logger.info("Waiting for a host to appear...")
 wait_for(
 lambda: int(view.paginator.items_amount),
 fail_condition=0,
 message="Wait for any host to appear",
 num_sec=1000,
 fail_func=view.browser.refresh
)

[docs]def wait_for_host_delete(host):
 """Waits for the host to remove from the UI.

 Args:
 host (Host): host object
 """
 view = navigate_to(Host, "All")
 logger.info("Waiting for a host to delete...")
 wait_for(
 lambda: not host.exists,
 message="Wait for the host to disappear",
 num_sec=500,
 fail_func=view.browser.refresh
)

[docs]def wait_for_host_to_appear(host):
 """Waits for the host to appear in the UI.

 Args:
 host (Host): host object
 """
 view = navigate_to(Host, "All")
 logger.info("Waiting for the host to appear...")
 wait_for(
 lambda: host.exists,
 message="Wait for the host to appear",
 num_sec=1000,
 fail_func=view.browser.refresh
)

[docs]def get_all_hosts():
 """Returns names list of all hosts.

 Returns:
 list: names list of all hosts
 """
 view = navigate_to(Host, "All")
 return [entity.name for entity in view.entities.get_all(surf_pages=True)]

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/perf.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.perf

"""Functions that performance tests use."""
from fixtures.pytest_store import store
from cfme.utils.ssh import SSHClient, SSHTail
from cfme.utils.log import logger
import numpy
import time

[docs]def collect_log(ssh_client, log_prefix, local_file_name, strip_whitespace=False):
 """Collects all of the logs associated with a single log prefix (ex. evm or top_output) and
 combines to single gzip log file. The log file is then scp-ed back to the host.
 """
 log_dir = '/var/www/miq/vmdb/log/'

 log_file = '{}{}.log'.format(log_dir, log_prefix)
 dest_file = '{}{}.perf.log'.format(log_dir, log_prefix)
 dest_file_gz = '{}{}.perf.log.gz'.format(log_dir, log_prefix)

 ssh_client.run_command('rm -f {}'.format(dest_file_gz))

 status, out = ssh_client.run_command('ls -1 {}-*'.format(log_file))
 if status == 0:
 files = out.strip().split('\n')
 for lfile in sorted(files):
 ssh_client.run_command('cp {} {}-2.gz'.format(lfile, lfile))
 ssh_client.run_command('gunzip {}-2.gz'.format(lfile))
 if strip_whitespace:
 ssh_client.run_command('sed -i \'s/^ *//; s/ *$//; /^$/d; /^\s*$/d\' '
 '{}-2'.format(lfile))
 ssh_client.run_command('cat {}-2 >> {}'.format(lfile, dest_file))
 ssh_client.run_command('rm {}-2'.format(lfile))

 ssh_client.run_command('cp {} {}-2'.format(log_file, log_file))
 if strip_whitespace:
 ssh_client.run_command('sed -i \'s/^ *//; s/ *$//; /^$/d; /^\s*$/d\' '
 '{}-2'.format(log_file))
 ssh_client.run_command('cat {}-2 >> {}'.format(log_file, dest_file))
 ssh_client.run_command('rm {}-2'.format(log_file))
 ssh_client.run_command('gzip {}{}.perf.log'.format(log_dir, log_prefix))

 ssh_client.get_file(dest_file_gz, local_file_name)
 ssh_client.run_command('rm -f {}'.format(dest_file_gz))

[docs]def convert_top_mem_to_mib(top_mem):
 """Takes a top memory unit from top_output.log and converts it to MiB"""
 if top_mem[-1:] == 'm':
 num = float(top_mem[:-1])
 elif top_mem[-1:] == 'g':
 num = float(top_mem[:-1]) * 1024
 else:
 num = float(top_mem) / 1024
 return num

[docs]def generate_statistics(the_list, decimals=2):
 """Returns comma seperated statistics over a list of numbers.

 Returns: list of samples(runs), minimum, average, median, maximum,
 stddev, 90th(percentile),
 99th(percentile)
 """
 if len(the_list) == 0:
 return [0, 0, 0, 0, 0, 0, 0, 0]
 else:
 numpy_arr = numpy.array(the_list)
 minimum = round(numpy.amin(numpy_arr), decimals)
 average = round(numpy.average(numpy_arr), decimals)
 median = round(numpy.median(numpy_arr), decimals)
 maximum = round(numpy.amax(numpy_arr), decimals)
 stddev = round(numpy.std(numpy_arr), decimals)
 percentile90 = round(numpy.percentile(numpy_arr, 90), decimals)
 percentile99 = round(numpy.percentile(numpy_arr, 99), decimals)
 return [len(the_list), minimum, average, median, maximum, stddev, percentile90,
 percentile99]

[docs]def get_worker_pid(worker_type):
 """Obtains the pid of the first worker with the worker_type specified"""
 with SSHClient() as ssh_client:
 exit_status, out = ssh_client.run_command('systemctl status evmserverd 2> /dev/null | grep '
 '-m 1 \'{}\' | awk \'{{print $7}}\''.format(worker_type))
 worker_pid = str(out).strip()
 if out:
 logger.info('Obtained {} PID: {}'.format(worker_type, worker_pid))
 else:
 logger.error('Could not obtain {} PID, check evmserverd running or if specific role is'
 ' enabled...'.format(worker_type))
 assert out
 return worker_pid

[docs]def set_rails_loglevel(level, validate_against_worker='MiqUiWorker'):
 """Sets the logging level for level_rails and detects when change occured."""
 ui_worker_pid = '#{}'.format(get_worker_pid(validate_against_worker))

 logger.info('Setting log level_rails on appliance to {}'.format(level))
 yaml = store.current_appliance.get_yaml_config()
 if not str(yaml['log']['level_rails']).lower() == level.lower():
 logger.info('Opening /var/www/miq/vmdb/log/evm.log for tail')
 evm_tail = SSHTail('/var/www/miq/vmdb/log/evm.log')
 evm_tail.set_initial_file_end()

 yaml['log']['level_rails'] = level
 store.current_appliance.set_yaml_config(yaml)

 attempts = 0
 detected = False
 while (not detected and attempts < 60):
 logger.debug('Attempting to detect log level_rails change: {}'.format(attempts))
 for line in evm_tail:
 if ui_worker_pid in line:
 if 'Log level for production.log has been changed to' in line:
 # Detects a log level change but does not validate the log level
 logger.info('Detected change to log level for production.log')
 detected = True
 break
 time.sleep(1) # Allow more log lines to accumulate
 attempts += 1
 if not (attempts < 60):
 # Note the error in the logger but continue as the appliance could be slow at logging
 # that the log level changed
 logger.error('Could not detect log level_rails change.')
 evm_tail.close()
 else:
 logger.info('Log level_rails already set to {}'.format(level))

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/infrastructure/virtual_machines.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.infrastructure.virtual_machines

-*- coding: utf-8 -*-
"""A model of Infrastructure Virtual Machines area of CFME. This includes the VMs explorer tree,
quadicon lists, and VM details page.
"""
from copy import copy
from collections import namedtuple
import fauxfactory
from functools import partial
import re
from selenium.common.exceptions import NoSuchElementException

from navmazing import NavigateToSibling, NavigateToAttribute
from widgetastic.widget import Text, View
from widgetastic_patternfly import (
 Button, BootstrapSelect, BootstrapSwitch, Dropdown, Input as WInput, Tab)
from widgetastic_manageiq import (
 Accordion, ConditionalSwitchableView, ManageIQTree,
 NonJSPaginationPane, SummaryTable, TimelinesView)
from widgetastic_manageiq.vm_reconfigure import DisksTable

from cfme.base.login import BaseLoggedInPage
from cfme.common import TagPageView
from cfme.common.vm import VM, Template as BaseTemplate
from cfme.common.vm_views import (
 ManagementEngineView, ProvisionView, EditView, RetirementView, VMDetailsEntities, VMToolbar,
 VMEntities)
from cfme.exceptions import (
 CandidateNotFound, VmNotFound, OptionNotAvailable, DestinationNotFound, ItemNotFound,
 VmOrInstanceNotFound)
from cfme.fixtures import pytest_selenium as sel
from cfme.infrastructure.provider.rhevm import RHEVMProvider
from cfme.services.requests import RequestCollection
from cfme.web_ui import (
 CheckboxTree, Form, InfoBlock, Region, Quadicon, Tree, fill, flash, form_buttons,
 match_location, Table, toolbar, Calendar, Select, Input, CheckboxTable,
 summary_title, BootstrapTreeview, AngularSelect)
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep, navigate_to
from cfme.utils.conf import cfme_data
from cfme.utils.log import logger
from cfme.utils.pretty import Pretty
from cfme.utils.wait import wait_for
from cfme.utils import version, deferred_verpick

for provider specific vm/template page
QUADICON_TITLE_LOCATOR = ("//div[@id='quadicon']/../../../tr/td/a[contains(@href,'vm_infra/x_show')"
 " or contains(@href, '/show/')]")

cfg_btn = partial(toolbar.select, 'Configuration')
pol_btn = partial(toolbar.select, 'Policy')
lcl_btn = partial(toolbar.select, 'Lifecycle')
mon_btn = partial(toolbar.select, 'Monitoring')
pwr_btn = partial(toolbar.select, 'Power')

create_button = form_buttons.FormButton("Create")

manage_policies_tree = CheckboxTree("//div[@id='protect_treebox']/ul")

manage_policies_page = Region(
 locators={
 'save_button': form_buttons.save,
 })

template_select_form = Form(
 fields=[
 ('template_table', Table('//div[@id="pre_prov_div"]//table')),
 ('cancel_button', form_buttons.cancel)
]
)

snapshot_form = Form(
 fields=[
 ('name', Input('name')),
 ('description', Input('description')),
 ('snapshot_memory', Input('snap_memory')),
 ('create_button', create_button),
 ('cancel_button', form_buttons.cancel)
])

retirement_date_form = Form(fields=[
 ('retirement_date_text', Calendar("miq_date_1")),
 ('retirement_warning_select', Select("//select[@id='retirement_warn']"))
])

retire_remove_button = "//span[@id='remove_button']/a/img"

match_page = partial(match_location, controller='vm_infra', title='Virtual Machines')

drift_table = CheckboxTable("//th[normalize-space(.)='Timestamp']/ancestor::table[1]")

[docs]class InfraGenericDetailsToolbar(View):
 reload = Button(title='Reload current display')
 configuration = Dropdown('Configuration')
 policy = Dropdown('Policy')
 monitoring = Dropdown("Monitoring")
 download = Button(title='Download summary in PDF format')
 lifecycle = Dropdown('Lifecycle')

[docs]class InfraVmDetailsToolbar(InfraGenericDetailsToolbar):
 """Toolbar for VM details differs from All VMs&TemplatesView
 """
 access = Dropdown("Access")
 power = Dropdown('VM Power Functions')

[docs]class VmsTemplatesAccordion(View):
 """
 The accordion on the Virtual Machines page
 """
 @View.nested
 class vmstemplates(Accordion): # noqa
 ACCORDION_NAME = 'VMs & Templates'
 tree = ManageIQTree()

 @View.nested
 class vms(Accordion): # noqa
 ACCORDION_NAME = 'VMs'
 tree = ManageIQTree()

 @View.nested
 class templates(Accordion): # noqa
 ACCORDION_NAME = 'Templates'
 tree = ManageIQTree()

[docs]class InfraVmView(BaseLoggedInPage):
 """Base view for header/nav check, inherit for navigatable views"""

 @property
 def in_infra_vms(self):
 return (
 self.logged_in_as_current_user and
 self.navigation.currently_selected == ['Compute', 'Infrastructure',
 'Virtual Machines'] and
 match_location(controller='vm_infra', title='Virtual Machines'))

[docs]class VmsTemplatesAllView(InfraVmView):
 """
 The collection page for instances
 """
 toolbar = View.nested(VMToolbar)
 sidebar = View.nested(VmsTemplatesAccordion)
 including_entities = View.include(VMEntities, use_parent=True)
 pagination = View.nested(NonJSPaginationPane)

 @property
 def is_displayed(self):
 return (
 self.in_infra_vms and
 self.sidebar.vmstemplates.tree.currently_selected == 'All VMs & Templates' and
 self.entities.title.text == 'All VMs & Templates')

[docs] def reset_page(self):
 self.entities.search.clear_search()

[docs]class VmTemplatesAllForProviderView(InfraVmView):
 toolbar = View.nested(VMToolbar)
 sidebar = View.nested(VmsTemplatesAccordion)
 including_entities = View.include(VMEntities, use_parent=True)

 @property
 def is_displayed(self):
 return (
 self.in_infra_vms and
 str(self.entities.title.text) ==
 'VM or Templates under Provider \"{}\"'.format(self.context['object'].provider.name))

[docs] def reset_page(self):
 self.entities.search.clear_search()

[docs]class VmsOnlyAllView(InfraVmView):
 toolbar = View.nested(VMToolbar)
 sidebar = View.nested(VmsTemplatesAccordion)
 including_entities = View.include(VMEntities, use_parent=True)

 @property
 def is_displayed(self):
 return (
 self.in_infra_vms and
 self.sidebar.vms.tree.currently_selected == 'All VMs' and
 self.entities.title.text == 'All VMs')

[docs] def reset_page(self):
 self.entities.search.clear_search()

[docs]class TemplatesOnlyAllView(InfraVmView):
 toolbar = View.nested(VMToolbar)
 sidebar = View.nested(VmsTemplatesAccordion)
 including_entities = View.include(VMEntities, use_parent=True)

 @property
 def is_displayed(self):
 return (
 self.in_infra_vms and
 self.sidebar.templates.tree.currently_selected == 'All Templates' and
 self.entities.title.text == 'All Templates')

[docs]class InfraVmSummaryView(VMDetailsEntities):
 operating_ranges = SummaryTable(title="Normal Operating Ranges (over 30 days)")
 datastore_allocation = SummaryTable(title="Datastore Allocation Summary")
 datastore_usage = SummaryTable(title="Datastore Actual Usage Summary")

[docs]class InfraVmDetailsView(InfraVmView):
 title = Text('#explorer_title_text')
 toolbar = ConditionalSwitchableView(reference='entities.title')

 @toolbar.register(lambda title: "VM and Instance" in title)
 class VmsToolbar(InfraVmDetailsToolbar):
 pass

 @toolbar.register(lambda title: "VM Template and Image" in title)
 class TemplatesToolbar(InfraGenericDetailsToolbar):
 pass

 sidebar = View.nested(VmsTemplatesAccordion)
 entities = View.nested(InfraVmSummaryView)

 @property
 def is_displayed(self):
 expected_name = self.context['object'].name
 expected_provider = self.context['object'].provider.name
 try:
 relationship_provider_name = self.entities.relationships.get_text_of('Infrastructure '
 'Provider')
 except NameError:
 currently_selected = self.sidebar.vmstemplates.tree.currently_selected[-1]
 if currently_selected in ['<Archived>', '<Orphaned>']:
 return (
 self.in_infra_vms and
 self.entities.title.text == 'VM and Instance "{}"'.format(expected_name))
 self.logger.warning('No "Infrastructure Provider" Relationship, VM details view not '
 'displayed')
 return False
 return (
 self.in_infra_vms and
 self.entities.title.text == 'VM and Instance "{}"'.format(expected_name) and
 relationship_provider_name == expected_provider)

[docs]class InfraVmTimelinesView(TimelinesView, BaseLoggedInPage):
 @property
 def is_displayed(self):
 return (
 self.logged_in_as_current_user and
 self.navigation.currently_selected == ['Compute', 'Infrastructure',
 '/vm_infra/explorer'] and
 super(TimelinesView, self).is_displayed)

[docs]class InfraVmReconfigureView(BaseLoggedInPage):
 title = Text('#explorer_title_text')

 memory = BootstrapSwitch(name='cb_memory')
 # memory set to True unlocks the following (order matters - first type then value!):
 mem_size_unit = BootstrapSelect(id='mem_type')
 mem_size = WInput(id='memory_value')

 cpu = BootstrapSwitch(name='cb_cpu')
 # cpu set to True unlocks the following:
 sockets = BootstrapSelect(id='socket_count')
 cores_per_socket = BootstrapSelect(id='cores_per_socket_count')
 cpu_total = WInput() # read-only, TODO widgetastic

 disks_table = DisksTable()

 submit_button = Button('Submit', classes=[Button.PRIMARY])
 cancel_button = Button('Cancel', classes=[Button.DEFAULT])

 # The page doesn't contain enough info to ensure that it's the right VM -> always navigate
 is_displayed = False

[docs]class MigrateView(BaseLoggedInPage):
 title = Text('#explorer_title_text')

 @View.nested
 class form(View): # noqa
 submit = Button('Submit')
 cancel = Button('Cancel')

 @View.nested
 class request(Tab): # noqa
 TAB_NAME = 'Request'
 email = WInput(name='requester__owner_email')
 first_name = WInput(name='requester__owner_first_name')
 last_name = WInput(name='requester__owner_last_name')
 notes = WInput(name='requester__request_notes')
 manager_name = WInput(name='requester__owner_manager')

 @View.nested
 class environment(Tab): # noqa
 TAB_NAME = 'Environment'
 # Infra
 datacenter = BootstrapSelect('environment__placement_dc_name')
 cluster = BootstrapSelect('environment__placement_cluster_name')
 resource_pool = BootstrapSelect('environment__placement_rp_name')
 folder = BootstrapSelect('environment__placement_folder_name')
 host_filter = BootstrapSelect('environment__host_filter')
 host_name = Table('//div[@id="prov_host_div"]/table')
 datastore_filter = BootstrapSelect('environment__ds_filter')
 datastore_name = Table('//div[@id="prov_ds_div"]/table')

 @View.nested
 class schedule(Tab): # noqa
 TAB_NAME = 'Schedule'
 # TODO radio widget #
 # schedule_type = RadioWidget('schedule__schedule_type')

 @property
 def is_displayed(self):
 # Nothing is shown
 return False

[docs]class VMDisk(
 namedtuple('VMDisk', ['filename', 'size', 'size_unit', 'type', 'mode'])):
 """Represents a single VM disk

 Note:
 Cannot be changed once created.
 """
 EQUAL_ATTRS = {'type', 'mode', 'size_mb'}

 def __eq__(self, other):
 # If both have filename, it's easy
 if self.filename and other.filename:
 return self.filename == other.filename
 # If one of filenames is None (before disk is created), compare the rest
 for attr in self.EQUAL_ATTRS:
 if getattr(self, attr) != getattr(other, attr):
 return False
 return True

 @property
 def size_mb(self):
 return self.size * 1024 if self.size_unit == 'GB' else self.size

[docs]class VMHardware(object):
 """Represents VM's hardware, i.e. CPU (cores, sockets) and memory
 """
 EQUAL_ATTRS = {'cores_per_socket', 'sockets', 'mem_size_mb'}

 def __init__(self, cores_per_socket=None, sockets=None, mem_size=None, mem_size_unit='MB'):
 self.cores_per_socket = cores_per_socket
 self.sockets = sockets
 self.mem_size = mem_size
 self.mem_size_unit = mem_size_unit

 def __eq__(self, other):
 for attr in self.EQUAL_ATTRS:
 if getattr(self, attr) != getattr(other, attr):
 return False
 return True

 @property
 def mem_size_mb(self):
 return self.mem_size * 1024 if self.mem_size_unit == 'GB' else self.mem_size

[docs]class VMConfiguration(Pretty):
 """Represents VM's full configuration - hardware, disks and so forth

 Args:
 vm: VM that exists within current appliance

 Note:
 It can be only instantiated by fetching an existing VM's configuration, as it is designed
 to be used to reconfigure an existing VM.
 """
 pretty_attrs = ['hw', 'num_disks']

 def __init__(self, vm):
 self.hw = VMHardware()
 self.disks = []
 self.vm = vm
 self._load()

 def __eq__(self, other):
 return (
 (self.hw == other.hw) and (self.num_disks == other.num_disks) and
 all(disk in other.disks for disk in self.disks))

 def _load(self):
 """Loads the configuration from the VM object's appliance (through DB)
 """
 appl_db = self.vm.appliance.db.client

 # Hardware
 ems = appl_db['ext_management_systems']
 vms = appl_db['vms']
 hws = appl_db['hardwares']
 hw_data = appl_db.session.query(ems, vms, hws).filter(
 ems.name == self.vm.provider.name).filter(
 vms.ems_id == ems.id).filter(
 vms.name == self.vm.name).filter(
 hws.vm_or_template_id == vms.id
).first().hardwares
 self.hw = VMHardware(
 hw_data.cpu_cores_per_socket, hw_data.cpu_sockets, hw_data.memory_mb, 'MB')
 hw_id = hw_data.id

 # Disks
 disks = appl_db['disks']
 disks_data = appl_db.session.query(disks).filter(
 disks.hardware_id == hw_id).filter(
 disks.device_type == 'disk'
).all()
 for disk_data in disks_data:
 # In DB stored in bytes, but UI default is GB
 size_gb = disk_data.size / (1024 ** 3)
 self.disks.append(
 VMDisk(
 filename=disk_data.filename,
 size=size_gb,
 size_unit='GB',
 type=disk_data.disk_type,
 mode=disk_data.mode
))

[docs] def copy(self):
 """Returns a copy of this configuration
 """
 config = VMConfiguration.__new__(VMConfiguration)
 config.hw = copy(self.hw)
 # We can just make shallow copy here because disks can be only added or deleted, not edited
 config.disks = self.disks[:]
 config.vm = self.vm
 return config

[docs] def add_disk(self, size, size_unit='GB', type='thin', mode='persistent'):
 """Adds a disk to the VM

 Args:
 size: Size of the disk
 size_unit: Unit of size ('MB' or 'GB')
 type: Type of the disk ('thin' or 'thick')
 mode: Mode of the disk ('persistent', 'independent_persistent' or
 'independent_nonpersistent')

 Note:
 This method is designed to correspond with the DB, not with the UI.
 In the UI, dependency is represented by a separate Yes / No option which is _incorrect_
 design that we don't follow. Correctly, mode should be a selectbox of 3 items:
 Persistent, Independent Persistent and Independent Nonpersistent.
 Just Nonpersistent is an invalid setup that UI currently (5.8) allows.
 """
 # New disk doesn't have a filename, until actually added
 disk = VMDisk(
 filename=None, size=size, size_unit=size_unit, type=type, mode=mode)
 self.disks.append(disk)
 return disk

[docs] def delete_disk(self, filename=None, index=None):
 """Removes a disk of given filename or index"""
 if filename:
 disk = [disk for disk in self.disks if disk.filename == filename][0]
 self.disks.remove(disk)
 elif index:
 del self.disks[index]
 else:
 raise TypeError("Either filename or index must be specified")

 @property
 def num_disks(self):
 return len(self.disks)

[docs] def get_changes_to_fill(self, other_configuration):
 """ Returns changes to be applied to this config to reach the other config

 Note:
 Result of this method is used for form filling by VM's reconfigure method.
 """
 changes = {}
 changes['disks'] = []
 for key in ['cores_per_socket', 'sockets']:
 if getattr(self.hw, key) != getattr(other_configuration.hw, key):
 changes[key] = str(getattr(other_configuration.hw, key))
 changes['cpu'] = True
 if (self.hw.mem_size != other_configuration.hw.mem_size or
 self.hw.mem_size_unit != other_configuration.hw.mem_size_unit):
 changes['memory'] = True
 changes['mem_size'] = other_configuration.hw.mem_size
 changes['mem_size_unit'] = other_configuration.hw.mem_size_unit
 for disk in self.disks + other_configuration.disks:
 if disk in self.disks and disk not in other_configuration.disks:
 changes['disks'].append({'action': 'delete', 'disk': disk, 'delete_backing': None})
 elif disk not in self.disks and disk in other_configuration.disks:
 changes['disks'].append({'action': 'add', 'disk': disk})
 return changes

[docs]class Vm(VM):
 """Represents a VM in CFME

 Args:
 name: Name of the VM
 provider_crud: :py:class:`cfme.cloud.provider.Provider` object
 template_name: Name of the template to use for provisioning
 """

[docs] class Snapshot(object):
 snapshot_tree = deferred_verpick({
 version.LOWEST: Tree("//div[@id='snapshots_treebox']/ul"),
 '5.7.0.1': BootstrapTreeview('snapshot_treebox')})

 def __init__(self, name=None, description=None, memory=None, parent_vm=None):
 super(Vm.Snapshot, self).__init__()
 self.name = name
 self.description = description
 self.memory = memory
 self.vm = parent_vm

 def _nav_to_snapshot_mgmt(self):
 snapshot_title = '"Snapshots" for Virtual Machine "{}"'.format(self.vm.name)
 if summary_title() != snapshot_title:
 self.vm.load_details()
 sel.click(InfoBlock.element("Properties", "Snapshots"))

 @property
 def exists(self):
 self._nav_to_snapshot_mgmt()
 title = self.description if self.vm.provider.one_of(RHEVMProvider) else self.name
 try:
 self.snapshot_tree.find_path_to(
 re.compile(r"{}.*?".format(title)))
 return True
 except CandidateNotFound:
 return False
 except NoSuchElementException:
 return False
 except NameError:
 return False

 def _click_tree_path(self, prop):
 """Find and click the given property in a snapshot tree path.

 Args:
 prop (str): Property to check (name or description).

 Returns:
 None
 """
 self.snapshot_tree.click_path(
 *self.snapshot_tree.find_path_to(re.compile(prop)))

 @property
 def active(self):
 """Check if the snapshot is active.

 Returns:
 bool: True if snapshot is active, False otherwise.
 """
 self._nav_to_snapshot_mgmt()
 title = self.description if self.vm.provider.one_of(RHEVMProvider) else self.name
 try:
 self._click_tree_path(title)
 if sel.is_displayed_text("{} (Active)".format(title)):
 return True
 except CandidateNotFound:
 return False
 return False

[docs] def create(self, force_check_memory=False):
 snapshot_dict = {
 'description': self.description
 }
 self._nav_to_snapshot_mgmt()
 toolbar.select('Create a new snapshot for this VM')

 if self.name is not None:
 snapshot_dict['name'] = self.name

 if force_check_memory or self.vm.provider.mgmt.is_vm_running(self.vm.name):
 snapshot_dict["snapshot_memory"] = self.memory

 fill(snapshot_form, snapshot_dict, action=snapshot_form.create_button)
 wait_for(lambda: self.exists, num_sec=300, delay=20, fail_func=sel.refresh,
 handle_exception=True)

[docs] def delete(self, cancel=False):
 self._nav_to_snapshot_mgmt()

 title = self.description if self.vm.provider.one_of(RHEVMProvider) else self.name
 self._click_tree_path(title)

 toolbar.select('Delete Snapshots', 'Delete Selected Snapshot', invokes_alert=True)
 sel.handle_alert(cancel=cancel)
 if not cancel:
 flash.assert_message_match('Remove Snapshot initiated for 1 '
 'VM and Instance from the CFME Database')
 wait_for(lambda: not self.exists, num_sec=300, delay=20, fail_func=sel.refresh)

[docs] def delete_all(self, cancel=False):
 self._nav_to_snapshot_mgmt()
 toolbar.select('Delete Snapshots', 'Delete All Existing Snapshots', invokes_alert=True)
 sel.handle_alert(cancel=cancel)
 if not cancel:
 flash.assert_message_match('Remove All Snapshots initiated for 1 VM and '
 'Instance from the CFME Database')

[docs] def revert_to(self, cancel=False):
 self._nav_to_snapshot_mgmt()

 title = self.description if self.vm.provider.one_of(RHEVMProvider) else self.name
 self._click_tree_path(title)

 toolbar.select('Revert to selected snapshot', invokes_alert=True)
 sel.handle_alert(cancel=cancel)
 flash.assert_message_match('Revert To Snapshot initiated for 1 VM and Instance from '
 'the CFME Database')

[docs] def refresh(self):
 self._nav_to_snapshot_mgmt()
 toolbar.select('Reload current display')

 # POWER CONTROL OPTIONS
 SUSPEND = "Suspend"
 POWER_ON = "Power On"
 POWER_OFF = "Power Off"
 GUEST_RESTART = "Restart Guest"
 GUEST_SHUTDOWN = "Shutdown Guest"
 RESET = "Reset"
 # POWER STATE
 STATE_ON = "on"
 STATE_OFF = "off"
 STATE_SUSPENDED = "suspended"

 ALL_LIST_LOCATION = "infra_vms"
 TO_OPEN_EDIT = "Edit this VM"
 TO_OPEN_RECONFIGURE = "Reconfigure this VM"
 TO_RETIRE = "Retire this VM"
 VM_TYPE = "Virtual Machine"

[docs] def power_control_from_provider(self, option):
 """Power control a vm from the provider

 Args:
 option: power control action to take against vm

 Raises:
 OptionNotAvailable: option parm must have proper value
 """
 if option == Vm.POWER_ON:
 self.provider.mgmt.start_vm(self.name)
 elif option == Vm.POWER_OFF:
 self.provider.mgmt.stop_vm(self.name)
 elif option == Vm.SUSPEND:
 self.provider.mgmt.suspend_vm(self.name)
 # elif reset:
 # elif shutdown:
 else:
 raise OptionNotAvailable(option + " is not a supported action")

[docs] def migrate_vm(self, email=None, first_name=None, last_name=None,
 host_name=None, datastore_name=None):
 navigate_to(self, 'Migrate')
 first_name = first_name or fauxfactory.gen_alphanumeric()
 last_name = last_name or fauxfactory.gen_alphanumeric()
 email = email or "{}@{}.test".format(first_name, last_name)
 try:
 prov_data = cfme_data["management_systems"][self.provider.key]["provisioning"]
 except (KeyError, IndexError):
 raise ValueError("You have to specify the correct options in cfme_data.yaml")
 provisioning_data = {
 "first_name": first_name,
 "last_name": last_name,
 "email": email,
 "host_name": {"name": prov_data.get("host")},
 }
 if not self.provider.one_of(RHEVMProvider):
 provisioning_data["datastore_name"] = {"name": prov_data.get("datastore")}
 from cfme.provisioning import provisioning_form
 fill(provisioning_form, provisioning_data, action=provisioning_form.submit_button)

[docs] def clone_vm(self, email=None, first_name=None, last_name=None,
 vm_name=None, provision_type=None):
 navigate_to(self, 'Clone')
 first_name = first_name or fauxfactory.gen_alphanumeric()
 last_name = last_name or fauxfactory.gen_alphanumeric()
 email = email or "{}@{}.test".format(first_name, last_name)
 try:
 prov_data = cfme_data["management_systems"][self.provider.key]["provisioning"]
 except (KeyError, IndexError):
 raise ValueError("You have to specify the correct options in cfme_data.yaml")
 provisioning_data = {
 "first_name": first_name,
 "last_name": last_name,
 "email": email,
 "provision_type": provision_type,
 "vm_name": vm_name,
 "host_name": {"name": prov_data.get("host")},
 "datastore_name": {"name": prov_data.get("datastore")},
 "vlan": prov_data.get("vlan")
 }
 from cfme.provisioning import provisioning_form
 fill(provisioning_form, provisioning_data, action=provisioning_form.submit_button)

[docs] def publish_to_template(self, template_name, email=None, first_name=None, last_name=None):
 self.load_details()
 lcl_btn("Publish this VM to a Template")
 first_name = first_name or fauxfactory.gen_alphanumeric()
 last_name = last_name or fauxfactory.gen_alphanumeric()
 email = email or "{}@{}.test".format(first_name, last_name)
 try:
 prov_data = cfme_data["management_systems"][self.provider.key]["provisioning"]
 except (KeyError, IndexError):
 raise ValueError("You have to specify the correct options in cfme_data.yaml")

 provisioning_data = {
 "first_name": first_name,
 "last_name": last_name,
 "email": email,
 "vm_name": template_name,
 "host_name": {"name": prov_data.get("host")},
 "datastore_name": {"name": prov_data.get("datastore")},
 }
 from cfme.provisioning import provisioning_form
 fill(provisioning_form, provisioning_data, action=provisioning_form.submit_button)
 cells = {'Description': 'Publish from [{}] to [{}]'.format(self.name, template_name)}
 provision_request = RequestCollection(self.appliance).instantiate(cells=cells)
 provision_request.wait_for_request()
 return Template(template_name, self.provider)

 @property
 def total_snapshots(self):
 """Returns the number of snapshots for this VM. If it says ``None``, returns ``0``."""
 snapshots = self.get_detail(properties=("Properties", "Snapshots")).strip().lower()
 if snapshots == "none":
 return 0
 else:
 return int(snapshots)

 @property
 def current_snapshot_name(self):
 """Returns the current snapshot name."""
 self.load_details(refresh=True)
 sel.click(InfoBlock("Properties", "Snapshots"))
 text = sel.text("//a[contains(normalize-space(.), '(Active)')]|"
 "//li[contains(normalize-space(.), '(Active)')]").strip()
 # In 5.6 the locator returns the entire tree string, snapshot name is after a newline
 return re.sub(r"\s*\(Active\)$", "", text.split('\n')[-1:][0])

 @property
 def current_snapshot_description(self):
 """Returns the current snapshot description."""
 self.load_details(refresh=True)
 sel.click(InfoBlock("Properties", "Snapshots"))
 l = "|".join([
 # Newer
 "//label[normalize-space(.)='Description']/../div/p",
 # Older
 "//td[@class='key' and normalize-space(.)='Description']/.."
 "/td[not(contains(@class, 'key'))]"])
 return sel.text(l).strip()

 @property
 def genealogy(self):
 return Genealogy(self)

[docs] def get_vm_via_rest(self):
 return self.appliance.rest_api.collections.vms.get(name=self.name)

[docs] def get_collection_via_rest(self):
 return self.appliance.rest_api.collections.vms

 @property
 def cluster_id(self):
 """returns id of cluster current vm belongs to"""
 vm = self.get_vm_via_rest()
 return int(vm.ems_cluster_id)

[docs] class CfmeRelationship(object):
 relationship_form = Form(
 fields=[
 ('server_select', AngularSelect("server_id")),
 ('save_button', form_buttons.save),
 ('reset_button', form_buttons.reset),
 ('cancel_button', form_buttons.cancel)
])

 def __init__(self, o):
 self.o = o

[docs] def navigate(self):
 self.o.load_details()
 cfg_btn('Edit Management Engine Relationship')

[docs] def is_relationship_set(self):
 return "<Not a Server>" not in self.get_relationship()

[docs] def get_relationship(self):
 self.navigate()
 rel = str(self.relationship_form.server_select.all_selected_options[0].text)
 form_buttons.cancel()
 return rel

[docs] def set_relationship(self, server_name, server_id, click_cancel=False):
 self.navigate()
 option = "{} ({})".format(server_name, server_id)

 if click_cancel:
 fill(self.relationship_form, {'server_select': option},
 action=self.relationship_form.cancel_button)
 else:
 fill(self.relationship_form, {'server_select': option})
 sel.click(form_buttons.FormButton(
 "Save Changes", dimmed_alt="Save", force_click=True))
 flash.assert_success_message("Management Engine Relationship saved")

 @property
 def configuration(self):
 return VMConfiguration(self)

[docs] def reconfigure(self, new_configuration=None, changes=None, cancel=False):
 """Reconfigures the VM based on given configuration or set of changes

 Args:
 new_configuration: VMConfiguration object with desired configuration
 changes: Set of changes to request; alternative to new_configuration
 See VMConfiguration.get_changes_to_fill to see expected format of the data
 cancel: `False` if we want to submit the changes, `True` otherwise
 """
 if not new_configuration and not changes:
 raise TypeError(
 "You must provide either new configuration or changes to apply.")

 if new_configuration:
 changes = self.configuration.get_changes_to_fill(new_configuration)

 any_changes = any(v not in [None, []] for v in changes.values())
 if not any_changes and not cancel:
 raise ValueError("No changes specified - cannot reconfigure VM.")

 vm_recfg = navigate_to(self, 'Reconfigure')

 # We gotta add disks separately
 fill_data = {k: v for k, v in changes.iteritems() if k != 'disks'}
 vm_recfg.fill(fill_data)

 for disk_change in changes['disks']:
 action, disk = disk_change['action'], disk_change['disk']
 if action == 'add':
 # TODO This conditional has to go, once the 'Dependent' switch is removed from UI
 if 'independent' in disk.mode:
 mode = disk.mode.split('independent_')[1]
 dependent = False
 else:
 mode = disk.mode
 dependent = True
 row = vm_recfg.disks_table.click_add_disk()
 row.type.fill(disk.type)
 row.mode.fill(mode)
 # Unit first, then size (otherwise JS would try to recalculate the size...)
 row[4].fill(disk.size_unit)
 row.size.fill(disk.size)
 row.dependent.fill(dependent)
 row.actions.widget.click()
 elif action == 'delete':
 row = vm_recfg.disks_table.row(name=disk.filename)
 row.delete_backing.fill(disk_change['delete_backing'])
 row.actions.widget.click()
 else:
 raise ValueError("Unknown disk change action; must be one of: add, delete")

 if cancel:
 vm_recfg.cancel_button.click()
 # TODO Cannot use VM list view for flash messages here because we don't have one yet
 vm_recfg.flash.assert_no_error()
 vm_recfg.flash.assert_message('VM Reconfigure Request was cancelled by the user')
 else:
 vm_recfg.submit_button.click()
 # TODO Cannot use Requests view for flash messages here because we don't have one yet
 vm_recfg.flash.assert_no_error()
 vm_recfg.flash.assert_message("VM Reconfigure Request was saved")

 # TODO This should (one day) return a VM reconfigure request obj that we can further use

[docs]class Template(BaseTemplate):
 REMOVE_MULTI = "Remove Templates from the VMDB"

 @property
 def genealogy(self):
 return Genealogy(self)

[docs]class Genealogy(object):
 """Class, representing genealogy of an infra object with possibility of data retrieval
 and comparison.

 Args:
 o: The :py:class:`Vm` or :py:class:`Template` object.
 """
 genealogy_tree = deferred_verpick({
 version.LOWEST: CheckboxTree("//div[@id='genealogy_treebox']/ul"),
 5.7: BootstrapTreeview('genealogy_treebox')
 })

 section_comparison_tree = CheckboxTree("//div[@id='all_sections_treebox']/div/table")
 apply_button = form_buttons.FormButton("Apply sections")

 mode_mapping = {
 "exists": "Exists Mode",
 "details": "Details Mode",
 }

 attr_mapping = {
 "all": "All Attributes",
 "different": "Attributes with different values",
 "same": "Attributes with same values",
 }

 def __init__(self, o):
 self.o = o

[docs] def navigate(self):
 self.o.load_details()
 sel.click(InfoBlock.element("Relationships", "Genealogy"))

[docs] def compare(self, *objects, **kwargs):
 """Compares two or more objects in the genealogy.

 Args:
 *objects: :py:class:`Vm` or :py:class:`Template` or :py:class:`str` with name.

 Keywords:
 sections: Which sections to compare.
 attributes: `all`, `different` or `same`. Default: `all`.
 mode: `exists` or `details`. Default: `exists`."""
 sections = kwargs.get("sections")
 attributes = kwargs.get("attributes", "all").lower()
 mode = kwargs.get("mode", "exists").lower()
 assert len(objects) >= 2, "You must specify at least two objects"
 objects = map(lambda o: o.name if isinstance(o, (Vm, Template)) else o, objects)
 self.navigate()
 for obj in objects:
 if not isinstance(obj, list):
 path = self.genealogy_tree.find_path_to(obj)
 self.genealogy_tree.check_node(*path)
 toolbar.select("Compare selected VMs")
 # COMPARE PAGE
 flash.assert_no_errors()
 if sections is not None:
 map(lambda path: self.section_comparison_tree.check_node(*path), sections)
 sel.click(self.apply_button)
 flash.assert_no_errors()
 # Set requested attributes sets
 toolbar.select(self.attr_mapping[attributes])
 # Set the requested mode
 toolbar.select(self.mode_mapping[mode])

 @property
 def tree(self):
 """Returns contents of the tree with genealogy"""
 self.navigate()
 return self.genealogy_tree.read_contents()

 @property
 def ancestors(self):
 """Returns list of ancestors of the represented object."""
 self.navigate()
 path = self.genealogy_tree.find_path_to(re.compile(r"^.*?\(Selected\)$"))
 if not path:
 raise ValueError("Something wrong happened, path not found!")
 processed_path = []
 for step in path[:-1]:
 # We will remove the (parent) and (Selected) suffixes
 processed_path.append(re.sub(r"\s*(?:\(Current\)|\(Parent\))$", "", step))
 return processed_path

###
Multi-object functions
#
todo: to check and probably remove this function. it might be better off refactoring whole file
def _method_setup(vm_names, provider_crud=None):
 """ Reduces some redundant code shared between methods """
 if isinstance(vm_names, basestring):
 vm_names = [vm_names]

 if provider_crud:
 provider_crud.load_all_provider_vms()
 else:
 navigate_to(Vm, 'VMsOnly')
 from cfme.web_ui import paginator
 if paginator.page_controls_exist():
 paginator.results_per_page(1000)
 for vm_name in vm_names:
 sel.check(Quadicon(vm_name, 'vm').checkbox())

[docs]def find_quadicon(vm_name):
 """Find and return a quadicon belonging to a specific vm

 Args:
 vm: vm name as displayed at the quadicon
 Returns: entity of appropriate class
 """
 # todo: VMs have such method, so, this function is good candidate for removal
 view = navigate_to(Vm, 'VMsOnly')
 try:
 return view.entites.get_entity(vm_name, surf_pages=True)
 except ItemNotFound:
 raise VmNotFound("VM '{}' not found in UI!".format(vm_name))

[docs]def remove(vm_names, cancel=True, provider_crud=None):
 """Removes multiple VMs from CFME VMDB

 Args:
 vm_names: List of VMs to interact with
 cancel: Whether to cancel the deletion, defaults to True
 provider_crud: provider object where vm resides on (optional)
 """
 _method_setup(vm_names, provider_crud)
 cfg_btn('Remove selected items from the VMDB', invokes_alert=True)
 sel.handle_alert(cancel=cancel)

[docs]def wait_for_vm_state_change(vm_name, desired_state, timeout=300, provider_crud=None):
 """Wait for VM to come to desired state.

 This function waits just the needed amount of time thanks to wait_for.

 Args:
 vm_name: Displayed name of the VM
 desired_state: 'on' or 'off'
 timeout: Specify amount of time (in seconds) to wait until TimedOutError is raised
 provider_crud: provider object where vm resides on (optional)
 """
 def _looking_for_state_change(view, entity):
 view.toolbar.reload()
 return 'currentstate-' + desired_state in entity.data['state']

 view = navigate_to(Vm, 'VMsOnly')
 entity = view.entites.get_entity(vm_name, surf_pages=True)
 return wait_for(_looking_for_state_change, func_args=[view, entity], num_sec=timeout)

[docs]def is_pwr_option_visible(vm_names, option, provider_crud=None):
 """Returns whether a particular power option is visible.

 Args:
 vm_names: List of VMs to interact with, if from_details=True is passed, only one VM can
 be passed in the list.
 option: Power option param.
 provider_crud: provider object where vm resides on (optional)
 """
 _method_setup(vm_names, provider_crud)
 try:
 toolbar.is_greyed('Power', option)
 return True
 except NoSuchElementException:
 return False

[docs]def is_pwr_option_enabled(vm_names, option, provider_crud=None):
 """Returns whether a particular power option is enabled.

 Args:
 vm_names: List of VMs to interact with
 provider_crud: provider object where vm resides on (optional)
 option: Power option param.

 Raises:
 NoOptionAvailable:
 When unable to find the power option passed
 """
 _method_setup(vm_names, provider_crud)
 try:
 return not toolbar.is_greyed('Power', option)
 except NoSuchElementException:
 raise OptionNotAvailable("No such power option (" + str(option) + ") is available")

[docs]def do_power_control(vm_names, option, provider_crud=None, cancel=True):
 """Executes a power option against a list of VMs.

 Args:
 vm_names: List of VMs to interact with
 option: Power option param.
 provider_crud: provider object where vm resides on (optional)
 cancel: Whether or not to cancel the power control action
 """
 _method_setup(vm_names, provider_crud)

 if (is_pwr_option_visible(vm_names, provider_crud=provider_crud, option=option) and
 is_pwr_option_enabled(vm_names, provider_crud=provider_crud, option=option)):
 pwr_btn(option, invokes_alert=True)
 sel.handle_alert(cancel=cancel)

[docs]def perform_smartstate_analysis(vm_names, provider_crud=None, cancel=True):
 """Executes a refresh relationships action against a list of VMs.

 Args:
 vm_names: List of VMs to interact with
 provider_crud: provider object where vm resides on (optional)
 cancel: Whether or not to cancel the refresh relationships action
 """
 _method_setup(vm_names, provider_crud)
 cfg_btn('Perform SmartState Analysis', invokes_alert=True)
 sel.handle_alert(cancel=cancel)

[docs]def get_all_vms(do_not_navigate=False):
 """Returns list of all vms"""
 if not do_not_navigate:
 navigate_to(Vm, 'VMsOnly')
 return [q.name for q in Quadicon.all("vm")]

[docs]def get_number_of_vms(do_not_navigate=False):
 """
 Returns the total number of VMs visible to the user,
 including those archived or orphaned
 """
 logger.info("Getting number of vms")
 if not do_not_navigate:
 navigate_to(Vm, 'VMsOnly')
 from cfme.web_ui import paginator
 if not paginator.page_controls_exist():
 logger.debug("No page controls")
 return 0
 total = paginator.rec_total()
 logger.debug("Number of VMs: %s", total)
 return int(total)

@navigator.register(Template, 'All')
@navigator.register(Vm, 'All')
[docs]class VmAllWithTemplates(CFMENavigateStep):
 VIEW = VmsTemplatesAllView
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self):
 self.prerequisite_view.navigation.select('Compute', 'Infrastructure', 'Virtual Machines')
 self.view.sidebar.vmstemplates.tree.click_path('All VMs & Templates')
 if self.view.pagination.is_displayed:
 self.view.pagination.set_items_per_page(1000)

[docs] def resetter(self, *args, **kwargs):
 self.view.reset_page()

@navigator.register(Template, 'AllForProvider')
@navigator.register(Vm, 'AllForProvider')
[docs]class VmAllWithTemplatesForProvider(CFMENavigateStep):
 VIEW = VmTemplatesAllForProviderView
 prerequisite = NavigateToSibling('All')

[docs] def step(self, *args, **kwargs):
 if 'provider' in kwargs:
 provider = kwargs['provider'].name
 elif self.obj.provider:
 provider = self.obj.provider.name
 else:
 raise DestinationNotFound("the destination isn't found")
 self.view.sidebar.vmstemplates.tree.click_path('All VMs & Templates', provider)

[docs] def resetter(self, *args, **kwargs):
 self.view.reset_page()

@navigator.register(Template, 'Details')
@navigator.register(Vm, 'Details')
[docs]class VmAllWithTemplatesDetails(CFMENavigateStep):
 VIEW = InfraVmDetailsView
 prerequisite = NavigateToSibling('All')

[docs] def step(self):
 self.prerequisite_view.sidebar.vmstemplates.tree.click_path('All VMs & Templates')
 try:
 entity_item = self.prerequisite_view.entities.get_entity(
 by_name=self.obj.name, surf_pages=True)
 except ItemNotFound:
 raise VmOrInstanceNotFound('Failed to locate VM/Template with name "{}"'.
 format(self.obj.name))
 entity_item.click()

[docs] def resetter(self, *args, **kwargs):
 self.view.toolbar.reload.click()

@navigator.register(Vm, 'VMsOnly')
[docs]class VmAll(CFMENavigateStep):
 VIEW = VmsOnlyAllView
 prerequisite = NavigateToSibling('All')

[docs] def step(self, *args, **kwargs):
 if 'filter_folder' not in kwargs:
 self.view.sidebar.vms.tree.click_path('All VMs')
 elif 'filter_folder' in kwargs and 'filter_name' in kwargs:
 self.view.sidebar.vms.tree.click_path('All VMs', kwargs['filter_folder'],
 kwargs['filter_name'])
 else:
 raise DestinationNotFound("the destination isn't found")

[docs] def resetter(self, *args, **kwargs):
 self.view.reset_page()

@navigator.register(Vm, 'VMsOnlyDetails')
[docs]class VmDetails(CFMENavigateStep):
 VIEW = InfraVmDetailsView
 prerequisite = NavigateToSibling('VMsOnly')

[docs] def step(self, *args, **kwargs):
 try:
 row = self.prerequisite_view.entities.get_entity(by_name=self.obj.name,
 surf_pages=True)
 except ItemNotFound:
 raise VmOrInstanceNotFound('Failed to locate VM/Template with name "{}"'.
 format(self.obj.name))
 row.click()

[docs] def resetter(self, *args, **kwargs):
 self.view.toolbar.reload.click()

@navigator.register(Vm, 'Migrate')
[docs]class VmMigrate(CFMENavigateStep):
 VIEW = MigrateView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.toolbar.lifecycle.item_select("Migrate this VM")

@navigator.register(Vm, 'Clone')
[docs]class VmClone(CFMENavigateStep):
 VIEW = ProvisionView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.toolbar.lifecycle.item_select("Clone this VM")

@navigator.register(Vm, 'SetRetirement')
[docs]class SetRetirement(CFMENavigateStep):
 VIEW = RetirementView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.toolbar.lifecycle.item_select('Set Retirement Date')

@navigator.register(Template, 'TemplatesOnly')
[docs]class TemplatesAll(CFMENavigateStep):
 VIEW = TemplatesOnlyAllView
 prerequisite = NavigateToSibling('All')

[docs] def step(self, *args, **kwargs):
 if 'filter_folder' not in kwargs:
 self.view.sidebar.templates.tree.click_path('All Templates')
 elif 'filter_folder' in kwargs and 'filter_name' in kwargs:
 self.view.sidebar.templates.tree.click_path('All Templates', kwargs['filter_folder'],
 kwargs['filter_name'])
 else:
 raise DestinationNotFound("the destination isn't found")

@navigator.register(Vm, 'Provision')
[docs]class ProvisionVM(CFMENavigateStep):
 VIEW = ProvisionView
 prerequisite = NavigateToSibling('All')

[docs] def step(self, *args, **kwargs):
 self.prerequisite_view.toolbar.lifecycle.item_select('Provision VMs')

@navigator.register(Vm, 'Timelines')
[docs]class Timelines(CFMENavigateStep):
 VIEW = InfraVmTimelinesView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.toolbar.monitoring.item_select('Timelines')

@navigator.register(Vm, 'Reconfigure')
[docs]class VmReconfigure(CFMENavigateStep):
 VIEW = InfraVmReconfigureView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.toolbar.configuration.item_select('Reconfigure this VM')

@navigator.register(Vm, 'Edit')
[docs]class VmEdit(CFMENavigateStep):
 VIEW = EditView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.toolbar.configuration.item_select('Edit this VM')

@navigator.register(Vm, 'EditManagementEngineRelationship')
[docs]class VmEngineRelationship(CFMENavigateStep):
 VIEW = ManagementEngineView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.toolbar.configuration.item_select(
 'Edit Management Engine Relationship')

@navigator.register(Template, 'EditTagsFromDetails')
@navigator.register(Vm, 'EditTagsFromDetails')
[docs]class EditTagsFromDetails(CFMENavigateStep):
 VIEW = TagPageView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.toolbar.policy.item_select('Edit Tags')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/tracer.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.tracer

"""
To use the function tracer, simply import the trace object and wrap a function with it

from utils.tracer import trace::

 @trace(scope=3)
 def func():
 print("something")

"""
import sys
from cfme.utils.log import logger
from functools32 import wraps

[docs]class FileStore(object):
 def __init__(self):
 """Simple file cacher

 A file store object is simple a cache of the file so that it doesn't have
 to be read each time. the __getitem__ function simple checks to see if the file is
 already present in the cache, if it is it serves it, if not it caches the file or
 returns a blank list if the file could not be read.
 """
 self._store = {}

 def __getitem__(self, name):
 if name in self._store:
 return self._store[name]
 else:
 try:
 self._store[name] = open(name, "r").readlines()
 return self._store[name]
 except IOError:
 return []

file_store = FileStore()

[docs]def trace(scope=1, file_name_limit=None):
 """ Very simple tracer for functions and tests

 The tracer module is a very simple tracer that prints out lines of code as they are
 executed. It is useful when debugging tests so that you can actually see the lines of
 code being executed and hence determine where blocks are happening. This is not a
 substitute for good logging but a simple enhancement.

 Args:
 scope: This determines the depth of nested functions to go down, defaults to 1
 """
 frames = []

 def globaltrace(frame, why, arg):
 if frame.f_code.co_filename.endswith("tracer.py"):
 return globaltrace
 filename = frame.f_code.co_filename
 if file_name_limit not in filename:
 return globaltrace
 if why == "line":
 # line execution event
 filename = frame.f_code.co_filename
 lineno = frame.f_lineno - 1
 try:
 padding = " " * (len(str(len(file_store[filename]))) - len(str(lineno)))
 line = file_store[filename][lineno].strip("\n")
 except IndexError:
 line = ""
 if len(frames) <= scope:
 logger.debug("{}:{}:{}{} {}".format(
 len(frames),
 frame.f_code.co_name, frame.f_lineno, padding, line)
)
 if why == "call":
 frames.append(frame)
 if len(frames) <= scope:
 s = "-" * len(frames)
 c = ">" * len(frames)
 logger.debug(
 "{}{} called '{}()' from {}".format(s, c, frame.f_code.co_name, filename)
)
 if why == "return":
 if len(frames) <= scope:
 s = "-" * len(frames)
 c = "<" * len(frames)
 logger.debug("{}{} returned".format(s, c))
 frames.pop()
 return globaltrace

 # def wrap(func):
 # def _f(func, *args, **kwds):
 # sys.settrace(globaltrace)
 # result = func(*args, **kwds)
 # sys.settrace(None)
 # return result
 # return decorator(_f)(func)
 # return wrap

 def wrap(func):
 @wraps(func)
 def _f(*args, **kwds):
 sys.settrace(globaltrace)
 result = func(*args, **kwds)
 sys.settrace(None)
 return result
 return _f
 return wrap

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/infrastructure/provider/virtualcenter.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.infrastructure.provider »

 Source code for cfme.infrastructure.provider.virtualcenter

from navmazing import NavigateToSibling
from wrapanapi.virtualcenter import VMWareSystem

from cfme.common.provider import DefaultEndpoint, DefaultEndpointForm
from cfme.common.provider_views import ProviderNodesView
from cfme.exceptions import DestinationNotFound
from cfme.utils.appliance.implementations.ui import CFMENavigateStep, navigator
from . import InfraProvider
from cfme.exceptions import ItemNotFound

[docs]class VirtualCenterEndpoint(DefaultEndpoint):
 pass

[docs]class VirtualCenterEndpointForm(DefaultEndpointForm):
 pass

[docs]class VMwareProvider(InfraProvider):
 type_name = "virtualcenter"
 mgmt_class = VMWareSystem
 db_types = ["Vmware::InfraManager"]
 endpoints_form = VirtualCenterEndpointForm
 discover_dict = {"vmware": True}
 # xpath locators for elements, to be used by selenium
 _console_connection_status_element = '//*[@id="connection-status"]'
 _canvas_element = '//*[@id="remote-console" or @id="wmksContainer"]/canvas'
 _ctrl_alt_del_xpath = '//*[@id="ctrlaltdel"]'
 _fullscreen_xpath = '//*[@id="fullscreen"]'
 bad_credentials_error_msg = 'Cannot complete login due to an incorrect user name or password.'

 def __init__(self, name=None, endpoints=None, key=None, zone=None, hostname=None,
 ip_address=None, start_ip=None, end_ip=None, provider_data=None, appliance=None):
 super(VMwareProvider, self).__init__(
 name=name, endpoints=endpoints, zone=zone, key=key, provider_data=provider_data,
 appliance=appliance)
 self.hostname = hostname
 self.start_ip = start_ip
 self.end_ip = end_ip
 if ip_address:
 self.ip_address = ip_address

[docs] def deployment_helper(self, deploy_args):
 """ Used in utils.virtual_machines """
 # Called within a dictionary update. Since we want to remove key/value pairs, return the
 # entire dictionary
 deploy_args.pop('username', None)
 deploy_args.pop('password', None)
 if "allowed_datastores" not in deploy_args and "allowed_datastores" in self.data:
 deploy_args['allowed_datastores'] = self.data['allowed_datastores']

 return deploy_args

 @classmethod
[docs] def from_config(cls, prov_config, prov_key, appliance=None):
 endpoint = VirtualCenterEndpoint(**prov_config['endpoints']['default'])

 if prov_config.get('discovery_range'):
 start_ip = prov_config['discovery_range']['start']
 end_ip = prov_config['discovery_range']['end']
 else:
 start_ip = end_ip = prov_config.get('ipaddress')
 return cls(name=prov_config['name'],
 endpoints={endpoint.name: endpoint},
 zone=prov_config['server_zone'],
 key=prov_key,
 start_ip=start_ip,
 end_ip=end_ip,
 appliance=appliance)

 @property
 def view_value_mapping(self):
 return {'name': self.name,
 'prov_type': 'VMware vCenter'
 }

 # Following methods will only work if the remote console window is open
 # and if selenium focused on it. These will not work if the selenium is
 # focused on Appliance window.
[docs] def get_console_connection_status(self):
 try:
 return self.appliance.browser.widgetastic.selenium.find_element_by_xpath(
 self._console_connection_status_element).text
 except:
 raise ItemNotFound("Element not found on screen, is current focus on console window?")

[docs] def get_remote_console_canvas(self):
 try:
 return self.appliance.browser.widgetastic.selenium.find_element_by_xpath(
 self._canvas_element)
 except:
 raise ItemNotFound("Element not found on screen, is current focus on console window?")

[docs] def get_console_ctrl_alt_del_btn(self):
 try:
 return self.appliance.browser.widgetastic.selenium.find_element_by_xpath(
 self._ctrl_alt_del_xpath)
 except:
 raise ItemNotFound("Element not found on screen, is current focus on console window?")

[docs] def get_console_fullscreen_btn(self):
 try:
 return self.appliance.browser.widgetastic.selenium.find_element_by_xpath(
 self._fullscreen_xpath)
 except:
 raise ItemNotFound("Element not found on screen, is current focus on console window?")

@navigator.register(VMwareProvider, 'ProviderNodes') # matching other infra class destinations
[docs]class ProviderNodes(CFMENavigateStep):
 VIEW = ProviderNodesView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 try:
 self.prerequisite_view.contents.relationships.click_at('Hosts')
 except NameError:
 raise DestinationNotFound("Hosts aren't present on details page of this provider")

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/widgetastic/widget.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for widgetastic.widget

-*- coding: utf-8 -*-
from __future__ import unicode_literals
"""This module contains the base classes that are used to implement the more specific behaviour."""

import inspect
import re
import six
from six.moves import html_parser
from cached_property import cached_property
from collections import defaultdict, namedtuple
from copy import copy
from jsmin import jsmin
from selenium.webdriver.remote.file_detector import LocalFileDetector
from selenium.webdriver.remote.webelement import WebElement
from smartloc import Locator
from wait_for import wait_for

from .browser import Browser, BrowserParentWrapper
from .exceptions import (
 NoSuchElementException, LocatorNotImplemented, WidgetOperationFailed, DoNotReadThisWidget,
 RowNotFound)
from .log import (
 PrependParentsAdapter, create_widget_logger, logged, call_sig, create_child_logger,
 create_item_logger)
from .utils import (
 Widgetable, Fillable, ParametrizedLocator, ConstructorResolvable, attributize_string,
 normalize_space, nested_getattr, deflatten_dict)
from .xpath import quote

def do_not_read_this_widget():
 """Call inside widget's read method in case you don't want it to appear in the data."""
 raise DoNotReadThisWidget('Do not read this widget.')

def wrap_fill_method(method):
 """Generates a method that automatically coerces the first argument as Fillable."""
 @six.wraps(method)
 def wrapped(self, value, *args, **kwargs):
 return method(self, Fillable.coerce(value), *args, **kwargs)

 return wrapped

def process_parameters(parent_obj, args, kwargs):
 """Processes the widget input parameters - checks if args or kwarg values are parametrized."""
 new_args = []
 for arg in args:
 if isinstance(arg, ConstructorResolvable):
 new_args.append(arg.resolve(parent_obj))
 else:
 new_args.append(arg)

 new_kwargs = {}
 for k, v in kwargs.items():
 if isinstance(v, ConstructorResolvable):
 new_kwargs[k] = v.resolve(parent_obj)
 else:
 new_kwargs[k] = v

 return new_args, new_kwargs

class WidgetDescriptor(Widgetable):
 """This class handles instantiating and caching of the widgets on view.

 It stores the class and the parameters it should be instantiated with. Once it is accessed from
 the instance of the class where it was defined on, it passes the instance to the widget class
 followed by args and then kwargs.

 It also acts as a counter, so you can then order the widgets by their "creation" stamp.
 """
 def __init__(self, klass, *args, **kwargs):
 self.klass = klass
 self.args = args
 self.kwargs = kwargs

 def __get__(self, obj, type=None):
 if obj is None: # class access
 return self

 # Cache on WidgetDescriptor
 if self not in obj._widget_cache:
 kwargs = copy(self.kwargs)
 try:
 kwargs['logger'] = create_child_logger(obj.logger, obj._desc_name_mapping[self])
 except AttributeError:
 pass

 args, kwargs = process_parameters(obj, self.args, kwargs)
 if issubclass(self.klass, ParametrizedView):
 # Shortcut, don't cache as the ParametrizedViewRequest is not the widget yet
 return ParametrizedViewRequest(obj, self.klass, *args, **kwargs)
 else:
 obj._widget_cache[self] = self.klass(obj, *args, **kwargs)
 widget = obj._widget_cache[self]
 obj.child_widget_accessed(widget)
 return widget

 def __repr__(self):
 return '{}{}'.format(self.klass.__name__, call_sig(self.args, self.kwargs))

class ExtraData(object):
 """This class implements a simple access to the extra data passed through
 :py:class:`widgetastic.browser.Browser` object.

 .. code-block:: python

 widget.extra.foo
 # is equivalent to
 widget.browser.extra_objects['foo']
 """
 # TODO: Possibly replace it with a descriptor of some sort?
 def __init__(self, widget):
 self._widget = widget

 @property
 def _extra_objects_list(self):
 return list(six.iterkeys(self._widget.browser.extra_objects))

 def __dir__(self):
 return self._extra_objects_list

 def __getattr__(self, attr):
 try:
 return self._widget.browser.extra_objects[attr]
 except KeyError:
 raise AttributeError('Extra object {!r} was not found ({} are available)'.format(
 attr, ', '.join(self._extra_objects_list)))

class WidgetIncluder(Widgetable):
 """Includes widgets from another widget. Useful for sharing pieces of code."""
 def __init__(self, widget_class, use_parent=False):
 self.widget_class = widget_class
 self.use_parent = use_parent

 def __repr__(self):
 return '{}({})'.format(type(self).__name__, self.widget_class.__name__)

class IncludedWidget(object):
 def __init__(self, included_id, widget_name, use_parent):
 self.included_id = included_id
 self.widget_name = widget_name
 self.use_parent = use_parent

 def __get__(self, o, t=None):
 if o is None:
 return self

 return o._get_included_widget(self.included_id, self.widget_name, self.use_parent)

 def __repr__(self):
 return '{}({}, {!r})'.format(type(self).__name__, self.included_id, self.widget_name)

class WidgetMetaclass(type):
 """Metaclass that ensures that ``fill`` and ``read`` methods are logged and coerce Fillable
 properly.

 For ``fill`` methods placed in :py:class:`Widget` descendants it first wraps them using
 :py:func:`wrap_fill_method` that ensures that :py:class:`widgetastic.utils.Fillable` can be
 passed and then it wraps them in the :py:func:`widgetastic.log.logged`.

 The same happens for ``read`` except the ``wrap_fill_method`` which is only useful for ``fill``.

 Therefore, you shall not wrap any ``read`` or ``fill`` methods in
 :py:func:`widgetastic.log.logged`.
 """
 def __new__(cls, name, bases, attrs):
 new_attrs = {}
 desc_name_mapping = {}
 included_widgets = []
 for base in bases:
 for key, value in six.iteritems(getattr(base, '_desc_name_mapping', {})):
 desc_name_mapping[key] = value
 for widget_includer in getattr(base, '_included_widgets', ()):
 included_widgets.append(widget_includer)
 for widget_name in widget_includer.widget_class.cls_widget_names():
 new_attrs[widget_name] = IncludedWidget(widget_includer._seq_id, widget_name,
 widget_includer.use_parent)

 for key, value in six.iteritems(attrs):
 if inspect.isclass(value) and issubclass(value, View):
 new_attrs[key] = WidgetDescriptor(value)
 desc_name_mapping[new_attrs[key]] = key
 elif isinstance(value, WidgetIncluder):
 included_widgets.append(value)
 # Now generate accessors for each included widget
 for widget_name in value.widget_class.cls_widget_names():
 new_attrs[widget_name] = IncludedWidget(value._seq_id, widget_name,
 value.use_parent)
 elif isinstance(value, Widgetable):
 new_attrs[key] = value
 desc_name_mapping[value] = key
 for widget in value.child_items:
 if not isinstance(widget, (Widgetable, Widget)):
 continue
 desc_name_mapping[widget] = key
 elif key == 'fill':
 # handle fill() specifics
 new_attrs[key] = logged(log_args=True, log_result=True)(wrap_fill_method(value))
 elif key == 'read':
 # handle read() specifics
 new_attrs[key] = logged(log_result=True)(value)
 else:
 # Do nothing
 new_attrs[key] = value
 if 'ROOT' in new_attrs and '__locator__' not in new_attrs:
 # For handling the root locator of the View
 root = new_attrs['ROOT']
 if isinstance(root, ParametrizedLocator):
 new_attrs['__locator__'] = _gen_locator_root()
 else:
 new_attrs['__locator__'] = _gen_locator_meth(Locator(root))
 new_attrs['_included_widgets'] = tuple(sorted(included_widgets, key=lambda w: w._seq_id))
 new_attrs['_desc_name_mapping'] = desc_name_mapping
 return super(WidgetMetaclass, cls).__new__(cls, name, bases, new_attrs)

class Widget(six.with_metaclass(WidgetMetaclass, object)):
 """Base class for all UI objects.

 Does couple of things:

 * Ensures it gets instantiated with a browser or another widget as parent. If you create an
 instance in a class, it then creates a WidgetDescriptor which is then invoked on the
 instance and instantiates the widget with underlying browser.
 * Implements some basic interface for all widgets.
 """

 # Helper methods
 @staticmethod
 def include(*args, **kwargs):
 """Include another widget with exposing the given widget's widgets in this widget."""
 return WidgetIncluder(*args, **kwargs)

 def __new__(cls, *args, **kwargs):
 """Implement some typing saving magic.

 Unless you are passing a :py:class:`Widget` or :py:class:`widgetastic.browser.Browser`
 as a first argument which implies the instantiation of an actual widget, it will return
 :py:class:`WidgetDescriptor` instead which will resolve automatically inside of
 :py:class:`View` instance.

 This allows you a sort of Django-ish access to the defined widgets then.
 """
 if (args and isinstance(args[0], (Widget, Browser))) \
 or ('parent' in kwargs and isinstance(kwargs['parent'], (Widget, Browser))):
 return super(Widget, cls).__new__(cls)
 else:
 return WidgetDescriptor(cls, *args, **kwargs)

 def __init__(self, parent, logger=None):
 """If you are inheriting from this class, you **MUST ALWAYS** ensure that the inherited class
 has an init that always takes the ``parent`` as the first argument. You can do that on your
 own, setting the parent as ``self.parent`` or you can do something like this:

 .. code-block:: python

 def __init__(self, parent, arg1, arg2, logger=None):
 super(MyClass, self).__init__(parent, logger=logger)
 # or if you have somehow complex inheritance ...
 Widget.__init__(self, parent, logger=logger)
 """
 self.parent = parent
 if logger is None:
 self.logger = create_child_logger(parent.logger, type(self).__name__)
 elif isinstance(logger, PrependParentsAdapter):
 # The logger is already prepared
 self.logger = logger
 else:
 # We need a PrependParentsAdapter here.
 self.logger = create_widget_logger(type(self).__name__, logger)
 self.extra = ExtraData(self)
 self._widget_cache = {}
 self._initialized_included_widgets = {}

 def __element__(self):
 try:
 locator = self.__locator__()
 except AttributeError:
 raise AttributeError(
 '__locator__() is not defined on {} class'.format(type(self).__name__))
 else:
 if isinstance(locator, WebElement):
 return locator
 else:
 return self.parent_browser.element(locator)

 def _get_included_widget(self, includer_id, widget_name, use_parent):
 if includer_id not in self._initialized_included_widgets:
 for widget_includer in self._included_widgets:
 if widget_includer._seq_id == includer_id:
 parent = self if use_parent else self.parent
 self._initialized_included_widgets[widget_includer._seq_id] =\
 widget_includer.widget_class(parent, self.logger)
 break
 else:
 raise ValueError('Could not find includer #{}'.format(includer_id))
 return getattr(self._initialized_included_widgets[includer_id], widget_name)

 def flush_widget_cache(self):
 """FLush the widget cache recursively for the whole View tree structure"""
 for widget in self.cached_sub_widgets:
 try:
 widget.flush_widget_cache()
 except AttributeError:
 # ParametrizedViewRequest does this, we can safely ignore that
 pass
 self._widget_cache.clear()
 for widget in self._initialized_included_widgets.values():
 try:
 widget.flush_widget_cache()
 except AttributeError:
 # ParametrizedViewRequest does this, we can safely ignore that
 pass
 self._initialized_included_widgets.clear()

 @classmethod
 def cls_widget_names(cls):
 """Returns a list of widget names in the order they were defined on the class.

 Returns:
 A :py:class:`list` of :py:class:`Widget` instances.
 """
 result = []
 for key in dir(cls):
 value = getattr(cls, key)
 if isinstance(value, Widgetable):
 result.append((key, value))
 for includer in cls._included_widgets:
 result.append((None, includer))
 presorted_widgets = sorted(result, key=lambda pair: pair[1]._seq_id)
 result = []
 for name, widget in presorted_widgets:
 if isinstance(widget, WidgetIncluder):
 result.extend(widget.widget_class.cls_widget_names())
 else:
 result.append(name)
 return tuple(result)

 @property
 def widget_names(self):
 """Returns a list of widget names in the order they were defined on the class.

 Returns:
 A :py:class:`list` of :py:class:`Widget` instances.
 """
 return self.cls_widget_names()

 @property
 def hierarchy(self):
 """Returns a list of widgets from the top level to this one."""
 if not isinstance(self.parent, Widget):
 return [self]
 else:
 return self.parent.hierarchy + [self]

 @property
 def locatable_parent(self):
 """If the widget has a parent that is locatable, returns it. Otherwise returns None"""
 for locatable in list(reversed(self.hierarchy))[1:]:
 if hasattr(locatable, '__locator__') and not getattr(locatable, 'INDIRECT', False):
 return locatable
 else:
 return None

 @property
 def root_browser(self):
 return self.parent.root_browser

 @property
 def parent_browser(self):
 try:
 return self.locatable_parent.browser
 except AttributeError:
 # locatable_parent == None
 return self.root_browser

 @property
 def browser(self):
 """Returns the instance of parent browser.

 If the view defines ``__locator__`` or ``ROOT`` then a new wrapper is created that injects
 the ``parent=``

 Returns:
 :py:class:`widgetastic.browser.Browser` instance

 Raises:
 :py:class:`ValueError` when the browser is not defined, which is an error.
 """
 try:
 if hasattr(self, '__locator__'):
 # Wrap it so we have automatic parent injection
 return BrowserParentWrapper(self, self.root_browser)
 else:
 # This view has no locator, therefore just use the parent browser
 return self.root_browser
 except AttributeError:
 raise ValueError('Unknown value {!r} specified as parent.'.format(self.parent))

 @property
 def parent_view(self):
 """Returns a parent view, if the widget lives inside one.

 Returns:
 :py:class:`View` instance if the widget is defined in one, otherwise ``None``.
 """
 if isinstance(self.parent, View):
 return self.parent
 else:
 return None

 @property
 def is_displayed(self):
 """Shortcut allowing you to detect if the widget is displayed.

 If the logic behind is_displayed is more complex, you can always override this.

 Returns:
 :py:class:`bool`
 """
 return self.browser.is_displayed(self)

 @logged()
 def wait_displayed(self, timeout='10s'):
 """Wait for the element to be displayed. Uses the :py:meth:`is_displayed`

 Args:
 timout: If you want, you can override the default timeout here
 """
 wait_for(lambda: self.is_displayed, timeout=timeout, delay=0.2)

 @logged()
 def move_to(self):
 """Moves the mouse to the Selenium WebElement that is resolved by this widget.

 Returns:
 :py:class:`selenium.webdriver.remote.webelement.WebElement` instance
 """
 return self.browser.move_to_element(self)

 def child_widget_accessed(self, widget):
 """Called when a child widget of this widget gets accessed.

 Useful when eg. the containing widget needs to open for the child widget to become visible.

 Args:
 widget: The widget being accessed.
 """
 pass

 def fill(self, *args, **kwargs):
 """Interactive objects like inputs, selects, checkboxes, et cetera should implement fill.

 When you implement this method, it *MUST ALWAYS* return a boolean whether the value
 was changed. Otherwise it can break.

 For actual filling, please use :py:meth:`fill_with`. It offers richer interface for filling.

 Returns:
 A boolean whether it changed the value or not.
 """
 raise NotImplementedError(
 'Widget {} does not implement fill()!'.format(type(self).__name__))

 def read(self, *args, **kwargs):
 """Each object should implement read so it is easy to get the value of such object.

 When you implement this method, the exact return value is up to you but it *MUST* be
 consistent with what :py:meth:`fill` takes.
 """
 raise NotImplementedError(
 'Widget {} does not implement read()!'.format(type(self).__name__))

 def _process_fill_handler(self, handler):
 """Processes a given handler in the way that it is usable as a callable + its representation

 Handlers can come in variety of ways. Simplest thing is to pass a callable, it will get
 executed. The handler can also work with classes that mix in :py:class:`ClickableMixin`
 where they use the :py:meth:`CallableMixin.click` as the handler action. If you pass a
 string, it will first get resolved by getting it as an attribute of the instance. Then all
 abovementioned steps are tried.

 Args:
 handler: The handler. More explanation in the description of this method.

 Returns:
 A 2-tuple consisting of ``(action_callable, obj_for_repr)``. The ``obj_for_repr`` is an
 object that can be passed to a logger that uses ``%r``.
 """
 if isinstance(handler, six.string_types):
 try:
 handler = getattr(self, handler)
 except AttributeError:
 raise TypeError('{} does not exist on {!r}'.format(handler, self))

 if isinstance(handler, ClickableMixin):
 return (handler.click, handler)
 elif callable(handler):
 return (handler, handler)
 else:
 raise TypeError('Fill handler must be callable or clickable.')

 def fill_with(self, value, on_change=None, no_change=None):
 """Method to fill the widget, especially usable when filling in forms.

 Args:
 value: Value to fill - gets passed to :py:meth:`fill`
 on_change: Optional handler to be executed when there was a change. See
 :py:meth`_process_fill_handler` for details
 no_change: Optional handler to be executed when there was no change. See
 :py:meth`_process_fill_handler` for details

 Returns:
 Whether there was any change. Same as :py:meth:`fill`.
 """
 changed = self.fill(value)
 if changed:
 if on_change is not None:
 action, rep = self._process_fill_handler(on_change)
 self.logger.info('invoking after fill on_change=%r', rep)
 action()
 else:
 if no_change is not None:
 action, rep = self._process_fill_handler(no_change)
 self.logger.info('invoking after fill no_change=%r', rep)
 action()
 return changed

 @property
 def sub_widgets(self):
 """Returns all sub-widgets of this widget.

 Returns:
 A :py:class:`list` of :py:class:`Widget`
 """
 return [getattr(self, widget_name) for widget_name in self.widget_names]

 @property
 def cached_sub_widgets(self):
 """Returns all cached sub-widgets of this widgets.

 Returns:
 A :py:class:`list` of :py:class:`Widget`
 """
 return [
 getattr(self, widget_name)
 for widget_name in self.widget_names
 # Grab the descriptor
 if getattr(type(self), widget_name) in self._widget_cache]

 @property
 def width(self):
 return self.browser.size_of(self, parent=self.parent)[0]

 @property
 def height(self):
 return self.browser.size_of(self, parent=self.parent)[1]

 def __iter__(self):
 """Allows iterating over the widgets on the view."""
 for widget_attr in self.widget_names:
 yield getattr(self, widget_attr)

def _gen_locator_meth(loc):
 def __locator__(self): # noqa
 return loc
 return __locator__

def _gen_locator_root():
 def __locator__(self): # noqa
 return self.ROOT
 return __locator__

class View(Widget):
 """View is a kind of abstract widget that can hold another widgets. Remembers the order,
 so therefore it can function like a form with defined filling order.

 It looks like this:

 .. code-block:: python

 class Login(View):
 user = SomeInputWidget('user')
 password = SomeInputWidget('pass')
 login = SomeButtonWidget('Log In')

 def a_method(self):
 do_something()

 The view is usually instantiated with an instance of
 :py:class:`widgetastic.browser.Browser`, which will then enable resolving of all of the
 widgets defined.

 Args:
 parent: A parent :py:class:`View` or :py:class:`widgetastic.browser.Browser`
 additional_context: If the view needs some context, for example - you want to check that
 you are on the page of user XYZ but you can also be on the page for user FOO, then
 you shall use the ``additional_context`` to pass in required variables that will allow
 you to detect this.
 """
 INDIRECT = False

 def __init__(self, parent, logger=None, **kwargs):
 Widget.__init__(self, parent, logger=logger)
 self.context = kwargs.pop('additional_context', {})

 @staticmethod
 def nested(view_class):
 """Shortcut for :py:class:`WidgetDescriptor`

 Usage:

 .. code-block:: python

 class SomeView(View):
 some_widget = Widget()

 @View.nested
 class another_view(View):
 pass

 Why? The problem is counting things. When you are placing widgets themselves on a view, they
 handle counting themselves and just work. But when you are creating a nested view, that is a
 bit of a problem. The widgets are instantiated, whereas the views are placed in a class and
 wait for the :py:class:`ViewMetaclass` to pick them up, but that happens after all other
 widgets have been instantiated into the :py:class:`WidgetDescriptor`s, which has the
 consequence of things being out of order. By wrapping the class into the descriptor we do
 the job of :py:meth:`Widget.__new__` which creates the :py:class:`WidgetDescriptor` if not
 called with a :py:class:`widgetastic.browser.Browser` or :py:class:`Widget` instance as the
 first argument.

 Args:
 view_class: A subclass of :py:class:`View`
 """
 return WidgetDescriptor(view_class)

 @property
 def is_displayed(self):
 """Overrides the :py:meth:`Widget.is_displayed`. The difference is that if the view does
 not have the root locator, it assumes it is displayed.

 Returns:
 :py:class:`bool`
 """
 try:
 return super(View, self).is_displayed
 except (LocatorNotImplemented, AttributeError):
 return True

 def move_to(self):
 """Overrides the :py:meth:`Widget.move_to`. The difference is that if the view does
 not have the root locator, it returns None.

 Returns:
 :py:class:`selenium.webdriver.remote.webelement.WebElement` instance or ``None``.
 """
 try:
 return super(View, self).move_to()
 except LocatorNotImplemented:
 return None

 def fill(self, values):
 """Implementation of form filling.

 This method goes through all widgets defined on this view one by one and calls their
 ``fill`` methods appropriately.

 ``None`` values will be ignored.

 It will log any skipped fill items.
 It will log a warning if you pass any extra values for filling.

 Args:
 values: A dictionary of ``widget_name: value_to_fill``.

 Returns:
 :py:class:`bool` if the fill changed any value.
 """
 values = deflatten_dict(values)
 was_change = False
 self.before_fill(values)
 extra_keys = set(values.keys()) - set(self.widget_names)
 if extra_keys:
 self.logger.warning(
 'Extra values that have no corresponding fill fields passed: %s',
 ', '.join(extra_keys))
 for name in self.widget_names:
 if name not in values or values[name] is None:
 if name not in values:
 self.logger.debug(
 'Skipping fill of %r because value was not specified', name)
 else:
 self.logger.debug(
 'Skipping fill of %r because value was None', name)
 continue

 widget = getattr(self, name)
 try:
 value = values[name]
 if widget.fill(value):
 was_change = True
 except NotImplementedError:
 continue

 self.after_fill(was_change)
 return was_change

 def read(self):
 """Reads the contents of the view and presents them as a dictionary.

 Returns:
 A :py:class:`dict` of ``widget_name: widget_read_value`` where the values are retrieved
 using the :py:meth:`Widget.read`.
 """
 result = {}
 for widget_name in self.widget_names:
 widget = getattr(self, widget_name)
 try:
 value = widget.read()
 except (NotImplementedError, NoSuchElementException, DoNotReadThisWidget):
 continue

 result[widget_name] = value

 return result

 def before_fill(self, values):
 """A hook invoked before the loop of filling is invoked.

 Args:
 values: The same values that are passed to :py:meth:`fill`
 """
 pass

 def after_fill(self, was_change):
 """A hook invoked after all the widgets were filled.

 Args:
 was_change: :py:class:`bool` signalizing whether the :py:meth:`fill` changed anything,
 """
 pass

class ParametrizedView(View):
 """View that needs parameters to be run."""
 PARAMETERS = ()

 @classmethod
 def all(cls, browser):
 """Method that returns tuples of parameters that correspond to PARAMETRS attribute.

 It is required for proper functionality of :py:meth:`read` so it knows the exact instances
 of the view.

 Returns:
 An iterable that contains tuples. Values in the tuples must map exactly to the keys in
 the PARAMETERS class attribute.
 """
 raise NotImplementedError('You need to implement the all() classmethod')

class ParametrizedViewRequest(object):
 def __init__(self, parent_object, view_class, *args, **kwargs):
 self.parent_object = parent_object
 self.view_class = view_class
 self.args = args
 self.kwargs = kwargs

 def __call__(self, *args, **kwargs):
 if len(args) > len(self.view_class.PARAMETERS):
 raise TypeError(
 'You passed more parameters than {} accepts'.format(self.view_class.__name__))
 param_dict = {}
 for passed_arg, required_arg in zip(args, self.view_class.PARAMETERS):
 param_dict[required_arg] = passed_arg
 for key, value in kwargs.items():
 if key not in self.view_class.PARAMETERS:
 raise TypeError('Unknown view parameter {}'.format(key))
 param_dict[key] = value

 for param in self.view_class.PARAMETERS:
 if param not in param_dict:
 raise TypeError(
 'You did not pass the required parameter {} into {}'.format(
 param, self.view_class.__name__))

 new_kwargs = copy(self.kwargs)
 if 'additional_context' not in self.kwargs:
 new_kwargs['additional_context'] = {}
 new_kwargs['additional_context'].update(param_dict)
 # And finally, set up a nice logger
 parent_logger = self.parent_object.logger
 current_name = self.view_class.__name__
 # Now add the params to the name so it is class_name(args)
 current_name += call_sig((), param_dict) # no args because we process everything into dict
 new_kwargs['logger'] = create_child_logger(parent_logger, current_name)
 result = self.view_class(self.parent_object, *self.args, **new_kwargs)
 self.parent_object.child_widget_accessed(result)
 return result

 def __getitem__(self, int_or_slice):
 """Emulates list-like behaviour.

 Maps into the dict-like structure by utilizing all() to get the list of all items and then
 it picks the one selected by the list-like accessor. Supports both integers and slices.
 """
 all_items = self.view_class.all(self.parent_object.browser)
 items = all_items[int_or_slice]
 single = isinstance(int_or_slice, int)
 if single:
 items = [items]
 views = []
 for args in items:
 views.append(self(*args))

 if single:
 return views[0]
 else:
 return views

 def __iter__(self):
 for args in self.view_class.all(self.parent_object.browser):
 yield self(*args)

 def __len__(self):
 return len(self.view_class.all(self.parent_object.browser))

 def __getattr__(self, attr):
 raise AttributeError(
 'This is not an instance of {}. You need to call this object and pass the required '
 'parameters of the view.'.format(self.view_class.__name__))

 def read(self):
 # Special handling of the parametrized views
 all_presences = self.view_class.all(self.parent_object.browser)
 value = {}
 for param_tuple in all_presences:
 # For each presence store it in a dictionary
 args = param_tuple
 if len(param_tuple) < 2:
 # Single value - no tuple
 param_tuple = param_tuple[0]
 value[param_tuple] = self(*args).read()
 return value

 def fill(self, value):
 was_change = False
 if not isinstance(value, dict):
 raise ValueError('When filling parametrized view a dict is required')
 for param_tuple, fill_value in value.items():
 if not isinstance(param_tuple, tuple):
 param_tuple = (param_tuple,)
 if self(*param_tuple).fill(fill_value):
 was_change = True
 return was_change

class ClickableMixin(object):

 @logged()
 def click(self):
 return self.browser.click(self)

class GenericLocatorWidget(Widget, ClickableMixin):
 """A base class for any widgets with a locator.

 Clickable.

 Args:
 locator: Locator of the object ob the page.
 """
 ROOT = ParametrizedLocator('{@locator}')

 def __init__(self, parent, locator, logger=None):
 Widget.__init__(self, parent, logger=logger)
 self.locator = locator

 def __repr__(self):
 return '{}({!r})'.format(type(self).__name__, self.locator)

class Text(GenericLocatorWidget):
 """A widget that can represent anything that can be read from the webpage as a text content of
 a tag.

 Args:
 locator: Locator of the object on the page.
 """
 @property
 def text(self):
 return self.browser.text(self, parent=self.parent)

 def read(self):
 return self.text

class Image(GenericLocatorWidget):
 """A widget that represents an image.

 Args:
 locator: Locator of the object on the page.
 """
 @property
 def src(self):
 return self.browser.get_attribute('src', self, parent=self.parent)

 @property
 def alt(self):
 return self.browser.get_attribute('alt', self, parent=self.parent)

 @property
 def title(self):
 return self.browser.get_attribute('title', self, parent=self.parent)

class BaseInput(Widget):
 """This represents the bare minimum to interact with bogo-standard form inputs.

 Args:
 name: If you want to look the input up by name, use this parameter, pass the name.
 id: If you want to look the input up by id, use this parameter, pass the id.
 locator: If you have specific locator, use it here.
 """
 def __init__(self, parent, name=None, id=None, locator=None, logger=None):
 if (locator and (name or id)) or (name and (id or locator)) or (id and (name or locator)):
 raise TypeError('You can only pass one of name, id or locator!')
 Widget.__init__(self, parent, logger=logger)
 self.name = None
 self.id = None
 if name or id:
 if name is not None:
 id_attr = '@name={}'.format(quote(name))
 self.name = name
 elif id is not None:
 id_attr = '@id={}'.format(quote(id))
 self.id = id
 self.locator = './/*[(self::input or self::textarea) and {}]'.format(id_attr)
 else:
 self.locator = locator

 def __repr__(self):
 return '{}(locator={!r})'.format(type(self).__name__, self.locator)

 def __locator__(self):
 return self.locator

class TextInput(BaseInput):
 """This represents the bare minimum to interact with bogo-standard text form inputs.

 Args:
 name: If you want to look the input up by name, use this parameter, pass the name.
 id: If you want to look the input up by id, use this parameter, pass the id.
 locator: If you have specific locator, use it here.
 """
 @property
 def value(self):
 return self.browser.get_attribute('value', self)

 def read(self):
 return self.value

 def fill(self, value):
 current_value = self.value
 if value == current_value:
 return False
 # Clear and type everything
 self.browser.click(self)
 self.browser.clear(self)
 self.browser.send_keys(value, self)
 return True

class FileInput(BaseInput):
 """This represents the file input.

 Args:
 name: If you want to look the input up by name, use this parameter, pass the name.
 id: If you want to look the input up by id, use this parameter, pass the id.
 locator: If you have specific locator, use it here.
 """

 def read(self):
 raise DoNotReadThisWidget()

 def fill(self, value):
 with self.browser.selenium.file_detector_context(LocalFileDetector):
 self.browser.send_keys(value, self)
 return True

class Checkbox(BaseInput, ClickableMixin):
 """This widget represents the bogo-standard form checkbox.

 Args:
 name: If you want to look the input up by name, use this parameter, pass the name.
 id: If you want to look the input up by id, use this parameter, pass the id.
 locator: If you have specific locator, use it here.
 """

 @property
 def selected(self):
 return self.browser.is_selected(self)

 def read(self):
 return self.selected

 def fill(self, value):
 value = bool(value)
 current_value = self.selected
 if value == current_value:
 return False
 else:
 self.click()
 if self.selected != value:
 # TODO: More verbose here
 raise WidgetOperationFailed('Failed to set the checkbox to requested value.')
 return True

class TableColumn(Widget, ClickableMixin):
 """Represents a cell in the row."""
 def __init__(self, parent, position, logger=None):
 Widget.__init__(self, parent, logger=logger)
 self.position = position

 def __locator__(self):
 return self.browser.element('./td[{}]'.format(self.position + 1), parent=self.parent)

 def __repr__(self):
 return '{}({!r}, {!r})'.format(type(self).__name__, self.parent, self.position)

 @property
 def column_name(self):
 """If there is a name associated with this column, return it. Otherwise returns None."""
 try:
 return self.row.position_to_column_name(self.position)
 except KeyError:
 return None

 @cached_property
 def widget(self):
 """Returns the associated widget if defined. If there is none defined, returns None."""
 args = ()
 kwargs = {}
 if self.column_name is None:
 if self.position not in self.table.column_widgets:
 return None
 wcls = self.table.column_widgets[self.position]
 else:
 if self.column_name not in self.table.column_widgets:
 return None
 wcls = self.table.column_widgets[self.column_name]

 # We cannot use WidgetDescriptor's facility for instantiation as it does caching and all
 # that stuff
 if isinstance(wcls, WidgetDescriptor):
 args = wcls.args
 kwargs = wcls.kwargs
 wcls = wcls.klass
 kwargs = copy(kwargs)
 if 'logger' not in kwargs:
 kwargs['logger'] = create_child_logger(self.logger, wcls.__name__)
 return wcls(self, *args, **kwargs)

 @property
 def text(self):
 return self.browser.text(self)

 @property
 def row(self):
 return self.parent

 @property
 def table(self):
 return self.row.table

 def read(self):
 """Reads the content of the cell. If widget is present and visible, it is read, otherwise
 the text of the cell is returned.
 """
 if self.widget is not None and self.widget.is_displayed:
 return self.widget.read()
 else:
 return self.text

 def fill(self, value):
 """Fills the cell with the value if the widget is present. If not, raises a TypeError."""
 if self.widget is not None:
 return self.widget.fill(value)
 else:
 if self.text == str(value):
 self.logger.debug(
 'Not filling %d because it already has value %r even though there is no widget',
 self.column_name or self.position,
 value)
 return False
 else:
 raise TypeError(
 (
 'Cannot fill column {}, no widget and the value differs '
 '(wanted to fill {!r} but there is {!r}').format(
 self.column_name or self.position, value, self.text))

class TableRow(Widget, ClickableMixin):
 """Represents a row in the table.

 If subclassing and also changing the Column class, do not forget to set the Column to the new
 class.

 Args:
 index: Position of the row in the table.
 """
 Column = TableColumn

 def __init__(self, parent, index, logger=None):
 Widget.__init__(self, parent, logger=logger)
 self.index = index

 @property
 def table(self):
 return self.parent

 def __repr__(self):
 return '{}({!r}, {!r})'.format(type(self).__name__, self.parent, self.index)

 def __locator__(self):
 loc = self.parent.ROW_AT_INDEX.format(self.index + 1)
 return self.browser.element(loc, parent=self.parent)

 def position_to_column_name(self, position):
 """Maps the position index into the column name (pretty)"""
 return self.table.index_header_mapping[position]

 def __getitem__(self, item):
 if isinstance(item, int):
 return self.Column(self, item, logger=create_item_logger(self.logger, item))
 elif isinstance(item, six.string_types):
 index = self.table.header_index_mapping[self.table.ensure_normal(item)]
 return self.Column(self, index, logger=create_item_logger(self.logger, item))
 else:
 raise TypeError('row[] accepts only integers and strings')

 def __getattr__(self, attr):
 try:
 return self[self.table.ensure_normal(attr)]
 except KeyError:
 raise AttributeError('Cannot find column {} in the table'.format(attr))

 def __dir__(self):
 result = super(TableRow, self).__dir__()
 result.extend(self.table.attributized_headers.keys())
 return sorted(result)

 def __iter__(self):
 for i, header in enumerate(self.table.headers):
 yield header, self[i]

 def read(self):
 """Read the row - the result is a dictionary"""
 result = {}
 for i, (header, cell) in enumerate(self):
 if header is None:
 header = i
 result[header] = cell.read()
 return result

 def fill(self, value):
 """Row filling.

 Accepts either a dictionary or an iterable that can be zipped with headers to create a dict.
 """
 if isinstance(value, (list, tuple)):
 # make it a dict
 value = dict(zip(self.table.headers, value))
 elif not isinstance(value, dict):
 if self.table.assoc_column_position is None:
 raise ValueError(
 'For filling rows with single value you need to specify assoc_column')
 value = {self.table.assoc_column_position: value}

 changed = False
 for key, value in value.items():
 if value is None:
 self.logger.info('Skipping fill of %r because the value is None', key)
 continue
 else:
 self.logger.info('Filling column %r', key)

 # if the row widgets aren't visible the row needs to be clicked to edit
 if hasattr(self.parent, 'action_row') and getattr(self[key], 'widget', False):
 if not self[key].widget.is_displayed:
 self.click()
 if self[key].fill(value):
 changed = True
 return changed

class Table(Widget):
 """Basic table-handling class.

 Usage is as follows assuming the table is instantiated as ``view.table``:

 .. code-block:: python

 # List the headers
 view.table.headers # => (None, 'something', ...)
 # Access rows by their position
 view.table[0] # => gives you the first row
 # Or you can iterate through rows simply
 for row in view.table:
 do_something()
 # You can filter rows
 # The column names are "attributized"
 view.table.rows(column_name='asdf') # All rows where asdf is in "Column Name"
 # And with Django fashion:
 view.table.rows(column_name__contains='asdf')
 view.table.rows(column_name__startswith='asdf')
 view.table.rows(column_name__endswith='asdf')
 # You can put multiple filters together.
 # And you can of course query a songle row
 row = view.table.row(column_name='asdf')
 # You can also look the rows up by their indices
 rows = view.table.rows((0, 'asdf')) # First column has asdf exactly
 rows = view.table.rows((1, 'contains', 'asdf')) # Second column contains asdf
 # The partial search methods are the same like for keywords.
 # You can add multiple tuple queries and also combine them with keyword search
 # You are also able to filter based on some row-based filters
 # Yield only those rows who have data-foo=bar in their tr:
 view.table.rows(_row__attr=('data-foo', 'bar'))
 # You can do it similarly for the other operations
 view.table.rows(_row__attr_startswith=('data-foo', 'bar'))
 view.table.rows(_row__attr_endswith=('data-foo', 'bar'))
 view.table.rows(_row__attr_contains=('data-foo', 'bar'))
 # First item in the tuple is the attribute name, second the operand of the operation.
 # It is perfectly possibly to combine these queries with other kinds

 # When you have a row, you can do these things.
 row[0] # => gives you the first column cell in the row
 row['Column Name'] # => Gives you the column that is named "Column Name". Non-attributized
 row.column_name # => Gives you the column whose attributized name is "column_name"

 # Basic row column can give you text
 assert row.column_name.text == 'some text'
 # Or you can click at it
 assert row.column_name.click()

 # Table cells can contain widgets or whole groups of widgets:
 Table(locator, column_widgets={column_name_or_index: widget_class_or_definition, ...})
 # The on TableColumn instances you can access .widget
 # This is also taken into account with reading or filling
 # For filling such table, fill takes a list, one entry per row, goes from start
 table.fill([{'Column1': 'value1'}, ...])

 # You can also designate one column as "special" associative column using assoc_column
 # You can specify it with column name
 Table(locator, column_widgets={...}, assoc_column='Display Name')
 # Or by the column index
 Table(locator, column_widgets={...}, assoc_column=0)
 # When you use assoc_column, you can use dictionary instead of the list, which means that
 # you can pick the rows to fill by the value in given column.
 # The same example as previous article
 table.fill({'foo': {'Column1': 'value1'}}) # Given that the assoc_column column has 'foo'
 # on that line

 If you subclass :py:class:`Table`, :py:class:`TableRow`, or :py:class:`TableColumn`, do not
 forget to update the :py:attr:`Table.Row` and :py:attr:`TableRow.Column` in order for the
 classes to use the correct class.

 Args:
 locator: A locator to the table ``<table>`` tag.
 column_widgets: A mapping to widgets that are present in cells. Keys signify column name,
 value is the widget definition.
 assoc_column: Index or name of the column used for associative filling.
 rows_ignore_top: Number of rows to ignore from top when reading/filling.
 rows_ignore_bottom: Number of rows to ignore from bottom when reading/filling.
 top_ignore_fill: Whether to also strip these top rows for fill.
 bottom_ignore_fill: Whether to also strip these top rows for fill.
 """
 ROWS = './tbody/tr[./td]|./tr[not(./th) and ./td]'
 HEADER_IN_ROWS = './tbody/tr[1]/th'
 HEADERS = './thead/tr/th|./tr/th' + '|' + HEADER_IN_ROWS
 ROW_AT_INDEX = './tbody/tr[{0}]|./tr[not(./th)][{0}]'

 ROOT = ParametrizedLocator('{@locator}')

 Row = TableRow

 def __init__(
 self, parent, locator, column_widgets=None, assoc_column=None,
 rows_ignore_top=None, rows_ignore_bottom=None, top_ignore_fill=False,
 bottom_ignore_fill=False, logger=None):
 Widget.__init__(self, parent, logger=logger)
 self.locator = locator
 self.column_widgets = column_widgets or {}
 self.assoc_column = assoc_column
 self.rows_ignore_top = rows_ignore_top
 self.rows_ignore_bottom = rows_ignore_bottom
 self.top_ignore_fill = top_ignore_fill
 self.bottom_ignore_fill = bottom_ignore_fill

 def __repr__(self):
 return (
 '{}({!r}, column_widgets={!r}, assoc_column={!r}, rows_ignore_top={!r}, '
 'rows_ignore_bottom={!r})').format(
 type(self).__name__, self.locator, self.column_widgets, self.assoc_column,
 self.rows_ignore_top, self.rows_ignore_bottom)

 def _process_negative_index(self, nindex):
 """The semantics is pretty much the same like for ordinary list."""
 rc = self.row_count
 if (- nindex) > rc:
 raise ValueError(
 'Negative index {} wanted but we only have {} rows'.format(nindex, rc))
 return rc + nindex

 def clear_cache(self):
 """Clear all cached properties."""
 for item in [
 'headers', 'attributized_headers', 'header_index_mapping', 'index_header_mapping',
 'assoc_column_position']:
 try:
 delattr(self, item)
 except AttributeError:
 pass

 @cached_property
 def headers(self):
 result = []
 for header in self.browser.elements(self.HEADERS, parent=self):
 result.append(self.browser.text(header).strip() or None)

 without_none = [x for x in result if x is not None]

 if len(without_none) != len(set(without_none)):
 self.logger.warning(
 'Detected duplicate headers in %r. Correct functionality is not guaranteed',
 without_none)

 return tuple(result)

 def ensure_normal(self, name):
 """When you pass string in, it ensures it comes out as non-attributized string."""
 if name in self.attributized_headers:
 return self.attributized_headers[name]
 else:
 return name

 @cached_property
 def attributized_headers(self):
 """Contains mapping between attributized headers and pretty headers"""
 return {attributize_string(h): h for h in self.headers if h is not None}

 @cached_property
 def header_index_mapping(self):
 """Contains mapping between header name (pretty) and position index."""
 return {h: i for i, h in enumerate(self.headers) if h is not None}

 @cached_property
 def index_header_mapping(self):
 """Contains mapping between hposition index and header name (pretty)."""
 return {i: h for h, i in self.header_index_mapping.items()}

 @cached_property
 def assoc_column_position(self):
 """Returns the position of the column specified as associative. If not specified, None
 returned.
 """
 if self.assoc_column is None:
 return None
 elif isinstance(self.assoc_column, int):
 return self.assoc_column
 elif isinstance(self.assoc_column, six.string_types):
 if self.assoc_column in self.attributized_headers:
 header = self.attributized_headers[self.assoc_column]
 elif self.assoc_column in self.headers:
 header = self.assoc_column
 else:
 raise ValueError(
 'Could not find the assoc_value={!r} in headers'.format(self.assoc_column))
 return self.header_index_mapping[header]
 else:
 raise TypeError(
 'Wrong type passed for assoc_column= : {}'.format(type(self.assoc_column).__name__))

 def __getitem__(self, item):
 if isinstance(item, six.string_types):
 if self.assoc_column is None:
 raise TypeError('You cannot use string indices when no assoc_column specified!')
 try:
 row = self.row((self.assoc_column, item))
 except RowNotFound:
 raise KeyError(
 'Row {!r} not found in table by associative column {!r}'.format(
 item, self.assoc_column))
 at_index = row.index
 elif isinstance(item, int):
 at_index = item
 else:
 raise TypeError('Table [] accepts only strings or integers.')
 if at_index < 0:
 # To mimic the list handling
 at_index = self._process_negative_index(at_index)
 return self.Row(self, at_index, logger=create_item_logger(self.logger, item))

 def row(self, *extra_filters, **filters):
 try:
 return six.next(self.rows(*extra_filters, **filters))
 except StopIteration:
 raise RowNotFound(
 'Row not found when using filters {!r}/{!r}'.format(extra_filters, filters))

 def __iter__(self):
 return self.rows()

 def _get_number_preceeding_rows(self, row_el):
 """This is a sort of trick that helps us remove stale element errors.

 We know that correct tables only have ``<tr>`` elements next to each other. We do not want
 to pass around webelements because they can get stale. Therefore this trick will give us the
 number of elements that precede this element, effectively giving us the index of the row.

 How simple.
 """
 return self.browser.execute_script(
 jsmin("""\
 var p = []; var e = arguments[0];
 while (e.previousElementSibling)
 p.push(e = e.previousElementSibling);
 return p.length;
 """), row_el, silent=True)

 def map_column(self, column):
 """Return column position. Can accept int, normal name, attributized name."""
 if isinstance(column, int):
 return column
 else:
 try:
 return self.header_index_mapping[self.attributized_headers[column]]
 except KeyError:
 try:
 return self.header_index_mapping[column]
 except KeyError:
 raise NameError('Could not find column {!r} in the table'.format(column))

 @cached_property
 def _is_header_in_body(self):
 """Checks whether the header is erroneously specified in the body of table."""
 return len(self.browser.elements(self.HEADER_IN_ROWS, parent=self)) > 0

 def rows(self, *extra_filters, **filters):
 if not (filters or extra_filters):
 return self._all_rows()
 else:
 return self._filtered_rows(*extra_filters, **filters)

 def _all_rows(self):
 for row_pos in range(len(self.browser.elements(self.ROWS, parent=self))):
 row_pos = row_pos if not self._is_header_in_body else row_pos + 1
 yield self.Row(self, row_pos, logger=create_item_logger(self.logger, row_pos))

 def _filtered_rows(self, *extra_filters, **filters):
 # Pre-process the filters
 processed_filters = defaultdict(list)
 regexp_filters = []
 row_filters = []
 for filter_column, filter_value in six.iteritems(filters):
 if filter_column.startswith('_row__'):
 row_filters.append((filter_column.split('__', 1)[-1], filter_value))
 continue
 if '__' in filter_column:
 column, method = filter_column.rsplit('__', 1)
 else:
 column = filter_column
 method = None
 if isinstance(filter_value, re._pattern_type):
 regexp_filters.append((self.map_column(column), filter_value))
 continue

 processed_filters[self.map_column(column)].append((method, filter_value))

 for argfilter in extra_filters:
 if not isinstance(argfilter, (tuple, list)):
 raise TypeError('Wrong type passed into tuplefilters (expected tuple or list)')
 if len(argfilter) == 2:
 # Column / string match
 column, value = argfilter
 method = None
 if isinstance(value, re._pattern_type):
 regexp_filters.append((self.map_column(column), value))
 continue
 elif len(argfilter) == 3:
 # Column / method / string match
 column, method, value = argfilter
 else:
 raise ValueError(
 'tuple filters can only be (column, string) or (column, method, string)')

 processed_filters[self.map_column(column)].append((method, value))

 # Build the query
 query_parts = []
 for column_index, matchers in six.iteritems(processed_filters):
 col_query_parts = []
 for method, value in matchers:
 if method is None:
 # equals
 q = 'normalize-space(.)=normalize-space({})'.format(quote(value))
 elif method == 'contains':
 # in
 q = 'contains(normalize-space(.), normalize-space({}))'.format(quote(value))
 elif method == 'startswith':
 # starts with
 q = 'starts-with(normalize-space(.), normalize-space({}))'.format(quote(value))
 elif method == 'endswith':
 # ends with
 # This needs to be faked since selenium does not support this feature.
 q = (
 'substring(normalize-space(.), '
 'string-length(normalize-space(.)) - string-length({0}) + 1)={0}').format(
 'normalize-space({})'.format(quote(value)))
 else:
 raise ValueError('Unknown method {}'.format(method))
 col_query_parts.append(q)
 query_parts.append(
 './td[{}][{}]'.format(column_index + 1, ' and '.join(col_query_parts)))

 # Row query
 row_parts = []
 for row_action, row_value in row_filters:
 row_action = row_action.lower()
 if row_action.startswith('attr'):
 try:
 attr_name, attr_value = row_value
 except ValueError:
 raise ValueError(
 'When passing _row__{}= into the row filter, you must pass it a 2-tuple'
 .format(row_action))
 if row_action == 'attr_startswith':
 row_parts.append('starts-with(@{}, {})'.format(attr_name, quote(attr_value)))
 elif row_action == 'attr':
 row_parts.append('@{}={}'.format(attr_name, quote(attr_value)))
 elif row_action == 'attr_endswith':
 row_parts.append(
 ('substring(@{attr}, '
 'string-length(@{attr}) - string-length({value}) + 1)={value}').format(
 attr=attr_name,
 value='normalize-space({value})'.format(value=quote(attr_value))))
 elif row_action == 'attr_contains':
 row_parts.append('contains(@{}, {})'.format(attr_name, quote(attr_value)))
 else:
 raise ValueError('Unsupported action {}'.format(row_action))
 else:
 raise ValueError('Unsupported action {}'.format(row_action))

 if query_parts and row_parts:
 query = './/tr[{}][{}]'.format(' and '.join(row_parts), ' and '.join(query_parts))
 elif query_parts:
 query = './/tr[{}]'.format(' and '.join(query_parts))
 elif row_parts:
 query = './/tr[{}]'.format(' and '.join(row_parts))
 else:
 # When using ONLY regexps, we might see no query_parts, therefore default query
 query = self.ROWS

 # Preload the rows to prevent stale element exceptions
 rows = []
 for row_element in self.browser.elements(query, parent=self):
 row_pos = self._get_number_preceeding_rows(row_element)
 row_pos = row_pos if not self._is_header_in_body else row_pos + 1
 rows.append(self.Row(self, row_pos, logger=create_item_logger(self.logger, row_pos)))

 for row in rows:
 if regexp_filters:
 for regexp_column, regexp_filter in regexp_filters:
 if regexp_filter.search(row[regexp_column].text) is None:
 break
 else:
 yield row
 else:
 yield row

 def row_by_cell_or_widget_value(self, column, key):
 """Row queries do not work with embedded widgets. Therefore you can use this method.

 Args:
 column: Position or name fo the column where you are looking the value for.
 key: The value looked for

 Returns:
 :py:class:`TableRow` instance

 Raises:
 :py:class:`RowNotFound`
 """
 try:
 return self.row((column, key))
 except RowNotFound:
 for row in self.rows():
 if row[column].widget is None:
 continue
 if not row[column].widget.is_displayed:
 continue
 if row[column].widget.read() == key:
 return row
 else:
 raise RowNotFound('Row not found by {!r}/{!r}'.format(column, key))

 def read(self):
 """Reads the table. Returns a list, every item in the list is contents read from the row."""
 rows = list(self)
 # Cut the unwanted rows if necessary
 if self.rows_ignore_top is not None:
 rows = rows[self.rows_ignore_top:]
 if self.rows_ignore_bottom is not None and self.rows_ignore_bottom > 0:
 rows = rows[:-self.rows_ignore_bottom]
 if self.assoc_column_position is None:
 return [row.read() for row in rows]
 else:
 result = {}
 for row in rows:
 row_read = row.read()
 try:
 key = row_read.pop(self.header_index_mapping[self.assoc_column_position])
 except KeyError:
 try:
 key = row_read.pop(self.assoc_column_position)
 except KeyError:
 try:
 key = row_read.pop(self.assoc_column)
 except KeyError:
 raise ValueError(
 'The assoc_column={!r} could not be retrieved'.format(
 self.assoc_column))
 if key in result:
 raise ValueError('Duplicate value for {}={!r}'.format(key, result[key]))
 result[key] = row_read
 return result

 def fill(self, value):
 """Fills the table, accepts list which is dispatched to respective rows."""
 if isinstance(value, dict):
 if self.assoc_column_position is None:
 raise TypeError('In order to support dict you need to specify assoc_column')
 changed = False
 for key, fill_value in six.iteritems(value):
 try:
 row = self.row_by_cell_or_widget_value(self.assoc_column_position, key)
 except RowNotFound:
 row = self[self.row_add()]
 fill_value = copy(fill_value)
 fill_value[self.assoc_column_position] = key
 if row.fill(fill_value):
 self.row_save(row=row.index)
 changed = True
 return changed
 else:
 if not isinstance(value, (list, tuple)):
 value = [value]
 total_values = len(value)
 rows = list(self)
 # Adapt the behaviour similar to read
 if self.top_ignore_fill and self.rows_ignore_top is not None:
 rows = rows[self.rows_ignore_top:]
 if (
 self.bottom_ignore_fill and
 self.rows_ignore_bottom is not None and
 self.rows_ignore_bottom > 0):
 rows = rows[:-self.rows_ignore_bottom]
 row_count = len(rows)
 present_row_values = value[:row_count]
 if total_values > row_count:
 extra_row_values = value[row_count:]
 else:
 extra_row_values = []
 changed = any(row.fill(value) for row, value in zip(rows, present_row_values))
 for extra_value in extra_row_values:
 if self[self.row_add()].fill(extra_value):
 changed = True
 return changed

 @property
 def row_count(self):
 """Returns how many rows are currently in the table."""
 return len(self.browser.elements(self.ROWS, parent=self))

 def row_add(self):
 """To be implemented if the table has dynamic rows.

 This method is called when adding a new row is necessary.

 Default implementation shouts :py:class:`NotImplementedError`.

 Returns:
 An index (position) of the new row. ``None`` in case of error.
 """
 raise NotImplementedError(
 'You need to implement the row_add in order to use dynamic adding')

 def row_save(self, row=None):
 """To be implemented if the table has dynamic rows.

 Used when the table needs confirming saving of each row.

 Default implementation just writes a debug message that it is not used.
 """
 self.logger.debug('Row saving not used.')

class Select(Widget):
 """Representation of the bogo-standard ``<select>`` tag.

 Check documentation for each method. The API is based on the selenium select, but modified so
 we don't bother with WebElements.

 Fill and read work as follows:

 .. code-block:: python

 view.select.fill('foo')
 view.select.fill(['foo'])
 # Are equivalent

 This implies that you can fill either single value or multiple values. If you need to fill
 the select using the value and not the text, you can pass a tuple instead of the string like
 this:

 .. code-block:: python

 view.select.fill(('by_value', 'some_value'))
 # Or if you have multiple items
 view.select.fill([('by_value', 'some_value'), 'something by text', ...])

 The :py:meth:`read` returns a :py:class:`list` in case the select is multiselect, otherwise it
 returns the value directly.

 Arguments are exclusive, so only one at time can be used.

 Args:
 locator: If you have a full locator to locate this select.
 id: If you want to locate the select by the ID
 name: If you want to locate the select by name.

 Raises:
 :py:class:`TypeError` - if you pass more than one of the abovementioned args.
 """
 Option = namedtuple("Option", ["text", "value"])

 ALL_OPTIONS = jsmin('''\
 var result_arr = [];
 var opt_elements = arguments[0].options;
 for(var i = 0; i < opt_elements.length; i++){
 var option = opt_elements[i];
 result_arr.push([option.innerHTML, option.getAttribute("value")]);
 }
 return result_arr;
 ''')

 SELECTED_OPTIONS = jsmin('return arguments[0].selectedOptions;')
 SELECTED_OPTIONS_TEXT = jsmin('''\
 var result_arr = [];
 var opt_elements = arguments[0].selectedOptions;
 for(var i = 0; i < opt_elements.length; i++){
 result_arr.push(opt_elements[i].innerHTML);
 }
 return result_arr;
 ''')

 SELECTED_OPTIONS_VALUE = jsmin('''\
 var result_arr = [];
 var opt_elements = arguments[0].selectedOptions;
 for(var i = 0; i < opt_elements.length; i++){
 result_arr.push(opt_elements[i].getAttribute("value"));
 }
 return result_arr;
 ''')

 def __init__(self, parent, locator=None, id=None, name=None, logger=None):
 Widget.__init__(self, parent, logger=logger)
 if (locator and id) or (id and name) or (locator and name):
 raise TypeError('You can only pass one of the params locator, id, name into Select')
 if locator is not None:
 self.locator = locator
 elif id is not None:
 self.locator = './/select[@id={}]'.format(quote(id))
 else: # name
 self.locator = './/select[@name={}]'.format(quote(name))

 def __locator__(self):
 return self.locator

 def __repr__(self):
 return '{}(locator={!r})'.format(type(self).__name__, self.locator)

 @cached_property
 def is_multiple(self):
 """Detects and returns whether this ``<select>`` is multiple"""
 return self.browser.get_attribute('multiple', self) is not None

 @property
 def classes(self):
 """Returns the classes associated with the select."""
 return self.browser.classes(self)

 @property
 def all_options(self):
 """Returns a list of tuples of all the options in the Select.

 Text first, value follows.

 Returns:
 A :py:class:`list` of :py:class:`Option`
 """
 # More reliable using javascript
 options = self.browser.execute_script(self.ALL_OPTIONS, self.browser.element(self))
 parser = html_parser.HTMLParser()
 return [
 self.Option(normalize_space(parser.unescape(option[0])), option[1])
 for option in options]

 @property
 def all_selected_options(self):
 """Returns a list of all selected options as their displayed texts."""
 parser = html_parser.HTMLParser()
 return [
 normalize_space(parser.unescape(option))
 for option
 in self.browser.execute_script(self.SELECTED_OPTIONS_TEXT, self.browser.element(self))]

 @property
 def all_selected_values(self):
 """Returns a list of all selected options as their values.

 If the value is not present, it is ignored.
 """
 values = self.browser.execute_script(
 self.SELECTED_OPTIONS_VALUE,
 self.browser.element(self))
 return [value for value in values if value is not None]

 @property
 def first_selected_option(self):
 """Returns the first selected option (or the only selected option)

 Raises:
 :py:class:`ValueError` - in case there is not item selected.
 """
 try:
 return self.all_selected_options[0]
 except IndexError:
 raise ValueError("No options are selected")

 def deselect_all(self):
 """Deselect all items. Only works for multiselect.

 Raises:
 :py:class:`NotImplementedError` - If you call this on non-multiselect.
 """
 if not self.is_multiple:
 raise NotImplementedError("You may only deselect all options of a multi-select")

 for opt in self.browser.execute_script(self.SELECTED_OPTIONS, self.browser.element(self)):
 self.browser.raw_click(opt)

 def get_value_by_text(self, text):
 """Given the visible text, retrieve the underlying value."""
 opt = self.browser.element(
 ".//option[normalize-space(.)={}]".format(quote(normalize_space(text))),
 parent=self)
 return self.browser.get_attribute("value", opt)

 def select_by_value(self, *items):
 """Selects item(s) by their respective values in the select.

 Args:
 *items: Items' values to be selected.

 Raises:
 :py:class:`ValueError` - if you pass multiple values and the select is not multiple.
 :py:class:`ValueError` - if the value was not found.
 """
 if len(items) > 1 and not self.is_multiple:
 raise ValueError(
 'The Select {!r} does not allow multiple selections'.format(self))

 for value in items:
 matched = False
 for opt in self.browser.elements(
 './/option[@value={}]'.format(quote(value)),
 parent=self):
 if not opt.is_selected():
 opt.click()

 if not self.is_multiple:
 return
 matched = True

 if not matched:
 raise ValueError("Cannot locate option with value: {!r}".format(value))

 def select_by_visible_text(self, *items):
 """Selects item(s) by their respective displayed text in the select.

 Args:
 *items: Items' visible texts to be selected.

 Raises:
 :py:class:`ValueError` - if you pass multiple values and the select is not multiple.
 :py:class:`ValueError` - if the text was not found.
 """
 if len(items) > 1 and not self.is_multiple:
 raise ValueError(
 'The Select {!r} does not allow multiple selections'.format(self))

 for text in items:
 matched = False
 for opt in self.browser.elements(
 './/option[normalize-space(.)={}]'.format(quote(normalize_space(text))),
 parent=self):
 if not opt.is_selected():
 opt.click()

 if not self.is_multiple:
 return
 matched = True

 if not matched:
 available = ", ".join(repr(opt.text) for opt in self.all_options)
 raise ValueError(
 "Cannot locate option with visible text: {!r}. Available options: {}".format(
 text, available))

 def read(self):
 items = self.all_selected_options
 if self.is_multiple:
 return items
 else:
 try:
 return items[0]
 except IndexError:
 return None

 def fill(self, item_or_items):
 if item_or_items is None:
 items = []
 elif isinstance(item_or_items, list):
 items = item_or_items
 else:
 items = [item_or_items]

 selected_values = self.all_selected_values
 selected_options = self.all_selected_options
 options_to_select = []
 values_to_select = []
 deselect = True
 for item in items:
 if isinstance(item, tuple):
 try:
 mod, value = item
 if not isinstance(mod, six.string_types):
 raise ValueError('The select modifier must be a string')
 mod = mod.lower()
 except ValueError:
 raise ValueError('If passing tuples into the S.fill(), they must be 2-tuples')
 else:
 mod = 'by_text'
 value = item

 if mod == 'by_text':
 value = normalize_space(value)
 if value in selected_options:
 deselect = False
 continue
 options_to_select.append(value)
 elif mod == 'by_value':
 if value in selected_values:
 deselect = False
 continue
 values_to_select.append(value)
 else:
 raise ValueError('Unknown select modifier {}'.format(mod))

 if deselect:
 try:
 self.deselect_all()
 deselected = bool(selected_options or selected_values)
 except NotImplementedError:
 deselected = False
 else:
 deselected = False

 if options_to_select:
 self.select_by_visible_text(*options_to_select)

 if values_to_select:
 self.select_by_value(*values_to_select)

 return bool(options_to_select or values_to_select or deselected)

class ConditionalSwitchableView(Widgetable):
 """Conditional switchable view implementation.

 This widget proxy is useful when you have a form whose parts displayed depend on certain
 conditions. Eg. when you select certain value from a dropdown, one form is displayed next,
 when other value is selected, a different form is displayed next. This widget proxy is designed
 to register those multiple views and then upon accessing decide which view to use based on the
 registration conditions.

 The resulting widget proxy acts similarly like a nested view (if you use view of course).

 Example:

 .. code-block:: python

 class SomeForm(View):
 foo = Input('...')
 action_type = Select(name='action_type')

 action_form = ConditionalSwitchableView(reference='action_type')

 # Simple value matching. If Action type 1 is selected in the select, use this view.
 # And if the action_type value does not get matched, use this view as default
 @action_form.register('Action type 1', default=True)
 class ActionType1Form(View):
 widget = Widget()

 # You can use a callable to declare the widget values to compare
 @action_form.register(lambda action_type: action_type == 'Action type 2')
 class ActionType2Form(View):
 widget = Widget()

 # With callable, you can use values from multiple widgets
 @action_form.register(
 lambda action_type, foo: action_type == 'Action type 2' and foo == 2)
 class ActionType2Form(View):
 widget = Widget()

 You can see it gives you the flexibility of decision based on the values in the view.

 Args:
 reference: For using non-callable conditions, this must be specified. Specifies the name of
 the widget whose value will be used for comparing non-callable conditions. Supports
 going across objects using ``.``.
 ignore_bad_reference: If this is enabled, then when the widget representing the reference
 is not displayed or otherwise broken, it will then use the default view.
 """
 def __init__(self, reference=None, ignore_bad_reference=False):
 self.reference = reference
 self.registered_views = []
 self.default_view = None
 self.ignore_bad_reference = ignore_bad_reference

 @property
 def child_items(self):
 return [
 descriptor
 for _, descriptor
 in self.registered_views
 if isinstance(descriptor, WidgetDescriptor)]

 def register(self, condition, default=False, widget=None):
 """Register a view class against given condition.

 Args:
 condition: Condition check for switching to appropriate view. Can be callable or
 non-callable. If callable, then callable parameters are resolved as values from
 widgets resolved by the argument name, then the callable is invoked with the params.
 If the invocation result is truthy, that view class is used. If it is a non-callable
 then it is compared with the value read from the widget specified as ``reference``.
 default: If no other condition matches any registered view, use this one. Can only be
 specified for one registration.
 widget: In case you do not want to use this as a decorator, you can pass the widget
 class or instantiated widget as this parameter.
 """
 def view_process(cls_or_descriptor):
 if not (
 isinstance(cls_or_descriptor, WidgetDescriptor) or
 (inspect.isclass(cls_or_descriptor) and issubclass(cls_or_descriptor, Widget))):
 raise TypeError(
 'Unsupported object registered into the selector (!r})'.format(
 cls_or_descriptor))
 self.registered_views.append((condition, cls_or_descriptor))
 if default:
 if self.default_view is not None:
 raise TypeError('Multiple default views specified')
 self.default_view = cls_or_descriptor
 # We explicitly return None
 return None
 if widget is None:
 return view_process
 else:
 return view_process(widget)

 def __get__(self, o, t):
 if o is None:
 return self

 condition_arg_cache = {}
 for condition, cls_or_descriptor in self.registered_views:
 if not callable(condition):
 # Compare it to a known value (if present)
 if self.reference is None:
 # No reference to check against
 raise TypeError(
 'reference= not set so you cannot use non-callables as conditions')
 else:
 if self.reference not in condition_arg_cache:
 try:
 ref_o = nested_getattr(o, self.reference)
 if isinstance(ref_o, Widget):
 ref_value = ref_o.read()
 else:
 ref_value = ref_o
 condition_arg_cache[self.reference] = ref_value
 except AttributeError:
 raise TypeError(
 'Wrong widget name specified as reference=: {}'.format(
 self.reference))
 except NoSuchElementException:
 if self.ignore_bad_reference:
 # reference is not displayed? We are probably aware of this so skip.
 continue
 else:
 raise
 if condition == condition_arg_cache[self.reference]:
 view_object = cls_or_descriptor
 break
 else:
 # Parse the callable's args and inject the correct args
 c_args, c_varargs, c_keywords, c_defaults = inspect.getargspec(condition)
 if c_varargs or c_keywords or c_defaults:
 raise TypeError('You can only use simple arguments in lambda conditions')
 arg_values = []
 for arg in c_args:
 if arg not in condition_arg_cache:
 try:
 condition_arg_cache[arg] = getattr(o, arg).read()
 except AttributeError:
 raise TypeError(
 'Wrong widget name specified as parameter {}'.format(arg))
 arg_values.append(condition_arg_cache[arg])

 if condition(*arg_values):
 view_object = cls_or_descriptor
 break
 else:
 if self.default_view is not None:
 view_object = self.default_view
 else:
 raise ValueError('Could not find a corresponding registered view.')
 if inspect.isclass(view_object):
 view_class = view_object
 else:
 view_class = type(view_object)
 o.logger.info('Picked %s', view_class.__name__)
 if isinstance(view_object, Widgetable):
 # We init the widget descriptor here
 return view_object.__get__(o, t)
 else:
 return view_object(o, additional_context=o.context)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/mock/mock.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for mock.mock

mock.py
Test tools for mocking and patching.
E-mail: fuzzyman AT voidspace DOT org DOT uk
#
mock 1.0.1
http://www.voidspace.org.uk/python/mock/
#
Copyright (c) 2007-2013, Michael Foord & the mock team
All rights reserved.
#
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
#
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
#
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.
#
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

from __future__ import absolute_import

__all__ = (
 '__version__',
 'version_info',
 'Mock',
 'MagicMock',
 'patch',
 'sentinel',
 'DEFAULT',
 'ANY',
 'call',
 'create_autospec',
 'FILTER_DIR',
 'CallableMixin',
 'NonCallableMock',
 'NonCallableMagicMock',
 'mock_open',
 'PropertyMock',
)

from functools import partial
import inspect
import pprint
import sys
try:
 import builtins
except ImportError:
 import __builtin__ as builtins
from types import ModuleType

import six
from six import wraps
from pbr.version import VersionInfo

_v = VersionInfo('mock').semantic_version()
__version__ = _v.release_string()
version_info = _v.version_tuple()

import mock

try:
 inspectsignature = inspect.signature
except AttributeError:
 import funcsigs
 inspectsignature = funcsigs.signature

TODO: use six.
try:
 unicode
except NameError:
 # Python 3
 basestring = unicode = str

try:
 long
except NameError:
 # Python 3
 long = int

try:
 BaseException
except NameError:
 # Python 2.4 compatibility
 BaseException = Exception

if six.PY2:
 # Python 2's next() can't handle a non-iterator with a __next__ method.
 _next = next
 def next(obj, _next=_next):
 if getattr(obj, '__next__', None):
 return obj.__next__()
 return _next(obj)

 del _next

builtins = set(name for name in dir(builtins) if not name.startswith(''))

BaseExceptions = (BaseException,)
if 'java' in sys.platform:
 # jython
 import java
 BaseExceptions = (BaseException, java.lang.Throwable)

try:
 _isidentifier = str.isidentifier
except AttributeError:
 # Python 2.X
 import keyword
 import re
 regex = re.compile(r'^[a-z_][a-z0-9_]*$', re.I)
 def _isidentifier(string):
 if string in keyword.kwlist:
 return False
 return regex.match(string)

self = 'im_self'
builtin = '__builtin__'
if six.PY3:
 self = '__self__'
 builtin = 'builtins'

NOTE: This FILTER_DIR is not used. The binding in mock.FILTER_DIR is.
FILTER_DIR = True

Workaround for Python issue #12370
Without this, the __class__ properties wouldn't be set correctly
_safe_super = super

def _is_instance_mock(obj):
 # can't use isinstance on Mock objects because they override __class__
 # The base class for all mocks is NonCallableMock
 return issubclass(type(obj), NonCallableMock)

def _is_exception(obj):
 return (
 isinstance(obj, BaseExceptions) or
 isinstance(obj, ClassTypes) and issubclass(obj, BaseExceptions)
)

class _slotted(object):
 __slots__ = ['a']

DescriptorTypes = (
 type(_slotted.a),
 property,
)

def _get_signature_object(func, as_instance, eat_self):
 """
 Given an arbitrary, possibly callable object, try to create a suitable
 signature object.
 Return a (reduced func, signature) tuple, or None.
 """
 if isinstance(func, ClassTypes) and not as_instance:
 # If it's a type and should be modelled as a type, use __init__.
 try:
 func = func.__init__
 except AttributeError:
 return None
 # Skip the `self` argument in __init__
 eat_self = True
 elif not isinstance(func, FunctionTypes):
 # If we really want to model an instance of the passed type,
 # __call__ should be looked up, not __init__.
 try:
 func = func.__call__
 except AttributeError:
 return None
 if eat_self:
 sig_func = partial(func, None)
 else:
 sig_func = func

 try:
 return func, inspectsignature(sig_func)
 except ValueError:
 # Certain callable types are not supported by inspect.signature()
 return None

def _check_signature(func, mock, skipfirst, instance=False):
 sig = _get_signature_object(func, instance, skipfirst)
 if sig is None:
 return
 func, sig = sig
 def checksig(_mock_self, *args, **kwargs):
 sig.bind(*args, **kwargs)
 _copy_func_details(func, checksig)
 type(mock)._mock_check_sig = checksig

def _copy_func_details(func, funcopy):
 funcopy.__name__ = func.__name__
 funcopy.__doc__ = func.__doc__
 try:
 funcopy.__text_signature__ = func.__text_signature__
 except AttributeError:
 pass
 # we explicitly don't copy func.__dict__ into this copy as it would
 # expose original attributes that should be mocked
 try:
 funcopy.__module__ = func.__module__
 except AttributeError:
 pass
 try:
 funcopy.__defaults__ = func.__defaults__
 except AttributeError:
 pass
 try:
 funcopy.__kwdefaults__ = func.__kwdefaults__
 except AttributeError:
 pass
 if six.PY2:
 funcopy.func_defaults = func.func_defaults
 return

def _callable(obj):
 if isinstance(obj, ClassTypes):
 return True
 if getattr(obj, '__call__', None) is not None:
 return True
 return False

def _is_list(obj):
 # checks for list or tuples
 # XXXX badly named!
 return type(obj) in (list, tuple)

def _instance_callable(obj):
 """Given an object, return True if the object is callable.
 For classes, return True if instances would be callable."""
 if not isinstance(obj, ClassTypes):
 # already an instance
 return getattr(obj, '__call__', None) is not None

 if six.PY3:
 # *could* be broken by a class overriding __mro__ or __dict__ via
 # a metaclass
 for base in (obj,) + obj.__mro__:
 if base.__dict__.get('__call__') is not None:
 return True
 else:
 klass = obj
 # uses __bases__ instead of __mro__ so that we work with old style classes
 if klass.__dict__.get('__call__') is not None:
 return True

 for base in klass.__bases__:
 if _instance_callable(base):
 return True
 return False

def _set_signature(mock, original, instance=False):
 # creates a function with signature (*args, **kwargs) that delegates to a
 # mock. It still does signature checking by calling a lambda with the same
 # signature as the original.
 if not _callable(original):
 return

 skipfirst = isinstance(original, ClassTypes)
 result = _get_signature_object(original, instance, skipfirst)
 if result is None:
 return
 func, sig = result
 def checksig(*args, **kwargs):
 sig.bind(*args, **kwargs)
 _copy_func_details(func, checksig)

 name = original.__name__
 if not _isidentifier(name):
 name = 'funcopy'
 context = {'_checksig_': checksig, 'mock': mock}
 src = """def %s(*args, **kwargs):
 checksig(*args, **kwargs)
 return mock(*args, **kwargs)""" % name
 six.exec_(src, context)
 funcopy = context[name]
 _setup_func(funcopy, mock)
 return funcopy

def _setup_func(funcopy, mock):
 funcopy.mock = mock

 # can't use isinstance with mocks
 if not _is_instance_mock(mock):
 return

 def assert_called_with(*args, **kwargs):
 return mock.assert_called_with(*args, **kwargs)
 def assert_called_once_with(*args, **kwargs):
 return mock.assert_called_once_with(*args, **kwargs)
 def assert_has_calls(*args, **kwargs):
 return mock.assert_has_calls(*args, **kwargs)
 def assert_any_call(*args, **kwargs):
 return mock.assert_any_call(*args, **kwargs)
 def reset_mock():
 funcopy.method_calls = _CallList()
 funcopy.mock_calls = _CallList()
 mock.reset_mock()
 ret = funcopy.return_value
 if _is_instance_mock(ret) and not ret is mock:
 ret.reset_mock()

 funcopy.called = False
 funcopy.call_count = 0
 funcopy.call_args = None
 funcopy.call_args_list = _CallList()
 funcopy.method_calls = _CallList()
 funcopy.mock_calls = _CallList()

 funcopy.return_value = mock.return_value
 funcopy.side_effect = mock.side_effect
 funcopy._mock_children = mock._mock_children

 funcopy.assert_called_with = assert_called_with
 funcopy.assert_called_once_with = assert_called_once_with
 funcopy.assert_has_calls = assert_has_calls
 funcopy.assert_any_call = assert_any_call
 funcopy.reset_mock = reset_mock

 mock._mock_delegate = funcopy

def _is_magic(name):
 return '__%s__' % name[2:-2] == name

class _SentinelObject(object):
 "A unique, named, sentinel object."
 def __init__(self, name):
 self.name = name

 def __repr__(self):
 return 'sentinel.%s' % self.name

class _Sentinel(object):
 """Access attributes to return a named object, usable as a sentinel."""
 def __init__(self):
 self._sentinels = {}

 def __getattr__(self, name):
 if name == '__bases__':
 # Without this help(unittest.mock) raises an exception
 raise AttributeError
 return self._sentinels.setdefault(name, _SentinelObject(name))

sentinel = _Sentinel()

DEFAULT = sentinel.DEFAULT
_missing = sentinel.MISSING
_deleted = sentinel.DELETED

class OldStyleClass:
 pass
ClassType = type(OldStyleClass)

def _copy(value):
 if type(value) in (dict, list, tuple, set):
 return type(value)(value)
 return value

ClassTypes = (type,)
if six.PY2:
 ClassTypes = (type, ClassType)

_allowed_names = set((
 'return_value', '_mock_return_value', 'side_effect',
 '_mock_side_effect', '_mock_parent', '_mock_new_parent',
 '_mock_name', '_mock_new_name'
))

def _delegating_property(name):
 _allowed_names.add(name)
 _the_name = '_mock_' + name
 def _get(self, name=name, _the_name=_the_name):
 sig = self._mock_delegate
 if sig is None:
 return getattr(self, _the_name)
 return getattr(sig, name)
 def _set(self, value, name=name, _the_name=_the_name):
 sig = self._mock_delegate
 if sig is None:
 self.__dict__[_the_name] = value
 else:
 setattr(sig, name, value)

 return property(_get, _set)

class _CallList(list):

 def __contains__(self, value):
 if not isinstance(value, list):
 return list.__contains__(self, value)
 len_value = len(value)
 len_self = len(self)
 if len_value > len_self:
 return False

 for i in range(0, len_self - len_value + 1):
 sub_list = self[i:i+len_value]
 if sub_list == value:
 return True
 return False

 def __repr__(self):
 return pprint.pformat(list(self))

def _check_and_set_parent(parent, value, name, new_name):
 if not _is_instance_mock(value):
 return False
 if ((value._mock_name or value._mock_new_name) or
 (value._mock_parent is not None) or
 (value._mock_new_parent is not None)):
 return False

 _parent = parent
 while _parent is not None:
 # setting a mock (value) as a child or return value of itself
 # should not modify the mock
 if _parent is value:
 return False
 _parent = _parent._mock_new_parent

 if new_name:
 value._mock_new_parent = parent
 value._mock_new_name = new_name
 if name:
 value._mock_parent = parent
 value._mock_name = name
 return True

Internal class to identify if we wrapped an iterator object or not.
class _MockIter(object):
 def __init__(self, obj):
 self.obj = iter(obj)
 def __iter__(self):
 return self
 def __next__(self):
 return next(self.obj)

class Base(object):
 _mock_return_value = DEFAULT
 _mock_side_effect = None
 def __init__(self, *args, **kwargs):
 pass

class NonCallableMock(Base):
 """A non-callable version of `Mock`"""

 def __new__(cls, *args, **kw):
 # every instance has its own class
 # so we can create magic methods on the
 # class without stomping on other mocks
 new = type(cls.__name__, (cls,), {'__doc__': cls.__doc__})
 instance = object.__new__(new)
 return instance

 def __init__(
 self, spec=None, wraps=None, name=None, spec_set=None,
 parent=None, _spec_state=None, _new_name='', _new_parent=None,
 _spec_as_instance=False, _eat_self=None, unsafe=False, **kwargs
):
 if _new_parent is None:
 _new_parent = parent

 __dict__ = self.__dict__
 __dict__['_mock_parent'] = parent
 __dict__['_mock_name'] = name
 __dict__['_mock_new_name'] = _new_name
 __dict__['_mock_new_parent'] = _new_parent

 if spec_set is not None:
 spec = spec_set
 spec_set = True
 if _eat_self is None:
 _eat_self = parent is not None

 self._mock_add_spec(spec, spec_set, _spec_as_instance, _eat_self)

 __dict__['_mock_children'] = {}
 __dict__['_mock_wraps'] = wraps
 __dict__['_mock_delegate'] = None

 __dict__['_mock_called'] = False
 __dict__['_mock_call_args'] = None
 __dict__['_mock_call_count'] = 0
 __dict__['_mock_call_args_list'] = _CallList()
 __dict__['_mock_mock_calls'] = _CallList()

 __dict__['method_calls'] = _CallList()
 __dict__['_mock_unsafe'] = unsafe

 if kwargs:
 self.configure_mock(**kwargs)

 _safe_super(NonCallableMock, self).__init__(
 spec, wraps, name, spec_set, parent,
 _spec_state
)

 def attach_mock(self, mock, attribute):
 """
 Attach a mock as an attribute of this one, replacing its name and
 parent. Calls to the attached mock will be recorded in the
 `method_calls` and `mock_calls` attributes of this one."""
 mock._mock_parent = None
 mock._mock_new_parent = None
 mock._mock_name = ''
 mock._mock_new_name = None

 setattr(self, attribute, mock)

 def mock_add_spec(self, spec, spec_set=False):
 """Add a spec to a mock. `spec` can either be an object or a
 list of strings. Only attributes on the `spec` can be fetched as
 attributes from the mock.

 If `spec_set` is True then only attributes on the spec can be set."""
 self._mock_add_spec(spec, spec_set)

 def _mock_add_spec(self, spec, spec_set, _spec_as_instance=False,
 _eat_self=False):
 _spec_class = None
 _spec_signature = None

 if spec is not None and not _is_list(spec):
 if isinstance(spec, ClassTypes):
 _spec_class = spec
 else:
 _spec_class = _get_class(spec)
 res = _get_signature_object(spec,
 _spec_as_instance, _eat_self)
 _spec_signature = res and res[1]

 spec = dir(spec)

 __dict__ = self.__dict__
 __dict__['_spec_class'] = _spec_class
 __dict__['_spec_set'] = spec_set
 __dict__['_spec_signature'] = _spec_signature
 __dict__['_mock_methods'] = spec

 def __get_return_value(self):
 ret = self._mock_return_value
 if self._mock_delegate is not None:
 ret = self._mock_delegate.return_value

 if ret is DEFAULT:
 ret = self._get_child_mock(
 _new_parent=self, _new_name='()'
)
 self.return_value = ret
 return ret

 def __set_return_value(self, value):
 if self._mock_delegate is not None:
 self._mock_delegate.return_value = value
 else:
 self._mock_return_value = value
 _check_and_set_parent(self, value, None, '()')

 __return_value_doc = "The value to be returned when the mock is called."
 return_value = property(__get_return_value, __set_return_value,
 __return_value_doc)

 @property
 def __class__(self):
 if self._spec_class is None:
 return type(self)
 return self._spec_class

 called = _delegating_property('called')
 call_count = _delegating_property('call_count')
 call_args = _delegating_property('call_args')
 call_args_list = _delegating_property('call_args_list')
 mock_calls = _delegating_property('mock_calls')

 def __get_side_effect(self):
 delegated = self._mock_delegate
 if delegated is None:
 return self._mock_side_effect
 sf = delegated.side_effect
 if (sf is not None and not callable(sf)
 and not isinstance(sf, _MockIter) and not _is_exception(sf)):
 sf = _MockIter(sf)
 delegated.side_effect = sf
 return sf

 def __set_side_effect(self, value):
 value = _try_iter(value)
 delegated = self._mock_delegate
 if delegated is None:
 self._mock_side_effect = value
 else:
 delegated.side_effect = value

 side_effect = property(__get_side_effect, __set_side_effect)

 def reset_mock(self, visited=None):
 "Restore the mock object to its initial state."
 if visited is None:
 visited = []
 if id(self) in visited:
 return
 visited.append(id(self))

 self.called = False
 self.call_args = None
 self.call_count = 0
 self.mock_calls = _CallList()
 self.call_args_list = _CallList()
 self.method_calls = _CallList()

 for child in self._mock_children.values():
 if isinstance(child, _SpecState):
 continue
 child.reset_mock(visited)

 ret = self._mock_return_value
 if _is_instance_mock(ret) and ret is not self:
 ret.reset_mock(visited)

 def configure_mock(self, **kwargs):
 """Set attributes on the mock through keyword arguments.

 Attributes plus return values and side effects can be set on child
 mocks using standard dot notation and unpacking a dictionary in the
 method call:

 >>> attrs = {'method.return_value': 3, 'other.side_effect': KeyError}
 >>> mock.configure_mock(**attrs)"""
 for arg, val in sorted(kwargs.items(),
 # we sort on the number of dots so that
 # attributes are set before we set attributes on
 # attributes
 key=lambda entry: entry[0].count('.')):
 args = arg.split('.')
 final = args.pop()
 obj = self
 for entry in args:
 obj = getattr(obj, entry)
 setattr(obj, final, val)

 def __getattr__(self, name):
 if name in ('_mock_methods', '_mock_unsafe'):
 raise AttributeError(name)
 elif self._mock_methods is not None:
 if name not in self._mock_methods or name in _all_magics:
 raise AttributeError("Mock object has no attribute %r" % name)
 elif _is_magic(name):
 raise AttributeError(name)
 if not self._mock_unsafe:
 if name.startswith(('assert', 'assret')):
 raise AttributeError(name)

 result = self._mock_children.get(name)
 if result is _deleted:
 raise AttributeError(name)
 elif result is None:
 wraps = None
 if self._mock_wraps is not None:
 # XXXX should we get the attribute without triggering code
 # execution?
 wraps = getattr(self._mock_wraps, name)

 result = self._get_child_mock(
 parent=self, name=name, wraps=wraps, _new_name=name,
 _new_parent=self
)
 self._mock_children[name] = result

 elif isinstance(result, _SpecState):
 result = create_autospec(
 result.spec, result.spec_set, result.instance,
 result.parent, result.name
)
 self._mock_children[name] = result

 return result

 def __repr__(self):
 _name_list = [self._mock_new_name]
 _parent = self._mock_new_parent
 last = self

 dot = '.'
 if _name_list == ['()']:
 dot = ''
 seen = set()
 while _parent is not None:
 last = _parent

 _name_list.append(_parent._mock_new_name + dot)
 dot = '.'
 if _parent._mock_new_name == '()':
 dot = ''

 _parent = _parent._mock_new_parent

 # use ids here so as not to call __hash__ on the mocks
 if id(_parent) in seen:
 break
 seen.add(id(_parent))

 _name_list = list(reversed(_name_list))
 _first = last._mock_name or 'mock'
 if len(_name_list) > 1:
 if _name_list[1] not in ('()', '().'):
 _first += '.'
 _name_list[0] = _first
 name = ''.join(_name_list)

 name_string = ''
 if name not in ('mock', 'mock.'):
 name_string = ' name=%r' % name

 spec_string = ''
 if self._spec_class is not None:
 spec_string = ' spec=%r'
 if self._spec_set:
 spec_string = ' spec_set=%r'
 spec_string = spec_string % self._spec_class.__name__
 return "<%s%s%s id='%s'>" % (
 type(self).__name__,
 name_string,
 spec_string,
 id(self)
)

 def __dir__(self):
 """Filter the output of `dir(mock)` to only useful members."""
 if not mock.FILTER_DIR and getattr(object, '__dir__', None):
 # object.__dir__ is not in 2.7
 return object.__dir__(self)

 extras = self._mock_methods or []
 from_type = dir(type(self))
 from_dict = list(self.__dict__)

 if mock.FILTER_DIR:
 # object.__dir__ is not in 2.7
 from_type = [e for e in from_type if not e.startswith('_')]
 from_dict = [e for e in from_dict if not e.startswith('_') or
 _is_magic(e)]
 return sorted(set(extras + from_type + from_dict +
 list(self._mock_children)))

 def __setattr__(self, name, value):
 if name in _allowed_names:
 # property setters go through here
 return object.__setattr__(self, name, value)
 elif (self._spec_set and self._mock_methods is not None and
 name not in self._mock_methods and
 name not in self.__dict__):
 raise AttributeError("Mock object has no attribute '%s'" % name)
 elif name in _unsupported_magics:
 msg = 'Attempting to set unsupported magic method %r.' % name
 raise AttributeError(msg)
 elif name in _all_magics:
 if self._mock_methods is not None and name not in self._mock_methods:
 raise AttributeError("Mock object has no attribute '%s'" % name)

 if not _is_instance_mock(value):
 setattr(type(self), name, _get_method(name, value))
 original = value
 value = lambda *args, **kw: original(self, *args, **kw)
 else:
 # only set _new_name and not name so that mock_calls is tracked
 # but not method calls
 _check_and_set_parent(self, value, None, name)
 setattr(type(self), name, value)
 self._mock_children[name] = value
 elif name == '__class__':
 self._spec_class = value
 return
 else:
 if _check_and_set_parent(self, value, name, name):
 self._mock_children[name] = value
 return object.__setattr__(self, name, value)

 def __delattr__(self, name):
 if name in _all_magics and name in type(self).__dict__:
 delattr(type(self), name)
 if name not in self.__dict__:
 # for magic methods that are still MagicProxy objects and
 # not set on the instance itself
 return

 if name in self.__dict__:
 object.__delattr__(self, name)

 obj = self._mock_children.get(name, _missing)
 if obj is _deleted:
 raise AttributeError(name)
 if obj is not _missing:
 del self._mock_children[name]
 self._mock_children[name] = _deleted

 def _format_mock_call_signature(self, args, kwargs):
 name = self._mock_name or 'mock'
 return _format_call_signature(name, args, kwargs)

 def _format_mock_failure_message(self, args, kwargs):
 message = 'Expected call: %s\nActual call: %s'
 expected_string = self._format_mock_call_signature(args, kwargs)
 call_args = self.call_args
 if len(call_args) == 3:
 call_args = call_args[1:]
 actual_string = self._format_mock_call_signature(*call_args)
 return message % (expected_string, actual_string)

 def _call_matcher(self, _call):
 """
 Given a call (or simply a (args, kwargs) tuple), return a
 comparison key suitable for matching with other calls.
 This is a best effort method which relies on the spec's signature,
 if available, or falls back on the arguments themselves.
 """
 sig = self._spec_signature
 if sig is not None:
 if len(_call) == 2:
 name = ''
 args, kwargs = _call
 else:
 name, args, kwargs = _call
 try:
 return name, sig.bind(*args, **kwargs)
 except TypeError as e:
 e.__traceback__ = None
 return e
 else:
 return _call

 def assert_not_called(_mock_self):
 """assert that the mock was never called.
 """
 self = _mock_self
 if self.call_count != 0:
 msg = ("Expected '%s' to not have been called. Called %s times." %
 (self._mock_name or 'mock', self.call_count))
 raise AssertionError(msg)

 def assert_called(_mock_self):
 """assert that the mock was called at least once
 """
 self = _mock_self
 if self.call_count == 0:
 msg = ("Expected '%s' to have been called." %
 self._mock_name or 'mock')
 raise AssertionError(msg)

 def assert_called_once(_mock_self):
 """assert that the mock was called only once.
 """
 self = _mock_self
 if not self.call_count == 1:
 msg = ("Expected '%s' to have been called once. Called %s times." %
 (self._mock_name or 'mock', self.call_count))
 raise AssertionError(msg)

 def assert_called_with(_mock_self, *args, **kwargs):
 """assert that the mock was called with the specified arguments.

 Raises an AssertionError if the args and keyword args passed in are
 different to the last call to the mock."""
 self = _mock_self
 if self.call_args is None:
 expected = self._format_mock_call_signature(args, kwargs)
 raise AssertionError('Expected call: %s\nNot called' % (expected,))

 def _error_message(cause):
 msg = self._format_mock_failure_message(args, kwargs)
 if six.PY2 and cause is not None:
 # Tack on some diagnostics for Python without __cause__
 msg = '%s\n%s' % (msg, str(cause))
 return msg
 expected = self._call_matcher((args, kwargs))
 actual = self._call_matcher(self.call_args)
 if expected != actual:
 cause = expected if isinstance(expected, Exception) else None
 six.raise_from(AssertionError(_error_message(cause)), cause)

 def assert_called_once_with(_mock_self, *args, **kwargs):
 """assert that the mock was called exactly once and with the specified
 arguments."""
 self = _mock_self
 if not self.call_count == 1:
 msg = ("Expected '%s' to be called once. Called %s times." %
 (self._mock_name or 'mock', self.call_count))
 raise AssertionError(msg)
 return self.assert_called_with(*args, **kwargs)

 def assert_has_calls(self, calls, any_order=False):
 """assert the mock has been called with the specified calls.
 The `mock_calls` list is checked for the calls.

 If `any_order` is False (the default) then the calls must be
 sequential. There can be extra calls before or after the
 specified calls.

 If `any_order` is True then the calls can be in any order, but
 they must all appear in `mock_calls`."""
 expected = [self._call_matcher(c) for c in calls]
 cause = expected if isinstance(expected, Exception) else None
 all_calls = _CallList(self._call_matcher(c) for c in self.mock_calls)
 if not any_order:
 if expected not in all_calls:
 six.raise_from(AssertionError(
 'Calls not found.\nExpected: %r\n'
 'Actual: %r' % (_CallList(calls), self.mock_calls)
), cause)
 return

 all_calls = list(all_calls)

 not_found = []
 for kall in expected:
 try:
 all_calls.remove(kall)
 except ValueError:
 not_found.append(kall)
 if not_found:
 six.raise_from(AssertionError(
 '%r not all found in call list' % (tuple(not_found),)
), cause)

 def assert_any_call(self, *args, **kwargs):
 """assert the mock has been called with the specified arguments.

 The assert passes if the mock has *ever* been called, unlike
 `assert_called_with` and `assert_called_once_with` that only pass if
 the call is the most recent one."""
 expected = self._call_matcher((args, kwargs))
 actual = [self._call_matcher(c) for c in self.call_args_list]
 if expected not in actual:
 cause = expected if isinstance(expected, Exception) else None
 expected_string = self._format_mock_call_signature(args, kwargs)
 six.raise_from(AssertionError(
 '%s call not found' % expected_string
), cause)

 def _get_child_mock(self, **kw):
 """Create the child mocks for attributes and return value.
 By default child mocks will be the same type as the parent.
 Subclasses of Mock may want to override this to customize the way
 child mocks are made.

 For non-callable mocks the callable variant will be used (rather than
 any custom subclass)."""
 _type = type(self)
 if not issubclass(_type, CallableMixin):
 if issubclass(_type, NonCallableMagicMock):
 klass = MagicMock
 elif issubclass(_type, NonCallableMock) :
 klass = Mock
 else:
 klass = _type.__mro__[1]
 return klass(**kw)

def _try_iter(obj):
 if obj is None:
 return obj
 if _is_exception(obj):
 return obj
 if _callable(obj):
 return obj
 try:
 return iter(obj)
 except TypeError:
 # XXXX backwards compatibility
 # but this will blow up on first call - so maybe we should fail early?
 return obj

class CallableMixin(Base):

 def __init__(self, spec=None, side_effect=None, return_value=DEFAULT,
 wraps=None, name=None, spec_set=None, parent=None,
 _spec_state=None, _new_name='', _new_parent=None, **kwargs):
 self.__dict__['_mock_return_value'] = return_value

 _safe_super(CallableMixin, self).__init__(
 spec, wraps, name, spec_set, parent,
 _spec_state, _new_name, _new_parent, **kwargs
)

 self.side_effect = side_effect

 def _mock_check_sig(self, *args, **kwargs):
 # stub method that can be replaced with one with a specific signature
 pass

 def __call__(_mock_self, *args, **kwargs):
 # can't use self in-case a function / method we are mocking uses self
 # in the signature
 _mock_self._mock_check_sig(*args, **kwargs)
 return _mock_self._mock_call(*args, **kwargs)

 def _mock_call(_mock_self, *args, **kwargs):
 self = _mock_self
 self.called = True
 self.call_count += 1
 _new_name = self._mock_new_name
 _new_parent = self._mock_new_parent

 _call = _Call((args, kwargs), two=True)
 self.call_args = _call
 self.call_args_list.append(_call)
 self.mock_calls.append(_Call(('', args, kwargs)))

 seen = set()
 skip_next_dot = _new_name == '()'
 do_method_calls = self._mock_parent is not None
 name = self._mock_name
 while _new_parent is not None:
 this_mock_call = _Call((_new_name, args, kwargs))
 if _new_parent._mock_new_name:
 dot = '.'
 if skip_next_dot:
 dot = ''

 skip_next_dot = False
 if _new_parent._mock_new_name == '()':
 skip_next_dot = True

 _new_name = _new_parent._mock_new_name + dot + _new_name

 if do_method_calls:
 if _new_name == name:
 this_method_call = this_mock_call
 else:
 this_method_call = _Call((name, args, kwargs))
 _new_parent.method_calls.append(this_method_call)

 do_method_calls = _new_parent._mock_parent is not None
 if do_method_calls:
 name = _new_parent._mock_name + '.' + name

 _new_parent.mock_calls.append(this_mock_call)
 _new_parent = _new_parent._mock_new_parent

 # use ids here so as not to call __hash__ on the mocks
 _new_parent_id = id(_new_parent)
 if _new_parent_id in seen:
 break
 seen.add(_new_parent_id)

 ret_val = DEFAULT
 effect = self.side_effect
 if effect is not None:
 if _is_exception(effect):
 raise effect

 if not _callable(effect):
 result = next(effect)
 if _is_exception(result):
 raise result
 if result is DEFAULT:
 result = self.return_value
 return result

 ret_val = effect(*args, **kwargs)

 if (self._mock_wraps is not None and
 self._mock_return_value is DEFAULT):
 return self._mock_wraps(*args, **kwargs)
 if ret_val is DEFAULT:
 ret_val = self.return_value
 return ret_val

class Mock(CallableMixin, NonCallableMock):
 """
 Create a new `Mock` object. `Mock` takes several optional arguments
 that specify the behaviour of the Mock object:

 * `spec`: This can be either a list of strings or an existing object (a
 class or instance) that acts as the specification for the mock object. If
 you pass in an object then a list of strings is formed by calling dir on
 the object (excluding unsupported magic attributes and methods). Accessing
 any attribute not in this list will raise an `AttributeError`.

 If `spec` is an object (rather than a list of strings) then
 `mock.__class__` returns the class of the spec object. This allows mocks
 to pass `isinstance` tests.

 * `spec_set`: A stricter variant of `spec`. If used, attempting to *set*
 or get an attribute on the mock that isn't on the object passed as
 `spec_set` will raise an `AttributeError`.

 * `side_effect`: A function to be called whenever the Mock is called. See
 the `side_effect` attribute. Useful for raising exceptions or
 dynamically changing return values. The function is called with the same
 arguments as the mock, and unless it returns `DEFAULT`, the return
 value of this function is used as the return value.

 Alternatively `side_effect` can be an exception class or instance. In
 this case the exception will be raised when the mock is called.

 If `side_effect` is an iterable then each call to the mock will return
 the next value from the iterable. If any of the members of the iterable
 are exceptions they will be raised instead of returned.

 * `return_value`: The value returned when the mock is called. By default
 this is a new Mock (created on first access). See the
 `return_value` attribute.

 * `wraps`: Item for the mock object to wrap. If `wraps` is not None then
 calling the Mock will pass the call through to the wrapped object
 (returning the real result). Attribute access on the mock will return a
 Mock object that wraps the corresponding attribute of the wrapped object
 (so attempting to access an attribute that doesn't exist will raise an
 `AttributeError`).

 If the mock has an explicit `return_value` set then calls are not passed
 to the wrapped object and the `return_value` is returned instead.

 * `name`: If the mock has a name then it will be used in the repr of the
 mock. This can be useful for debugging. The name is propagated to child
 mocks.

 Mocks can also be called with arbitrary keyword arguments. These will be
 used to set attributes on the mock after it is created.
 """

def _dot_lookup(thing, comp, import_path):
 try:
 return getattr(thing, comp)
 except AttributeError:
 __import__(import_path)
 return getattr(thing, comp)

def _importer(target):
 components = target.split('.')
 import_path = components.pop(0)
 thing = __import__(import_path)

 for comp in components:
 import_path += ".%s" % comp
 thing = _dot_lookup(thing, comp, import_path)
 return thing

def _is_started(patcher):
 # XXXX horrible
 return hasattr(patcher, 'is_local')

class _patch(object):

 attribute_name = None
 _active_patches = []

 def __init__(
 self, getter, attribute, new, spec, create,
 spec_set, autospec, new_callable, kwargs
):
 if new_callable is not None:
 if new is not DEFAULT:
 raise ValueError(
 "Cannot use 'new' and 'new_callable' together"
)
 if autospec is not None:
 raise ValueError(
 "Cannot use 'autospec' and 'new_callable' together"
)

 self.getter = getter
 self.attribute = attribute
 self.new = new
 self.new_callable = new_callable
 self.spec = spec
 self.create = create
 self.has_local = False
 self.spec_set = spec_set
 self.autospec = autospec
 self.kwargs = kwargs
 self.additional_patchers = []

 def copy(self):
 patcher = _patch(
 self.getter, self.attribute, self.new, self.spec,
 self.create, self.spec_set,
 self.autospec, self.new_callable, self.kwargs
)
 patcher.attribute_name = self.attribute_name
 patcher.additional_patchers = [
 p.copy() for p in self.additional_patchers
]
 return patcher

 def __call__(self, func):
 if isinstance(func, ClassTypes):
 return self.decorate_class(func)
 return self.decorate_callable(func)

 def decorate_class(self, klass):
 for attr in dir(klass):
 if not attr.startswith(patch.TEST_PREFIX):
 continue

 attr_value = getattr(klass, attr)
 if not hasattr(attr_value, "__call__"):
 continue

 patcher = self.copy()
 setattr(klass, attr, patcher(attr_value))
 return klass

 def decorate_callable(self, func):
 if hasattr(func, 'patchings'):
 func.patchings.append(self)
 return func

 @wraps(func)
 def patched(*args, **keywargs):
 extra_args = []
 entered_patchers = []

 exc_info = tuple()
 try:
 for patching in patched.patchings:
 arg = patching.__enter__()
 entered_patchers.append(patching)
 if patching.attribute_name is not None:
 keywargs.update(arg)
 elif patching.new is DEFAULT:
 extra_args.append(arg)

 args += tuple(extra_args)
 return func(*args, **keywargs)
 except:
 if (patching not in entered_patchers and
 _is_started(patching)):
 # the patcher may have been started, but an exception
 # raised whilst entering one of its additional_patchers
 entered_patchers.append(patching)
 # Pass the exception to __exit__
 exc_info = sys.exc_info()
 # re-raise the exception
 raise
 finally:
 for patching in reversed(entered_patchers):
 patching.__exit__(*exc_info)

 patched.patchings = [self]
 return patched

 def get_original(self):
 target = self.getter()
 name = self.attribute

 original = DEFAULT
 local = False

 try:
 original = target.__dict__[name]
 except (AttributeError, KeyError):
 original = getattr(target, name, DEFAULT)
 else:
 local = True

 if name in _builtins and isinstance(target, ModuleType):
 self.create = True

 if not self.create and original is DEFAULT:
 raise AttributeError(
 "%s does not have the attribute %r" % (target, name)
)
 return original, local

 def __enter__(self):
 """Perform the patch."""
 new, spec, spec_set = self.new, self.spec, self.spec_set
 autospec, kwargs = self.autospec, self.kwargs
 new_callable = self.new_callable
 self.target = self.getter()

 # normalise False to None
 if spec is False:
 spec = None
 if spec_set is False:
 spec_set = None
 if autospec is False:
 autospec = None

 if spec is not None and autospec is not None:
 raise TypeError("Can't specify spec and autospec")
 if ((spec is not None or autospec is not None) and
 spec_set not in (True, None)):
 raise TypeError("Can't provide explicit spec_set *and* spec or autospec")

 original, local = self.get_original()

 if new is DEFAULT and autospec is None:
 inherit = False
 if spec is True:
 # set spec to the object we are replacing
 spec = original
 if spec_set is True:
 spec_set = original
 spec = None
 elif spec is not None:
 if spec_set is True:
 spec_set = spec
 spec = None
 elif spec_set is True:
 spec_set = original

 if spec is not None or spec_set is not None:
 if original is DEFAULT:
 raise TypeError("Can't use 'spec' with create=True")
 if isinstance(original, ClassTypes):
 # If we're patching out a class and there is a spec
 inherit = True

 Klass = MagicMock
 _kwargs = {}
 if new_callable is not None:
 Klass = new_callable
 elif spec is not None or spec_set is not None:
 this_spec = spec
 if spec_set is not None:
 this_spec = spec_set
 if _is_list(this_spec):
 not_callable = '__call__' not in this_spec
 else:
 not_callable = not _callable(this_spec)
 if not_callable:
 Klass = NonCallableMagicMock

 if spec is not None:
 _kwargs['spec'] = spec
 if spec_set is not None:
 _kwargs['spec_set'] = spec_set

 # add a name to mocks
 if (isinstance(Klass, type) and
 issubclass(Klass, NonCallableMock) and self.attribute):
 _kwargs['name'] = self.attribute

 _kwargs.update(kwargs)
 new = Klass(**_kwargs)

 if inherit and _is_instance_mock(new):
 # we can only tell if the instance should be callable if the
 # spec is not a list
 this_spec = spec
 if spec_set is not None:
 this_spec = spec_set
 if (not _is_list(this_spec) and not
 _instance_callable(this_spec)):
 Klass = NonCallableMagicMock

 _kwargs.pop('name')
 new.return_value = Klass(_new_parent=new, _new_name='()',
 **_kwargs)
 elif autospec is not None:
 # spec is ignored, new *must* be default, spec_set is treated
 # as a boolean. Should we check spec is not None and that spec_set
 # is a bool?
 if new is not DEFAULT:
 raise TypeError(
 "autospec creates the mock for you. Can't specify "
 "autospec and new."
)
 if original is DEFAULT:
 raise TypeError("Can't use 'autospec' with create=True")
 spec_set = bool(spec_set)
 if autospec is True:
 autospec = original

 new = create_autospec(autospec, spec_set=spec_set,
 _name=self.attribute, **kwargs)
 elif kwargs:
 # can't set keyword args when we aren't creating the mock
 # XXXX If new is a Mock we could call new.configure_mock(**kwargs)
 raise TypeError("Can't pass kwargs to a mock we aren't creating")

 new_attr = new

 self.temp_original = original
 self.is_local = local
 setattr(self.target, self.attribute, new_attr)
 if self.attribute_name is not None:
 extra_args = {}
 if self.new is DEFAULT:
 extra_args[self.attribute_name] = new
 for patching in self.additional_patchers:
 arg = patching.__enter__()
 if patching.new is DEFAULT:
 extra_args.update(arg)
 return extra_args

 return new

 def __exit__(self, *exc_info):
 """Undo the patch."""
 if not _is_started(self):
 raise RuntimeError('stop called on unstarted patcher')

 if self.is_local and self.temp_original is not DEFAULT:
 setattr(self.target, self.attribute, self.temp_original)
 else:
 delattr(self.target, self.attribute)
 if not self.create and (not hasattr(self.target, self.attribute) or
 self.attribute in ('__doc__', '__module__',
 '__defaults__', '__annotations__',
 '__kwdefaults__')):
 # needed for proxy objects like django settings
 setattr(self.target, self.attribute, self.temp_original)

 del self.temp_original
 del self.is_local
 del self.target
 for patcher in reversed(self.additional_patchers):
 if _is_started(patcher):
 patcher.__exit__(*exc_info)

 def start(self):
 """Activate a patch, returning any created mock."""
 result = self.__enter__()
 self._active_patches.append(self)
 return result

 def stop(self):
 """Stop an active patch."""
 try:
 self._active_patches.remove(self)
 except ValueError:
 # If the patch hasn't been started this will fail
 pass

 return self.__exit__()

def _get_target(target):
 try:
 target, attribute = target.rsplit('.', 1)
 except (TypeError, ValueError):
 raise TypeError("Need a valid target to patch. You supplied: %r" %
 (target,))
 getter = lambda: _importer(target)
 return getter, attribute

def _patch_object(
 target, attribute, new=DEFAULT, spec=None,
 create=False, spec_set=None, autospec=None,
 new_callable=None, **kwargs
):
 """
 patch the named member (`attribute`) on an object (`target`) with a mock
 object.

 `patch.object` can be used as a decorator, class decorator or a context
 manager. Arguments `new`, `spec`, `create`, `spec_set`,
 `autospec` and `new_callable` have the same meaning as for `patch`. Like
 `patch`, `patch.object` takes arbitrary keyword arguments for configuring
 the mock object it creates.

 When used as a class decorator `patch.object` honours `patch.TEST_PREFIX`
 for choosing which methods to wrap.
 """
 getter = lambda: target
 return _patch(
 getter, attribute, new, spec, create,
 spec_set, autospec, new_callable, kwargs
)

def _patch_multiple(target, spec=None, create=False, spec_set=None,
 autospec=None, new_callable=None, **kwargs):
 """Perform multiple patches in a single call. It takes the object to be
 patched (either as an object or a string to fetch the object by importing)
 and keyword arguments for the patches::

 with patch.multiple(settings, FIRST_PATCH='one', SECOND_PATCH='two'):
 ...

 Use `DEFAULT` as the value if you want `patch.multiple` to create
 mocks for you. In this case the created mocks are passed into a decorated
 function by keyword, and a dictionary is returned when `patch.multiple` is
 used as a context manager.

 `patch.multiple` can be used as a decorator, class decorator or a context
 manager. The arguments `spec`, `spec_set`, `create`,
 `autospec` and `new_callable` have the same meaning as for `patch`. These
 arguments will be applied to *all* patches done by `patch.multiple`.

 When used as a class decorator `patch.multiple` honours `patch.TEST_PREFIX`
 for choosing which methods to wrap.
 """
 if type(target) in (unicode, str):
 getter = lambda: _importer(target)
 else:
 getter = lambda: target

 if not kwargs:
 raise ValueError(
 'Must supply at least one keyword argument with patch.multiple'
)
 # need to wrap in a list for python 3, where items is a view
 items = list(kwargs.items())
 attribute, new = items[0]
 patcher = _patch(
 getter, attribute, new, spec, create, spec_set,
 autospec, new_callable, {}
)
 patcher.attribute_name = attribute
 for attribute, new in items[1:]:
 this_patcher = _patch(
 getter, attribute, new, spec, create, spec_set,
 autospec, new_callable, {}
)
 this_patcher.attribute_name = attribute
 patcher.additional_patchers.append(this_patcher)
 return patcher

def patch(
 target, new=DEFAULT, spec=None, create=False,
 spec_set=None, autospec=None, new_callable=None, **kwargs
):
 """
 `patch` acts as a function decorator, class decorator or a context
 manager. Inside the body of the function or with statement, the `target`
 is patched with a `new` object. When the function/with statement exits
 the patch is undone.

 If `new` is omitted, then the target is replaced with a
 `MagicMock`. If `patch` is used as a decorator and `new` is
 omitted, the created mock is passed in as an extra argument to the
 decorated function. If `patch` is used as a context manager the created
 mock is returned by the context manager.

 `target` should be a string in the form `'package.module.ClassName'`. The
 `target` is imported and the specified object replaced with the `new`
 object, so the `target` must be importable from the environment you are
 calling `patch` from. The target is imported when the decorated function
 is executed, not at decoration time.

 The `spec` and `spec_set` keyword arguments are passed to the `MagicMock`
 if patch is creating one for you.

 In addition you can pass `spec=True` or `spec_set=True`, which causes
 patch to pass in the object being mocked as the spec/spec_set object.

 `new_callable` allows you to specify a different class, or callable object,
 that will be called to create the `new` object. By default `MagicMock` is
 used.

 A more powerful form of `spec` is `autospec`. If you set `autospec=True`
 then the mock will be created with a spec from the object being replaced.
 All attributes of the mock will also have the spec of the corresponding
 attribute of the object being replaced. Methods and functions being
 mocked will have their arguments checked and will raise a `TypeError` if
 they are called with the wrong signature. For mocks replacing a class,
 their return value (the 'instance') will have the same spec as the class.

 Instead of `autospec=True` you can pass `autospec=some_object` to use an
 arbitrary object as the spec instead of the one being replaced.

 By default `patch` will fail to replace attributes that don't exist. If
 you pass in `create=True`, and the attribute doesn't exist, patch will
 create the attribute for you when the patched function is called, and
 delete it again afterwards. This is useful for writing tests against
 attributes that your production code creates at runtime. It is off by
 default because it can be dangerous. With it switched on you can write
 passing tests against APIs that don't actually exist!

 Patch can be used as a `TestCase` class decorator. It works by
 decorating each test method in the class. This reduces the boilerplate
 code when your test methods share a common patchings set. `patch` finds
 tests by looking for method names that start with `patch.TEST_PREFIX`.
 By default this is `test`, which matches the way `unittest` finds tests.
 You can specify an alternative prefix by setting `patch.TEST_PREFIX`.

 Patch can be used as a context manager, with the with statement. Here the
 patching applies to the indented block after the with statement. If you
 use "as" then the patched object will be bound to the name after the
 "as"; very useful if `patch` is creating a mock object for you.

 `patch` takes arbitrary keyword arguments. These will be passed to
 the `Mock` (or `new_callable`) on construction.

 `patch.dict(...)`, `patch.multiple(...)` and `patch.object(...)` are
 available for alternate use-cases.
 """
 getter, attribute = _get_target(target)
 return _patch(
 getter, attribute, new, spec, create,
 spec_set, autospec, new_callable, kwargs
)

class _patch_dict(object):
 """
 Patch a dictionary, or dictionary like object, and restore the dictionary
 to its original state after the test.

 `in_dict` can be a dictionary or a mapping like container. If it is a
 mapping then it must at least support getting, setting and deleting items
 plus iterating over keys.

 `in_dict` can also be a string specifying the name of the dictionary, which
 will then be fetched by importing it.

 `values` can be a dictionary of values to set in the dictionary. `values`
 can also be an iterable of `(key, value)` pairs.

 If `clear` is True then the dictionary will be cleared before the new
 values are set.

 `patch.dict` can also be called with arbitrary keyword arguments to set
 values in the dictionary::

 with patch.dict('sys.modules', mymodule=Mock(), other_module=Mock()):
 ...

 `patch.dict` can be used as a context manager, decorator or class
 decorator. When used as a class decorator `patch.dict` honours
 `patch.TEST_PREFIX` for choosing which methods to wrap.
 """

 def __init__(self, in_dict, values=(), clear=False, **kwargs):
 if isinstance(in_dict, basestring):
 in_dict = _importer(in_dict)
 self.in_dict = in_dict
 # support any argument supported by dict(...) constructor
 self.values = dict(values)
 self.values.update(kwargs)
 self.clear = clear
 self._original = None

 def __call__(self, f):
 if isinstance(f, ClassTypes):
 return self.decorate_class(f)
 @wraps(f)
 def _inner(*args, **kw):
 self._patch_dict()
 try:
 return f(*args, **kw)
 finally:
 self._unpatch_dict()

 return _inner

 def decorate_class(self, klass):
 for attr in dir(klass):
 attr_value = getattr(klass, attr)
 if (attr.startswith(patch.TEST_PREFIX) and
 hasattr(attr_value, "__call__")):
 decorator = _patch_dict(self.in_dict, self.values, self.clear)
 decorated = decorator(attr_value)
 setattr(klass, attr, decorated)
 return klass

 def __enter__(self):
 """Patch the dict."""
 self._patch_dict()

 def _patch_dict(self):
 values = self.values
 in_dict = self.in_dict
 clear = self.clear

 try:
 original = in_dict.copy()
 except AttributeError:
 # dict like object with no copy method
 # must support iteration over keys
 original = {}
 for key in in_dict:
 original[key] = in_dict[key]
 self._original = original

 if clear:
 _clear_dict(in_dict)

 try:
 in_dict.update(values)
 except AttributeError:
 # dict like object with no update method
 for key in values:
 in_dict[key] = values[key]

 def _unpatch_dict(self):
 in_dict = self.in_dict
 original = self._original

 _clear_dict(in_dict)

 try:
 in_dict.update(original)
 except AttributeError:
 for key in original:
 in_dict[key] = original[key]

 def __exit__(self, *args):
 """Unpatch the dict."""
 self._unpatch_dict()
 return False

 start = __enter__
 stop = __exit__

def _clear_dict(in_dict):
 try:
 in_dict.clear()
 except AttributeError:
 keys = list(in_dict)
 for key in keys:
 del in_dict[key]

def _patch_stopall():
 """Stop all active patches. LIFO to unroll nested patches."""
 for patch in reversed(_patch._active_patches):
 patch.stop()

patch.object = _patch_object
patch.dict = _patch_dict
patch.multiple = _patch_multiple
patch.stopall = _patch_stopall
patch.TEST_PREFIX = 'test'

magic_methods = (
 "lt le gt ge eq ne "
 "getitem setitem delitem "
 "len contains iter "
 "hash str sizeof "
 "enter exit "
 # we added divmod and rdivmod here instead of numerics
 # because there is no idivmod
 "divmod rdivmod neg pos abs invert "
 "complex int float index "
 "trunc floor ceil "
)

numerics = (
 "add sub mul matmul div floordiv mod lshift rshift and xor or pow"
)
if six.PY3:
 numerics += ' truediv'
inplace = ' '.join('i%s' % n for n in numerics.split())
right = ' '.join('r%s' % n for n in numerics.split())
extra = ''
if six.PY3:
 extra = 'bool next '
else:
 extra = 'unicode long nonzero oct hex truediv rtruediv '

not including __prepare__, __instancecheck__, __subclasscheck__
(as they are metaclass methods)
__del__ is not supported at all as it causes problems if it exists

_non_defaults = set((
 '__cmp__', '__getslice__', '__setslice__', '__coerce__', # <3.x
 '__get__', '__set__', '__delete__', '__reversed__', '__missing__',
 '__reduce__', '__reduce_ex__', '__getinitargs__', '__getnewargs__',
 '__getstate__', '__setstate__', '__getformat__', '__setformat__',
 '__repr__', '__dir__', '__subclasses__', '__format__',
))

def _get_method(name, func):
 "Turns a callable object (like a mock) into a real function"
 def method(self, *args, **kw):
 return func(self, *args, **kw)
 method.__name__ = name
 return method

_magics = set(
 '__%s__' % method for method in
 ' '.join([magic_methods, numerics, inplace, right, extra]).split()
)

_all_magics = _magics | _non_defaults

_unsupported_magics = set((
 '__getattr__', '__setattr__',
 '__init__', '__new__', '__prepare__'
 '__instancecheck__', '__subclasscheck__',
 '__del__'
))

_calculate_return_value = {
 '__hash__': lambda self: object.__hash__(self),
 '__str__': lambda self: object.__str__(self),
 '__sizeof__': lambda self: object.__sizeof__(self),
 '__unicode__': lambda self: unicode(object.__str__(self)),
}

_return_values = {
 '__lt__': NotImplemented,
 '__gt__': NotImplemented,
 '__le__': NotImplemented,
 '__ge__': NotImplemented,
 '__int__': 1,
 '__contains__': False,
 '__len__': 0,
 '__exit__': False,
 '__complex__': 1j,
 '__float__': 1.0,
 '__bool__': True,
 '__nonzero__': True,
 '__oct__': '1',
 '__hex__': '0x1',
 '__long__': long(1),
 '__index__': 1,
}

def _get_eq(self):
 def __eq__(other):
 ret_val = self.__eq__._mock_return_value
 if ret_val is not DEFAULT:
 return ret_val
 return self is other
 return __eq__

def _get_ne(self):
 def __ne__(other):
 if self.__ne__._mock_return_value is not DEFAULT:
 return DEFAULT
 return self is not other
 return __ne__

def _get_iter(self):
 def __iter__():
 ret_val = self.__iter__._mock_return_value
 if ret_val is DEFAULT:
 return iter([])
 # if ret_val was already an iterator, then calling iter on it should
 # return the iterator unchanged
 return iter(ret_val)
 return __iter__

_side_effect_methods = {
 '__eq__': _get_eq,
 '__ne__': _get_ne,
 '__iter__': _get_iter,
}

def _set_return_value(mock, method, name):
 fixed = _return_values.get(name, DEFAULT)
 if fixed is not DEFAULT:
 method.return_value = fixed
 return

 return_calulator = _calculate_return_value.get(name)
 if return_calulator is not None:
 try:
 return_value = return_calulator(mock)
 except AttributeError:
 # XXXX why do we return AttributeError here?
 # set it as a side_effect instead?
 return_value = AttributeError(name)
 method.return_value = return_value
 return

 side_effector = _side_effect_methods.get(name)
 if side_effector is not None:
 method.side_effect = side_effector(mock)

class MagicMixin(object):
 def __init__(self, *args, **kw):
 self._mock_set_magics() # make magic work for kwargs in init
 _safe_super(MagicMixin, self).__init__(*args, **kw)
 self._mock_set_magics() # fix magic broken by upper level init

 def _mock_set_magics(self):
 these_magics = _magics

 if getattr(self, "_mock_methods", None) is not None:
 these_magics = _magics.intersection(self._mock_methods)

 remove_magics = set()
 remove_magics = _magics - these_magics

 for entry in remove_magics:
 if entry in type(self).__dict__:
 # remove unneeded magic methods
 delattr(self, entry)

 # don't overwrite existing attributes if called a second time
 these_magics = these_magics - set(type(self).__dict__)

 _type = type(self)
 for entry in these_magics:
 setattr(_type, entry, MagicProxy(entry, self))

class NonCallableMagicMock(MagicMixin, NonCallableMock):
 """A version of `MagicMock` that isn't callable."""
 def mock_add_spec(self, spec, spec_set=False):
 """Add a spec to a mock. `spec` can either be an object or a
 list of strings. Only attributes on the `spec` can be fetched as
 attributes from the mock.

 If `spec_set` is True then only attributes on the spec can be set."""
 self._mock_add_spec(spec, spec_set)
 self._mock_set_magics()

class MagicMock(MagicMixin, Mock):
 """
 MagicMock is a subclass of Mock with default implementations
 of most of the magic methods. You can use MagicMock without having to
 configure the magic methods yourself.

 If you use the `spec` or `spec_set` arguments then *only* magic
 methods that exist in the spec will be created.

 Attributes and the return value of a `MagicMock` will also be `MagicMocks`.
 """
 def mock_add_spec(self, spec, spec_set=False):
 """Add a spec to a mock. `spec` can either be an object or a
 list of strings. Only attributes on the `spec` can be fetched as
 attributes from the mock.

 If `spec_set` is True then only attributes on the spec can be set."""
 self._mock_add_spec(spec, spec_set)
 self._mock_set_magics()

class MagicProxy(object):
 def __init__(self, name, parent):
 self.name = name
 self.parent = parent

 def __call__(self, *args, **kwargs):
 m = self.create_mock()
 return m(*args, **kwargs)

 def create_mock(self):
 entry = self.name
 parent = self.parent
 m = parent._get_child_mock(name=entry, _new_name=entry,
 _new_parent=parent)
 setattr(parent, entry, m)
 _set_return_value(parent, m, entry)
 return m

 def __get__(self, obj, _type=None):
 return self.create_mock()

class _ANY(object):
 "A helper object that compares equal to everything."

 def __eq__(self, other):
 return True

 def __ne__(self, other):
 return False

 def __repr__(self):
 return '<ANY>'

ANY = _ANY()

def _format_call_signature(name, args, kwargs):
 message = '%s(%%s)' % name
 formatted_args = ''
 args_string = ', '.join([repr(arg) for arg in args])

 def encode_item(item):
 if six.PY2 and isinstance(item, unicode):
 return item.encode("utf-8")
 else:
 return item

 kwargs_string = ', '.join([
 '%s=%r' % (encode_item(key), value) for key, value in sorted(kwargs.items())
])
 if args_string:
 formatted_args = args_string
 if kwargs_string:
 if formatted_args:
 formatted_args += ', '
 formatted_args += kwargs_string

 return message % formatted_args

class _Call(tuple):
 """
 A tuple for holding the results of a call to a mock, either in the form
 `(args, kwargs)` or `(name, args, kwargs)`.

 If args or kwargs are empty then a call tuple will compare equal to
 a tuple without those values. This makes comparisons less verbose::

 _Call(('name', (), {})) == ('name',)
 _Call(('name', (1,), {})) == ('name', (1,))
 _Call(((), {'a': 'b'})) == ({'a': 'b'},)

 The `_Call` object provides a useful shortcut for comparing with call::

 _Call(((1, 2), {'a': 3})) == call(1, 2, a=3)
 _Call(('foo', (1, 2), {'a': 3})) == call.foo(1, 2, a=3)

 If the _Call has no name then it will match any name.
 """
 def __new__(cls, value=(), name=None, parent=None, two=False,
 from_kall=True):
 name = ''
 args = ()
 kwargs = {}
 _len = len(value)
 if _len == 3:
 name, args, kwargs = value
 elif _len == 2:
 first, second = value
 if isinstance(first, basestring):
 name = first
 if isinstance(second, tuple):
 args = second
 else:
 kwargs = second
 else:
 args, kwargs = first, second
 elif _len == 1:
 value, = value
 if isinstance(value, basestring):
 name = value
 elif isinstance(value, tuple):
 args = value
 else:
 kwargs = value

 if two:
 return tuple.__new__(cls, (args, kwargs))

 return tuple.__new__(cls, (name, args, kwargs))

 def __init__(self, value=(), name=None, parent=None, two=False,
 from_kall=True):
 self.name = name
 self.parent = parent
 self.from_kall = from_kall

 def __eq__(self, other):
 if other is ANY:
 return True
 try:
 len_other = len(other)
 except TypeError:
 return False

 self_name = ''
 if len(self) == 2:
 self_args, self_kwargs = self
 else:
 self_name, self_args, self_kwargs = self

 other_name = ''
 if len_other == 0:
 other_args, other_kwargs = (), {}
 elif len_other == 3:
 other_name, other_args, other_kwargs = other
 elif len_other == 1:
 value, = other
 if isinstance(value, tuple):
 other_args = value
 other_kwargs = {}
 elif isinstance(value, basestring):
 other_name = value
 other_args, other_kwargs = (), {}
 else:
 other_args = ()
 other_kwargs = value
 elif len_other == 2:
 # could be (name, args) or (name, kwargs) or (args, kwargs)
 first, second = other
 if isinstance(first, basestring):
 other_name = first
 if isinstance(second, tuple):
 other_args, other_kwargs = second, {}
 else:
 other_args, other_kwargs = (), second
 else:
 other_args, other_kwargs = first, second
 else:
 return False

 if self_name and other_name != self_name:
 return False

 # this order is important for ANY to work!
 return (other_args, other_kwargs) == (self_args, self_kwargs)

 def __ne__(self, other):
 return not self.__eq__(other)

 def __call__(self, *args, **kwargs):
 if self.name is None:
 return _Call(('', args, kwargs), name='()')

 name = self.name + '()'
 return _Call((self.name, args, kwargs), name=name, parent=self)

 def __getattr__(self, attr):
 if self.name is None:
 return _Call(name=attr, from_kall=False)
 name = '%s.%s' % (self.name, attr)
 return _Call(name=name, parent=self, from_kall=False)

 def count(self, *args, **kwargs):
 return self.__getattr__('count')(*args, **kwargs)

 def index(self, *args, **kwargs):
 return self.__getattr__('index')(*args, **kwargs)

 def __repr__(self):
 if not self.from_kall:
 name = self.name or 'call'
 if name.startswith('()'):
 name = 'call%s' % name
 return name

 if len(self) == 2:
 name = 'call'
 args, kwargs = self
 else:
 name, args, kwargs = self
 if not name:
 name = 'call'
 elif not name.startswith('()'):
 name = 'call.%s' % name
 else:
 name = 'call%s' % name
 return _format_call_signature(name, args, kwargs)

 def call_list(self):
 """For a call object that represents multiple calls, `call_list`
 returns a list of all the intermediate calls as well as the
 final call."""
 vals = []
 thing = self
 while thing is not None:
 if thing.from_kall:
 vals.append(thing)
 thing = thing.parent
 return _CallList(reversed(vals))

call = _Call(from_kall=False)

def create_autospec(spec, spec_set=False, instance=False, _parent=None,
 _name=None, **kwargs):
 """Create a mock object using another object as a spec. Attributes on the
 mock will use the corresponding attribute on the `spec` object as their
 spec.

 Functions or methods being mocked will have their arguments checked
 to check that they are called with the correct signature.

 If `spec_set` is True then attempting to set attributes that don't exist
 on the spec object will raise an `AttributeError`.

 If a class is used as a spec then the return value of the mock (the
 instance of the class) will have the same spec. You can use a class as the
 spec for an instance object by passing `instance=True`. The returned mock
 will only be callable if instances of the mock are callable.

 `create_autospec` also takes arbitrary keyword arguments that are passed to
 the constructor of the created mock."""
 if _is_list(spec):
 # can't pass a list instance to the mock constructor as it will be
 # interpreted as a list of strings
 spec = type(spec)

 is_type = isinstance(spec, ClassTypes)

 _kwargs = {'spec': spec}
 if spec_set:
 _kwargs = {'spec_set': spec}
 elif spec is None:
 # None we mock with a normal mock without a spec
 _kwargs = {}
 if _kwargs and instance:
 _kwargs['_spec_as_instance'] = True

 _kwargs.update(kwargs)

 Klass = MagicMock
 if type(spec) in DescriptorTypes:
 # descriptors don't have a spec
 # because we don't know what type they return
 _kwargs = {}
 elif not _callable(spec):
 Klass = NonCallableMagicMock
 elif is_type and instance and not _instance_callable(spec):
 Klass = NonCallableMagicMock

 _name = _kwargs.pop('name', _name)

 _new_name = _name
 if _parent is None:
 # for a top level object no _new_name should be set
 _new_name = ''

 mock = Klass(parent=_parent, _new_parent=_parent, _new_name=_new_name,
 name=_name, **_kwargs)

 if isinstance(spec, FunctionTypes):
 # should only happen at the top level because we don't
 # recurse for functions
 mock = _set_signature(mock, spec)
 else:
 _check_signature(spec, mock, is_type, instance)

 if _parent is not None and not instance:
 _parent._mock_children[_name] = mock

 if is_type and not instance and 'return_value' not in kwargs:
 mock.return_value = create_autospec(spec, spec_set, instance=True,
 _name='()', _parent=mock)

 for entry in dir(spec):
 if _is_magic(entry):
 # MagicMock already does the useful magic methods for us
 continue

 # XXXX do we need a better way of getting attributes without
 # triggering code execution (?) Probably not - we need the actual
 # object to mock it so we would rather trigger a property than mock
 # the property descriptor. Likewise we want to mock out dynamically
 # provided attributes.
 # XXXX what about attributes that raise exceptions other than
 # AttributeError on being fetched?
 # we could be resilient against it, or catch and propagate the
 # exception when the attribute is fetched from the mock
 try:
 original = getattr(spec, entry)
 except AttributeError:
 continue

 kwargs = {'spec': original}
 if spec_set:
 kwargs = {'spec_set': original}

 if not isinstance(original, FunctionTypes):
 new = _SpecState(original, spec_set, mock, entry, instance)
 mock._mock_children[entry] = new
 else:
 parent = mock
 if isinstance(spec, FunctionTypes):
 parent = mock.mock

 skipfirst = _must_skip(spec, entry, is_type)
 kwargs['_eat_self'] = skipfirst
 new = MagicMock(parent=parent, name=entry, _new_name=entry,
 _new_parent=parent,
 **kwargs)
 mock._mock_children[entry] = new
 _check_signature(original, new, skipfirst=skipfirst)

 # so functions created with _set_signature become instance attributes,
 # *plus* their underlying mock exists in _mock_children of the parent
 # mock. Adding to _mock_children may be unnecessary where we are also
 # setting as an instance attribute?
 if isinstance(new, FunctionTypes):
 setattr(mock, entry, new)

 return mock

def _must_skip(spec, entry, is_type):
 """
 Return whether we should skip the first argument on spec's `entry`
 attribute.
 """
 if not isinstance(spec, ClassTypes):
 if entry in getattr(spec, '__dict__', {}):
 # instance attribute - shouldn't skip
 return False
 spec = spec.__class__
 if not hasattr(spec, '__mro__'):
 # old style class: can't have descriptors anyway
 return is_type

 for klass in spec.__mro__:
 result = klass.__dict__.get(entry, DEFAULT)
 if result is DEFAULT:
 continue
 if isinstance(result, (staticmethod, classmethod)):
 return False
 elif isinstance(getattr(result, '__get__', None), MethodWrapperTypes):
 # Normal method => skip if looked up on type
 # (if looked up on instance, self is already skipped)
 return is_type
 else:
 return False

 # shouldn't get here unless function is a dynamically provided attribute
 # XXXX untested behaviour
 return is_type

def _get_class(obj):
 try:
 return obj.__class__
 except AttributeError:
 # it is possible for objects to have no __class__
 return type(obj)

class _SpecState(object):

 def __init__(self, spec, spec_set=False, parent=None,
 name=None, ids=None, instance=False):
 self.spec = spec
 self.ids = ids
 self.spec_set = spec_set
 self.parent = parent
 self.instance = instance
 self.name = name

FunctionTypes = (
 # python function
 type(create_autospec),
 # instance method
 type(ANY.__eq__),
)

MethodWrapperTypes = (
 type(ANY.__eq__.__get__),
)

file_spec = None

def _iterate_read_data(read_data):
 # Helper for mock_open:
 # Retrieve lines from read_data via a generator so that separate calls to
 # readline, read, and readlines are properly interleaved
 sep = b'\n' if isinstance(read_data, bytes) else '\n'
 data_as_list = [l + sep for l in read_data.split(sep)]

 if data_as_list[-1] == sep:
 # If the last line ended in a newline, the list comprehension will have an
 # extra entry that's just a newline. Remove this.
 data_as_list = data_as_list[:-1]
 else:
 # If there wasn't an extra newline by itself, then the file being
 # emulated doesn't have a newline to end the last line remove the
 # newline that our naive format() added
 data_as_list[-1] = data_as_list[-1][:-1]

 for line in data_as_list:
 yield line

def mock_open(mock=None, read_data=''):
 """
 A helper function to create a mock to replace the use of `open`. It works
 for `open` called directly or used as a context manager.

 The `mock` argument is the mock object to configure. If `None` (the
 default) then a `MagicMock` will be created for you, with the API limited
 to methods or attributes available on standard file handles.

 `read_data` is a string for the `read` methoddline`, and `readlines` of the
 file handle to return. This is an empty string by default.
 """
 def _readlines_side_effect(*args, **kwargs):
 if handle.readlines.return_value is not None:
 return handle.readlines.return_value
 return list(_state[0])

 def _read_side_effect(*args, **kwargs):
 if handle.read.return_value is not None:
 return handle.read.return_value
 return type(read_data)().join(_state[0])

 def _readline_side_effect():
 if handle.readline.return_value is not None:
 while True:
 yield handle.readline.return_value
 for line in _state[0]:
 yield line

 global file_spec
 if file_spec is None:
 # set on first use
 if six.PY3:
 import _io
 file_spec = list(set(dir(_io.TextIOWrapper)).union(set(dir(_io.BytesIO))))
 else:
 file_spec = file

 if mock is None:
 mock = MagicMock(name='open', spec=open)

 handle = MagicMock(spec=file_spec)
 handle.__enter__.return_value = handle

 _state = [_iterate_read_data(read_data), None]

 handle.write.return_value = None
 handle.read.return_value = None
 handle.readline.return_value = None
 handle.readlines.return_value = None

 handle.read.side_effect = _read_side_effect
 _state[1] = _readline_side_effect()
 handle.readline.side_effect = _state[1]
 handle.readlines.side_effect = _readlines_side_effect

 def reset_data(*args, **kwargs):
 _state[0] = _iterate_read_data(read_data)
 if handle.readline.side_effect == _state[1]:
 # Only reset the side effect if the user hasn't overridden it.
 _state[1] = _readline_side_effect()
 handle.readline.side_effect = _state[1]
 return DEFAULT

 mock.side_effect = reset_data
 mock.return_value = handle
 return mock

class PropertyMock(Mock):
 """
 A mock intended to be used as a property, or other descriptor, on a class.
 `PropertyMock` provides `__get__` and `__set__` methods so you can specify
 a return value when it is fetched.

 Fetching a `PropertyMock` instance from an object calls the mock, with
 no args. Setting it calls the mock with the value being set.
 """
 def _get_child_mock(self, **kwargs):
 return MagicMock(**kwargs)

 def __get__(self, obj, obj_type):
 return self()
 def __set__(self, obj, val):
 self(val)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/widgetastic/utils.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for widgetastic.utils

-*- coding: utf-8 -*-
from __future__ import unicode_literals
"""This module contains some supporting classes."""

import re
import six
import string
from cached_property import cached_property
from smartloc import Locator
from threading import Lock

from . import xpath

class Widgetable(object):
 """A base class that should be a base class of anything that can be or act like a Widget."""
 #: Sequential counter that gets incremented on each Widgetable creation
 _seq_cnt = 0
 #: Lock that makes the :py:attr:`_seq_cnt` increment thread safe
 _seq_cnt_lock = Lock()

 def __new__(cls, *args, **kwargs):
 o = super(Widgetable, cls).__new__(cls)
 with Widgetable._seq_cnt_lock:
 o._seq_id = Widgetable._seq_cnt
 Widgetable._seq_cnt += 1
 return o

 @property
 def child_items(self):
 """If you implement your own class based on :py:class:`Widgetable`, you need to override
 this property.

 This property tells the widget processing system all instances of
 :py:class:`WidgetDescriptor` that this object may provide. That system then in turn makes
 sure that the appropriate entries in name/descriptor mapping are in place so when the
 descriptor gets instantiated, it can find its name in the mapping, making the instantiation
 possible.
 """
 return []

class Version(object):
 """Version class based on :py:class:`distutils.version.LooseVersion`

 Has improved handling of the suffixes and such things.
 """
 #: List of possible suffixes
 SUFFIXES = ('nightly', 'pre', 'alpha', 'beta', 'rc')
 #: An autogenereted regexp from the :py:attr:`SUFFIXES`
 SUFFIXES_STR = "|".join(r'-{}(?:\d+(?:\.\d+)?)?'.format(suff) for suff in SUFFIXES)
 #: Regular expression that parses the main components of the version (not suffixes)
 component_re = re.compile(r'(?:\s*(\d+|[a-z]+|\.|(?:{})+$))'.format(SUFFIXES_STR))
 suffix_item_re = re.compile(r'^([^0-9]+)(\d+(?:\.\d+)?)?$')

 def __init__(self, vstring):
 self.parse(vstring)

 def __hash__(self):
 return hash(self.vstring)

 def parse(self, vstring):
 if vstring is None:
 raise ValueError('Version string cannot be None')
 elif isinstance(vstring, (list, tuple)):
 vstring = ".".join(map(str, vstring))
 elif vstring:
 vstring = str(vstring).strip()
 if vstring in ('master', 'latest', 'upstream'):
 vstring = 'master'

 components = list(filter(lambda x: x and x != '.', self.component_re.findall(vstring)))
 # Check if we have a version suffix which denotes pre-release
 if components and components[-1].startswith('-'):
 self.suffix = components[-1][1:].split('-') # Chop off the -
 components = components[:-1]
 else:
 self.suffix = None
 for i in range(len(components)):
 try:
 components[i] = int(components[i])
 except ValueError:
 pass

 self.vstring = vstring
 self.version = components

 @cached_property
 def normalized_suffix(self):
 """Turns the string suffixes to numbers. Creates a list of tuples.

 The list of tuples is consisting of 2-tuples, the first value says the position of the
 suffix in the list and the second number the numeric value of an eventual numeric suffix.

 If the numeric suffix is not present in a field, then the value is 0
 """
 numberized = []
 if self.suffix is None:
 return numberized
 for item in self.suffix:
 suff_t, suff_ver = self.suffix_item_re.match(item).groups()
 if suff_ver is None or len(suff_ver) == 0:
 suff_ver = 0.0
 else:
 suff_ver = float(suff_ver)
 suff_t = self.SUFFIXES.index(suff_t)
 numberized.append((suff_t, suff_ver))
 return numberized

 @classmethod
 def latest(cls):
 """Returns a specific ``latest`` version which always evaluates as newer."""
 try:
 return cls._latest
 except AttributeError:
 cls._latest = cls('latest')
 return cls._latest

 @classmethod
 def lowest(cls):
 """Returns a specific ``lowest`` version which always evaluates as older.

 You shall use this value in your :py:class:`VersionPick` dictionaries to match the oldest
 possible version of the product.
 """
 try:
 return cls._lowest
 except AttributeError:
 cls._lowest = cls('lowest')
 return cls._lowest

 def __str__(self):
 return self.vstring

 def __repr__(self):
 return '{}({})'.format(type(self).__name__, repr(self.vstring))

 def __lt__(self, other):
 try:
 if not isinstance(other, Version):
 other = Version(other)
 except:
 raise ValueError('Cannot compare Version to {}'.format(type(other).__name__))

 if self == other:
 return False
 elif self == self.latest() or other == self.lowest():
 return False
 elif self == self.lowest() or other == self.latest():
 return True
 else:
 # Start deciding on versions
 if self.version < other.version:
 return True
 # Use suffixes to decide
 elif self.suffix is None and other.suffix is None:
 # No suffix, the same
 return False
 elif self.suffix is None:
 # This does not have suffix but the other does so this is "newer"
 return False
 elif other.suffix is None:
 # This one does have suffix and the other does not so this one is older
 return True
 else:
 # Both have suffixes, so do some math
 return self.normalized_suffix < other.normalized_suffix

 def __le__(self, other):
 return self < other or self == other

 def __gt__(self, other):
 return not self <= other

 def __ge__(self, other):
 return not self < other

 def __eq__(self, other):
 try:
 if not isinstance(other, type(self)):
 other = Version(other)
 return (
 self.version == other.version and self.normalized_suffix == other.normalized_suffix)
 except:
 return False

 def __contains__(self, ver):
 """Enables to use ``in`` expression for :py:meth:`Version.is_in_series`.

 Example:
 ``"5.5.5.2" in Version("5.5") returns ``True``

 Args:
 ver: Version that should be checked if it is in series of this version. If
 :py:class:`str` provided, it will be converted to :py:class:`Version`.
 """
 try:
 return Version(ver).is_in_series(self)
 except:
 return False

 def is_in_series(self, series):
 """This method checks whether the version belongs to another version's series.

 Eg.: ``Version("5.5.5.2").is_in_series("5.5")`` returns ``True``

 Args:
 series: Another :py:class:`Version` to check against. If string provided, will be
 converted to :py:class:`Version`
 """

 if not isinstance(series, Version):
 series = Version(series)
 if self in {self.lowest(), self.latest()}:
 if series == self:
 return True
 else:
 return False
 return series.version == self.version[:len(series.version)]

 def series(self, n=2):
 """Returns the series (first ``n`` items) of the version

 Args:
 n: How many version components to include.

 Returns:
 :py:class:`str`
 """
 return ".".join(self.vstring.split(".")[:n])

class ConstructorResolvable(object):
 """Base class for objects that should be resolvable inside constructors of Widgets etc."""

 def resolve(self, parent_object):
 raise NotImplementedError(
 'You need to implement .resolve(parent_object) on {}'.format(type(self).__name__))

class VersionPick(Widgetable, ConstructorResolvable):
 """A class that implements the version picking functionality.

 Basic usage is a descriptor in which you place instances of :py:class:`VersionPick` in a view.
 Whenever is this instance accessed from an instance, it automatically picks the correct variant
 based on product_version defined in the :py:class:`widgetastic.browser.Browser`.

 You can also use this separately using the :py:meth:`pick` method.

 Example:

 .. code-block:: python

 class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

 This sample will resolve the correct (Foo or Bar) kind of item and returns it.

 Args:
 version_dict: Dictionary of ``version_introduced: item``
 """

 #: This variable specifies the class that is used for version comparisons. You can replace it
 #: with your own if the new class can be used in </> comparison.
 VERSION_CLASS = Version

 def __init__(self, version_dict):
 if not version_dict:
 raise ValueError('Passed an empty version pick dictionary.')
 self.version_dict = version_dict

 def __repr__(self):
 return '{}({})'.format(type(self).__name__, repr(self.version_dict))

 @property
 def child_items(self):
 return self.version_dict.values()

 def pick(self, version):
 """Selects the appropriate value for given version.

 Args:
 version: A :py:class:`Version` or anything that :py:class:`Version` can digest.

 Returns:
 A value from the version dictionary.
 """
 # convert keys to Versions
 v_dict = {self.VERSION_CLASS(k): v for k, v in self.version_dict.items()}
 versions = v_dict.keys()
 if not isinstance(version, self.VERSION_CLASS):
 version = self.VERSION_CLASS(version)
 sorted_matching_versions = sorted([v for v in versions if v <= version], reverse=True)
 if sorted_matching_versions:
 return v_dict.get(sorted_matching_versions[0])
 else:
 raise ValueError(
 'When trying to version pick {!r} in {!r}, matching version was not found'.format(
 version, versions))

 def __get__(self, o, type=None):
 if o is None:
 # On a class, therefore not resolving
 return self

 result = self.pick(o.browser.product_version)
 if isinstance(result, Widgetable):
 # Resolve it instead of the class
 return result.__get__(o)
 else:
 return result

 def resolve(self, parent_object):
 return self.__get__(parent_object)

class Fillable(object):
 @classmethod
 def coerce(cls, o):
 """This method serves as a processor for filling values.

 When you are filling values inside widgets and views, I bet you will quickly realize that
 filling basic values like strings or numbers is not enough. This method allows a potential
 fillable implement :py:meth:`as_fill_value` to return a basic value that represents the
 object in the UI

 Args:
 o: Object to be filled in the :py:class:`widgetastic.widget.View` or
 :py:class:`widgetastic.widget.Widget`

 Returns:
 Whatever is supposed to be filled in the widget.
 """
 if isinstance(o, cls):
 return o.as_fill_value()
 else:
 return o

 def as_fill_value(self):
 raise NotImplementedError('Descendants of Fillable must implement .as_fill_value method!')

class ParametrizedString(ConstructorResolvable):
 """Class used to generate strings based on the context passed to the view.

 Useful for parametrized views.

 Supported filters: ``quote`` (XPath)

 Args:
 template: String template in ``.format()`` format, use pipe to add a filter.
 """

 OPERATIONS = {
 'quote': xpath.quote,
 }

 def __init__(self, template):
 self.template = template
 formatter = string.Formatter()
 self.format_params = {}
 for _, param_name, _, _ in formatter.parse(self.template):
 if param_name is None:
 continue
 param = param_name.split('|', 1)
 if len(param) == 1:
 self.format_params[param_name] = (param[0], ())
 else:
 context_var_name = param[0]
 ops = param[1].split('|')
 self.format_params[param_name] = (context_var_name, tuple(ops))

 def resolve(self, view):
 format_dict = {}
 for format_key, (context_name, ops) in self.format_params.items():
 try:
 if context_name.startswith('@'):
 param_value = getattr(view, context_name[1:])
 else:
 param_value = view.context[context_name]
 except AttributeError:
 if context_name.startswith('@'):
 raise AttributeError(
 'Parameter {} is not present in the object'.format(context_name))
 else:
 raise TypeError('Parameter class must be defined on a view!')
 except KeyError:
 raise AttributeError(
 'Parameter {} is not present in the context'.format(context_name))
 for op in ops:
 try:
 op_callable = self.OPERATIONS[op]
 except KeyError:
 raise NameError('Unknown operation {} for {}'.format(op, format_key))
 else:
 param_value = op_callable(param_value)

 format_dict[format_key] = param_value

 return self.template.format(**format_dict)

 def __get__(self, o, t=None):
 if o is None:
 return self

 return self.resolve(o)

class ParametrizedLocator(ParametrizedString):
 def __get__(self, o, t=None):
 result = super(ParametrizedLocator, self).__get__(o, t)
 if isinstance(result, ParametrizedString):
 return result
 else:
 return Locator(result)

class Parameter(ParametrizedString):
 """Class used to expose a context parameter as an object attribute.

 Args:
 param: Name of the param.
 """
 def __init__(self, param):
 super(Parameter, self).__init__('{' + param + '}')

def _prenormalize_text(text):
 """Makes the text lowercase and removes all characters that are not digits, alphas, or spaces"""
 # _'s represent spaces so convert those to spaces too
 return re.sub(r"[^a-z0-9]", "", text.strip().lower().replace('_', ' '))

def _replace_spaces_with(text, delim):
 """Contracts spaces into one character and replaces it with a custom character."""
 return re.sub(r"\s+", delim, text)

def attributize_string(text):
 """Converts a string to a lowercase string containing only letters, digits and underscores.

 Usable for eg. generating object key names.
 The underscore is always one character long if it is present.
 """
 return _replace_spaces_with(_prenormalize_text(text), '_')

def normalize_space(text):
 """Works in accordance with the XPath's normalize-space() operator.

 `Description <https://developer.mozilla.org/en-US/docs/Web/XPath/Functions/normalize-space>`_:

 *The normalize-space function strips leading and trailing white-space from a string,
 replaces sequences of whitespace characters by a single space, and returns the resulting
 string.*
 """
 return _replace_spaces_with(text.strip(), ' ')

def nested_getattr(o, steps):
 """Works exactly like :py:func:`getattr`, however it treats ``.`` as the resolution steps,
 therefore allowing you to grab an attribute across objects.

 Args:
 o: Object to get the attributes from.
 steps: A string with attribute name path separated by dots or a list.

 Returns:
 The value of required attribute.
 """
 if isinstance(steps, six.string_types):
 steps = steps.split('.')
 if not isinstance(steps, (list, tuple)):
 raise TypeError(
 'nested_getattr only accepts strings, lists, or tuples!, You passed {}'.format(
 type(steps).__name__))
 steps = [step.strip() for step in steps if step.strip()]
 if not steps:
 raise ValueError('steps are empty!')
 result = o
 for step in steps:
 result = getattr(result, step)
 return result

def deflatten_dict(d):
 """Expands nested dictionary from dot-separated string keys.

 Useful when one needs filling a nested view, this can reduce the visual nesting

 Turns this:

 .. code-block:: python

 {'a.b': 1}

 Into this:

 .. code-block:: python

 {'a': {'b': 1}}

 The conversion recursively follows dictionaries as values.

 Args:
 d: Dictionary

 Returns:
 A dictionary.
 """
 current_dict = {}
 for key, value in six.iteritems(d):
 if not isinstance(key, six.string_types):
 current_dict[key] = value
 continue
 local_dict = current_dict
 if isinstance(key, tuple):
 attrs = list(key)
 else:
 attrs = [x.strip() for x in key.split('.')]
 dict_lookup = attrs[:-1]
 attr_set = attrs[-1]
 for attr_name in dict_lookup:
 if attr_name not in local_dict:
 local_dict[attr_name] = {}
 local_dict = local_dict[attr_name]
 local_dict[attr_set] = deflatten_dict(value) if isinstance(value, dict) else value
 return current_dict

def crop_string_middle(s, length=32, cropper='...'):
 """Crops string by adding ... in the middle.

 Args:
 s: String.
 length: Length to crop to.

 Returns:
 Cropped string
 """
 if len(s) <= length:
 return s
 half = (length - len(cropper)) / 2
 return s[:half] + cropper + s[-half - 1:]

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/page_screenshots.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for fixtures.page_screenshots

[docs]def pytest_addoption(parser):
 # Create the cfme option group for use in other plugins
 parser.getgroup('cfme')
 parser.addoption("--page-screenshots", action="store_true", default=False,
 help="take screenshots for each page visited")

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/ssh_client.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for fixtures.ssh_client

import pytest

import diaper
from fixtures.pytest_store import store
from cfme.utils.log import logger
from cfme.utils import ssh

@pytest.mark.hookwrapper
[docs]def pytest_sessionfinish(session, exitstatus):
 """Loop through the appliance stack and close ssh connections"""

 for ssh_client in store.ssh_clients_to_close:
 logger.debug('Closing ssh connection on %r', ssh_client)
 try:
 ssh_client.close()
 except:
 logger.debug(
 'Closing ssh connection on %r failed, but ignoring',
 ssh_client)
 for session in ssh._client_session:
 with diaper:
 session.close()
 yield

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/middleware_log.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for fixtures.middleware_log

import pytest
from cfme.utils.log_validator import LogValidator

@pytest.yield_fixture(scope='function')
[docs]def middleware_evm_log_no_error():
 evm_tail = LogValidator('/var/www/miq/vmdb/log/evm.log',
 skip_patterns=['.*ERROR.*API.*MIQ(Api::ApiController.api_error).*'],
 failure_patterns=['.*ERROR.*'])
 evm_tail.fix_before_start()
 yield
 evm_tail.validate_logs()

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/datafile.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for fixtures.datafile

import os

import pytest

from fixtures.terminalreporter import reporter
from cfme.utils.datafile import data_path_for_filename, load_data_file
from cfme.utils.path import data_path, log_path

Collection for storing unique combinations of data file paths
and filenames for usage reporting after a completed test run
seen_data_files = set()

@pytest.fixture(scope="module")
[docs]def datafile(request):
 """datafile(filename, replacements)
 datafile fixture, with templating support

 Args:

 filename: filename to load from the data dir
 replacements: template replacements

 Returns: Path to the loaded datafile

 Usage:

 Given a filename, it will attempt to open the given file from the
 test's corresponding data dir. For example, this:

 datafile('testfile') # in tests/subdir/test_module_name.py

 Would return a file object representing this file:

 /path/to/cfme_tests/data/subdir/test_module_name/testfile

 Given a filename with a leading slash, it will attempt to load the file
 relative to the root of the data dir. For example, this:

 datafile('/common/testfile') # in tests/subdir/test_module_name.py

 Would return a file object representing this file:

 /path/to/cfme_tests/data/common/testfile

 Note that the test module name is not used with the leading slash.

 .. rubric:: Templates:

 This fixture can also handle template replacements. If the datafile
 being loaded is a python template, the dictionary of replacements
 can be passed as the 'replacements' keyword argument. In this case,
 the returned data file will be a NamedTemporaryFile prepopulated
 with the interpolated result from combining the template with
 the replacements mapping.

 * http://docs.python.org/2/library/string.html#template-strings
 * http://docs.python.org/2/library/tempfile.html#tempfile.NamedTemporaryFile

 """
 return _FixtureDataFile(request)

[docs]def pytest_addoption(parser):
 group = parser.getgroup('cfme')
 group.addoption('--udf-report', action='store_true', default=False,
 dest='udf_report',
 help='flag to generate an unused data files report')

[docs]def pytest_sessionfinish(session, exitstatus):
 udf_log_file = log_path.join('unused_data_files.log')

 if udf_log_file.check():
 # Clean up old udf log if it exists
 udf_log_file.remove()

 if session.config.option.udf_report is False:
 # Short out here if not making a report
 return

 # Output an unused data files log after a test run
 data_files = set()
 for dirpath, dirnames, filenames in os.walk(str(data_path)):
 for filename in filenames:
 filepath = os.path.join(dirpath, filename)
 data_files.add(filepath)
 unused_data_files = data_files - seen_data_files

 if unused_data_files:
 # Write the log of unused data files out, minus the data dir prefix
 udf_log = ''.join(
 (line[len(str(data_path)):] + '\n' for line in unused_data_files)
)
 udf_log_file.write(udf_log + '\n')

 # Throw a notice into the terminal reporter to check the log
 tr = reporter()
 tr.write_line('')
 tr.write_sep(
 '-',
 '%d unused data files after test run, check %s' % (
 len(unused_data_files), udf_log_file.basename
)
)

class _FixtureDataFile(object):
 def __init__(self, request):
 self.base_path = str(request.session.fspath)
 self.testmod_path = str(request.fspath)

 def __call__(self, filename, replacements=None):
 if filename.startswith('/'):
 complete_path = data_path_for_filename(
 filename.strip('/'), self.base_path)
 else:
 complete_path = data_path_for_filename(
 filename, self.base_path, self.testmod_path)

 seen_data_files.add(complete_path)

 return load_data_file(complete_path, replacements)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/widgets.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for fixtures.widgets

-*- coding: utf-8 -*-
import pytest

from cfme.base import Server
from cfme.dashboard import Widget
from cfme.intelligence.reports import widgets
from cfme.utils.appliance.implementations.ui import navigate_to

@pytest.fixture(scope="session")
[docs]def widgets_generated(setup_only_one_provider):
 navigate_to(Server, 'Dashboard')
 widget_list = []
 for widget in Widget.all():
 widget_list.append((widget.name, widget.content_type))
 for w_name, w_type in widget_list:
 w = widgets.Widget.detect(w_type, w_name)
 if w.check_status() in w.WAIT_STATES:
 w.wait_generated(timeout=15 * 60)
 else:
 w.generate(timeout=15 * 60)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/dev_branch.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for fixtures.dev_branch

-*- coding: utf-8 -*-
import pytest

[docs]def pytest_addoption(parser):
 group = parser.getgroup('Upstream testing')
 group.addoption('--dev-repo',
 action='store',
 default=None,
 dest='dev_repo',
 help='Specify to use the IPAppliance.use_dev_branch()')
 group.addoption('--dev-branch',
 action='store',
 default='master',
 dest='dev_branch',
 help='Specify the branch of the remote repo.')

[docs]def pytest_sessionstart(session):
 if pytest.store.parallelizer_role == 'master':
 return
 if session.config.getoption("dev_repo") is None:
 return
 if pytest.store.current_appliance.is_downstream:
 pytest.store.write_line("Cannot git update downstream appliances ...")
 pytest.exit('Failed to git update this appliance, because it is downstream')
 dev_repo = session.config.getoption("dev_repo")
 dev_branch = session.config.getoption("dev_branch")
 pytest.store.write_line(
 "Changing the upstream appliance {} to {}#{} ...".format(
 pytest.store.current_appliance.address, dev_repo, dev_branch))
 pytest.store.current_appliance.use_dev_branch(dev_repo, dev_branch)
 pytest.store.write_line("Appliance change finished ...")

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/fixtures/prov_filter.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for fixtures.prov_filter

from cfme.utils.log import logger
from cfme.utils.providers import global_filters, list_providers, ProviderFilter

[docs]def pytest_addoption(parser):
 # Create the cfme option group for use in other plugins
 parser.getgroup('cfme')
 parser.addoption("--use-provider", action="append", default=[],
 help="list of provider keys or provider tags to include in test")

[docs]def pytest_configure(config):
 """ Filters the list of providers as part of pytest configuration

 Note:
 Additional filter is added to the global_filters dict of active filters here.
 """

 cmd_filter = config.getvalueorskip('use_provider')
 if not cmd_filter:
 cmd_filter = ["default"]

 new_filter = ProviderFilter(keys=cmd_filter, required_tags=cmd_filter, conjunctive=False)
 global_filters['use_provider'] = new_filter

 logger.debug('Filtering providers with {}, leaves {}'.format(
 cmd_filter, [prov.key for prov in list_providers()]))

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/infrastructure/cluster.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.infrastructure.cluster

""" A model of an Infrastructure Cluster in CFME

"""
from navmazing import NavigateToSibling, NavigateToAttribute
from widgetastic.widget import View
from widgetastic_manageiq import (Accordion, BreadCrumb, ItemsToolBarViewSelector, ManageIQTree,
 SummaryTable, Text, TimelinesView, BaseEntitiesView)
from widgetastic_patternfly import Button, Dropdown, FlashMessages

from cfme.base.login import BaseLoggedInPage
from cfme.common import TagPageView, WidgetasticTaggable
from cfme.exceptions import ItemNotFound
from cfme.utils.appliance import BaseCollection, BaseEntity
from cfme.utils.appliance.implementations.ui import navigate_to, navigator, CFMENavigateStep
from cfme.utils.pretty import Pretty
from cfme.utils.wait import wait_for, TimedOutError
from cfme.utils.log import logger

TODO: since Cluster always requires provider, it will use only one way to get to Cluster Detail's
page. But we need to fix this in the future.

[docs]class ClusterToolbar(View):
 """The toolbar on the page"""
 configuration = Dropdown('Configuration')
 policy = Dropdown('Policy')
 download = Dropdown('Download')

 view_selector = View.nested(ItemsToolBarViewSelector)

[docs]class ClusterDetailsToolbar(View):
 """The toolbar on the detail page"""
 configuration = Dropdown('Configuration')
 policy = Dropdown('Policy')
 monitoring = Dropdown('Monitoring')
 download = Button('Download summary in PDF format')

[docs]class ClusterDetailsAccordion(View):
 """The accordion on the details page"""
 @View.nested
 class cluster(Accordion): # noqa
 pass

 @View.nested
 class properties(Accordion): # noqa
 tree = ManageIQTree()

 @View.nested
 class relationships(Accordion): # noqa
 tree = ManageIQTree()

[docs]class ClusterDetailsEntities(View):
 """A cluster properties on the details page"""
 breadcrumb = BreadCrumb()
 title = Text('//div[@id="main-content"]//h1')
 relationships = SummaryTable(title='Relationships')
 totals_for_hosts = SummaryTable(title='Totals for Hosts')
 totals_for_vms = SummaryTable(title='Totals for VMs')
 configuration = SummaryTable(title='Configuration')
 smart_management = SummaryTable(title='Smart Management')
 # element attributes changed from id to class in upstream-fine+, capture both with locator
 flash = FlashMessages('.//div[@id="flash_msg_div"]'
 '/div[@id="flash_text_div" or contains(@class, "flash_text_div")]')

[docs]class ClusterView(BaseLoggedInPage):
 """Base view for all the cluster views"""
 @property
 def in_cluster(self):
 """Determine if the browser has navigated to the Cluster page"""
 return (
 self.logged_in_as_current_user and
 self.navigation.currently_selected == ['Compute', 'Infrastructure', 'Clusters'])

[docs]class ClusterAllView(ClusterView):
 """The all view page for clusters"""
 @property
 def is_displayed(self):
 """Determine if this page is currently being displayed"""
 return (
 self.in_cluster and
 self.entities.title.text == 'Clusters')

 toolbar = View.nested(ClusterToolbar)
 including_entities = View.include(BaseEntitiesView, use_parent=True)

[docs]class ClusterDetailsView(ClusterView):
 """The details page of a cluster"""
 @property
 def is_displayed(self):
 """Determine if this page is currently being displayed"""
 expected_title = '{} (Summary)'.format(self.context['object'].name)
 return (
 self.in_cluster and
 self.entities.title.text == expected_title and
 self.entities.breadcrumb.active_location == expected_title)

 toolbar = View.nested(ClusterDetailsToolbar)
 sidebar = View.nested(ClusterDetailsAccordion)
 entities = View.nested(ClusterDetailsEntities)

[docs]class ClusterTimelinesView(TimelinesView, ClusterView):
 """The timelines page of a cluster"""
 @property
 def is_displayed(self):
 """Determine if this page is currently being displayed"""
 return (
 self.in_cluster and
 super(TimelinesView, self).is_displayed)

[docs]class ClusterCollection(BaseCollection):
 """Collection object for the :py:class:`cfme.infrastructure.cluster.Cluster`."""

 def __init__(self, appliance):
 self.appliance = appliance

[docs] def instantiate(self, name, provider):
 return Cluster(self, name, provider)

[docs] def delete(self, *clusters):
 """Delete one or more Clusters from the list of the Clusters

 Args:
 list of the `cfme.infrastructure.cluster.Cluster` objects
 """
 clusters = list(clusters)
 checked_clusters = []
 view = navigate_to(self, 'All')
 view.toolbar.view_selector.select('List View')

 # todo: replace with get_all later
 if not view.entities.elements.is_displayed:
 raise ValueError('No Clusters found')

 for row in view.entities.elements:
 for cluster in clusters:
 if cluster.name == row.name.text:
 checked_clusters.append(cluster)
 row[0].check()
 break
 if set(clusters) == set(checked_clusters):
 break
 if set(clusters) != set(checked_clusters):
 raise ValueError('Some Clusters were not found in the UI')
 view.toolbar.configuration.item_select('Remove selected items', handle_alert=True)
 view.entities.flash.assert_no_error()
 flash_msg = ('Delete initiated for {} Clusters / Deployment Roles from the CFME Database'.
 format(len(clusters)))
 view.flash.assert_message(flash_msg)
 for cluster in clusters:
 cluster.wait_for_disappear()

[docs]class Cluster(Pretty, BaseEntity, WidgetasticTaggable):
 """ Model of an infrastructure cluster in cfme

 Args:
 name: Name of the cluster.
 provider: provider this cluster is attached to.

 Note:
 If given a provider_key, it will navigate through ``Infrastructure/Providers`` instead
 of the direct path through ``Infrastructure/Clusters``.
 """
 pretty_attrs = ['name', 'provider']

 def __init__(self, collection, name, provider):
 self.name = name
 self.provider = provider
 self.collection = collection
 self.appliance = self.collection.appliance
 self._short_name = self.name.split('in')[0].strip()
 self.quad_name = 'cluster'

 col = self.appliance.rest_api.collections
 self._id = [
 cl.id
 for cl in col.clusters
 if cl.name in (self._short_name, self.name) and cl.ems_id == self.provider.id
][-1]

[docs] def delete(self, cancel=True, wait=False):
 """
 Deletes a cluster from CFME

 Args:
 cancel: Whether to cancel the deletion, defaults to True
 wait: Whether or not to wait for the delete to complete, defaults to False
 """
 view = navigate_to(self, 'Details')
 view.toolbar.configuration.item_select('Remove item', handle_alert=not cancel)

 # cancel doesn't redirect, confirmation does
 view.flush_widget_cache()
 if cancel:
 view = self.create_view(ClusterDetailsView)
 else:
 view = self.create_view(ClusterAllView)
 wait_for(lambda: view.is_displayed, fail_condition=False, num_sec=10, delay=1)

 # flash message only displayed if it was deleted
 if not cancel:
 msg = 'The selected Clusters / Deployment Roles was deleted'
 view.entities.flash.assert_success_message(msg)

 if wait:
 self.provider.refresh_provider_relationships()
 self.wait_for_disappear()

[docs] def wait_for_disappear(self, timeout=300):
 self.provider.refresh_provider_relationships()
 try:
 return wait_for(lambda: not self.exists,
 timeout=timeout,
 message='Wait for cluster to disappear',
 delay=10,
 fail_func=self.browser.refresh)
 except TimedOutError:
 logger.error('Timed out waiting for cluster to disappear, continuing')

[docs] def wait_for_exists(self):
 """Wait for the cluster to be refreshed"""
 view = navigate_to(self.collection, 'All')

 def refresh():
 if self.provider:
 self.provider.refresh_provider_relationships()
 view.browser.selenium.refresh()
 view.flush_widget_cache()

 wait_for(lambda: self.exists, fail_condition=False, num_sec=1000, fail_func=refresh,
 message='Wait cluster to appear')

[docs] def get_detail(self, *ident):
 """ Gets details from the details infoblock

 The function first ensures that we are on the detail page for the specific cluster.

 Args:
 *ident: An InfoBlock title, followed by the Key name, e.g. "Relationships", "Images"
 A string representing the contents of the InfoBlock's value.
 """
 view = navigate_to(self, 'Details')
 return getattr(view, ident[0].lower().replace(' ', '_')).get_text_of(ident[1])

 @property
 def exists(self):
 view = navigate_to(self.collection, 'All')
 try:
 view.entities.get_entity(by_name=self.name, surf_pages=True)
 return True
 except ItemNotFound:
 return False

 @property
 def id(self):
 """extracts cluster id for this cluster"""
 return self._id

 @property
 def short_name(self):
 """returns only cluster's name exactly how it is stored in DB (without datacenter part)"""
 return self._short_name

[docs] def run_smartstate_analysis(self):
 """Run SmartState analysis"""
 view = navigate_to(self, 'Details')
 view.toolbar.configuration.item_select('Perform SmartState Analysis', invokes_alert=True)
 view.entities.flash.assert_message_contain('Cluster / Deployment Role: scan successfully '
 'initiated')

@navigator.register(ClusterCollection, 'All')
[docs]class All(CFMENavigateStep):
 VIEW = ClusterAllView
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self, *args, **kwargs):
 """Navigate to the correct view"""
 self.prerequisite_view.navigation.select('Compute', 'Infrastructure', 'Clusters')

[docs] def resetter(self):
 """Reset the view"""
 if self.view.entities.paginator.exists:
 self.view.entities.paginator.check_all()
 self.view.entities.paginator.uncheck_all()

@navigator.register(Cluster, 'Details')
[docs]class Details(CFMENavigateStep):
 VIEW = ClusterDetailsView
 prerequisite = NavigateToAttribute('collection', 'All')

[docs] def step(self, *args, **kwargs):
 """Navigate to the correct view"""
 # todo: figure out why the same cfme version shows clusters with short and long name
 try:
 entity = self.prerequisite_view.entities.get_entity(by_name=self.obj.short_name,
 surf_pages=True)
 except ItemNotFound:
 entity = self.prerequisite_view.entities.get_entity(by_name=self.obj.name,
 surf_pages=True)
 entity.click()

@navigator.register(Cluster, 'Timelines')
[docs]class Timelines(CFMENavigateStep):
 VIEW = ClusterTimelinesView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self, *args, **kwargs):
 """Navigate to the correct view"""
 self.prerequisite_view.toolbar.monitoring.item_select('Timelines')

@navigator.register(Cluster, 'EditTagsFromDetails')
[docs]class EditTagsFromDetails(CFMENavigateStep):
 VIEW = TagPageView
 prerequisite = NavigateToSibling('Details')

[docs] def step(self):
 self.prerequisite_view.toolbar.policy.item_select('Edit Tags')

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/blockers.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.blockers

-*- coding: utf-8 -*-
import re
import six
import xmlrpclib
from github import Github
from urlparse import urlparse

from fixtures.pytest_store import store
from cfme.utils import classproperty, conf, version
from cfme.utils.bz import Bugzilla
from cfme.utils.log import logger

[docs]class Blocker(object):
 """Base class for all blockers

 REQUIRED THING! Any subclass' constructors must accept kwargs and after POPping the values
 required for the blocker's operation, `call to ``super`` with ``**kwargs`` must be done!
 Failing to do this will render some of the functionality disabled ;).
 """
 blocks = False
 kwargs = {}

 def __init__(self, **kwargs):
 self.forced_streams = kwargs.pop("forced_streams", [])
 self.__dict__["kwargs"] = kwargs

 @property
 def url(self):
 raise NotImplementedError('You need to implement .url')

 @classmethod
[docs] def all_blocker_engines(cls):
 """Return mapping of name:class of all the blocker engines in this module.

 Having this as a separate function will later enable to scatter the engines across modules
 in case of extraction into a separate library.
 """
 return {
 'GH': GH,
 'BZ': BZ,
 }

 @classmethod
[docs] def parse(cls, blocker, **kwargs):
 """Create a blocker object from some representation"""
 if isinstance(blocker, cls):
 return blocker
 elif isinstance(blocker, six.string_types):
 if "#" in blocker:
 # Generic blocker
 engine, spec = blocker.split("#", 1)
 try:
 engine_class = cls.all_blocker_engines()[engine]
 except KeyError:
 raise ValueError(
 "{} is a wrong engine specification for blocker! ({} available)".format(
 engine, ", ".join(cls.all_blocker_engines().keys())))
 return engine_class(spec, **kwargs)
 # EXTEND: If someone has other ideas, put them here
 raise ValueError("Could not parse blocker {}".format(blocker))
 else:
 raise ValueError("Wrong specification of the blockers!")

[docs]class GH(Blocker):
 DEFAULT_REPOSITORY = conf.env.get("github", {}).get("default_repo")
 _issue_cache = {}

 @classproperty
 def github(cls):
 if not hasattr(cls, "_github"):
 token = conf.env.get("github", {}).get("token")
 if token is not None:
 cls._github = Github(token)
 else:
 cls._github = Github() # Without auth max 60 req/hr
 return cls._github

 def __init__(self, description, **kwargs):
 super(GH, self).__init__(**kwargs)
 self._repo = None
 self.issue = None
 self.upstream_only = kwargs.get('upstream_only', True)
 self.since = kwargs.get('since')
 self.until = kwargs.get('until')
 if isinstance(description, (list, tuple)):
 try:
 self.repo, self.issue = description
 self.issue = int(self.issue)
 except ValueError:
 raise ValueError(
 "The GH issue specification must have 2 items and issue must be number")
 elif isinstance(description, int):
 if self.DEFAULT_REPOSITORY is None:
 raise ValueError("You must specify github/default_repo in env.yaml!")
 self.issue = description
 elif isinstance(description, basestring):
 try:
 owner, repo, issue_num = re.match(r"^([^/]+)/([^/:]+):([0-9]+)$",
 str(description).strip()).groups()
 except AttributeError:
 raise ValueError(
 "Could not parse '{}' as a proper GH issue anchor!".format(str(description)))
 else:
 self._repo = "{}/{}".format(owner, repo)
 self.issue = int(issue_num)
 else:
 raise ValueError("GH issue specified wrong")

 @property
 def data(self):
 identifier = "{}:{}".format(self.repo, self.issue)
 if identifier not in self._issue_cache:
 self._issue_cache[identifier] = self.github.get_repo(self.repo).get_issue(self.issue)
 return self._issue_cache[identifier]

 @property
 def blocks(self):
 if self.upstream_only and version.appliance_is_downstream():
 return False
 if self.data.state == "closed":
 return False
 # Now let's check versions
 if self.since is None and self.until is None:
 # No version specifics
 return True
 elif self.since is not None and self.until is not None:
 # since inclusive, until exclusive
 return self.since <= version.current_version() < self.until
 elif self.since is not None:
 # Only since
 return version.current_version() >= self.since
 elif self.until is not None:
 # Only until
 return version.current_version() < self.until
 # All branches covered

 @property
 def repo(self):
 return self._repo or self.DEFAULT_REPOSITORY

 def __str__(self):
 return "GitHub Issue https://github.com/{}/issues/{}".format(self.repo, self.issue)

 @property
 def url(self):
 return "https://github.com/{}/issues/{}".format(self.repo, self.issue)

[docs]class BZ(Blocker):
 @classproperty
 def bugzilla(cls):
 if not hasattr(cls, "_bugzilla"):
 cls._bugzilla = Bugzilla.from_config()
 return cls._bugzilla

 def __init__(self, bug_id, **kwargs):
 self.ignore_bugs = kwargs.pop("ignore_bugs", [])
 super(BZ, self).__init__(**kwargs)
 self.bug_id = int(bug_id)

 @property
 def data(self):
 return self.bugzilla.resolve_blocker(
 self.bug_id, ignore_bugs=self.ignore_bugs, force_block_streams=self.forced_streams)

 @property
 def bugzilla_bug(self):
 if self.data is None:
 return None
 return self.data

 @property
 def blocks(self):
 try:
 bug = self.data
 if bug is None:
 return False
 result = False
 if bug.is_opened:
 result = True
 if bug.upstream_bug:
 if not version.appliance_is_downstream() and bug.can_test_on_upstream:
 result = False
 if result is False and version.appliance_is_downstream():
 if bug.fixed_in is not None:
 return version.current_version() < bug.fixed_in
 return result
 except xmlrpclib.Fault as e:
 code = e.faultCode
 s = e.faultString.strip().split("\n")[0]
 logger.error("Bugzilla thrown a fault: %s/%s", code, s)
 logger.warning("Ignoring and taking the bug as non-blocking")
 store.terminalreporter.write(
 "Bugzila made a booboo: {}/{}\n".format(code, s), bold=True)
 return False

[docs] def get_bug_url(self):
 bz_url = urlparse(self.bugzilla.bugzilla.url)
 return "{}://{}/show_bug.cgi?id={}".format(bz_url.scheme, bz_url.netloc, self.bug_id)

 @property
 def url(self):
 return self.get_bug_url()

 def __str__(self):
 return "Bugzilla bug {} (or one of its copies)".format(self.get_bug_url())

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/generators.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.generators

-*- coding: utf-8 -*-
import fauxfactory
import re

[docs]def random_vm_name(context=None, max_length=15):
 """Generates a valid VM name that should be valid for any provider we use.

 Constraints:
 * Maximum string length 15 characters (by default)
 * Only [a-z0-9-]

 Args:
 context: If you want to provide some custom string after ``test-`` instead of ``vm``.
 It is recommended to use a maximum of 5 characters with the default 15 character limit.
 Longer strings will be truncated

 Returns:
 A valid randomized VM name.
 """
 template_str_length = 6
 random_chars = 4
 context_length = max_length - random_chars - template_str_length
 context = re.sub(r'[^a-z0-9-]', '', (context or 'vm').lower())[:context_length]
 return 'test-{}-{}'.format(context, fauxfactory.gen_alphanumeric(length=random_chars).lower())

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/infrastructure/openstack_node.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.infrastructure.openstack_node

-*- coding: utf-8 -*-
"""A model of an Openstack Infrastructure Node in CFME."""

from cfme.infrastructure.host import Host
from cfme.utils.appliance.implementations.ui import navigate_to

[docs]class OpenstackNode(Host):
 """
 Model of Openstack Infrastructure node.
 Extends the behavior of Infrastructure Host with Openstack-only functions.
 For usage and __init__ args check the doc to Host class
 """

[docs] def toggle_maintenance_mode(self):
 """Initiate maintenance mode"""
 view = navigate_to(self, 'Details')
 view.toolbar.configuration.item_select('Toggle Maintenance Mode', handle_alert=True)
 exp_msg = '"{}": Toggle Maintenance successfully initiated'.format(self.name)
 view.flash.assert_success_message(exp_msg)

[docs] def provide_node(self):
 """Provide node - make it available"""
 view = navigate_to(self, 'Details')
 view.toolbar.configuration.item_select('Provide Node', handle_alert=True)
 exp_msg = '"{}": Provide successfully initiated'.format(self.name)
 view.flash.assert_success_message(exp_msg)

[docs] def run_introspection(self):
 """Run introspection"""
 view = navigate_to(self, 'Details')
 view.toolbar.configuration.item_select('Introspect Node', handle_alert=True)
 exp_msg = '"{}": Introspect successfully initiated'.format(self.name)
 view.flash.assert_success_message(exp_msg)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/ssh.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.ssh

-*- coding: utf-8 -*-
import fauxfactory
import iso8601
import re
import socket
import sys
from collections import namedtuple
from os import path as os_path
from subprocess import check_call
from urlparse import urlparse

import paramiko
from scp import SCPClient
import diaper

from cfme.utils import conf, ports, version
from cfme.utils.log import logger
from cfme.utils.net import net_check
from fixtures.pytest_store import store
from cfme.utils.path import project_path
from cfme.utils.quote import quote
from cfme.utils.timeutil import parsetime

Default blocking time before giving up on an ssh command execution,
in seconds (float)
RUNCMD_TIMEOUT = 1200.0

[docs]class SSHResult(namedtuple("SSHResult", ["rc", "output"])):
 """Allows rich comparison for more convenient testing.

 Given you have ``result`` which is an instance of :py:class:`SSHResult`, you can do as follows

 .. code-block:: python

 assert result # If $?=0, then the result evaluates to a truthy value and passes the assert
 assert result == 'installed' # direct matching of the output value
 assert 'something' in result # like before but uses the ``in`` matching for a partial match
 assert result == 5 # assert that the $?=5 (you can use <, >, ...)

 Therefore this class can act like 3 kinds of values

 - Like a string (with the output of the command) when compared with or cast to one
 - Like a number (with the return code) when compared with or cast to one
 - Like a bool, giving truthy value if the return code was zero. That is related to the
 preceeding bullet.

 But it still subclasses the original class therefore all old behaviour is kept. But you don't
 have to expand the tuple or pull the value out if you are checking only one of them.
 """
 def __str__(self):
 return self.output

 def __contains__(self, what):
 # Handling 'something' in x
 if not isinstance(what, basestring):
 raise ValueError('You can only check strings using the in operator')
 return what in self.output

 def __nonzero__(self):
 # Handling bool(x) or if x:
 return self.rc == 0

 def __int__(self):
 # handling int(x)
 return self.rc

 def __cmp__(self, other):
 # Handling comparison to strings or numbers
 if isinstance(other, int):
 return cmp(self.rc, other)
 elif isinstance(other, basestring):
 return cmp(self.output, other)
 else:
 raise ValueError('You can only compare SSHResult with str or int')

 @property
 def success(self):
 return self.rc == 0

 @property
 def failed(self):
 return self.rc != 0

_ssh_key_file = project_path.join('.generated_ssh_key')
_ssh_pubkey_file = project_path.join('.generated_ssh_key.pub')

_client_session = []

[docs]class SSHClient(paramiko.SSHClient):
 """paramiko.SSHClient wrapper

 Allows copying/overriding and use as a context manager
 Constructor kwargs are handed directly to paramiko.SSHClient.connect()

 Args:
 container: If specified, then it is assumed that the VM hosts a container of CFME. The
 param then contains the name of the container.
 is_pod: If specified and True, then it is assumed that the target is a podified openshift
 app and ``container`` then specifies the name of the pod to interact with.
 stdout: If specified, overrides the system stdout file for streaming output.
 stderr: If specified, overrides the system stderr file for streaming output.
 """
 def __init__(self, stream_output=False, **connect_kwargs):
 super(SSHClient, self).__init__()
 self._streaming = stream_output
 # deprecated/useless karg, included for backward-compat
 self._keystate = connect_kwargs.pop('keystate', None)
 # Container is used to store both docker VM's container name and Openshift pod name.
 self._container = connect_kwargs.pop('container', None)
 self.is_pod = connect_kwargs.pop('is_pod', False)

 self.f_stdout = connect_kwargs.pop('stdout', sys.stdout)
 self.f_stderr = connect_kwargs.pop('stderr', sys.stderr)

 # load the defaults for ssh
 default_connect_kwargs = {
 'timeout': 10,
 'allow_agent': False,
 'look_for_keys': False,
 'gss_auth': False
 }
 # Load credentials and destination from confs, if connect_kwargs is empty
 if not connect_kwargs.get('hostname'):
 parsed_url = urlparse(store.base_url)
 default_connect_kwargs["port"] = ports.SSH
 default_connect_kwargs['username'] = conf.credentials['ssh']['username']
 default_connect_kwargs['password'] = conf.credentials['ssh']['password']
 default_connect_kwargs['hostname'] = parsed_url.hostname
 default_connect_kwargs["port"] = connect_kwargs.pop('port', ports.SSH)

 # Overlay defaults with any passed-in kwargs and store
 default_connect_kwargs.update(connect_kwargs)
 self._connect_kwargs = default_connect_kwargs
 self.set_missing_host_key_policy(paramiko.AutoAddPolicy())
 _client_session.append(self)

 @property
 def is_container(self):
 return self._container is not None and not self.is_pod

 @property
 def username(self):
 return self._connect_kwargs.get('username')

 def __repr__(self):
 return "<SSHClient hostname={} port={}>".format(
 repr(self._connect_kwargs.get("hostname")),
 repr(self._connect_kwargs.get("port", 22)))

 def __call__(self, **connect_kwargs):
 # Update a copy of this instance's connect kwargs with passed in kwargs,
 # then return a new instance with the updated kwargs
 new_connect_kwargs = dict(self._connect_kwargs)
 new_connect_kwargs.update(connect_kwargs)
 # pass the key state if the hostname is the same, under the assumption that the same
 # host will still have keys installed if they have already been
 new_client = SSHClient(**new_connect_kwargs)
 return new_client

 def __enter__(self):
 self.connect()
 return self

 def __exit__(self, *args, **kwargs):
 # Noop, call close explicitly to shut down the transport
 # It will be reopened automatically on next command
 pass

 def __del__(self):
 self.close()

 def _check_port(self):
 hostname = self._connect_kwargs['hostname']
 if not net_check(ports.SSH, hostname, force=True):
 raise Exception("SSH connection to {}:{} failed, port unavailable".format(
 hostname, ports.SSH))

 def _progress_callback(self, filename, size, sent):
 if sent > 0:
 logger.debug('scp progress for %r: %s of %s ', filename, sent, size)

[docs] def close(self):
 with diaper:
 _client_session.remove(self)
 super(SSHClient, self).close()

 @property
 def connected(self):
 return self._transport and self._transport.active

[docs] def connect(self, hostname=None, **kwargs):
 """See paramiko.SSHClient.connect"""
 if hostname and hostname != self._connect_kwargs['hostname']:
 self._connect_kwargs['hostname'] = hostname
 self.close()

 if not self.connected:
 self._connect_kwargs.update(kwargs)
 self._check_port()
 # Only install ssh keys if they aren't installed (or currently being installed)
 return super(SSHClient, self).connect(**self._connect_kwargs)

[docs] def open_sftp(self, *args, **kwargs):
 if self.is_container:
 logger.warning(
 'You are about to use sftp on a containerized appliance. It may not work.')
 self.connect()
 return super(SSHClient, self).open_sftp(*args, **kwargs)

[docs] def get_transport(self, *args, **kwargs):
 if not self.connected:
 self.connect()
 return super(SSHClient, self).get_transport(*args, **kwargs)

[docs] def run_command(
 self, command, timeout=RUNCMD_TIMEOUT, reraise=False, ensure_host=False,
 ensure_user=False):
 """Run a command over SSH.

 Args:
 command: The command. Supports taking dicts as version picking.
 timeout: Timeout after which the command execution fails.
 reraise: Does not muffle the paramiko exceptions in the log.
 ensure_host: Ensure that the command is run on the machine with the IP given, not any
 container or such that we might be using by default.
 ensure_user: Ensure that the command is run as the user we logged in, so in case we are
 not root, setting this to True will prevent from running sudo.

 Returns:
 A :py:class:`SSHResult` instance.
 """
 if isinstance(command, dict):
 command = version.pick(command)
 original_command = command
 uses_sudo = False
 logger.info("Running command %r", command)
 if self.is_pod and not ensure_host:
 # This command will be executed in the context of the host provider
 command = 'oc rsh {} bash -c {}'.format(self._container, quote(
 'source /etc/default/evm; ' + command))
 ensure_host = True
 elif self.is_container and not ensure_host:
 command = 'docker exec {} bash -c {}'.format(self._container, quote(
 'source /etc/default/evm; ' + command))

 if self.username != 'root' and not ensure_user:
 # We need sudo
 command = 'sudo -i bash -c {command}'.format(command=quote(command))
 uses_sudo = True

 if command != original_command:
 logger.info("> Actually running command %r", command)
 command += '\n'

 output = []
 try:
 session = self.get_transport().open_session()
 if uses_sudo:
 # We need a pseudo-tty for sudo
 session.get_pty()
 if timeout:
 session.settimeout(float(timeout))
 session.exec_command(command)
 stdout = session.makefile()
 stderr = session.makefile_stderr()
 while True:
 if session.recv_ready:
 for line in stdout:
 output.append(line)
 if self._streaming:
 self.f_stdout.write(line)

 if session.recv_stderr_ready:
 for line in stderr:
 output.append(line)
 if self._streaming:
 self.f_stderr.write(line)

 if session.exit_status_ready():
 break
 exit_status = session.recv_exit_status()
 return SSHResult(exit_status, ''.join(output))
 except paramiko.SSHException:
 if reraise:
 raise
 else:
 logger.exception('Exception happened during SSH call')
 except socket.timeout:
 logger.exception(
 "Command %r timed out. Output before it failed was:\n%r",
 command,
 ''.join(output))
 raise

 # Returning two things so tuple unpacking the return works even if the ssh client fails
 # Return whatever we have in the output
 return SSHResult(1, ''.join(output))

[docs] def cpu_spike(self, seconds=60, cpus=2, **kwargs):
 """Creates a CPU spike of specific length and processes.

 Args:
 seconds: How long the spike should last.
 cpus: How many processes to use.

 Returns:
 See :py:meth:`SSHClient.run_command`
 """
 return self.run_command(
 "duration={}; instances={}; endtime=$(($(date +%s) + $duration)); "
 "for ((i=0; i<instances; i++)) do while (($(date +%s) < $endtime)); "
 "do :; done & done".format(seconds, cpus), **kwargs)

[docs] def run_rails_command(self, command, timeout=RUNCMD_TIMEOUT, **kwargs):
 logger.info("Running rails command %r", command)
 return self.run_command('cd /var/www/miq/vmdb; bin/rails runner {command}'.format(
 command=command), timeout=timeout, **kwargs)

[docs] def run_rails_console(self, command, sandbox=False, timeout=RUNCMD_TIMEOUT):
 """Runs Ruby inside of rails console. stderr is thrown away right now but could prove useful
 for future performance analysis of the queries rails runs. The command is encapsulated by
 double quotes. Sandbox rolls back all changes made to the database if used.
 """
 if sandbox:
 return self.run_command('cd /var/www/miq/vmdb; echo \"{}\" '
 '| bundle exec bin/rails c -s 2> /dev/null'.format(command), timeout=timeout)
 return self.run_command('cd /var/www/miq/vmdb; echo \"{}\" '
 '| bundle exec bin/rails c 2> /dev/null'.format(command), timeout=timeout)

[docs] def run_rake_command(self, command, timeout=RUNCMD_TIMEOUT, **kwargs):
 logger.info("Running rake command %r", command)
 return self.run_command(
 'cd /var/www/miq/vmdb; bin/rake -f /var/www/miq/vmdb/Rakefile {command}'.format(
 command=command), timeout=timeout, **kwargs)

[docs] def put_file(self, local_file, remote_file='.', **kwargs):
 logger.info("Transferring local file %r to remote %r", local_file, remote_file)
 if self.is_container:
 tempfilename = '/share/temp_{}'.format(fauxfactory.gen_alpha())
 logger.info('For this purpose, temporary file name is %r', tempfilename)
 scp = SCPClient(self.get_transport(), progress=self._progress_callback).put(
 local_file, tempfilename, **kwargs)
 self.run_command('mv {} {}'.format(tempfilename, remote_file))
 return scp
 elif self.is_pod:
 tmp_folder_name = 'automation-{}'.format(fauxfactory.gen_alpha().lower())
 logger.info('For this purpose, temporary folder name is /tmp/%s', tmp_folder_name)
 # Clean up container's temporary folder
 self.run_command('rm -rf /tmp/{0}'.format(tmp_folder_name))
 # Create/Clean up the host's temporary folder
 self.run_command(
 'rm -rf /tmp/{0}; mkdir -p /tmp/{0}'.format(tmp_folder_name), ensure_host=True)
 # Now upload the file to the openshift host
 tmp_file_name = 'file-{}'.format(fauxfactory.gen_alpha().lower())
 tmp_full_name = '/tmp/{}/{}'.format(tmp_folder_name, tmp_file_name)
 scp = SCPClient(self.get_transport(), progress=self._progress_callback).put(
 local_file, tmp_full_name, **kwargs)
 # use oc rsync to put the file in the container
 assert self.run_command(
 'oc rsync /tmp/{} {}:/tmp/'.format(tmp_folder_name, self._container),
 ensure_host=True)
 # Move the file onto correct place
 assert self.run_command('mv {} {}'.format(tmp_full_name, remote_file))
 return scp
 else:
 if self.username == 'root':
 return SCPClient(self.get_transport(), progress=self._progress_callback).put(
 local_file, remote_file, **kwargs)
 # scp client is not sudo, may not work for non sudo
 tempfilename = '/home/{user_name}/temp_{random_alpha}'.format(
 user_name=self.username, random_alpha=fauxfactory.gen_alpha())
 logger.info('For this purpose, temporary file name is %r', tempfilename)
 scp = SCPClient(self.get_transport(), progress=self._progress_callback).put(
 local_file, tempfilename, **kwargs)
 self.run_command('mv {temp_file} {remote_file}'.format(temp_file=tempfilename,
 remote_file=remote_file))
 return scp

[docs] def get_file(self, remote_file, local_path='', **kwargs):
 logger.info("Transferring remote file %r to local %r", remote_file, local_path)
 base_name = os_path.basename(remote_file)
 if self.is_container:
 tmp_file_name = 'temp_{}'.format(fauxfactory.gen_alpha())
 tempfilename = '/share/{}'.format(tmp_file_name)
 logger.info('For this purpose, temporary file name is %r', tempfilename)
 self.run_command('cp {} {}'.format(remote_file, tempfilename))
 scp = SCPClient(self.get_transport(), progress=self._progress_callback).get(
 tempfilename, local_path, **kwargs)
 self.run_command('rm {}'.format(tempfilename))
 check_call([
 'mv',
 os_path.join(local_path, tmp_file_name),
 os_path.join(local_path, base_name)])
 return scp
 elif self.is_pod:
 tmp_folder_name = 'automation-{}'.format(fauxfactory.gen_alpha().lower())
 tmp_file_name = 'file-{}'.format(fauxfactory.gen_alpha().lower())
 tmp_full_name = '/tmp/{}/{}'.format(tmp_folder_name, tmp_file_name)
 logger.info('For this purpose, temporary file name is %r', tmp_full_name)
 # Clean up container's temporary folder
 self.run_command('rm -rf /tmp/{0}; mkdir -p /tmp/{0}'.format(tmp_folder_name))
 # Create/Clean up the host's temporary folder
 self.run_command(
 'rm -rf /tmp/{0}; mkdir -p /tmp/{0}'.format(tmp_folder_name), ensure_host=True)
 # Now copy the file in container to the tmp folder
 assert self.run_command('cp {} {}'.format(remote_file, tmp_full_name))
 # Use the oc rsync to pull the file onto the host
 assert self.run_command(
 'oc rsync {}:/tmp/{} /tmp'.format(self._container, tmp_folder_name),
 ensure_host=True)
 # Now download the file to the openshift host
 scp = SCPClient(self.get_transport(), progress=self._progress_callback).get(
 tmp_full_name, local_path, **kwargs)
 check_call([
 'mv',
 os_path.join(local_path, tmp_file_name),
 os_path.join(local_path, base_name)])
 return scp
 else:
 return SCPClient(self.get_transport(), progress=self._progress_callback).get(
 remote_file, local_path, **kwargs)

[docs] def patch_file(self, local_path, remote_path, md5=None):
 """ Patches a single file on the appliance

 Args:
 local_path: Path to patch (diff) file
 remote_path: Path to file to be patched (on the appliance)
 md5: MD5 checksum of the original file to check if it has changed

 Returns:
 True if changes were applied, False if patching was not necessary

 Note:
 If there is a .bak file present and the file-to-be-patched was
 not patched by the current patch-file, it will be used to restore it first.
 Recompiling assets and restarting appropriate services might be required.
 """
 logger.info('Patching %s', remote_path)

 # Upload diff to the appliance
 diff_remote_path = os_path.join('/tmp/', os_path.basename(remote_path))
 self.put_file(local_path, diff_remote_path)

 # If already patched with current file, exit
 logger.info('Checking if already patched')
 rc, out = self.run_command(
 'patch {} {} -f --dry-run -R'.format(remote_path, diff_remote_path))
 if rc == 0:
 return False

 # If we have a .bak file available, it means the file is already patched
 # by some older patch; in that case, replace the file-to-be-patched by the .bak first
 logger.info("Checking if %s.bak is available", remote_path)
 rc, out = self.run_command('test -e {}.bak'.format(remote_path))
 if rc == 0:
 logger.info("%s.bak found; using it to replace %s", remote_path, remote_path)
 rc, out = self.run_command('mv {}.bak {}'.format(remote_path, remote_path))
 if rc != 0:
 raise Exception(
 "Unable to replace {} with {}.bak".format(remote_path, remote_path))
 else:
 logger.info("%s.bak not found", remote_path)

 # If not patched and there's MD5 checksum available, check it
 if md5:
 logger.info("MD5 sum check in progress for %s", remote_path)
 rc, out = self.run_command('md5sum -c - <<< "{} {}"'.format(md5, remote_path))
 if rc == 0:
 logger.info('MD5 sum check result: file not changed')
 else:
 logger.warning('MD5 sum check result: file has been changed!')

 # Create the backup and patch
 rc, out = self.run_command(
 'patch {} {} -f -b -z .bak'.format(remote_path, diff_remote_path))
 if rc != 0:
 raise Exception("Unable to patch file {}: {}".format(remote_path, out))
 return True

[docs] def get_build_datetime(self):
 command = "stat --printf=%Y /var/www/miq/vmdb/VERSION"
 return parsetime.fromtimestamp(int(self.run_command(command).output.strip()))

[docs] def get_build_date(self):
 return self.get_build_datetime().date()

[docs] def is_appliance_downstream(self):
 return self.run_command("stat /var/www/miq/vmdb/BUILD").rc == 0

[docs] def uptime(self):
 out = self.run_command('cat /proc/uptime')[1]
 match = re.findall('\d+\.\d+', out)

 if match:
 return float(match[0])

 return 0

[docs] def client_address(self):
 res = self.run_command('echo $SSH_CLIENT', ensure_host=True, ensure_user=True)
 # SSH_CLIENT format is 'clientip clientport serverport', we want clientip
 if not res.output:
 raise Exception('unable to get client address via SSH')
 return res.output.split()[0]

[docs] def appliance_has_netapp(self):
 return self.run_command("stat /var/www/miq/vmdb/HAS_NETAPP").rc == 0

 @property
 def status(self):
 """Parses the output of the ``systemctl status evmserverd``.

 Returns:
 A dictionary containing ``servers`` and ``workers``, both lists. Each of the lists
 contains dictionaries, one per line. You can refer inside the dictionary using the
 headers.
 """
 matcher = re.compile(
 '|'.join([
 'DEPRECATION WARNING',
 'called from block in',
 'Please use .* instead',
 'key :terminate is duplicated and overwritten',
]))
 if version.current_version() < "5.5":
 data = self.run_command("systemctl status evmserverd")
 else:
 data = self.run_rake_command("evm:status")
 if data.rc != 0:
 raise Exception("systemctl status evmserverd $?={}".format(data.rc))
 data = data.output.strip().split("\n\n")
 if len(data) == 2:
 srvs, wrks = data
 else:
 srvs = data[0]
 wrks = ""
 if "checking evm status" not in srvs.lower():
 raise Exception("Wrong command output:\n{}".format(data.output))

 def _process_dict(d):
 d["PID"] = int(d["PID"])
 d["ID"] = int(d["ID"])
 try:
 d["SPID"] = int(d["SPID"])
 except ValueError:
 d["SPID"] = None
 if "Active Roles" in d:
 d["Active Roles"] = set(d["Active Roles"].split(":"))
 if "Last Heartbeat" in d:
 d["Last Heartbeat"] = iso8601.parse_date(d["Last Heartbeat"])
 if "Started On" in d:
 d["Started On"] = iso8601.parse_date(d["Started On"])

 # Servers part
 srvs = [line for line in srvs.split("\n")[1:] if matcher.search(line) is None]
 srv_headers = [h.strip() for h in srvs[0].strip().split("|")]
 srv_body = srvs[2:]
 servers = []
 for server in srv_body:
 fields = [f.strip() for f in server.strip().split("|")]
 srv = dict(zip(srv_headers, fields))
 _process_dict(srv)
 servers.append(srv)

 # Workers part
 # TODO: Figure more permanent solution for ignoring the warnings
 wrks = [line for line in wrks.split("\n") if matcher.search(line) is None]

 workers = []
 if wrks:
 wrk_headers = [h.strip() for h in wrks[0].strip().split("|")]
 wrk_body = wrks[2:]
 for worker in wrk_body:
 fields = [f.strip() for f in worker.strip().split("|")]
 wrk = dict(zip(wrk_headers, fields))
 _process_dict(wrk)
 workers.append(wrk)
 return {"servers": servers, "workers": workers}

[docs]class SSHTail(SSHClient):

 def __init__(self, remote_filename, **connect_kwargs):
 super(SSHTail, self).__init__(stream_output=False, **connect_kwargs)
 self._remote_filename = remote_filename
 self._sftp_client = None
 self._remote_file_size = None

 def __iter__(self):
 for line in self.raw_lines():
 yield line.rstrip()

[docs] def raw_lines(self):
 with self as sshtail:
 fstat = sshtail._sftp_client.stat(self._remote_filename)
 if self._remote_file_size is not None:
 if self._remote_file_size < fstat.st_size:
 remote_file = self._sftp_client.open(self._remote_filename, 'r')
 remote_file.seek(self._remote_file_size, 0)
 while (remote_file.tell() < fstat.st_size):
 line = remote_file.readline() # Note the missing rstrip() here!
 yield line
 self._remote_file_size = fstat.st_size

[docs] def raw_string(self):
 return ''.join(self)

 def __enter__(self):
 self.connect(**self._connect_kwargs)
 self._sftp_client = self.open_sftp()
 return self

 def __exit__(self, *args, **kwargs):
 self._sftp_client.close()

[docs] def set_initial_file_end(self):
 with self as sshtail:
 fstat = sshtail._sftp_client.stat(self._remote_filename)
 self._remote_file_size = fstat.st_size # Seed initial size of file

[docs] def lines_as_list(self):
 """Return lines as list"""
 return list(self)

[docs]def keygen():
 """Generate temporary ssh keypair for appliance SSH auth

 Intended not only to simplify ssh access to appliances, but also to simplify
 SSH access from one appliance to another in multi-appliance setups

 """
 # private key
 prv = paramiko.RSAKey.generate(bits=1024)
 with _ssh_key_file.open('w') as f:
 prv.write_private_key(f)

 # public key
 pub = paramiko.RSAKey(filename=_ssh_key_file.strpath)
 with _ssh_pubkey_file.open('w') as f:
 f.write("{} {} {}\n".format(pub.get_name(), pub.get_base64(),
 'autogenerated cfme_tests key'))

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/infrastructure/networking.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 Source code for cfme.infrastructure.networking

from cfme.utils.appliance import Navigatable
from navmazing import NavigateToAttribute
from cfme.utils.appliance.implementations.ui import navigator, CFMENavigateStep
from cfme.web_ui import toolbar as tb

[docs]class InfraNetworking(Navigatable):
 def __init__(self, appliance=None):
 Navigatable.__init__(self, appliance)

@navigator.register(InfraNetworking, 'All')
[docs]class All(CFMENavigateStep):
 prerequisite = NavigateToAttribute('appliance.server', 'LoggedIn')

[docs] def step(self):
 self.prerequisite_view.navigation.select('Compute', 'Infrastructure', 'Networking')

[docs] def resetter(self):
 # Reset view and selection
 tb.select("Grid View")

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/category.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.category

-*- coding: utf-8 -*-
"""Module used for handling categories of let's say form values and for categorizing them."""

[docs]class CategoryBase(object):
 """Base class for categories

 Args:
 value: Value to be categorized.
 """
 def __init__(self, value):
 self.value = value

 def __str__(self):
 return self.value

 def __repr__(self):
 return "{}({})".format(type(self).__name__, str(repr(self.value)))

[docs]def categorize(iterable, cat):
 """Function taking iterable of values and a dictionary of rules to categorize the values.

 Keys of the dictionary are callables, taking one parameter - the current iterable item. If the
 call on it returns positive, then the value part of dictionary is taken (assumed callable)
 and it is called with the current item.

 Args:
 iterable: Iterable to categorize.
 cat: Category specification dictionary
 """
 for item in iterable:
 for cond, func in cat.iteritems():
 if callable(cond) and cond(item):
 func(item)
 break
 else:
 cat.get("default", lambda item: None)(item)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/providers.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.providers

""" Helper functions related to the creation, listing, filtering and destruction of providers

The list_providers function in this module depend on a (by default global) dict of filters.
If you are writing tests or fixtures, you want to depend on this function as a de facto gateway.

The rest of the functions, such as get_mgmt, get_crud, get_provider_keys etc ignore this global
dict and will provide you with whatever you ask for with no limitations.

The main clue to know what is limited by the filters and what isn't is the 'filters' parameter.
"""
import operator
import six
from collections import Mapping, OrderedDict
from copy import copy

from cfme.common.provider import all_types

from cfme.exceptions import UnknownProviderType
from cfme.utils import conf, version
from cfme.utils.log import logger

providers_data = conf.cfme_data.get("management_systems", {})
Dict of active provider filters {name: ProviderFilter}
global_filters = {}

[docs]def load_setuptools_entrypoints():
 """ Load modules from querying the specified setuptools entrypoint name."""
 from pkg_resources import (iter_entry_points, DistributionNotFound,
 VersionConflict)
 for ep in iter_entry_points('manageiq_integration_tests'):
 # is the plugin registered or blocked?
 try:
 ep.load()
 except DistributionNotFound:
 continue
 except VersionConflict as e:
 raise Exception(
 "Plugin {} could not be loaded: {}!".format(ep.name, e))

[docs]class ProviderFilter(object):
 """ Filter used to obtain only providers matching given requirements

 Args:
 keys: List of acceptable provider keys, all if `None`
 categories: List of acceptable provider categories, all if `None`
 types: List of acceptable provider types, all if `None`
 required_fields: List of required fields, see :py:func:`providers_by_class`
 restrict_version: Checks provider version in yamls if `True`
 required_tags: List of tags that must be set in yamls
 inverted: Inclusive if `False`, exclusive otherwise
 conjunctive: If true, all subfilters are applied and all must match (default)
 If false (disjunctive), at least one of the subfilters must match
 """
 _version_operator_map = OrderedDict([('>=', operator.ge),
 ('<=', operator.le),
 ('==', operator.eq),
 ('!=', operator.ne),
 ('>', operator.gt),
 ('<', operator.lt)])

 def __init__(self, keys=None, classes=None, required_fields=None, required_tags=None,
 required_flags=None, restrict_version=False, inverted=False, conjunctive=True):
 self.keys = keys
 self.classes = classes
 self.required_fields = required_fields
 self.required_tags = required_tags
 self.required_flags = required_flags
 self.restrict_version = restrict_version
 self.inverted = inverted
 self.conjunctive = conjunctive

 def _filter_keys(self, provider):
 """ Filters by provider keys """
 if self.keys is None:
 return None
 return provider.key in self.keys

 def _filter_classes(self, provider):
 """ Filters by provider (base) classes """
 if self.classes is None:
 return None
 return any([provider.one_of(prov_class) for prov_class in self.classes])

 def _filter_required_fields(self, provider):
 """ Filters by required yaml fields (specified usually during test parametrization) """
 if self.required_fields is None:
 return None
 for field_or_fields in self.required_fields:
 if isinstance(field_or_fields, tuple):
 field_ident, field_value = field_or_fields
 else:
 field_ident, field_value = field_or_fields, None
 if isinstance(field_ident, six.string_types):
 if field_ident not in provider.data:
 return False
 else:
 if field_value:
 if provider.data[field_ident] != field_value:
 return False
 else:
 o = provider.data
 try:
 for field in field_ident:
 o = o[field]
 if field_value:
 if o != field_value:
 return False
 except (IndexError, KeyError):
 return False
 return True

 def _filter_required_tags(self, provider):
 """ Filters by required yaml tags """
 prov_tags = provider.data.get('tags', [])
 if self.required_tags is None:
 return None
 if set(self.required_tags) & set(prov_tags):
 return True
 return False

 def _filter_required_flags(self, provider):
 """ Filters by required yaml flags """
 if self.required_flags is None:
 return None
 if self.required_flags:
 test_flags = [flag.strip() for flag in self.required_flags]

 defined_flags = conf.cfme_data.get('test_flags', '')
 if isinstance(defined_flags, six.string_types):
 defined_flags = defined_flags.split(',')
 defined_flags = [flag.strip() for flag in defined_flags]

 excluded_flags = provider.data.get('excluded_test_flags', '')
 if isinstance(excluded_flags, six.string_types):
 excluded_flags = excluded_flags.split(',')
 excluded_flags = [flag.strip() for flag in excluded_flags]

 allowed_flags = set(defined_flags) - set(excluded_flags)

 if set(test_flags) - allowed_flags:
 logger.info("Filtering Provider %s out because it does not have the right flags, "
 "%s does not contain %s",
 provider.name, list(allowed_flags),
 list(set(test_flags) - allowed_flags))
 return False
 return True

 def _filter_restricted_version(self, provider):
 """ Filters by yaml version restriction; not applied if SSH is not available """
 if self.restrict_version:
 # TODO
 # get rid of this since_version hotfix by translating since_version
 # to restricted_version; in addition, restricted_version should turn into
 # "version_restrictions" and it should be a sequence of restrictions with operators
 # so that we can create ranges like ">= 5.6" and "<= 5.8"
 version_restrictions = []
 since_version = provider.data.get('since_version')
 if since_version:
 version_restrictions.append('>= {}'.format(since_version))
 restricted_version = provider.data.get('restricted_version')
 if restricted_version:
 version_restrictions.append(restricted_version)
 for restriction in version_restrictions:
 for op, comparator in ProviderFilter._version_operator_map.items():
 # split string by op; if the split works, version won't be empty
 head, op, ver = restriction.partition(op)
 if not ver: # This means that the operator was not found
 continue
 try:
 curr_ver = version.current_version()
 except:
 return True
 if not comparator(curr_ver, ver):
 return False
 break
 else:
 raise Exception('Operator not found in {}'.format(restriction))
 return None

[docs] def __call__(self, provider):
 """ Applies this filter on a given provider

 Usage:
 pf = ProviderFilter('cloud_infra', categories=['cloud', 'infra'])
 providers = list_providers([pf])
 pf2 = ProviderFilter(
 classes=[GCEProvider, EC2Provider], required_fields=['small_template'])
 provider_keys = [prov.key for prov in list_providers([pf, pf2])]
 ^ this will list keys of all GCE and EC2 providers
 ...or...
 pf = ProviderFilter(required_tags=['openstack', 'complete'])
 pf_inverted = ProviderFilter(required_tags=['disabled'], inverted=True)
 providers = list_providers([pf, pf_inverted])
 ^ this will return providers that have both the "openstack" and "complete" tags set
 and at the same time don't have the "disabled" tag
 ...or...
 pf = ProviderFilter(keys=['rhevm34'], class=CloudProvider, conjunctive=False)
 providers = list_providers([pf])
 ^ this will list all providers that either have the 'rhevm34' key or are an instance
 of the CloudProvider class and therefore are a cloud provider

 Returns:
 `True` if provider passed all checks and was not filtered out, `False` otherwise.
 The result is opposite if the 'inverted' attribute is set to `True`.
 """
 keys_l = self._filter_keys(provider)
 classes_l = self._filter_classes(provider)
 fields_l = self._filter_required_fields(provider)
 tags_l = self._filter_required_tags(provider)
 flags_l = self._filter_required_flags(provider)
 version_l = self._filter_restricted_version(provider)
 results = [keys_l, classes_l, fields_l, tags_l, flags_l, version_l]
 relevant_results = [res for res in results if res in [True, False]]
 compiling_fn = all if self.conjunctive else any
 # If all / any filters return true, the provider was not blocked (unless inverted)
 if compiling_fn(relevant_results):
 return not self.inverted
 return self.inverted

[docs] def copy(self):
 return copy(self)

Only providers without the 'disabled' tag
global_filters['enabled_only'] = ProviderFilter(required_tags=['disabled'], inverted=True)
Only providers relevant for current appliance version (requires SSH access when used)
global_filters['restrict_version'] = ProviderFilter(restrict_version=True)

[docs]def list_providers(filters=None, use_global_filters=True, appliance=None):
 """ Lists provider crud objects, global filter optional

 Args:
 filters: List if :py:class:`ProviderFilter` or None
 use_global_filters: Will apply global filters as well if `True`, will not otherwise
 appliance: Optional :py:class:`utils.appliance.IPAppliance` to be passed to provider CRUD
 objects

 Note: Requires the framework to be pointed at an appliance to succeed.

 Returns: List of provider crud objects.
 """
 if isinstance(filters, six.string_types):
 raise TypeError(
 'You are probably using the old-style invocation of provider setup functions! '
 'You need to change it appropriately.')
 filters = filters or []
 if use_global_filters:
 filters = filters + global_filters.values()
 providers = [get_crud(prov_key, appliance=appliance) for prov_key in providers_data]
 for prov_filter in filters:
 providers = filter(prov_filter, providers)
 return providers

[docs]def list_providers_by_class(prov_class, use_global_filters=True, appliance=None):
 """ Lists provider crud objects of a specific class (or its subclasses), global filter optional

 Args:
 prov_class: Provider class to apply for filtering
 use_global_filters: See :py:func:`list_providers`
 appliance: Optional :py:class:`utils.appliance.IPAppliance` to be passed to provider CRUD
 objects

 Note: Requires the framework to be pointed at an appliance to succeed.

 Returns: List of provider crud objects.
 """
 pf = ProviderFilter(classes=[prov_class])
 return list_providers(filters=[pf], use_global_filters=use_global_filters, appliance=appliance)

[docs]def list_provider_keys(provider_type=None):
 """ Lists provider keys from conf (yamls)

 Args:
 provider_type: Optional filtering by 'type' string (from yaml); disabled by default

 Note: Doesn't require the framework to be pointed at an appliance to succeed.

 Returns: List of provider keys (strings).
 """
 try:
 all_keys = conf.cfme_data.management_systems.keys()
 except:
 all_keys = []

 if provider_type:
 filtered_keys = []
 for key in all_keys:
 if conf.cfme_data.management_systems[key].type == provider_type:
 filtered_keys.append(key)
 return filtered_keys
 else:
 return all_keys

[docs]def get_class_from_type(prov_type):
 try:
 return all_types()[prov_type]
 except KeyError:
 raise UnknownProviderType("Unknown provider type: {}!".format(prov_type))

[docs]def get_crud(provider_key, appliance=None):
 """ Creates a Provider object given a management_system key in cfme_data.

 Usage:
 get_crud('ec2east')

 Returns: A Provider object that has methods that operate on CFME
 """
 prov_config = providers_data[provider_key]
 prov_type = prov_config.get('type')

 return get_class_from_type(prov_type).from_config(
 prov_config, provider_key, appliance=appliance)

[docs]def get_crud_by_name(provider_name, appliance=None):
 """ Creates a Provider object given a management_system name in cfme_data.

 Usage:
 get_crud_by_name('My RHEV 3.6 Provider')

 Returns: A Provider object that has methods that operate on CFME
 """
 for provider_key, provider_data in providers_data.items():
 if provider_data.get("name") == provider_name:
 return get_crud(provider_key, appliance=appliance)
 raise NameError("Could not find provider {}".format(provider_name))

[docs]def get_mgmt(provider_key, providers=None, credentials=None):
 """ Provides a ``wrapanapi`` object, based on the request.

 Args:
 provider_key: The name of a provider, as supplied in the yaml configuration files.
 You can also use the dictionary if you want to pass the provider data directly.
 providers: A set of data in the same format as the ``management_systems`` section in the
 configuration yamls. If ``None`` then the configuration is loaded from the default
 locations. Expects a dict.
 credentials: A set of credentials in the same format as the ``credentials`` yamls files.
 If ``None`` then credentials are loaded from the default locations. Expects a dict.
 Return: A provider instance of the appropriate ``wrapanapi.WrapanapiAPIBase``
 subclass
 """
 if providers is None:
 providers = providers_data
 # provider_key can also be provider_data for some reason
 # TODO rename the parameter; might break things
 if isinstance(provider_key, Mapping):
 provider_data = provider_key
 else:
 provider_data = providers[provider_key]

 if credentials is None:
 # We need to handle the in-place credentials

 if provider_data.get('endpoints'):
 credentials = provider_data['endpoints']['default']['credentials']
 else:
 credentials = provider_data['credentials']
 # If it is not a mapping, it most likely points to a credentials yaml (as by default)
 if not isinstance(credentials, Mapping):
 credentials = conf.credentials[credentials]
 # Otherwise it is a mapping and therefore we consider it credentials

 # Munge together provider dict and creds,
 # Let the provider do whatever they need with them
 provider_kwargs = provider_data.copy()
 provider_kwargs.update(credentials)

 if not provider_kwargs.get('username') and provider_kwargs.get('principal'):
 provider_kwargs['username'] = provider_kwargs['principal']
 provider_kwargs['password'] = provider_kwargs['secret']

 if isinstance(provider_key, six.string_types):
 provider_kwargs['provider_key'] = provider_key
 provider_kwargs['logger'] = logger

 return get_class_from_type(provider_data['type']).mgmt_class(**provider_kwargs)

[docs]class UnknownProvider(Exception):
 def __init__(self, provider_key, *args, **kwargs):
 super(UnknownProvider, self).__init__(provider_key, *args, **kwargs)
 self.provider_key = provider_key

 def __str__(self):
 return ('Unknown provider: "{}"'.format(self.provider_key))

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/quote.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.quote

#!/usr/bin/env python
-*- coding: utf-8 -*-
##
Written by Kevin L. Sitze on 2006-12-03
This code may be used pursuant to the MIT License.
##
PEP8 applied and some things tweaked by Milan Falesnik

import re

__all__ = ('quote',)

_bash_reserved_words = {
 'case',
 'coproc',
 'do',
 'done',
 'elif',
 'else',
 'esac',
 'fi',
 'for',
 'function',
 'if',
 'in',
 'select',
 'then',
 'until',
 'while',
 'time'
}

####
_quote_re1 escapes double-quoted special characters.
_quote_re2 escapes unquoted special characters.

_quote_re1 = re.compile(r"([\!\"\$\\\`])")
_quote_re2 = re.compile(r"([\t\ \!\"\#\$\&\'\(\)*\:\;\<\>\?\@\[\\\]\^\`\{\|\}\~])")

[docs]def quote(*args):
 """Combine the arguments into a single string and escape any and
 all shell special characters or (reserved) words. The shortest
 possible string (correctly quoted suited to pass to a bash shell)
 is returned.
 """
 s = "".join(args)
 if s in _bash_reserved_words:
 return "\\" + s
 elif s.find('\'') >= 0:
 s1 = '"' + _quote_re1.sub(r"\\\1", s) + '"'
 else:
 s1 = "'" + s + "'"
 s2 = _quote_re2.sub(r"\\\1", s)
 if len(s1) <= len(s2):
 return s1
 else:
 return s2

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/smem_memory_monitor.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.smem_memory_monitor

"""Monitor Memory on a CFME/Miq appliance and builds report&graphs displaying usage per process."""
import matplotlib.dates as mdates
import matplotlib.pyplot as plt
import os
import time
import traceback
import yaml

from cfme.utils.conf import cfme_performance
from cfme.utils.log import logger
from cfme.utils.path import results_path
from cfme.utils.version import get_version
from cfme.utils.version import current_version
from collections import OrderedDict
from cycler import cycler
from datetime import datetime
from threading import Thread
from yaycl import AttrDict
import json
import matplotlib as mpl
mpl.use('Agg')

miq_workers = [
 'MiqGenericWorker',
 'MiqPriorityWorker',
 'MiqScheduleWorker',
 'MiqUiWorker',
 'MiqWebServiceWorker',
 'MiqWebsocketWorker',
 'MiqReportingWorker',
 'MiqReplicationWorker',
 'MiqSmartProxyWorker',

 'MiqVimBrokerWorker',
 'MiqEmsRefreshCoreWorker',

 # Refresh Workers:
 'ManageIQ::Providers::Microsoft::InfraManager::RefreshWorker',
 'ManageIQ::Providers::Openstack::InfraManager::RefreshWorker',
 'ManageIQ::Providers::Redhat::InfraManager::RefreshWorker',
 'ManageIQ::Providers::Vmware::InfraManager::RefreshWorker',
 'MiqEmsRefreshWorkerMicrosoft', # 5.4
 'MiqEmsRefreshWorkerRedhat', # 5.4
 'MiqEmsRefreshWorkerVmware', # 5.4

 'ManageIQ::Providers::Amazon::CloudManager::RefreshWorker',
 'ManageIQ::Providers::Azure::CloudManager::RefreshWorker',
 'ManageIQ::Providers::Google::CloudManager::RefreshWorker',
 'ManageIQ::Providers::Openstack::CloudManager::RefreshWorker',
 'MiqEmsRefreshWorkerAmazon', # 5.4
 'MiqEmsRefreshWorkerOpenstack', # 5.4

 'ManageIQ::Providers::AnsibleTower::ConfigurationManager::RefreshWorker',
 'ManageIQ::Providers::Foreman::ConfigurationManager::RefreshWorker',
 'ManageIQ::Providers::Foreman::ProvisioningManager::RefreshWorker',
 'MiqEmsRefreshWorkerForemanConfiguration', # 5.4
 'MiqEmsRefreshWorkerForemanProvisioning', # 5.4

 'ManageIQ::Providers::Atomic::ContainerManager::RefreshWorker',
 'ManageIQ::Providers::AtomicEnterprise::ContainerManager::RefreshWorker',
 'ManageIQ::Providers::Kubernetes::ContainerManager::RefreshWorker',
 'ManageIQ::Providers::Openshift::ContainerManager::RefreshWorker',
 'ManageIQ::Providers::OpenshiftEnterprise::ContainerManager::RefreshWorker',

 'ManageIQ::Providers::Hawkular::MiddlewareManager::RefreshWorker',
 'ManageIQ::Providers::StorageManager::CinderManager::RefreshWorker',
 'ManageIQ::Providers::StorageManager::SwiftManager::RefreshWorker',

 'ManageIQ::Providers::Amazon::NetworkManager::RefreshWorker',
 'ManageIQ::Providers::Azure::NetworkManager::RefreshWorker',
 'ManageIQ::Providers::Google::NetworkManager::RefreshWorker',
 'ManageIQ::Providers::Openstack::NetworkManager::RefreshWorker',

 'MiqNetappRefreshWorker',
 'MiqSmisRefreshWorker',

 # Event Workers:
 'MiqEventHandler',

 'ManageIQ::Providers::Openstack::InfraManager::EventCatcher',
 'ManageIQ::Providers::StorageManager::CinderManager::EventCatcher',
 'ManageIQ::Providers::Redhat::InfraManager::EventCatcher',
 'ManageIQ::Providers::Vmware::InfraManager::EventCatcher',
 'MiqEventCatcherRedhat', # 5.4
 'MiqEventCatcherVmware', # 5.4

 'ManageIQ::Providers::Amazon::CloudManager::EventCatcher',
 'ManageIQ::Providers::Azure::CloudManager::EventCatcher',
 'ManageIQ::Providers::Google::CloudManager::EventCatcher',
 'ManageIQ::Providers::Openstack::CloudManager::EventCatcher',
 'MiqEventCatcherAmazon', # 5.4
 'MiqEventCatcherOpenstack', # 5.4

 'ManageIQ::Providers::Atomic::ContainerManager::EventCatcher',
 'ManageIQ::Providers::AtomicEnterprise::ContainerManager::EventCatcher',
 'ManageIQ::Providers::Kubernetes::ContainerManager::EventCatcher',
 'ManageIQ::Providers::Openshift::ContainerManager::EventCatcher',
 'ManageIQ::Providers::OpenshiftEnterprise::ContainerManager::EventCatcher',

 'ManageIQ::Providers::Hawkular::MiddlewareManager::EventCatcher',

 'ManageIQ::Providers::Openstack::NetworkManager::EventCatcher',

 # Metrics Processor/Collector Workers
 'MiqEmsMetricsProcessorWorker',

 'ManageIQ::Providers::Openstack::InfraManager::MetricsCollectorWorker',
 'ManageIQ::Providers::Redhat::InfraManager::MetricsCollectorWorker',
 'ManageIQ::Providers::Vmware::InfraManager::MetricsCollectorWorker',
 'MiqEmsMetricsCollectorWorkerRedhat', # 5.4
 'MiqEmsMetricsCollectorWorkerVmware', # 5.4

 'ManageIQ::Providers::Amazon::CloudManager::MetricsCollectorWorker',
 'ManageIQ::Providers::Azure::CloudManager::MetricsCollectorWorker',
 'ManageIQ::Providers::Openstack::CloudManager::MetricsCollectorWorker',
 'MiqEmsMetricsCollectorWorkerAmazon', # 5.4
 'MiqEmsMetricsCollectorWorkerOpenstack', # 5.4

 'ManageIQ::Providers::Atomic::ContainerManager::MetricsCollectorWorker',
 'ManageIQ::Providers::AtomicEnterprise::ContainerManager::MetricsCollectorWorker',
 'ManageIQ::Providers::Kubernetes::ContainerManager::MetricsCollectorWorker',
 'ManageIQ::Providers::Openshift::ContainerManager::MetricsCollectorWorker',
 'ManageIQ::Providers::OpenshiftEnterprise::ContainerManager::MetricsCollectorWorker',

 'ManageIQ::Providers::Openstack::NetworkManager::MetricsCollectorWorker',

 'MiqStorageMetricsCollectorWorker',
 'MiqVmdbStorageBridgeWorker']

ruby_processes = list(miq_workers)
ruby_processes.extend(['evm:dbsync:replicate', 'MIQ Server (evm_server.rb)', 'evm_watchdog.rb',
 'appliance_console.rb'])

process_order = list(ruby_processes)
process_order.extend(['memcached', 'postgres', 'httpd', 'collectd'])

Timestamp created at first import, thus grouping all reports of like workload
test_ts = time.strftime('%Y%m%d%H%M%S')

10s sample interval (occasionally sampling can take almost 4s on an appliance doing a lot of work)
SAMPLE_INTERVAL = 10

[docs]class SmemMemoryMonitor(Thread):
 def __init__(self, ssh_client, scenario_data):
 super(SmemMemoryMonitor, self).__init__()
 self.ssh_client = ssh_client
 self.scenario_data = scenario_data
 self.grafana_urls = {}
 self.miq_server_id = ''
 self.use_slab = False
 self.signal = True

[docs] def create_process_result(self, process_results, starttime, process_pid, process_name,
 memory_by_pid):
 if process_pid in memory_by_pid.keys():
 if process_name not in process_results:
 process_results[process_name] = OrderedDict()
 process_results[process_name][process_pid] = OrderedDict()
 if process_pid not in process_results[process_name]:
 process_results[process_name][process_pid] = OrderedDict()
 process_results[process_name][process_pid][starttime] = {}
 rss_mem = memory_by_pid[process_pid]['rss']
 pss_mem = memory_by_pid[process_pid]['pss']
 uss_mem = memory_by_pid[process_pid]['uss']
 vss_mem = memory_by_pid[process_pid]['vss']
 swap_mem = memory_by_pid[process_pid]['swap']
 process_results[process_name][process_pid][starttime]['rss'] = rss_mem
 process_results[process_name][process_pid][starttime]['pss'] = pss_mem
 process_results[process_name][process_pid][starttime]['uss'] = uss_mem
 process_results[process_name][process_pid][starttime]['vss'] = vss_mem
 process_results[process_name][process_pid][starttime]['swap'] = swap_mem
 del memory_by_pid[process_pid]
 else:
 logger.warn('Process {} PID, not found: {}'.format(process_name, process_pid))

[docs] def get_appliance_memory(self, appliance_results, plottime):
 # 5.5/5.6 - RHEL 7 / Centos 7
 # Application Memory Used : MemTotal - (MemFree + Slab + Cached)
 # 5.4 - RHEL 6 / Centos 6
 # Application Memory Used : MemTotal - (MemFree + Buffers + Cached)
 # Available memory could potentially be better metric
 appliance_results[plottime] = {}

 exit_status, meminfo_raw = self.ssh_client.run_command('cat /proc/meminfo')
 if exit_status:
 logger.error('Exit_status nonzero in get_appliance_memory: {}, {}'.format(exit_status,
 meminfo_raw))
 del appliance_results[plottime]
 else:
 meminfo_raw = meminfo_raw.replace('kB', '').strip()
 meminfo = OrderedDict((k.strip(), v.strip()) for k, v in
 (value.strip().split(':') for value in meminfo_raw.split('\n')))
 appliance_results[plottime]['total'] = float(meminfo['MemTotal']) / 1024
 appliance_results[plottime]['free'] = float(meminfo['MemFree']) / 1024
 if 'MemAvailable' in meminfo: # 5.5, RHEL 7/Centos 7
 self.use_slab = True
 mem_used = (float(meminfo['MemTotal']) - (float(meminfo['MemFree']) + float(
 meminfo['Slab']) + float(meminfo['Cached']))) / 1024
 else: # 5.4, RHEL 6/Centos 6
 mem_used = (float(meminfo['MemTotal']) - (float(meminfo['MemFree']) + float(
 meminfo['Buffers']) + float(meminfo['Cached']))) / 1024
 appliance_results[plottime]['used'] = mem_used
 appliance_results[plottime]['buffers'] = float(meminfo['Buffers']) / 1024
 appliance_results[plottime]['cached'] = float(meminfo['Cached']) / 1024
 appliance_results[plottime]['slab'] = float(meminfo['Slab']) / 1024
 appliance_results[plottime]['swap_total'] = float(meminfo['SwapTotal']) / 1024
 appliance_results[plottime]['swap_free'] = float(meminfo['SwapFree']) / 1024

[docs] def get_evm_workers(self):
 exit_status, worker_types = self.ssh_client.run_command(
 'psql -t -q -d vmdb_production -c '
 '\"select pid,type from miq_workers where miq_server_id = \'{}\'\"'.format(
 self.miq_server_id))
 if worker_types.strip():
 workers = {}
 for worker in worker_types.strip().split('\n'):
 pid_worker = worker.strip().split('|')
 if len(pid_worker) == 2:
 workers[pid_worker[0].strip()] = pid_worker[1].strip()
 else:
 logger.error('Unexpected output from psql: {}'.format(worker))
 return workers
 else:
 return {}

 # Old method of obtaining per process memory (Appliances without smem)
 # def get_pids_memory(self):
 # exit_status, ps_memory = self.ssh_client.run_command(
 # 'ps -A -o pid,rss,vsz,comm,cmd | sed 1d')
 # pids_memory = ps_memory.strip().split('\n')
 # memory_by_pid = {}
 # for line in pids_memory:
 # values = [s for s in line.strip().split(' ') if s]
 # pid = values[0]
 # memory_by_pid[pid] = {}
 # memory_by_pid[pid]['rss'] = float(values[1]) / 1024
 # memory_by_pid[pid]['vss'] = float(values[2]) / 1024
 # memory_by_pid[pid]['name'] = values[3]
 # memory_by_pid[pid]['cmd'] = ' '.join(values[4:])
 # return memory_by_pid

[docs] def get_miq_server_id(self):
 # Obtain the Miq Server GUID:
 exit_status, miq_server_guid = self.ssh_client.run_command('cat /var/www/miq/vmdb/GUID')
 logger.info('Obtained appliance GUID: {}'.format(miq_server_guid.strip()))
 # Get server id:
 exit_status, miq_server_id = self.ssh_client.run_command(
 'psql -t -q -d vmdb_production -c "select id from miq_servers where guid = \'{}\'"'
 ''.format(miq_server_guid.strip()))
 logger.info('Obtained miq_server_id: {}'.format(miq_server_id.strip()))
 self.miq_server_id = miq_server_id.strip()

[docs] def get_pids_memory(self):
 exit_status, smem_out = self.ssh_client.run_command(
 'smem -c \'pid rss pss uss vss swap name command\' | sed 1d')
 pids_memory = smem_out.strip().split('\n')
 memory_by_pid = {}
 for line in pids_memory:
 if line.strip():
 try:
 values = [s for s in line.strip().split(' ') if s]
 pid = values[0]
 int(pid)
 memory_by_pid[pid] = {}
 memory_by_pid[pid]['rss'] = float(values[1]) / 1024
 memory_by_pid[pid]['pss'] = float(values[2]) / 1024
 memory_by_pid[pid]['uss'] = float(values[3]) / 1024
 memory_by_pid[pid]['vss'] = float(values[4]) / 1024
 memory_by_pid[pid]['swap'] = float(values[5]) / 1024
 memory_by_pid[pid]['name'] = values[6]
 memory_by_pid[pid]['cmd'] = ' '.join(values[7:])
 except Exception as e:
 logger.error('Processing smem output error: {}'.format(e.__class__.__name__, e))
 logger.error('Issue with pid: {} line: {}'.format(pid, line))
 logger.error('Complete smem output: {}'.format(smem_out))
 return memory_by_pid

 def _real_run(self):
 """ Result dictionaries:
 appliance_results[timestamp][measurement] = value
 appliance_results[timestamp]['total'] = value
 appliance_results[timestamp]['free'] = value
 appliance_results[timestamp]['used'] = value
 appliance_results[timestamp]['buffers'] = value
 appliance_results[timestamp]['cached'] = value
 appliance_results[timestamp]['slab'] = value
 appliance_results[timestamp]['swap_total'] = value
 appliance_results[timestamp]['swap_free'] = value
 appliance measurements: total/free/used/buffers/cached/slab/swap_total/swap_free
 process_results[name][pid][timestamp][measurement] = value
 process_results[name][pid][timestamp]['rss'] = value
 process_results[name][pid][timestamp]['pss'] = value
 process_results[name][pid][timestamp]['uss'] = value
 process_results[name][pid][timestamp]['vss'] = value
 process_results[name][pid][timestamp]['swap'] = value
 """
 appliance_results = OrderedDict()
 process_results = OrderedDict()
 install_smem(self.ssh_client)
 self.get_miq_server_id()
 logger.info('Starting Monitoring Thread.')
 while self.signal:
 starttime = time.time()
 plottime = datetime.now()

 self.get_appliance_memory(appliance_results, plottime)
 workers = self.get_evm_workers()
 memory_by_pid = self.get_pids_memory()

 for worker_pid in workers:
 self.create_process_result(process_results, plottime, worker_pid,
 workers[worker_pid], memory_by_pid)

 for pid in sorted(memory_by_pid.keys()):
 if memory_by_pid[pid]['name'] == 'httpd':
 self.create_process_result(process_results, plottime, pid, 'httpd',
 memory_by_pid)
 elif memory_by_pid[pid]['name'] == 'postgres':
 self.create_process_result(process_results, plottime, pid, 'postgres',
 memory_by_pid)
 elif memory_by_pid[pid]['name'] == 'postmaster':
 self.create_process_result(process_results, plottime, pid, 'postgres',
 memory_by_pid)
 elif memory_by_pid[pid]['name'] == 'memcached':
 self.create_process_result(process_results, plottime, pid, 'memcached',
 memory_by_pid)
 elif memory_by_pid[pid]['name'] == 'collectd':
 self.create_process_result(process_results, plottime, pid, 'collectd',
 memory_by_pid)
 elif memory_by_pid[pid]['name'] == 'ruby':
 if 'evm_server.rb' in memory_by_pid[pid]['cmd']:
 self.create_process_result(process_results, plottime, pid,
 'MIQ Server (evm_server.rb)', memory_by_pid)
 elif 'MIQ Server' in memory_by_pid[pid]['cmd']:
 self.create_process_result(process_results, plottime, pid,
 'MIQ Server (evm_server.rb)', memory_by_pid)
 elif 'evm_watchdog.rb' in memory_by_pid[pid]['cmd']:
 self.create_process_result(process_results, plottime, pid,
 'evm_watchdog.rb', memory_by_pid)
 elif 'appliance_console.rb' in memory_by_pid[pid]['cmd']:
 self.create_process_result(process_results, plottime, pid,
 'appliance_console.rb', memory_by_pid)
 elif 'evm:dbsync:replicate' in memory_by_pid[pid]['cmd']:
 self.create_process_result(process_results, plottime, pid,
 'evm:dbsync:replicate', memory_by_pid)
 else:
 logger.debug('Unaccounted for ruby pid: {}'.format(pid))

 timediff = time.time() - starttime
 logger.debug('Monitoring sampled in {}s'.format(round(timediff, 4)))

 # Sleep Monitoring interval
 # Roughly 10s samples, accounts for collection of memory measurements
 time_to_sleep = abs(SAMPLE_INTERVAL - timediff)
 time.sleep(time_to_sleep)
 logger.info('Monitoring CFME Memory Terminating')

 create_report(self.scenario_data, appliance_results, process_results, self.use_slab,
 self.grafana_urls)

[docs] def run(self):
 try:
 self._real_run()
 except Exception as e:
 logger.error('Error in Monitoring Thread: {}'.format(e))
 logger.error('{}'.format(traceback.format_exc()))

[docs]def install_smem(ssh_client):
 # smem is included by default in 5.6 appliances
 logger.info('Installing smem.')
 ver = get_version()
 if ver == '55':
 ssh_client.run_command('rpm -i {}'.format(cfme_performance['tools']['rpms']['epel7_rpm']))
 ssh_client.run_command('yum install -y smem')
 # Patch smem to display longer command line names
 logger.info('Patching smem')
 ssh_client.run_command('sed -i s/\.27s/\.200s/g /usr/bin/smem')

[docs]def create_report(scenario_data, appliance_results, process_results, use_slab, grafana_urls):
 logger.info('Creating Memory Monitoring Report.')
 ver = current_version()

 provider_names = 'No Providers'
 if 'providers' in scenario_data['scenario']:
 provider_names = ', '.join(scenario_data['scenario']['providers'])

 workload_path = results_path.join('{}-{}-{}'.format(test_ts, scenario_data['test_dir'], ver))
 if not os.path.exists(str(workload_path)):
 os.makedirs(str(workload_path))

 scenario_path = workload_path.join(scenario_data['scenario']['name'])
 if os.path.exists(str(scenario_path)):
 logger.warn('Duplicate Workload-Scenario Name: {}'.format(scenario_path))
 scenario_path = workload_path.join('{}-{}'.format(time.strftime('%Y%m%d%H%M%S'),
 scenario_data['scenario']['name']))
 logger.warn('Using: {}'.format(scenario_path))
 os.mkdir(str(scenario_path))

 mem_graphs_path = scenario_path.join('graphs')
 if not os.path.exists(str(mem_graphs_path)):
 os.mkdir(str(mem_graphs_path))

 mem_rawdata_path = scenario_path.join('rawdata')
 if not os.path.exists(str(mem_rawdata_path)):
 os.mkdir(str(mem_rawdata_path))

 graph_appliance_measurements(mem_graphs_path, ver, appliance_results, use_slab, provider_names)
 graph_individual_process_measurements(mem_graphs_path, process_results, provider_names)
 graph_same_miq_workers(mem_graphs_path, process_results, provider_names)
 graph_all_miq_workers(mem_graphs_path, process_results, provider_names)

 # Dump scenario Yaml:
 with open(str(scenario_path.join('scenario.yml')), 'w') as scenario_file:
 yaml.dump(dict(scenario_data['scenario']), scenario_file, default_flow_style=False)

 generate_summary_csv(scenario_path.join('{}-summary.csv'.format(ver)), appliance_results,
 process_results, provider_names, ver)
 generate_raw_data_csv(mem_rawdata_path, appliance_results, process_results)
 generate_summary_html(scenario_path, ver, appliance_results, process_results, scenario_data,
 provider_names, grafana_urls)
 generate_workload_html(scenario_path, ver, scenario_data, provider_names, grafana_urls)

 logger.info('Finished Creating Report')

[docs]def compile_per_process_results(procs_to_compile, process_results, ts_end):
 alive_pids = 0
 recycled_pids = 0
 total_running_rss = 0
 total_running_pss = 0
 total_running_uss = 0
 total_running_vss = 0
 total_running_swap = 0
 for process in procs_to_compile:
 if process in process_results:
 for pid in process_results[process]:
 if ts_end in process_results[process][pid]:
 alive_pids += 1
 total_running_rss += process_results[process][pid][ts_end]['rss']
 total_running_pss += process_results[process][pid][ts_end]['pss']
 total_running_uss += process_results[process][pid][ts_end]['uss']
 total_running_vss += process_results[process][pid][ts_end]['vss']
 total_running_swap += process_results[process][pid][ts_end]['swap']
 else:
 recycled_pids += 1
 return alive_pids, recycled_pids, total_running_rss, total_running_pss, total_running_uss, \
 total_running_vss, total_running_swap

[docs]def generate_raw_data_csv(directory, appliance_results, process_results):
 starttime = time.time()
 file_name = str(directory.join('appliance.csv'))
 with open(file_name, 'w') as csv_file:
 csv_file.write('TimeStamp,Total,Free,Used,Buffers,Cached,Slab,Swap_Total,Swap_Free\n')
 for ts in appliance_results:
 csv_file.write('{},{},{},{},{},{},{},{},{}\n'.format(ts,
 appliance_results[ts]['total'], appliance_results[ts]['free'],
 appliance_results[ts]['used'], appliance_results[ts]['buffers'],
 appliance_results[ts]['cached'], appliance_results[ts]['slab'],
 appliance_results[ts]['swap_total'], appliance_results[ts]['swap_free']))
 for process_name in process_results:
 for process_pid in process_results[process_name]:
 file_name = str(directory.join('{}-{}.csv'.format(process_pid, process_name)))
 with open(file_name, 'w') as csv_file:
 csv_file.write('TimeStamp,RSS,PSS,USS,VSS,SWAP\n')
 for ts in process_results[process_name][process_pid]:
 csv_file.write('{},{},{},{},{},{}\n'.format(ts,
 process_results[process_name][process_pid][ts]['rss'],
 process_results[process_name][process_pid][ts]['pss'],
 process_results[process_name][process_pid][ts]['uss'],
 process_results[process_name][process_pid][ts]['vss'],
 process_results[process_name][process_pid][ts]['swap']))
 timediff = time.time() - starttime
 logger.info('Generated Raw Data CSVs in: {}'.format(timediff))

[docs]def generate_summary_csv(file_name, appliance_results, process_results, provider_names,
 version_string):
 starttime = time.time()
 with open(str(file_name), 'w') as csv_file:
 csv_file.write('Version: {}, Provider(s): {}\n'.format(version_string, provider_names))
 csv_file.write('Measurement,Start of test,End of test\n')
 start = appliance_results.keys()[0]
 end = appliance_results.keys()[-1]
 csv_file.write('Appliance Total Memory,{},{}\n'.format(
 round(appliance_results[start]['total'], 2), round(appliance_results[end]['total'], 2)))
 csv_file.write('Appliance Free Memory,{},{}\n'.format(
 round(appliance_results[start]['free'], 2), round(appliance_results[end]['free'], 2)))
 csv_file.write('Appliance Used Memory,{},{}\n'.format(
 round(appliance_results[start]['used'], 2), round(appliance_results[end]['used'], 2)))
 csv_file.write('Appliance Buffers,{},{}\n'.format(
 round(appliance_results[start]['buffers'], 2),
 round(appliance_results[end]['buffers'], 2)))
 csv_file.write('Appliance Cached,{},{}\n'.format(
 round(appliance_results[start]['cached'], 2),
 round(appliance_results[end]['cached'], 2)))
 csv_file.write('Appliance Slab,{},{}\n'.format(
 round(appliance_results[start]['slab'], 2),
 round(appliance_results[end]['slab'], 2)))
 csv_file.write('Appliance Total Swap,{},{}\n'.format(
 round(appliance_results[start]['swap_total'], 2),
 round(appliance_results[end]['swap_total'], 2)))
 csv_file.write('Appliance Free Swap,{},{}\n'.format(
 round(appliance_results[start]['swap_free'], 2),
 round(appliance_results[end]['swap_free'], 2)))

 summary_csv_measurement_dump(csv_file, process_results, 'rss')
 summary_csv_measurement_dump(csv_file, process_results, 'pss')
 summary_csv_measurement_dump(csv_file, process_results, 'uss')
 summary_csv_measurement_dump(csv_file, process_results, 'vss')
 summary_csv_measurement_dump(csv_file, process_results, 'swap')

 timediff = time.time() - starttime
 logger.info('Generated Summary CSV in: {}'.format(timediff))

[docs]def generate_summary_html(directory, version_string, appliance_results, process_results,
 scenario_data, provider_names, grafana_urls):
 starttime = time.time()
 file_name = str(directory.join('index.html'))
 with open(file_name, 'w') as html_file:
 html_file.write('<html>\n')
 html_file.write('<head><title>{} - {} Memory Usage Performance</title></head>'.format(
 version_string, provider_names))

 html_file.write('<body>\n')
 html_file.write('CFME {} {} Test Results
\n'.format(version_string,
 scenario_data['test_name'].title()))
 html_file.write('Appliance Roles: {}
\n'.format(
 scenario_data['appliance_roles'].replace(',', ', ')))
 html_file.write('Provider(s): {}
\n'.format(provider_names))
 html_file.write('{}\n'.format(
 scenario_data['appliance_ip'], scenario_data['appliance_name']))
 if grafana_urls:
 for g_name in sorted(grafana_urls.keys()):
 html_file.write(
 ' : {}'.format(grafana_urls[g_name],
 g_name))
 html_file.write('
\n')
 html_file.write('Summary CSV'.format(version_string))
 html_file.write(' : Workload Info')
 html_file.write(' : Graphs directory\n')
 html_file.write(' : CSVs directory
\n')
 start = appliance_results.keys()[0]
 end = appliance_results.keys()[-1]
 timediff = end - start
 total_proc_count = 0
 for proc_name in process_results:
 total_proc_count += len(process_results[proc_name].keys())
 growth = appliance_results[end]['used'] - appliance_results[start]['used']
 max_used_memory = 0
 for ts in appliance_results:
 if appliance_results[ts]['used'] > max_used_memory:
 max_used_memory = appliance_results[ts]['used']
 html_file.write('<table border="1">\n')
 html_file.write('<tr><td>\n')
 # Appliance Wide Results
 html_file.write('<table style="width:100%" border="1">\n')
 html_file.write('<tr>\n')
 html_file.write('<td>Version</td>\n')
 html_file.write('<td>Start Time</td>\n')
 html_file.write('<td>End Time</td>\n')
 html_file.write('<td>Total Test Time</td>\n')
 html_file.write('<td>Total Memory</td>\n')
 html_file.write('<td>Start Used Memory</td>\n')
 html_file.write('<td>End Used Memory</td>\n')
 html_file.write('<td>Used Memory Growth</td>\n')
 html_file.write('<td>Max Used Memory</td>\n')
 html_file.write('<td>Total Tracked Processes</td>\n')
 html_file.write('</tr>\n')
 html_file.write('<td>{}</td>\n'.format(
 version_string))
 html_file.write('<td>{}</td>\n'.format(start.replace(microsecond=0)))
 html_file.write('<td>{}</td>\n'.format(end.replace(microsecond=0)))
 html_file.write('<td>{}</td>\n'.format(unicode(timediff).partition('.')[0]))
 html_file.write('<td>{}</td>\n'.format(round(appliance_results[end]['total'], 2)))
 html_file.write('<td>{}</td>\n'.format(round(appliance_results[start]['used'], 2)))
 html_file.write('<td>{}</td>\n'.format(round(appliance_results[end]['used'], 2)))
 html_file.write('<td>{}</td>\n'.format(round(growth, 2)))
 html_file.write('<td>{}</td>\n'.format(round(max_used_memory, 2)))
 html_file.write('<td>{}</td>\n'.format(total_proc_count))
 html_file.write('</table>\n')

 # CFME/Miq Worker Results
 html_file.write('<table style="width:100%" border="1">\n')
 html_file.write('<tr>\n')
 html_file.write('<td>Total CFME/Miq Workers</td>\n')
 html_file.write('<td>End Running Workers</td>\n')
 html_file.write('<td>Recycled Workers</td>\n')
 html_file.write('<td>End Total Worker RSS</td>\n')
 html_file.write('<td>End Total Worker PSS</td>\n')
 html_file.write('<td>End Total Worker USS</td>\n')
 html_file.write('<td>End Total Worker VSS</td>\n')
 html_file.write('<td>End Total Worker SWAP</td>\n')
 html_file.write('</tr>\n')

 a_pids, r_pids, t_rss, t_pss, t_uss, t_vss, t_swap = compile_per_process_results(
 miq_workers, process_results, end)

 html_file.write('<tr>\n')
 html_file.write('<td>{}</td>\n'.format(a_pids + r_pids))
 html_file.write('<td>{}</td>\n'.format(a_pids))
 html_file.write('<td>{}</td>\n'.format(r_pids))
 html_file.write('<td>{}</td>\n'.format(round(t_rss, 2)))
 html_file.write('<td>{}</td>\n'.format(round(t_pss, 2)))
 html_file.write('<td>{}</td>\n'.format(round(t_uss, 2)))
 html_file.write('<td>{}</td>\n'.format(round(t_vss, 2)))
 html_file.write('<td>{}</td>\n'.format(round(t_swap, 2)))
 html_file.write('</tr>\n')
 html_file.write('</table>\n')

 # Per Process Summaries:
 html_file.write('<table style="width:100%" border="1">\n')
 html_file.write('<tr>\n')
 html_file.write('<td>Application/Process Group</td>\n')
 html_file.write('<td>Total Processes</td>\n')
 html_file.write('<td>End Running Processes</td>\n')
 html_file.write('<td>Recycled Processes</td>\n')
 html_file.write('<td>End Total Process RSS</td>\n')
 html_file.write('<td>End Total Process PSS</td>\n')
 html_file.write('<td>End Total Process USS</td>\n')
 html_file.write('<td>End Total Process VSS</td>\n')
 html_file.write('<td>End Total Process SWAP</td>\n')
 html_file.write('</tr>\n')

 a_pids, r_pids, t_rss, t_pss, t_uss, t_vss, t_swap = compile_per_process_results(
 ruby_processes, process_results, end)
 t_a_pids = a_pids
 t_r_pids = r_pids
 tt_rss = t_rss
 tt_pss = t_pss
 tt_uss = t_uss
 tt_vss = t_vss
 tt_swap = t_swap
 html_file.write('<tr>\n')
 html_file.write('<td>ruby</td>\n')
 html_file.write('<td>{}</td>\n'.format(a_pids + r_pids))
 html_file.write('<td>{}</td>\n'.format(a_pids))
 html_file.write('<td>{}</td>\n'.format(r_pids))
 html_file.write('<td>{}</td>\n'.format(round(t_rss, 2)))
 html_file.write('<td>{}</td>\n'.format(round(t_pss, 2)))
 html_file.write('<td>{}</td>\n'.format(round(t_uss, 2)))
 html_file.write('<td>{}</td>\n'.format(round(t_vss, 2)))
 html_file.write('<td>{}</td>\n'.format(round(t_swap, 2)))
 html_file.write('</tr>\n')

 # memcached Summary
 a_pids, r_pids, t_rss, t_pss, t_uss, t_vss, t_swap = compile_per_process_results(
 ['memcached'], process_results, end)
 t_a_pids += a_pids
 t_r_pids += r_pids
 tt_rss += t_rss
 tt_pss += t_pss
 tt_uss += t_uss
 tt_vss += t_vss
 tt_swap += t_swap
 html_file.write('<tr>\n')
 html_file.write('<td>memcached</td>\n')
 html_file.write('<td>{}</td>\n'.format(a_pids + r_pids))
 html_file.write('<td>{}</td>\n'.format(a_pids))
 html_file.write('<td>{}</td>\n'.format(r_pids))
 html_file.write('<td>{}</td>\n'.format(round(t_rss, 2)))
 html_file.write('<td>{}</td>\n'.format(round(t_pss, 2)))
 html_file.write('<td>{}</td>\n'.format(round(t_uss, 2)))
 html_file.write('<td>{}</td>\n'.format(round(t_vss, 2)))
 html_file.write('<td>{}</td>\n'.format(round(t_swap, 2)))
 html_file.write('</tr>\n')

 # Postgres Summary
 a_pids, r_pids, t_rss, t_pss, t_uss, t_vss, t_swap = compile_per_process_results(
 ['postgres'], process_results, end)
 t_a_pids += a_pids
 t_r_pids += r_pids
 tt_rss += t_rss
 tt_pss += t_pss
 tt_uss += t_uss
 tt_vss += t_vss
 tt_swap += t_swap
 html_file.write('<tr>\n')
 html_file.write('<td>postgres</td>\n')
 html_file.write('<td>{}</td>\n'.format(a_pids + r_pids))
 html_file.write('<td>{}</td>\n'.format(a_pids))
 html_file.write('<td>{}</td>\n'.format(r_pids))
 html_file.write('<td>{}</td>\n'.format(round(t_rss, 2)))
 html_file.write('<td>{}</td>\n'.format(round(t_pss, 2)))
 html_file.write('<td>{}</td>\n'.format(round(t_uss, 2)))
 html_file.write('<td>{}</td>\n'.format(round(t_vss, 2)))
 html_file.write('<td>{}</td>\n'.format(round(t_swap, 2)))
 html_file.write('</tr>\n')

 # httpd Summary
 a_pids, r_pids, t_rss, t_pss, t_uss, t_vss, t_swap = compile_per_process_results(['httpd'],
 process_results, end)
 t_a_pids += a_pids
 t_r_pids += r_pids
 tt_rss += t_rss
 tt_pss += t_pss
 tt_uss += t_uss
 tt_vss += t_vss
 tt_swap += t_swap
 html_file.write('<tr>\n')
 html_file.write('<td>httpd</td>\n')
 html_file.write('<td>{}</td>\n'.format(a_pids + r_pids))
 html_file.write('<td>{}</td>\n'.format(a_pids))
 html_file.write('<td>{}</td>\n'.format(r_pids))
 html_file.write('<td>{}</td>\n'.format(round(t_rss, 2)))
 html_file.write('<td>{}</td>\n'.format(round(t_pss, 2)))
 html_file.write('<td>{}</td>\n'.format(round(t_uss, 2)))
 html_file.write('<td>{}</td>\n'.format(round(t_vss, 2)))
 html_file.write('<td>{}</td>\n'.format(round(t_swap, 2)))
 html_file.write('</tr>\n')

 # collectd Summary
 a_pids, r_pids, t_rss, t_pss, t_uss, t_vss, t_swap = compile_per_process_results(
 ['collectd'], process_results, end)
 t_a_pids += a_pids
 t_r_pids += r_pids
 tt_rss += t_rss
 tt_pss += t_pss
 tt_uss += t_uss
 tt_vss += t_vss
 tt_swap += t_swap
 html_file.write('<tr>\n')
 html_file.write('<td>collectd</td>\n')
 html_file.write('<td>{}</td>\n'.format(a_pids + r_pids))
 html_file.write('<td>{}</td>\n'.format(a_pids))
 html_file.write('<td>{}</td>\n'.format(r_pids))
 html_file.write('<td>{}</td>\n'.format(round(t_rss, 2)))
 html_file.write('<td>{}</td>\n'.format(round(t_pss, 2)))
 html_file.write('<td>{}</td>\n'.format(round(t_uss, 2)))
 html_file.write('<td>{}</td>\n'.format(round(t_vss, 2)))
 html_file.write('<td>{}</td>\n'.format(round(t_swap, 2)))
 html_file.write('</tr>\n')

 html_file.write('<tr>\n')
 html_file.write('<td>total</td>\n')
 html_file.write('<td>{}</td>\n'.format(t_a_pids + t_r_pids))
 html_file.write('<td>{}</td>\n'.format(t_a_pids))
 html_file.write('<td>{}</td>\n'.format(t_r_pids))
 html_file.write('<td>{}</td>\n'.format(round(tt_rss, 2)))
 html_file.write('<td>{}</td>\n'.format(round(tt_pss, 2)))
 html_file.write('<td>{}</td>\n'.format(round(tt_uss, 2)))
 html_file.write('<td>{}</td>\n'.format(round(tt_vss, 2)))
 html_file.write('<td>{}</td>\n'.format(round(tt_swap, 2)))
 html_file.write('</tr>\n')
 html_file.write('</table>\n')

 # Appliance Graph
 html_file.write('</td></tr><tr><td>\n')
 file_name = '{}-appliance_memory.png'.format(version_string)
 html_file.write('\n'.format(file_name))
 file_name = '{}-appliance_swap.png'.format(version_string)
 # Check for swap usage through out time frame:
 max_swap_used = 0
 for ts in appliance_results:
 swap_used = appliance_results[ts]['swap_total'] - appliance_results[ts]['swap_free']
 if swap_used > max_swap_used:
 max_swap_used = swap_used
 if max_swap_used < 10: # Less than 10MiB Max, then hide graph
 html_file.write('
Swap Graph '.format(file_name))
 html_file.write('(Hidden, max_swap_used < 10 MiB)\n')
 else:
 html_file.write('\n'.format(file_name))
 html_file.write('</td></tr><tr><td>\n')
 # Per Process Results
 html_file.write('<table style="width:100%" border="1"><tr>\n')
 html_file.write('<td>Process Name</td>\n')
 html_file.write('<td>Process Pid</td>\n')
 html_file.write('<td>Start Time</td>\n')
 html_file.write('<td>End Time</td>\n')
 html_file.write('<td>Time Alive</td>\n')
 html_file.write('<td>RSS Mem Start</td>\n')
 html_file.write('<td>RSS Mem End</td>\n')
 html_file.write('<td>RSS Mem Change</td>\n')
 html_file.write('<td>PSS Mem Start</td>\n')
 html_file.write('<td>PSS Mem End</td>\n')
 html_file.write('<td>PSS Mem Change</td>\n')
 html_file.write('<td>CSV</td>\n')
 html_file.write('</tr>\n')
 # By Worker Type Memory Used
 for ordered_name in process_order:
 if ordered_name in process_results:
 for pid in process_results[ordered_name]:
 start = process_results[ordered_name][pid].keys()[0]
 end = process_results[ordered_name][pid].keys()[-1]
 timediff = end - start
 html_file.write('<tr>\n')
 if len(process_results[ordered_name]) > 1:
 html_file.write('<td>{}</td>\n'.format(ordered_name,
 ordered_name))
 html_file.write('<td>{}</td>\n'.format(
 ordered_name, pid, pid))
 else:
 html_file.write('<td>{}</td>\n'.format(ordered_name))
 html_file.write('<td>{}</td>\n'.format(
 ordered_name, pid, pid))
 html_file.write('<td>{}</td>\n'.format(start.replace(microsecond=0)))
 html_file.write('<td>{}</td>\n'.format(end.replace(microsecond=0)))
 html_file.write('<td>{}</td>\n'.format(unicode(timediff).partition('.')[0]))
 rss_change = process_results[ordered_name][pid][end]['rss'] - \
 process_results[ordered_name][pid][start]['rss']
 html_file.write('<td>{}</td>\n'.format(
 round(process_results[ordered_name][pid][start]['rss'], 2)))
 html_file.write('<td>{}</td>\n'.format(
 round(process_results[ordered_name][pid][end]['rss'], 2)))
 html_file.write('<td>{}</td>\n'.format(round(rss_change, 2)))
 pss_change = process_results[ordered_name][pid][end]['pss'] - \
 process_results[ordered_name][pid][start]['pss']
 html_file.write('<td>{}</td>\n'.format(
 round(process_results[ordered_name][pid][start]['pss'], 2)))
 html_file.write('<td>{}</td>\n'.format(
 round(process_results[ordered_name][pid][end]['pss'], 2)))
 html_file.write('<td>{}</td>\n'.format(round(pss_change, 2)))
 html_file.write('<td>csv</td>\n'.format(
 pid, ordered_name))
 html_file.write('</tr>\n')
 else:
 logger.debug('Process/Worker not part of test: {}'.format(ordered_name))

 html_file.write('</table>\n')

 # Worker Graphs
 for ordered_name in process_order:
 if ordered_name in process_results:
 html_file.write('<tr><td>\n')
 html_file.write('<div id=\'{}\'>Process name: {}</div>
\n'.format(
 ordered_name, ordered_name))
 if len(process_results[ordered_name]) > 1:
 file_name = '{}-all.png'.format(ordered_name)
 html_file.write('
\n'.format(file_name,
 file_name))
 else:
 for pid in sorted(process_results[ordered_name]):
 file_name = '{}-{}.png'.format(ordered_name, pid)
 html_file.write('
\n'.format(
 file_name, file_name))
 html_file.write('</td></tr>\n')

 html_file.write('</table>\n')
 html_file.write('</body>\n')
 html_file.write('</html>\n')
 timediff = time.time() - starttime
 logger.info('Generated Summary html in: {}'.format(timediff))

[docs]def generate_workload_html(directory, ver, scenario_data, provider_names, grafana_urls):
 starttime = time.time()
 file_name = str(directory.join('workload.html'))
 with open(file_name, 'w') as html_file:
 html_file.write('<html>\n')
 html_file.write('<head><title>{} - {}</title></head>'.format(
 scenario_data['test_name'], provider_names))

 html_file.write('<body>\n')
 html_file.write('CFME {} {} Test Results
\n'.format(ver,
 scenario_data['test_name'].title()))
 html_file.write('Appliance Roles: {}
\n'.format(
 scenario_data['appliance_roles'].replace(',', ', ')))
 html_file.write('Provider(s): {}
\n'.format(provider_names))
 html_file.write('{}\n'.format(
 scenario_data['appliance_ip'], scenario_data['appliance_name']))
 if grafana_urls:
 for g_name in sorted(grafana_urls.keys()):
 html_file.write(
 ' : {}'.format(grafana_urls[g_name],
 g_name))
 html_file.write('
\n')
 html_file.write('Summary CSV'.format(ver))
 html_file.write(' : Memory Info')
 html_file.write(' : Graphs directory\n')
 html_file.write(' : CSVs directory
\n')

 html_file.write('
Scenario Data:
\n')
 yaml_html = get_scenario_html(scenario_data['scenario'])
 html_file.write(yaml_html + '\n')

 html_file.write('
\n
\n
\nQuantifier Data: \n
\n
\n
\n
\n')

 html_file.write('<table border="1">\n')

 html_file.write('<tr>\n')
 html_file.write('<td> System Information</td>\n')
 html_file.write('</tr>\n')
 html_file.write('<tr>\n')
 html_file.write('<td>\n')
 system_path = ('../version_info/system.csv')
 html_file.write(' System Versions'
 .format(system_path, test_ts, scenario_data['scenario']['name']))
 html_file.write('</td>\n')
 html_file.write('</tr>\n')

 html_file.write('<tr>\n')
 html_file.write('<td> </td>\n')
 html_file.write('</tr>\n')
 html_file.write('<tr>\n')
 html_file.write('<td> </td>\n')
 html_file.write('</tr>\n')
 html_file.write('<tr>\n')
 html_file.write('<td> Process Information</td>\n')
 html_file.write('</tr>\n')
 html_file.write('<tr>\n')
 html_file.write('<td>\n')
 process_path = ('../version_info/processes.csv')
 html_file.write(' Process Versions'
 .format(process_path, test_ts, scenario_data['scenario']['name']))
 html_file.write('</td>\n')
 html_file.write('</tr>\n')

 html_file.write('<tr>\n')
 html_file.write('<td> </td>\n')
 html_file.write('</tr>\n')
 html_file.write('<tr>\n')
 html_file.write('<td> </td>\n')
 html_file.write('</tr>\n')
 html_file.write('<tr>\n')
 html_file.write('<td> Ruby Gem Information</td>\n')
 html_file.write('</tr>\n')
 html_file.write('<tr>\n')
 html_file.write('<td>\n')
 gems_path = ('../version_info/gems.csv')
 html_file.write(' Ruby Gem Versions'
 .format(gems_path, test_ts, scenario_data['scenario']['name']))
 html_file.write('</td>\n')
 html_file.write('</tr>\n')

 html_file.write('<tr>\n')
 html_file.write('<td> </td>\n')
 html_file.write('</tr>\n')
 html_file.write('<tr>\n')
 html_file.write('<td> </td>\n')
 html_file.write('</tr>\n')
 html_file.write('<tr>\n')
 html_file.write('<td> RPM Information</td>\n')
 html_file.write('</tr>\n')
 html_file.write('<tr>\n')
 html_file.write('<td>\n')
 rpms_path = ('../version_info/rpms.csv')
 html_file.write(' RPM Versions'
 .format(rpms_path, test_ts, scenario_data['scenario']['name']))
 html_file.write('</td>\n')
 html_file.write('</tr>\n')

 html_file.write('</table>\n')
 html_file.write('</body>\n')
 html_file.write('</html>\n')
 timediff = time.time() - starttime
 logger.info('Generated Workload html in: {}'.format(timediff))

[docs]def add_workload_quantifiers(quantifiers, scenario_data):
 starttime = time.time()
 ver = current_version()
 workload_path = results_path.join('{}-{}-{}'.format(test_ts, scenario_data['test_dir'], ver))
 directory = workload_path.join(scenario_data['scenario']['name'])
 file_name = str(directory.join('workload.html'))
 marker = 'Quantifier Data: '
 yaml_dict = quantifiers
 yaml_string = str(json.dumps(yaml_dict, indent=4))
 yaml_html = yaml_string.replace('\n', '
\n')

 with open(file_name, 'r+') as html_file:
 line = ''
 while marker not in line:
 line = html_file.readline()
 marker_pos = html_file.tell()
 remainder = html_file.read()
 html_file.seek(marker_pos)
 html_file.write('{} \n'.format(yaml_html))
 html_file.write(remainder)

 timediff = time.time() - starttime
 logger.info('Added quantifiers in: {}'.format(timediff))

[docs]def get_scenario_html(scenario_data):
 scenario_dict = create_dict(scenario_data)
 scenario_yaml = yaml.dump(scenario_dict)
 scenario_html = scenario_yaml.replace('\n', '
\n')
 scenario_html = scenario_html.replace(', ', '
\n - ')
 scenario_html = scenario_html.replace(' ', ' ')
 scenario_html = scenario_html.replace('[', '
\n - ')
 scenario_html = scenario_html.replace(']', '\n')
 return scenario_html

[docs]def create_dict(attr_dict):
 main_dict = dict(attr_dict)
 for key, value in main_dict.iteritems():
 if type(value) == AttrDict:
 main_dict[key] = create_dict(value)
 return main_dict

[docs]def graph_appliance_measurements(graphs_path, ver, appliance_results, use_slab, provider_names):
 starttime = time.time()

 dates = appliance_results.keys()
 total_memory_list = list(appliance_results[ts]['total'] for ts in appliance_results.keys())
 free_memory_list = list(appliance_results[ts]['free'] for ts in appliance_results.keys())
 used_memory_list = list(appliance_results[ts]['used'] for ts in appliance_results.keys())
 buffers_memory_list = list(
 appliance_results[ts]['buffers'] for ts in appliance_results.keys())
 cache_memory_list = list(appliance_results[ts]['cached'] for ts in appliance_results.keys())
 slab_memory_list = list(appliance_results[ts]['slab'] for ts in appliance_results.keys())
 swap_total_list = list(appliance_results[ts]['swap_total'] for ts in
 appliance_results.keys())
 swap_free_list = list(appliance_results[ts]['swap_free'] for ts in appliance_results.keys())

 # Stack Plot Memory Usage
 file_name = graphs_path.join('{}-appliance_memory.png'.format(ver))
 mpl.rcParams['axes.prop_cycle'] = cycler('color', ['firebrick', 'coral', 'steelblue',
 'forestgreen'])
 fig, ax = plt.subplots()
 plt.title('Provider(s): {}\nAppliance Memory'.format(provider_names))
 plt.xlabel('Date / Time')
 plt.ylabel('Memory (MiB)')
 if use_slab:
 y = [used_memory_list, slab_memory_list, cache_memory_list, free_memory_list]
 else:
 y = [used_memory_list, buffers_memory_list, cache_memory_list, free_memory_list]
 plt.stackplot(dates, *y, baseline='zero')
 ax.annotate(str(round(total_memory_list[0], 2)), xy=(dates[0], total_memory_list[0]),
 xytext=(4, 4), textcoords='offset points')
 ax.annotate(str(round(total_memory_list[-1], 2)), xy=(dates[-1], total_memory_list[-1]),
 xytext=(4, -4), textcoords='offset points')
 if use_slab:
 ax.annotate(str(round(slab_memory_list[0], 2)), xy=(dates[0], used_memory_list[0] +
 slab_memory_list[0]), xytext=(4, 4), textcoords='offset points')
 ax.annotate(str(round(slab_memory_list[-1], 2)), xy=(dates[-1], used_memory_list[-1] +
 slab_memory_list[-1]), xytext=(4, -4), textcoords='offset points')
 ax.annotate(str(round(cache_memory_list[0], 2)), xy=(dates[0], used_memory_list[0] +
 slab_memory_list[0] + cache_memory_list[0]), xytext=(4, 4),
 textcoords='offset points')
 ax.annotate(str(round(cache_memory_list[-1], 2)), xy=(
 dates[-1], used_memory_list[-1] + slab_memory_list[-1] + cache_memory_list[-1]),
 xytext=(4, -4), textcoords='offset points')
 else:
 ax.annotate(str(round(buffers_memory_list[0], 2)), xy=(
 dates[0], used_memory_list[0] + buffers_memory_list[0]), xytext=(4, 4),
 textcoords='offset points')
 ax.annotate(str(round(buffers_memory_list[-1], 2)), xy=(dates[-1],
 used_memory_list[-1] + buffers_memory_list[-1]), xytext=(4, -4),
 textcoords='offset points')
 ax.annotate(str(round(cache_memory_list[0], 2)), xy=(dates[0], used_memory_list[0] +
 buffers_memory_list[0] + cache_memory_list[0]), xytext=(4, 4),
 textcoords='offset points')
 ax.annotate(str(round(cache_memory_list[-1], 2)), xy=(
 dates[-1], used_memory_list[-1] + buffers_memory_list[-1] + cache_memory_list[-1]),
 xytext=(4, -4), textcoords='offset points')
 ax.annotate(str(round(used_memory_list[0], 2)), xy=(dates[0], used_memory_list[0]),
 xytext=(4, 4), textcoords='offset points')
 ax.annotate(str(round(used_memory_list[-1], 2)), xy=(dates[-1], used_memory_list[-1]),
 xytext=(4, -4), textcoords='offset points')
 datefmt = mdates.DateFormatter('%m-%d %H-%M')
 ax.xaxis.set_major_formatter(datefmt)
 ax.grid(True)
 p1 = plt.Rectangle((0, 0), 1, 1, fc='firebrick')
 p2 = plt.Rectangle((0, 0), 1, 1, fc='coral')
 p3 = plt.Rectangle((0, 0), 1, 1, fc='steelblue')
 p4 = plt.Rectangle((0, 0), 1, 1, fc='forestgreen')
 if use_slab:
 ax.legend([p1, p2, p3, p4], ['Used', 'Slab', 'Cached', 'Free'],
 bbox_to_anchor=(1.45, 0.22), fancybox=True)
 else:
 ax.legend([p1, p2, p3, p4], ['Used', 'Buffers', 'Cached', 'Free'],
 bbox_to_anchor=(1.45, 0.22), fancybox=True)
 fig.autofmt_xdate()
 plt.savefig(str(file_name), bbox_inches='tight')
 plt.close()

 # Stack Plot Swap usage
 mpl.rcParams['axes.prop_cycle'] = cycler('color', ['firebrick', 'forestgreen'])
 file_name = graphs_path.join('{}-appliance_swap.png'.format(ver))
 fig, ax = plt.subplots()
 plt.title('Provider(s): {}\nAppliance Swap'.format(provider_names))
 plt.xlabel('Date / Time')
 plt.ylabel('Swap (MiB)')

 swap_used_list = [t - f for f, t in zip(swap_free_list, swap_total_list)]
 y = [swap_used_list, swap_free_list]
 plt.stackplot(dates, *y, baseline='zero')
 ax.annotate(str(round(swap_total_list[0], 2)), xy=(dates[0], swap_total_list[0]),
 xytext=(4, 4), textcoords='offset points')
 ax.annotate(str(round(swap_total_list[-1], 2)), xy=(dates[-1], swap_total_list[-1]),
 xytext=(4, -4), textcoords='offset points')
 ax.annotate(str(round(swap_used_list[0], 2)), xy=(dates[0], swap_used_list[0]),
 xytext=(4, 4), textcoords='offset points')
 ax.annotate(str(round(swap_used_list[-1], 2)), xy=(dates[-1], swap_used_list[-1]),
 xytext=(4, -4), textcoords='offset points')
 datefmt = mdates.DateFormatter('%m-%d %H-%M')
 ax.xaxis.set_major_formatter(datefmt)
 ax.grid(True)
 p1 = plt.Rectangle((0, 0), 1, 1, fc='firebrick')
 p2 = plt.Rectangle((0, 0), 1, 1, fc='forestgreen')
 ax.legend([p1, p2], ['Used Swap', 'Free Swap'], bbox_to_anchor=(1.45, 0.22), fancybox=True)
 fig.autofmt_xdate()
 plt.savefig(str(file_name), bbox_inches='tight')
 plt.close()

 # Reset Colors
 mpl.rcdefaults()

 timediff = time.time() - starttime
 logger.info('Plotted Appliance Memory in: {}'.format(timediff))

[docs]def graph_all_miq_workers(graph_file_path, process_results, provider_names):
 starttime = time.time()
 file_name = graph_file_path.join('all-processes.png')

 fig, ax = plt.subplots()
 plt.title('Provider(s): {}\nAll Workers/Monitored Processes'.format(provider_names))
 plt.xlabel('Date / Time')
 plt.ylabel('Memory (MiB)')
 for process_name in process_results:
 if 'Worker' in process_name or 'Handler' in process_name or 'Catcher' in process_name:
 for process_pid in process_results[process_name]:
 dates = process_results[process_name][process_pid].keys()

 rss_samples = list(process_results[process_name][process_pid][ts]['rss']
 for ts in process_results[process_name][process_pid].keys())
 vss_samples = list(process_results[process_name][process_pid][ts]['vss']
 for ts in process_results[process_name][process_pid].keys())
 plt.plot(dates, rss_samples, linewidth=1, label='{} {} RSS'.format(process_pid,
 process_name))
 plt.plot(dates, vss_samples, linewidth=1, label='{} {} VSS'.format(
 process_pid, process_name))

 datefmt = mdates.DateFormatter('%m-%d %H-%M')
 ax.xaxis.set_major_formatter(datefmt)
 ax.grid(True)
 plt.legend(loc='upper center', bbox_to_anchor=(1.2, 0.1), fancybox=True)
 fig.autofmt_xdate()
 plt.savefig(str(file_name), bbox_inches='tight')
 plt.close()

 timediff = time.time() - starttime
 logger.info('Plotted All Type/Process Memory in: {}'.format(timediff))

[docs]def graph_individual_process_measurements(graph_file_path, process_results, provider_names):
 starttime = time.time()
 for process_name in process_results:
 for process_pid in process_results[process_name]:

 file_name = graph_file_path.join('{}-{}.png'.format(process_name, process_pid))

 dates = process_results[process_name][process_pid].keys()
 rss_samples = list(process_results[process_name][process_pid][ts]['rss']
 for ts in process_results[process_name][process_pid].keys())
 pss_samples = list(process_results[process_name][process_pid][ts]['pss']
 for ts in process_results[process_name][process_pid].keys())
 uss_samples = list(process_results[process_name][process_pid][ts]['uss']
 for ts in process_results[process_name][process_pid].keys())
 vss_samples = list(process_results[process_name][process_pid][ts]['vss']
 for ts in process_results[process_name][process_pid].keys())
 swap_samples = list(process_results[process_name][process_pid][ts]['swap']
 for ts in process_results[process_name][process_pid].keys())

 fig, ax = plt.subplots()
 plt.title('Provider(s)/Size: {}\nProcess/Worker: {}\nPID: {}'.format(provider_names,
 process_name, process_pid))
 plt.xlabel('Date / Time')
 plt.ylabel('Memory (MiB)')
 plt.plot(dates, rss_samples, linewidth=1, label='RSS')
 plt.plot(dates, pss_samples, linewidth=1, label='PSS')
 plt.plot(dates, uss_samples, linewidth=1, label='USS')
 plt.plot(dates, vss_samples, linewidth=1, label='VSS')
 plt.plot(dates, swap_samples, linewidth=1, label='Swap')

 if rss_samples:
 ax.annotate(str(round(rss_samples[0], 2)), xy=(dates[0], rss_samples[0]),
 xytext=(4, 4), textcoords='offset points')
 ax.annotate(str(round(rss_samples[-1], 2)), xy=(dates[-1], rss_samples[-1]),
 xytext=(4, -4), textcoords='offset points')
 if pss_samples:
 ax.annotate(str(round(pss_samples[0], 2)), xy=(dates[0], pss_samples[0]),
 xytext=(4, 4), textcoords='offset points')
 ax.annotate(str(round(pss_samples[-1], 2)), xy=(dates[-1], pss_samples[-1]),
 xytext=(4, -4), textcoords='offset points')
 if uss_samples:
 ax.annotate(str(round(uss_samples[0], 2)), xy=(dates[0], uss_samples[0]),
 xytext=(4, 4), textcoords='offset points')
 ax.annotate(str(round(uss_samples[-1], 2)), xy=(dates[-1], uss_samples[-1]),
 xytext=(4, -4), textcoords='offset points')
 if vss_samples:
 ax.annotate(str(round(vss_samples[0], 2)), xy=(dates[0], vss_samples[0]),
 xytext=(4, 4), textcoords='offset points')
 ax.annotate(str(round(vss_samples[-1], 2)), xy=(dates[-1], vss_samples[-1]),
 xytext=(4, -4), textcoords='offset points')
 if swap_samples:
 ax.annotate(str(round(swap_samples[0], 2)), xy=(dates[0], swap_samples[0]),
 xytext=(4, 4), textcoords='offset points')
 ax.annotate(str(round(swap_samples[-1], 2)), xy=(dates[-1], swap_samples[-1]),
 xytext=(4, -4), textcoords='offset points')

 datefmt = mdates.DateFormatter('%m-%d %H-%M')
 ax.xaxis.set_major_formatter(datefmt)
 ax.grid(True)
 plt.legend(loc='upper center', bbox_to_anchor=(1.2, 0.1), fancybox=True)
 fig.autofmt_xdate()
 plt.savefig(str(file_name), bbox_inches='tight')
 plt.close()

 timediff = time.time() - starttime
 logger.info('Plotted Individual Process Memory in: {}'.format(timediff))

[docs]def graph_same_miq_workers(graph_file_path, process_results, provider_names):
 starttime = time.time()
 for process_name in process_results:
 if len(process_results[process_name]) > 1:
 logger.debug('Plotting {} {} processes on single graph.'.format(
 len(process_results[process_name]), process_name))
 file_name = graph_file_path.join('{}-all.png'.format(process_name))

 fig, ax = plt.subplots()
 pids = 'PIDs: '
 for i, pid in enumerate(process_results[process_name], 1):
 pids = '{}{}'.format(pids, '{},{}'.format(pid, [' ', '\n'][i % 6 == 0]))
 pids = pids[0:-2]
 plt.title('Provider: {}\nProcess/Worker: {}\n{}'.format(provider_names,
 process_name, pids))
 plt.xlabel('Date / Time')
 plt.ylabel('Memory (MiB)')

 for process_pid in process_results[process_name]:
 dates = process_results[process_name][process_pid].keys()

 rss_samples = list(process_results[process_name][process_pid][ts]['rss']
 for ts in process_results[process_name][process_pid].keys())
 pss_samples = list(process_results[process_name][process_pid][ts]['pss']
 for ts in process_results[process_name][process_pid].keys())
 uss_samples = list(process_results[process_name][process_pid][ts]['uss']
 for ts in process_results[process_name][process_pid].keys())
 vss_samples = list(process_results[process_name][process_pid][ts]['vss']
 for ts in process_results[process_name][process_pid].keys())
 swap_samples = list(process_results[process_name][process_pid][ts]['swap']
 for ts in process_results[process_name][process_pid].keys())
 plt.plot(dates, rss_samples, linewidth=1, label='{} RSS'.format(process_pid))
 plt.plot(dates, pss_samples, linewidth=1, label='{} PSS'.format(process_pid))
 plt.plot(dates, uss_samples, linewidth=1, label='{} USS'.format(process_pid))
 plt.plot(dates, vss_samples, linewidth=1, label='{} VSS'.format(process_pid))
 plt.plot(dates, swap_samples, linewidth=1, label='{} SWAP'.format(process_pid))
 if rss_samples:
 ax.annotate(str(round(rss_samples[0], 2)), xy=(dates[0], rss_samples[0]),
 xytext=(4, 4), textcoords='offset points')
 ax.annotate(str(round(rss_samples[-1], 2)), xy=(dates[-1],
 rss_samples[-1]), xytext=(4, -4), textcoords='offset points')
 if pss_samples:
 ax.annotate(str(round(pss_samples[0], 2)), xy=(dates[0],
 pss_samples[0]), xytext=(4, 4), textcoords='offset points')
 ax.annotate(str(round(pss_samples[-1], 2)), xy=(dates[-1],
 pss_samples[-1]), xytext=(4, -4), textcoords='offset points')
 if uss_samples:
 ax.annotate(str(round(uss_samples[0], 2)), xy=(dates[0],
 uss_samples[0]), xytext=(4, 4), textcoords='offset points')
 ax.annotate(str(round(uss_samples[-1], 2)), xy=(dates[-1],
 uss_samples[-1]), xytext=(4, -4), textcoords='offset points')
 if vss_samples:
 ax.annotate(str(round(vss_samples[0], 2)), xy=(dates[0],
 vss_samples[0]), xytext=(4, 4), textcoords='offset points')
 ax.annotate(str(round(vss_samples[-1], 2)), xy=(dates[-1],
 vss_samples[-1]), xytext=(4, -4), textcoords='offset points')
 if swap_samples:
 ax.annotate(str(round(swap_samples[0], 2)), xy=(dates[0],
 swap_samples[0]), xytext=(4, 4), textcoords='offset points')
 ax.annotate(str(round(swap_samples[-1], 2)), xy=(dates[-1],
 swap_samples[-1]), xytext=(4, -4), textcoords='offset points')

 datefmt = mdates.DateFormatter('%m-%d %H-%M')
 ax.xaxis.set_major_formatter(datefmt)
 ax.grid(True)
 plt.legend(loc='upper center', bbox_to_anchor=(1.2, 0.1), fancybox=True)
 fig.autofmt_xdate()
 plt.savefig(str(file_name), bbox_inches='tight')
 plt.close()

 timediff = time.time() - starttime
 logger.info('Plotted Same Type/Process Memory in: {}'.format(timediff))

[docs]def summary_csv_measurement_dump(csv_file, process_results, measurement):
 csv_file.write('---\n')
 csv_file.write('Per Process {} Memory Usage\n'.format(measurement.upper()))
 csv_file.write('---\n')
 csv_file.write('Process/Worker Type,PID,Start of test,End of test\n')
 for ordered_name in process_order:
 if ordered_name in process_results:
 for process_pid in sorted(process_results[ordered_name]):
 start = process_results[ordered_name][process_pid].keys()[0]
 end = process_results[ordered_name][process_pid].keys()[-1]
 csv_file.write('{},{},{},{}\n'.format(ordered_name, process_pid,
 round(process_results[ordered_name][process_pid][start][measurement], 2),
 round(process_results[ordered_name][process_pid][end][measurement], 2)))

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/pretty.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.pretty

def _name(o):
 cls = o.__class__
 return "{}.{}".format(getattr(cls, '__module__', "module"),
 getattr(cls, '__name__', "name"))

[docs]def attr_repr(o, attr):
 """Return the string repr of the attribute attr on the object o"""
 try:
 return repr(getattr(o, attr, None))
 except BaseException:
 return None

[docs]def pretty_repr(attrs, o):
 pairs = zip(attrs, [attr_repr(o, attr) for attr in attrs])
 return "<{} {}>".format(_name(o),
 ", ".join(["{}={}".format(i[0], i[1]) for i in pairs]))

[docs]def pr_obj(attrs):
 def x(o):
 return pretty_repr(attrs, o)
 return x

[docs]class Pretty(object):
 """A mixin that prints repr as <MyClass field1=..., field2=...>. The
 fields that will be printed should be stored in the class's
 pretty_attrs attribute (none by default).

 """
 pretty_attrs = []

 def __repr__(self):
 return pretty_repr(self.pretty_attrs, self)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/events.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.events

-*- coding: utf-8 -*-

"""Library for event testing.

"""

from cached_property import cached_property
from contextlib import contextmanager
from collections import Iterable
from datetime import datetime
from numbers import Number
from sqlalchemy.sql.expression import func
from time import sleep
from threading import Thread, Event as ThreadEvent

from cfme.utils.log import create_sublogger

logger = create_sublogger('events')

[docs]class EventTool(object):
 """EventTool serves as a wrapper to getting the events from the database.

 :var OBJECT_TABLE: Mapping of object types to tables and column names.
 """
 OBJECT_TABLE = {
 # target_type: (table_name, name_column, id_column)
 'VmOrTemplate': ('vms', 'name', 'id'),
 'Host': ('hosts', 'name', 'id'),
 'Service': ('services', 'name', 'id'),
 }

 def __init__(self, appliance):
 self.appliance = appliance

 @property
 def miq_event_definitions(self):
 """``miq_event_definitions`` table."""
 return self.appliance.db.client['miq_event_definitions']

 @property
 def event_streams(self):
 """``event_streams`` table."""
 return self.appliance.db.client['event_streams']

 @cached_property
 def event_streams_attributes(self):
 """``event_streams`` columns and python's column types"""
 self.appliance.db.client._table('event_streams')
 event_table = [tbl for tbl in self.appliance.db.client.metadata.sorted_tables
 if tbl.name == 'event_streams'][-1]
 return [(cl.name, cl.type.python_type) for cl in event_table.c.values()]

[docs] def query(self, *args, **kwargs):
 """Wrapper for the SQLAlchemy query method."""
 return self.appliance.db.client.session.query(*args, **kwargs)

 @cached_property
 def all_event_types(self):
 """Returns a list of all possible events that can be used.

 Returns:
 A :py:class:`list` of :py:class:`str`.
 """
 return {q[0] for q in self.query(self.miq_event_definitions.name)}

[docs] def process_id(self, target_type, target_name):
 """Resolves id, let it be a string or an id.

 In case the ``target_type`` is defined in the :py:const:`OBJECT_TABLE`, you can pass a
 string with object's name, otherwise a numeric id to the table is required.

 Args:
 target_type: What kind of object is the target of the event (MiqServer, VmOrTemplate...)
 target_name: An id or a name of the object.

 Returns:
 :py:class:`int` with id of the object in the database.
 """
 if isinstance(target_name, Number):
 return target_name
 if target_type not in self.OBJECT_TABLE:
 raise TypeError(
 ('Type {} is not specified in the auto-coercion OBJECT_TABLE. '
 'Pass a real id of the object or extend the table').format(target_type))
 table_name, name_column, id_column = self.OBJECT_TABLE[target_type]
 table = self.appliance.db.client[table_name]
 name_column = getattr(table, name_column)
 id_column = getattr(table, id_column)
 o = self.appliance.db.client.session.query(id_column).filter(
 name_column == target_name).first()
 if not o:
 raise ValueError('{} with name {} not found.'.format(target_type, target_name))
 return o[0]

[docs] def query_miq_events(self, target_type=None, target_id=None, event_type=None, since=None,
 until=None, from_id=None):
 """Checks whether an event occured.

 Args:
 target_type: What kind of object is the target of the event (MiqServer, VmOrTemplate)
 target_id: What is the ID of the object (or name, see :py:meth:`process_id`).
 event_type: Type of the event. Ideally one of the :py:meth:`all_event_types` but other
 kinds of events exist too.
 since: Since when you want to check it. UTC
 until: Until what time you want to check it.
 """
 until = until or datetime.utcnow()
 query = self.query(self.event_streams).filter(self.event_streams.type == 'MiqEvent')
 if target_type:
 query = query.filter(self.event_streams.target_type == target_type)
 if target_id:
 if not target_type:
 raise TypeError('When specifying target_id you also must specify target_type')
 target_id = self.process_id(target_type, target_id)
 query = query.filter(self.event_streams.target_id == target_id)
 if event_type:
 query = query.filter(self.event_streams.event_type == event_type)
 if since:
 query = query.filter(self.event_streams.timestamp >= since)
 if until:
 query = query.filter(self.event_streams.timestamp <= until)
 if from_id:
 query = query.filter(self.event_streams.id > from_id)
 results = []
 for event in query:
 results.append({
 'id': event.id,
 'timestamp': event.timestamp,
 'message': event.message,
 'target_type': event.target_type,
 'target_id': event.target_id,
 'event_type': event.event_type})
 return results

 @contextmanager
[docs] def ensure_event_happens(self, target_type, target_id, event_type):
 """Context manager usable for one-off checking of the events.

 See also: :py:meth:`query_miq_events`

 Args:
 target_type: What kind of object is the target of the event (MiqServer, VmOrTemplate)
 target_id: What is the ID of the object (or name, see :py:meth:`process_id`).
 event_type: Type of the event. Ideally one of the :py:meth:`all_event_types` but other
 kinds of events exist too.
 """
 time_started = datetime.utcnow()
 yield
 time_ended = datetime.utcnow()
 events = self.query_miq_events(target_type, target_id, event_type, time_started, time_ended)
 if len(events) == 0:
 raise AssertionError(
 'Event {}/{}/{} did not happen.'.format(event_type, target_type, target_id))

[docs]class EventAttr(object):
 """
 contains one event attribute and the method for comparing it.
 """
 def __init__(self, attr_type=None, cmp_func=None, **attrs):
 if len(attrs) > 1:
 raise ValueError('event attribute can have only one key=value pair')

 self.name, self.value = attrs.items()[0]
 self.type = attr_type or type(self.value)
 self.cmp_func = cmp_func

[docs] def match(self, attr):
 """
 compares current attribute with passed attribute
 """
 if not isinstance(attr, EventAttr) or self.name != attr.name:
 raise ValueError('Incorrect attribute is passed')

 if not attr.value or not self.value:
 return attr.value is None and self.value is None
 elif self.cmp_func:
 return self.cmp_func(self.value, attr.value)
 else:
 return self.value == attr.value

 def __repr__(self):
 return "{name}({type})={val}, cmp_func {cmp}".format(name=self.name, type=self.type,
 val=self.value, cmp=self.cmp_func)

fixme: would it be better to create event prototype and just clone it ?
[docs]class Event(object):
 """
 represents either db event received by CFME and stored in event_streams or an expected event
 """
 def __init__(self, event_tool, *args):
 self._tool = event_tool
 # filling obtaining default attributes and their types
 self._default_attrs = {} # EventAttr obj
 self._populate_defaults()

 # container for event attributes
 self.event_attrs = {} # EventAttr obj

 for arg in args:
 if isinstance(arg, EventAttr):
 self.add_attrs(arg)
 else:
 logger.warning("arg {} doesn't belong to EventAttr. ignoring it".format(arg))

 def __repr__(self):
 params = ", ".join(["{}={}".format(attr.name, attr.value) for attr in
 self.event_attrs.values()])
 return "BaseEvent({})".format(params)

 def _populate_defaults(self):
 for attr_name, attr_type in self._tool.event_streams_attributes:
 self._default_attrs[attr_name] = EventAttr(**{attr_name: None, 'attr_type': attr_type})

 def _parse_raw_event(self, evt):
 for attr in self._default_attrs:
 default_type = self._default_attrs[attr].type
 evt_value = getattr(evt, attr)
 evt_type = type(evt_value)
 # weird thing happens here. getattr sometimes takes value not equal to python_type
 # so, force type conversion has to be done
 if evt_value and evt_type is not default_type:
 if evt_type is unicode:
 evt_value = evt_value.encode('utf8')
 else:
 evt_value = default_type(evt_value)

 self.add_attrs(EventAttr(**{attr: evt_value}))

 def _is_raw_event(self, evt):
 return evt.__tablename__ == 'event_streams'

[docs] def matches(self, evt):
 """
 compares current event with passed event.
 """
 if not isinstance(evt, type(self)):
 raise ValueError("passed event doesn't belong to {}".format(type(self)))

 # checking only common attributes
 if 'target_name' in self.event_attrs and 'target_id' not in self.event_attrs:
 try:
 target_id = self._tool.process_id(self.event_attrs['target_type'].value,
 self.event_attrs['target_name'].value)
 self.event_attrs['target_id'] = EventAttr(**{'target_id': target_id})
 except ValueError:
 # vm or host name isn't added to db yet. need to wait
 return False

 common_attrs = set(self.event_attrs).intersection(set(evt.event_attrs))
 for attr in common_attrs:
 if not self.event_attrs[attr].match(evt.event_attrs[attr]):
 return False
 else:
 return True

[docs] def add_attrs(self, *attrs):
 """
 event consists of attributes like event_type, etc.
 this method allows to add an attribute to event
 """
 if isinstance(attrs, Iterable):
 for attr in attrs:
 if attr.name == 'target_name':
 # this is artificial attr which will be converted to target_id during matching
 self.event_attrs[attr.name] = attr
 elif attr.name in self._default_attrs:
 # type check was removed because sqlalchemy's python_type
 # and type of returned values are different
 self.event_attrs[attr.name] = attr
 else:
 logger.warning('The attribute {} type {} is absent in DB '
 'or type mismatch.'.format(attr.name, attr.type))
 else:
 raise ValueError("incorrect parameters are passed {}".format(attrs))
 return self

[docs] def build_from_raw_event(self, evt):
 """
 helper method which takes raw event from event_streams and prepares event object
 """
 # checking is this param - raw event, populating fields by this data then
 if self._is_raw_event(evt):
 self._parse_raw_event(evt)
 return self

[docs]class EventListener(Thread):
 """
 accepts "expected" events, listens to db events and compares showed up events with expected
 events. Runs callback function if expected events have it.
 """
 def __init__(self, appliance):
 super(EventListener, self).__init__()
 self._appliance = appliance
 self._tool = EventTool(self._appliance)

 self._events_to_listen = []
 # last_id is used to ignore already arrived messages the database
 # When database is "cleared" the id of the last event is placed here. That is then used
 # in queries to prevent events of this id and earlier to get in.
 self._last_processed_id = None
 self._stop_event = ThreadEvent()

[docs] def set_last_record(self, evt=None):
 if evt:
 self._last_processed_id = evt.event_attrs['id'].value
 else:
 try:
 self._last_processed_id = self._tool.query(
 func.max(self._tool.event_streams.id)).one()
 except IndexError:
 # No events yet, so do nothing
 pass

[docs] def new_event(self, *attrs, **kwattrs):
 """
 this method just simplifies "expected" event creation.

 Usage:
 listener = appliance.event_listener()
 evt = listener.new_event(target_type='VmOrTemplate',
 target_name='my_lovely_vm',
 event_type='vm_create')
 listener.listen_to(evt)
 """
 event = Event(event_tool=self._tool)
 for name, value in kwattrs.items():
 event.add_attrs(EventAttr(**{name: value}))

 for attr in attrs:
 event.add_attrs(EventAttr(**attr))
 return event

[docs] def listen_to(self, *evts, **kwargs):
 """
 accepts one or many events
 callback function will be called when event arrived in event_streams.
 callback will receive expected event and got event as params.

 Args:
 evts: list of events which EventListener should listen to
 callback: callback function that will be called if event is received
 first_event: EventListener waits for only first event of such type.
 it ignores such event in future if first matching event is found.

 By default EventListener collects and receives all matching events.
 """
 if 'callback' in kwargs:
 callback = kwargs['callback']
 else:
 callback = None

 # if first_event = True, these expected events won't be checked after first match
 if 'first_event' in kwargs and kwargs['first_event']:
 first_event = True
 else:
 first_event = False

 if isinstance(evts, Iterable):
 for evt in evts:
 if isinstance(evt, Event):
 logger.info("event {} is added to listening queue".format(evt))
 self._events_to_listen.append({'event': evt,
 'callback': callback,
 'matched_events': [],
 'first_event': first_event})
 else:
 raise ValueError("one of events doesn't belong to Event class")
 else:
 raise ValueError('incorrect is passed')

[docs] def start(self):
 logger.info('Event Listener has been started')
 self.set_last_record()
 self._stop_event.clear()
 super(EventListener, self).start()

[docs] def stop(self):
 logger.info('Event Listener has been stopped')
 self._stop_event.set()

[docs] def run(self):
 self.process_events()

 @property
 def started(self):
 return super(EventListener, self).is_alive()

[docs] def process_events(self):
 """
 processes all new db events and compares them with expected events.
 processed events are ignored next time
 """
 while not self._stop_event.is_set():
 events = self.get_next_portion()
 if len(events) == 0:
 sleep(0.2)
 continue
 for got_event in events:
 logger.debug("processing event id {}".format(got_event.id))
 got_event = Event(event_tool=self._tool).build_from_raw_event(got_event)
 for exp_event in self._events_to_listen:
 if exp_event['first_event'] and len(exp_event['matched_events']) > 0:
 continue

 if exp_event['event'].matches(got_event):
 if exp_event['callback']:
 exp_event['callback'](exp_event=exp_event['event'], got_event=got_event)
 exp_event['matched_events'].append(got_event)
 self.set_last_record(got_event)

 if self._stop_event.is_set():
 break

 @property
 def got_events(self):
 """
 returns dict with expected events and all the events matched to expected ones
 """
 evts = [(evt['event'], len(evt['matched_events'])) for evt in self._events_to_listen]
 logger.info(evts)
 return self._events_to_listen

[docs] def reset_matches(self):
 for event in self._events_to_listen:
 event['matched_events'] = []

[docs] def reset_events(self):
 self._events_to_listen = []

[docs] def get_next_portion(self):
 logger.debug("obtaining next portion of events")
 return self._tool.query(self._tool.event_streams)\
 .filter(self._tool.event_streams.id > self._last_processed_id)\
 .order_by(self._tool.event_streams.id).yield_per(100).all()

[docs] def check_expected_events(self):
 return all([len(event['matched_events']) for event in self.got_events])

[docs] def __call__(self, *args, **kwargs):
 """
 it is called by register_event fixture.
 bad idea, to replace register_event by object later
 """
 if 'first_event' in kwargs:
 first_event = kwargs.pop('first_event')
 else:
 first_event = True
 evt = self.new_event(*args, **kwargs)
 logger.info("registering event: {}".format(evt))
 self.listen_to(evt, callback=None, first_event=first_event)

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/testgen.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.testgen

"""Test generation helpers

Intended to functionalize common tasks when working with the pytest_generate_tests hook.

When running a test, it is quite often the case that multiple parameters need to be passed
to a single test. An example of this would be the need to run a Provider Add test against
multiple providers. We will assume that the providers are stored in the yaml under a common
structure like so:

.. code-block:: yaml

 providers:
 prov_1:
 name: test
 ip: 10.0.0.1
 test_vm: abc1
 prov_2:
 name: test2
 ip: 10.0.0.2
 test_vm: abc2

Our test requires that we have a Provider Object and as an example, the 'test_vm' field of the
object. Let's assume a test prototype like so::

 test_provider_add(provider_obj, test_vm):

In this case we require the test to be run twice, once for prov_1 and then again for prov_2.
We are going to use the generate function to help us provide parameters to pass to
``pytest_generate_tests()``. ``pytest_generate_tests()`` requires three pieces of
information, ``argnames``, ``argvalues`` and an ``idlist``. ``argnames`` turns into the
names we use for fixtures. In this case, ``provider_obj`` and ``provider_mgmt_sys``.
``argvalues`` becomes the place where the ``provider_obj`` and ``provider_mgmt_sys``
items are stored. Each element of ``argvalues`` is a list containing a value for both
``provider_obj`` and ``provider_mgmt_sys``. Thus, taking an element from ``argvalues``
gives us the values to unpack to make up one test. An example is below, where we assume
that a provider object is obtained via the ``Provider`` class, and the ``mgmt_sys object``
is obtained via a ``Wrapanapi`` class.

===== =============== =================
~ provider_obj test_vm
===== =============== =================
prov1 Provider(prov1) abc1
prov2 Provider(prov2) abc2
===== =============== =================

This is analogous to the following layout:

========= =============== ===============
~ argnames[0] argnames[1]
========= =============== ===============
idlist[0] argvalues[0][0] argvalues[0][1]
idlist[1] argvalues[1][0] argvalues[1][1]
========= =============== ===============

This could be generated like so:

.. code-block:: python

 def gen_providers:

 argnames = ['provider_obj', 'test_vm']
 argvalues = []
 idlist = []

 for provider in yaml['providers']:
 idlist.append(provider)
 argvalues.append([
 Provider(yaml['providers'][provider]['name']),
 yaml['providers'][provider]['test_vm'])
])

 return argnames, argvalues, idlist

This is then used with pytest_generate_tests like so::

 pytest_generate_tests(gen_providers)

Additionally, py.test joins the values of ``idlist`` with dashes to generate a unique id for this
test, falling back to joining ``argnames`` with dashes if ``idlist`` is not set. This is the value
seen in square brackets in a test report on parametrized tests.

More information on ``parametrize`` can be found in pytest's documentation:

* https://pytest.org/latest/parametrize.html#_pytest.python.Metafunc.parametrize

"""
import pytest

from cfme.common.provider import BaseProvider
from cfme.infrastructure.config_management import get_config_manager_from_config
from cfme.infrastructure.pxe import get_pxe_server_from_config
from cfme.roles import group_data
from cfme.utils.conf import cfme_data
from cfme.utils.log import logger
from cfme.utils.providers import ProviderFilter, list_providers

def _param_check(metafunc, argnames, argvalues):
 """Helper function to check if parametrizing is necessary

 * If no argnames were specified, parametrization is unnecessary.
 * If argvalues were generated, parametrization is necessary.
 * If argnames were specified, but no values were generated, the test cannot run successfully,
 and will be uncollected using the :py:mod:`markers.uncollect` mark.

 See usage in :py:func:`parametrize`

 Args:
 metafunc: metafunc objects from pytest_generate_tests
 argnames: argnames list for use in metafunc.parametrize
 argvalues: argvalues list for use in metafunc.parametrize

 Returns:
 * ``True`` if this test should be parametrized
 * ``False`` if it shouldn't be parametrized
 * ``None`` if the test will be uncollected

 """
 # If no parametrized args were named, don't parametrize
 if not argnames:
 return False
 # If parametrized args were named and values were generated, parametrize
 elif any(argvalues):
 return True
 # If parametrized args were named, but no values were generated, mark this test to be
 # removed from the test collection. Otherwise, py.test will try to find values for the
 # items in argnames by looking in its fixture pool, which will almost certainly fail.
 else:
 # module and class are optional, but function isn't
 modname = getattr(metafunc.module, '__name__', None)
 classname = getattr(metafunc.cls, '__name__', None)
 funcname = metafunc.function.__name__

 test_name = '.'.join(filter(None, (modname, classname, funcname)))
 uncollect_msg = 'Parametrization for {} yielded no values,'\
 ' marked for uncollection'.format(test_name)
 logger.warning(uncollect_msg)

 # apply the mark
 pytest.mark.uncollect(reason=uncollect_msg)(metafunc.function)

[docs]def parametrize(metafunc, argnames, argvalues, *args, **kwargs):
 """parametrize wrapper that calls :py:func:`_param_check`, and only parametrizes when needed

 This can be used in any place where conditional parametrization is used.

 """
 if _param_check(metafunc, argnames, argvalues):
 metafunc.parametrize(argnames, argvalues, *args, **kwargs)
 # if param check failed and the test was supposed to be parametrized around a provider
 elif 'provider' in metafunc.fixturenames:
 try:
 # hack to pass trough in case of a failed param_check
 # where it sets a custom message
 metafunc.function.uncollect
 except AttributeError:
 pytest.mark.uncollect(
 reason="provider was not parametrized did you forget --use-provider?"
)(metafunc.function)

[docs]def generate(*args, **kwargs):
 """Functional handler for inline pytest_generate_tests definition

 Args:
 gen_func: Test generator function, expected to return argnames, argvalues, and an idlist
 suitable for use with pytest's parametrize method in pytest_generate_tests hooks
 indirect: Optional keyword argument. If seen, it will be removed from the kwargs
 passed to gen_func and used in the wrapped pytest parametrize call
 scope: Optional keyword argument. If seen, it will be removed from the kwargs
 passed to gen_func and used in the wrapped pytest parametrize call
 filter_unused: Optional keyword argument. If True (the default), parametrized tests will
 be inspected, and only argnames matching fixturenames will be used to parametrize the
 test. If seen, it will be removed from the kwargs passed to gen_func.
 *args: Additional positional arguments which will be passed to ``gen_func``
 **kwargs: Additional keyword arguments whill be passed to ``gen_func``

 Usage:

 # Abstract example:
 pytest_generate_tests = testgen.generate(arg1, arg2, kwarg1='a')

 # Concrete example using all infrastructure providers and module scope
 pytest_generate_tests = testgen.generate([InfraProvider], scope="module")

 # Another concrete example using only VMware and SCVMM providers with 'retire' flag
 pf = ProviderFilter(
 classes=[WMwareProvider, SCVMMProvider]), required_flags=['retire'])
 pytest_generate_tests = testgen.generate(
 gen_func=testgen.providers, filters=[pf], scope="module")

 Note:

 ``filter_unused`` is helpful, in that you don't have to accept all of the args in argnames
 in every test in the module. However, if all tests don't share one common parametrized
 argname, py.test may not have enough information to properly organize tests beyond the
 'function' scope. Thus, when parametrizing in the module scope, it's a good idea to include
 at least one common argname in every test signature to give pytest a clue in sorting tests.

 """
 # Pull out/default kwargs for this function and parametrize; any args and kwargs that are not
 # pulled out here will be passed into gen_func within pytest_generate_tests below
 scope = kwargs.pop('scope', 'function')
 indirect = kwargs.pop('indirect', False)
 filter_unused = kwargs.pop('filter_unused', True)
 gen_func = kwargs.pop('gen_func', providers_by_class)

 def fixture_filter(metafunc, argnames, argvalues):
 """Filter fixtures based on fixturenames in the function represented by ``metafunc``"""
 # Identify indeces of matches between argnames and fixturenames
 keep_index = [e[0] for e in enumerate(argnames) if e[1] in metafunc.fixturenames]

 # Keep items at indices in keep_index
 def f(l):
 return [e[1] for e in enumerate(l) if e[0] in keep_index]

 # Generate the new values
 argnames = f(argnames)
 argvalues = map(f, argvalues)
 return argnames, argvalues

 # If parametrize doesn't get you what you need, steal this and modify as needed
 def pytest_generate_tests(metafunc):
 # Pass through of args and kwargs
 argnames, argvalues, idlist = gen_func(metafunc, *args, **kwargs)
 # Filter out argnames that aren't requested on the metafunc test item, so not all tests
 # need all fixtures to run, and tests not using gen_func's fixtures aren't parametrized.
 if filter_unused:
 argnames, argvalues = fixture_filter(metafunc, argnames, argvalues)
 # See if we have to parametrize at all after filtering
 parametrize(metafunc, argnames, argvalues, indirect=indirect, ids=idlist, scope=scope)

 return pytest_generate_tests

[docs]def providers(metafunc, filters=None):
 """ Gets providers based on given (+ global) filters

 Note:
 Using the default 'function' scope, each test will be run individually for each provider
 before moving on to the next test. To group all tests related to single provider together,
 parametrize tests in the 'module' scope.

 Note:
 testgen for providers now requires the usage of test_flags for collection to work.
 Please visit http://cfme-tests.readthedocs.org/guides/documenting.html#documenting-tests
 for more details.
 """
 filters = filters or []
 argnames = []
 argvalues = []
 idlist = []

 # Obtains the test's flags in form of a ProviderFilter
 meta = getattr(metafunc.function, 'meta', None)
 test_flag_str = getattr(meta, 'kwargs', {}).get('from_docs', {}).get('test_flag')
 if test_flag_str:
 test_flags = test_flag_str.split(',')
 flags_filter = ProviderFilter(required_flags=test_flags)
 filters = filters + [flags_filter]

 for provider in list_providers(filters):
 argvalues.append([provider])
 # Use the provider key for idlist, helps with readable parametrized test output
 idlist.append(provider.key)
 # Add provider to argnames if missing
 if 'provider' in metafunc.fixturenames and 'provider' not in argnames:
 metafunc.function = pytest.mark.uses_testgen()(metafunc.function)
 argnames.append('provider')
 if metafunc.config.getoption('sauce'):
 break

 return argnames, argvalues, idlist

[docs]def providers_by_class(metafunc, classes, required_fields=None):
 """ Gets providers by their class

 Args:
 metafunc: Passed in by pytest
 classes: List of classes to fetch
 required_fields: See :py:class:`cfme.utils.provider.ProviderFilter`

 Usage:
 # In the function itself
 def pytest_generate_tests(metafunc):
 argnames, argvalues, idlist = testgen.providers_by_class(
 [GCEProvider, AzureProvider], required_fields=['provisioning']
)
 metafunc.parametrize(argnames, argvalues, ids=idlist, scope='module')

 # Using the parametrize wrapper
 pytest_generate_tests = testgen.parametrize([GCEProvider], scope='module')
 """
 pf = ProviderFilter(classes=classes, required_fields=required_fields)
 return providers(metafunc, filters=[pf])

[docs]def all_providers(metafunc, **options):
 """ Returns providers of all types """
 return providers_by_class(metafunc, [BaseProvider], **options)

[docs]def auth_groups(metafunc, auth_mode):
 """Provides two test params based on the 'auth_modes' and 'group_roles' in cfme_data:

 ``group_name``:
 expected group name in provided by the backend specified in ``auth_mode``

 ``group_data``:
 list of nav destinations that should be visible as a member of ``group_name``

 Args:

 auth_mode: One of the auth_modes specified in ``cfme_data.get('auth_modes', {})``

 """
 argnames = ['group_name', 'group_data']
 argvalues = []
 idlist = []

 if auth_mode in cfme_data.get('auth_modes', {}):
 # If auth_modes exists, group_roles is assumed to exist as well
 for group in group_data:
 argvalues.append([group, sorted(group_data[group])])
 idlist.append(group)
 return argnames, argvalues, idlist

[docs]def config_managers(metafunc):
 """Provides config managers
 """
 argnames = ['config_manager_obj']
 argvalues = []
 idlist = []

 data = cfme_data.get('configuration_managers', {})

 for cfg_mgr_key in data:
 argvalues.append([get_config_manager_from_config(cfg_mgr_key)])
 idlist.append(cfg_mgr_key)
 return argnames, argvalues, idlist

[docs]def pxe_servers(metafunc):
 """Provides pxe data based on the server_type

 Args:
 server_name: One of the server names to filter by, or 'all'.

 """
 argnames = ['pxe_name', 'pxe_server_crud']
 argvalues = []
 idlist = []

 data = cfme_data.get('pxe_servers', {})

 for pxe_server in data:
 argvalues.append([data[pxe_server]['name'],
 get_pxe_server_from_config(pxe_server)])
 idlist.append(pxe_server)
 return argnames, argvalues, idlist

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

_modules/cfme/utils/log.html

 Navigation

 		
 index

 		
 modules |

 		cfme_tests documentation »

 		Module code »

 		cfme.utils »

 Source code for cfme.utils.log

"""Logging framework

This module creates the cfme logger, for use throughout the project. This logger only captures log
messages explicitly sent to it, not logs emitted by other components (such as selenium). To capture
those, consider using the pytest-capturelog plugin.

Example Usage
^^^^^^^^^^^^^

.. code-block:: python

 from utils.log import logger

 logger.debug('debug log message')
 logger.info('info log message')
 logger.warning('warning log message')
 logger.error('error log message')
 logger.critical('critical log message')

The above will result in the following output in ``cfme_tests/logs/cfme.log``::

 1970-01-01 00:00:00,000 [D] debug log message (filename.py:3)
 1970-01-01 00:00:00,000 [I] info log message (filename.py:4)
 1970-01-01 00:00:00,000 [W] warning log message (filename.py:5)
 1970-01-01 00:00:00,000 [E] error log message (filename.py:6)
 1970-01-01 00:00:00,000 [C] fatal log message (filename.py:7)

Additionally, if ``log_error_to_console`` is True (see below), the following will be
written to stderr::

 [E] error (filename.py:6)
 [C] fatal (filename.py:7)

Log Message Source
^^^^^^^^^^^^^^^^^^

We have added a custom log record attribute that can be used in log messages: ``%(source)s`` This
attribute is included in the default 'cfme' logger configuration.

This attribute will be generated by default and include the filename and line number from where the
log message was emitted. It will attempt to convert file paths to be relative to cfme_tests, but use
the absolute file path if a relative path can't be determined.

When writting generic logging facilities, it is sometimes helpful to override
those source locations to make the resultant log message more useful. To do so, pass the extra
``source_file`` (str) and ``source_lineno`` (int) to the log emission::

 logger.info('info log message', extra={'source_file': 'somefilename.py', 'source_lineno': 7})

If ``source_lineno`` is ``None`` and ``source_file`` is included, the line number will be omitted.
This is useful in cases where the line number can't be determined or isn't necessary.

Configuration
^^^^^^^^^^^^^

.. code-block:: yaml

 # in env.yaml
 logging:
 # Can be one of DEBUG, INFO, WARNING, ERROR, CRITICAL
 level: INFO
 # Maximum logfile size, in bytes, before starting a new logfile
 # Set to 0 to disable log rotation
 max_logfile_size: 0
 # Maximimum backup copies to make of rotated log files (e.g. cfme.log.1, cfme.log.2, ...)
 # Set to 0 to keep no backups
 max_logfile_backups: 0
 # If True, messages of level ERROR and CRITICAL are also written to stderr
 errors_to_console: False
 # Default file format
 file_format: "%(asctime)-15s [%(levelname).1s] %(message)s (%(source)s)"
 # Default format to console if errors_to_console is True
 stream_format: "[%(levelname)s] %(message)s (%(source)s)"

Additionally, individual logger configurations can be overridden by defining nested configuration
values using the logger name as the configuration key. Note that the name of the logger objects
exposed by this module don't obviously line up with their key in ``cfme_data``. The 'name' attribute
of loggers can be inspected to get this value::

 >>> utils.log.logger.name
 'cfme'
 >>> utils.log.perflog.logger.name
 'perf'

Here's an example of those names being used in ``env.local.yaml`` to configure loggers
individually:

.. code-block:: yaml

 logging:
 cfme:
 # set the cfme log level to debug
 level: DEBUG
 perf:
 # make the perflog a little more "to the point"
 file_format: "%(message)s"

Notes:

* The ``cfme`` and ``perf`` loggers are guaranteed to exist when using this module.
* The name of a logger is used to generate its filename, and will usually not have the word
 "log" in it.

 * ``perflog``'s logger name is ``perf`` for this reason, resulting in ``log/perf.log``
 instead of ``log/perflog.log``.
 * Similarly, ``logger``'s' name is ``cfme``, to prevent having ``log/logger.log``.

.. warning::

 Creating a logger with the same name as one of the default configuration keys,
 e.g. ``create_logger('level')`` will cause a rift in space-time (or a ValueError).

 Do not attempt.

Message Format
^^^^^^^^^^^^^^

 ``year-month-day hour:minute:second,millisecond [Level] message text (file:linenumber)``

``[Level]``:

 One letter in square brackets, where ``[I]`` corresponds to INFO, ``[D]`` corresponds to
 DEBUG, and so on.

``(file:linenumber)``:

 The relative location from which this log message was emitted. Paths outside

Members
^^^^^^^

"""
import inspect
import logging
import sys
import warnings
from time import time
from traceback import extract_tb, format_tb

from cfme.utils import conf, safe_string
from cfme.utils.path import get_rel_path, log_path, project_path

import os

MARKER_LEN = 80

set logging defaults
_default_conf = {
 'level': 'INFO',
 'errors_to_console': False,
}

let logging know we made a TRACE level
logging.TRACE = 5
logging.addLevelName(logging.TRACE, 'TRACE')

[docs]class logger_wrap(object):
 """ Sets up the logger by default, used as a decorator in utils.appliance

 If the logger doesn't exist, sets up a sensible alternative
 """
 def __init__(self, *args, **kwargs):
 self.args = args
 self.kwargs = kwargs

 def __call__(self, func):
 def newfunc(*args, **kwargs):
 cb = kwargs.get('log_callback')
 if not cb:
 cb = logger.info
 kwargs['log_callback'] = lambda msg: cb(self.args[0].format(msg))
 return func(*args, **kwargs)
 return newfunc

[docs]class TraceLogger(logging.Logger):
 """A trace-loglevel-aware :py:class:`Logger <python:logging.Logger>`"""
[docs] def trace(self, msg, *args, **kwargs):
 """
 Log 'msg % args' with severity 'TRACE'.

 """
 if self.isEnabledFor(logging.TRACE):
 self._log(logging.TRACE, msg, args, **kwargs)

logging._loggerClass = TraceLogger

[docs]class TraceLoggerAdapter(logging.LoggerAdapter):
 """A trace-loglevel-aware :py:class:`LoggerAdapter <python:logging.LoggerAdapter>`"""
[docs] def trace(self, msg, *args, **kwargs):
 """
 Delegate a trace call to the underlying logger, after adding
 contextual information from this adapter instance.
 """
 msg, kwargs = self.process(msg, kwargs)
 self.logger.trace(msg, *args, **kwargs)

[docs]class PrefixAddingLoggerFilter(logging.Filter):
 def __init__(self, prefix=None):
 self.prefix = prefix

[docs] def filter(self, record):
 if self.prefix:
 record.msg = "{0}{1}".format(safe_string(self.prefix), safe_string(record.msg))
 return True

[docs]class NamedLoggerAdapter(TraceLoggerAdapter):
 """An adapter that injects a name into log messages"""
[docs] def process(self, message, kwargs):
 return '({}) {}'.format(self.extra, message), kwargs

def _load_conf(logger_name=None):
 # Reload logging conf from env, then update the logging_conf
 try:
 del(conf['env'])
 except KeyError:
 # env not loaded yet
 pass

 logging_conf = _default_conf.copy()

 yaml_conf = conf.env.get('logging', {})
 # Update the defaults with values from env yaml
 logging_conf.update(yaml_conf)
 # Additionally, look in the logging conf for file-specific loggers
 if logger_name in logging_conf:
 logging_conf.update(logging_conf[logger_name])

 return logging_conf

class _RelpathFilter(logging.Filter):
 """Adds the relpath attr to records

 Not actually a filter, this was the least ridiculous way to add custom dynamic
 record attributes and reduce it all down to the ``source`` record attr.

 looks for 'source_file' and 'source_lineno' on the log record, falls back to builtin
 record attributes if they aren't found.

 """
 def filter(self, record):
 record.pathname = get_rel_path(record.pathname)
 return True

[docs]class WarningsRelpathFilter(logging.Filter):
 """filter to modify warnings messages, to use relative paths in the project"""
[docs] def filter(self, record):
 if record.args:
 new_record = record.args[0].replace(project_path.strpath, '.')
 record.args = (new_record,) + record.args[1:]
 return True

[docs]class WarningsDeduplicationFilter(object):
 """
 this filter is needed since something in the codebase causes the warnings
 once filter to be reset, so we need to deduplicate on our own

 there is no indicative codepath that is clearly at fault
 so this low implementation cost solution was choosen to deduplicate off-band
 """
 def __init__(self):
 self.seen = set()

[docs] def filter(self, record):
 msg = record.args[0].splitlines()[0].split(': ', 1)[-1]
 if msg in self.seen:
 return False
 else:
 self.seen.add(msg)
 return True

[docs]class Perflog(object):
 """Performance logger, useful for timing arbitrary events by name

 Logged events will be written to ``log/perf.log`` by default, unless
 a different log file name is passed to the Perflog initializer.

 Usage:

 from cfme.utils.log import perflog
 perflog.start('event_name')
 # do stuff
 seconds_taken = perflog.stop('event_name')
 # seconds_taken is also written to perf.log for later analysis

 """
 tracking_events = {}

 def __init__(self, perflog_name='perf'):
 self.logger = setup_logger(logging.getLogger(perflog_name))

[docs] def start(self, event_name):
 """Start tracking the named event

 Will reset the start time if the event is already being tracked

 """
 if event_name in self.tracking_events:
 self.logger.warning('"%s" event already started, resetting start time', event_name)
 else:
 self.logger.debug('"%s" event tracking started', event_name)
 self.tracking_events[event_name] = time()

[docs] def stop(self, event_name):
 """Stop tracking the named event

 Returns:
 A float value of the time passed since ``start`` was last called, in seconds,
 or ``None`` if ``start`` was never called.

 """
 if event_name in self.tracking_events:
 seconds_taken = time() - self.tracking_events.pop(event_name)
 self.logger.info('"%s" event took %f seconds', event_name, seconds_taken)
 return seconds_taken
 else:
 self.logger.error('"%s" not being tracked, call .start first', event_name)
 return None

[docs]def make_file_handler(filename, root=log_path.strpath, level=None, **kw):
 filename = os.path.join(root, filename)
 handler = logging.FileHandler(filename, **kw)
 formatter = logging.Formatter(
 '%(asctime)-15s [%(levelname).1s] %(message)s (%(pathname)s:%(lineno)s)')
 handler.setFormatter(formatter)
 if level is not None:
 handler.setLevel(level)
 return handler

[docs]def error_console_handler():
 formatter = logging.Formatter('[%(levelname)s] %(message)s (%(pathname)s:%(lineno)s)')
 handler = logging.StreamHandler()
 handler.setLevel(logging.ERROR)
 handler.setFormatter(formatter)
 return handler

[docs]def setup_logger(logger):
 # prevent the root logger effective level from affecting us
 # this is a hack
 logger.setLevel(1)
 # prevent root logger handlers from triggering (its sad that we need this)
 logger.propagate = False
 # Grab the logging conf
 conf = _load_conf(logger.name)

 # log_file is dynamic, so we can't used logging.config.dictConfig here without creating
 # a custom RotatingFileHandler class. At some point, we should do that, and move the
 # entire logging config into env.yaml

 logger.addHandler(make_file_handler(logger.name + '.log', level=conf['level']))

 if conf['errors_to_console']:
 logger.addHandler(error_console_handler())

 logger.addFilter(_RelpathFilter())
 return logger

[docs]def create_sublogger(logger_sub_name):
 return NamedLoggerAdapter(logger, logger_sub_name)

[docs]def format_marker(mstring, mark="-"):
 """ Creates a marker in log files using a string and leader mark.

 This function uses the constant ``MARKER_LEN`` to determine the length of the marker,
 and then centers the message string between padding made up of ``leader_mark`` characters.

 Args:
 mstring: The message string to be placed in the marker.
 leader_mark: The marker character to use for leading and trailing.

 Returns: The formatted marker string.

 Note: If the message string is too long to fit one character of leader/trailer and
 a space, then the message is returned as is.
 """
 if len(mstring) <= MARKER_LEN - 2:
 # Pad with spaces
 mstring = ' {} '.format(mstring)
 # Format centered, surrounded the leader_mark
 format_spec = '{{:{leader_mark}^{marker_len}}}'\
 .format(leader_mark=mark, marker_len=MARKER_LEN)
 mstring = format_spec.format(mstring)
 return mstring

def _custom_excepthook(type, value, traceback):
 file, lineno, function, __ = extract_tb(traceback)[-1]
 text = ''.join(format_tb(traceback)).strip()
 logger.error('Unhandled %s', type.__name__)
 logger.error(text, extra={'source_file': file, 'source_lineno': lineno})
 _original_excepthook(type, value, traceback)

if '_original_excepthook' not in globals():
 # Guard the original excepthook against reloads so we don't hook twice
 _original_excepthook = sys.excepthook

[docs]def nth_frame_info(n):
 """
 Inspect the stack to determine the filename and lineno of the code running at the "n"th frame

 Args:
 n: Number of the stack frame to inspect

 Raises IndexError if the stack doesn't contain the nth frame (the caller should know this)

 Returns a frameinfo namedtuple as described in :py:func:`inspect <python:inspect.getframeinfo>`

 """
 # Inspect the stack with 1 line of context, looking at the "n"th frame to determine
 # the filename and line number of that frame
 return inspect.getframeinfo(inspect.stack(1)[n][0])

[docs]class ArtifactorHandler(logging.Handler):
 """Logger handler that hands messages off to the artifactor"""

 slaveid = artifactor = None

[docs] def emit(self, record):
 if self.artifactor:
 self.artifactor.fire_hook(
 'log_message',
 log_record=record.__dict__,
 slaveid=self.slaveid,
)

logger = setup_logger(logging.getLogger('cfme'))
artifactor_handler = ArtifactorHandler()
logger.addHandler(artifactor_handler)

add_prefix = PrefixAddingLoggerFilter()
logger.addFilter(add_prefix)

perflog = Perflog()

def _configure_warnings():
 # Capture warnings
 warnings.simplefilter('once')
 logging.captureWarnings(True)
 wlog = logging.getLogger('py.warnings')
 wlog.addFilter(WarningsRelpathFilter())
 wlog.addFilter(WarningsDeduplicationFilter())
 wlog.addHandler(make_file_handler('py.warnings.log'))
 wlog.propagate = False

[docs]def setup_for_worker(workername, loggers=('cfme', 'py.warnings')):
 # this function is a bad hack, at some point we want a more ballanced setup
 for logger in loggers:
 log = logging.getLogger(logger)
 handler = next(x for x in log.handlers
 if isinstance(x, logging.FileHandler))
 handler.close()
 base, name = os.path.split(handler.baseFilename)
 add_prefix.prefix = "({})".format(workername)
 handler.baseFilename = os.path.join(
 base, "{worker}-{name}".format(worker=workername, name=name))
 log.debug("worker log started") # directly reopens the file

[docs]def add_stdout_handler(logger):
 """Look for a stdout handler in the logger, add one if not present"""
 for handle in logger.handlers:
 if isinstance(handle, logging.StreamHandler) and 'stdout' in handle.stream.name:
 break
 else:
 # Never found a stdout StreamHandler
 logger.addHandler(logging.StreamHandler(sys.stdout))

_configure_warnings()

Register a custom excepthook to log unhandled exceptions
sys.excepthook = _custom_excepthook

Suppress psphere's really annoying "No handler found" messages.
logging.getLogger('psphere').addHandler(logging.NullHandler())

 © Copyright 2013, RedHat QE.
 Created using Sphinx 1.3.5.

