

Welcome to cfme_tests’s documentation!

Contents:

	Getting Started

	Running Tests

	Guides
	Abbreviations and Naming Conventions

	Browser Configuration

	Designing Models

	Appliances in containers

	Debugging

	Contributors Guide

	Documenting cfme_tests

	Setting up editors

	Frequently Asked Questions

	Selenium Gotchas

	flake8

	Adding a New Provider Type

	Development Tips and Tricks

	Marking your tests with associated product requirements

	UI modeling

	Libraries

	High-level process description

	Navmazing

	Widgetastic

	Sentaku

	Selenium over VNC

	Modules
	cfme package

	fixtures package

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

Before you start

Welcome to the Getting Started Guide. The CFME QE team is glad that you have decided to read this
page that will help you understand how cfme_tests interacts with the appliances. There are some
important information contained within this text, so we would like you to spend some time to
carefully read this page from beginning to the end. That will make you familiarize with the process
and will minimize the chance of doing it wrong. Then you can proceed the shortest way using the
setup and execution scripts.

Obtaining what you need (Project Setup)

	Create a dedicated folder for working with the integration tests,
the automated quickstart works best if this is created inside a new folder.

	Obtain the cfme_tests repository by working and cloning
(https://github.com/ManageIQ/integration_tests/fork)

	You will need some configuration files. You have the choice of either using the templates or
if you are internal to the ManageIQ team, you may be able to gain access to the QE YAMLs repo.

	If you are using the internal repo, you need to obtain the decryption key .yaml_key

	If you are using the templates as a starting point, you can just create an empty .yaml_key file.

	Enter the folder where you cloned the repository with your shell and
execute python -m cfme.scripting.quickstart which will configure your system,
the development environment and the default configuration files

	If you chose to use the templates, now is a good time to duplicate the conf/*.yaml.template files
to conf/*.yaml files.

	Activate the development environment by . ../cfme_venv/bin/activate

	Set up a local selenium server that opens browser windows somewhere other than your
desktop. There are three options here:

	You can create your own virtual framebuffer for this.

	If you are internal to the ManageIQ team you can use Wharf, ask someone in your team for access.

	Or, there is a Docker based solution for the browser,

	To use this, you need to have installed docker, - Selenium over VNC.

	Run docker pull cfmeqe/sel_ff_chrome to obtain the docker image

	Run miq selenium-container to start up a docker container with the defaults. It should tell
you the port numbers it is using and you should be able to VNC to it to see what is happening.

Warning

Make sure you are not trying to use local selenium server and Docker container at the same time.
The reason is that selenium server and Docker container both use port 4444 by default.
You cannot run those two at the same time unless you override this default behaviour.

	After all this, you should be able to run miq shell and or miq-runtest --collect-only. Be
aware that you will also have to add your appliance to the env.yaml in the appliances list. Support
for using base_url in env.yaml to specify an appliance has been removed.

	You will also need to run the configuration script against the appliance that you intend to test
if you didn’t get it from sprout. All external usage of this framework will be non-sprout unless
you have specifically set up a sprout instance.

	You need to create an instance of an appliance and the invoke configure. There are other
options please refer to the documentation for more help.

from cfme.utils.appliance import IPAppliance

app = IPAppliance('10.x.x.x')
app.configure()

Appliances in containers

If the target appliance you will be testing is a container, you might like to consult
Appliances in containers for the details specific to testing containers.

Running Tests

	Test! Run miq-runtest. (This takes a long time, Ctrl-C will stop it)

	When miq-runtest ends or you Ctrl-C it, it will look stuck in the phase “collecting artifacts”. You
can either wait about 30 seconds, or you can Ctrl-C it again.

	In either case, check your processes sometimes, the artifactor process likes to hang when forced
to quit, but it can also happen when it ends normally, though it is not too common.

Testing Framework

The testing framework being used is py.test [http://pytest.org/latest]

Execution script

An execution script (cfme_test.sh) is provided. This script handles orchestration of
docker, virtualenv, and cfme_test.

Configure path to your virtualenv and your cfme_test repository in the cfme_tests/conf/env.local.yaml.

tmux:
 PYTHON_ENV_PATH: 'path/to/virtualenv/bin'
 CFME_TEST_PATH: 'path/to/cfme_tests_repo'

The script requires shyaml (pip install shyaml) and tmux (yum install tmux) commands.

#Bash example:
cd /path/to/cfme_test
./cfme_test.sh

Navigating within the console:

	Command mode: ctrl+shift+b

	up/down to change pane

	‘[‘ to scroll within a pane

	press the ‘Esc’ key to exit scrolling

More tmux commands can be found here: https://tmuxcheatsheet.com/

Using the testing framework (for newbies or non-CFMEQE core people)

Our team relies on a lot of internal tools that simplify life to the QEs. If eg. a developer would
like to run cfme_tests on his/her system, here are some tools and tips that should get you
started as quickly as possible:

	cfme_tests expects an appliance, with an IP visible to the machine that runs cfme_tests

	If this is not the case (eg. CFME behind NAT, a container, whatever), you MUST specify the
appliance in env configuration with a port, which is quite obvious, but people tend to forget
cfme_tests also uses SSH and Postgres extensively, therefore you MUST have those services
accessible and ideally on the expected ports. If you don’t have them running on the expected
ports, you MUST specify them manually using --port-ssh and --port-db command-line
parameters. If you run your code outside of miq-runtest run, you MUST use utils.ports
to override the ports (that is what the command-line parameters do anyway). The approach using
utils.ports will be most likely discontinued in the future in favour of merging that
functionality inside utils.appliance.IPAppliance class. Everything in the repository
touching this functionality will get converted with the merging of the functionality when that
happens.

	cfme_tests also expects that the appliance it is running against is configured. Without it it
won’t work at all! By configured, we mean the database is set up and seeded (therefore UI
running), database permissions loosened so cfme_tests can access it and a couple of other
fixes. Check out utils.appliance.IPAppliance.configure(), and subsequent method calls.
The most common error is that a person tries to execute cfme_tests code against an appliance
that does not have the DB permissions loosened. The second place is SSH unavailable, meaning that
the appliance is NAT-ed

	Framework contains code that can be used to configure the appliance exactly as cfme_tests
desires. There are two ways of using it:

	Instantiate utils.appliance.Appliance or utils.appliance.IPAppliance,
depending on whether you want to use IP or provider name with VM name. Then simply run the
utils.appliance.Appliance.configure() or utils.appliance.IPAppliance.configure()
depending on which class you use. Then just wait and watch logs.

	You can run exactly the same code from shell. Simply run:

scripts/ipappliance.py configure ipaddr1 ipaddr2 ipaddr3...

Which enables you to configure multiple appliances in parallel.

	Unfortunately, these scripts do not work with non-default ports as of now, so you have to do
the steps manually if setting up such appliance.

	Previous bullet mentioned the scripts/ipappliance.py script. This script can call any method
or read any property located in the utils.appliance.IPAppliance. Check the script’s
header for more info. The call to that method is threaded per-appliance, so it saves time.
Despite the parallelization, the stdout (one line per appliance - return value of the method)
prints in the same order as the appliances were specified on the command line, so it is suitable
for further shell processing if needed.

	Using utils.appliance.Appliance only makes sense for appliances on providers that
are specified in cfme_data.yaml.

	If you want to test a single appliance, set the hostname in the first list item under appliances
in the conf/env.yaml

	If you want to test against multiple appliances, use the --appliance w.x.y.z parameter. Eg. if
you have appliances 1.2.3.4 and 2.3.4.5, then append --appliance 1.2.3.4 --appliance 2.3.4.5
to the miq-runtest command.

	If you have access to Sprout, you can request a fresh appliance to run your tests, you can use
command like this one:

SPROUT_USER=username SPROUT_PASSWORD=verysecret miq-runtest <your pytest params> --use-sprout --sprout-group "<stream name>" --sprout-appliances N

If you specify N greater than 1, the parallelized run is set up automatically. More help
about the sprout parameters are in fixtures.parallelizer. If you don’t know what
the sprout group is, check the dropdown Select stream in Sprout itself.

Browser Support

We support any browser that selenium supports, but tend to run Firefox or Chrome.

For detailed instructions on setting up different browsers, see Browser Configuration.

Guides

	Abbreviations and Naming Conventions
	Abbreviations
	Common Terms

	Locator Terms

	Browser Configuration
	Local vs. Remote

	Standalone Selenium Server

	WebDriver Wharf
	Remote desired_capabilities

	Appliance hostname

	Firefox
	Local

	Remote

	WebDriver Wharf

	Chrome
	Local

	Remote

	WebDriver Wharf

	Safari
	Local

	Remote

	Internet Explorer
	Local

	Remote

	Sauce Labs
	Internet Explorer Sauce

	Troubleshooting

	Designing Models
	Collections/Entity Model

	Changes to previous model versions

	Instantiating objects

	Filtering collections

	Automatically generated filtered collections

	Collection Methods

	Entity Methods

	Example

	Appliances in containers

	Debugging
	Links

	Contributors Guide
	General Guidelines
	Contributing

	Reviewers

	Release Candidates and Tagging

	Code Style
	General Notes

	UI modeling
	Layout

	Writing Tests

	Fixtures

	This Document

	Documenting cfme_tests
	Overview

	docstrings

	Documenting Tests

	Linking new modules

	Building the Docs

	Setting up editors
	Sublime
	Getting Started
	Get sublime

	Configure sublime for Python

	Package Control

	SublimeCodeIntel

	Flake8 Lint

	Trailing Spaces

	Sublime Text 3
	Recommended Extensions and Settings
	SublimePythonIDE

	GitGutter

	BracketHighlighter

	Neon color scheme

	Python Improved

	emacs
	Installing iPython and its Emacs client
	iPython

	ein

	Starting iPython from within Emacs

	Autosave Notebooks

	Flake8 Lint

	Recommended

	PyCharm
	Useful plugins

	Code style compliance

	Frequently Asked Questions
	How do I increase logging level of the testing framework?

	Can I run tests in interactive mode?

	How do I build this documentation?

	Why was my test case skipped?

	I upgraded to Fedora 27 and now I cannot run any tests!

	Selenium Gotchas
	Selenium is not clicking on the element it says it is

	Selenium is not sending the keys I tell it to, or is filling the box with junk

	When getting the text of the element, Selenium returns an empty string

	flake8
	Manual Invocation

	IDE Integration
	Sublime Text 2 & 3

	Emacs

	Others

	Adding a New Provider Type
	Introduction

	wrapanapi

	Provider Type

	Provider Class

	Registering your Provider

	Development Tips and Tricks
	Introduction

	Version Picking

	Defining blockers

	Using blockers in tests

	Uncollecting tests

	Running commands on another appliance

	Logging in as another user

	Invalidating cached data

	pytest store

	Test generation (testgen)

	Working with file paths

	Expecting Errors

	Marking your tests with associated product requirements

	UI modeling
	Introduction

	Libraries

	High-level process description

	Navmazing

	Widgetastic

	Sentaku

	Selenium over VNC
	Purpose

	Install requirements

	Configure the VNC server
	Set a password

	Configure the startup script

	View your new desktop

	Configuring the selenium client

	Security

	Recording

Abbreviations and Naming Conventions

Abbreviations

In order to save line space and aid in quick pass reading, we have defined some abbreviations
which we propose to be used throughout the code base.

Common Terms

	Abbreviation

	Meaning

	cfg, config

	Configuration

	prov

	Provider

	pg

	Page

	db

	Database

	img

	Image

	vm

	Virtual Machine

	creds

	Credentials

Locator Terms

	Abbreviation

	Meaning

	btn

	button

	sel

	select

	txt

	text

	pwd

	password

	chk

	checkbox

	tarea

	textarea

Browser Configuration

All browser configuration is done by editing conf/env.yaml, or creating a local override in
conf/env.local.yaml. Local overrides are preferred. For more information about configuration
yamls, see utils.conf.

All yaml examples in this document are snippets from env.yaml.

Local vs. Remote

Most WebDrivers can operate in two modes, as a local WebDriver or through a Remote
WebDriver. The local WebDriver will launch a browser in the calling environment (such as
your desktop), while the Remote WebDriver will connect to a remote selenium server (hence the name)
and attempt to run the browser there.

Examples for each mode will be provided, where appropriate. Note that capitalization is extremely
important when specifying either webdriver or browserName, as indicated in the examples
below.

Some help for setting up the remote selenium server can be found in the Selenium over VNC document.

Standalone Selenium Server

A Selenium Server is needed in order to run Remote Selenium WebDriver. You can install and run
the Standalone Selenium Server which is a very common method. Although you may run this locally, it is still setup as a Remote webdriver as described above.

For more information, view the Selenium over VNC document.

WebDriver Wharf

A variant of the Remote webdriver, WebDriver Wharf will spawn docker containers running the selenium
standalone server on request.

Remote desired_capabilities

All Remote drivers take a “desired_capabilities” dictionary. Details on what keys and expected
value types can be used in this dictionary can be found in the selenium documentation:

https://code.google.com/p/selenium/wiki/DesiredCapabilities

Selenium, by default, looks for the selenium server on localhost port 4444. If the selenium server
is running on a different machine, you’ll need to add a command_executor option to
webdriver_options in the examples below to the machine running the selenium server.

command_exector must be a URL to a selenium server hub, which by default is at the /wd/hub
path on the selenium server.

For example:

browser:
 webdriver: Remote
 webdriver_options:
 command_executor: http://selenium-server-hostname:port/wd/hub
 desired_capabilities:
 browserName: browser

Note

	Each browser has its own set of capabilities, and those capabilities will usually not
apply from one browser to another.

	While most selenium identifiers have been translated from JavaIdentifiers to
python_identifiers, the keys of desired_capabilities are not altered in any way.
No name translation should have to be done for desired_capabilities keys
(e.g. browserName does not become browser_name).

Appliance hostname

Regardless of which Webdriver you use, hostname must be set for each appliance listed in appliances.
It is assumed that the website at the hostname will be a working CFME UI. You can specify ui_protocol
or ui_port to switch between http/https or change the web server port, respectively.

Note

hostname is not solely used by the browser. Other functionality, such as the SSH and SOAP
clients, derive their destination addresses from the hostname.

Firefox

Firefox has built-in support for selenium (and vice-versa). No additional configuration should be
required to use the Firefox browser.

Local

browser:
 webdriver: Firefox

Remote

browser:
 webdriver: Remote
 webdriver_options:
 desired_capabilities:
 browserName: firefox

WebDriver Wharf

browser:
 webdriver: Remote
 webdriver_options:
 desired_capabilities:
 browserName: firefox
 webdriver_wharf: http://wharf.host:4899/

Chrome

In order to use Chrome with selenium, you must first install the chromedriver executable. This
executable should be somewhere on your PATH.

	Download chromedriver [http://chromedriver.storage.googleapis.com/]. Use the latest available
release for your architecture.

	chromedriver documentation: https://sites.google.com/a/chromium.org/chromedriver/getting-started

Local

browser:
 webdriver: Chrome

Remote

browser:
 webdriver: Remote
 webdriver_options:
 desired_capabilities:
 browserName: chrome

WebDriver Wharf

browser:
 webdriver: Remote
 webdriver_options:
 desired_capabilities:
 browserName: chrome
 webdriver_wharf: http://wharf.host:4899/

Safari

Like Firefox, Safari is natively supported by selenium. Usage is equally simple, with the exception
that you’ll probably need to be running selenium on OS X.

Local

browser:
 webdriver: Safari

Remote

browser:
 webdriver: Remote
 webdriver_options:
 # If selenium is running remotely, remember to update command_executor
 #command_executor: http://safari_host/wd/hub
 desired_capabilities:
 browserName: safari

Internet Explorer

Like Chrome & chromedriver, Internet Explorer needs a separate executable to work with selenium,
InternetExplorerDriver. InternetExplorerDriver is a server that only runs in Windows, and
should be running before starting selenium in either Local or Remote mode.

	For more information, visit https://code.google.com/p/selenium/wiki/InternetExplorerDriver

Local

browser:
 webdriver: Ie

Remote

browser:
 webdriver: Remote
 webdriver_options:
 # If selenium is running remotely, remember to update command_executor
 #command_executor: http://windows_host/wd/hub
 desired_capabilities:
 browserName: internet explorer
 # platform must be WINDOWS for IE
 platform: WINDOWS

Sauce Labs

By providing selenium servers on a multitude of platforms, Sauce Labs is able to help us test in
“exotic” environments. In order to test against appliances behind firewalls, sauce-connect must be
used:

https://saucelabs.com/docs/connect

sauce-connect tunnels are used by default if they’re running, so the same command_executor can
be used to use the sauce labs service whether sauce-connect is running or not:

command_executor: http://username:apikey@ondemand.saucelabs.com:80/wd/hub

Internet Explorer Sauce

The following example is our “worst-case scenario”, which is running a very
recent release of Internet Explorer in a very recent release of Windows:

browser:
 webdriver: Remote
 webdriver_options:
 command_executor: http://username:apikey@ondemand.saucelabs.com:80/wd/hub
 desired_capabilities:
 browserName: internet explorer
 platform: Windows 8.1
 version: 11
 screen-resolution: 1280x1024

The above configuration, at the time of this writing, ran our test suite with no issues.

More information on sauce-specific options allowed in desired_capabilities can be found in
the sauce labs documentation:

	https://saucelabs.com/platforms

	https://saucelabs.com/docs/additional-config#desired-capabilities

Note

Python values for the browser constants used in the sauce labs “platform” page can be found here:
https://code.google.com/p/selenium/source/browse/py/selenium/webdriver/common/desired_capabilities.py

Troubleshooting

If errors are encountered while launching a selenium browser, check the selenium website to
make sure that your version of selenium matches the latest version. If not, upgrade.

https://code.google.com/p/selenium/downloads/list

Designing Models

Collections/Entity Model

In general, any object that is represented in the MiQ Appliance is going to be only relevant
along with the context of a particular appliance. The objects in the codebase are designed
to function similarly to REST API based objects where you have a Collection object that
handles the creation/searching/non-instance functions, and then an Entity object that handles
the particular instance usage.

Warning

The Collections/Entity model is now at version 3 and is constructed differently to the previous
iteration. Please read this carefully.

Changes to previous model versions

Previously, in versions 1 and 2 of the Collection/Entity model we required people to design accomodate
certain arguments as the first arguments to the collection and entity objects. In version 1 there was no
checking against the order of these arguments. Version 2 became a little more strict. In version 3, the
model designer has all of this taken out of their hands as we use the attrs library and subclassing
to design a better Collections/Entity model.

Take the example below

@attr.s
class Repository(BaseEntity, Fillable):
 """A class representing one Embedded Ansible repository in the UI."""

 name = attr.ib()
 url = attr.ib()
 description = attr.ib(default="")
 scm_credentials = attr.ib(default=None)
 scm_branc = attr.ib(default=False)
 clean = attr.ib(default=False)
 delete_on_update = attr.ib(default=False)

 _collections = {'playbooks': PlaybooksCollection}

 def exists(self):
 pass

@attr.s
class RepositoryCollection(BaseCollection):
 """Collection object for the :py:class:`cfme.ansible.repositories.Repository`."""

 ENTITY = Repository

 def create(self, name, url, description=None, scm_credentials=None, scm_branch=None,
 clean=None, delete_on_update=None, update_on_launch=None):
 pass

Instantiating objects

Collection objects should be obtained via an IPAppliance object. All base/root level objects, that
is objects which have an appliance as their parent, will be accessible via the IPAppliance objects
collections manager.

Note

Not all collections objects are yet available via the IPAppliance object.

See the example below which demonstrates how to obtain a Datastore collection, and then instantiate
a Datastore object.

provider = get_crud('vsphere55') # An example provider

dc = appliance.collections.datastore
dc.instantiate('name', provider)

Filtering collections

Some collections support filtering. This means that the base/root collection can be asked to supply a subset
of the information if would normally return using the all() or indeed other methods. To filter a
collection object, use the following pattern

dc = appliance.collection.datastore
dc_filtered = dc.filter({'provider': provider})

Automatically generated filtered collections

BaseEntity objects have the special ability to create filtered collections. These appear, much
like the collections attribute on the IPAppliance instances. Consider the example above where
the Repository object is given the _collections attribute. This contains a dictionary of
collection names, along with the collection class that should be instantiated. The collection is then
instantiated with the following filter, like so:

repo = appliance.collections.repositories.all()[0]
playbook_collection = repo.collections.playbooks
playbook_collection.all() # returns ONLY playbooks from that repo

equivalent code
playbook_collection = PlaybookCollection(self.appliance, filters={'parent': self})

In the example above, the BaseEntity automatically instantiates the playbook collection object
with a parent filter. The playbook collection object would then need to honour that filter
when returning the playbooks. A collection isn’t under any obligation to support a certain filter.

Note

In the future filter names which are supported may need to be defined somewhere to allow
unsupported filters to be reported as warnings.

Collection Methods

	__init__() - This method is hidden inside the BaseCollection object and shouldn’t be
overidden without good reason. There are exceptional circumstances and these should be discussed
with a core developer.
done at init time, using __attrs_post_init__ method is used instead.

	instantiate() - This method is provided by the BaseCollection and uses the ENTITY
attribute of the collection class to determine which class to use in creating the entity.

	create() - The collection object should provider a create() method where appropriate.
This method will attempt to create the object on the appliance must call
self.instantiate to obtain the object to return.

Entity Methods

	__init__() - This method is hidden inside the BaseEntity object and shouldn’t be overidden
without good reason. There are exceptional circumstances and these should be discussed
with a core developer.

Example

Below is an example of the usage of a collection object described above

repo = appliance.collections.ansible_repositories.all()[0]

playbook = repo.collections.playbooks.all()[0]

playbook.update({'name': 'updated_name'})

Appliances in containers

This original testing suite was designed around appliances so testing of the docker container of
ManageIQ is naturally trying to mimic the original environment as much as possible in order to keep
the differences minimal. So for testing the container there are a couple of prerequisities:

	A VM with docker (Preferably Fedora, RHEL/Centos, …)

	Docker image pulled into the VM

	A script called cfme-start which will ensure these things:

	Runs the docker container with CFME (with the right version)

	Maps ports 80, 443, 5432 directly to the VM’s ports so HTTP(S) and PostgreSQL are publicly
accessible

	Maps the /share folder in the VM as /share folder in the container.

The script must be accessible as a general command, so it should preferably live eg. in
/usr/local/bin/ and be chmod +x.

You then just templatize the VM and you can reuse it. There is a Sprout support coming.

Finally, you have to put container in the env.yaml so it looks something like this:

appliances:
 - hostname: 1.2.3.4
container: cfme
whatever: else_is_required

The container key’s values is the name of the container deployed by cfme-start.

When you are done with all these steps, you are good to go with running the tests against it! And
do not forget that because of lack of the SSH daemon in the container, you are not able to use
the SCP directly like the utils.ssh.SSHTail does, but only through the wrapper methods
utils.ssh.SSHClient.put_file() and utils.ssh.SSHClient.get_file(). It would work,
but it would only get you to the host VM, not into the container. The aforementioned wrapper
methods work by copying the file through shared directory.

Debugging

Pytest has a cool feature to enable a debugger on failures. Just provide an additional
command line option:

pytest --pdb

By default only python builtin debugger is supported. It’s not much convinient to
use. There is another python debugger called pudb. It requires only two packages
to be installed:

pip install pytest-pudb pudb

Then you can use it in such way:

pytest some_test --pudb

Links

https://github.com/inducer/pudb

https://github.com/wronglink/pytest-pudb

Contributors Guide

General Guidelines

Contributing

	Own your pull requests; you are their advocate.

	If a request goes unreviewed for two or three days, ping a reviewer to see
what’s holding things up.

	Follow up on open pull requests and respond to any comments or questions a
reviewer might have.

	Keep the contents of the pull request focused on one idea. Smaller pull
requests are easier to review, and thus will be merged in more quickly.

	After submitting a request, be ready to work closely with a reviewer to get it
tested and integrated into the overall test suite.

	Follow the Code Style guidelines to make your pull request as easy to review
as possible.

	If your request requires the use of private information that can’t be
represented in the data file templates (probably cfme_data.yaml), please
state that in the test module docstring or the individual test docstring,
along with information on where that data can be found.

	Similar to the last point, any data files used by a test module should be
clearly documented in that module’s docstring.

	Any data required in a sensitive data file should be reflected in the
template for that file.

	Standards may change over time, so copying older code with similar
functionality may not be the most productive action. If in doubt, refer back
to this document and update the copied code according to the current
guidelines.

	Please keep large lint changes separate from new features, though this point
should become less relevant over time.

	All pull requests should be squashed down to logical blocks of distinctive
functionality that work by themselves and do not result in brokenness of master

	As an example, if you were working on a test which required new pages,
utilities and tests, it would be OK to split the page, utility and test
changes into separate requests or commits, providing they were in the correct
order of dependency.

Reviewers

Reviewers will be looking to make sure that the Contributing guidelines are
being met. Some of the things that go into the review process:

	Assign the PR to the reviewer

	Pull request branches will be rebased against current master before testing.

	Newly added tests will be run against a clean appliance.

	Adherence to code style guidelines will be checked.

If tests fail, reviewers WILL:

	…give you a complete traceback of the error.

	…give you useful information about the appliance against which tests were run,
such as the appliance version.

	…give you insight into any related data files used.

If tests fail, reviewers WILL NOT:

	…thoroughly debug the failing test(s).

All requests require 2 approvals from two reviewers, after which time, the contributor
may, permissions allowing, merge the commit him/herself.

Reviewers must never approve their own pull requests.

Release Candidates and Tagging

The MIQ/integration_tests maintainers will use a two week release schedule, with a release candidate
(RC) commit tagged on the last Friday in the cycle. When this RC tag is set, new PRs are not
accepted for merging unless fixing things that were broken in the current release cycle.
This 2-3 day period is commonly called the ‘dev-freeze’.

Release tags will be created on the following Tuesday, and the downstream-stable branch updated
to the release tag commit.

Releases are tagged with a version number in the format \d+\.\d+\.\d+,
for example 17.25.0.

The release candidate commits will be tagged on Friday with a downstream-stable-rc tag,
and a version numbered tag that will match the version number of the next release.
For example, the Friday before 17.25.0 is released we create an RC tag 17.25.0-rc.

This means we have a tag, downstream-stable-rc that moves each time an RC commit is selected,
and a 2nd tag pointing to the same commit with a -rc suffix.

This process breaks down to something like the following. This example is for release 18.30.0

	On Friday, reviewers feverishly merge any PRs that have passed review and have good PRT results.

	Once all merge-able PRs have been considered, a master branch commit is selected for RC.

	For this example, the commit is abcde1234

	A Maintainer creates 18.30.0-rc tag, and force updates downstream-stable-rc tag

	Both tags point to abcde1234

	We are now in dev-freeze, and no PRs will be merged until release (exception below)

	RC test jobs start, using the downstream-stable-rc tag as their git ref.

	Everyone has a great weekend and the RC jobs run a full test run against all providers

	Monday/Tuesday, test results are analyzed

	PRs are opened against any new failures, labeled with rc-regression-fix

	rc-regression-fix PRs are reviewed, tested, and merged (exception for dev-freeze)

	Tuesday, a master branch commit is selected for release, abcde1235

	The 18.30.0 tag is created

	The downstream-stable branch is updated (fast-forward)

	Both downstream-stable branch and 18.30.0 point to commit abcde1235

	Release email sent with changelist of the included PRs

	‘dev-freeze’ is over, and PRs can now be merged at-will into master

Code Style

We adhere to Python’s PEP 8 style guide [http://www.python.org/dev/peps/pep-0008/]
, occasionally allowing exceptions for the sake of readability. This is covered in the
Foolish Consistency [http://www.python.org/dev/peps/pep-0008/#a-foolish-consistency-is-the-hobgoblin-of-little-minds] section of PEP 8. Information on using linting tools to
help with this can be found on the flake8 page.

We also do a few things that aren’t explicitly called out in PEP 8:

	The github pull request pane is our primary code review medium, and has a minimum
width of 100 characters. As a result, our maximum line length is 100 characters,
rather than 80.

	Use parentheses () for line continuation:

in imports
import (module1, module2, module3, module4,
 module5)

 or

import (
 module1, module2, module3,
 module4)

 or

import (
 module1,
 module2,
 module3
)

in long strings without multiple lines
very_long_string = (
 "Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt "
 "ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation "
 "ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in "
 "reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur "
 "sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id "
 "est laborum."
)

	Docstrings can be used in strings with multiple lines:

string_with_multiple_lines = """Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation"""

	When wrapping blocks of long lines, indent the trailing lines once, instead of
indenting to the opening bracket. This helps when there are large blocks of long
lines, to preserve some readability:

_really_really_long_locator_name = (True, ('div > tr > td > a[title="this '
 'is just a little too long"]'))
_another_really_super_long_locator_name = (True, ('div > tr > td > '
 'a[title="this is getting silly now"]'))

	When wrapping long conditionals, indent trailing lines twice, just like with
function names and any other block statement (they usually end with colons):

if (this_extremely_long_variable_name_takes_up_the_whole_line and
 you_need_to_wrap_your_conditional_to_the_next_line):
 # Two indents help clearly separate the wrapped conditional
 # from the following code.

	When indenting a wrapping sequence, one indent will do. Don’t try to align
all of the sequence items at an arbitrary column:

a_good_list = [
 'item1',
 'item2',
 'item3'
]

a_less_good_list = ['item1',
 'item2',
 'item3'
]

	According to PEP 8, triple-quoted docstrings use double quotes. To help
differentiate docstrings from normal multi-line strings, consider using
single-quotes in the latter case:

"""This is a docstring.

It follows PEP 8's docstring guidelines.

"""

paragraph = '''This is a triple-quoted string, with newlines captured.
PEP 8 and PEP 257 guidelines don't apply to this. Using single quotes here
makes it simple for a reviewer to know that docstring style doesn't apply
to this text block.'''

	On the subject of docstrings (as well as comments) +++use them+++. Python is
somewhat self-documenting, so use docstrings and comments as a way to
explain not just what code is doing, but why it’s doing what it is, and what
it’s intended to achieve.

We have decided to use the following docstring format and use the Cartouche [https://github.com/rob-smallshire/cartouche]
Sphinx plugin to generate nice docs. Details on the format can be found above,
but an example is described below:

def my_function(self, locator):
 """Runs the super cool function on a locator

 Seriously, you have to try this

 Note: You don't actually have to try it

 Args:
 locator: The name of a locator that can be described by using
 multiple lines.

 Returns:
 Nothing at all.

 Raises:
 CertainQuestionsError: Raises certain questions about the authors sanity.
 """

	In addition to being broken up into the three sections of standard library,
third-party, and the local application, imports should be sorted
alphabetically. ‘import’ lines within those sections still come before
‘from … import’ lines:

import sys
from os import environ
from random import choice

	We require print statements be written in Python 3.0 compatible format, that is
encased in parentheses:

print("Hello")

	We also use the newer .format style for string formatting and will no longer be accepting
the older %s format. The new format offers many more enhancements:

a = "new"
b = 2

"a {} string for {}".format(a, b)

"{name} is {emotion}".format(name="john", emotion="happy")

"{0} and another {0}".format("something")

	There is a one exception for string formatting. According
https://docs.python.org/3/howto/logging.html#optimization use old style %s,
but without the actual % formatting operation:

from cfme.utils.log import logger

logger.info("Some message %s", some_string)

General Notes

	Avoid using time.sleep() [https://docs.python.org/2.7/library/time.html#time.sleep] as much as possible to workaround quirks in the UI.
There is a cfme.utils.wait.wait_for() utility that can be used to wait for
arbitrary conditions. In most cases there is some DOM visible change on the page
which can be waited for.

	Avoid using time.sleep() [https://docs.python.org/2.7/library/time.html#time.sleep] for waiting for changes to happen outside of the UI.
Consider using tools like mgmt_system to probe the external systems for
conditions for example and tie it in with a cfme.utils.wait.wait_for() as discussed above.

	If you feel icky about something you’ve written but don’t know how to make
it better, ask someone. It’s better to have it fixed before submitting it as
a pull request ;)

	Use six library to write Python 3 compatible code.

Other useful code style guidelines:

	PEP 20 - The Zen of Python [http://www.python.org/dev/peps/pep-0020]

	PEP 257 - Docstring Conventions [http://www.python.org/dev/peps/pep-0257]

UI modeling

For a guide on how to model the UI representation in our framework, please see UI modeling.

Layout

cfme_tests/

	cfme/ Page modeling and tests

	fixtures/ The new fixtures

	tests/ Tests container

	utils/ Utility functions that can be called inside our outside the
test context. Generally, util functions benefit from having a related test
fixture that exposes the utility to the tests. Modules in this directory
will be auto loaded.

	tests/ Unit tests for utils

	conf/ Place for configuration files

	data/ Test data. The structure of this directory should match the
structure under cfme/tests/, with data files for tests in the same relative
location as the test itself.

	For example, data files for cfme/tests/dashboard/test_widgets.py could go into
data/dashboard/test_widgets/.

	fixtures/ py.test fixtures that can be used by any test. Modules in
this directory will be auto loaded.

	markers/ py.test markers that can be used by any test. Modules in this
directory will be auto loaded.

	cfme/metaplugins/ Plugins loaded by @pytest.mark.meta. Further informations in
markers.meta

	scripts/ Useful scripts for QE developers that aren’t used during
a test run

	sprout/ Here lives the Sprout appliance tool.

Writing Tests

Tests in cfme_tests have the following properties:

	They pass on a freshly deployed appliance with no configuration beyond the
defaults (i.e. tests do their own setup and teardown).

	Where possible, they strive to be idempotent to facilitate repeated testing
and debugging of failing tests. (Repeatable is Reportable)

	Where possible, they try to clean up behind themselves. This not only helps
with idempotency, but testing all of the
CRUD [http://en.wikipedia.org/wiki/CRUD] interactions helps to make a
thorough test.

	Tests should be thoroughly distrustful of the appliance, and measure an
action’s success in as many ways as possible. A practical example:

	Do not trust flash messages, as they sometimes tell lies (or at least
appear to). If you can go beyond a flash message to verify a test
action, do so.

Some points when writing tests:

	When naming a test, do not use a common part of multiple test names as a test
name itself. In the example below, trying to run a single test called
test_provider_add, not only runs that test, but also test_provider_add_new
and test_provider_add_delete, as pytest uses string matching for test names.
test_provider_add should have a suffix making it unique. In this way a tester
can choose the run just the single test on its own, or the group of tests, whose
names all begin the same way.

	test_provider_add - Adds a provider (Bad naming)

	test_provider_add_new - Adds a new provider type

	test_provider_add_delete - Adds a provider and then deletes it

	Where a clean-up is required, it should be carried out in a Finalizer. In this
way we prevent leaving an appliance dirty if the test fails as the clean up will
happen regardless.

	Keep all properties, fixtures and functions together

Fixtures

Fixtures are not only responsible for setting up tests, but also cleaning up
after a test run, whether that test run succeeded or failed.
addfinalizer [http://pytest.org/latest/funcargs.html#_pytest.python.FuncargRequest.addfinalizer] is very powerful. finalizer functions
are called even if tests fail.

When writing fixtures, consider how useful they might be for the overall
project, and place them accordingly. Putting fixtures into a test module
is rarely the best solution. Instead, try to put them in the nearest
conftest.py. If they’re generic/useful enough consider putting them into
one of the fixtures/ directory for use in cfme_tests or the plugin/
directory for use in both projects.

This Document

This page is subject to change as our needs and policies evolve. Suggestions
are always welcome.

Documenting cfme_tests

Overview

In addition to PEP 257 [http://www.python.org/dev/peps/pep-0257/], inline documentation of the cfme_tests code adheres to the
Google Python Style Guide [http://google-styleguide.googlecode.com/svn/trunk/pyguide.html#Comments]. The Google-recommended docstring format is very easy to both
read and write, and thanks to the cartouche [http://cartouche.readthedocs.org/] library, it’s parseable by sphinx [http://sphinx-doc.org/], which
we use to generate our documentation.

The documentation is built and hosted by the excellent readthedocs [https://readthedocs.org/] service, but
should be built locally before making a pull request.

docstrings

The napoleon library parses our docstrings and turns them into nicely rendered API docs
in the sphinx output. As such, we should follow napoleon’s usage guidelines when writing
docstrings:

https://pypi.python.org/pypi/sphinxcontrib-napoleon

According to PEP 257, docstrings should use triple double-quotes, not triple single-quotes
(“”” vs. ‘’‘).

Example:

"""This is a docstring."""

'''This is not a docstring.'''

Documenting Tests

Tests are documented slightly differently to modules, in that they require certain extra
information that isn’t required for a module/class/function. If a test uses the testgen library
it must also specify a test_flag in the metadata section. An example of this is shown below.

"""Tests provisioning via PXE

Metadata:
 test_flag: pxe, provision
"""

These flags are also defined in the cfme_data.yaml file, under the test_flags: key. A
provider in the cfme_data.yaml can opt out of collection for a particular test_flag by
including the flag in the list of excluded_test_flags: key in the providers stanza.
All of the flags listings are listed in comma separated format. This was chosen to cut down on
syntax characters and all values are whitespace stripped.

	For a test to be collected for a provider:

	
	the test_flag must be listed in the cfme_data.yaml file test_flags: key

	the test_flag must be listed in the metadata section of the test’s docstring

	the test_flag must NOT appear in the list of excluded_test_flags: for a particular
provider

It is beneficial that the documented test also has its description in it in Google-style format.
When the automated tests get imported in our test case management system, the comment is imported
as a description, so you don’t have to write it twice!

"""Tests provisioning via PXE

This test verifies that foo causes bar to crash.

Prerequisities:
 * bar is set up
 * baz

Steps:
 1) Ook.
 2) Ook?
 3) Ook!

Metadata:
 test_flag: pxe, provision
"""

Linking new modules

As new modules are created, they’ll need to be added to the documentation tree. This starts in the
toctree directive in docs/index.rst. Each entry in that tree references other .rst files
in the docs/ directory, which can in turn reference documentation sources in their own toctree
directives (ad infinitum).

Once the rst file has been inserted into the toctree (assuming one had to be created), sphinx
needs to be told to generate documentation from the new code. We use sphinx’s autodoc feature
to do this, and it looks like this:

.. automodule:: packagename.modulename

The paramater passed to the automodule should be the importable name of the module to be
documented, cfme.login for example.

There is no hard and fast rule for where things should go in the toctree, but do try to keep the
docs well-organized.

Building the Docs

Prior to pushing up new code, preview any new documentation by building to docs locally.
You can do this using the sphinx-build command. From the cfme_tests directory:

sphinx-build -b html docs/ docs/build/

This will build html documentation based on the sources in the docs/ directory, and put them
in the docs/build/ directory, which can then be opened in a browser:

google-chrome docs/build/index.html
or...
firefox docs/build/index.html

Setting up editors

Sublime

The “supported” editor of choice for working on this project is
Sublime Text 2 [http://www.sublimetext.com] (sublime), though these instructions will likely
also work for Sublime Text 3. Of course you’re free to use whichever
editor helps you be the most productive, but the preponderance of Sublime users on the team
make it the most useful target for our development environment setup documentation.

Getting Started

Get sublime

To begin, sublime must be installed. It is distributed via a tarball from the
sublime download page [http://www.sublimetext.com/2]. This tarball can be extracted anywhere.
A likely place is in your home folder. Once extracted, run the sublime_text executable in the
new directory to start the editor.

Configure sublime for Python

By default, sublime will attempt to autodetect indentation. When this autodetection fails,
it will fall back to using 4-space tab stops, but using tabs instead of spaces. To easily
address this, open any .py in the editor, and then select Preferences > Settings - More >
Syntax Specific - User from the menu. This should open up Python.sublime-settings.
In this file, enter the following options and save:

{
 "detect_indentation": false,
 "rulers": [100],
 "tab_size": 4,
 "translate_tabs_to_spaces": true,
 "use_tab_stops": true
}

This will force python files to match our code style guidelines, which use spaces instead of
tabs with an indentation of 4 spaces.

The rulers option will also draw a vertical line at 100 characters as a visual aid to keep
lines from getting too long. Additional integer values can be added to the rulers list; it
might be useful to also have a rule at 80 columns as a “soft limit”, for example.

Package Control

Once sublime is up and running, we’ll need to install some package management, which we’ll be
using hereafter to bring in sublime extensions. Follow the
installation instructions [https://sublime.wbond.net/installation#st2].
Be sure to follow the instructions for Sublime Text 2, unless you’re beta testing Sublime Text 3.

Note

When installing packages, it is sometimes necessary to restart sublime for the
installed packages to initialize. For simplicity, it is probably easiest to restart sublime
after installing any package. Restarting sublime after changing configuration files should
not be necessary.

SublimeCodeIntel

Install the SublimeCodeIntel package. Select Preferences > Package Control from the program
menu, then choose “Install Package”. Enter “SublimeCodeIntel”. Once installed, SublimeCodeIntel
will provide autocompletion for imports and function/method calls.

SublimeCodeIntel will autodetect python names from project directories (visible in the sidebar)
for autocompletion, but it won’t detect builtins or installed libraries. To enable this,
SublimeCodeIntel needs to be given a hint. It looks for config files in .codeintel directories
inside of project directories, so we’ll be putting the hint there. The cfme_tests directory
is the perfect place for the .codeintel directory, so ensure that the cfme_tests directory
has been added to your current project. If not, Project > Add Folder to Project..., and select
your cfme_tests directory.

Using your tool of choice (for example, a shell or sublime itself), make the .codeintel directory
under cfme_tests. Inside that directory, create and edit the file
config (cfme_tests/.codeintel/config). Like most sublime configuration files, the content of
this file is a python dictionary. It looks very similar to JSON, which is used in most
sublime configuration files, so be mindful of the different syntax.

Insert the following:

{
 "Python":
 {
 "codeintel_scan_files_in_project": True,
 "python": "/path/to/virtualenv/bin/python",
 "pythonExtraPaths":
 [
 "/path/to/virtualenv/lib/python2.7/site-packages"
]
 }
}

Remember to change the /path/to/virtualenv strings to be the actual path to your virtualenv.
python should point to the virtualenv’s python interpreter.

Relative paths can be used here, and will be relative to the project folder (in this case,
cfme_tests), not the location of this config file. So, if cfme_tests is in the same
directory as the virtualenv’s bin and lib directory, The paths for python and
pythonExtraPaths could start with ../bin and ../lib, respectively.

Flake8 Lint

Using Package Control, install the “Python Flake8 Lint” package. To apply our specific style
exceptions to this package, edit the configuration. Via the menu, choose Preferences >
Package Settings > Python Flake8 Lint > Settings - User. In the settings file that opens,
enter our exceptions:

{
 "pep8_max_line_length": 100,
 "ignore": ["E128"]
}

Flake8 lint will pop up every time you save a file, and does an excellent job of keeping you
linted while you code.

Trailing Spaces

Using Package Control, install the “Trailing Spaces” plugin. This highlights trailing spaces
so you can clean them up before flake8 sees them.

Sublime Text 3

Sublime Text 3 is currently in beta, but it is perfectly usable for python development. I will show
you my setup here (mfalesni). Prerequisities are the same as for ST2 (Package Control).

Recommended Extensions and Settings

SublimePythonIDE

It is a rewrite of SublimeRope for ST3. It is both Python Autocompletion and PEP8 checker.
Install it from package manager the same way is described in chapter about ST2.

After installation, go to Preferences -> Package Settings -> SublimePythonIDE -> User and insert
this code:

{
 "open_pydoc_in_view": true,
 "create_view_in_same_group": false,

 "python_linting": true,
 "python_linter_mark_style": "outline",
 "python_linter_gutter_marks": true,
 "python_linter_gutter_marks_theme": "alpha",
 "pep8": true,
 "pep8_ignore": ["E128"],
 "pep8_max_line_length": 100,
 "pyflakes_ignore": []
}

For the project file (Project -> Edit Project), use this code:

{
 "folders":
 [
 {
 "follow_symlinks": true,
 "path": "/home/mfalesni/sublime-workspace/cfme_tests",
 },

 {
 "follow_symlinks": true,
 "path": "/home/mfalesni/sublime-workspace/whatever_else_directory_you_need",
 },
],

 "settings":
 {
 "python_interpreter": "/home/mfalesni/sublime-workspace/.cfme_tests_ve/bin/python",
 "tab_size": 4,
 },
}

Of course, replace the paths according to your setup. python_interpreter is the path for your
virtualenv python.

From now, Sublime will know about all modules that are in virtualenv/cfme_tests namespace.

When you right-click a symbol, you can view a documentation, or jump to the symbol definition.

GitGutter

Very good plugin, showing you lines that are added/modified/removed in your git repository in form
of marks on left side of the editor window. (first suggested by jkrocil)

BracketHighlighter

Simple plugin that shows you location of brackets, parenthesis and others that you are in on left
side of editor window.

Neon color scheme

You might find default colour theme a bit humdrum. I use Neon color scheme, which uses more colours
and the colouring depends on the context so one has better view on the situation.

To install, simply install Neon Color Scheme package. Then open Preferences -> Settings - User
and add this entry "color_scheme": "Packages/Neon Color Scheme/Neon.tmTheme" to the conf dict.

Python Improved

Together with Neon, this package makes python source code better readable. Install with package
manager C-P -> Install Package -> Python Improved. Then after installation, open whatever
python source file you like, click View -> Syntax -> Open all with current extension as ... and
select PythonImproved.

emacs

So far the best emacs setup I’ve (jweiss) found is iPython notebook, combined with the ein [http://tkf.github.io/emacs-ipython-notebook/] emacs package (emacs iPython notebook).

Installing iPython and its Emacs client

iPython

See the install docs [http://ipython.org/install.html].

ein

Emacs iPython Notebook [http://tkf.github.io/emacs-ipython-notebook/] is the emacs client for
iPython.

The official ein package does not work with the latest ipython. I built a package from the fork [https://github.com/millejoh/emacs-ipython-notebook] of ein that does work. You can get the
package from the internal repository listed below. You should also add the Melpa [http://melpa.milkbox.net/#/] repository.

(add-to-list 'package-archives
 '("melpa" . "http://melpa.milkbox.net/packages/") t)
(add-to-list 'package-archives
 '("jweiss" . "http://qeblade5.rhq.lab.eng.bos/isos/emacs-package-archive/") t)

You can then run M-x package-install, ein in emacs to install ein.

Then in a shell somewhere, you can start up iPython notebook process. This is the python process
that will intepret all the code you will be sending it.

$ source ~/my-virtual-env/bin/activate
$ cd ~/my-project
$ ipython notebook

Then in emacs, run M-x ein:notebooklist-open. It will prompt you for a port (default 8888).
This will bring up the EIN environment, where you can evaluate python snippets (and edit them and
evaluate them again). You can also save the notebook to use your snippets again later. The outputs
are also saved.

Starting iPython from within Emacs

I wrote a little bit of elisp to start a iPython notebook process for you from within emacs. It’s
easier than having to type shell commands every time. It requires the magit package, which I
highly recommend (it is a git client for emacs).

(autoload 'magit-get-top-dir "magit" nil t)

(defun magit-project-dir ()
 (magit-get-top-dir (file-name-directory (or (buffer-file-name) default-directory))))

(defun start-ipython-current-project (virtualenv-dir)
 (interactive
 (let ((d (read-directory-name "VirtualEnv dir: " "~/.virtualenvs/" nil t)))
 (list d)))
 (save-excursion
 (let ((buf (get-buffer-create
 (generate-new-buffer-name (file-name-nondirectory
 (directory-file-name (file-name-directory (magit-project-dir))))))))
 (shell buf)
 (process-send-string buf (format ". %s/bin/activate\n" virtualenv-dir))
 (process-send-string buf (format "cd %s;ipython notebook\n" (magit-project-dir))))))

To use the above snippet,

	Go to any buffer that’s visiting any file in your project (or any buffer whose pwd is in your project)

	M-x start-ipython-current-project

	At the prompt, input the directory where your virtualenv lives

It will start ipython in emacs’ shell buffer.

Autosave Notebooks

Unlike the iPython web interface, ein does not autosave notebooks by default. Here is a snippet
that will enable autosave (notebooks are saved every time you execute a cell)

;; ein save worksheet after running cell
(eval-after-load 'ein-multilang
 '(defadvice ein:cell-execute (after ein:save-worksheet-after-execute activate)
 (ein:notebook-save-notebook-command)))

Flake8 Lint

Flycheck is recommended because it highlights the column where the problem occurs instead of just the line.

Run M-x package-install, flycheck, and see the Flycheck homepage [https://github.com/flycheck/flycheck].

You can use the global mode as described on the homepage, or to just enable flymake for python files

(autoload 'flycheck "flycheck-mode")
(eval-after-load 'python
 '(add-hook 'python-mode-hook 'flycheck-mode))

Recommended

	Magit

	Emacs client for git and a huge time saver. All git commands are a single keypress, pretty views
of diffs, branches, remotes, etc. Package is magit.

	Ido and Smex

	ido package (now built into emacs) for filename and buffer name completion, smex for
M-x command completion.

	Smartparens

	Inserts parens, brackets, quotes, etc in pairs. Keeps parens balanced, allows you to edit
paren-delimited structures logically instead of as plain text (designed for lisp but also works
on html, xml, json, etc). Replaces paredit, an older and more well-known tool that does the same
thing. Package smartparens.

	Autocomplete

	Code completion for emacs. Package is called autocomplete, see ein docs for how to enable in
python buffers.

	Undo Tree

	Edit with confidence! Keeps track of all your buffer changes, even stuff you undid and re-did on
top of. Package is called undo-tree.

	yagist

	Create a github gist (paste) from a region or buffer with a single keypress, and the link to the
gist is automatically inserted into the clipboard so you can easily paste it into IRC.

	Multiple cursors

	Extremely powerful editing tool, best described with this
video. [http://emacsrocks.com/e13.html] Package is multiple-cursors.

PyCharm

PyCharm is a very powerful python IDE. However, it comes with a price - it’s also quite resource-heavy.
It has a community edition [https://blog.jetbrains.com/pycharm/2013/10/pycharm-3-0-community-edition-source-code-now-available/]
that is open-source since 2013. You can get it here [https://www.jetbrains.com/pycharm/download/].
Some of its best out-of-the-box features are:

	Code inspections with PEP8 support

	Git integration with diff preview and other tools

	Easy per-project configuration including code style

	Symbol navigation and code completion

	Support for html, json, xml and yaml

	Powerful degugging tool

	Many others

Following examples and settings were tested on PyCharm Community Edition 2017.2.3

Useful plugins

PyCharm has a library of many useful plugins. To install them, go to
File -> Settings -> Plugins -> Install JetBrains plugin.

Some plugins you might find useful are:

	BashSupport

	Supports syntax highlighting, rename refactoring, inspections and many more.

	IdeaVim

	Very good Vim emulation. If you have been using Vim for some time, you will feel at home.

Code style compliance

You can set up PyCharm in such a way that it takes care about code style for you.
You can go very much in-depth with this, but here are the basics of whay you can do:

	100 characters maximum line length

	Set File -> Settings -> Editor -> Code Style -> Right margin (columns) to 100

	PEP 8 revisions

	Add E128 to File -> Settigns -> Editor -> Inspections -> Python -> PEP 8 coding style violation -> Ignore errors

	Problems with pytest fixtures

	PyCharm is unfortunately ignorant of pytest inner workings.
It means that it will mark fixtures passed to test methods as ununsed parameters.
In order to get rid of those warnings, you can disable following inspection:
File -> Settigns -> Editor -> Inspections -> Python -> Unused local
If a fixture is specified in the same module as your test method, you will get other warning when using it.
Disable File -> Settigns -> Editor -> Inspections -> Python -> Shadowing names from outer scopes.

Feel free to add any other tips & tricks you come up with.

Frequently Asked Questions

How do I increase logging level of the testing framework?

You can put logging entry into your env.local.yaml like this:

logging:
 level: DEBUG

Can I run tests in interactive mode?

Yes, you can. Just call IPython’s method embed() wherever you need the execution
to enter an interactive mode. Example:

def test_foo(bar):
 x = do_something()
 from IPython import embed; embed()
 assert x

Then you can run your test with -s parameter: pytest -s cfme/tests/test_foo.py::test_foo.
Once the execution reaches the “breakpoint”, you will be presented with IPython’s
interactive prompt.

Another way is to use the python debugger - pdb [https://docs.python.org/2/library/pdb.html].
Do not forget that you still need to use -s pytest parameter in order for this to work.

def test_foo(bar):
 x = do_something()
 import pdb; pdb.set_trace()
 assert x

How do I build this documentation?

Go to cfme_tests/integration_tests/docs and run make clean && make html.
Then go to _build/html. You can open and view the HTML files in your browser.

Why was my test case skipped?

This is more of a pytest thing, but it is not very obvious.
If you want to see the reason for skipping tests, run pytest with -rs parameter like this:

$ pytest -rs cfme/tests/infrastructure/test_vm_power_control.py::test_no_template_power_control

If you run it like this, pytest will print info about skip reason.
For example:

Skipping due to these blockers:
- Bugzilla bug https://bugzilla.redhat.com/show_bug.cgi?id=1496383 (or one of its copies)

The same can be done for tests that failed, passed or ended up throwing an error.
For more info, see pytest --help | grep -A 2 "chars"

I upgraded to Fedora 27 and now I cannot run any tests!

Are you seeing this when trying to start tests?

ImportError:

pycurl: libcurl link-time ssl backend (openssl) is different from compile-time ssl backend (nss)

Then the solution for you is to reinstall pycurl.
Do the following within your virtualenv.

$ pip uninstall pycurl
$ pip install pycurl==7.43.0 --global-option="--with-openssl"

Selenium Gotchas

Selenium has a few quirks which have caused us immense amounts of debugging time. If you
are facing strange issues with Selenium that you can’t explain and this usually boils down
to “Selenium is lying to me”, please check this page first before spending vast amounts of
time debugging .

Selenium is not clicking on the element it says it is

Sometimes, under certain circumstances, Selenium doesn’t click on the element you tell it to.
The symptoms of this include having a WebElement that gives a certain value when queried with
.text() and then Selenium actually clicking on the wrong element. This has been observed
happening when there is a frame or some other element where horizontal scrolling has been
introduced. A typical example would be in the left hand tree items in the System Image Type
under the Infrastructure > PXE menu. If one system image name is 256 characters, this causes
the problem to manifest.

Selenium is not sending the keys I tell it to, or is filling the box with junk

This should not be happening now since framework is configured to be more intelligent than Selenium
and it detects whether the element filled is a file input or not. Because Selenium can be running
remotely, if you want to upload a file, Selenium first needs to upload the file to the remote
executor and then it changes the string accordingly. This happens in default Selenium configuration,
as the selenium.webdriver.remote.file_detector.LocalFileDetector is used by default for
all keyboard input. Framework now sets it up so the
selenium.webdriver.remote.file_detector.UselessFileDetector is used by default and if
the element filled is an input with type file, then the file detector is actually used.

When getting the text of the element, Selenium returns an empty string

Stop using the .text property of the WebElement and use
cfme.fixtures.pytest_selenium.text(), which solves this issue. The thing is, when an
element is eg. obscured, Selenium can’t read it. So the text function first tries to scroll the
page so the element is visible, and if that does not help, it uses a bit of JavaScript to pull the
text out.

flake8

There are many handy tools that can be used to check your code against established python style. A
tool called flake8 exists to combine these tools into one easy-to-use package. flake8 is used
by reviewers on pull requests for style compliance, so it’s a good idea to run flake8 before
submitting code for review.

Note

All new content in pull requests is expected to pass flake8 linting.

Manual Invocation

To use flake8 in our project, first install it: pip install flake8 or easy_install flake8.

Some flags are required to deal with our specific alterations to python style:

	We allow lines up to 100 characters in length; add --max-line-length=100

	We indent block statement line continuations twice, even in function defs; add --ignore=E128

Then, aim it at the python file (or files) being edited:

flake8 --max-line-length=100 --ignore=E128 path/to/python_module.py
flake8 --max-line-length=100 --ignore=E128 path/to/python/package/`

These settings can be stored as defaults in a config file. By default, flake8 looks in
~/.config/flake8. Here is an example file that adheres to our style guidelines:

[flake8]
ignore = E128
max-line-length = 100

IDE Integration

Sublime Text 2 & 3

The excellent Flake8 Lint [https://sublime.wbond.net/packages/Python%20Flake8%20Lint] for the
sublime text editor will do automatic linting using the flake8 tool.
To configure it to follow our guidelines, Add the following options to your
Flake8Lint.sublime-settings file:

"pep8_max_line_length": 100
"ignore": ["E128"]

Emacs

See flymake-python-pyflakes.el [https://github.com/purcell/flymake-python-pyflakes].

If you have Melpa or Marmalade package repos already set up, you can install the package by
M-x package-install, flymake-python-pyflakes.

To activate on all Python files, add this to your emacs configuration:

(autoload 'flymake-python-pyflakes-load "flymake-python-pyflakes" nil t)
(eval-after-load 'python
 '(add-hook 'python-mode-hook 'flymake-python-pyflakes-load))

To use flake8 and our particular rules:

	M-x customize-group, flymake-python-pyflakes

	Set Flymake Python Pyflakes Executable to flake8

	Add to Flymake Python Pyflakes Extra Arguments:
* --max-line-length=100
* --ignore=E128

Others

If your IDE isn’t listed here, feel free to add instructions above!

Adding a New Provider Type

Introduction

Though not an exhaustive guide, this page details some of the tasks that need to be carried out in
order for a new provider to be added and suported in the ManageIQ integration_tests framework.

wrapanapi

wrapanapi is a key component in the testing process. Each provider that we test has its own class
within wrapanapi. The name of the project gives some indication as to what it does, it simply
wraps-an-API. People ask why we use a wrapper around existing python library APIs. The answer is
because we try to maintain a common API across the providers APIs where possible.

Validating information on the provider is important. When testing ManageIQ we don’t just rely on
the information it gives us, we need to ensure that the information is correct. To do that, we call
out to the provider itself and validate that if ManageIQ says there are 25 VMs, that there really
are 25VMs. Some simple methods are often present on the wrapanapi management class with names like
num_vm. These simply return a count of the number of VMs that are present in the normal context.

You may often find that there are options to the method too. wrapanapi is designed to work primarily
with ManageIQ for testing, but is also an Open Source system, allowing anyone to use it as a simple
management tool for multiple provider types.

The first step in the process of adding a new provider is making a rudimentary wrapanapi class. This
should always be called ProviderSystem, where Provider is a short name denoting your new provider.

Provider Type

If your provider doesn’t conform to the currently existing types, which broadly consist of Infrastructure
and Cloud virtualization, Containers and Middleware, you will need a new provider type. You can think
of this as a kind of super class that will be a reference point for all future classes of the same
type. Though it is not entirely necessary. It is nice to create these to give others a springboard
if they are creating a provider which is of the same type as yours.

The next part of the process is to create the provider type class within the integration_tests repository.
This class will be used to represent your providers type in the ManageIQ system. It is your singular point
of reference and will become your go to point of contact for all provider type related operations.

An example of a new provider type is below, we will take a moment to walk through the various parts of it.

The example above does a few things and we shall ignore the imports. Firstly we define the
PhysicalProvider class. Note that this follows the same format as in wrapanapi. Also note that this
class can’t really do anything. It is a placeholder that knows about things like, how to list
all the providers which are of type physical.

The category attribute is very important. It is used to classify your provider classes.
STATS_TO_MATCH is a helper which is invoked during provider validation and will run the same
method on both the ManageIQ side, and the wrapanapi side, to ensure parity.
endpoints, name, key are really the base level components to any provider. The endpoint
describes how to contact the provider, what its credentials are and its various methods of communication.
ManageIQ can sometimes interact with multiple endpoints on a provider. This allows that communication
to be represented inside the testing framework and to fill in the multiple endpoint forms in the UI.

The main credential is always called default and endpoints takes the form of a dictionary which
is used to instantiate some Endpoint objects. Please refer to existing providers for more
information on this.

Lastly there is a Navigation step defined. This is using the navmazing component and should
be used as an example only. You should go and look up further examples of the navmazing and
widgetastic systems to understand how to interact with the UI. In this example, we are creating
reference to an All destination which will, in the UI, navigate to a page showing all the
physical infrastructure providers.

Provider Class

Now that we have a provider type, or perhaps we already have one, we need to create a provider class.
This class is a specific implementation of the provider. Anything which is not common across either
the providers as a whole, or the even within the category of the provider, is recorded here.

from cfme.common.provider import DefaultEndpoint, DefaultEndpointForm

from . import PhysicalProvider

class BigBadEndpoint(DefaultEndpoint):
 pass

class BigBadEndpointForm(DefaultEndpointForm):
 pass

class BigBadProvider(PhysicalProvider):
 type_name = 'bigbad'
 endpoints_form = BigBadEndpointForm
 string_name = "Ems Physical Infras"
 mgmt_class = BigBadSystem # The reference to wrapanapi

 def __init__(self, appliance, name=None, key=None, endpoints=None):
 super(BigBadProvider, self).__init__(
 appliance=appliance, name=name, key=key, endpoints=endpoints
)

 @classmethod
 def from_config(cls, prov_config, prov_key, appliance=None):
 endpoint = BigBadEndpoint(**prov_config['endpoints']['default'])
 return cls(name=prov_config['name'],
 endpoints={endpoint.name: endpoint},
 key=prov_key,
 appliance=appliance)

 @property
 def view_value_mapping(self):
 return {'name': self.name,
 'prov_type': 'BigBad Provider'
 }

To note are the endpoints. You can see here that we are inheriting some default forms. These are
used for almost every provider. They provide support for simple username/password combinations.
In the from_config method, we have provider specific instantiation of the class. You can
see that we instantiate the BigBadEndpoint class by passing it information from the
prov_config. This is the data which is stored in the yamls and looks similar to the following.

big-bad-prov:
 name: bigbad
 type: bigbad
 tags:
 - default
 endpoints:
 default:
 ipaddress: xx.xx.xx.xx
 hostname: bigbadprovider.something.com
 credentials: mycreds

The last point of note in this example is the view_value_mapping property. This is responsible
for returning specific form data what is not covered by endpoints. In ManageIQ, there is a need to
select the provider type when adding a new provider and this providers that type.

Registering your Provider

Before your provider can be used in any tests it first must be registered. This is achieved by adding
it to setup.py. You should be familiar with the entrypoints system to do this. Below you can
see the examples of how the provider is added for the previous types.

entry_points={
 'manageiq.provider_categories':
 [
 'infra = cfme.infrastructure.provider:InfraProvider',
 'cloud = cfme.cloud.provider:CloudProvider',
 'middleware = cfme.middleware.provider:MiddlewareProvider',
 'containers = cfme.containers.provider:ContainersProvider',
 'physical = cfme.physical.provider:PhysicalProvider',
],
 'manageiq.provider_types.infra': [
 'virtualcenter = cfme.infrastructure.provider.virtualcenter:VMwareProvider',
 'scvmm = cfme.infrastructure.provider.scvmm:SCVMMProvider',
 'rhevm = cfme.infrastructure.provider.rhevm:RHEVMProvider',
 'openstack_infra = cfme.infrastructure.provider.openstack_infra:OpenstackInfraProvider',
],
 'manageiq.provider_types.cloud': [
 'ec2 = cfme.cloud.provider.ec2:EC2Provider',
 'openstack = cfme.cloud.provider.openstack:OpenStackProvider',
 'azure = cfme.cloud.provider.azure:AzureProvider',
 'gce = cfme.cloud.provider.gce:GCEProvider',
],
 'manageiq.provider_types.middleware': [
 'hawkular = cfme.middleware.provider.hawkular:HawkularProvider',
],
 'manageiq.provider_types.containers': [
 'openshift = cfme.containers.provider.openshift:OpenshiftProvider',
],
 'manageiq.provider_types.physical': [
 'hawkular = cfme.middleware.provider.bigbad:BigBadProvider',
],
}

Development Tips and Tricks

Introduction

This document is intended to explain some of the extra bits of the framework that are there to
make your life easier. Not everything is included here and we encourage people to add new tricks
as they are developed and rediscovered.

Version Picking

Dealing with multiple releases, it’s obvious that some things change from version to version. A lot
of the time, these changes are simple, such as a string change. So that we can continue using the same
codebase for any version, we define the idea of version picking. Version picking essentially returns
an object depending on the version of an appliance. It’s particularly useful for things like locator
changes because most of the element handling routines are version picking away. This means if they
receive a dict as an argument, they will automatically try to resolve it using the version picking tool.
To use version picking is easy:

from cfme.utils import version

version.pick({'5.4': "Houses",
 '5.3': "House",
 version.LOWEST: "Boat"})

In this example, if the version is below 5.3, the Boat will be returned. Anything between 5.3 and 5.4
will return House and anything over 5.4 will return Houses. There is also a version.LATEST
which points to upstream appliances. Another important point to remember is that one shouldn’t verspick at import time. The best practise is to use it inside locators without using verpick excpliticly. The syntax is pretty simple:

locators={
 'properties_form': {
 version.LOWEST: Input('House'),
 '5.6': Input('Houses'),
 }
 }

Defining blockers

Sometimes we know a test fails due to a bug in the codebase. In order to make sure the test isn’t run
and attributing an extra fail that doesn’t need to be investigated, we mark it with a meta marker.
The meta marker is incredibly useful and integrates with our Bugzilla implementation to ensure that
if a bug is still on DEV, or hasn’t even been assigned yet, that the test won’t run. The syntax is
really easy:

@pytest.mark.meta(blockers=[12345, 12346])
def test_my_feature():
 # Test the new feature
 pass

Note the two bug numbers 12345 and 12346. More information can be found in the fixtures.blockers
fixture.

Using blockers in tests

On the odd occasion, you don’t want to disable an entire test, but just a part of it, until a bug
is fixed. To do this, we can specify a bug object and ask the framework to skip if a certain bug
exists and is not closed. The syntax is pretty simple:

def my_test(provider, bug):
 ui_bug = bug(12234)
 if not ui_bug:
 # Do something unless the bug is still present in which case, it will be skipped

Uncollecting tests

There are times when conditions dictate that we don’t need to run a test if a certain condition
is true. Imagine you don’t want to run a test if the appliance version is below a certain value.
In these instances, you can use uncollectif which is a pytest marker:

@pytest.mark.uncollectif(lambda appliance: appliance.version < '5.9')
def test_my_feature():
 # Test the new feature
 pass

Now if the version of the appliance is less than 5.3. Then the test will not be skipped, it will
never even try to be run. This is ONLY to be used when a certain test is not valid for a certain
reason. it is NOT to be used if there is a bug in the code. See the Defining blockers section above for
skipping because of a bug.

Running commands on another appliance

Warning

Though this still works, the stack will be removed in due course. Objects now are
linked to an appliance and it is expected that this appliance will be what is used.
As this is now the case, it is unlikely that the context manager will be needed for
much longer.

We implement a small appliance stack in the framework. When a test first starts it loads up the first
appliance in the stack. From then on, all the browsing operations, database operations and ssh commands
are run on the top appliance in the stack. From time to time it becomes necessary to run commands on
another appliance. Let’s say you were trying to get two appliances to talk to each other, in this case,
you would use the context manager for appliances.

By default, even if you add a new appliance onto the stack, the browser operations will keep
happening on the last appliance that was used, however, there is a simple way to steal the browsers
focus, and this is detailed in the example below:

appl1.ipapp.browser_steal = True
with appl1.ipapp:
 provider_crud.create()

In the example we have already created a new utils.appliance.Appliance object and
called it appl1. Then we have set it to steal the browser focus. After this, we enter the
context manager appl1.ipapp and are able to run operations like provider creates.

This is also why you should use ssh_client and db access from the store.current_appliance
and not from the modules directly. If someone else uses your code and is inside an appliance
context manager, the commands could be run against the wrong appliance.

Logging in as another user

In a similar way to the Running commands on another appliance section above, we implement a context manager for user
operations. This allows the test developer to execute a section of code as a different user and then
return to the original user once complete.

A major advantage of this, is that the User object used for the CM operations is the same as the
cfme.configure.access_control object. This means that you can create a new user using the
cfme.configure.access_control.User object and straight after use it as the context manager
object:

cred = Credential(principal='uid', secret='redhat')
user = User(name='user' + fauxfactory.gen_alphanumeric(),
 credential=cred)
with user:
 navigate_to(current_appliance.server, 'Dashboard')

The User object stores the previous User object in a cache inside itself and on exiting the
context, returns this to the pytest store as the current user so that future operations are
performed with the original user.

Invalidating cached data

In order to speed things up, we cache certain items of data, such as the appliances version and
configuration details. When these get changed, the cache becomes invalid and we must invalidate
the cache somehow. You need to call an appropriate method on the appliance object like
utils.appliance.IPAppliance.server_details_changed() which invalidates the data.

pytest store

The pytest store provides access to common pytest data structures and instances that may not be readily available elsewhere. It can be found in fixtures.pytest_store, and during a test run is exposed on the pytest module in the store namespace as pytest.store.

Test generation (testgen)

We try to consolidate common test generation functions in the utils.testgen module. When parametrizing tests with the pytest_generate_tests hook, check the testgen module to see if there are functions available that already parametrize on the axis you want (usually by provider, but there are some other helpers in there).

Working with file paths

For any path in the project root, there are several helper functions that can be used. Look at the utils.path module for the complete list of pre-configured directories and available functions.

Expecting Errors

When working with the UI, we can actually run a process and expect to have a certain flash error message. This is built into a context manager so that all you need to do is supply the operation you want to try, and the emssage you expect to get. This means as a test developer, you don’t need to worrk about how to get the flash message, or how to handle the resulting error from the operation failing:

provider.credentials['default'] = get_credentials_from_config('bad_credentials')
with error.expected('Login failed due to a bad username or password.'):
 provider.create(validate_credentials=True)

Marking your tests with associated product requirements

Test requirements mapping

This module contains predefined pytest markers for CFME product requirements.

Please import the module instead of elements:

from cfme import test_requirements

pytestmark = [test_requirements.alert]

@test_requirments.quota
def test_quota_alert():
 pass

UI modeling

Introduction

This guide shall explain you how does our framework represents things in ManageIQ and its UI and
other endpoints.

Libraries

We use a couple of libraries we designed based on our experience and these libraries work together
to bring us a good developer experience:

	Navmazing [https://pypi.python.org/pypi/navmazing] - A UI navigation framework which
registers navigation locations to classes that represent objects or their collections. We
recommend reading the documentation on the PyPI package page. Referred to as NM.

Note

Responsible person: psavage

	Widgetastic [https://pypi.python.org/pypi/widgetastic.core] - Page Object Model on steroids.
Allows mostly declarative specification (Django model inspired) of how does the UI look, what
things are present, provides unified read and fill interface, rich logs and other useful magic.
Referred to as WT.

Note

Responsible person: mfalesni

	Sentaku [http://sentaku.readthedocs.io/en/latest/] - Library that allows you to create an
object which will have multiple implementations of underlying methods, switching the
implementations based on context. Curently (Oct 2017) being slowly rolled out in certain parts.

Note

Responsible people: ronny, psavage

Another important concept is Designing Models which you must read if you want to create new
models as this guide assumes you are aware of these concepts already.

High-level process description

Here I will briefly describe the usual code flow how things interact. Think of it as a typical use
case. Don’t worry if you don’t understand some of the concepts presented here, they will be
explained later.

	A test wants to create something in the UI (things_collection.create(...))

	The create method needs to go to the Add page of things_collection, therefore it
asks NM

	NM starts working by instantiating the final step for target location, then the step’s
WT view and it checks whether it already is there. The view does not have to be specified,
but it is specified for most of our navigation steps.

	If it is not there, it tries to do the same to the prerequisite location recursively until
it reaches a location that is on screen now or some of the root locations, like
LoginPage or BaseLoggedInPage which are the usual “safe points”.

	If there are any steps to be made afterwards, it starts backtracking back to the target
location by executing the steps’ code.

	NM’s navigation returns the WT view of the last step.

	With the WT view returned from NM knowing that we indeed are on that particular
location, what usually happens next is that the create method dumps a dictionary of data
into view’s fill method.

	WT’s view fill goes through the view and fills each widget that was specified in the
dictionary with the appropriate value. Widgets whose names weren’t in the keys will be
skipped. None values are also skipped.

	fill tells you if it changed anything or not. You then decide what to do next. Usually what
happens next is that some button is clicked and then a flash messages are asserted.
You can also create an instance of another view if you know that by clicking the button you will
get bumped somewhere else and then assert whether that location is displayed or not

	Finally, create calls instantiate on the collection which takes all the required values
and creates an instance of the thing that was just created in the UI

Some caveats:

	There is a big difference between int and str. If you insert a numeric
value into an ordinary input, you need to have it as a string. Of course if you use a widget where
the only sensible values are numbers, then it will be operating with integers. But if values come
eg. from YAML, then the numeric value is automatically considered a number unless quoted.

	Remember that Widgetastic doesn’t touch fields which already have the required value. In that case
fill returns False so you know that nothing was changed.

Navmazing

For the initial explanation on Navmazing, read the guide on PyPI.

We beef Navmazing up locally with extra features, like error detection and Widgetastic integration
in ManageIQ tests. The important ones for developers are Widgetastic integration and object
injection.

If you specify VIEW on the navigation step class, it then has a default behaviour with
the am_i_here method, which you don’t need to write then. You can also use the view property
which gives you an instance of that view class. For writing steps, the most useful thing you will
use is the prerequisite_view as you need to make that particular step from the previous location
and not from the one you are writing the step in.

You usually navigate withing the context of some object. Navmazing then passes the object into the
Widgetastic view as well - self.context["object"]. You then use it to assert things in the UI
with the data pulled from the object, like titles and so on.

Let’s look at an example here:

@navigator.register(NamespaceCollection)
class Add(CFMENavigateStep):
 VIEW = NamespaceAddView
 prerequisite = NavigateToAttribute('parent', 'Details')

 def step(self):
 self.prerequisite_view.configuration.item_select('Add a New Namespace')

This piece of code tells us these things:

	We register this location against NamespaceCollection.

	We name the location Add.

	The location’s UI is represented by NamespaceAddView.

	In order to get to this location, we first need to go to the Details location of this object’s
parent (self.parent). This is the declarative recursive relationship mentioned in the high
level process description.

	In order to get from parent’s details to the dialog for adding a new namespace, we need to click
on the “Add a New Namespace” item in the Configuration dropdown. We use prerequisite_view
because on the actual Add view there is no Configuration dropdown.

The step definition can also contain the resetter method. That one is used when you have pages
that remember certain settings and you want to make sure, that before the step executes, the page
is in a known state.

The “root” navigation locations, like login page, dashboard, the initial pages of all menu item
destinations … these are registered against so-called Server instance. When dealing with the
appliance object, it is appliance.server if you need to navigate to one of those.

If you are going to implement new models, make sure you look around for existing navigation
locations that you may build on top of.

Warning

The actual step method should ideally contain one singular action, like clicking
a button or selecting a thing from tree. This is not a hard requirement, but unless it is needed,
we should avoid it.

Also when picking a prerequisite, try avoiding unnecessary steps. And example would be a page
with a tree on left side. If you know the tree path of your model object and the object has a
parent, you don’t need to invoke parent’s details first and then go on with the actual object’s
details, because it will select an item in the tree twice while you can just go straight for the
object’s item since selecting the parent is not a prerequisite for getting there.

Widgetastic

For the initial explanation on Widgetastic, read the guide on PyPI.

If you know Django models, then Widgetastic should be very familiar and intuitive for you. If not,
it should be intuitive.

Let’s start with a code sample:

from cfme.base.login import BaseLoggedInPage

class SomeForm(BaseLoggedInPage):
 title = Text('#title_text')
 name = Input(name='field_name')
 type = BootstrapSelect(id='field_type')

 @property
 def is_displayed(self):
 return self.title.text == 'Editing "{}"'.format(self.context['object'].name)

Note

All views (for the main UI) except the login page descend from BaseLoggedInPage in
some manner.

In Widgetastic, interactive and non-interactive UI elements are represented by so-called widgets,
which are classes that implement interaction with the UI element in a consistent manner.

Widgets are usally grouped on a View, which itself is also a widget, so you can nest the
structure if you need.

Each widget has its own rules concerning constructor parameters, you should read the documentation
for each of them.

Any sequential actions happen in the order of definition on the view. So if you fill some values by
feeding a dictionary into the view.fill(...) method, it will always follow the order of
definition.

If you have a nested view and the order is important, you need to decorate it with View.nested,
otherwise the view will be out of the assumed order.

You can fence the element lookup on the view by setting ROOT to a locator. Then before any
element is looked up as a result of interaction of any of the widgets on the particular view, the
ROOT element is looked up first and the following lookup happens in context of it. Imagine the
use case as if you had multiple boxes that have IDs and then have the same classes and no IDs on
things inside. This way you can divide and control.

Warning

If you want to instantiate a view for testing, use appliance.browser.create_view
and pass the view class and optionally the object that the view uses for asserting. If you want to
instantiate a plain widget, grab a Widgetastic’s Browser (appliance.browser.widgetastic)
and put it as the first argument before any widget’s init parameters. If you don’t pass the
browser, it will not work (I told you so).

Note

If you want to understand why, read about Python’s descriptors. If you instantiate a
Widget without the browser or a parent widget as a first argument, the Widget class
recognizes it and instead of instantiating an instance of that particular
Widget it creates and returns an instance of WidgetDescriptor that remembers the widget
class, args and kwargs and it then instantiates the true widget instance upon accessing on the
parent’s instance using descriptor protocol. Try accessing the same widget on a class and on the
instance. See the difference?

Apart from this simple usage, Widgetastic allows you to do a number of advanced constructs that are
described in Widgetastic’s guide. You should familiarize with them. Especially with Version picking
which is probably the most used feature.

Sentaku

WIP.

Selenium over VNC

Purpose

The goal of this page is to explain how to set up a remote display that can run selenium
tests, and manage/contain test-related web browser windows.

Note

This document assumes that you’re running a recent Fedora release, and already
have a working selenium setup for cfme_pages as explained in the cfme_pages README.

While these instructions are specific to tigervnc, available in Fedora 11 onward, they can
be easily adapted to use other VNC packages.

Install requirements

We will need a VNC server (tigervnc-server), a lightweight window manager to run inside that
VNC server (fluxbox), and a terminal emulator that can run inside the lightweight window
manager (xterm):

yum install tigervnc-server fluxbox xterm

We will also need the Standalone Selenium Server, which will run inside the VNC server. You can install and run it in any directory, but it is preferred to be installed in your virtualenv in a directory outside of or at the same level as your cfme_tests directory. You may be using this a lot so make sure the location is something you can easily remember. The Standalone Selenium Server jar files for 2.x versions (2.53 has been recently tested) can be downloaded from:

	Standalone Selenium Server Ver 2 Downloads [http://selenium-release.storage.googleapis.com/index.html]

To run it, open a dedicated terminal window and type the line similar to this example:

java -jar ../selenium/selenium-server-standalone-2.53.1.jar

For complete documentation, please go to:

	Standalone Selenium Server Documentation [http://docs.seleniumhq.org/docs/03_webdriver.jsp#running-standalone-selenium-server-for-use-with-remotedrivers]

Configure the VNC server

If it isn’t already there, create a .vnc directory in your home directory:

$ mkdir ~/.vnc

Set a password

Using the vncpasswd utility, enter your desired vnc password and save it to a file:

$ vncpasswd ~/.vnc/passwd

The ~/.vnc/passwd file stores an obfuscated version of the password entered, so you’ll
either want to use a memorable password or write the password down. Also, passwords longer
than 8 characters will be truncated. More on this Security).

Configure the startup script

Create or modify ~/.vnc/xstartup. This script is run inside the VNC server, and
bootstraps the environment. It must be executable, and needs to do the following things:

	If using chrome/chromdriver, configure the $PATH environment variable so that the
selenium server can find the google-chrome and chromedriver binaries

	Start the window manager (fluxbox)

	Start the selenium server in a terminal window (xterm, selenium-server-standalone-VERSION.jar)

Here’s an example script that does those things:

#!/bin/sh

Set up the environment so selenium can find everything it might want
(namely chrome and chromedriver)
export PATH="/path/to/google/chrome/directory/:/path/to/chromdriver/directory:$PATH"

Start the window manager
fluxbox &

Start the selenium server
xterm -maximized -e java -jar /path/to/selenium-server-standalone-VERSION.jar -ensureCleanSession -trustAllSSLCertificates &

Important things:
* The script MUST start with #!/bin/sh (or your shell shebang of choice).
* The script MUST be executable (chmod +x ~/.vnc/xstartup)
* The “-ensureCleanSession -trustAllSSLCertificates” won’t work with the selenium-server which is 3.x.x onward.
Start the server
^^^^^^^^^^^^^^^^

$ vncserver :99

This will start a local VNC server, listening on display 99 and port 5999. The string
‘:99’ is all you should need to enter into connection prompts to connect to VNC display
99. This example uses :99, but any other reasonable display number can be used throughout
this guide. This server will use the password stored in ~/.vnc/passwd.

View your new desktop

To connect to the server, there are a few tools that you can use. GNOME has a built-in
VNC viewer called vinagre, and tigervnc also provides one. Make sure at least one of
these is installed (package names are vinagre and tigervnc), and then connect to
the VNC server. Both tools have graphical and command-line interfaces.

To connect using either command-line tool, pass the display number as the first argument:

$ vncviewer :99
-or-
$ vinagre :99

Enter the VNC password that you set [above](Selenium-over-VNC#set-a-password). Once
connected, you should see your selenium server running in a maximized xterm window.

Help for the graphical interfaces to these tools is provided by the tools themselves,
but they’re pretty straightforward.

Configuring the selenium client

In your existing test environment, have a env.yaml file, with a
webdriver key in the browser root key. This should be set to Remote, which is the
default from the env.yaml.template it informs the test suite to use the remote
selenium server now running inside your VNC server.

We also need to set the Remote options, by setting the desired_capabilities key
to have the platform and browsername For Fedora, the platform would be LINUX,
but selenium recognizes any of the following (possibly more).

	WINDOWS

	XP

	VISTA

	MAC

	LINUX

	UNIX

An example of the yaml is below:

appliances:
 - hostname: 10.11.12.13
browser:
 webdriver: Remote
 webdriver_options:
 desired_capabilities:
 platform: LINUX
 browserName: 'chrome'
 # for the selenium-server version 3.x.x onward you will need to use
 # following capabilities instead of using CLI arguments (uncomment next 2 lines)
 # and do not use '-ensureCleanSession -trustAllSSLCertificates' in java -jar command
 # which is used to launch selenium-server in xstartup script as shown
 # in 'Configure the startup script' section
 # acceptInsecureCerts: true
 # ensureCleanSession: true

Note:
If you are using selenium server 3.4.0 then you might see issue related ‘mouseMoveTo’ which is open on GitHub:
* https://github.com/SeleniumHQ/selenium/issues/4008
* https://github.com/SeleniumHQ/selenium/issues/3808

Security

Simply put, VNC isn’t very secure. Its connections aren’t encrypted, and its passwords
can only be a max of 8 characters long. For this reason, I recommend having the VNC
server bind to the loopback interface. Fortunately, this is easily done by passing the
-localhost flag to vncserver, like this:

$ vncserver :99 -localhost

No changes need to be made in the way clients are told to connect to support this change,
but it prevents other users from connecting to and interacting with this VNC session remotely.

Recording

The recordmydesktop utility can be used to record test interactions for demonstration
or review. Continuing with display :99 for this example, recordmydesktop can be
invoked like this:

$ recordmydesktop --display :99 --fps 60 -o outfile.ogv

In addition to specifying --display :99, --fps 60 is passed to ensure no steps
are missed in the recording. rescordmydesktop’s default framerate has shown to be a
little too low to accurately capture all of the actions taken in a test run. Finally,
-o is passed to specify the output file.

To record test runs in one shot, the following pattern can be followed (changing the
py.test invocation as needed, of course):

$ recordmydesktop --display :99 --fps 60 -o test_label.ogv & py.test -k test_label --highlight; pkill recordmydesktop

Modules

	cfme package
	Subpackages
	cfme.ansible package
	Submodules
	cfme.ansible.credentials module

	cfme.ansible.playbooks module

	cfme.ansible.repositories module

	Module contents

	cfme.automate package
	Subpackages
	cfme.automate.dialogs package
	Submodules
	cfme.automate.dialogs.dialog_box module

	cfme.automate.dialogs.dialog_element module

	cfme.automate.dialogs.dialog_tab module

	cfme.automate.dialogs.service_dialogs module

	Module contents

	cfme.automate.explorer package
	Submodules
	cfme.automate.explorer.common module

	cfme.automate.explorer.domain module

	cfme.automate.explorer.instance module

	cfme.automate.explorer.klass module

	cfme.automate.explorer.method module

	cfme.automate.explorer.namespace module

	Module contents

	Submodules
	cfme.automate.buttons module

	cfme.automate.dialog_box module

	cfme.automate.dialog_collection_pick module

	cfme.automate.dialog_element module

	cfme.automate.dialog_tab module

	cfme.automate.import_export module

	cfme.automate.provisioning_dialogs module

	cfme.automate.service_dialogs module

	cfme.automate.simulation module

	Module contents

	cfme.base package
	Submodules
	cfme.base.credential module

	cfme.base.login module

	cfme.base.rest module

	cfme.base.ssui module

	cfme.base.ui module

	Module contents

	cfme.cloud package
	Subpackages
	cfme.cloud.instance package
	Submodules
	cfme.cloud.instance.azure module

	cfme.cloud.instance.ec2 module

	cfme.cloud.instance.gce module

	cfme.cloud.instance.image module

	cfme.cloud.instance.openstack module

	Module contents

	cfme.cloud.provider package
	Submodules
	cfme.cloud.provider.azure module

	cfme.cloud.provider.ec2 module

	cfme.cloud.provider.gce module

	cfme.cloud.provider.openstack module

	cfme.cloud.provider.vcloud module

	Module contents

	Submodules
	cfme.cloud.availability_zone module

	cfme.cloud.flavor module

	cfme.cloud.keypairs module

	cfme.cloud.security_groups module

	cfme.cloud.stack module

	cfme.cloud.tenant module

	Module contents

	cfme.common package
	Submodules
	cfme.common.candu_views module

	cfme.common.host_views module

	cfme.common.physical_server_views module

	cfme.common.provider module

	cfme.common.provider_views module

	cfme.common.topology module

	cfme.common.vm module

	cfme.common.vm_console module

	cfme.common.vm_views module

	Module contents

	cfme.configure package
	Subpackages
	cfme.configure.access_control package
	Module contents

	cfme.configure.configuration package
	Submodules
	cfme.configure.configuration.analysis_profile module

	cfme.configure.configuration.diagnostics_settings module

	cfme.configure.configuration.region_settings module

	cfme.configure.configuration.server_settings module

	cfme.configure.configuration.system_schedules module

	Module contents

	Submodules
	cfme.configure.about module

	cfme.configure.documentation module

	cfme.configure.settings module

	cfme.configure.tasks module

	Module contents

	cfme.containers package
	Subpackages
	cfme.containers.provider package
	Submodules
	cfme.containers.provider.openshift module

	Module contents

	Submodules
	cfme.containers.container module

	cfme.containers.image module

	cfme.containers.image_registry module

	cfme.containers.node module

	cfme.containers.overview module

	cfme.containers.pod module

	cfme.containers.project module

	cfme.containers.replicator module

	cfme.containers.route module

	cfme.containers.service module

	cfme.containers.template module

	cfme.containers.topology module

	cfme.containers.volume module

	Module contents

	cfme.control package
	Subpackages
	cfme.control.explorer package
	Submodules
	cfme.control.explorer.actions module

	cfme.control.explorer.alert_profiles module

	cfme.control.explorer.alerts module

	cfme.control.explorer.conditions module

	cfme.control.explorer.policies module

	cfme.control.explorer.policy_profiles module

	Module contents

	Submodules
	cfme.control.import_export module

	cfme.control.log module

	cfme.control.simulation module

	Module contents

	cfme.fixtures package
	Submodules
	cfme.fixtures.ansible_fixtures module

	cfme.fixtures.authentication module

	cfme.fixtures.base module

	cfme.fixtures.candu module

	cfme.fixtures.cli module

	cfme.fixtures.has_persistent_volume module

	cfme.fixtures.model_collections module

	cfme.fixtures.pxe module

	cfme.fixtures.rdb module

	cfme.fixtures.service_fixtures module

	cfme.fixtures.smtp module

	cfme.fixtures.tag module

	cfme.fixtures.tccheck module

	cfme.fixtures.version_info module

	cfme.fixtures.video module

	cfme.fixtures.virtual_machine module

	cfme.fixtures.vm module

	cfme.fixtures.vm_console module

	cfme.fixtures.vm_name module

	cfme.fixtures.vporizer module

	cfme.fixtures.widgets module

	cfme.fixtures.xunit_tools module

	Module contents

	cfme.generic_objects package
	Subpackages
	cfme.generic_objects.definition package
	Submodules
	cfme.generic_objects.definition.associations module

	cfme.generic_objects.definition.rest module

	Module contents

	cfme.generic_objects.instance package
	Submodules
	cfme.generic_objects.instance.rest module

	Module contents

	Module contents

	cfme.infrastructure package
	Subpackages
	cfme.infrastructure.provider package
	Submodules
	cfme.infrastructure.provider.kubevirt module

	cfme.infrastructure.provider.openstack_infra module

	cfme.infrastructure.provider.rhevm module

	cfme.infrastructure.provider.scvmm module

	cfme.infrastructure.provider.virtualcenter module

	Module contents

	Submodules
	cfme.infrastructure.cluster module

	cfme.infrastructure.config_management module

	cfme.infrastructure.datastore module

	cfme.infrastructure.deployment_roles module

	cfme.infrastructure.host module

	cfme.infrastructure.networking module

	cfme.infrastructure.openstack_node module

	cfme.infrastructure.pxe module

	cfme.infrastructure.resource_pool module

	cfme.infrastructure.virtual_machines module

	Module contents

	cfme.intelligence package
	Subpackages
	cfme.intelligence.chargeback package
	Submodules
	cfme.intelligence.chargeback.assignments module

	cfme.intelligence.chargeback.rates module

	Module contents

	cfme.intelligence.reports package
	Subpackages
	cfme.intelligence.reports.widgets package
	Submodules
	cfme.intelligence.reports.widgets.chart_widgets module

	cfme.intelligence.reports.widgets.menu_widgets module

	cfme.intelligence.reports.widgets.report_widgets module

	cfme.intelligence.reports.widgets.rss_widgets module

	Module contents

	Submodules
	cfme.intelligence.reports.dashboards module

	cfme.intelligence.reports.import_export module

	cfme.intelligence.reports.menus module

	cfme.intelligence.reports.reports module

	cfme.intelligence.reports.saved module

	cfme.intelligence.reports.schedules module

	Module contents

	Submodules
	cfme.intelligence.rss module

	Module contents

	cfme.markers package
	Subpackages
	cfme.markers.env_markers package
	Submodules
	cfme.markers.env_markers.provider module

	Module contents

	Submodules
	cfme.markers.composite module

	cfme.markers.crud module

	cfme.markers.env module

	cfme.markers.fixtureconf module

	cfme.markers.manual module

	cfme.markers.meta module

	cfme.markers.polarion module

	cfme.markers.requires module

	cfme.markers.rhv module

	cfme.markers.sauce module

	cfme.markers.skipper module

	cfme.markers.smoke module

	cfme.markers.stream_excluder module

	cfme.markers.uncollect module
	uncollect

	uncollectif

	cfme.markers.uses module

	Module contents

	cfme.metaplugins package
	Submodules
	cfme.metaplugins.blockers module

	cfme.metaplugins.server_roles module

	Module contents

	cfme.modeling package
	Subpackages
	cfme.modeling.tests package
	Submodules
	cfme.modeling.tests.test_collections module

	Module contents

	Submodules
	cfme.modeling.base module

	Module contents

	cfme.networks package
	Subpackages
	cfme.networks.provider package
	Submodules
	cfme.networks.provider.nuage module

	Module contents

	Submodules
	cfme.networks.balancer module

	cfme.networks.cloud_network module

	cfme.networks.floating_ips module

	cfme.networks.network_port module

	cfme.networks.network_router module

	cfme.networks.security_group module

	cfme.networks.subnet module

	cfme.networks.topology module

	cfme.networks.views module

	Module contents

	cfme.optimize package
	Submodules
	cfme.optimize.bottlenecks module

	cfme.optimize.utilization module

	Module contents

	cfme.physical package
	Subpackages
	cfme.physical.provider package
	Submodules
	cfme.physical.provider.lenovo module

	Module contents

	Submodules
	cfme.physical.physical_server module

	Module contents

	cfme.rest package
	Submodules
	cfme.rest.gen_data module

	Module contents

	cfme.scripting package
	Subpackages
	cfme.scripting.tests package
	Submodules
	cfme.scripting.tests.test_quickstart module

	Module contents

	Submodules
	cfme.scripting.appliance module

	cfme.scripting.conf module

	cfme.scripting.disable_bytecode module

	cfme.scripting.ipyshell module

	cfme.scripting.link_config module

	cfme.scripting.miq module

	cfme.scripting.quickstart module

	cfme.scripting.runtest module

	cfme.scripting.setup_env module

	cfme.scripting.sprout module

	Module contents

	cfme.services package
	Subpackages
	cfme.services.catalogs package
	Subpackages
	cfme.services.catalogs.catalog_items package
	Submodules
	cfme.services.catalogs.catalog_items.ansible_catalog_items module

	cfme.services.catalogs.catalog_items.catalog_bundles module

	Module contents

	Submodules
	cfme.services.catalogs.catalog module

	cfme.services.catalogs.orchestration_template module

	Module contents

	cfme.services.dashboard package
	Submodules
	cfme.services.dashboard.ssui module

	Module contents

	cfme.services.myservice package
	Submodules
	cfme.services.myservice.ssui module

	cfme.services.myservice.ui module

	Module contents

	cfme.services.service_catalogs package
	Submodules
	cfme.services.service_catalogs.ssui module

	cfme.services.service_catalogs.ui module

	Module contents

	Submodules
	cfme.services.requests module

	cfme.services.workloads module

	Module contents

	cfme.storage package
	Submodules
	cfme.storage.manager module

	cfme.storage.object_store_container module

	cfme.storage.object_store_object module

	cfme.storage.volume module

	cfme.storage.volume_backup module

	cfme.storage.volume_snapshot module

	Module contents

	cfme.test_framework package
	Subpackages
	cfme.test_framework.sprout package
	Submodules
	cfme.test_framework.sprout.client module

	cfme.test_framework.sprout.plugin module

	Module contents

	Submodules
	cfme.test_framework.appliance module

	cfme.test_framework.appliance_log_collector module

	cfme.test_framework.appliance_police module

	cfme.test_framework.browser_isolation module

	cfme.test_framework.config module

	cfme.test_framework.pytest_plugin module

	Module contents

	cfme.utils package
	Subpackages
	cfme.utils.appliance package
	Subpackages
	cfme.utils.appliance.implementations package
	Submodules
	cfme.utils.appliance.implementations.rest module

	cfme.utils.appliance.implementations.ssui module

	cfme.utils.appliance.implementations.ui module

	Module contents

	Submodules
	cfme.utils.appliance.db module

	cfme.utils.appliance.plugin module

	cfme.utils.appliance.services module

	Module contents

	cfme.utils.auth package
	Module contents

	cfme.utils.dockerbot package
	Subpackages
	cfme.utils.dockerbot.pytestbase package
	Submodules
	cfme.utils.dockerbot.pytestbase.check_provisioned module

	cfme.utils.dockerbot.pytestbase.get_keys module

	cfme.utils.dockerbot.pytestbase.post_result module

	cfme.utils.dockerbot.pytestbase.verify_commit module

	Module contents

	Submodules
	cfme.utils.dockerbot.build_container module

	cfme.utils.dockerbot.check_prs module

	cfme.utils.dockerbot.dockerbot module

	cfme.utils.dockerbot.sel_container module

	Module contents

	cfme.utils.mgmt_system package
	Module contents

	cfme.utils.template package
	Submodules
	cfme.utils.template.base module

	cfme.utils.template.ec2 module

	cfme.utils.template.gce module

	cfme.utils.template.openshift module

	cfme.utils.template.openstack module

	cfme.utils.template.rhevm module

	cfme.utils.template.scvmm module

	cfme.utils.template.template_upload module

	cfme.utils.template.virtualcenter module

	Module contents

	Submodules
	cfme.utils.ansible module

	cfme.utils.apidoc module

	cfme.utils.blockers module

	cfme.utils.browser module

	cfme.utils.bz module

	cfme.utils.category module

	cfme.utils.conf module

	cfme.utils.datafile module

	cfme.utils.db module

	cfme.utils.deprecation module

	cfme.utils.events module

	cfme.utils.events_db module

	cfme.utils.ftp module

	cfme.utils.generators module

	cfme.utils.grafana module

	cfme.utils.hosts module

	cfme.utils.ipmi module

	cfme.utils.log module
	Example Usage

	Log Message Source

	Configuration

	Message Format

	Members

	cfme.utils.log_validator module

	cfme.utils.net module

	cfme.utils.ocp_cli module

	cfme.utils.path module

	cfme.utils.perf module

	cfme.utils.perf_message_stats module

	cfme.utils.ports module

	cfme.utils.pretty module

	cfme.utils.providers module

	cfme.utils.pytest_shortcuts module

	cfme.utils.quote module

	cfme.utils.release module

	cfme.utils.repo_gen module

	cfme.utils.rest module

	cfme.utils.smem_memory_monitor module

	cfme.utils.smtp_collector_client module

	cfme.utils.soft_get module

	cfme.utils.ssh module

	cfme.utils.stats module

	cfme.utils.testgen module

	cfme.utils.timeutil module

	cfme.utils.tracer module

	cfme.utils.trackerbot module

	cfme.utils.units module

	cfme.utils.update module

	cfme.utils.varmeth module

	cfme.utils.version module

	cfme.utils.video module

	cfme.utils.virtual_machines module

	cfme.utils.wait module

	cfme.utils.workloads module

	Module contents

	Submodules
	cfme.dashboard module

	cfme.exceptions module

	cfme.js module

	cfme.provisioning module

	cfme.roles module

	cfme.test_requirements module

	Module contents

	fixtures package
	Subpackages
	fixtures.parallelizer package
	Submodules
	fixtures.parallelizer.hooks module

	fixtures.parallelizer.parallelizer_tester module

	fixtures.parallelizer.remote module

	Module contents
	The Workflow

	Submodules
	fixtures.appliance module

	fixtures.appliance_update module

	fixtures.artifactor_plugin module

	fixtures.blockers module

	fixtures.browser module

	fixtures.cfme_data module

	fixtures.customer_db_migrate module

	fixtures.datafile module

	fixtures.dev_branch module

	fixtures.disable_forgery_protection module

	fixtures.events module

	fixtures.fixtureconf module

	fixtures.log module

	fixtures.maximized module

	fixtures.merkyl module

	fixtures.nelson module

	fixtures.node_annotate module

	fixtures.page_screenshots module

	fixtures.perf module

	fixtures.portset module

	fixtures.prov_filter module

	fixtures.provider module

	fixtures.pytest_store module

	fixtures.qa_contact module

	fixtures.randomness module

	fixtures.rbac module

	fixtures.sauce module

	fixtures.screenshots module

	fixtures.skip_not_implemented module

	fixtures.soft_assert module
	Functionality Overview

	fixtures.ssh_client module

	fixtures.templateloader module

	fixtures.terminalreporter module

	fixtures.ui_coverage module
	Usage

	General Notes

	Workflow Overview

	Module contents

cfme package

Subpackages

	cfme.ansible package
	Submodules
	cfme.ansible.credentials module

	cfme.ansible.playbooks module

	cfme.ansible.repositories module

	Module contents

	cfme.automate package
	Subpackages
	cfme.automate.dialogs package
	Submodules
	cfme.automate.dialogs.dialog_box module

	cfme.automate.dialogs.dialog_element module

	cfme.automate.dialogs.dialog_tab module

	cfme.automate.dialogs.service_dialogs module

	Module contents

	cfme.automate.explorer package
	Submodules
	cfme.automate.explorer.common module

	cfme.automate.explorer.domain module

	cfme.automate.explorer.instance module

	cfme.automate.explorer.klass module

	cfme.automate.explorer.method module

	cfme.automate.explorer.namespace module

	Module contents

	Submodules
	cfme.automate.buttons module

	cfme.automate.dialog_box module

	cfme.automate.dialog_collection_pick module

	cfme.automate.dialog_element module

	cfme.automate.dialog_tab module

	cfme.automate.import_export module

	cfme.automate.provisioning_dialogs module

	cfme.automate.service_dialogs module

	cfme.automate.simulation module

	Module contents

	cfme.base package
	Submodules
	cfme.base.credential module

	cfme.base.login module

	cfme.base.rest module

	cfme.base.ssui module

	cfme.base.ui module

	Module contents

	cfme.cloud package
	Subpackages
	cfme.cloud.instance package
	Submodules
	cfme.cloud.instance.azure module

	cfme.cloud.instance.ec2 module

	cfme.cloud.instance.gce module

	cfme.cloud.instance.image module

	cfme.cloud.instance.openstack module

	Module contents

	cfme.cloud.provider package
	Submodules
	cfme.cloud.provider.azure module

	cfme.cloud.provider.ec2 module

	cfme.cloud.provider.gce module

	cfme.cloud.provider.openstack module

	cfme.cloud.provider.vcloud module

	Module contents

	Submodules
	cfme.cloud.availability_zone module

	cfme.cloud.flavor module

	cfme.cloud.keypairs module

	cfme.cloud.security_groups module

	cfme.cloud.stack module

	cfme.cloud.tenant module

	Module contents

	cfme.common package
	Submodules
	cfme.common.candu_views module

	cfme.common.host_views module

	cfme.common.physical_server_views module

	cfme.common.provider module

	cfme.common.provider_views module

	cfme.common.topology module

	cfme.common.vm module

	cfme.common.vm_console module

	cfme.common.vm_views module

	Module contents

	cfme.configure package
	Subpackages
	cfme.configure.access_control package
	Module contents

	cfme.configure.configuration package
	Submodules
	cfme.configure.configuration.analysis_profile module

	cfme.configure.configuration.diagnostics_settings module

	cfme.configure.configuration.region_settings module

	cfme.configure.configuration.server_settings module

	cfme.configure.configuration.system_schedules module

	Module contents

	Submodules
	cfme.configure.about module

	cfme.configure.documentation module

	cfme.configure.settings module

	cfme.configure.tasks module

	Module contents

	cfme.containers package
	Subpackages
	cfme.containers.provider package
	Submodules
	cfme.containers.provider.openshift module

	Module contents

	Submodules
	cfme.containers.container module

	cfme.containers.image module

	cfme.containers.image_registry module

	cfme.containers.node module

	cfme.containers.overview module

	cfme.containers.pod module

	cfme.containers.project module

	cfme.containers.replicator module

	cfme.containers.route module

	cfme.containers.service module

	cfme.containers.template module

	cfme.containers.topology module

	cfme.containers.volume module

	Module contents

	cfme.control package
	Subpackages
	cfme.control.explorer package
	Submodules
	cfme.control.explorer.actions module

	cfme.control.explorer.alert_profiles module

	cfme.control.explorer.alerts module

	cfme.control.explorer.conditions module

	cfme.control.explorer.policies module

	cfme.control.explorer.policy_profiles module

	Module contents

	Submodules
	cfme.control.import_export module

	cfme.control.log module

	cfme.control.simulation module

	Module contents

	cfme.fixtures package
	Submodules
	cfme.fixtures.ansible_fixtures module

	cfme.fixtures.authentication module

	cfme.fixtures.base module

	cfme.fixtures.candu module

	cfme.fixtures.cli module

	cfme.fixtures.has_persistent_volume module

	cfme.fixtures.model_collections module

	cfme.fixtures.pxe module

	cfme.fixtures.rdb module

	cfme.fixtures.service_fixtures module

	cfme.fixtures.smtp module

	cfme.fixtures.tag module

	cfme.fixtures.tccheck module

	cfme.fixtures.version_info module

	cfme.fixtures.video module

	cfme.fixtures.virtual_machine module

	cfme.fixtures.vm module

	cfme.fixtures.vm_console module

	cfme.fixtures.vm_name module

	cfme.fixtures.vporizer module

	cfme.fixtures.widgets module

	cfme.fixtures.xunit_tools module

	Module contents

	cfme.generic_objects package
	Subpackages
	cfme.generic_objects.definition package
	Submodules
	cfme.generic_objects.definition.associations module

	cfme.generic_objects.definition.rest module

	Module contents

	cfme.generic_objects.instance package
	Submodules
	cfme.generic_objects.instance.rest module

	Module contents

	Module contents

	cfme.infrastructure package
	Subpackages
	cfme.infrastructure.provider package
	Submodules
	cfme.infrastructure.provider.kubevirt module

	cfme.infrastructure.provider.openstack_infra module

	cfme.infrastructure.provider.rhevm module

	cfme.infrastructure.provider.scvmm module

	cfme.infrastructure.provider.virtualcenter module

	Module contents

	Submodules
	cfme.infrastructure.cluster module

	cfme.infrastructure.config_management module

	cfme.infrastructure.datastore module

	cfme.infrastructure.deployment_roles module

	cfme.infrastructure.host module

	cfme.infrastructure.networking module

	cfme.infrastructure.openstack_node module

	cfme.infrastructure.pxe module

	cfme.infrastructure.resource_pool module

	cfme.infrastructure.virtual_machines module

	Module contents

	cfme.intelligence package
	Subpackages
	cfme.intelligence.chargeback package
	Submodules
	cfme.intelligence.chargeback.assignments module

	cfme.intelligence.chargeback.rates module

	Module contents

	cfme.intelligence.reports package
	Subpackages
	cfme.intelligence.reports.widgets package
	Submodules
	cfme.intelligence.reports.widgets.chart_widgets module

	cfme.intelligence.reports.widgets.menu_widgets module

	cfme.intelligence.reports.widgets.report_widgets module

	cfme.intelligence.reports.widgets.rss_widgets module

	Module contents

	Submodules
	cfme.intelligence.reports.dashboards module

	cfme.intelligence.reports.import_export module

	cfme.intelligence.reports.menus module

	cfme.intelligence.reports.reports module

	cfme.intelligence.reports.saved module

	cfme.intelligence.reports.schedules module

	Module contents

	Submodules
	cfme.intelligence.rss module

	Module contents

	cfme.markers package
	Subpackages
	cfme.markers.env_markers package
	Submodules
	cfme.markers.env_markers.provider module

	Module contents

	Submodules
	cfme.markers.composite module

	cfme.markers.crud module

	cfme.markers.env module

	cfme.markers.fixtureconf module

	cfme.markers.manual module

	cfme.markers.meta module

	cfme.markers.polarion module

	cfme.markers.requires module

	cfme.markers.rhv module

	cfme.markers.sauce module

	cfme.markers.skipper module

	cfme.markers.smoke module

	cfme.markers.stream_excluder module

	cfme.markers.uncollect module
	uncollect

	uncollectif

	cfme.markers.uses module

	Module contents

	cfme.metaplugins package
	Submodules
	cfme.metaplugins.blockers module

	cfme.metaplugins.server_roles module

	Module contents

	cfme.modeling package
	Subpackages
	cfme.modeling.tests package
	Submodules
	cfme.modeling.tests.test_collections module

	Module contents

	Submodules
	cfme.modeling.base module

	Module contents

	cfme.networks package
	Subpackages
	cfme.networks.provider package
	Submodules
	cfme.networks.provider.nuage module

	Module contents

	Submodules
	cfme.networks.balancer module

	cfme.networks.cloud_network module

	cfme.networks.floating_ips module

	cfme.networks.network_port module

	cfme.networks.network_router module

	cfme.networks.security_group module

	cfme.networks.subnet module

	cfme.networks.topology module

	cfme.networks.views module

	Module contents

	cfme.optimize package
	Submodules
	cfme.optimize.bottlenecks module

	cfme.optimize.utilization module

	Module contents

	cfme.physical package
	Subpackages
	cfme.physical.provider package
	Submodules
	cfme.physical.provider.lenovo module

	Module contents

	Submodules
	cfme.physical.physical_server module

	Module contents

	cfme.rest package
	Submodules
	cfme.rest.gen_data module

	Module contents

	cfme.scripting package
	Subpackages
	cfme.scripting.tests package
	Submodules
	cfme.scripting.tests.test_quickstart module

	Module contents

	Submodules
	cfme.scripting.appliance module

	cfme.scripting.conf module

	cfme.scripting.disable_bytecode module

	cfme.scripting.ipyshell module

	cfme.scripting.link_config module

	cfme.scripting.miq module

	cfme.scripting.quickstart module

	cfme.scripting.runtest module

	cfme.scripting.setup_env module

	cfme.scripting.sprout module

	Module contents

	cfme.services package
	Subpackages
	cfme.services.catalogs package
	Subpackages
	cfme.services.catalogs.catalog_items package
	Submodules
	cfme.services.catalogs.catalog_items.ansible_catalog_items module

	cfme.services.catalogs.catalog_items.catalog_bundles module

	Module contents

	Submodules
	cfme.services.catalogs.catalog module

	cfme.services.catalogs.orchestration_template module

	Module contents

	cfme.services.dashboard package
	Submodules
	cfme.services.dashboard.ssui module

	Module contents

	cfme.services.myservice package
	Submodules
	cfme.services.myservice.ssui module

	cfme.services.myservice.ui module

	Module contents

	cfme.services.service_catalogs package
	Submodules
	cfme.services.service_catalogs.ssui module

	cfme.services.service_catalogs.ui module

	Module contents

	Submodules
	cfme.services.requests module

	cfme.services.workloads module

	Module contents

	cfme.storage package
	Submodules
	cfme.storage.manager module

	cfme.storage.object_store_container module

	cfme.storage.object_store_object module

	cfme.storage.volume module

	cfme.storage.volume_backup module

	cfme.storage.volume_snapshot module

	Module contents

	cfme.test_framework package
	Subpackages
	cfme.test_framework.sprout package
	Submodules
	cfme.test_framework.sprout.client module

	cfme.test_framework.sprout.plugin module

	Module contents

	Submodules
	cfme.test_framework.appliance module

	cfme.test_framework.appliance_log_collector module

	cfme.test_framework.appliance_police module

	cfme.test_framework.browser_isolation module

	cfme.test_framework.config module

	cfme.test_framework.pytest_plugin module

	Module contents

	cfme.utils package
	Subpackages
	cfme.utils.appliance package
	Subpackages
	cfme.utils.appliance.implementations package
	Submodules
	cfme.utils.appliance.implementations.rest module

	cfme.utils.appliance.implementations.ssui module

	cfme.utils.appliance.implementations.ui module

	Module contents

	Submodules
	cfme.utils.appliance.db module

	cfme.utils.appliance.plugin module

	cfme.utils.appliance.services module

	Module contents

	cfme.utils.auth package
	Module contents

	cfme.utils.dockerbot package
	Subpackages
	cfme.utils.dockerbot.pytestbase package
	Submodules
	cfme.utils.dockerbot.pytestbase.check_provisioned module

	cfme.utils.dockerbot.pytestbase.get_keys module

	cfme.utils.dockerbot.pytestbase.post_result module

	cfme.utils.dockerbot.pytestbase.verify_commit module

	Module contents

	Submodules
	cfme.utils.dockerbot.build_container module

	cfme.utils.dockerbot.check_prs module

	cfme.utils.dockerbot.dockerbot module

	cfme.utils.dockerbot.sel_container module

	Module contents

	cfme.utils.mgmt_system package
	Module contents

	cfme.utils.template package
	Submodules
	cfme.utils.template.base module

	cfme.utils.template.ec2 module

	cfme.utils.template.gce module

	cfme.utils.template.openshift module

	cfme.utils.template.openstack module

	cfme.utils.template.rhevm module

	cfme.utils.template.scvmm module

	cfme.utils.template.template_upload module

	cfme.utils.template.virtualcenter module

	Module contents

	Submodules
	cfme.utils.ansible module

	cfme.utils.apidoc module

	cfme.utils.blockers module

	cfme.utils.browser module

	cfme.utils.bz module

	cfme.utils.category module

	cfme.utils.conf module

	cfme.utils.datafile module

	cfme.utils.db module

	cfme.utils.deprecation module

	cfme.utils.events module

	cfme.utils.events_db module

	cfme.utils.ftp module

	cfme.utils.generators module

	cfme.utils.grafana module

	cfme.utils.hosts module

	cfme.utils.ipmi module

	cfme.utils.log module
	Example Usage

	Log Message Source

	Configuration

	Message Format

	Members

	cfme.utils.log_validator module

	cfme.utils.net module

	cfme.utils.ocp_cli module

	cfme.utils.path module

	cfme.utils.perf module

	cfme.utils.perf_message_stats module

	cfme.utils.ports module

	cfme.utils.pretty module

	cfme.utils.providers module

	cfme.utils.pytest_shortcuts module

	cfme.utils.quote module

	cfme.utils.release module

	cfme.utils.repo_gen module

	cfme.utils.rest module

	cfme.utils.smem_memory_monitor module

	cfme.utils.smtp_collector_client module

	cfme.utils.soft_get module

	cfme.utils.ssh module

	cfme.utils.stats module

	cfme.utils.testgen module

	cfme.utils.timeutil module

	cfme.utils.tracer module

	cfme.utils.trackerbot module

	cfme.utils.units module

	cfme.utils.update module

	cfme.utils.varmeth module

	cfme.utils.version module

	cfme.utils.video module

	cfme.utils.virtual_machines module

	cfme.utils.wait module

	cfme.utils.workloads module

	Module contents

Submodules

	cfme.dashboard module

	cfme.exceptions module

	cfme.js module

	cfme.provisioning module

	cfme.roles module

	cfme.test_requirements module

Module contents

cfme.ansible package

Submodules

	cfme.ansible.credentials module

	cfme.ansible.playbooks module

	cfme.ansible.repositories module

Module contents

cfme.ansible.credentials module

Page model for Automation/Anisble/Credentials

	
class cfme.ansible.credentials.Add(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of CredentialAddView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.ansible.credentials.AnsibleCredentials(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of CredentialsListView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.ansible.credentials.Credential(collection, name, credential_type, **credentials)

	Bases: cfme.modeling.base.BaseEntity

A class representing one Embedded Ansible credential in the UI.

	
delete()

	

	
exists

	

	
update(updates)

	

	
class cfme.ansible.credentials.CredentialAddView(*args, **kwargs)

	Bases: cfme.ansible.credentials.CredentialFormView

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
credential_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.ansible.credentials.CredentialDetailsView(*args, **kwargs)

	Bases: cfme.ansible.credentials.CredentialsBaseView

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.ansible.credentials.CredentialEditView(*args, **kwargs)

	Bases: cfme.ansible.credentials.CredentialFormView

	
before_fill(*args, **kwargs)

	

	
credential_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
input

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.ansible.credentials.CredentialFormView(*args, **kwargs)

	Bases: cfme.ansible.credentials.CredentialsBaseView

	
CredentialFormAmazonView = None

	

	
CredentialFormDefaultView = None

	

	
CredentialFormGCEView = None

	

	
CredentialFormMachineView = None

	

	
CredentialFormOpenStackView = None

	

	
CredentialFormRHVView = None

	

	
CredentialFormScmView = None

	

	
CredentialFormVMwareView = None

	

	
CredentialFormVaultView = None

	

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
credential_form

	Conditional switchable view implementation.

This widget proxy is useful when you have a form whose parts displayed depend on certain
conditions. Eg. when you select certain value from a dropdown, one form is displayed next,
when other value is selected, a different form is displayed next. This widget proxy is designed
to register those multiple views and then upon accessing decide which view to use based on the
registration conditions.

The resulting widget proxy acts similarly like a nested view (if you use view of course).

Example

class SomeForm(View):
 foo = Input('...')
 action_type = Select(name='action_type')

 action_form = ConditionalSwitchableView(reference='action_type')

 # Simple value matching. If Action type 1 is selected in the select, use this view.
 # And if the action_type value does not get matched, use this view as default
 @action_form.register('Action type 1', default=True)
 class ActionType1Form(View):
 widget = Widget()

 # You can use a callable to declare the widget values to compare
 @action_form.register(lambda action_type: action_type == 'Action type 2')
 class ActionType2Form(View):
 widget = Widget()

 # With callable, you can use values from multiple widgets
 @action_form.register(
 lambda action_type, foo: action_type == 'Action type 2' and foo == 2)
 class ActionType2Form(View):
 widget = Widget()

You can see it gives you the flexibility of decision based on the values in the view.

	Parameters

	
	reference – For using non-callable conditions, this must be specified. Specifies the name of
the widget whose value will be used for comparing non-callable conditions. Supports
going across objects using ..

	ignore_bad_reference – If this is enabled, then when the widget representing the reference
is not displayed or otherwise broken, it will then use the default view.

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.ansible.credentials.CredentialsBaseView(*args, **kwargs)

	Bases: cfme.base.login.BaseLoggedInPage

	
in_ansible_credentials

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.ansible.credentials.CredentialsCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

Collection object for the Credential.

	
ENTITY

	alias of Credential

	
create(name, credential_type, **credentials)

	

	
class cfme.ansible.credentials.CredentialsListView(*args, **kwargs)

	Bases: cfme.ansible.credentials.CredentialsBaseView

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
credentials

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.ansible.credentials.Details(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of CredentialDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.ansible.credentials.Edit(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of CredentialEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

cfme.ansible.playbooks module

Page model for Automation/Anisble/Playbooks

	
class cfme.ansible.playbooks.AnsiblePlaybooks(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PlaybooksView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.ansible.playbooks.Details(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PlaybookDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.ansible.playbooks.Playbook(parent, name, repository)

	Bases: cfme.modeling.base.BaseEntity

A class representing one Embedded Ansible playbook in the UI.

	
exists

	

	
name = Attribute(name='name', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
repository = Attribute(name='repository', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
class cfme.ansible.playbooks.PlaybookBaseView(*args, **kwargs)

	Bases: cfme.base.login.BaseLoggedInPage

	
in_ansible_playbooks

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.ansible.playbooks.PlaybookDetailsEntities(*args, **kwargs)

	Bases: widgetastic.widget.View

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
smart_management

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.ansible.playbooks.PlaybookDetailsView(*args, **kwargs)

	Bases: cfme.ansible.playbooks.PlaybookBaseView

	
breadcrumb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.ansible.playbooks.PlaybookEntitiesView(*args, **kwargs)

	Bases: widgetastic_manageiq.BaseEntitiesView

Represents the view with different items like hosts.

	
entity_class

	

	
class cfme.ansible.playbooks.PlaybookEntity(*args, **kwargs)

	Bases: widgetastic_manageiq.NonJSBaseEntity

	
grid_entity

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
list_entity

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
tile_entity

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.ansible.playbooks.PlaybookGridIconEntity(*args, **kwargs)

	Bases: widgetastic_manageiq.BaseQuadIconEntity

	
class cfme.ansible.playbooks.PlaybookListEntity(*args, **kwargs)

	Bases: widgetastic_manageiq.BaseListEntity

	
class cfme.ansible.playbooks.PlaybookTileIconEntity(*args, **kwargs)

	Bases: widgetastic_manageiq.BaseTileIconEntity

	
class cfme.ansible.playbooks.PlaybooksCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

Collection object for the Playbook.

	
ENTITY

	alias of Playbook

	
all()

	

	
class cfme.ansible.playbooks.PlaybooksToolbar(*args, **kwargs)

	Bases: widgetastic.widget.View

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
view_selector

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.ansible.playbooks.PlaybooksView(*args, **kwargs)

	Bases: cfme.ansible.playbooks.PlaybookBaseView

	
entities

	

	
is_displayed

	

	
paginator

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

cfme.ansible.repositories module

Page model for Automation/Ansible/Repositories

	
class cfme.ansible.repositories.Add(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RepositoryAddView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.ansible.repositories.AnsibleRepositories(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RepositoryAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.ansible.repositories.Details(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RepositoryDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.ansible.repositories.Edit(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RepositoryEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.ansible.repositories.Repository(parent, name, url, description='', scm_credentials=None, scm_branch=False, clean=False, delete_on_update=False, update_on_launch=None)

	Bases: cfme.modeling.base.BaseEntity, widgetastic.utils.Fillable

A class representing one Embedded Ansible repository in the UI.

	
as_fill_value

	For use when selecting this repo in the UI forms

	
clean = Attribute(name='clean', default=False, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
db_object

	

	
delete()

	Delete the repository in the UI.

	
delete_on_update = Attribute(name='delete_on_update', default=False, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
description = Attribute(name='description', default='', validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
exists

	

	
name = Attribute(name='name', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
playbooks

	

	
refresh()

	Perform a refresh to update the repository.

	
scm_branch = Attribute(name='scm_branch', default=False, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
scm_credentials = Attribute(name='scm_credentials', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
update(updates)

	Update the repository in the UI.

	Parameters

	updates (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – dict [https://docs.python.org/2.7/library/stdtypes.html#dict] of the updates.

	
update_on_launch = Attribute(name='update_on_launch', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
url = Attribute(name='url', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
class cfme.ansible.repositories.RepositoryAddView(*args, **kwargs)

	Bases: cfme.ansible.repositories.RepositoryFormView

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.ansible.repositories.RepositoryAllView(*args, **kwargs)

	Bases: cfme.ansible.repositories.RepositoryBaseView

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
paginator

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters

	version_dict – Dictionary of version_introduced: item

	
class cfme.ansible.repositories.RepositoryBaseView(*args, **kwargs)

	Bases: cfme.base.login.BaseLoggedInPage

	
in_ansible_repositories

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.ansible.repositories.RepositoryCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

Collection object for the cfme.ansible.repositories.Repository.

	
ENTITY

	alias of Repository

	
all()

	Return all repositories of the appliance.

Returns: a list of cfme.ansible.repositories.Repository instances

	
create(name, url, description=None, scm_credentials=None, scm_branch=None, clean=None, delete_on_update=None, update_on_launch=None)

	Add an ansible repository in the UI and return a Repository object.

	Parameters

	
	name (str [https://docs.python.org/2.7/library/functions.html#str]) – name of the repository

	url (str [https://docs.python.org/2.7/library/functions.html#str]) – url of the repository

	description (str [https://docs.python.org/2.7/library/functions.html#str]) – description of the repository

	scm_credentials (str [https://docs.python.org/2.7/library/functions.html#str]) – credentials of the repository

	scm_branch (str [https://docs.python.org/2.7/library/functions.html#str]) – branch name

	clean (bool [https://docs.python.org/2.7/library/functions.html#bool]) – clean

	delete_on_update (bool [https://docs.python.org/2.7/library/functions.html#bool]) – delete the repo at each update

	update_on_launch (bool [https://docs.python.org/2.7/library/functions.html#bool]) – update the repo at each launch

Returns: an instance of cfme.ansible.repositories.Repository

	
delete(*repositories)

	Delete one or more ansible repositories in the UI.

	Parameters

	repositories – a list of cfme.ansible.repositories.Repository
instances to delete

	Raises

	ValueError – if some of the repositories were not found in the UI

	
class cfme.ansible.repositories.RepositoryDetailsView(*args, **kwargs)

	Bases: cfme.ansible.repositories.RepositoryBaseView

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.ansible.repositories.RepositoryEditView(*args, **kwargs)

	Bases: cfme.ansible.repositories.RepositoryFormView

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.ansible.repositories.RepositoryFormView(*args, **kwargs)

	Bases: cfme.ansible.repositories.RepositoryBaseView

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
clean

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
delete_on_update

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
scm_branch

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
scm_credentials

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
update_on_launch

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
url

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

cfme.automate package

Subpackages

	cfme.automate.dialogs package
	Submodules
	cfme.automate.dialogs.dialog_box module

	cfme.automate.dialogs.dialog_element module

	cfme.automate.dialogs.dialog_tab module

	cfme.automate.dialogs.service_dialogs module

	Module contents

	cfme.automate.explorer package
	Submodules
	cfme.automate.explorer.common module

	cfme.automate.explorer.domain module

	cfme.automate.explorer.instance module

	cfme.automate.explorer.klass module

	cfme.automate.explorer.method module

	cfme.automate.explorer.namespace module

	Module contents

Submodules

	cfme.automate.buttons module

	cfme.automate.dialog_box module

	cfme.automate.dialog_collection_pick module

	cfme.automate.dialog_element module

	cfme.automate.dialog_tab module

	cfme.automate.import_export module

	cfme.automate.provisioning_dialogs module

	cfme.automate.service_dialogs module

	cfme.automate.simulation module

Module contents

	
class cfme.automate.AddBoxView(*args, **kwargs)

	Bases: cfme.automate.BoxForm

AddBox View.

	
is_displayed

	

	
plus_btn

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.AddDialogView(*args, **kwargs)

	Bases: cfme.automate.DialogForm

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
plus_btn

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.AddTabView(*args, **kwargs)

	Bases: cfme.automate.TabForm

	
is_displayed

	

	
plus_btn

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.AutomateCustomization(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AutomateCustomizationView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.automate.AutomateCustomizationView(*args, **kwargs)

	Bases: cfme.base.login.BaseLoggedInPage

	
buttons

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
import_export

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
in_customization

	

	
is_displayed

	

	
provisioning_dialogs

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
service_dialogs

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.BoxForm(*args, **kwargs)

	Bases: cfme.automate.AddTabView

	
box_desc

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
box_label

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.DialogForm(*args, **kwargs)

	Bases: cfme.automate.AutomateCustomizationView

	
cancel_btn

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
label

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
plus_btn

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
submit_btn

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.EditDialogView(*args, **kwargs)

	Bases: cfme.automate.DialogForm

	
element_tree

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.TabForm(*args, **kwargs)

	Bases: cfme.automate.AddDialogView

	
tab_desc

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
tab_label

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

cfme.automate.dialogs package

Submodules

	cfme.automate.dialogs.dialog_box module

	cfme.automate.dialogs.dialog_element module

	cfme.automate.dialogs.dialog_tab module

	cfme.automate.dialogs.service_dialogs module

Module contents

	
class cfme.automate.dialogs.AddBoxView(*args, **kwargs)

	Bases: cfme.automate.dialogs.BoxForm

AddBox View.

	
component

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
dd

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
edit_box

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
new_box

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.dialogs.AddDialogView(*args, **kwargs)

	Bases: cfme.automate.dialogs.DialogForm

	
create_tab

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.automate.dialogs.AddTabView(*args, **kwargs)

	Bases: cfme.automate.dialogs.TabForm

	
add_section

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
box

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
edit_tab

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
new_tab

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.dialogs.AutomateCustomizationView(*args, **kwargs)

	Bases: cfme.base.login.BaseLoggedInPage

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
in_customization

	

	
is_displayed

	

	
service_dialogs

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.dialogs.BoxForm(*args, **kwargs)

	Bases: cfme.automate.dialogs.AddTabView

	
box_desc

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
box_label

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.dialogs.DialogForm(*args, **kwargs)

	Bases: cfme.automate.dialogs.AutomateCustomizationView

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
label

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.dialogs.EditDialogView(*args, **kwargs)

	Bases: cfme.automate.dialogs.DialogForm

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.dialogs.TabForm(*args, **kwargs)

	Bases: cfme.automate.dialogs.AddDialogView

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
tab_desc

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
tab_label

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

cfme.automate.dialogs.dialog_box module

	
class cfme.automate.dialogs.dialog_box.Add(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AddBoxView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.automate.dialogs.dialog_box.Box(parent, box_label, box_desc=None)

	Bases: cfme.modeling.base.BaseEntity

A class representing one Box of dialog.

	
box_desc = Attribute(name='box_desc', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
box_label = Attribute(name='box_label', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
elements

	

	
tab

	

	
tree_path

	

	
class cfme.automate.dialogs.dialog_box.BoxCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

	
ENTITY

	alias of Box

	
create(box_label=None, box_desc=None)

	Create box method.
:param box_label and box_description.:

	
tree_path

	

	
class cfme.automate.dialogs.dialog_box.EditBoxView(*args, **kwargs)

	Bases: cfme.automate.dialogs.BoxForm

EditBox View.

	
is_displayed

	

cfme.automate.dialogs.dialog_element module

	
class cfme.automate.dialogs.dialog_element.Add(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AddElementView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.automate.dialogs.dialog_element.AddElementView(*args, **kwargs)

	Bases: cfme.automate.dialogs.dialog_element.ElementForm

	
add_section

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
before_fill(*args, **kwargs)

	

	
component

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
edit_icon

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
element

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.automate.dialogs.dialog_element.DetailsDialogView(*args, **kwargs)

	Bases: cfme.automate.dialogs.AutomateCustomizationView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.dialogs.dialog_element.DialogsView(*args, **kwargs)

	Bases: cfme.automate.dialogs.AutomateCustomizationView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.dialogs.dialog_element.Edit(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditElementView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.automate.dialogs.dialog_element.EditElementView(*args, **kwargs)

	Bases: cfme.automate.dialogs.dialog_element.ElementForm

	
dragndrop

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
element

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
label

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.dialogs.dialog_element.Element(parent, element_data)

	Bases: cfme.modeling.base.BaseEntity

A class representing one Element of a dialog.

	
add_another_element(element)

	Method to add element.

	
dialog

	Returns parent object - Dialog

	
element_data = Attribute(name='element_data', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
element_loc(element_type)

	

	
reorder_elements(add_element, second_element, element_data)

	
	Method to add element and interchange element positions.

	This method updates a dialog and adds a second element.The position
of two elements are then interchanged to test for error.(BZ-1238721)

	Parameters

	
	add_element – flag if second element needs to be added.

	second_element – The second element to be added to the dialog.

	element_data – Already existing first element’s data.

	
tree_path

	

	
class cfme.automate.dialogs.dialog_element.ElementCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

	
ENTITY

	alias of Element

	
create(element_data)

	

	
set_element_type(view, element)

	Method to add element type.Depending on their type the subfields varies.

	Parameters

	each_element – subfields depending on element type.

	
tree_path

	

	
class cfme.automate.dialogs.dialog_element.ElementForm(*args, **kwargs)

	Bases: cfme.automate.dialogs.AddBoxView

	
advanced

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
ele_cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
ele_save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
element_information

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
options

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

cfme.automate.dialogs.dialog_tab module

	
class cfme.automate.dialogs.dialog_tab.Add(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AddTabView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.automate.dialogs.dialog_tab.DetailsTabView(*args, **kwargs)

	Bases: cfme.automate.dialogs.TabForm

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.dialogs.dialog_tab.EditTabView(*args, **kwargs)

	Bases: cfme.automate.dialogs.TabForm

	
is_displayed

	

	
class cfme.automate.dialogs.dialog_tab.Tab(parent, tab_label, tab_desc=None)

	Bases: cfme.modeling.base.BaseEntity

A class representing one Tab in the UI.

	
boxes

	

	
dialog

	Returns parent object - Dialog

	
tab_desc = Attribute(name='tab_desc', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
tab_label = Attribute(name='tab_label', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
tree_path

	

	
class cfme.automate.dialogs.dialog_tab.TabCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

	
ENTITY

	alias of Tab

	
create(tab_label=None, tab_desc=None)

	Create tab method

	
tree_path

	

cfme.automate.dialogs.service_dialogs module

	
class cfme.automate.dialogs.service_dialogs.Add(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AddDialogView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.automate.dialogs.service_dialogs.All(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DialogsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.automate.dialogs.service_dialogs.Details(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DetailsDialogView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.automate.dialogs.service_dialogs.DetailsDialogView(*args, **kwargs)

	Bases: cfme.automate.dialogs.AutomateCustomizationView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.dialogs.service_dialogs.Dialog(parent, label, description=None)

	Bases: cfme.modeling.base.BaseEntity, widgetastic.utils.Fillable

A class representing one Dialog in the UI.

	
as_fill_value()

	

	
delete()

	Delete dialog method

	
delete_if_exists()

	

	
description = Attribute(name='description', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
dialog

	

	
exists

	Returns True if dialog exists

	
label = Attribute(name='label', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
tabs

	

	
tree_path

	

	
update(updates)

	Update dialog method

	
class cfme.automate.dialogs.service_dialogs.DialogCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

Collection object for the Dialog.

	
ENTITY

	alias of Dialog

	
create(label=None, description=None)

	Create dialog label method

	
tree_path = ['All Dialogs']

	

	
class cfme.automate.dialogs.service_dialogs.DialogsView(*args, **kwargs)

	Bases: cfme.automate.dialogs.AutomateCustomizationView

	
is_displayed

	

	
paginator

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters

	version_dict – Dictionary of version_introduced: item

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.dialogs.service_dialogs.Edit(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditDialogView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

cfme.automate.explorer package

Submodules

	cfme.automate.explorer.common module

	cfme.automate.explorer.domain module

	cfme.automate.explorer.instance module

	cfme.automate.explorer.klass module

	cfme.automate.explorer.method module

	cfme.automate.explorer.namespace module

Module contents

	
class cfme.automate.explorer.AutomateExplorer(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AutomateExplorerView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.automate.explorer.AutomateExplorerView(*args, **kwargs)

	Bases: cfme.base.login.BaseLoggedInPage

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
datastore

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
in_explorer

	

	
is_displayed

	

	
cfme.automate.explorer.check_tree_path(actual, desired)

	

	
cfme.automate.explorer.without_icons(tree_path)

	Tree paths with icons have tuples as steps with the icon being the first one.

cfme.automate.explorer.common module

	
class cfme.automate.explorer.common.Copiable

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
copy_to(domain, new_name=None, replace=None, cancel=False)

	

	
class cfme.automate.explorer.common.CopyViewBase(*args, **kwargs)

	Bases: widgetastic.widget.View

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
copy_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
namespace

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
new_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
override_existing

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
override_source

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
to_domain_select

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
to_domain_text

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

cfme.automate.explorer.domain module

	
class cfme.automate.explorer.domain.Add(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DomainAddView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.automate.explorer.domain.All(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DomainListView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.automate.explorer.domain.Details(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DomainDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.automate.explorer.domain.Domain(collection, name, description=None, enabled=None, locked=None, git_repository=None, git_checkout_type=None, git_checkout_value=None, db_id=None)

	Bases: cfme.modeling.base.BaseEntity, widgetastic.utils.Fillable

A class representing one Domain in the UI.

	
as_fill_value()

	

	
db_id

	

	
db_object

	

	
delete(cancel=False)

	

	
delete_if_exists()

	

	
domain

	

	
enabled

	

	
exists

	

	
git_checkout_type

	

	
git_checkout_value

	

	
git_repository

	Returns an associated git repository object. None if no git repo associated.

	
lock()

	

	
locked

	

	
namespaces

	

	
table_display_name

	

	
tree_display_name

	

	
tree_path

	

	
unlock()

	

	
update(updates)

	

	
class cfme.automate.explorer.domain.DomainAddView(*args, **kwargs)

	Bases: cfme.automate.explorer.domain.DomainForm

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.automate.explorer.domain.DomainCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

Collection object for the Domain.

	
ENTITY

	alias of Domain

	
all()

	

	
create(name=None, description=None, enabled=None, cancel=False)

	

	
delete(*domains)

	

	
set_order(items)

	

	
tree_path = ['Datastore']

	

	
class cfme.automate.explorer.domain.DomainDetailsView(*args, **kwargs)

	Bases: cfme.automate.explorer.AutomateExplorerView

	
is_displayed

	

	
namespaces

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.explorer.domain.DomainEditView(*args, **kwargs)

	Bases: cfme.automate.explorer.domain.DomainForm

	
is_displayed

	

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.explorer.domain.DomainForm(*args, **kwargs)

	Bases: cfme.automate.explorer.AutomateExplorerView

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
enabled

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.explorer.domain.DomainListView(*args, **kwargs)

	Bases: cfme.automate.explorer.AutomateExplorerView

	
domains

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.explorer.domain.DomainPriorityView(*args, **kwargs)

	Bases: cfme.automate.explorer.AutomateExplorerView

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
domains

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.explorer.domain.Edit(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DomainEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.automate.explorer.domain.Priority(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DomainPriorityView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
cfme.automate.explorer.domain.generate_updown(title)

	

cfme.automate.explorer.instance module

	
class cfme.automate.explorer.instance.Add(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of InstanceAddView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.automate.explorer.instance.Copy(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of InstanceCopyView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.automate.explorer.instance.Details(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of InstanceDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.automate.explorer.instance.Edit(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of InstanceEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.automate.explorer.instance.Instance(collection, name, display_name=None, description=None, fields=None)

	Bases: cfme.modeling.base.BaseEntity, cfme.automate.explorer.common.Copiable

	
ICON_NAME = 'fa-file-text-o'

	

	
db_id

	

	
db_object

	

	
delete(cancel=False)

	

	
delete_if_exists()

	

	
description

	

	
display_name

	

	
domain

	

	
exists

	

	
klass

	

	
namespace

	

	
parent_obj

	

	
tree_path

	

	
tree_path_name_only

	

	
update(updates)

	

	
class cfme.automate.explorer.instance.InstanceAddView(*args, **kwargs)

	Bases: cfme.automate.explorer.AutomateExplorerView

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
display_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
fields

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.explorer.instance.InstanceCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

	
ENTITY

	alias of Instance

	
create(name=None, display_name=None, description=None, fields=None, cancel=False)

	

	
delete(*instances)

	

	
tree_path

	

	
class cfme.automate.explorer.instance.InstanceCopyView(*args, **kwargs)

	Bases: cfme.automate.explorer.AutomateExplorerView, cfme.automate.explorer.common.CopyViewBase

	
is_displayed

	

	
class cfme.automate.explorer.instance.InstanceDetailsView(*args, **kwargs)

	Bases: cfme.automate.explorer.AutomateExplorerView

	
is_displayed

	

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.explorer.instance.InstanceEditView(*args, **kwargs)

	Bases: cfme.automate.explorer.AutomateExplorerView

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
display_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
fields

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

cfme.automate.explorer.klass module

	
class cfme.automate.explorer.klass.Add(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ClassAddView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.automate.explorer.klass.Class(collection, name, display_name=None, description=None)

	Bases: cfme.modeling.base.BaseEntity, cfme.automate.explorer.common.Copiable

	
db_id

	

	
db_object

	

	
delete(cancel=False)

	

	
delete_if_exists()

	

	
description

	

	
display_name

	

	
domain

	

	
exists

	

	
fqdn

	

	
instances

	

	
methods

	

	
namespace

	

	
parent_obj

	

	
pure_tree_path

	

	
schema

	

	
tree_path

	

	
tree_path_name_only

	

	
update(updates)

	

	
class cfme.automate.explorer.klass.ClassAddView(*args, **kwargs)

	Bases: cfme.automate.explorer.klass.ClassForm

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.automate.explorer.klass.ClassCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

	
ENTITY

	alias of Class

	
create(name=None, display_name=None, description=None, cancel=False)

	

	
delete(*classes)

	

	
tree_path

	

	
class cfme.automate.explorer.klass.ClassCopyView(*args, **kwargs)

	Bases: cfme.automate.explorer.AutomateExplorerView, cfme.automate.explorer.common.CopyViewBase

	
is_displayed

	

	
class cfme.automate.explorer.klass.ClassDetailsView(*args, **kwargs)

	Bases: cfme.automate.explorer.AutomateExplorerView

	
instances

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
methods

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
schema

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.explorer.klass.ClassEditView(*args, **kwargs)

	Bases: cfme.automate.explorer.klass.ClassForm

	
is_displayed

	

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.explorer.klass.ClassForm(*args, **kwargs)

	Bases: cfme.automate.explorer.AutomateExplorerView

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
display_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.explorer.klass.ClassSchema(klass)

	Bases: cfme.utils.appliance.Navigatable

	
FIELD_NAMES = ['name', 'type', 'data_type', 'default_value', 'display_name', 'description', 'substitute', 'collect', 'message', 'on_entry', 'on_exit', 'on_error', 'max_retries', 'max_time']

	

	
add_field(**kwargs)

	

	
add_fields(*fields)

	

	
delete_field(field)

	

	
delete_fields(*fields)

	

	
schema_field_names

	

	
class cfme.automate.explorer.klass.ClassSchemaEditView(*args, **kwargs)

	Bases: cfme.automate.explorer.klass.ClassDetailsView

	
is_displayed

	

	
schema

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.explorer.klass.Copy(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ClassCopyView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.automate.explorer.klass.Details(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ClassDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.automate.explorer.klass.Edit(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ClassEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.automate.explorer.klass.EditSchema(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ClassSchemaEditView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

cfme.automate.explorer.method module

	
class cfme.automate.explorer.method.ActionsCell(*args, **kwargs)

	Bases: widgetastic.widget.View

	
delete

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
edit

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.explorer.method.Add(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of MethodAddView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.automate.explorer.method.Copy(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of MethodCopyView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.automate.explorer.method.Details(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of MethodDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.automate.explorer.method.Edit(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of MethodEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.automate.explorer.method.Inputs(*args, **kwargs)

	Bases: widgetastic.widget.View, widgetastic.widget.ClickableMixin

	
INDIRECT = True

	

	
ROOT = './/button[@id="exp_collapse_img"]/i'

	

	
add_input

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
child_widget_accessed(*args, **kwargs)

	

	
data_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
default_value

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
fill(*args, **kwargs)

	

	
finish_add_input

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
inputs

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_opened

	

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
read(*args, **kwargs)

	

	
class cfme.automate.explorer.method.Method(collection, name=None, display_name=None, location='inline', script=None, data=None, repository=None, playbook=None, machine_credential=None, hosts=None, max_ttl=None, escalate_privilege=None, verbosity=None, playbook_input_parameters=None, cancel=False, validate=True, inputs=None)

	Bases: cfme.modeling.base.BaseEntity, cfme.automate.explorer.common.Copiable

	
db_id

	

	
db_object

	

	
delete(cancel=False)

	

	
delete_if_exists()

	

	
display_name

	

	
domain

	

	
exists

	

	
klass

	

	
namespace

	

	
parent_obj

	

	
tree_path

	

	
tree_path_name_only

	

	
update(updates)

	

	
class cfme.automate.explorer.method.MethodAddView(*args, **kwargs)

	Bases: cfme.automate.explorer.AutomateExplorerView

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
data

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
escalate_privilege

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
hosts

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
inline_display_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
inline_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
inputs

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
location

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
machine_credential

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
max_ttl

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
playbook

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
playbook_display_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
playbook_input_parameters

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
playbook_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
repository

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
script

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
validate_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
verbosity

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.explorer.method.MethodCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

	
ENTITY

	alias of Method

	
create(name=None, display_name=None, location='inline', script=None, data=None, cancel=False, validate=True, repository=None, playbook=None, machine_credential=None, hosts=None, max_ttl=None, escalate_privilege=None, verbosity=None, playbook_input_parameters=None, inputs=None)

	

	
delete(*methods)

	

	
tree_path

	

	
class cfme.automate.explorer.method.MethodCopyView(*args, **kwargs)

	Bases: cfme.automate.explorer.AutomateExplorerView, cfme.automate.explorer.common.CopyViewBase

	
is_displayed

	

	
class cfme.automate.explorer.method.MethodDetailsView(*args, **kwargs)

	Bases: cfme.automate.explorer.AutomateExplorerView

	
created_on

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
display_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
fqdn

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
inputs

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
location

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.explorer.method.MethodEditView(*args, **kwargs)

	Bases: cfme.automate.explorer.AutomateExplorerView

	
before_fill(*args, **kwargs)

	

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
data

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
escalate_privilege

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
hosts

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
inline_display_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
inline_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
inputs

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
machine_credential

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
max_ttl

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
playbook

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
playbook_display_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
playbook_input_parameters

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
playbook_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
repository

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
script

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
validate_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
verbosity

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.explorer.method.PlaybookBootstrapSelect(*args, **kwargs)

	Bases: widgetastic_patternfly.BootstrapSelect

BootstrapSelect widget for Ansible Playbook Method form.

BootstrapSelect widgets don’t have data-id attribute in this form, so we have to override
ROOT locator.

	
ROOT

	

	
class cfme.automate.explorer.method.PlaybookInputParameters(*args, **kwargs)

	Bases: widgetastic.widget.View

Represents input parameters part of playbook method edit form.

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
all_vars

	

	
default_value

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
fill(*args, **kwargs)

	
	Parameters

	values (list) – [] to remove all vars or [(“var”, “value”, “type”), …] to fill the view

	
input_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
provisioning_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
read(*args, **kwargs)

	

	
variables_table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

cfme.automate.explorer.namespace module

	
class cfme.automate.explorer.namespace.Add(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NamespaceAddView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.automate.explorer.namespace.Details(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NamespaceDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.automate.explorer.namespace.Edit(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NamespaceEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.automate.explorer.namespace.Namespace(collection, name, description=None)

	Bases: cfme.modeling.base.BaseEntity

	
classes

	

	
db_id

	

	
db_object

	

	
delete(cancel=False)

	

	
delete_if_exists()

	

	
description

	

	
domain

	

	
exists

	

	
namespaces

	

	
parent_obj

	

	
tree_path

	

	
update(updates)

	

	
class cfme.automate.explorer.namespace.NamespaceAddView(*args, **kwargs)

	Bases: cfme.automate.explorer.namespace.NamespaceForm

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.automate.explorer.namespace.NamespaceCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

	
ENTITY

	alias of Namespace

	
create(name=None, description=None, cancel=False)

	

	
delete(*namespaces)

	

	
tree_path

	

	
class cfme.automate.explorer.namespace.NamespaceDetailsView(*args, **kwargs)

	Bases: cfme.automate.explorer.AutomateExplorerView

	
is_displayed

	

	
namespaces

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.explorer.namespace.NamespaceEditView(*args, **kwargs)

	Bases: cfme.automate.explorer.namespace.NamespaceForm

	
is_displayed

	

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.explorer.namespace.NamespaceForm(*args, **kwargs)

	Bases: cfme.automate.explorer.AutomateExplorerView

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

cfme.automate.buttons module

	
class cfme.automate.buttons.AnsiblePlaybookButton(parent, group, text, hover, image, playbook_cat_item, inventory, hosts=None, system=None, request=None, open_url=None, attributes=None)

	Bases: cfme.automate.buttons.BaseButton

	
attributes = Attribute(name='attributes', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
group = Attribute(name='group', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
hosts = Attribute(name='hosts', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
hover = Attribute(name='hover', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
image = Attribute(name='image', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
inventory = Attribute(name='inventory', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
open_url = Attribute(name='open_url', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
playbook_cat_item = Attribute(name='playbook_cat_item', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
request = Attribute(name='request', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
system = Attribute(name='system', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
text = Attribute(name='text', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
class cfme.automate.buttons.AutomateRadioGroup(*args, **kwargs)

	Bases: widgetastic_manageiq.RadioGroup

	
BUTTON = './/label[normalize-space(.)={}]/preceding-sibling::input[@type="radio"][1]'

	

	
LABELS = './/label'

	

	
select(*args, **kwargs)

	

	
selected

	

	
class cfme.automate.buttons.BaseButton(parent)

	Bases: cfme.modeling.base.BaseEntity, cfme.utils.update.Updateable

Base class for Automate Buttons.

	
delete(cancel=False)

	

	
delete_if_exists()

	

	
exists

	

	
update(updates)

	

	
class cfme.automate.buttons.ButtonAll(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ButtonsAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.automate.buttons.ButtonCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

	
ENTITY

	alias of BaseButton

	
create(text, hover, type='Default', group=None, dialog=None, playbook_cat_item=None, inventory=None, hosts=None, image=None, open_url=None, system=None, request=None, attributes=None)

	

	
instantiate(group, text, hover, type='Default', dialog=None, playbook_cat_item=None, inventory=None, hosts=None, image=None, open_url=None, system=None, request=None, attributes=None)

	

	
class cfme.automate.buttons.ButtonDetailView(*args, **kwargs)

	Bases: cfme.automate.AutomateCustomizationView

	
button_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
dialog

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
hover

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
message

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
playbook_cat_item

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
request

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
show

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
system

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
target

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
text

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.buttons.ButtonDetails(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ButtonDetailView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.automate.buttons.ButtonEdit(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditButtonView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.automate.buttons.ButtonFormCommon(*args, **kwargs)

	Bases: cfme.automate.AutomateCustomizationView

	
advanced

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
options

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.buttons.ButtonGroup(parent, text, hover, type, image)

	Bases: cfme.modeling.base.BaseEntity, cfme.utils.update.Updateable

Create,Edit and Delete Button Groups

	Parameters

	
	text – The button Group name.

	hover – The button group hover text.

	type – The object type.

	
buttons

	

	
delete(cancel=False)

	

	
delete_if_exists()

	

	
exists

	

	
hover = Attribute(name='hover', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
image = Attribute(name='image', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
text = Attribute(name='text', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
type = Attribute(name='type', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
update(updates)

	

	
class cfme.automate.buttons.ButtonGroupAll(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ButtonsAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.automate.buttons.ButtonGroupCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

	
CLUSTER = 'Cluster'

	

	
DATASTORE = 'Datastore'

	

	
ENTITY

	alias of ButtonGroup

	
HOST = 'Host / Node'

	

	
PROVIDER = 'Provider'

	

	
SERVICE = 'Service'

	

	
TEMPLATE = 'VM Template and Image'

	

	
VM_INSTANCE = 'VM and Instance'

	

	
create(text, hover, type, image=None)

	

	
instantiate(text, hover, type, image=None)

	

	
class cfme.automate.buttons.ButtonGroupDetailView(*args, **kwargs)

	Bases: cfme.automate.AutomateCustomizationView

	
hover

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
text

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.buttons.ButtonGroupDetails(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ButtonGroupDetailView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.automate.buttons.ButtonGroupEdit(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditButtonGroupView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.automate.buttons.ButtonGroupFormCommon(*args, **kwargs)

	Bases: cfme.automate.AutomateCustomizationView

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
display

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
hover

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
image

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters

	version_dict – Dictionary of version_introduced: item

	
text

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.buttons.ButtonGroupNew(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NewButtonGroupView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.automate.buttons.ButtonGroupObjectType(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ButtonGroupObjectTypeView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.automate.buttons.ButtonGroupObjectTypeView(*args, **kwargs)

	Bases: cfme.automate.AutomateCustomizationView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.buttons.ButtonNew(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NewButtonView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.automate.buttons.ButtonsAllView(*args, **kwargs)

	Bases: cfme.automate.AutomateCustomizationView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.buttons.DefaultButton(parent, group, text, hover, image, dialog, system=None, request=None, open_url=None, attributes=None)

	Bases: cfme.automate.buttons.BaseButton

	
attributes = Attribute(name='attributes', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
dialog = Attribute(name='dialog', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
group = Attribute(name='group', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
hover = Attribute(name='hover', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
image = Attribute(name='image', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
open_url = Attribute(name='open_url', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
request = Attribute(name='request', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
system = Attribute(name='system', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
text = Attribute(name='text', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
class cfme.automate.buttons.EditButtonGroupView(*args, **kwargs)

	Bases: cfme.automate.buttons.ButtonGroupFormCommon

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.buttons.EditButtonView(*args, **kwargs)

	Bases: cfme.automate.buttons.ButtonFormCommon

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.buttons.NewButtonGroupView(*args, **kwargs)

	Bases: cfme.automate.buttons.ButtonGroupFormCommon

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.buttons.NewButtonView(*args, **kwargs)

	Bases: cfme.automate.buttons.ButtonFormCommon

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

cfme.automate.dialog_box module

	
class cfme.automate.dialog_box.Add(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AddBoxView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.automate.dialog_box.Box(parent, box_label, box_desc=None)

	Bases: cfme.modeling.base.BaseEntity

A class representing one Box of dialog.

	
box_desc = Attribute(name='box_desc', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
box_label = Attribute(name='box_label', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
elements

	

	
tab

	

	
tree_path

	

	
class cfme.automate.dialog_box.BoxCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

	
ENTITY

	alias of Box

	
create(box_label=None, box_desc=None)

	Create box method.
:param box_label and box_description.:

	
tree_path

	

	
class cfme.automate.dialog_box.EditBoxView(*args, **kwargs)

	Bases: cfme.automate.BoxForm

EditBox View.

	
is_displayed

	

cfme.automate.dialog_collection_pick module

cfme.automate.dialog_element module

	
class cfme.automate.dialog_element.Add(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AddElementView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.automate.dialog_element.AddElementView(*args, **kwargs)

	Bases: cfme.automate.dialog_element.ElementForm

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.automate.dialog_element.DetailsDialogView(*args, **kwargs)

	Bases: cfme.automate.AutomateCustomizationView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.dialog_element.Edit(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditElementView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.automate.dialog_element.EditElementView(*args, **kwargs)

	Bases: cfme.automate.dialog_element.ElementForm

	
dragndrop

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.dialog_element.Element(parent, element_data)

	Bases: cfme.modeling.base.BaseEntity

A class representing one Element of a dialog.

	
add_another_element(element)

	Method to add element.

	
dialog

	Returns parent object - Dialog

	
element_data = Attribute(name='element_data', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
element_loc(element_data)

	

	
reorder_elements(add_element, second_element, element_data)

	
	Method to add element and interchange element positions.

	This method updates a dialog and adds a second element.The position
of two elements are then interchanged to test for error.

	Parameters

	
	add_element – flag if second element needs to be added.

	second_element – The second element to be added to the dialog.

	element_data – Already existing first element’s data.

	
tree_path

	

	
class cfme.automate.dialog_element.ElementCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

	
ENTITY

	alias of Element

	
create(element_data=None)

	

	
set_element_type(view, element)

	Method to add element type.Depending on their type the subfields varies.

	Parameters

	each_element – subfields depending on element type.

	
tree_path

	

	
class cfme.automate.dialog_element.ElementForm(*args, **kwargs)

	Bases: cfme.automate.AddBoxView

	
add_entry_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
apply_btn

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
bt_tree

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
choose_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
default_text_box

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
default_value

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
dynamic_chkbox

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
dynamic_tree

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
ele_desc

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
ele_label

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
ele_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
element_tree

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
entry_description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
entry_table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
entry_value

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
field_category

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
field_entry_point

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
field_past_dates

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
field_required

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
field_show_refresh_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
text_area

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

cfme.automate.dialog_tab module

	
class cfme.automate.dialog_tab.Add(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AddTabView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.automate.dialog_tab.DetailsTabView(*args, **kwargs)

	Bases: cfme.automate.TabForm

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.dialog_tab.EditTabView(*args, **kwargs)

	Bases: cfme.automate.TabForm

	
is_displayed

	

	
class cfme.automate.dialog_tab.Tab(parent, tab_label, tab_desc=None)

	Bases: cfme.modeling.base.BaseEntity

A class representing one Tab in the UI.

	
boxes

	

	
dialog

	Returns parent object - Dialog

	
tab_desc = Attribute(name='tab_desc', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
tab_label = Attribute(name='tab_label', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
tree_path

	

	
class cfme.automate.dialog_tab.TabCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

	
ENTITY

	alias of Tab

	
add_tab()

	

	
create(tab_label=None, tab_desc=None)

	Create tab method

	
tree_path

	

cfme.automate.import_export module

	
class cfme.automate.import_export.AutomateGitRepository(url=None, username=None, password=None, verify_ssl=None, appliance=None)

	Bases: cfme.utils.appliance.Navigatable

Represents an Automate git repository. This entity is not represented in UI as it is, but
only in database. But by representing it it makes the code changes for domain much simpler.

	
fill_values_branch_select(branch, tag)

	Processes the args into a dictionary to be filled in the selection dialog.

	
fill_values_repo_add

	

	
classmethod from_db(db_id, appliance=None)

	

	
import_domain_from(branch=None, tag=None)

	Import the domain from git using the Import/Export UI.

	Parameters

	
	branch – If you import from a branch, specify the origin/branchname

	tag – If you import from a tag, specify its name.

	Returns

	Instance of cfme.automate.explorer.domain.Domain

Important! branch and tag are mutually exclusive.

	
class cfme.automate.import_export.GitImportSelectorView(*args, **kwargs)

	Bases: cfme.base.ui.AutomateImportExportBaseView

	
branch

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
submit

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
tag

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

cfme.automate.provisioning_dialogs module

	
class cfme.automate.provisioning_dialogs.Add(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ProvDiagAddView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.automate.provisioning_dialogs.All(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ProvDiagAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.automate.provisioning_dialogs.Details(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ProvDiagDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.automate.provisioning_dialogs.Edit(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ProvDiagEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.automate.provisioning_dialogs.ProvDiagAddView(*args, **kwargs)

	Bases: cfme.automate.provisioning_dialogs.ProvDiagView

	
form

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.provisioning_dialogs.ProvDiagAllEntities(*args, **kwargs)

	Bases: widgetastic.widget.View

All entities view - no view selector, not using BaseEntitiesView

	
paginator

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters

	version_dict – Dictionary of version_introduced: item

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.provisioning_dialogs.ProvDiagAllToolbar(*args, **kwargs)

	Bases: widgetastic.widget.View

Toolbar with singular configuration dropdown

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.provisioning_dialogs.ProvDiagAllView(*args, **kwargs)

	Bases: cfme.automate.provisioning_dialogs.ProvDiagView

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.provisioning_dialogs.ProvDiagDetailsEntities(*args, **kwargs)

	Bases: widgetastic.widget.View

Entities for details page

	
basic_info

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
content

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.provisioning_dialogs.ProvDiagDetailsView(*args, **kwargs)

	Bases: cfme.automate.provisioning_dialogs.ProvDiagView

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.provisioning_dialogs.ProvDiagEditView(*args, **kwargs)

	Bases: cfme.automate.provisioning_dialogs.ProvDiagView

	
form

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.provisioning_dialogs.ProvDiagForm(*args, **kwargs)

	Bases: widgetastic.widget.View

Base form with common widgets for add and edit

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
content

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
diag_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.provisioning_dialogs.ProvDiagView(*args, **kwargs)

	Bases: cfme.base.login.BaseLoggedInPage

	
in_customization

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.provisioning_dialogs.ProvisioningDialog(parent, diag_type=None, name=None, description=None, content=None)

	Bases: cfme.utils.update.Updateable, cfme.utils.pretty.Pretty, cfme.modeling.base.BaseEntity

	
content = Attribute(name='content', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
delete(cancel=False)

	

	
description = Attribute(name='description', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
diag_type = Attribute(name='diag_type', default=None, validator=<function _validate>, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
exists

	

	
name = Attribute(name='name', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
pretty_attrs = ['name', 'description', 'diag_type', 'content']

	

	
update(updates, cancel=False, reset=False)

	

	
class cfme.automate.provisioning_dialogs.ProvisioningDialogsCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

	
ALLOWED_TYPES = set(['VM Migrate', 'Configured System Provision', 'VM Provision', 'Host Provision'])

	

	
ENTITY

	alias of ProvisioningDialog

	
HOST_PROVISION = 'Host Provision'

	

	
SYSTEM_PROVISION = 'Configured System Provision'

	

	
VM_MIGRATE = 'VM Migrate'

	

	
VM_PROVISION = 'VM Provision'

	

	
create(diag_type=None, name=None, description=None, content=None, cancel=False)

	

cfme.automate.service_dialogs module

	
class cfme.automate.service_dialogs.Add(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AddDialogView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.automate.service_dialogs.All(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DialogsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.automate.service_dialogs.Details(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DetailsDialogView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.automate.service_dialogs.DetailsDialogView(*args, **kwargs)

	Bases: cfme.automate.AutomateCustomizationView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.service_dialogs.Dialog(parent, label, description=None, submit_btn=True, cancel_btn=True)

	Bases: cfme.modeling.base.BaseEntity, widgetastic.utils.Fillable

A class representing one Domain in the UI.

	
as_fill_value()

	

	
cancel_btn = Attribute(name='cancel_btn', default=True, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
delete()

	Delete dialog method

	
delete_if_exists()

	

	
description = Attribute(name='description', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
dialog

	

	
exists

	Returns True if dialog exists

	
label = Attribute(name='label', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
submit_btn = Attribute(name='submit_btn', default=True, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
tabs

	

	
tree_path

	

	
update(updates)

	Update dialog method

	
class cfme.automate.service_dialogs.DialogCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

Collection object for the Dialog.

	
ENTITY

	alias of Dialog

	
create(label=None, description=None, submit_btn=True, cancel_btn=True)

	Create dialog label method

	
tree_path = ['All Dialogs']

	

	
class cfme.automate.service_dialogs.DialogsView(*args, **kwargs)

	Bases: cfme.automate.AutomateCustomizationView

	
is_displayed

	

	
paginator

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters

	version_dict – Dictionary of version_introduced: item

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.automate.service_dialogs.Edit(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditDialogView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

cfme.automate.simulation module

	
cfme.automate.simulation.simulate(instance=None, message=None, request=None, target_type=None, target_object=None, execute_methods=None, attributes_values=None, pre_clear=True, appliance=None)

	Runs the simulation of specified Automate object.

cfme.base package

Submodules

	cfme.base.credential module

	cfme.base.login module

	cfme.base.rest module

	cfme.base.ssui module

	cfme.base.ui module

Module contents

	
class cfme.base.Region(parent, number=0)

	Bases: cfme.modeling.base.BaseEntity, sentaku.modeling.ElementMixin

	
advanced_settings

	“GET zones/ – id/settings api endpoint to query region configuration

	
number = Attribute(name='number', default=0, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
replication

	

	
settings_string

	

	
update_advanced_settings(settings_dict)

	PATCH settings from the zone’s api/zones/:id/settings endpoint

	Parameters

	settings_dict – dictionary of the changes to be made to the yaml configuration
JSON dumps settings_dict to pass as raw hash data to rest_api session

	Raises

	AssertionError – On an http result >=400 (RequestsResponse.ok)

	
class cfme.base.RegionCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection, sentaku.modeling.ElementMixin

	
ENTITY

	alias of Region

	
all()

	

	
class cfme.base.Server(parent, name, sid=1)

	Bases: cfme.modeling.base.BaseEntity, sentaku.modeling.ElementMixin

	
address

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
advanced_settings

	GET servers/ – id/settings api endpoint to query server configuration

	
authentication

	

	
collect_logs

	

	
current_full_name

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
current_group_name

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
current_username

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
group_names

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
logged_in

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
login

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
login_admin

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
logout

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
name = Attribute(name='name', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
settings

	

	
sid = Attribute(name='sid', default=1, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
slave_servers

	

	
update_advanced_settings(settings_dict)

	PATCH settings from the server’s api/server/:id/settings endpoint

	Parameters

	settings_dict – dictionary of the changes to be made to the yaml configuration
JSON dumps settings_dict to pass as raw hash data to rest_api session

	Raises

	AssertionError – On an http result >=400 (RequestsResponse.ok)

	
update_password

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
zone

	

	
class cfme.base.ServerCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection, sentaku.modeling.ElementMixin

	
ENTITY

	alias of Server

	
all()

	

	
get_master()

	

	
class cfme.base.Zone(parent, name='default', description='Default Zone', id=None, smartproxy_ip=None, ntp_servers=None, max_scans=None, user=None)

	Bases: cfme.utils.pretty.Pretty, cfme.modeling.base.BaseEntity, sentaku.modeling.ElementMixin

Configure/Configuration/Region/Zones functionality

Create/Read/Update/Delete functionality.

	
advanced_settings

	“GET zones/ – id/settings api endpoint to query zone configuration

	
collect_logs

	

	
delete

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
description = Attribute(name='description', default='Default Zone', validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
exists

	

	
id = Attribute(name='id', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
max_scans = Attribute(name='max_scans', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
name = Attribute(name='name', default='default', validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
ntp_servers = Attribute(name='ntp_servers', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
pretty_attrs = ['name', 'description', 'smartproxy_ip', 'ntp_servers', 'max_scans', 'user']

	

	
region

	

	
smartproxy_ip = Attribute(name='smartproxy_ip', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
update

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
update_advanced_settings(settings_dict)

	PATCH settings from the zone’s api/zones/:id/settings endpoint

	Parameters

	settings_dict – dictionary of the changes to be made to the yaml configuration
JSON dumps settings_dict to pass as raw hash data to rest_api session

	Raises

	AssertionError – On an http result >=400 (RequestsResponse.ok)

	
user = Attribute(name='user', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
class cfme.base.ZoneCollection(parent, filters=NOTHING, region=None)

	Bases: cfme.modeling.base.BaseCollection, sentaku.modeling.ElementMixin

	
ENTITY

	alias of Zone

	
all()

	

	
create

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
region = Attribute(name='region', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

cfme.base.credential module

	
class cfme.base.credential.AzureCredential(principal, secret, verify_secret=None, domain=None, tenant_id=None, subscription_id=None, **ignore)

	Bases: cfme.base.credential.Credential

	
class cfme.base.credential.CANDUCredential(principal, secret, verify_secret=None, domain=None, tenant_id=None, subscription_id=None, **ignore)

	Bases: cfme.base.credential.Credential

	
class cfme.base.credential.Credential(principal, secret, verify_secret=None, domain=None, tenant_id=None, subscription_id=None, **ignore)

	Bases: cfme.utils.pretty.Pretty, cfme.utils.update.Updateable, cfme.base.credential.FromConfigMixin

A class to fill in credentials

	Parameters

	
	principal – user name

	secret – password

	verify_secret – password

	domain – concatenated with principal if defined

	
pretty_attrs = ['principal', 'secret']

	

	
view_value_mapping

	used for filling forms like add/edit provider form
Returns: dict

	
class cfme.base.credential.EventsCredential(principal, secret, verify_secret=None, domain=None, tenant_id=None, subscription_id=None, **ignore)

	Bases: cfme.base.credential.Credential

	
class cfme.base.credential.FromConfigMixin

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
classmethod from_config(key)

	helper function which allows to construct credential object from credentials.eyaml

	Parameters

	key – credential key

Returns: credential object

	
classmethod from_plaintext(creds)

	helper function which allows to construct credential class from plaintext dict

	Parameters

	creds – dict

Returns: credential object

	
static rename_properties(creds)

	helper function to make properties have same names in credential objects.
:param creds: dict

Returns: updated dict

	
class cfme.base.credential.SSHCredential(principal, secret, verify_secret=None, domain=None, tenant_id=None, subscription_id=None, **ignore)

	Bases: cfme.base.credential.Credential

	
view_value_mapping

	used for filling forms like add/edit provider form
Returns: dict

	
class cfme.base.credential.ServiceAccountCredential(service_account)

	Bases: cfme.utils.pretty.Pretty, cfme.utils.update.Updateable

A class to fill in credentials

	Parameters

	service_account – service account string

	
classmethod from_config(key)

	

	
pretty_attrs = ['service_account']

	

	
view_value_mapping

	used for filling forms like add/edit provider form
Returns: dict

	
class cfme.base.credential.TokenCredential(token, verify_token=None, **kwargs)

	Bases: cfme.utils.pretty.Pretty, cfme.utils.update.Updateable, cfme.base.credential.FromConfigMixin

A class to fill in credentials

	Parameters

	
	token – identification token

	verify_token – token once more

	
pretty_attrs = ['token']

	

	
view_value_mapping

	used for filling forms like add/edit provider form
Returns: dict

cfme.base.login module

	
class cfme.base.login.BaseLoggedInPage(*args, **kwargs)

	Bases: widgetastic.widget.View

This page should be subclassed by any page that models any other page that is available as
logged in.

	
CSRF_TOKEN = '//meta[@name="csrf-token"]'

	

	
csrf_token

	

	
current_fullname

	

	
current_groupname

	

	
current_username

	

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
group_list_locator = './/ul/li[contains(@class, "dropdown-submenu") and contains(., "Change Group")]'

	

	
group_names

	Return a list of the logged in user’s assigned groups.

	Returns

	Version >= 5.9 - list of all groups the logged in user is assigned to
Version < 5.9 - single item list containing the user’s current group

	
help

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
logged_in

	

	
logged_in_as_current_user

	

	
logged_in_as_user(*args, **kwargs)

	

	
logged_out

	

	
logout(*args, **kwargs)

	

	
navigation

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
settings

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
unexpected_error

	

cfme.base.rest module

cfme.base.ssui module

	
class cfme.base.ssui.LoggedIn(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ssui.SSUINavigateStep

	
VIEW

	alias of SSUIBaseLoggedInPage

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ssui.LoginPage(*args, **kwargs)

	Bases: widgetastic.widget.View

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
log_in(*args, **kwargs)

	

	
login

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
password

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
submit_login(*args, **kwargs)

	

	
username

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.base.ssui.LoginScreen(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ssui.SSUINavigateStep

	
VIEW

	alias of LoginPage

	
prerequisite()

	

	
step()

	

	
class cfme.base.ssui.SSUIBaseLoggedInPage(*args, **kwargs)

	Bases: widgetastic.widget.View

This page should be subclassed by any page that models any other page that is available as
logged in.

	
current_fullname

	

	
current_username

	

	
domain_switcher

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
help

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
logged_in

	

	
logged_in_as_current_user

	

	
logged_in_as_user(*args, **kwargs)

	

	
logged_out

	

	
logout(*args, **kwargs)

	

	
navigation

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
settings

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
shopping_cart

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cfme.base.ssui.address(self)

	

	
cfme.base.ssui.login(self, user=None, method='press_enter_after_password')

	

	
cfme.base.ssui.login_admin(self, **kwargs)

	Convenience function to log into CFME using the admin credentials from the yamls.
:param kwargs: A dict of keyword arguments to supply to the login() method.

cfme.base.ui module

	
class cfme.base.ui.About(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AboutView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.Advanced(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerView

	
am_i_here()

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.AuditLog(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerDiagnosticsView

	
am_i_here()

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.Authentication(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerAuthenticationView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.AutomateImportExport(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AutomateImportExportView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.AutomateImportExportBaseView(*args, **kwargs)

	Bases: cfme.base.login.BaseLoggedInPage

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
in_import_export

	

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.base.ui.AutomateImportExportView(*args, **kwargs)

	Bases: cfme.base.ui.AutomateImportExportBaseView

	
export_all

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
import_file

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
import_git

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
reset_all

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.base.ui.AutomateSimulation(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AutomateSimulationView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.AutomateSimulationView(*args, **kwargs)

	Bases: cfme.base.login.BaseLoggedInPage

	
avp

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
execute_methods

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
instance

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
message

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
request

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
result_tree

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
submit_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
target_object

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
target_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.base.ui.CFMELog(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerDiagnosticsView

	
am_i_here()

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.ChangeRegionName(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RegionChangeNameView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.Chargeback(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ChargebackView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)

	

	
class cfme.base.ui.CompanyCategories(*args, **kwargs)

	Bases: widgetastic_patternfly.Tab

	
TAB_NAME = 'My Company Categories'

	

	
class cfme.base.ui.CompanyTags(*args, **kwargs)

	Bases: widgetastic_patternfly.Tab

	
TAB_NAME = 'My Company Tags'

	

	
class cfme.base.ui.Configuration(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ConfigurationView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.ConfigurationView(*args, **kwargs)

	Bases: cfme.base.login.BaseLoggedInPage

	
accordions

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
in_configuration

	

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.base.ui.CustomLogos(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerView

	
am_i_here()

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.Dashboard(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DashboardView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.Database(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerDatabaseView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.DatabaseClientConnections(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DatabaseClientConnectionsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.DatabaseClientConnectionsView(*args, **kwargs)

	Bases: cfme.base.ui.ServerDatabaseView

	
is_displayed

	

	
class cfme.base.ui.DatabaseIndexes(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DatabaseIndexesView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.DatabaseIndexesView(*args, **kwargs)

	Bases: cfme.base.ui.ServerDatabaseView

	
is_displayed

	

	
class cfme.base.ui.DatabaseSettings(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DatabaseSettingsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.DatabaseSettingsView(*args, **kwargs)

	Bases: cfme.base.ui.ServerDatabaseView

	
is_displayed

	

	
class cfme.base.ui.DatabaseSummary(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DatabaseSummaryView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.DatabaseSummaryView(*args, **kwargs)

	Bases: cfme.base.ui.ServerDatabaseView

	
is_displayed

	

	
summary

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.base.ui.DatabaseTables(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DatabaseTablesView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.DatabaseTablesView(*args, **kwargs)

	Bases: cfme.base.ui.ServerDatabaseView

	
is_displayed

	

	
class cfme.base.ui.DatabaseUtilization(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DatabaseUtilizationView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.DatabaseUtilizationView(*args, **kwargs)

	Bases: cfme.base.ui.ServerDatabaseView

	
is_displayed

	

	
class cfme.base.ui.Details(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.Diagnostics(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerDiagnosticsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.DiagnosticsDetails(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerDiagnosticsView

	
am_i_here()

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.DiagnosticsWorkers(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerDiagnosticsView

	
am_i_here()

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.Documentation(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DocView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.HelpMenu(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of HelpMenuView

	
am_i_here()

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.HelpMenuView(*args, **kwargs)

	Bases: cfme.base.ui.RegionView

	
is_displayed

	

	
class cfme.base.ui.Import(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RegionView

	
am_i_here()

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.ImportTags(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RegionView

	
am_i_here()

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.ImportVariable(*args, **kwargs)

	Bases: widgetastic_patternfly.Tab

	
TAB_NAME = 'Import Variables'

	

	
class cfme.base.ui.LoggedIn(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of BaseLoggedInPage

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.LoginPage(*args, **kwargs)

	Bases: widgetastic.widget.View

	
back

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
change_password

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
current_fullname

	

	
current_groupname

	

	
current_username

	

	
details

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
hide_update_password(*args, **kwargs)

	

	
is_displayed

	

	
log_in(*args, **kwargs)

	

	
logged_in

	

	
logged_in_as_current_user

	

	
logged_in_as_user(*args, **kwargs)

	

	
logged_out

	

	
login

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
login_admin(*args, **kwargs)

	

	
new_password

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
password

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
show_update_password(*args, **kwargs)

	

	
submit_login(*args, **kwargs)

	

	
update_password(*args, **kwargs)

	

	
username

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
verify_password

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.base.ui.LoginScreen(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of LoginPage

	
prerequisite()

	

	
step()

	

	
class cfme.base.ui.MapTags(*args, **kwargs)

	Bases: widgetastic_patternfly.Tab

	
TAB_NAME = 'Map Tags'

	

	
class cfme.base.ui.ProductionLog(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerDiagnosticsView

	
am_i_here()

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.RSS(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RSSView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.RegionChangeNameView(*args, **kwargs)

	Bases: cfme.base.ui.RegionView

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
region_description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reset

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.base.ui.RegionDetails(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RegionView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.base.ui.RegionDiagnostics(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RegionDiagnosticsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.base.ui.RegionDiagnosticsDatabase(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RegionDiagnosticsDatabaseView

	
am_i_here()

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.RegionDiagnosticsDatabaseView(*args, **kwargs)

	Bases: cfme.base.ui.RegionDiagnosticsView

	
db_backup_settings_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
submit_db_garbage_collection_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.base.ui.RegionDiagnosticsOrphanedData(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RegionDiagnosticsView

	
am_i_here()

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.RegionDiagnosticsReplication(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RegionDiagnosticsView

	
am_i_here()

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.RegionDiagnosticsRolesByServers(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RegionDiagnosticsView

	
am_i_here()

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.RegionDiagnosticsServers(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RegionDiagnosticsView

	
am_i_here()

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.RegionDiagnosticsServersByRoles(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RegionDiagnosticsView

	
am_i_here()

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.RegionDiagnosticsView(*args, **kwargs)

	Bases: cfme.base.ui.ConfigurationView

	
database

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
orphaneddata

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
replication

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
rolesbyservers

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
servers

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
serversbyroles

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
zones

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.base.ui.RegionDiagnosticsZones(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RegionDiagnosticsView

	
am_i_here()

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.RegionView(*args, **kwargs)

	Bases: cfme.base.ui.ConfigurationView

	
candu_collection

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
company_categories

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
company_tags

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
details

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
help_menu

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
import_tags

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
imports

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
map_tags

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
redhat_updates

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
replication

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
tags

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.base.ui.RegionZones(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ZoneListView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.base.ui.ServerDatabaseView(*args, **kwargs)

	Bases: cfme.base.ui.ConfigurationView

	
client_connections

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
indexes

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
settings

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
summary

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
tables

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
utilization

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.base.ui.ServerDetails(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerInformationView

	
am_i_here()

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.ServerDiagnosticsCollectLogs(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerDiagnosticsCollectLogsView

	
am_i_here()

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.ServerDiagnosticsCollectLogsView(*args, **kwargs)

	Bases: cfme.base.ui.ServerDiagnosticsView

	
is_displayed

	

	
class cfme.base.ui.ServerDiagnosticsView(*args, **kwargs)

	Bases: cfme.base.ui.ConfigurationView

	
auditlog

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cfmelog

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
collectlogs

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
productionlog

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
summary

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
timelines

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
utilization

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
workers

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.base.ui.ServerView(*args, **kwargs)

	Bases: cfme.base.ui.ConfigurationView

	
advanced

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
authentication

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
customlogos

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
server

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
workers

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.base.ui.SmartProxyAffinity(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ZoneSmartProxyAffinityView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.base.ui.TagsView(*args, **kwargs)

	Bases: widgetastic_patternfly.Tab

	
TAB_NAME = 'Tags'

	

	
company_categories

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
company_tags

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
import_tags

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
imports

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
map_tags

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.base.ui.Tasks(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TasksView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.Timelines(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerDiagnosticsView

	
am_i_here()

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.Utilization(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerDiagnosticsView

	
am_i_here()

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.Workers(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerView

	
am_i_here()

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.ZoneAdd(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ZoneAddView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.base.ui.ZoneAddView(*args, **kwargs)

	Bases: cfme.base.ui.ZoneForm

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.base.ui.ZoneCANDUGapCollection(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ZoneDiagnosticsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.ZoneCollectLogs(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ZoneCollectLogsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.ZoneCollectLogsView(*args, **kwargs)

	Bases: cfme.base.ui.ZoneDiagnosticsView

	
is_displayed

	

	
class cfme.base.ui.ZoneDetails(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ZoneDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.base.ui.ZoneDetailsView(*args, **kwargs)

	Bases: cfme.base.ui.ZoneView

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.base.ui.ZoneDiagnostics(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ZoneDiagnosticsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.base.ui.ZoneDiagnosticsRolesByServers(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ZoneDiagnosticsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.ZoneDiagnosticsServers(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ZoneDiagnosticsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.ZoneDiagnosticsServersByRoles(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ZoneDiagnosticsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.ZoneDiagnosticsView(*args, **kwargs)

	Bases: cfme.base.ui.ConfigurationView

	
candugapcollection

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
collectlogs

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
rolesbyservers

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
servers

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
serversbyroles

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.base.ui.ZoneEdit(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ZoneEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.base.ui.ZoneEditView(*args, **kwargs)

	Bases: cfme.base.ui.ZoneForm

	
is_displayed

	

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.base.ui.ZoneForm(*args, **kwargs)

	Bases: cfme.base.ui.ConfigurationView

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
max_scans

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
ntp_server_1

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
ntp_server_2

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
ntp_server_3

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
password

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
smartproxy_ip

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
username

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
verify

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.base.ui.ZoneListView(*args, **kwargs)

	Bases: cfme.base.ui.ConfigurationView

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.base.ui.ZoneSmartProxyAffinityView(*args, **kwargs)

	Bases: cfme.base.ui.ZoneView

	
is_displayed

	

	
class cfme.base.ui.ZoneView(*args, **kwargs)

	Bases: cfme.base.ui.ConfigurationView

	
smart_proxy_affinity

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
zone

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cfme.base.ui.address(self)

	

	
cfme.base.ui.automate_menu_name(appliance)

	

	
cfme.base.ui.create(self, name=None, description=None, smartproxy_ip=None, ntp_servers=None, max_scans=None, user=None, cancel=False)

	

	
cfme.base.ui.current_full_name(self)

	Returns the current username.
Returns: the current username.

	
cfme.base.ui.current_group_name(self)

	Returns current groupname from settings dropdown nav if logged in, or None

	
cfme.base.ui.delete(self, cancel=False)

	Delete the Zone represented by this object.

	Parameters

	cancel – Whether to click on the cancel button in the pop-up.

	
cfme.base.ui.exists(self)

	

	
cfme.base.ui.group_names(self)

	Returns group names selectable for current user from settings dropdown if logged in

	
cfme.base.ui.logged_in(self)

	

	
cfme.base.ui.login(self, user=None, method='press_enter_after_password')

	Login to CFME with the given username and password.
Optionally, submit_method can be press_enter_after_password
to use the enter key to login, rather than clicking the button.
:param user: The username to fill in the username field.
:param password: The password to fill in the password field.
:param submit_method: A function to call after the username and password have been input.

	Raises

	RuntimeError – If the login fails, ie. if a flash message appears

	
cfme.base.ui.login_admin(self, **kwargs)

	Convenience function to log into CFME using the admin credentials from the yamls.
:param kwargs: A dict of keyword arguments to supply to the login() method.

	
cfme.base.ui.logout(self)

	Logs out of CFME.

	
cfme.base.ui.update(self, updates)

	

cfme.cloud package

Subpackages

	cfme.cloud.instance package
	Submodules
	cfme.cloud.instance.azure module

	cfme.cloud.instance.ec2 module

	cfme.cloud.instance.gce module

	cfme.cloud.instance.image module

	cfme.cloud.instance.openstack module

	Module contents

	cfme.cloud.provider package
	Submodules
	cfme.cloud.provider.azure module

	cfme.cloud.provider.ec2 module

	cfme.cloud.provider.gce module

	cfme.cloud.provider.openstack module

	cfme.cloud.provider.vcloud module

	Module contents

Submodules

	cfme.cloud.availability_zone module

	cfme.cloud.flavor module

	cfme.cloud.keypairs module

	cfme.cloud.security_groups module

	cfme.cloud.stack module

	cfme.cloud.tenant module

Module contents

cfme.cloud.instance package

Submodules

	cfme.cloud.instance.azure module

	cfme.cloud.instance.ec2 module

	cfme.cloud.instance.gce module

	cfme.cloud.instance.image module

	cfme.cloud.instance.openstack module

Module contents

cfme.cloud.instance.azure module

cfme.cloud.instance.ec2 module

cfme.cloud.instance.gce module

cfme.cloud.instance.image module

cfme.cloud.instance.openstack module

cfme.cloud.provider package

Submodules

	cfme.cloud.provider.azure module

	cfme.cloud.provider.ec2 module

	cfme.cloud.provider.gce module

	cfme.cloud.provider.openstack module

	cfme.cloud.provider.vcloud module

Module contents

cfme.cloud.provider.azure module

cfme.cloud.provider.ec2 module

cfme.cloud.provider.gce module

cfme.cloud.provider.openstack module

cfme.cloud.provider.vcloud module

cfme.cloud.availability_zone module

cfme.cloud.flavor module

cfme.cloud.keypairs module

cfme.cloud.security_groups module

	
class cfme.cloud.security_groups.Add(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of SecurityGroupAddView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)

	Raises DropdownItemDisabled from widgetastic_patternfly
if no RHOS Network manager present

	
class cfme.cloud.security_groups.Details(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of SecurityGroupDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step(*args, **kwargs)

	

	
class cfme.cloud.security_groups.SecurityGroup(parent, name, provider, description='')

	Bases: cfme.modeling.base.BaseEntity

Automate Model page of SecurityGroup

	Parameters

	
	provider (obj) – Provider name for Network Manager

	name (str [https://docs.python.org/2.7/library/functions.html#str]) – name of the Security Group

	description (str [https://docs.python.org/2.7/library/functions.html#str]) – Security Group description

	
delete(cancel=False, wait=False)

	

	
description = Attribute(name='description', default='', validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
exists

	

	
name = Attribute(name='name', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
provider = Attribute(name='provider', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
refresh()

	

	
class cfme.cloud.security_groups.SecurityGroupAddEntities(*args, **kwargs)

	Bases: widgetastic.widget.View

	
breadcrumb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.security_groups.SecurityGroupAddForm(*args, **kwargs)

	Bases: widgetastic.widget.View

	
add

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cloud_tenant

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
network_manager

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.security_groups.SecurityGroupAddView(*args, **kwargs)

	Bases: cfme.cloud.security_groups.SecurityGroupView

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
form

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.cloud.security_groups.SecurityGroupAll(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of SecurityGroupAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step(*args, **kwargs)

	

	
class cfme.cloud.security_groups.SecurityGroupAllView(*args, **kwargs)

	Bases: cfme.cloud.security_groups.SecurityGroupView

	
entities

	

	
is_displayed

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.security_groups.SecurityGroupCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

Collection object for the :py:class: cfme.cloud.SecurityGroup.

	
ENTITY

	alias of SecurityGroup

	
create(name, description, provider, cancel=False, wait=False)

	Create new Security Group.

	Parameters

	
	provider (obj) – Provider name for Network Manager

	name (str [https://docs.python.org/2.7/library/functions.html#str]) – name of the Security Group

	description (str [https://docs.python.org/2.7/library/functions.html#str]) – Security Group description

	cancel (boolean) – Cancel Security Group creation

	wait (boolean) – wait if Security Group created

	
class cfme.cloud.security_groups.SecurityGroupDetailsAccordion(*args, **kwargs)

	Bases: widgetastic.widget.View

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.security_groups.SecurityGroupDetailsEntities(*args, **kwargs)

	Bases: widgetastic.widget.View

	
breadcrumb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
firewall_rules

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
properties

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
relationships

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
smart_management

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.security_groups.SecurityGroupDetailsToolbar(*args, **kwargs)

	Bases: widgetastic.widget.View

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.security_groups.SecurityGroupDetailsView(*args, **kwargs)

	Bases: cfme.cloud.security_groups.SecurityGroupView

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.security_groups.SecurityGroupToolbar(*args, **kwargs)

	Bases: widgetastic.widget.View

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
view_selector

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.cloud.security_groups.SecurityGroupView(*args, **kwargs)

	Bases: cfme.base.login.BaseLoggedInPage

Base view for header and nav checking, navigatable views should inherit this

	
in_security_groups

	

cfme.cloud.stack module

cfme.cloud.tenant module

cfme.common package

Submodules

	cfme.common.candu_views module

	cfme.common.host_views module

	cfme.common.physical_server_views module

	cfme.common.provider module

	cfme.common.provider_views module

	cfme.common.topology module

	cfme.common.vm module

	cfme.common.vm_console module

	cfme.common.vm_views module

Module contents

cfme.common.candu_views module

cfme.common.host_views module

cfme.common.physical_server_views module

cfme.common.provider module

cfme.common.provider_views module

cfme.common.topology module

cfme.common.vm module

cfme.common.vm_console module

cfme.common.vm_views module

cfme.configure package

Subpackages

	cfme.configure.access_control package
	Module contents

	cfme.configure.configuration package
	Submodules
	cfme.configure.configuration.analysis_profile module

	cfme.configure.configuration.diagnostics_settings module

	cfme.configure.configuration.region_settings module

	cfme.configure.configuration.server_settings module

	cfme.configure.configuration.system_schedules module

	Module contents

Submodules

	cfme.configure.about module

	cfme.configure.documentation module

	cfme.configure.settings module

	cfme.configure.tasks module

Module contents

cfme.configure.access_control package

Module contents

cfme.configure.configuration package

Submodules

	cfme.configure.configuration.analysis_profile module

	cfme.configure.configuration.diagnostics_settings module

	cfme.configure.configuration.region_settings module

	cfme.configure.configuration.server_settings module

	cfme.configure.configuration.system_schedules module

Module contents

cfme.configure.configuration.analysis_profile module

	
class cfme.configure.configuration.analysis_profile.AnalysisProfile(name, description, profile_type, files=None, events=None, categories=None, registry=None, appliance=None)

	Bases: cfme.utils.pretty.Pretty, cfme.utils.update.Updateable, widgetastic.utils.Fillable, cfme.utils.appliance.Navigatable

Analysis profiles, Vm and Host type

Example: Note the keys for files, events, registry should match UI columns

p = AnalysisProfile(name, description, profile_type='VM')
p.files = [
 {"Name": "/some/anotherfile", "Collect Contents?": True},
]
p.events = [
 {"Name": name, "Filter Message": msg, "Level": lvl, "Source": src, "# of Days": 1},
]
p.registry = [
 {"Registry Key": key, "Registry Value": value},
]
p.categories = ["System", "Software"] # Use the checkbox text name
p.create()
p2 = p.copy(new_name="updated AP")
with update(p):
 p.files = [{"Name": "/changed". "Collect Contents?": False}]
p.delete()

	
CREATE_LOC = None

	

	
HOST_TYPE = 'Host'

	

	
VM_TYPE = 'Vm'

	

	
as_fill_value()

	String representation of an Analysis Profile in CFME UI

	
copy(new_name=None, cancel=False)

	Copy the Analysis Profile

	
create(cancel=False)

	Add Analysis Profile to appliance

	
delete(cancel=False)

	Delete self via details page

	
exists

	

	
form_fill_args(updates=None)

	Build a dictionary of nested tab_forms for assoc_fill from a flat object dictionary
If updates dictionary is passed, it is used instead of self
This should work for create or update form fill args

	
pretty_attrs = ('name', 'description', 'files', 'events')

	

	
update(updates, cancel=False)

	Update the existing Analysis Profile with given updates dict
Make use of Updateable and use with to update object as well
Note the updates dict should take the structure below if called directly

updates = {
 'name': self.name,
 'description': self.description,
 'files': {
 'tab_form': ['/example/file']},
 'events': {
 'tab_form': ['example_event']},
 'categories': {
 'tab_form': ['Example']},
 'registry': {
 'tab_form': ['example_registry']}
}

	Args:

	updates (dict): Dictionary of values to change in the object.
cancel (boolean): whether to cancel the update

	
class cfme.configure.configuration.analysis_profile.AnalysisProfileAdd(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AnalysisProfileAddView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.configure.configuration.analysis_profile.AnalysisProfileAddView(*args, **kwargs)

	Bases: cfme.base.login.BaseLoggedInPage

View for the add form, switches between host/vm based on object type
Uses a switchable view based on the profile type widget

	
AnalysisProfileAddHost = None

	

	
AnalysisProfileAddVm = None

	

	
add

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
form

	Conditional switchable view implementation.

This widget proxy is useful when you have a form whose parts displayed depend on certain
conditions. Eg. when you select certain value from a dropdown, one form is displayed next,
when other value is selected, a different form is displayed next. This widget proxy is designed
to register those multiple views and then upon accessing decide which view to use based on the
registration conditions.

The resulting widget proxy acts similarly like a nested view (if you use view of course).

Example

class SomeForm(View):
 foo = Input('...')
 action_type = Select(name='action_type')

 action_form = ConditionalSwitchableView(reference='action_type')

 # Simple value matching. If Action type 1 is selected in the select, use this view.
 # And if the action_type value does not get matched, use this view as default
 @action_form.register('Action type 1', default=True)
 class ActionType1Form(View):
 widget = Widget()

 # You can use a callable to declare the widget values to compare
 @action_form.register(lambda action_type: action_type == 'Action type 2')
 class ActionType2Form(View):
 widget = Widget()

 # With callable, you can use values from multiple widgets
 @action_form.register(
 lambda action_type, foo: action_type == 'Action type 2' and foo == 2)
 class ActionType2Form(View):
 widget = Widget()

You can see it gives you the flexibility of decision based on the values in the view.

	Parameters

	
	reference – For using non-callable conditions, this must be specified. Specifies the name of
the widget whose value will be used for comparing non-callable conditions. Supports
going across objects using ..

	ignore_bad_reference – If this is enabled, then when the widget representing the reference
is not displayed or otherwise broken, it will then use the default view.

	
is_displayed

	

	
profile_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.analysis_profile.AnalysisProfileAll(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AnalysisProfileAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.configure.configuration.analysis_profile.AnalysisProfileAllView(*args, **kwargs)

	Bases: cfme.base.login.BaseLoggedInPage

View for the Analysis Profile collection page

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
paginator

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.analysis_profile.AnalysisProfileBaseAddForm(*args, **kwargs)

	Bases: widgetastic.widget.View

View for the common elements of the two AP forms

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
events

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
files

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.analysis_profile.AnalysisProfileCopy(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AnalysisProfileCopyView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.configure.configuration.analysis_profile.AnalysisProfileCopyView(*args, **kwargs)

	Bases: cfme.configure.configuration.analysis_profile.AnalysisProfileAddView

View for the copy form is the same as an add

The name field is by default set with ‘Copy of [profile name of copy source]
Don’t want to assert against this field to separately verify the view is displayed
If is_displayed is called after the form is changed it will be false negative

	
class cfme.configure.configuration.analysis_profile.AnalysisProfileDetails(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AnalysisProfileDetailsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.configure.configuration.analysis_profile.AnalysisProfileDetailsEntities(*args, **kwargs)

	Bases: widgetastic.widget.View

Main content on an analysis profile details page

	
info_description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
info_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
info_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.analysis_profile.AnalysisProfileDetailsView(*args, **kwargs)

	Bases: cfme.base.login.BaseLoggedInPage

View for an analysis profile details page

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.analysis_profile.AnalysisProfileEdit(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AnalysisProfileEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.configure.configuration.analysis_profile.AnalysisProfileEditView(*args, **kwargs)

	Bases: cfme.configure.configuration.analysis_profile.AnalysisProfileAddView

View for the edit form, extends add view since all fields are the same and editable

	
is_displayed

	

	
reset

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.analysis_profile.AnalysisProfileEntities(*args, **kwargs)

	Bases: widgetastic.widget.View

Main content on the analysis profiles configuration page, title and table

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.analysis_profile.AnalysisProfileToolbar(*args, **kwargs)

	Bases: widgetastic.widget.View

Toolbar on the analysis profiles configuration page
Works for both all page and details page

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

cfme.configure.configuration.diagnostics_settings module

	
class cfme.configure.configuration.diagnostics_settings.AllDiagnosticWorkers(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DiagnosticServerWorkersView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.configure.configuration.diagnostics_settings.CollectLogsBase(appliance, depot_type=None, depot_name=None, uri=None, username=None, password=None, second_server_collect=False, zone_collect=False)

	Bases: cfme.utils.pretty.Pretty, cfme.utils.appliance.NavigatableMixin, cfme.utils.update.Updateable

This class represents the ‘Collect logs’ base for the server and zone.

	Parameters

	
	appliance – testing appliance

	depot_type – depot type

	depot_name – depot name

	uri – depot uri

	username – depot username

	password – depot password

	second_server_collect – Set True to use slave server

	zone_collect – Set True to collect logs for zone

	
clear()

	Set depot type to “No Depot”

	
collect_all()

	Initiate and wait for collection of all logs to finish.

	
collect_current()

	Initiate and wait for collection of the current log to finish.

	
is_cleared

	Checks if configuration is set to default

Returns: True if settings is default, and False if not

	
last_collection

	Returns – None if logs were not collected or
:py:class`utils.timeutil.datetime()`, time were last collection took place

	
update(updates, cancel=False, reset=False)

	Updates configuration for collect logs

	Parameters

	
	updates – dict with values to be updated

	cancel – Set True for changes to be canceled

	reset – Set True for changes to be reset

	
class cfme.configure.configuration.diagnostics_settings.CollectLogsBasicEntities(*args, **kwargs)

	Bases: widgetastic.widget.View

	
depot_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
uri

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.diagnostics_settings.CollectLogsCredsEntities(*args, **kwargs)

	Bases: widgetastic.widget.View

	
confirm_password

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
password

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
username

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
validate_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.diagnostics_settings.DiagnosticServerWorkersToolbar(*args, **kwargs)

	Bases: widgetastic.widget.View

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reload_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.diagnostics_settings.DiagnosticServerWorkersView(*args, **kwargs)

	Bases: cfme.base.ui.ServerDiagnosticsView

	
is_displayed

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
workers_table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.diagnostics_settings.DiagnosticWorker(parent, name, description=None)

	Bases: cfme.modeling.base.BaseEntity

A class representing Server DiagnosticWorker in the UI.

	Parameters

	
	name – Worker name

	description – Worker description

	
check_workers_finished(pid)

	Check if workers with pid is in the table

	Parameters

	pid – worker pid, if multiple pids, pass as a list

	
description = Attribute(name='description', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
get_all_worker_pids()

	Returns a list of pids for worker

	
name = Attribute(name='name', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
reload_worker(pid=None)

	Reload workers

	Parameters

	pid – worker PID, can be passed as a single value or a list of pids

Returns: Workers pid(list)

	
class cfme.configure.configuration.diagnostics_settings.DiagnosticWorkersCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

Collection object for the DiagnosticWorker.

	
ENTITY

	alias of DiagnosticWorker

	
get_all_pids()

	Returns(dict): all workers with theirs pids

	
reload_workers_page()

	Reload workers page

	
class cfme.configure.configuration.diagnostics_settings.DiagnosticsCollectLogs(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerCollectLogsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.configure.configuration.diagnostics_settings.DiagnosticsCollectLogsEdit(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerCollectLogsEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.configure.configuration.diagnostics_settings.DiagnosticsCollectLogsEditSlave(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerCollectLogsEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.configure.configuration.diagnostics_settings.DiagnosticsCollectLogsSlave(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerCollectLogsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.configure.configuration.diagnostics_settings.DiagnosticsSummary(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServerDiagnosticsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.configure.configuration.diagnostics_settings.ServerCollectLog(appliance)

	Bases: cfme.configure.configuration.diagnostics_settings.CollectLogsBase

Represents Server Collect Log settings

	
last_message

	Return – Message value for server collect logs

	
class cfme.configure.configuration.diagnostics_settings.ServerCollectLogsEditView(*args, **kwargs)

	Bases: cfme.configure.configuration.diagnostics_settings.ServerCollectLogsView

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
depot_creds

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
depot_info

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
depot_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.diagnostics_settings.ServerCollectLogsToolbar(*args, **kwargs)

	Bases: widgetastic.widget.View

	
collect

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
edit

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.diagnostics_settings.ServerCollectLogsView(*args, **kwargs)

	Bases: cfme.base.ui.ServerDiagnosticsView

	
in_server_collect_logs

	

	
is_displayed

	

	
last_log_collection

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
last_log_message

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
log_depot_uri

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.diagnostics_settings.ZoneCollectLog(appliance)

	Bases: cfme.configure.configuration.diagnostics_settings.CollectLogsBase

Represents Zone Collect Log settings

	
last_message

	

	
class cfme.configure.configuration.diagnostics_settings.ZoneCollectLogToolbar(*args, **kwargs)

	Bases: widgetastic.widget.View

	
collect

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
edit

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.diagnostics_settings.ZoneDiagnosticsCollectLogs(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ZoneDiagnosticsCollectLogsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.configure.configuration.diagnostics_settings.ZoneDiagnosticsCollectLogsView(*args, **kwargs)

	Bases: cfme.base.ui.ServerDiagnosticsView

	
is_displayed

	

	
last_log_collection

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
log_depot_uri

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

cfme.configure.configuration.region_settings module

	
class cfme.configure.configuration.region_settings.CANDUCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

Class represents a C and U in CFME UI

	
disable_all(reset=False)

	Disable C and U

	Parameters

	reset – Reset changes, default is ‘False’ - changes will not be reset

	
enable_all(reset=False)

	Enable C and U

	Parameters

	reset – Reset changes, default is ‘False’ - changes will not be reset

	
class cfme.configure.configuration.region_settings.CANDUCollectionDetails(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of CANDUCollectionView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.configure.configuration.region_settings.CANDUCollectionView(*args, **kwargs)

	Bases: cfme.base.ui.RegionView

C and U View

	
all_clusters_cb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
all_datastores_cb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.region_settings.Category(name=None, display_name=None, description=None, show_in_console=True, single_value=True, capture_candu=False, appliance=None)

	Bases: cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable, cfme.utils.update.Updateable

Class represents a category in CFME UI

	Parameters

	
	name – Name of the category

	display_name – Category display name

	description – Category description

	show_in_console – Option to show category in console (True/False)

	single_value – Option if category is single value (True/False)

	capture_candu – True/False, capture c&u data by tag

	
create(cancel=False)

	Create category method

	Parameters

	cancel – To cancel creation pass True, cancellation message will be verified
By defaul user will be created

	
delete(cancel=True)

	Delete existing category

	Parameters

	cancel – Default value ‘True’, category will be deleted
‘False’ - deletion of category will be canceled

	
pretty_attrs = ['name', 'display_name', 'description', 'show_in_console', 'single_value', 'capture_candu']

	

	
update(updates, cancel=False)

	Update category method

	Parameters

	updates – category data that should be changed

	
class cfme.configure.configuration.region_settings.CategoryAdd(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of CompanyCategoriesAddView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.configure.configuration.region_settings.CategoryAll(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of CompanyCategoriesAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.configure.configuration.region_settings.CategoryEdit(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of CompanyCategoriesEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.configure.configuration.region_settings.CompanyCategoriesAddView(*args, **kwargs)

	Bases: cfme.configure.configuration.region_settings.CompanyCategoriesAllView

Add Company Categories View

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
capture_candu

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
display_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
long_description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
show_in_console

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
single_value

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.region_settings.CompanyCategoriesAllView(*args, **kwargs)

	Bases: cfme.base.ui.RegionView

Company Categories List View

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.region_settings.CompanyCategoriesEditView(*args, **kwargs)

	Bases: cfme.configure.configuration.region_settings.CompanyCategoriesAddView

Edit Company Categories View

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.region_settings.CompanyTagsAddView(*args, **kwargs)

	Bases: cfme.configure.configuration.region_settings.CompanyTagsAllView

Add Company Tags view

	
is_displayed

	

	
tag_description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
tag_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.region_settings.CompanyTagsAllView(*args, **kwargs)

	Bases: cfme.base.ui.RegionView

Company Tags list view

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
category_dropdown

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.region_settings.CompanyTagsEditView(*args, **kwargs)

	Bases: cfme.configure.configuration.region_settings.CompanyTagsAddView

Edit Company Tags view

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.region_settings.Details(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RedHatUpdatesView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.configure.configuration.region_settings.Edit(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RedHatUpdatesEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.configure.configuration.region_settings.MapTags(entity=None, label=None, category=None, appliance=None)

	Bases: cfme.utils.appliance.Navigatable, cfme.utils.pretty.Pretty, cfme.utils.update.Updateable

Class represents a category in CFME UI

	Parameters

	
	entity – Name of the tag

	label – Tag display name

	category – Tags Category

	
create(cancel=False)

	Map tags creation method

	Parameters

	cancel – True - if you want to cancel map creation,
by defaul map will be created

	
delete(cancel=False)

	Delete existing user

	Parameters

	cancel – Default value ‘False’, map will be deleted
‘True’ - map will not be deleted

	
pretty_attrs = ['entity', 'label', 'category']

	

	
update(updates, cancel=False)

	Update tag map method

	Parameters

	
	updates – tag map data that should be changed

	cancel – True - if you want to cancel map edition,
by defaul map will be updated

	
class cfme.configure.configuration.region_settings.MapTagsAdd(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of MapTagsAddView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.configure.configuration.region_settings.MapTagsAddView(*args, **kwargs)

	Bases: cfme.base.ui.RegionView

Add Map Tags view

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
category

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
resource_entity

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
resource_label

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.region_settings.MapTagsAll(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of MapTagsAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.configure.configuration.region_settings.MapTagsAllView(*args, **kwargs)

	Bases: cfme.base.ui.RegionView

Map Tags list view

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.region_settings.MapTagsEdit(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of MapTagsEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.configure.configuration.region_settings.MapTagsEditView(*args, **kwargs)

	Bases: cfme.configure.configuration.region_settings.MapTagsAddView

Edit Map Tags view

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.region_settings.RedHatUpdates(service, url, username, password, password_verify=None, repo_name=None, organization=None, use_proxy=False, proxy_url=None, proxy_username=None, proxy_password=None, proxy_password_verify=None, set_default_rhsm_address=False, set_default_repository=False, appliance=None)

	Bases: cfme.utils.appliance.Navigatable, cfme.utils.pretty.Pretty

Class represents a Red Hat updates tab in CFME UI

	Parameters

	
	service – Service type (registration method).

	url – Service server URL address.

	username – Username to use for registration.

	password – Password to use for registration.

	password_verify – 2nd entry of password for verification. Same as ‘password’ if None.

	repo_name – Repository/channel to enable.

	organization – Organization (sat6 only).

	use_proxy – True if proxy should be used, False otherwise (default False).

	proxy_url – Address of the proxy server.

	proxy_username – Username for the proxy server.

	proxy_password – Password for the proxy server.

	proxy_password_verify – 2nd entry of proxy server password for verification.
Same as ‘proxy_password’ if None.

	set_default_rhsm_address – Click the Default button connected to
the RHSM (only) address if True

	set_default_repository – Click the Default button connected to the repo/channel if True

	Note – With satellite 6, it is necessary to validate credentials to obtain
available organizations from the server.
With satellite 5, ‘validate’ parameter is ignored because there is
no validation button available.

	
check_updates(*appliance_names)

	Run update check on appliances by names

	Parameters

	appliance_names – Names of appliances to check; will check all if empty

	
checked_updates(*appliance_names)

	Check if appliances checked if there is an update available

	Parameters

	appliance_names – Names of appliances to check; will check all if empty

	
get_appliance_rows(*appliance_names)

	Get appliances as table rows

	Parameters

	appliance_names – Names of appliances to get; will get all if empty

	
get_available_version()

	Get available version printed on the page

	Returns

	
	None if not available; string with version otherwise

	e.g. 1.2.2.3

	
get_repository_names()

	Get available repositories names

	Returns

	summary info for repositories names

	Return type

	string [https://docs.python.org/2.7/library/string.html#module-string]

	
is_registered(*appliance_names)

	Check if each appliance is registered

	Parameters

	appliance_names – Names of appliances to check; will check all if empty

	
is_registering(*appliance_names)

	Check if at least one appliance is registering

	
is_subscribed(*appliance_names)

	Check if appliances are subscribed

	Parameters

	appliance_names – Names of appliances to check; will check all if empty

	
platform_updates_available(*appliance_names)

	Check if appliances have a platform update available

	Parameters

	appliance_names – Names of appliances to check; will check all if empty

	
pretty_attrs = ['service', 'url', 'username', 'password']

	

	
refresh()

	Click refresh button to update statuses of appliances

	
register_appliances(*appliance_names)

	Register appliances by names

	Parameters

	appliance_names – Names of appliances to register; will register all if empty

	
select_appliances(*appliance_names)

	Select appliances by names

	Parameters

	appliance_names – Names of appliances to select; will select all if empty

	
service_types = {'rhsm': 'Red Hat Subscription Management', 'sat6': 'Red Hat Satellite 6'}

	

	
update_appliances(*appliance_names)

	Update appliances by names

	Parameters

	appliance_names – Names of appliances to update; will update all if empty

	
update_registration(validate=True, cancel=False)

	Fill in the registration form, validate and save/cancel

	Parameters

	
	validate – Click the Validate button and check the
flash message for errors if True (default True)

	cancel – Click the Cancel button if True or the Save button
if False (default False)

	
versions_match(version, *appliance_names)

	Check if versions of appliances match version

	Parameters

	
	version – Version to match against

	appliance_names – Names of appliances to check; will check all if empty

	
class cfme.configure.configuration.region_settings.RedHatUpdatesEditView(*args, **kwargs)

	Bases: cfme.base.ui.RegionView

Red Hat Updates edit view

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
password

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
password_verify

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
proxy_password

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
proxy_password_verify

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
proxy_url

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
proxy_username

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
register_to

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
repo_default_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
repo_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
rhn_default_url

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
url

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
use_proxy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
username

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
validate_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.region_settings.RedHatUpdatesView(*args, **kwargs)

	Bases: cfme.base.ui.RegionView

Red Hat Updates details view

	
apply_cfme_update

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
available_update_version

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
check_for_updates

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
edit_registration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
refresh

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
register

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
repository_names_info

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
updates_table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.region_settings.Replication(appliance)

	Bases: cfme.utils.appliance.NavigatableMixin

Class represents a Replication tab in CFME UI

Note:
Remote settings is not covered for now as ‘Excluded Tables’ element widget should be added

	
get_global_replication_backlog(host=None)

	Get global replication backlog value

	Parameters

	host – host value

Returns: backlog number value

	
get_replication_status(replication_type='global', host=None)

	Get replication status, if replication is active

	Parameters

	
	replication_type – Replication type string, default is global

	host – host to check

Returns: True if active, otherwise False

	
set_replication(updates=None, replication_type=None, reset=False)

	Set replication settings

	Parameters

	
	updates (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – Replication update values, mandatory is host,
db creds get from credentials

	replication_type (str [https://docs.python.org/2.7/library/functions.html#str]) – Replication type, use ‘global’ or ‘remote’

	reset – Pass True to reset made changes

	
class cfme.configure.configuration.region_settings.ReplicationDetails(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ReplicationView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.configure.configuration.region_settings.ReplicationGlobalAdd(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ReplicationGlobalAddView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.configure.configuration.region_settings.ReplicationGlobalAddView(*args, **kwargs)

	Bases: cfme.configure.configuration.region_settings.ReplicationView

	
accept_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
action_dropdown

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
database

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
host

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
password

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
port

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
username

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.region_settings.ReplicationGlobalSetup(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ReplicationGlobalView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.configure.configuration.region_settings.ReplicationGlobalView(*args, **kwargs)

	Bases: cfme.configure.configuration.region_settings.ReplicationView

Replication Global setup View

	
add_subscription

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
subscription_table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.region_settings.ReplicationRemoteAdd(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ReplicationRemoteView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.configure.configuration.region_settings.ReplicationRemoteView(*args, **kwargs)

	Bases: cfme.configure.configuration.region_settings.ReplicationView

Replication Remote setup View

	
class cfme.configure.configuration.region_settings.ReplicationView(*args, **kwargs)

	Bases: cfme.base.ui.RegionView

Replication Tab View

	
in_region

	

	
is_displayed

	

	
replication_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.region_settings.Tag(name=None, display_name=None, category=None, appliance=None)

	Bases: cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable, cfme.utils.update.Updateable

Class represents a category in CFME UI
:param name: Name of the tag
:param display_name: Tag display name
:param category: Tags Category

	
create()

	Create category method

	
delete(cancel=True)

	Delete category method

	
pretty_attrs = ['name', 'display_name', 'category']

	

	
update(updates)

	Update category method

	
class cfme.configure.configuration.region_settings.TagsAdd(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of CompanyTagsAddView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.configure.configuration.region_settings.TagsAll(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of CompanyTagsAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.configure.configuration.region_settings.TagsEdit(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of CompanyTagsEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

cfme.configure.configuration.server_settings module

	
class cfme.configure.configuration.server_settings.AmazonAuthenticationView(*args, **kwargs)

	Bases: widgetastic.widget.View

Amazon Authentication View

	
access_key

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
get_groups

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
secret_key

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
validate

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.server_settings.AuthenticationSetting(appliance)

	Bases: cfme.utils.appliance.NavigatableMixin, cfme.utils.update.Updateable, cfme.utils.pretty.Pretty

Represents Authentication Setting for CFME

	Parameters

	auth_mode – authorization mode, default value ‘Database’
One of: ‘Database’, ‘Ldap’, ‘Ldaps’, ‘Amazon’, ‘External’

	
auth_mode

	Check UI confiuration of auth mode

	
auth_settings

	Authentication view fields values

Includes auth_mode

	
configure(auth_mode=None, auth_provider=None, user_type=None, reset=False, validate=True)

	Set up authentication mode

Defaults to Database if auth_mode is none, uses auth_provider.as_fill_value()

	Parameters

	
	auth_mode – key for AUTH_MODES, UI dropdown selection, defaults to Database if None

	auth_provider – authentication provider class from cfme.utils.auth

	user_type – key for USER_TYPES

	reset – to reset all changes for the page.after filling

	validate – validate ldap/ldaps/amazon provider config bind_dn+password

	
pretty_attrs = ['auth_mode']

	

	
set_session_timeout(hours=None, minutes=None)

	Sets the session timeout of the appliance.

	Parameters

	
	hours (str [https://docs.python.org/2.7/library/functions.html#str]) – timeout hours value

	minutes (str [https://docs.python.org/2.7/library/functions.html#str]) – timeout minutes value

ex. auth_settings.set_session_timeout(‘0’, ‘30’)

	
class cfme.configure.configuration.server_settings.DatabaseAuthenticationView(*args, **kwargs)

	Bases: widgetastic.widget.View

Database Authentication View, empty

	
class cfme.configure.configuration.server_settings.ExternalAuthenticationView(*args, **kwargs)

	Bases: widgetastic.widget.View

External Authentication View

	
enable_saml

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
enable_sso

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
get_groups

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.server_settings.LdapAuthenticationView(*args, **kwargs)

	Bases: widgetastic.widget.View

Ldap Authentication View

	
base_dn

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
bind_dn

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
bind_password

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
domain_prefix

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
follow_referrals

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
get_groups

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
get_roles

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
host1

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
host2

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
host3

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
port

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
user_suffix

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
user_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
validate

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.server_settings.LdapsAuthenticationView(*args, **kwargs)

	Bases: cfme.configure.configuration.server_settings.LdapAuthenticationView

Ldaps Authentication View

	
class cfme.configure.configuration.server_settings.ServerAuthenticationView(*args, **kwargs)

	Bases: widgetastic.widget.View

Server Authentication View.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
form

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
hours_timeout

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	should be paired with a ServerView.in_server_settings in a nav.am_i_here

	
minutes_timeout

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reset

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.server_settings.ServerInformation(appliance)

	Bases: cfme.utils.update.Updateable, cfme.utils.pretty.Pretty

This class represents the Server tab in Server Settings

Different Forms take different values for their operations

Note: All lower parameters by default set to None

	BasicInformationForm:

	company_name: [BasicInformationForm] Company name, default value in “My Company”

	appliance_name: [BasicInformationForm] Appliance name.

	appliance_zone: [BasicInformationForm] Appliance Zone.

	time_zone: [BasicInformationForm] Time Zone.

	locale: [BasicInformationForm] Locale used for users UI

	ServerControlForm (Server Roles):

	websocket, ems_metrics_coordinator, cockpit_ws, smartproxy,

	storage_metrics_collector, database_operations, smartstate, event,

	storage_inventory, storage_metrics_processor, web_services, automate,

	rhn_mirror, database_synchronization, ems_operations, ems_metrics_collector,

	reporting, ems_metrics_processor, scheduler, git_owner, user_interface,

	embedded_ansible, storage_metrics_coordinator, ems_inventory,

	vmdb_storage_bridge, notifier: set True/False to change the state

	VWwareConsoleSupportForm:

	console_type - Server console type

	NTPServersForm:

	ntp_server_1, ntp_server_2, ntp_server_3 - Set ntp server

	SMTPServerForm:

	host: SMTP Server host name

	port: SMTP Server port

	domain: E-mail domain

	start_tls: Whether use StartTLS

	ssl_verify: SSL Verification

	auth: Authentication type

	username: User name

	password: User password

	from_email: E-mail address to be used as the “From:”

	test_email: Destination of the test-email.

	WebServicesForm:

	mode: web services mode

	security: security type

	LoggingForm:

	log_level: log level type

	CustomSupportURL:

	url: custom url

	decryption: url description

	
CONSOLE_TYPES = ('VNC', 'VMware VMRC Plugin', 'VMware WebMKS')

	

	
SERVER_ROLES = ('embedded_ansible', 'ems_metrics_coordinator', 'ems_operations', 'ems_metrics_collector', 'reporting', 'ems_metrics_processor', 'scheduler', 'smartproxy', 'database_operations', 'smartstate', 'event', 'user_interface', 'web_services', 'ems_inventory', 'notifier', 'automate', 'rhn_mirror', 'database_synchronization_role', 'git_owner', 'websocket', 'storage_metrics_processor', 'storage_metrics_collector', 'storage_metrics_coordinator', 'storage_inventory', 'vmdb_storage_bridge', 'cockpit_ws')

	

	
basic_information_values

	Returns(dict) – basic_information fields values

	
custom_support_url_values

	Returns(dict) – custom_support_url fields values

	
disable_server_roles(*roles)

	Disable Server roles

	
enable_server_roles(*roles)

	Enables Server roles

	
logging_values

	Returns(dict) – logging fields values

	
ntp_servers_fields_keys

	Returns(list) – ntp servers fields names

	
ntp_servers_values

	Returns(dict) – ntp_servers fields values

	
pretty_attrs = ['appliance']

	

	
send_test_email(email=None)

	Send a testing e-mail on specified address. Needs configured SMTP.

	
server_roles_db

	Get server roles from Configure / Configuration from DB

Returns: dict [https://docs.python.org/2.7/library/stdtypes.html#dict] ex.{‘cockpit’: True}

	
server_roles_ui

	

	
smtp_server_values

	Returns(dict) – smtp_server fields values

	
update_basic_information(updates, reset=False)

	Navigate to a Server Tab. Updates basic information form

	Parameters

	
	updates – dict, widgets will be updated regarding updates.
ex. update_basic_information({‘company_name’: ‘New name’})

	updates. (regarding) –

	reset – By default(False) changes will not be reset, if True changes will be reset

	
update_custom_support_url(updates, reset=False)

	Navigate to a Server Tab. Updates custom support url

	Parameters

	
	updates – dict, widgets will be updated regarding updates.

	reset – By default(False) changes will not be reset, if True changes will be reset

	
update_logging_form(updates, reset=False)

	Navigate to a Server Tab. Updates logging form

	Parameters

	
	updates – dict, widgets will be updated regarding updates.

	reset – By default(False) changes will not be reset, if True changes will be reset

	
update_ntp_servers(updates, reset=False)

	Navigate to a Server Tab. Updates ntp servers

	Parameters

	
	updates – dict, widgets will be updated regarding updates.

	reset – By default(False) changes will not be reset, if True changes will be reset

	
update_server_roles_db(roles)

	Set server roles on Configure / Configuration pages.

	Parameters

	roles – Roles specified as in server_roles dict in this module. Set to True or False

	
update_server_roles_ui(updates, reset=False)

	Navigate to a Server Tab. Updates server roles via UI

	Parameters

	
	updates – dict, widgets will be updated regarding updates.

	reset – By default(False) changes will not be reset, if True changes will be reset

	
update_smtp_server(updates, reset=False)

	Navigate to a Server Tab. Updates smtp server

	Parameters

	
	updates – dict, widgets will be updated regarding updates.

	reset – By default(False) changes will not be reset, if True changes will be reset

	
update_vmware_console(updates, reset=False)

	Navigate to a Server Tab. Updates Vmware console

	Parameters

	
	updates – dict, widgets will be updated regarding updates.

	reset – By default(False) changes will not be reset, if True changes will be reset

	
update_web_services(updates, reset=False)

	Navigate to a Server Tab. Updates web services

	Parameters

	
	updates – dict, widgets will be updated regarding updates.

	reset – By default(False) changes will not be reset, if True changes will be reset

	
vmware_console_values

	Returns(dict) – vmware_console fields values

	
web_services_values

	Returns(dict) – web_services fields values

	
class cfme.configure.configuration.server_settings.ServerInformationView(*args, **kwargs)

	Bases: widgetastic.widget.View

Class represents full Server tab view

	
basic_information

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
custom_support_url

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
logging_form

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
ntp_servers

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reset

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
server_roles

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
smtp_server

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
vmware_console

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
web_services

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

cfme.configure.configuration.system_schedules module

	
class cfme.configure.configuration.system_schedules.DatabaseBackupEntities(*args, **kwargs)

	Bases: widgetastic.widget.View

Database Backup fields on the shedule configuration page

	
backup_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
depot_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
samba_protocol

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
uri

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.system_schedules.ItemsAnalysisEntities(*args, **kwargs)

	Bases: widgetastic.widget.View

Analysis fields on the shedule configuration page

	
filter_level1

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
filter_level2

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.system_schedules.SambaProtocolEntities(*args, **kwargs)

	Bases: widgetastic.widget.View

Samba Protocol fields on the shedule configuration page

	
samba_confirm_password

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
samba_password

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
samba_username

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.system_schedules.ScheduleAdd(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ScheduleAddView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.configure.configuration.system_schedules.ScheduleAddEditEntities(*args, **kwargs)

	Bases: widgetastic.widget.View

Schedule configuration fields on the shedule configuration page

	
action_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
active

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
database_backup

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
items_analysis

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
run_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
start_date

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
start_hour

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
start_minute

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
time_zone

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.system_schedules.ScheduleAddView(*args, **kwargs)

	Bases: cfme.configure.configuration.system_schedules.ScheduleAddEditEntities

Schedule Add item view

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.configure.configuration.system_schedules.ScheduleAll(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ScheduleAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.configure.configuration.system_schedules.ScheduleAllView(*args, **kwargs)

	Bases: cfme.base.ui.ConfigurationView

Shedule All view on the shedule configuration page

	
is_displayed

	

	
paginator

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters

	version_dict – Dictionary of version_introduced: item

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.system_schedules.ScheduleDetails(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ScheduleDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.configure.configuration.system_schedules.ScheduleDetailsView(*args, **kwargs)

	Bases: cfme.base.ui.ConfigurationView

Schedule details page view

	
action

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
active

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
filter

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
last_run_time

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
next_run_time

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
run_at

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
zone

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.system_schedules.ScheduleEdit(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ScheduleEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.configure.configuration.system_schedules.ScheduleEditView(*args, **kwargs)

	Bases: cfme.configure.configuration.system_schedules.ScheduleAddEditEntities

Schedule edit item view

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.system_schedules.ScheduleToolbar(*args, **kwargs)

	Bases: widgetastic.widget.View

Toolbar on the shedule configuration page

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.configuration.system_schedules.SystemSchedule(parent, name, description, active=True, action_type=None, run_type='Once', run_every=None, time_zone=None, start_date=None, start_hour=None, start_minute=None, filter_level1=None, filter_level2=None, backup_type=None, depot_name=None, uri=None, samba_username=None, samba_password=None)

	Bases: cfme.modeling.base.BaseEntity, cfme.utils.update.Updateable, cfme.utils.pretty.Pretty

Configure/Configuration/Region/Schedules functionality

Update, Delete functionality.

	Parameters

	
	name – Schedule’s name.

	description – Schedule description.

	active – Whether the schedule should be active (default True)

	action – Action type

	run_type – Once, Hourly, Daily, …

	run_every – If run_type is not Once, then you can specify how often it should be run.

	time_zone – Time zone selection.

	start_date – Specify start date (mm/dd/yyyy or datetime.datetime()).

	start_hour – Starting hour

	start_min – Starting minute.

	Analysis params (#) –

	filter_level1 – first filter value

	filter_level2 – second filter value

	Database backup params (#) –

	backup_type – backup type

	depot_name – depot name

	uri – depot uri

	Samba backup config (#) –

	samba_username – samba username

	samba_password – samba password

	
action_type = Attribute(name='action_type', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
active = Attribute(name='active', default=True, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
backup_type = Attribute(name='backup_type', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
delete(cancel=False)

	Delete the schedule represented by this object.

Calls the class method with the name of the schedule taken out from the object.

	Parameters

	cancel – Whether to click on the cancel button in the pop-up.

	
depot_name = Attribute(name='depot_name', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
description = Attribute(name='description', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
disable()

	Enable the schedule via table checkbox and Configuration menu.

	
enable()

	Enable the schedule via table checkbox and Configuration menu.

	
exists

	

	
filter_level1 = Attribute(name='filter_level1', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
filter_level2 = Attribute(name='filter_level2', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
last_run_date

	

	
name = Attribute(name='name', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
next_run_date

	

	
run_every = Attribute(name='run_every', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
run_type = Attribute(name='run_type', default='Once', validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
samba_password = Attribute(name='samba_password', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
samba_username = Attribute(name='samba_username', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
select()

	Select the checkbox for current schedule

	
start_date = Attribute(name='start_date', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
start_hour = Attribute(name='start_hour', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
start_minute = Attribute(name='start_minute', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
time_zone = Attribute(name='time_zone', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
update(updates, reset=False, cancel=False)

	Modify an existing schedule with informations from this instance.

	Parameters

	
	updates – Dict with fields to be updated

	reset – Reset changes, True if reset should be done

	cancel – Whether to click on the cancel button to interrupt the editation.

	
uri = Attribute(name='uri', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
class cfme.configure.configuration.system_schedules.SystemSchedulesCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

Configure/Configuration/Region/Schedules collection functionality

	
ENTITY

	alias of SystemSchedule

	
create(name, description, active=True, action_type=None, run_type=None, run_every=None, time_zone=None, start_date=None, start_hour=None, start_minute=None, filter_level1=None, filter_level2=None, backup_type=None, depot_name=None, uri=None, samba_username=None, samba_password=None, cancel=False)

	Create a new schedule from the informations stored in the object.

	Parameters

	cancel – Whether to click on the cancel button to interrupt the creation.

cfme.configure.about module

	
class cfme.configure.about.AboutView(*args, **kwargs)

	Bases: widgetastic.widget.View

The view for the about modal

	
is_displayed

	

	
modal

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cfme.configure.about.get_detail(field, server)

	Open the about modal and fetch the value for one of the fields
‘title’ and ‘trademark’ fields are allowed and get the header/footer values
Raises ElementOrBlockNotFound if the field isn’t in the about modal
:param field: string label for the detail field
:return: string value from the requested field

cfme.configure.documentation module

	
class cfme.configure.documentation.DocView(*args, **kwargs)

	Bases: widgetastic.widget.View

View for the documentation page, a title and a bunch of pdf of links

	
is_displayed

	

	
links

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.documentation.LinksView(*args, **kwargs)

	Bases: widgetastic.widget.View

Widgets for all of the links on the documentation page
Each doc link is an anchor with a child image element, then an anchor with text
Both the image and the text anchor should link to the same PDF

	
automation

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
customer_portal

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
general

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
inventory

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
monitoring

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policies

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
providers

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
rest

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
scripting

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
vm_hosts

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

cfme.configure.settings module

	
class cfme.configure.settings.DefaultFilters(appliance, my_settings, name=None, filters=None)

	Bases: cfme.utils.update.Updateable, cfme.utils.pretty.Pretty, cfme.utils.appliance.NavigatableMixin

	
pretty_attrs = ['name', 'filters']

	

	
update(updates)

	
	Parameters

	updates – Dictionary containing ‘filters’ key. Values are tuples of ([path], bool)
Where bool is whether to check or uncheck the filter

Returns: None

	
class cfme.configure.settings.DefaultFiltersForm(*args, **kwargs)

	Bases: widgetastic.widget.View

	
save

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
tree

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.settings.DefaultFiltersStep(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of MySettingsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
resetter()

	

	
step()

	

	
class cfme.configure.settings.DefaultViews(appliance, my_settings)

	Bases: cfme.utils.update.Updateable, cfme.utils.appliance.NavigatableMixin

	
get_default_view(button_group_name, fieldset=None)

	

	
look_up = {'Flavors': ['clouds', 'flavors'], 'Catalog Items': ['services', 'catalog_items'], 'Nodes': ['containers', 'nodes'], 'Containers': ['containers', 'containers'], 'VMs & Instances': ['services', 'vms_instances'], 'Templates': ['containers', 'templates'], 'Containers Providers': ['containers', 'providers'], 'Image Registries': ['containers', 'image_registries'], 'Stacks': ['clouds', 'stacks'], 'Availability Zones': ['clouds', 'availability_zones'], 'Cloud Providers': ['clouds', 'providers'], 'Services': ['containers', 'services'], 'Projects': ['containers', 'projects'], 'Builds': ['containers', 'builds'], 'Container Images': ['containers', 'images'], 'Templates & Images': ['services', 'templates'], 'Volumes': ['containers', 'volumes'], 'Routes': ['containers', 'routes'], 'Pods': ['containers', 'pods'], 'VMs': ['infrastructure', 'vms'], 'Compare': ['general', 'compare'], 'Replicators': ['containers', 'replicators'], 'Infrastructure Providers': ['infrastructure', 'infrastructure_providers'], 'My Services': ['services', 'my_services'], 'Instances': ['clouds', 'instances'], 'Compare Mode': ['general', 'compare_mode'], 'Configuration Management Providers': ['infrastructure', 'configuration_management_providers'], 'Images': ['clouds', 'images']}

	

	
set_default_view(button_group_names, defaults, fieldset=None)

	This function sets default views for the objects.

	Parameters

	
	button_group_names – either the name of the button_group_name
or list of the button groups to set the
default view for.

	defaults – the default view to set. in case that button_group_names
is a list, you can either set 1 view and it’ll be set
for all the button_group_names or you can use a list
(default view per button_group_name).

	Raises

	AssertionError

	
set_default_view_switch_off()

	

	
set_default_view_switch_on()

	

	
class cfme.configure.settings.DefaultViewsForm(*args, **kwargs)

	Bases: widgetastic.widget.View

	
clouds

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
containers

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
general

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
infrastructure

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
services

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
vm_visibility

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.settings.DefaultViewsStep(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of MySettingsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
resetter()

	

	
step()

	

	
class cfme.configure.settings.MySettings(appliance)

	Bases: cfme.utils.update.Updateable, cfme.utils.appliance.NavigatableMixin

The ‘My Settings’ page

	
default_filters

	The ‘Default Filters’ tab on the ‘My Settings’ page

	
default_views

	The ‘Default Views’ tab on the ‘My Settings’ page

	
time_profiles

	The ‘Time Profiles’ tab on the ‘My Settings’ page

	
visual

	The ‘Visual’ tab on the ‘My Settings’ page

	
class cfme.configure.settings.MySettingsEntities(*args, **kwargs)

	Bases: widgetastic.widget.View

	
breadcrumb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.settings.MySettingsStep(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of MySettingsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	Go to the My Settings view

	
class cfme.configure.settings.MySettingsView(*args, **kwargs)

	Bases: cfme.base.login.BaseLoggedInPage

The My Settings page

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
tabs

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.settings.TimeProfile(parent, description=None, scope=None, days=True, hours=True, timezone=None)

	Bases: cfme.utils.update.Updateable, cfme.modeling.base.BaseEntity

	
copy(description=None, cancel=False)

	This method performs the copy of the provided time profile object.
:param description: It’s the descriptive name of the new copied time_profile.
:type description: str
:param cancel: This variable performs cancel operation while copy.
:type cancel: bool

return: It returns the object of the copied time_profile.

	
days = Attribute(name='days', default=True, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
description = Attribute(name='description', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
hours = Attribute(name='hours', default=True, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
scope = Attribute(name='scope', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
timezone = Attribute(name='timezone', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
update(updates)

	This method is used for updating the time_profile

	Parameters

	updates – It the object of the time_profile that we need to update.

	
class cfme.configure.settings.TimeProfileAdd(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TimeProfileAddView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.configure.settings.TimeProfileAddView(*args, **kwargs)

	Bases: cfme.configure.settings.TimeProfileView

	
form

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.configure.settings.TimeProfileCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

	
ENTITY

	alias of TimeProfile

	
create(description=None, scope=None, days=True, hours=True, timezone=None, cancel=False)

	
	Parameters

	
	description (str [https://docs.python.org/2.7/library/functions.html#str]) – It’s the descriptive name of the time_profile.

	scope – It’s the option ‘All User’ or ‘Current User’ from dropdown.

	days (bool [https://docs.python.org/2.7/library/functions.html#bool]) – It’s the option to switch on or switch off the days Bootstrap switch.

	hours (bool [https://docs.python.org/2.7/library/functions.html#bool]) – It’s the option to switch on or switch off the hours Bootstrap switch.

	timezone – It’s the required Time Zone for the time_profile.

	cancel (bool [https://docs.python.org/2.7/library/functions.html#bool]) – It’s a flag used to cancel or not the create operation.

return: It returns the object of the newly created time_profile object.

	
delete(cancel=False, *time_objs)

	This method performs the delete operation.

	Parameters

	
	cancel (bool [https://docs.python.org/2.7/library/functions.html#bool]) – It’s a flag used for selecting Ok or Cancel from delete confirmation
dialogue box

	time_objs – It’s time profile object.

	
class cfme.configure.settings.TimeProfileCollectionAll(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of MySettingsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
resetter()

	

	
step()

	

	
class cfme.configure.settings.TimeProfileCopy(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TimeProfileAddView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.configure.settings.TimeProfileEdit(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TimeProfileEditView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.configure.settings.TimeProfileEditView(*args, **kwargs)

	Bases: cfme.configure.settings.TimeProfileView

	
form

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.configure.settings.TimeProfileEntities(*args, **kwargs)

	Bases: widgetastic.widget.View

	
breadcrumb

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.settings.TimeProfileForm(*args, **kwargs)

	Bases: widgetastic.widget.View

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
days

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
help_block

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
hours

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
scope

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
timezone

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.settings.TimeProfileView(*args, **kwargs)

	Bases: cfme.base.login.BaseLoggedInPage

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.settings.TimeProfiles(appliance, my_settings)

	Bases: cfme.utils.update.Updateable, cfme.utils.appliance.NavigatableMixin

	
class cfme.configure.settings.TimeProfilesView(*args, **kwargs)

	Bases: cfme.base.login.BaseLoggedInPage

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
help_block

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.settings.Visual(appliance, my_settings)

	Bases: cfme.utils.update.Updateable, cfme.utils.appliance.NavigatableMixin

	
cloud_provider_quad

	

	
datastore_quad

	

	
grid_view_entities

	

	
grid_view_limit

	

	
host_quad

	

	
infra_provider_quad

	

	
list_view_entities

	

	
list_view_limit

	

	
login_page

	

	
report_view_entities

	

	
report_view_limit

	

	
template_quad

	

	
tile_view_entities

	

	
tile_view_limit

	

	
timezone

	

	
vm_quad

	

	
class cfme.configure.settings.VisualForm(*args, **kwargs)

	Bases: widgetastic.widget.View

	
default_items_per_page

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
display_settings

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
grid_tile_icons

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reset

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
start_page

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
topology_default_items

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.configure.settings.VisualStep(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of MySettingsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
resetter()

	

	
step()

	

cfme.configure.tasks module

Module dealing with Configure/Tasks section.

	
class cfme.configure.tasks.AllOtherTasks(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TasksView

	
am_i_here()

	

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step(*args, **kwargs)

	

	
class cfme.configure.tasks.AllTasks(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TasksView

	
am_i_here()

	

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step(*args, **kwargs)

	

	
class cfme.configure.tasks.MyOtherTasks(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TasksView

	
am_i_here()

	

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step(*args, **kwargs)

	

	
class cfme.configure.tasks.MyTasks(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of TasksView

	
am_i_here()

	

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step(*args, **kwargs)

	

	
class cfme.configure.tasks.Tasks(*args, **kwargs)

	Bases: cfme.utils.appliance.Navigatable

	
class cfme.configure.tasks.TasksView(*args, **kwargs)

	Bases: cfme.base.login.BaseLoggedInPage

	
delete

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
reload

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
tabs

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cfme.configure.tasks.all_tasks_match_status(destination, task_name, expected_status, expected_num_of_tasks)

	Check if all tasks with same task name states are finished - if not, reload page

	
cfme.configure.tasks.are_all_tasks_match_status(name, expected_num_of_tasks, task_type)

	Check if all tasks states are finished - if not, reload page

	
cfme.configure.tasks.check_tasks_have_no_errors(task_name, task_type, expected_num_of_tasks, silent_failure=False, clear_tasks_after_success=False)

	Check if all tasks analysis match state with no errors

	
cfme.configure.tasks.delete_all_tasks(destination)

	

	
cfme.configure.tasks.is_analysis_finished(name, task_type='vm', clear_tasks_after_success=True)

	Check if analysis is finished - if not, reload page

	
cfme.configure.tasks.is_cluster_analysis_finished(name, **kwargs)

	

	
cfme.configure.tasks.is_datastore_analysis_finished(name, **kwargs)

	

	
cfme.configure.tasks.is_host_analysis_finished(name, **kwargs)

	

	
cfme.configure.tasks.is_vm_analysis_finished(name, **kwargs)

	

	
cfme.configure.tasks.wait_analysis_finished_multiple_tasks(task_name, task_type, expected_num_of_tasks, delay=5, timeout='5M')

	Wait until analysis is finished (or timeout exceeded)

cfme.containers package

Subpackages

	cfme.containers.provider package
	Submodules
	cfme.containers.provider.openshift module

	Module contents

Submodules

	cfme.containers.container module

	cfme.containers.image module

	cfme.containers.image_registry module

	cfme.containers.node module

	cfme.containers.overview module

	cfme.containers.pod module

	cfme.containers.project module

	cfme.containers.replicator module

	cfme.containers.route module

	cfme.containers.service module

	cfme.containers.template module

	cfme.containers.topology module

	cfme.containers.volume module

Module contents

cfme.containers.provider package

Submodules

	cfme.containers.provider.openshift module

Module contents

cfme.containers.provider.openshift module

cfme.containers.container module

cfme.containers.image module

cfme.containers.image_registry module

cfme.containers.node module

cfme.containers.overview module

	
class cfme.containers.overview.All(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ContainersOverviewView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
resetter()

	

	
step()

	

	
class cfme.containers.overview.ContainersOverview(*args, **kwargs)

	Bases: cfme.utils.appliance.Navigatable

	
class cfme.containers.overview.ContainersOverviewView(*args, **kwargs)

	Bases: cfme.base.login.BaseLoggedInPage

	
containers

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
images

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
nodes

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
pods

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
projects

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
providers

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
registries

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
routes

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
services

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

cfme.containers.pod module

cfme.containers.project module

cfme.containers.replicator module

cfme.containers.route module

cfme.containers.service module

cfme.containers.template module

cfme.containers.topology module

cfme.containers.volume module

cfme.control package

Subpackages

	cfme.control.explorer package
	Submodules
	cfme.control.explorer.actions module

	cfme.control.explorer.alert_profiles module

	cfme.control.explorer.alerts module

	cfme.control.explorer.conditions module

	cfme.control.explorer.policies module

	cfme.control.explorer.policy_profiles module

	Module contents

Submodules

	cfme.control.import_export module

	cfme.control.log module

	cfme.control.simulation module

Module contents

cfme.control.explorer package

Submodules

	cfme.control.explorer.actions module

	cfme.control.explorer.alert_profiles module

	cfme.control.explorer.alerts module

	cfme.control.explorer.conditions module

	cfme.control.explorer.policies module

	cfme.control.explorer.policy_profiles module

Module contents

	
class cfme.control.explorer.ControlExplorer(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ControlExplorerView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.control.explorer.ControlExplorerView(*args, **kwargs)

	Bases: cfme.base.login.BaseLoggedInPage

	
actions

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
alert_profiles

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
alerts

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
conditions

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
events

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
in_control_explorer

	

	
is_displayed

	

	
policies

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy_profiles

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

cfme.control.explorer.actions module

Page model for Control / Explorer

	
class cfme.control.explorer.actions.Action(parent, description, action_type, action_values=None)

	Bases: cfme.modeling.base.BaseEntity, cfme.utils.update.Updateable, cfme.utils.pretty.Pretty

This class represents one Action.

Example

>>> from cfme.control.explorer import Action
>>> action = Action("some_action",
... action_type="Tag",
... action_values={"tag": ("My Company Tags", "Service Level", "Gold")}
>>> action.create()
>>> action.delete()

	Parameters

	
	description – Action name.

	action_type – Type of the action, value from the dropdown select.

	
action_type = Attribute(name='action_type', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
action_values = Attribute(name='action_values', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
alerts_to_evaluate

	

	
delete(cancel=False)

	Delete this Action in UI.

	Parameters

	cancel – Whether to cancel the deletion (default False).

	
delete_if_exists()

	

	
description = Attribute(name='description', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
exists

	Check existence of this Action.

Returns: bool [https://docs.python.org/2.7/library/functions.html#bool] signalizing the presence of the Action in the database.

	
update(updates)

	Update this Action in UI.

	Parameters

	
	updates – Provided by update() context manager.

	cancel – Whether to cancel the update (default False).

	
class cfme.control.explorer.actions.ActionCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

	
ENTITY

	alias of Action

	
create(description, action_type, action_values=None)

	Create an Action in the UI.

	
class cfme.control.explorer.actions.ActionDetails(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ActionDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.control.explorer.actions.ActionDetailsView(*args, **kwargs)

	Bases: cfme.control.explorer.ControlExplorerView

	
analysis_profile

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.actions.ActionEdit(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditActionView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.control.explorer.actions.ActionFormCommon(*args, **kwargs)

	Bases: cfme.control.explorer.ControlExplorerView

	
action_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
alerts_to_evaluate

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
analysis_profile

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cpu_number

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
email_recipient

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
email_sender

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
memory_amount

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
parent_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
remove_tag

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
run_ansible_playbook

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
snapshot_age

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
snapshot_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
tag

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
vcenter_attr_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
vcenter_attr_value

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.actions.ActionNew(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NewActionView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.control.explorer.actions.ActionsAll(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ActionsAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.control.explorer.actions.ActionsAllView(*args, **kwargs)

	Bases: cfme.control.explorer.ControlExplorerView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.actions.EditActionView(*args, **kwargs)

	Bases: cfme.control.explorer.actions.ActionFormCommon

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.actions.NewActionView(*args, **kwargs)

	Bases: cfme.control.explorer.actions.ActionFormCommon

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.actions.RunAnsiblePlaybookFromView(*args, **kwargs)

	Bases: widgetastic.widget.View

	
inventory

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
playbook_catalog_item

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

cfme.control.explorer.alert_profiles module

	
class cfme.control.explorer.alert_profiles.AlertProfileCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

	
create(alert_profile_class, description, alerts=None, notes=None)

	

	
instantiate(*args, **kwargs)

	

	
class cfme.control.explorer.alert_profiles.AlertProfileDetails(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AlertProfileDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.control.explorer.alert_profiles.AlertProfileDetailsView(*args, **kwargs)

	Bases: cfme.control.explorer.ControlExplorerView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.alert_profiles.AlertProfileEdit(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditAlertProfileView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.control.explorer.alert_profiles.AlertProfileEditAssignments(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AlertProfilesEditAssignmentsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.control.explorer.alert_profiles.AlertProfileFormCommon(*args, **kwargs)

	Bases: cfme.control.explorer.ControlExplorerView

	
alerts

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
notes

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.alert_profiles.AlertProfileNew(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NewAlertProfileView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.control.explorer.alert_profiles.AlertProfilesAll(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AlertProfilesAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.control.explorer.alert_profiles.AlertProfilesAllView(*args, **kwargs)

	Bases: cfme.control.explorer.ControlExplorerView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.alert_profiles.AlertProfilesEditAssignmentsView(*args, **kwargs)

	Bases: cfme.control.explorer.ControlExplorerView

	
assign_to

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
based_on

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
header

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
selections

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
tag_category

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.alert_profiles.BaseAlertProfile(parent, description, alerts=None, notes=None)

	Bases: cfme.modeling.base.BaseEntity, cfme.utils.update.Updateable, cfme.utils.pretty.Pretty

	
TYPE = None

	

	
alerts = Attribute(name='alerts', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
assign_to(assign, selections=None, tag_category=None)

	Assigns this Alert Profile to specified objects.

	Parameters

	
	assign – Where to assign (The Enterprise, …).

	selections – What items to check in the tree. N/A for The Enteprise.

	tag_category – Only for choices starting with Tagged. N/A for The Enterprise.

	Returns

	Boolean indicating if assignment was made (form fill changed)

	
delete(cancel=False)

	Delete this Alert Profile in UI.

	Parameters

	cancel – Whether to cancel the deletion (default False).

	
description = Attribute(name='description', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
exists

	Check existence of this Alert Profile.

Returns: bool [https://docs.python.org/2.7/library/functions.html#bool] signalizing the presence of the Alert Profile in database.

	
notes = Attribute(name='notes', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
pretty_attrs = ['description', 'alerts']

	

	
update(updates)

	Update this Alert Profile in UI.

	Parameters

	
	updates – Provided by update() context manager.

	cancel – Whether to cancel the update (default False).

	
class cfme.control.explorer.alert_profiles.ClusterAlertProfile(parent, description, alerts=None, notes=None)

	Bases: cfme.control.explorer.alert_profiles.BaseAlertProfile

	
TYPE = 'Cluster / Deployment Role'

	

	
class cfme.control.explorer.alert_profiles.DatastoreAlertProfile(parent, description, alerts=None, notes=None)

	Bases: cfme.control.explorer.alert_profiles.BaseAlertProfile

	
TYPE = 'Datastore'

	

	
class cfme.control.explorer.alert_profiles.EditAlertProfileView(*args, **kwargs)

	Bases: cfme.control.explorer.alert_profiles.AlertProfileFormCommon

	
is_displayed

	

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.alert_profiles.HostAlertProfile(parent, description, alerts=None, notes=None)

	Bases: cfme.control.explorer.alert_profiles.BaseAlertProfile

	
TYPE = 'Host / Node'

	

	
class cfme.control.explorer.alert_profiles.NewAlertProfileView(*args, **kwargs)

	Bases: cfme.control.explorer.alert_profiles.AlertProfileFormCommon

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.control.explorer.alert_profiles.NodeAlertProfile(parent, description, alerts=None, notes=None)

	Bases: cfme.control.explorer.alert_profiles.BaseAlertProfile

	
TYPE

	

	
class cfme.control.explorer.alert_profiles.ProviderAlertProfile(parent, description, alerts=None, notes=None)

	Bases: cfme.control.explorer.alert_profiles.BaseAlertProfile

	
TYPE = 'Provider'

	

	
class cfme.control.explorer.alert_profiles.ServerAlertProfile(parent, description, alerts=None, notes=None)

	Bases: cfme.control.explorer.alert_profiles.BaseAlertProfile

	
TYPE = 'Server'

	

	
class cfme.control.explorer.alert_profiles.VMInstanceAlertProfile(parent, description, alerts=None, notes=None)

	Bases: cfme.control.explorer.alert_profiles.BaseAlertProfile

	
TYPE = 'VM and Instance'

	

cfme.control.explorer.alerts module

Page model for Control / Explorer

	
class cfme.control.explorer.alerts.Alert(parent, description, severity=None, active=None, based_on=None, evaluate=None, driving_event=None, notification_frequency=None, snmp_trap=None, emails=None, timeline_event=None, mgmt_event=None)

	Bases: cfme.modeling.base.BaseEntity, cfme.utils.update.Updateable, cfme.utils.pretty.Pretty

Alert representation object.
.. rubric:: Example

>>> alert = Alert("my_alert", timeline_event=True, driving_event="Hourly Timer")
>>> alert.create()
>>> alert.delete()

	Parameters

	
	description – Name of the Alert.

	based_on – Cluster, Datastore, Host, Provider, …

	evaluate – Use it as follows:
("What to Evaluate selection", dict(values="for form")).
If you want to select Nothing, you will therefore pass ("Nothing", {}).
Other example:

("Hardware Reconfigured",
 dict(hw_attribute="Number of CPUs", hw_attribute_operator="Increased")
)

	driving_event – This Alert’s driving event (Hourly Timer, …).

	notification_frequency – 1 Minute, 2 Minutes, …

	snmp_trap – Whether to send snmp traps.

	emails – Whether to send e-mails. False disables, string or list of strings
with emails enables.

	timeline_event – Whether generate a timeline event.

	mgmt_event – If specified as string, it will reveal the form and types it into the text box.
If False, then it will be disabled. None - don’t care.

	
active = Attribute(name='active', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
based_on = Attribute(name='based_on', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
copy(**updates)

	Copy this Alert in UI.

	Parameters

	updates – updates for the alert.

	
delete(cancel=False)

	Delete this Alert in UI.

	Parameters

	cancel – Whether to cancel the deletion (default False).

	
description = Attribute(name='description', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
driving_event = Attribute(name='driving_event', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
emails = Attribute(name='emails', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
evaluate = Attribute(name='evaluate', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
exists

	Check existence of this Alert.

Returns: bool [https://docs.python.org/2.7/library/functions.html#bool] signalizing the presence of the Alert in the database.

	
mgmt_event = Attribute(name='mgmt_event', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
notification_frequency = Attribute(name='notification_frequency', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
pretty_attrs = ['description', 'evaluate']

	

	
severity = Attribute(name='severity', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
snmp_trap = Attribute(name='snmp_trap', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
timeline_event = Attribute(name='timeline_event', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
update(updates)

	Update this Alert in UI.

	Parameters

	updates – Provided by update() context manager.

	
class cfme.control.explorer.alerts.AlertCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

	
ENTITY

	alias of Alert

	
create(description, severity=None, active=None, based_on=None, evaluate=None, driving_event=None, notification_frequency=None, snmp_trap=None, emails=None, timeline_event=None, mgmt_event=None)

	

	
class cfme.control.explorer.alerts.AlertCopy(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NewAlertView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.control.explorer.alerts.AlertDetails(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AlertDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.control.explorer.alerts.AlertDetailsView(*args, **kwargs)

	Bases: cfme.control.explorer.ControlExplorerView

	
hardware_reconfigured_parameters

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
info

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.alerts.AlertEdit(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditAlertView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.control.explorer.alerts.AlertFormCommon(*args, **kwargs)

	Bases: cfme.control.explorer.ControlExplorerView

	
active

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
based_on

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
driving_event

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
emails

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
emails_send

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
evaluate

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
mgmt_event

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
mgmt_event_send

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
notification_frequency

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
severity

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
snmp_trap

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
snmp_trap_send

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
timeline_event

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.alerts.AlertNew(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NewAlertView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.control.explorer.alerts.AlertsAll(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AlertsAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.control.explorer.alerts.AlertsAllView(*args, **kwargs)

	Bases: cfme.control.explorer.ControlExplorerView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.alerts.EditAlertView(*args, **kwargs)

	Bases: cfme.control.explorer.alerts.AlertFormCommon

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.alerts.NewAlertView(*args, **kwargs)

	Bases: cfme.control.explorer.alerts.AlertFormCommon

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

cfme.control.explorer.conditions module

	
class cfme.control.explorer.conditions.AllConditions(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ConditionsAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.control.explorer.conditions.BaseCondition(parent, description, expression=None, scope=None, notes=None)

	Bases: cfme.modeling.base.BaseEntity, cfme.utils.update.Updateable, cfme.utils.pretty.Pretty

	
FIELD_VALUE = None

	

	
PRETTY = None

	

	
TREE_NODE = None

	

	
delete(cancel=False)

	Delete this Condition in UI.

	Parameters

	cancel – Whether to cancel the deletion (default False).

	
description = Attribute(name='description', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
exists

	Check existence of this Condition.

Returns: bool [https://docs.python.org/2.7/library/functions.html#bool] signalizing the presence of the Condition in the database.

	
expression = Attribute(name='expression', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
notes = Attribute(name='notes', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
read_expression()

	

	
read_scope()

	

	
scope = Attribute(name='scope', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
update(updates)

	Update this Condition in UI.

	Parameters

	
	updates – Provided by update() context manager.

	cancel – Whether to cancel the update (default False).

	
class cfme.control.explorer.conditions.ConditionCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

	
ENTITY

	alias of BaseCondition

	
all()

	

	
create(condition_class, description, expression=None, scope=None, notes=None)

	

	
class cfme.control.explorer.conditions.ConditionDetails(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ConditionDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.control.explorer.conditions.ConditionDetailsView(*args, **kwargs)

	Bases: cfme.control.explorer.ControlExplorerView

	
expression

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
scope

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.conditions.ConditionEdit(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditConditionView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.control.explorer.conditions.ConditionFormCommon(*args, **kwargs)

	Bases: cfme.control.explorer.ControlExplorerView

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
expression

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
notes

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
scope

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.conditions.ConditionNew(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NewConditionView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.control.explorer.conditions.ConditionPolicyDetailsView(*args, **kwargs)

	Bases: cfme.control.explorer.ControlExplorerView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.conditions.ConditionsAllView(*args, **kwargs)

	Bases: cfme.control.explorer.ControlExplorerView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.conditions.ContainerImageCondition(parent, description, expression=None, scope=None, notes=None)

	Bases: cfme.control.explorer.conditions.BaseCondition

	
FIELD_VALUE = 'Container Image'

	

	
PRETTY = 'Container Image'

	

	
TREE_NODE = 'Container Image'

	

	
class cfme.control.explorer.conditions.ContainerNodeCondition(parent, description, expression=None, scope=None, notes=None)

	Bases: cfme.control.explorer.conditions.BaseCondition

	
FIELD_VALUE = 'Container Node'

	

	
PRETTY = 'Container Node'

	

	
TREE_NODE = 'Container Node'

	

	
class cfme.control.explorer.conditions.EditConditionView(*args, **kwargs)

	Bases: cfme.control.explorer.conditions.ConditionFormCommon

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.conditions.Expression(*args, **kwargs)

	Bases: widgetastic.widget.Widget

	
ROOT = 'div#condition_info_div'

	

	
read(*args, **kwargs)

	

	
text

	In Condition details view Scope and Expression don’t have any locator. So we
have to scrape whole text in the parent div and split it by “n”. After that in text_list
we receive something like that:

[u'Scope',
 u'COUNT OF VM and Instance.Files > 150',
 u'Expression',
 u'VM and Instance : Boot Time BEFORE "03/04/2014 00:00"',
 u'Notes',
 u'No notes have been entered.',
 u'Assigned to Policies',
 u'This Condition is not assigned to any Policies.']

To get value of Scope or Expression firstly we find its index in the list and then just
seek next member.

	
text_list

	

	
class cfme.control.explorer.conditions.HostCondition(parent, description, expression=None, scope=None, notes=None)

	Bases: cfme.control.explorer.conditions.BaseCondition

	
FIELD_VALUE = 'Host / Node'

	

	
PRETTY = 'Host / Node'

	

	
TREE_NODE = 'Host'

	

	
class cfme.control.explorer.conditions.NewConditionView(*args, **kwargs)

	Bases: cfme.control.explorer.conditions.ConditionFormCommon

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.control.explorer.conditions.PodCondition(parent, description, expression=None, scope=None, notes=None)

	Bases: cfme.control.explorer.conditions.BaseCondition

	
FIELD_VALUE = 'Container Pod'

	

	
PRETTY = 'Container Pod'

	

	
TREE_NODE = 'Pod'

	

	
class cfme.control.explorer.conditions.PolicyConditionDetails(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ConditionPolicyDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.control.explorer.conditions.ProviderCondition(parent, description, expression=None, scope=None, notes=None)

	Bases: cfme.control.explorer.conditions.BaseCondition

	
FIELD_VALUE = 'Provider'

	

	
PRETTY = 'Provider'

	

	
TREE_NODE = 'Provider'

	

	
class cfme.control.explorer.conditions.ReplicatorCondition(parent, description, expression=None, scope=None, notes=None)

	Bases: cfme.control.explorer.conditions.BaseCondition

	
FIELD_VALUE = 'Container Replicator'

	

	
PRETTY = 'Container Replicator'

	

	
TREE_NODE = 'Replicator'

	

	
class cfme.control.explorer.conditions.VMCondition(parent, description, expression=None, scope=None, notes=None)

	Bases: cfme.control.explorer.conditions.BaseCondition

	
FIELD_VALUE = 'VM and Instance'

	

	
PRETTY = 'VM'

	

	
TREE_NODE = 'VM and Instance'

	

cfme.control.explorer.policies module

Page model for Control / Explorer

	
class cfme.control.explorer.policies.BasePolicy(parent, description, active=None, scope=None, notes=None)

	Bases: cfme.modeling.base.BaseEntity, cfme.utils.update.Updateable, cfme.utils.pretty.Pretty

This class represents a Policy.

Example

>>> from cfme.control.explorer.policy import VMCompliancePolicy
>>> policy = VMCompliancePolicy("policy_description")
>>> policy.create()
>>> policy.delete()

	Parameters

	
	description – Policy name.

	active – Whether the policy active or not.

	scope – Policy scope.

	notes – Policy notes.

	
PRETTY = None

	

	
TREE_NODE = None

	

	
TYPE = None

	

	
active = Attribute(name='active', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
assign_actions_to_event(event, actions)

	This method takes a list or dict of actions, goes into the policy event and assigns them.
Actions can be passed both as the objects, but they can be passed also as a string.
If the specified event is not assigned to the policy, it will be assigned.

	Parameters

	
	event – Name of the event under which the actions will be assigned.

	actions – If list (or similar), all of these actions will be set under
TRUE section. If dict [https://docs.python.org/2.7/library/stdtypes.html#dict], the action is key and value specifies its
placement. If it’s True, then it will be put in the TRUE section and so on.

	
assign_conditions(*conditions)

	Assign conditions to this Policy.

	Parameters

	conditions – Conditions which need to be assigned.

	
assign_events(*events, **kwargs)

	Assign events to this Policy.

	Parameters

	
	events – Events which need to be assigned.

	extend – Do not uncheck existing events.

	
assigned_actions_to_event(event)

	

	
assigned_events

	

	
copy(cancel=False)

	Copy this Policy in UI.

	Parameters

	cancel – Whether to cancel the copying (default False).

	
delete(cancel=False)

	Delete this Policy in UI.

	Parameters

	cancel – Whether to cancel the deletion (default False).

	
description = Attribute(name='description', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
exists

	

	
is_condition_assigned(condition)

	

	
is_event_assigned(event)

	

	
name_for_policy_profile

	

	
notes = Attribute(name='notes', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
scope = Attribute(name='scope', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
update(updates)

	Update this Policy in UI.

	Parameters

	
	updates – Provided by update() context manager.

	cancel – Whether to cancel the update (default False).

	
class cfme.control.explorer.policies.ConditionDetailsView(*args, **kwargs)

	Bases: cfme.control.explorer.ControlExplorerView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.policies.ContainerImageCompliancePolicy(parent, description, active=None, scope=None, notes=None)

	Bases: cfme.control.explorer.policies.BasePolicy

	
PRETTY = 'Container Image'

	

	
TREE_NODE = 'Container Image'

	

	
TYPE = 'Compliance'

	

	
class cfme.control.explorer.policies.ContainerImageControlPolicy(parent, description, active=None, scope=None, notes=None)

	Bases: cfme.control.explorer.policies.BasePolicy

	
PRETTY = 'Container Image'

	

	
TREE_NODE = 'Container Image'

	

	
TYPE = 'Control'

	

	
class cfme.control.explorer.policies.ContainerNodeCompliancePolicy(parent, description, active=None, scope=None, notes=None)

	Bases: cfme.control.explorer.policies.BasePolicy

	
PRETTY = 'Container Node'

	

	
TREE_NODE = 'Container Node'

	

	
TYPE = 'Compliance'

	

	
class cfme.control.explorer.policies.ContainerNodeControlPolicy(parent, description, active=None, scope=None, notes=None)

	Bases: cfme.control.explorer.policies.BasePolicy

	
PRETTY = 'Container Node'

	

	
TREE_NODE = 'Container Node'

	

	
TYPE = 'Control'

	

	
class cfme.control.explorer.policies.EditEventView(*args, **kwargs)

	Bases: cfme.control.explorer.ControlExplorerView

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
false_actions

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
true_actions

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.policies.EditPolicyConditionAssignments(*args, **kwargs)

	Bases: cfme.control.explorer.ControlExplorerView

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
conditions

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
supposed_title

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.policies.EditPolicyEventAssignments(*args, **kwargs)

	Bases: cfme.control.explorer.ControlExplorerView

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
events

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
supposed_title

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.policies.EditPolicyView(*args, **kwargs)

	Bases: cfme.control.explorer.policies.PolicyFormCommon

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.policies.EventDetailsToolbar(*args, **kwargs)

	Bases: widgetastic.widget.View

Toolbar widgets on the event details page

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.policies.EventDetailsView(*args, **kwargs)

	Bases: cfme.control.explorer.ControlExplorerView

	
false_actions

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
true_actions

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.policies.HostCompliancePolicy(parent, description, active=None, scope=None, notes=None)

	Bases: cfme.control.explorer.policies.BasePolicy

	
PRETTY = 'Host / Node'

	

	
TREE_NODE = 'Host'

	

	
TYPE = 'Compliance'

	

	
class cfme.control.explorer.policies.HostControlPolicy(parent, description, active=None, scope=None, notes=None)

	Bases: cfme.control.explorer.policies.BasePolicy

	
PRETTY = 'Host / Node'

	

	
TREE_NODE = 'Host'

	

	
TYPE = 'Control'

	

	
class cfme.control.explorer.policies.NewPolicyView(*args, **kwargs)

	Bases: cfme.control.explorer.policies.PolicyFormCommon

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.policies.PhysicalInfrastructureCompliancePolicy(parent, description, active=None, scope=None, notes=None)

	Bases: cfme.control.explorer.policies.BasePolicy

	
PRETTY = 'Physical Server'

	

	
TREE_NODE = 'Physical Infrastructure'

	

	
TYPE = 'Compliance'

	

	
class cfme.control.explorer.policies.PhysicalInfrastructureControlPolicy(parent, description, active=None, scope=None, notes=None)

	Bases: cfme.control.explorer.policies.BasePolicy

	
PRETTY = 'Physical Server'

	

	
TREE_NODE = 'Physical Infrastructure'

	

	
TYPE = 'Control'

	

	
class cfme.control.explorer.policies.PodCompliancePolicy(parent, description, active=None, scope=None, notes=None)

	Bases: cfme.control.explorer.policies.BasePolicy

	
PRETTY = 'Container Pod'

	

	
TREE_NODE = 'Pod'

	

	
TYPE = 'Compliance'

	

	
class cfme.control.explorer.policies.PodControlPolicy(parent, description, active=None, scope=None, notes=None)

	Bases: cfme.control.explorer.policies.BasePolicy

	
PRETTY = 'Container Pod'

	

	
TREE_NODE = 'Pod'

	

	
TYPE = 'Control'

	

	
class cfme.control.explorer.policies.PoliciesAllView(*args, **kwargs)

	Bases: cfme.control.explorer.ControlExplorerView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.policies.PolicyAll(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PoliciesAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.control.explorer.policies.PolicyCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

	
CONTAINERIMAGE_CONTROL_POLICY

	alias of ContainerImageControlPolicy

	
CONTAINERNODE_COMPLIANCE_POLICY

	alias of ContainerNodeCompliancePolicy

	
CONTAINERNODE_CONTROL_POLICY

	alias of ContainerNodeControlPolicy

	
ENTITY

	alias of BasePolicy

	
HOST_COMPLIANCE_POLICY

	alias of HostCompliancePolicy

	
HOST_CONTROL_POLICY

	alias of HostControlPolicy

	
PHYSICAL_INFRASTRUCTURE_COMPLIANCE_POLICY

	alias of PhysicalInfrastructureCompliancePolicy

	
PHYSICAL_INFRASTRUCTURE_CONTROL_POLICY

	alias of PhysicalInfrastructureControlPolicy

	
POD_COMPLIANCE_POLICY

	alias of PodCompliancePolicy

	
POD_CONTROL_POLICY

	alias of PodControlPolicy

	
PROVIDER_COMPLIANCE_POLICY

	alias of ProviderCompliancePolicy

	
PROVIDER_CONTROL_POLICY

	alias of ProviderControlPolicy

	
REPLICATOR_COMPLIANCE_POLICY

	alias of ReplicatorCompliancePolicy

	
REPLICATOR_CONTROL_POLICY

	alias of ReplicatorControlPolicy

	
VM_COMPLIANCE_POLICY

	alias of VMCompliancePolicy

	
VM_CONTROL_POLICY

	alias of VMControlPolicy

	
all()

	

	
create(policy_class, description, active=True, scope=None, notes=None)

	

	
delete(*policies)

	

	
instantiate(policy_class, description, active=True, scope=None, notes=None)

	

	
class cfme.control.explorer.policies.PolicyDetails(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PolicyDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.control.explorer.policies.PolicyDetailsView(*args, **kwargs)

	Bases: cfme.control.explorer.ControlExplorerView

	
analysis_profile

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.policies.PolicyEdit(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditPolicyView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.control.explorer.policies.PolicyEventDetails(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EventDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.control.explorer.policies.PolicyFormCommon(*args, **kwargs)

	Bases: cfme.control.explorer.ControlExplorerView

	
active

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
notes

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
scope

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.policies.PolicyNew(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NewPolicyView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.control.explorer.policies.ProviderCompliancePolicy(parent, description, active=None, scope=None, notes=None)

	Bases: cfme.control.explorer.policies.BasePolicy

	
PRETTY = 'Provider'

	

	
TREE_NODE = 'Provider'

	

	
TYPE = 'Compliance'

	

	
class cfme.control.explorer.policies.ProviderControlPolicy(parent, description, active=None, scope=None, notes=None)

	Bases: cfme.control.explorer.policies.BasePolicy

	
PRETTY = 'Provider'

	

	
TREE_NODE = 'Provider'

	

	
TYPE = 'Control'

	

	
class cfme.control.explorer.policies.ReplicatorCompliancePolicy(parent, description, active=None, scope=None, notes=None)

	Bases: cfme.control.explorer.policies.BasePolicy

	
PRETTY = 'Container Replicator'

	

	
TREE_NODE = 'Replicator'

	

	
TYPE = 'Compliance'

	

	
class cfme.control.explorer.policies.ReplicatorControlPolicy(parent, description, active=None, scope=None, notes=None)

	Bases: cfme.control.explorer.policies.BasePolicy

	
PRETTY = 'Container Replicator'

	

	
TREE_NODE = 'Replicator'

	

	
TYPE = 'Control'

	

	
class cfme.control.explorer.policies.VMCompliancePolicy(parent, description, active=None, scope=None, notes=None)

	Bases: cfme.control.explorer.policies.BasePolicy

	
PRETTY = 'VM and Instance'

	

	
TREE_NODE = 'Vm'

	

	
TYPE = 'Compliance'

	

	
class cfme.control.explorer.policies.VMControlPolicy(parent, description, active=None, scope=None, notes=None)

	Bases: cfme.control.explorer.policies.BasePolicy

	
PRETTY = 'VM and Instance'

	

	
TREE_NODE = 'Vm'

	

	
TYPE = 'Control'

	

cfme.control.explorer.policy_profiles module

	
class cfme.control.explorer.policy_profiles.EditPolicyProfileView(*args, **kwargs)

	Bases: cfme.control.explorer.policy_profiles.PolicyProfileFormCommon

	
is_displayed

	

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.policy_profiles.NewPolicyProfileView(*args, **kwargs)

	Bases: cfme.control.explorer.policy_profiles.PolicyProfileFormCommon

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.control.explorer.policy_profiles.PolicyProfile(parent, description, policies, notes=None)

	Bases: cfme.modeling.base.BaseEntity, cfme.utils.update.Updateable, cfme.utils.pretty.Pretty

	
delete(cancel=False)

	Delete this Policy Profile in UI.

	Parameters

	cancel – Whether to cancel the deletion (default False).

	
description = Attribute(name='description', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
exists

	Check existence of this Policy Profile.

Returns: bool [https://docs.python.org/2.7/library/functions.html#bool] signalizing the presence of the Policy Profile in database.

	
notes = Attribute(name='notes', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
policies = Attribute(name='policies', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
update(updates)

	Update this Policy Profile in UI.

	Parameters

	
	updates – Provided by update() context manager.

	cancel – Whether to cancel the update (default False).

	
class cfme.control.explorer.policy_profiles.PolicyProfileAll(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PolicyProfilesAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.control.explorer.policy_profiles.PolicyProfileCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

	
ENTITY

	alias of PolicyProfile

	
all_policy_profile_names

	

	
create(description, policies, notes=None)

	

	
class cfme.control.explorer.policy_profiles.PolicyProfileDetails(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PolicyProfileDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.control.explorer.policy_profiles.PolicyProfileDetailsView(*args, **kwargs)

	Bases: cfme.control.explorer.ControlExplorerView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.policy_profiles.PolicyProfileEdit(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditPolicyProfileView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.control.explorer.policy_profiles.PolicyProfileFormCommon(*args, **kwargs)

	Bases: cfme.control.explorer.ControlExplorerView

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
notes

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policies

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.explorer.policy_profiles.PolicyProfileNew(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NewPolicyProfileView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.control.explorer.policy_profiles.PolicyProfilesAllView(*args, **kwargs)

	Bases: cfme.control.explorer.ControlExplorerView

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

cfme.control.import_export module

	
class cfme.control.import_export.ControlImportExport(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ControlImportExportView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.control.import_export.ControlImportExportView(*args, **kwargs)

	Bases: cfme.base.login.BaseLoggedInPage

	
commit_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
export

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
export_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
policy_profiles

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
upload_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
upload_file

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.control.import_export.InputButton(*args, **kwargs)

	Bases: widgetastic_patternfly.Input, widgetastic.widget.ClickableMixin

	
cfme.control.import_export.import_file(appliance, filename, cancel=False)

	Go to Control / Import Export and import given file.

	Parameters

	
	filename – Full path to file to import.

	cancel – Whether to click Cancel instead of commit.

	
cfme.control.import_export.is_imported(appliance, policy_profile)

	

cfme.control.log module

	
class cfme.control.log.ControlLog(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ControlLogView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.control.log.ControlLogView(*args, **kwargs)

	Bases: cfme.base.login.BaseLoggedInPage

Basic view for Control/Log tab.

	
download_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
refresh_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
subtitle

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

cfme.control.simulation module

	
class cfme.control.simulation.ControlSimulation(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ControlSimulationView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.control.simulation.ControlSimulationView(*args, **kwargs)

	Bases: cfme.base.login.BaseLoggedInPage

Basic view for Control/Simulation tab.

	
event_selection

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
submit_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
vm_selection

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

cfme.fixtures package

Submodules

	cfme.fixtures.ansible_fixtures module

	cfme.fixtures.authentication module

	cfme.fixtures.base module

	cfme.fixtures.candu module

	cfme.fixtures.cli module

	cfme.fixtures.has_persistent_volume module

	cfme.fixtures.model_collections module

	cfme.fixtures.pxe module

	cfme.fixtures.rdb module

	cfme.fixtures.service_fixtures module

	cfme.fixtures.smtp module

	cfme.fixtures.tag module

	cfme.fixtures.tccheck module

	cfme.fixtures.version_info module

	cfme.fixtures.video module

	cfme.fixtures.virtual_machine module

	cfme.fixtures.vm module

	cfme.fixtures.vm_console module

	cfme.fixtures.vm_name module

	cfme.fixtures.vporizer module

	cfme.fixtures.widgets module

	cfme.fixtures.xunit_tools module

Module contents

A variety of modules intended to make life easier for QE developers.

	cfme.fixtures.login - A module providing a login generator

	cfme.fixtures.pytest_selenium - A module offering a large number
of CFME optimized selenium wrappers and other auxilliary functions.

cfme.fixtures.ansible_fixtures module

cfme.fixtures.authentication module

	
cfme.fixtures.authentication.amazon_auth_provider()

	

	
cfme.fixtures.authentication.auth_provider(prov_key)

	

	
cfme.fixtures.authentication.auth_user_data(auth_provider, user_type)

	Grab user data attrdict from auth provider’s user data in yaml

	Expected formatting of yaml containing user data:

	test_users:
-

username: ldapuser2
password: mysecretpassworddontguess
fullname: Ldap User2
groupname: customgroup1
providers:

	freeipa01

	user_types:

	
	uid

Only include user data for users where the user_type matches that under test

Assert the data isn’t empty, and skip the test if so

	
cfme.fixtures.authentication.configure_auth(appliance, auth_mode, auth_provider, user_type, request)

	Given auth_mode, auth_provider, user_type parametrization, configure auth for login
testing.

Saves original auth settings
Configures external or internal auth modes
Separate freeipa / openldap config methods and finalizers
Restores original auth settings after yielding

	
cfme.fixtures.authentication.ensure_resolvable_hostname(appliance)

	Intended for use with freeipa configuration, ensures a resolvable hostname on the appliance

Tries to resolve the appliance hostname property and skips the test if it can’t

	
cfme.fixtures.authentication.setup_aws_auth_provider(appliance, amazon_auth_provider)

	Configure AWS IAM authentication mode

cfme.fixtures.base module

	
cfme.fixtures.base.ensure_websocket_role_disabled(appliance)

	

	
cfme.fixtures.base.fix_merkyl_workaround(request, appliance)

	Workaround around merkyl not opening an iptables port for communication

	
cfme.fixtures.base.fix_missing_hostname(appliance)

	Fix for hostname missing from the /etc/hosts file

	Note: Affects RHOS-based appliances but can’t hurt the others so

	it’s applied on all.

cfme.fixtures.candu module

Fixtures for Capacity and Utilization

	
cfme.fixtures.candu.enable_candu(appliance)

	

cfme.fixtures.cli module

	
class cfme.fixtures.cli.TimedCommand(command, timeout)

	Bases: tuple

The Following fixtures are for provisioning one preconfigured or unconfigured appliance for
testing from an FQDN provider unless there are no provisions available

	
command

	Alias for field number 0

	
timeout

	Alias for field number 1

	
cfme.fixtures.cli.app_creds()

	

	
cfme.fixtures.cli.app_creds_modscope()

	

	
cfme.fixtures.cli.appliance_with_preset_time(temp_appliance_preconfig_funcscope)

	Grabs fresh appliance and sets time and date prior to running tests

	
cfme.fixtures.cli.configured_appliance(appliance)

	

	
cfme.fixtures.cli.dedicated_db_appliance(app_creds, unconfigured_appliance)

	‘ap’ launch appliance_console, ‘’ clear info screen, ‘5’ setup db, ‘1’ Creates v2_key,
‘1’ selects internal db, ‘1’ use partition, ‘y’ create dedicated db, ‘pwd’
db password, ‘pwd’ confirm db password + wait 360 secs and ‘’ finish.

	
cfme.fixtures.cli.fqdn_appliance(*args, **kwds)

	

	
cfme.fixtures.cli.ipa_crud()

	

	
cfme.fixtures.cli.restore_hostname(appliance)

	store and reset hostname

	
cfme.fixtures.cli.unconfigured_appliance(appliance)

	

	
cfme.fixtures.cli.unconfigured_appliance_secondary(appliance)

	

	
cfme.fixtures.cli.unconfigured_appliances(appliance)

	

cfme.fixtures.has_persistent_volume module

cfme.fixtures.model_collections module

	
cfme.fixtures.model_collections.dashboards(appliance)

	

	
cfme.fixtures.model_collections.objects(appliance)

	

cfme.fixtures.pxe module

	
cfme.fixtures.pxe.pxe_server_crud(appliance, pxe_name)

	

cfme.fixtures.rdb module

Rdb: Remote debugger

Given the following configuration in conf/rdb.yaml:

breakpoints:
 - subject: Brief explanation of a problem
 exceptions:
 - cfme.exceptions.ImportableExampleException
 - BuiltinException (e.g. ValueError)
 recipients:
 - user@example.com

Any time an exception listed in a breakpoint’s “exceptions” list is raised in rdb_catch()
context in the course of a test run, a remote debugger will be started on a random port, and the
users listed in “recipients” will be emailed instructions to access the remote debugger via telnet.

The exceptions will be imported, so their fully-qualified importable path is required.
Exceptions without a module path are assumed to be builtins.

An Rdb instance can be used just like a Pdb instance.

Additionally, a signal handler has been set up to allow for triggering Rdb during a test run. To
invoke it, kill -USR1 a test-running process and Rdb will start up. No emails are sent when
operating in this mode, so check the py.test console for the endpoint address.

By default, Rdb assumes that there is a working MTA available on localhost, but this can
be configured in conf['env']['smtp']['server'].

Note

This is very insecure, and should be used as a last resort for debugging elusive failures.

	
class cfme.fixtures.rdb.Rdb(prompt_msg='')

	Bases: pdb.Pdb [https://docs.python.org/2.7/library/pdb.html#pdb.Pdb]

Remote Debugger

When set_trace is called, it will open a socket on a random unprivileged port connected to a
Pdb debugging session. This session can be accessed via telnet, and will end when “continue”
is called in the Pdb session.

	
do_c(arg)

	

	
do_cont(arg)

	

	
do_continue(arg)

	

	
interaction(*args, **kwargs)

	

	
set_trace(*args, **kwargs)

	Start a pdb debugger available via telnet, and optionally email people the endpoint

The endpoint will always be seen in the py.test runner output.

	Parameters

	
	recipients – A list where, if set, an email will be sent to email addresses
in this list.

	subject – If set, an optional custom email subject

	
cfme.fixtures.rdb.pytest_internalerror(excrepr, excinfo)

	

	
cfme.fixtures.rdb.rdb_catch(*args, **kwds)

	Context Manager used to wrap mysterious failures for remote debugging.

	
cfme.fixtures.rdb.rdb_handle_signal(signal, frame)

	

	
cfme.fixtures.rdb.send_breakpoint_email(exctype, msg='')

	

cfme.fixtures.service_fixtures module

cfme.fixtures.smtp module

This module provides a fixture useful for checking the e-mails arrived.

Main use is of fixture smtp_test(), which is function scoped. There is also
a smtp_test_module() fixture for which the smtp_test is just a function-scoped wrapper
to speed things up. The base of all this is the session-scoped _smtp_test_session that keeps care
about the collector.

	
cfme.fixtures.smtp.pytest_runtest_call(item)

	

	
cfme.fixtures.smtp.smtp_test(request, appliance)

	Fixture, which prepares the appliance for e-mail capturing tests

Returns: util.smtp_collector_client.SMTPCollectorClient instance.

cfme.fixtures.tag module

	
cfme.fixtures.tag.category()

	Returns random created category object
Object can be used in all test run session

	
cfme.fixtures.tag.check_item_visibility(tag, user_restricted)

	

	
cfme.fixtures.tag.group_with_tag(appliance, role, category, tag)

	Returns group object with set up tag filter used in test module

	
cfme.fixtures.tag.new_credential()

	Returns credentials object used for new user in test module

	
cfme.fixtures.tag.role(appliance)

	Returns role object used in test module

	
cfme.fixtures.tag.tag(category)

	Returns random created tag object
Object can be used in all test run session

	
cfme.fixtures.tag.user_restricted(appliance, group_with_tag, new_credential)

	Returns restricted user object assigned
to group with tag filter used in test module

cfme.fixtures.tccheck module

Plugin that does basic test case validation.

Use --validate-test-cases to enable it.

Currently does not work on --collect-only due to pytest’s implementation bug.

Error output lines are prefixed by [TCV-E].
If no error nappens, a line prefixed with [TCV-OK] appears at the end of collection.

	
cfme.fixtures.tccheck.check_requirement(item, available_requirements)

	

	
cfme.fixtures.tccheck.check_tier(item)

	

	
cfme.fixtures.tccheck.load_available_requirements()

	Slightly hacky, run through all objects in the module and only pick the correct ones.

	
cfme.fixtures.tccheck.pytest_addoption(parser)

	

	
cfme.fixtures.tccheck.pytest_report_collectionfinish(config, startdir, items)

	

cfme.fixtures.version_info module

	
cfme.fixtures.version_info.find_nth_pos(string, substring, n)

	helper-method used in getting version info

	
cfme.fixtures.version_info.generate_gems_file(ssh_client, directory)

	

	
cfme.fixtures.version_info.generate_processes_file(ssh_client, directory)

	

	
cfme.fixtures.version_info.generate_rpms_file(ssh_client, directory)

	

	
cfme.fixtures.version_info.generate_system_file(ssh_client, directory)

	

	
cfme.fixtures.version_info.generate_version_files()

	

	
cfme.fixtures.version_info.get_gem_versions(ssh_client)

	get version information for gems

	
cfme.fixtures.version_info.get_process_versions(ssh_client)

	get version information for processes

	
cfme.fixtures.version_info.get_rpm_versions(ssh_client)

	get version information for rpms

	
cfme.fixtures.version_info.get_system_versions(ssh_client)

	get version information for the system

cfme.fixtures.video module

Provides video options

	Yaml example:

	logging:
 video:
 enabled: True
 dir: video
 display: ":99"
 quality: 10

	
cfme.fixtures.video.get_path_and_file_name(node)

	Extract filename and location from the node.

	Parameters

	node – py.test collection node to examine.

Returns: 2-tuple (path, filename)

	
cfme.fixtures.video.pytest_runtest_setup(item)

	

	
cfme.fixtures.video.pytest_runtest_teardown(item, nextitem)

	

	
cfme.fixtures.video.pytest_unconfigure(config)

	

	
cfme.fixtures.video.stop_recording()

	

cfme.fixtures.virtual_machine module

cfme.fixtures.vm module

cfme.fixtures.vm_console module

Fixtures that VMware console tests use to configure VM Console type and start websocket.

	
cfme.fixtures.vm_console.configure_console_vnc(appliance)

	Configure VMware Console to use VMware VNC.

	
cfme.fixtures.vm_console.configure_console_webmks(appliance)

	Configure VMware Console to use VMware WebMKS.

	
cfme.fixtures.vm_console.configure_websocket(appliance)

	Enable websocket role if it is disabled.

Currently the fixture cfme/fixtures/base.py:27,
disables the websocket role to avoid intrusive popups.

cfme.fixtures.vm_name module

cfme.fixtures.vporizer module

	
cfme.fixtures.vporizer.gen_vpor_values()

	

	
cfme.fixtures.vporizer.random() → x in the interval [0, 1).

	

	
class cfme.fixtures.vporizer.vpor_data_instance(resource_type, resource_id, resource_name, cpu_usagemhz_rate_average, derived_memory_used, max_cpu_usage_rate_average, max_mem_usage_absolute_average)

	Bases: tuple

	
cpu_usagemhz_rate_average

	Alias for field number 3

	
derived_memory_used

	Alias for field number 4

	
max_cpu_usage_rate_average

	Alias for field number 5

	
max_mem_usage_absolute_average

	Alias for field number 6

	
resource_id

	Alias for field number 1

	
resource_name

	Alias for field number 2

	
resource_type

	Alias for field number 0

	
cfme.fixtures.vporizer.vporizer(appliance)

	Grabbing vim_performance_operating_ranges table data for nodes and projects.
In case that no such data exists, inserting fake rows

cfme.fixtures.widgets module

	
cfme.fixtures.widgets.widgets_generated(setup_only_one_provider, appliance)

	

cfme.fixtures.xunit_tools module

	
cfme.fixtures.xunit_tools.gen_duplicates_log(items)

	Generates log file containing non-unique test cases names.

	
cfme.fixtures.xunit_tools.get_polarion_name(item)

	Gets Polarion test case name out of the Node ID.

	
cfme.fixtures.xunit_tools.get_testcase_data(name, tests, processed_test, item, legacy=False)

	Gets data for single testcase entry.

	
cfme.fixtures.xunit_tools.get_testresult_data(name, tests, processed_test, item, legacy=False)

	Gets data for single test result entry.

	
cfme.fixtures.xunit_tools.pytest_addoption(parser)

	Adds command line options.

	
cfme.fixtures.xunit_tools.pytest_collection_modifyitems(config, items)

	Generates the XML files using collected items.

	
cfme.fixtures.xunit_tools.testcase_record(test_name, description=None, parameters=None, custom_fields=None, linked_items=None)

	Generates single testcase entry.

	
cfme.fixtures.xunit_tools.testcases_gen(tests, filename)

	Generates content of the XML file used for test cases import.

	
cfme.fixtures.xunit_tools.testresult_record(test_name, parameters=None, result=None)

	Generates single test result entry.

	
cfme.fixtures.xunit_tools.testrun_gen(tests, filename, config, collectonly=True)

	Generates content of the XML file used for test run import.

cfme.generic_objects package

Subpackages

	cfme.generic_objects.definition package
	Submodules
	cfme.generic_objects.definition.associations module

	cfme.generic_objects.definition.rest module

	Module contents

	cfme.generic_objects.instance package
	Submodules
	cfme.generic_objects.instance.rest module

	Module contents

Module contents

cfme.generic_objects.definition package

Submodules

	cfme.generic_objects.definition.associations module

	cfme.generic_objects.definition.rest module

Module contents

	
class cfme.generic_objects.definition.GenericObjectDefinition(parent, name, description, attributes=None, associations=None, methods=None)

	Bases: cfme.modeling.base.BaseEntity, cfme.utils.update.Updateable, sentaku.modeling.ElementMixin

Generic Objects Definition class to context switch between UI and REST.

Read/Update/Delete functionality.

	
associations = Attribute(name='associations', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
attributes = Attribute(name='attributes', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
delete

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
description = Attribute(name='description', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
exists

	

	
methods = Attribute(name='methods', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
name = Attribute(name='name', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
rest_response = Attribute(name='rest_response', default=None, validator=None, repr=True, cmp=True, hash=None, init=False, convert=None, metadata=mappingproxy({}))

	

	
update

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
class cfme.generic_objects.definition.GenericObjectDefinitionCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection, sentaku.modeling.ElementMixin

	
ENTITY

	alias of GenericObjectDefinition

	
create

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

cfme.generic_objects.definition.associations module

	
cfme.generic_objects.definition.associations.get_rest_resource(appliance, association_type, resource)

	

cfme.generic_objects.definition.rest module

	
cfme.generic_objects.definition.rest.create(self, name, description, attributes=None, associations=None, methods=None)

	

	
cfme.generic_objects.definition.rest.delete(self)

	

	
cfme.generic_objects.definition.rest.exists(self)

	

	
cfme.generic_objects.definition.rest.update(self, updates)

	

cfme.generic_objects.instance package

Submodules

	cfme.generic_objects.instance.rest module

Module contents

	
class cfme.generic_objects.instance.GenericObjectInstance(parent, name, definition, attributes=None, associations=None)

	Bases: cfme.modeling.base.BaseEntity, cfme.utils.update.Updateable, sentaku.modeling.ElementMixin

Generic Objects class to context switch between REST and Automate.

Read/Update/Delete functionality.

	
associations = Attribute(name='associations', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
attributes = Attribute(name='attributes', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
definition = Attribute(name='definition', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
delete

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
exists

	

	
name = Attribute(name='name', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
rest_response = Attribute(name='rest_response', default=None, validator=None, repr=True, cmp=True, hash=None, init=False, convert=None, metadata=mappingproxy({}))

	

	
update

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
class cfme.generic_objects.instance.GenericObjectInstanceCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection, sentaku.modeling.ElementMixin

	
ENTITY

	alias of GenericObjectInstance

	
create

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

cfme.generic_objects.instance.rest module

	
cfme.generic_objects.instance.rest.create(self, name, definition, attributes=None, associations=None)

	

	
cfme.generic_objects.instance.rest.delete(self)

	

	
cfme.generic_objects.instance.rest.exists(self)

	

	
cfme.generic_objects.instance.rest.update(self, updates)

	

cfme.infrastructure package

Subpackages

	cfme.infrastructure.provider package
	Submodules
	cfme.infrastructure.provider.kubevirt module

	cfme.infrastructure.provider.openstack_infra module

	cfme.infrastructure.provider.rhevm module

	cfme.infrastructure.provider.scvmm module

	cfme.infrastructure.provider.virtualcenter module

	Module contents

Submodules

	cfme.infrastructure.cluster module

	cfme.infrastructure.config_management module

	cfme.infrastructure.datastore module

	cfme.infrastructure.deployment_roles module

	cfme.infrastructure.host module

	cfme.infrastructure.networking module

	cfme.infrastructure.openstack_node module

	cfme.infrastructure.pxe module

	cfme.infrastructure.resource_pool module

	cfme.infrastructure.virtual_machines module

Module contents

cfme.infrastructure.provider package

Submodules

	cfme.infrastructure.provider.kubevirt module

	cfme.infrastructure.provider.openstack_infra module

	cfme.infrastructure.provider.rhevm module

	cfme.infrastructure.provider.scvmm module

	cfme.infrastructure.provider.virtualcenter module

Module contents

cfme.infrastructure.provider.kubevirt module

cfme.infrastructure.provider.openstack_infra module

cfme.infrastructure.provider.rhevm module

cfme.infrastructure.provider.scvmm module

cfme.infrastructure.provider.virtualcenter module

cfme.infrastructure.cluster module

cfme.infrastructure.config_management module

cfme.infrastructure.datastore module

cfme.infrastructure.deployment_roles module

cfme.infrastructure.host module

cfme.infrastructure.networking module

	
class cfme.infrastructure.networking.All(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of InfraNetworkingAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
resetter()

	

	
step()

	

	
class cfme.infrastructure.networking.InfraNetworking(parent)

	Bases: cfme.modeling.base.BaseEntity

	
class cfme.infrastructure.networking.InfraNetworkingAllView(*args, **kwargs)

	Bases: cfme.infrastructure.networking.InfraNetworkingView

The “all” view – a list

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
paginator

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters

	version_dict – Dictionary of version_introduced: item

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.networking.InfraNetworkingCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

Collection object for the cmfe.infrastructure.networking.InfraNetworking.

	
ENTITY

	alias of InfraNetworking

	
class cfme.infrastructure.networking.InfraNetworkingEntities(*args, **kwargs)

	Bases: widgetastic.widget.View

Entities on the main page

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.networking.InfraNetworkingToolbar(*args, **kwargs)

	Bases: widgetastic.widget.View

The toolbar on the main page

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
view_selector

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.networking.InfraNetworkingView(*args, **kwargs)

	Bases: cfme.base.login.BaseLoggedInPage

Base view for header and nav checking, navigatable views should inherit this

	
in_infra_networking

	

cfme.infrastructure.openstack_node module

cfme.infrastructure.pxe module

A model of a PXE Server in CFME

	
class cfme.infrastructure.pxe.CustomizationTemplate(parent, name=None, description=None, script_data=None, image_type=None, script_type=None)

	Bases: cfme.utils.update.Updateable, cfme.utils.pretty.Pretty, cfme.modeling.base.BaseEntity

Model of a Customization Template in CFME

	
copy(name=None, description=None, cancel=False)

	This method is used to copy a Customization Template server via UI.

	Parameters

	
	name (str [https://docs.python.org/2.7/library/functions.html#str]) – This field contains the name of the newly copied Customization Template.

	description (str [https://docs.python.org/2.7/library/functions.html#str]) – This field contains the description of the newly
copied Customization Template.

	cancel (bool [https://docs.python.org/2.7/library/functions.html#bool]) – It’s used for flag to cancel or not the copy operation.

	
description = Attribute(name='description', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
exists(*args, **kwargs)

	

	
exists_ui = None

	

	
image_type = Attribute(name='image_type', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
name = Attribute(name='name', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
pretty_attrs = ['name', 'image_type']

	

	
script_data = Attribute(name='script_data', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
script_type = Attribute(name='script_type', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
update(updates, cancel=False)

	Updates a Customization Template server in the UI. Better to use utils.update.update
context manager than call this directly.

	Parameters

	
	updates (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – fields that are changing.

	cancel (boolean) – whether to cancel out of the update.

	
class cfme.infrastructure.pxe.CustomizationTemplateAdd(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PXECustomizationTemplateAddView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.infrastructure.pxe.CustomizationTemplateAll(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PXECustomizationTemplatesView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.infrastructure.pxe.CustomizationTemplateCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

Collection class for CustomizationTemplate

	
ENTITY

	alias of CustomizationTemplate

	
create(name, description, image_type, script_type, script_data, cancel=False)

	Creates a Customization Template object

	Parameters

	
	cancel (boolean) – Whether to cancel out of the creation. The cancel is done
after all the information present in the CT has been filled in the UI.

	name – Name of CT

	description – description: The description field of CT.

	image_type – Image type of the CT.

	script_data – Contains the script data.

	script_type – It specifies the script_type of the script.

	
delete(cancel=False, *ct_objs)

	Deletes a Customization Template server from CFME

	Parameters

	
	ct_objs – It’s a Customization Template object

	cancel – Whether to cancel the deletion, defaults to True

	
class cfme.infrastructure.pxe.CustomizationTemplateCopy(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PXECustomizationTemplateCopyView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.infrastructure.pxe.CustomizationTemplateDetails(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PXECustomizationTemplateDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.infrastructure.pxe.CustomizationTemplateEdit(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PXECustomizationTemplateEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.infrastructure.pxe.ISODatastore(provider=None, appliance=None)

	Bases: cfme.utils.update.Updateable, cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable

Model of a PXE Server object in CFME

	Parameters

	provider – Provider name.

	
create(cancel=False, refresh=True, refresh_timeout=120)

	Creates an ISO datastore object

	Parameters

	
	cancel (boolean) – Whether to cancel out of the creation. The cancel is done
after all the information present in the ISO datastore has been filled in the UI.

	refresh (boolean) – Whether to run the refresh operation on the ISO datastore after
the add has been completed.

	
delete(cancel=True)

	Deletes an ISO Datastore from CFME

	Parameters

	cancel – Whether to cancel the deletion, defaults to True

	
exists(*args, **kwargs)

	

	
exists_ui = None

	

	
pretty_attrs = ['provider']

	

	
refresh(wait=True, timeout=120)

	Refreshes the PXE relationships and waits for it to be updated

	
set_iso_image_type(image_name, image_type)

	Function to set the image type of a PXE image

	
class cfme.infrastructure.pxe.ISODatastoreAdd(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PXEDatastoreAddView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.infrastructure.pxe.ISODatastoreAll(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PXEDatastoresView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.infrastructure.pxe.ISODatastoreDetails(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PXEDatastoreDetailsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.infrastructure.pxe.PXECustomizationTemplateAddView(*args, **kwargs)

	Bases: cfme.infrastructure.pxe.PXECustomizationTemplateForm

	
add

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXECustomizationTemplateCopyView(*args, **kwargs)

	Bases: cfme.infrastructure.pxe.PXECustomizationTemplateForm

	
add

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXECustomizationTemplateDetailsView(*args, **kwargs)

	Bases: cfme.infrastructure.pxe.PXEMainView

represents some certain Customization Template Details page

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXECustomizationTemplateEditView(*args, **kwargs)

	Bases: cfme.infrastructure.pxe.PXECustomizationTemplateForm

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reset

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXECustomizationTemplateForm(*args, **kwargs)

	Bases: widgetastic.widget.View

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
image_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
script

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXECustomizationTemplatesView(*args, **kwargs)

	Bases: cfme.infrastructure.pxe.PXEMainView

represents Customization Template Groups page

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXEDatastoreAddView(*args, **kwargs)

	Bases: cfme.infrastructure.pxe.PXEDatastoreForm

	
add

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXEDatastoreDetailsView(*args, **kwargs)

	Bases: cfme.infrastructure.pxe.PXEMainView

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXEDatastoreEditView(*args, **kwargs)

	Bases: cfme.infrastructure.pxe.PXEDatastoreForm

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reset

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXEDatastoreForm(*args, **kwargs)

	Bases: widgetastic.widget.View

	
is_displayed

	

	
provider

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXEDatastoresView(*args, **kwargs)

	Bases: cfme.infrastructure.pxe.PXEMainView

represents whole All ISO Datastores page

	
is_displayed

	

	
class cfme.infrastructure.pxe.PXEDetailsToolBar(*args, **kwargs)

	Bases: cfme.infrastructure.pxe.PXEToolBar

represents the toolbar which appears when any pxe entity is clicked

	
reload

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXEImageEditView(*args, **kwargs)

	Bases: widgetastic.widget.View

it can be found when some image is clicked in PXE Server Tree

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
default_for_windows

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
reset

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXEMainPage(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.infrastructure.pxe.PXEMainView(*args, **kwargs)

	Bases: cfme.base.login.BaseLoggedInPage

represents whole All PXE Servers page

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
sidebar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXEServer(name=None, depot_type=None, uri=None, userid=None, password=None, access_url=None, pxe_dir=None, windows_dir=None, customize_dir=None, menu_filename=None, appliance=None)

	Bases: cfme.utils.update.Updateable, cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable

Model of a PXE Server object in CFME

	Parameters

	
	name – Name of PXE server.

	depot_type – Depot type, either Samba or Network File System.

	uri – The Depot URI.

	userid – The Samba username.

	password – The Samba password.

	access_url – HTTP access path for PXE server.

	pxe_dir – The PXE dir for accessing configuration.

	windows_dir – Windows source directory.

	customize_dir – Customization directory for templates.

	menu_filename – Menu filename for iPXE/syslinux menu.

	
create(cancel=False, refresh=True, refresh_timeout=120)

	Creates a PXE server object

	Parameters

	
	cancel (boolean) – Whether to cancel out of the creation. The cancel is done
after all the information present in the PXE Server has been filled in the UI.

	refresh (boolean) – Whether to run the refresh operation on the PXE server after
the add has been completed.

	
delete(cancel=True)

	Deletes a PXE server from CFME

	Parameters

	cancel – Whether to cancel the deletion, defaults to True

	
exists(*args, **kwargs)

	

	
exists_ui = None

	

	
get_pxe_image_type(*args, **kwargs)

	

	
get_pxe_image_type_ui = None

	

	
pretty_attrs = ['name', 'uri', 'access_url']

	

	
refresh(wait=True, timeout=120)

	Refreshes the PXE relationships and waits for it to be updated

	
set_pxe_image_type(image_name, image_type)

	Function to set the image type of a PXE image

	
update(updates, cancel=False)

	Updates a PXE server in the UI. Better to use utils.update.update context
manager than call this directly.

	Parameters

	
	updates (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – fields that are changing.

	cancel (boolean) – whether to cancel out of the update.

	
class cfme.infrastructure.pxe.PXEServerAdd(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PXEServerAddView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.infrastructure.pxe.PXEServerAddView(*args, **kwargs)

	Bases: cfme.infrastructure.pxe.PXEServerForm

represents Add New PXE Server view

	
add

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXEServerAll(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PXEServersView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.infrastructure.pxe.PXEServerDetails(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PXEServerDetailsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.infrastructure.pxe.PXEServerDetailsView(*args, **kwargs)

	Bases: cfme.infrastructure.pxe.PXEMainView

represents Server Details view

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXEServerEdit(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PXEServerEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.infrastructure.pxe.PXEServerEditView(*args, **kwargs)

	Bases: cfme.infrastructure.pxe.PXEServerForm

represents PXE Server Edit view

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reset

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXEServerForm(*args, **kwargs)

	Bases: widgetastic.widget.View

	
access_url

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
confirm_password

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
customization_dir

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
depot_type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
filename

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
password

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
pxe_dir

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
uri

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
username

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
validate

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
windows_images_dir

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXEServersView(*args, **kwargs)

	Bases: cfme.infrastructure.pxe.PXEMainView

represents whole All PXE Servers page

	
is_displayed

	

	
class cfme.infrastructure.pxe.PXESideBar(*args, **kwargs)

	Bases: widgetastic.widget.View

represents left side bar. it usually contains navigation, filters, etc

	
datastores

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
image_types

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
servers

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
templates

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXESystemImageTypeAddView(*args, **kwargs)

	Bases: cfme.infrastructure.pxe.PXESystemImageTypeForm

	
add

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXESystemImageTypeDetailsView(*args, **kwargs)

	Bases: cfme.infrastructure.pxe.PXEMainView

	
entities

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXESystemImageTypeEditView(*args, **kwargs)

	Bases: cfme.infrastructure.pxe.PXESystemImageTypeForm

	
cancel

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reset

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXESystemImageTypeForm(*args, **kwargs)

	Bases: widgetastic.widget.View

	
is_displayed

	

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.PXESystemImageTypesView(*args, **kwargs)

	Bases: cfme.infrastructure.pxe.PXEMainView

represents whole All System Image Types page

	
is_displayed

	

	
class cfme.infrastructure.pxe.PXEToolBar(*args, **kwargs)

	Bases: widgetastic.widget.View

represents PXE toolbar and its controls

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.infrastructure.pxe.SystemImageType(parent, name=None, provision_type=None)

	Bases: cfme.utils.update.Updateable, cfme.utils.pretty.Pretty, cfme.modeling.base.BaseEntity

Model of a System Image Type in CFME.

	Parameters

	
	name – The name of the System Image Type.

	provision_type – The provision type, either Vm or Host.

	
HOST_OR_NODE = 'Host / Node'

	

	
VM_OR_INSTANCE = 'VM and Instance'

	

	
delete(cancel=True)

	Deletes a System Image Type from CFME

	Parameters

	cancel – Whether to cancel the deletion, defaults to True

	
name = Attribute(name='name', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
pretty_attrs = ['name', 'provision_type']

	

	
provision_type = Attribute(name='provision_type', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
update(updates, cancel=False)

	Updates a System Image Type in the UI. Better to use utils.update.update context
manager than call this directly.

	Parameters

	
	updates (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – fields that are changing.

	cancel (boolean) – whether to cancel out of the update.

	
class cfme.infrastructure.pxe.SystemImageTypeAdd(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PXESystemImageTypeAddView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.infrastructure.pxe.SystemImageTypeAll(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PXESystemImageTypesView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.infrastructure.pxe.SystemImageTypeCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

Collection class for SystemImageType.

	
ENTITY

	alias of SystemImageType

	
create(name, provision_type, cancel=False)

	Creates a System Image Type object

	Parameters

	
	name – It contains name of the System Image Type

	provision_type – Type on Image. i.e Vm and Instance or Host

	cancel (boolean) – Whether to cancel out of the creation. The cancel is done
after all the information present in the SIT has been filled in the UI.

	
delete(cancel=False, *sys_objs)

	
	This methods deletes the System Image Type using select option,

	hence can be used for multiple delete.

	Parameters

	
	cancel – This is the boolean argument required for handle_alert

	sys_objs – It’s System Image Types object

	
class cfme.infrastructure.pxe.SystemImageTypeDetails(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PXESystemImageTypeDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.infrastructure.pxe.SystemImageTypeEdit(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of PXESystemImageTypeEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
cfme.infrastructure.pxe.get_pxe_server_from_config(pxe_config_name, appliance)

	Convenience function to grab the details for a pxe server fomr the yamls.

	
cfme.infrastructure.pxe.get_template_from_config(template_config_name, create=False, appliance=None)

	Convenience function to grab the details for a template from the yamls and create template.

	
cfme.infrastructure.pxe.remove_all_pxe_servers()

	Convenience function to remove all PXE servers

cfme.infrastructure.resource_pool module

cfme.infrastructure.virtual_machines module

cfme.intelligence package

Subpackages

	cfme.intelligence.chargeback package
	Submodules
	cfme.intelligence.chargeback.assignments module

	cfme.intelligence.chargeback.rates module

	Module contents

	cfme.intelligence.reports package
	Subpackages
	cfme.intelligence.reports.widgets package
	Submodules
	cfme.intelligence.reports.widgets.chart_widgets module

	cfme.intelligence.reports.widgets.menu_widgets module

	cfme.intelligence.reports.widgets.report_widgets module

	cfme.intelligence.reports.widgets.rss_widgets module

	Module contents

	Submodules
	cfme.intelligence.reports.dashboards module

	cfme.intelligence.reports.import_export module

	cfme.intelligence.reports.menus module

	cfme.intelligence.reports.reports module

	cfme.intelligence.reports.saved module

	cfme.intelligence.reports.schedules module

	Module contents

Submodules

	cfme.intelligence.rss module

Module contents

This is a directory of modules, each one represents one menu sub-item.

	cfme.intelligence.reports

	cfme.intelligence.chargeback

cfme.intelligence.chargeback package

Submodules

	cfme.intelligence.chargeback.assignments module

	cfme.intelligence.chargeback.rates module

Module contents

	
class cfme.intelligence.chargeback.ChargebackView(*args, **kwargs)

	Bases: cfme.base.login.BaseLoggedInPage

	
assignments

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
in_chargeback

	

	
is_displayed

	

	
rates

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reports

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.chargeback.IntelChargeback(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ChargebackView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

cfme.intelligence.chargeback.assignments module

	
class cfme.intelligence.chargeback.assignments.Assign(assign_to=None, tag_category=None, docker_labels=None, selections=None, appliance=None)

	Bases: cfme.utils.update.Updateable, cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable

Model of Chargeback Assignment page in cfme.

	Parameters

	
	assign_to – Assign the chargeback rate to entities such as VM,Provider,datastore or the
Enterprise itself.

	tag_category – Tag category of the entity

	selections – Selection of a particular entity to which the rate is to be assigned.
Eg:If the chargeback rate is to be assigned to providers,select which of the managed
providers the rate is to be assigned.

Usage:

enterprise = Assign(
assign_to="The Enterprise",
selections={
 'Enterprise': {'Rate': 'Default'}
})

enterprise.computeassign()

	
computeassign()

	

	
storageassign()

	

	
class cfme.intelligence.chargeback.assignments.AssignAll(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AssignmentsAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.intelligence.chargeback.assignments.AssignCompute(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AssignmentsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.intelligence.chargeback.assignments.AssignStorage(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AssignmentsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.intelligence.chargeback.assignments.AssignmentsAllView(*args, **kwargs)

	Bases: cfme.intelligence.chargeback.ChargebackView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.chargeback.assignments.AssignmentsView(*args, **kwargs)

	Bases: cfme.intelligence.chargeback.ChargebackView

	
assign_to

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
docker_labels

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
selections

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
tag_category

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

cfme.intelligence.chargeback.rates module

	
class cfme.intelligence.chargeback.rates.AddComputeChargebackView(*args, **kwargs)

	Bases: cfme.intelligence.chargeback.rates.RatesView

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
currency

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
fields

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.chargeback.rates.AddStorageChargebackView(*args, **kwargs)

	Bases: cfme.intelligence.chargeback.rates.AddComputeChargebackView

	
class cfme.intelligence.chargeback.rates.ComputeRate(description=None, currency=None, fields=None, appliance=None)

	Bases: cfme.utils.update.Updateable, cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable

This class represents a Compute Chargeback rate.

Example

>>> import cfme.intelligence.chargeback.rates as rates
>>> rate = rates.ComputeRate(description=desc,
 fields={'Used CPU':
 {'per_time': 'Hourly', 'variable_rate': '3'},
 'Used Disk I/O':
 {'per_time': 'Hourly', 'variable_rate': '2'},
 'Used Memory':
 {'per_time': 'Hourly', 'variable_rate': '2'}})
>>> rate.create()
>>> rate.delete()

	Parameters

	
	description – Rate description

	currency – Rate currency

	fields – Rate fields

	
RATE_TYPE = 'Compute'

	

	
copy(*args, **kwargs)

	

	
create()

	

	
delete(cancel=False)

	Delete a CB rate in the UI
:param cancel: boolean, whether to cancel the action on alert

	
exists

	

	
pretty_attrs = ['description']

	

	
update(updates)

	

	
class cfme.intelligence.chargeback.rates.ComputeRateAll(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RatesView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.intelligence.chargeback.rates.ComputeRateCopy(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AddComputeChargebackView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.intelligence.chargeback.rates.ComputeRateDetails(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RatesDetailView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.intelligence.chargeback.rates.ComputeRateEdit(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditComputeChargebackView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.intelligence.chargeback.rates.ComputeRateNew(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AddComputeChargebackView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.intelligence.chargeback.rates.EditComputeChargebackView(*args, **kwargs)

	Bases: cfme.intelligence.chargeback.rates.AddComputeChargebackView

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.chargeback.rates.EditStorageChargebackView(*args, **kwargs)

	Bases: cfme.intelligence.chargeback.rates.EditComputeChargebackView

	
is_displayed

	

	
class cfme.intelligence.chargeback.rates.RatesDetailView(*args, **kwargs)

	Bases: cfme.intelligence.chargeback.rates.RatesView

	
is_displayed

	

	
class cfme.intelligence.chargeback.rates.RatesView(*args, **kwargs)

	Bases: cfme.intelligence.chargeback.ChargebackView

	
in_rates

	Determine if in the rates part of chargeback, includes check of in_chargeback

	
is_displayed

	

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.chargeback.rates.StorageRate(description=None, currency=None, fields=None, appliance=None)

	Bases: cfme.intelligence.chargeback.rates.ComputeRate

	
RATE_TYPE = 'Storage'

	

	
pretty_attrs = ['description']

	

	
class cfme.intelligence.chargeback.rates.StorageRateAll(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RatesView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.intelligence.chargeback.rates.StorageRateDetails(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of RatesDetailView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.intelligence.chargeback.rates.StorageRateEdit(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditStorageChargebackView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.intelligence.chargeback.rates.StorageRateNew(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AddStorageChargebackView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

cfme.intelligence.reports package

Subpackages

	cfme.intelligence.reports.widgets package
	Submodules
	cfme.intelligence.reports.widgets.chart_widgets module

	cfme.intelligence.reports.widgets.menu_widgets module

	cfme.intelligence.reports.widgets.report_widgets module

	cfme.intelligence.reports.widgets.rss_widgets module

	Module contents

Submodules

	cfme.intelligence.reports.dashboards module

	cfme.intelligence.reports.import_export module

	cfme.intelligence.reports.menus module

	cfme.intelligence.reports.reports module

	cfme.intelligence.reports.saved module

	cfme.intelligence.reports.schedules module

Module contents

	
class cfme.intelligence.reports.CloudIntelReports(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of CloudIntelReportsView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.intelligence.reports.CloudIntelReportsView(*args, **kwargs)

	Bases: cfme.base.login.BaseLoggedInPage

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
dashboard_widgets

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
dashboards

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
edit_report_menus

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
import_export

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
in_intel_reports

	

	
is_displayed

	

	
mycompany_title

	

	
reports

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
saved_reports

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
schedules

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.ReportsMultiBoxSelect(*args, **kwargs)

	Bases: widgetastic_manageiq.MultiBoxSelect

	
move_from_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
move_into_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

cfme.intelligence.reports.widgets package

Submodules

	cfme.intelligence.reports.widgets.chart_widgets module

	cfme.intelligence.reports.widgets.menu_widgets module

	cfme.intelligence.reports.widgets.report_widgets module

	cfme.intelligence.reports.widgets.rss_widgets module

Module contents

	
class cfme.intelligence.reports.widgets.AllDashboardWidgetsView(*args, **kwargs)

	Bases: cfme.intelligence.reports.widgets.DashboardWidgetsView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.widgets.BaseDashboardReportWidget(parent, title, description, active, visibility=None)

	Bases: cfme.modeling.base.BaseEntity, cfme.utils.update.Updateable, cfme.utils.pretty.Pretty

	
TITLE = None

	

	
TYPE = None

	

	
active = Attribute(name='active', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
check_status()

	

	
delete(cancel=False)

	Delete this Widget in the UI.

	Parameters

	cancel – Whether to cancel the deletion (default False).

	
description = Attribute(name='description', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
generate(wait=True, cancel=False, **kwargs)

	

	
pretty_attrs = []

	

	
refresh()

	

	
title = Attribute(name='title', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
update(updates)

	Update this Widget in the UI.

	Parameters

	updates – Provided by update() context manager.

	
visibility = Attribute(name='visibility', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
wait_generated(timeout=600)

	

	
class cfme.intelligence.reports.widgets.BaseDashboardWidgetDetailsStep(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DashboardWidgetDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.intelligence.reports.widgets.BaseDashboardWidgetFormCommon(*args, **kwargs)

	Bases: cfme.intelligence.reports.widgets.DashboardWidgetsView

	
active

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
visibility

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
widget_title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.widgets.BaseEditDashboardWidgetStep(obj, navigate_obj)

	Bases: cfme.intelligence.reports.widgets.BaseDashboardWidgetDetailsStep

	
VIEW = None

	

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.intelligence.reports.widgets.BaseEditDashboardWidgetView(*args, **kwargs)

	Bases: cfme.intelligence.reports.widgets.DashboardWidgetsView

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.widgets.BaseNewDashboardWidgetStep(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW = None

	

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.intelligence.reports.widgets.BaseNewDashboardWidgetView(*args, **kwargs)

	Bases: cfme.intelligence.reports.widgets.DashboardWidgetsView

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.intelligence.reports.widgets.DashboardReportWidgetsCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

	
CHART

	

	
ENTITY

	alias of BaseDashboardReportWidget

	
MENU

	

	
REPORT

	

	
RSS

	

	
create(widget_class, *args, **kwargs)

	Create this Widget in the UI.

	
instantiate(widget_class, *args, **kwargs)

	

	
class cfme.intelligence.reports.widgets.DashboardWidgetDetailsView(*args, **kwargs)

	Bases: cfme.intelligence.reports.widgets.DashboardWidgetsView

	
is_displayed

	

	
reload_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
status_info

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.widgets.DashboardWidgetsView(*args, **kwargs)

	Bases: cfme.intelligence.reports.CloudIntelReportsView

	
in_dashboard_widgets

	

	
is_displayed

	

cfme.intelligence.reports.widgets.chart_widgets module

Page model for Cloud Intel / Reports / Dashboard Widgets / Charts

	
class cfme.intelligence.reports.widgets.chart_widgets.ChartWidget(parent, title, description, active, visibility=None, filter=None, timer=NOTHING)

	Bases: cfme.intelligence.reports.widgets.BaseDashboardReportWidget

	
TITLE = 'Chart'

	

	
TYPE = 'Charts'

	

	
fill_dict

	

	
filter = Attribute(name='filter', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
pretty_attrs = ['title', 'description', 'filter', 'visibility']

	

	
timer = Attribute(name='timer', default=Factory(factory=<type 'dict'>, takes_self=False), validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
class cfme.intelligence.reports.widgets.chart_widgets.ChartWidgetFormCommon(*args, **kwargs)

	Bases: cfme.intelligence.reports.widgets.BaseDashboardWidgetFormCommon

	
every

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
filter

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
run

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
starting_date

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
starting_hour

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
starting_minute

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
time_zone

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.widgets.chart_widgets.EditChartWidget(obj, navigate_obj)

	Bases: cfme.intelligence.reports.widgets.BaseEditDashboardWidgetStep

	
VIEW

	alias of EditChartWidgetView

	
class cfme.intelligence.reports.widgets.chart_widgets.EditChartWidgetView(*args, **kwargs)

	Bases: cfme.intelligence.reports.widgets.BaseEditDashboardWidgetView, cfme.intelligence.reports.widgets.chart_widgets.ChartWidgetFormCommon

	
class cfme.intelligence.reports.widgets.chart_widgets.NewChartWidget(obj, navigate_obj)

	Bases: cfme.intelligence.reports.widgets.BaseNewDashboardWidgetStep

	
VIEW

	alias of NewChartWidgetView

	
class cfme.intelligence.reports.widgets.chart_widgets.NewChartWidgetView(*args, **kwargs)

	Bases: cfme.intelligence.reports.widgets.BaseNewDashboardWidgetView, cfme.intelligence.reports.widgets.chart_widgets.ChartWidgetFormCommon

cfme.intelligence.reports.widgets.menu_widgets module

Page model for Cloud Intel / Reports / Dashboard Widgets / Menus

	
class cfme.intelligence.reports.widgets.menu_widgets.EditMenuWidget(obj, navigate_obj)

	Bases: cfme.intelligence.reports.widgets.BaseEditDashboardWidgetStep

	
VIEW

	alias of EditMenuWidgetView

	
class cfme.intelligence.reports.widgets.menu_widgets.EditMenuWidgetView(*args, **kwargs)

	Bases: cfme.intelligence.reports.widgets.BaseEditDashboardWidgetView, cfme.intelligence.reports.widgets.menu_widgets.MenuWidgetFormCommon

	
class cfme.intelligence.reports.widgets.menu_widgets.MenuWidget(parent, title, description, active, visibility=None, shortcuts=None)

	Bases: cfme.intelligence.reports.widgets.BaseDashboardReportWidget

	
TITLE = 'Menu'

	

	
TYPE = 'Menus'

	

	
fill_dict

	

	
pretty_attrs = ['description', 'shortcuts', 'visibility']

	

	
shortcuts = Attribute(name='shortcuts', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
class cfme.intelligence.reports.widgets.menu_widgets.MenuWidgetFormCommon(*args, **kwargs)

	Bases: cfme.intelligence.reports.widgets.BaseDashboardWidgetFormCommon

	
menu_shortcuts

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.widgets.menu_widgets.NewMenuWidget(obj, navigate_obj)

	Bases: cfme.intelligence.reports.widgets.BaseNewDashboardWidgetStep

	
VIEW

	alias of NewMenuWidgetView

	
class cfme.intelligence.reports.widgets.menu_widgets.NewMenuWidgetView(*args, **kwargs)

	Bases: cfme.intelligence.reports.widgets.BaseNewDashboardWidgetView, cfme.intelligence.reports.widgets.menu_widgets.MenuWidgetFormCommon

cfme.intelligence.reports.widgets.report_widgets module

Page model for Cloud Intel / Reports / Dashboard Widgets / Reports

	
class cfme.intelligence.reports.widgets.report_widgets.EditReportWidget(obj, navigate_obj)

	Bases: cfme.intelligence.reports.widgets.BaseEditDashboardWidgetStep

	
VIEW

	alias of EditReportWidgetView

	
class cfme.intelligence.reports.widgets.report_widgets.EditReportWidgetView(*args, **kwargs)

	Bases: cfme.intelligence.reports.widgets.BaseEditDashboardWidgetView, cfme.intelligence.reports.widgets.report_widgets.ReportWidgetFormCommon

	
class cfme.intelligence.reports.widgets.report_widgets.NewReportWidget(obj, navigate_obj)

	Bases: cfme.intelligence.reports.widgets.BaseNewDashboardWidgetStep

	
VIEW

	alias of NewReportWidgetView

	
class cfme.intelligence.reports.widgets.report_widgets.NewReportWidgetView(*args, **kwargs)

	Bases: cfme.intelligence.reports.widgets.BaseNewDashboardWidgetView, cfme.intelligence.reports.widgets.report_widgets.ReportWidgetFormCommon

	
class cfme.intelligence.reports.widgets.report_widgets.ReportWidget(parent, title, description, active, visibility=None, filter=None, rows=None, timer=NOTHING, columns=None)

	Bases: cfme.intelligence.reports.widgets.BaseDashboardReportWidget

	
TITLE = 'Report'

	

	
TYPE = 'Reports'

	

	
column1 = Attribute(name='column1', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=False, convert=None, metadata=mappingproxy({}))

	

	
column2 = Attribute(name='column2', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=False, convert=None, metadata=mappingproxy({}))

	

	
column3 = Attribute(name='column3', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=False, convert=None, metadata=mappingproxy({}))

	

	
column4 = Attribute(name='column4', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=False, convert=None, metadata=mappingproxy({}))

	

	
columns = Attribute(name='columns', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
fill_dict

	

	
filter = Attribute(name='filter', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
pretty_attrs = ['description', 'filter', 'visibility']

	

	
repfilter = Attribute(name='repfilter', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=False, convert=None, metadata=mappingproxy({}))

	

	
rows = Attribute(name='rows', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
subfilter = Attribute(name='subfilter', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=False, convert=None, metadata=mappingproxy({}))

	

	
timer = Attribute(name='timer', default=Factory(factory=<type 'dict'>, takes_self=False), validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
class cfme.intelligence.reports.widgets.report_widgets.ReportWidgetFormCommon(*args, **kwargs)

	Bases: cfme.intelligence.reports.widgets.BaseDashboardWidgetFormCommon

	
column1

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
column2

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
column3

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
column4

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
every

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
filter

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
repfilter

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
row_count

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
run

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
starting_date

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
starting_hour

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
starting_minute

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
subfilter

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
time_zone

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

cfme.intelligence.reports.widgets.rss_widgets module

Page model for Cloud Intel / Reports / Dashboard Widgets / RSS Feeds

	
class cfme.intelligence.reports.widgets.rss_widgets.EditRSSWidget(obj, navigate_obj)

	Bases: cfme.intelligence.reports.widgets.BaseEditDashboardWidgetStep

	
VIEW

	alias of EditRSSWidgetView

	
class cfme.intelligence.reports.widgets.rss_widgets.EditRSSWidgetView(*args, **kwargs)

	Bases: cfme.intelligence.reports.widgets.BaseEditDashboardWidgetView, cfme.intelligence.reports.widgets.rss_widgets.RSSWidgetFormCommon

	
class cfme.intelligence.reports.widgets.rss_widgets.NewRSSWidget(obj, navigate_obj)

	Bases: cfme.intelligence.reports.widgets.BaseNewDashboardWidgetStep

	
VIEW

	alias of NewRSSWidgetView

	
class cfme.intelligence.reports.widgets.rss_widgets.NewRSSWidgetView(*args, **kwargs)

	Bases: cfme.intelligence.reports.widgets.BaseNewDashboardWidgetView, cfme.intelligence.reports.widgets.rss_widgets.RSSWidgetFormCommon

	
class cfme.intelligence.reports.widgets.rss_widgets.RSSFeedWidget(parent, title, description, active, visibility=None, type=None, feed=None, external=None, rows=None, timer=NOTHING)

	Bases: cfme.intelligence.reports.widgets.BaseDashboardReportWidget

	
TITLE = 'RSS Feed'

	

	
TYPE = 'RSS Feeds'

	

	
external = Attribute(name='external', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
feed = Attribute(name='feed', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
fill_dict

	

	
pretty_attrs = ['title', 'description', 'type', 'feed', 'visibility']

	

	
rows = Attribute(name='rows', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
timer = Attribute(name='timer', default=Factory(factory=<type 'dict'>, takes_self=False), validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
type = Attribute(name='type', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
class cfme.intelligence.reports.widgets.rss_widgets.RSSWidgetFormCommon(*args, **kwargs)

	Bases: cfme.intelligence.reports.widgets.BaseDashboardWidgetFormCommon

	
every

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
external

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
rows

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
run

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
starting_date

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
starting_hour

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
starting_minute

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
time_zone

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
type

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
url

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

cfme.intelligence.reports.dashboards module

Page model for Cloud Intel / Reports / Dashboards

	
class cfme.intelligence.reports.dashboards.Dashboard(parent, name, group, title=None, locked=None, widgets=None)

	Bases: cfme.modeling.base.BaseEntity, cfme.utils.update.Updateable, cfme.utils.pretty.Pretty

	
delete(cancel=False)

	Delete this Dashboard in the UI.

	Parameters

	cancel – Whether to cancel the deletion (default False).

	
group

	

	
locked = Attribute(name='locked', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
name = Attribute(name='name', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
pretty_attrs = ['name', 'group', 'title', 'widgets']

	

	
title = Attribute(name='title', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
update(updates)

	Update this Dashboard in the UI.

	Parameters

	updates – Provided by update() context manager.

	
widgets = Attribute(name='widgets', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
class cfme.intelligence.reports.dashboards.DashboardAllGroupsView(*args, **kwargs)

	Bases: cfme.intelligence.reports.CloudIntelReportsView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.dashboards.DashboardDetails(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DashboardDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.intelligence.reports.dashboards.DashboardDetailsView(*args, **kwargs)

	Bases: cfme.intelligence.reports.CloudIntelReportsView

	
ITEM_TITLE_LOCATOR = ".//h3[contains(@class, 'panel-title')]"

	

	
SAMPLE_DASHBOARD_ROOT = ".//div[@id='modules']"

	

	
is_displayed

	

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
selected_items

	

	
tab_title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.dashboards.DashboardEdit(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditDashboardView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.intelligence.reports.dashboards.DashboardFormCommon(*args, **kwargs)

	Bases: cfme.intelligence.reports.CloudIntelReportsView

	
basic_information

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
locked

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
sample_dashboard

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
tab_title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
widget_picker

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.dashboards.DashboardNew(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NewDashboardView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.intelligence.reports.dashboards.DashboardsCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

	
ENTITY

	alias of Dashboard

	
create(name, group, title=None, locked=None, widgets=None)

	Create this Dashboard in the UI.

	
class cfme.intelligence.reports.dashboards.DefaultDashboard(title='Default Dashboard', locked=None, widgets=None, appliance=None)

	Bases: cfme.utils.update.Updateable, cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable

	
name

	Name of Default Dashboard cannot be changed.

	
pretty_attrs = ['name', 'title', 'widgets']

	

	
update(updates)

	Update Default Dashboard in the UI.

	Parameters

	updates – Provided by update() context manager.

	
class cfme.intelligence.reports.dashboards.DefaultDashboardDetails(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of DefaultDashboardDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.intelligence.reports.dashboards.DefaultDashboardDetailsView(*args, **kwargs)

	Bases: cfme.intelligence.reports.dashboards.DashboardDetailsView

	
is_displayed

	

	
class cfme.intelligence.reports.dashboards.DefaultDashboardEdit(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditDefaultDashboardView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.intelligence.reports.dashboards.EditDashboardView(*args, **kwargs)

	Bases: cfme.intelligence.reports.dashboards.DashboardFormCommon

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.dashboards.EditDefaultDashboardView(*args, **kwargs)

	Bases: cfme.intelligence.reports.dashboards.EditDashboardView

	
is_displayed

	

	
class cfme.intelligence.reports.dashboards.NewDashboardView(*args, **kwargs)

	Bases: cfme.intelligence.reports.dashboards.DashboardFormCommon

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

cfme.intelligence.reports.import_export module

	
class cfme.intelligence.reports.import_export.ImportExportCommonForm(*args, **kwargs)

	Bases: cfme.intelligence.reports.CloudIntelReportsView

	
export_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
items_for_export

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
subtitle

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
upload_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
upload_file

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.import_export.ImportExportCustomReports(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ImportExportCustomReportsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.intelligence.reports.import_export.ImportExportCustomReportsView(*args, **kwargs)

	Bases: cfme.intelligence.reports.import_export.ImportExportCommonForm

	
is_displayed

	

	
overwrite

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.import_export.ImportExportWidgets(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ImportExportWidgetsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.intelligence.reports.import_export.ImportExportWidgetsCommitView(*args, **kwargs)

	Bases: cfme.intelligence.reports.CloudIntelReportsView

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
commit_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.import_export.ImportExportWidgetsView(*args, **kwargs)

	Bases: cfme.intelligence.reports.import_export.ImportExportCommonForm

	
is_displayed

	

	
class cfme.intelligence.reports.import_export.InputButton(*args, **kwargs)

	Bases: widgetastic_patternfly.Input, widgetastic.widget.ClickableMixin

cfme.intelligence.reports.menus module

Module handling report menus contents

	
class cfme.intelligence.reports.menus.EditReportMenus(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditReportMenusView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.intelligence.reports.menus.EditReportMenusView(*args, **kwargs)

	Bases: cfme.intelligence.reports.CloudIntelReportsView

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
commit_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
default_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
discard_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
manager

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
report_select

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reports_tree

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.menus.ReportMenu(appliance=None)

	Bases: cfme.utils.appliance.Navigatable

This is a fake class mainly needed for navmazing navigation.

	
add_folder(group, folder)

	Adds a folder under top-level.

	Parameters

	
	group – User group.

	folder – Name of the new folder.

	
add_subfolder(group, folder, subfolder)

	Adds a subfolder under specified folder.

	Parameters

	
	group – User group.

	folder – Name of the folder.

	subfolder – Name of the new subdfolder.

	
get_folders(group)

	Returns list of folders for given user group.

	Parameters

	group – User group to check.

	
get_subfolders(group, folder)

	Returns list of sub-folders for given user group and folder.

	Parameters

	
	group – User group to check.

	folder – Folder to read.

	
go_to_group(group_name)

	

	
manage_folder(*args, **kwds)

	Context manager to use when modifying the folder contents.

You can use manager’s FolderManager.bail_out() classmethod to end and discard the
changes done inside the with block. This context manager does not give the manager as a
value to the with block so you have to import and use the FolderManager class
manually.

	Parameters

	
	group – User group.

	folder – Which folder to manage. If None, top-level will be managed.

Returns: Context-managed widgetastic_manageiq.FolderManager instance

	
manage_subfolder(*args, **kwds)

	Context manager to use when modifying the subfolder contents.

You can use manager’s FolderManager.bail_out() classmethod to end and discard the
changes done inside the with block.

	Parameters

	
	group – User group.

	folder – Parent folder name.

	subfolder – Subfolder name to manage.

Returns: Context-managed :py:class: widgetastic_manageiq.MultiBoxSelect instance

	
reset_to_default(group)

	Clicks the Default button.

	Parameters

	group – Group to set to Default

cfme.intelligence.reports.reports module

Page model for Cloud Intel / Reports / Reports

	
class cfme.intelligence.reports.reports.AllCustomReportsView(*args, **kwargs)

	Bases: cfme.intelligence.reports.CloudIntelReportsView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.reports.AllReportsView(*args, **kwargs)

	Bases: cfme.intelligence.reports.CloudIntelReportsView

	
is_displayed

	

	
reports_table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.reports.CustomReportFormCommon(*args, **kwargs)

	Bases: cfme.intelligence.reports.CloudIntelReportsView

	
base_report_on

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel_after

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
charts

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
consolidation

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
filter

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
formatting

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
menu_name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
report_fields

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
report_title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
styling

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
summary

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
timeline

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.reports.Report(parent, menu_name=None, title=None, company_name=NOTHING, type=None, subtype=None, base_report_on=None, report_fields=None, cancel_after=None, consolidation=None, formatting=None, styling=None, filter=None, filter_show_costs=None, filter_owner=None, filter_tag_cat=None, filter_tag_value=None, interval=None, interval_size=None, interval_end=None, sort=None, chart_type=None, top_values=None, sum_other=None, base_timeline_on=None, band_units=None, event_position=None, show_event_unit=None, show_event_count=None, summary=None, charts=None, timeline=None, is_candu=False)

	Bases: cfme.modeling.base.BaseEntity, cfme.utils.update.Updateable

	
band_units = Attribute(name='band_units', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
base_report_on = Attribute(name='base_report_on', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
base_timeline_on = Attribute(name='base_timeline_on', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
cancel_after = Attribute(name='cancel_after', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
chart_type = Attribute(name='chart_type', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
charts = Attribute(name='charts', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
company_name = Attribute(name='company_name', default=Factory(factory=<function company_name_default>, takes_self=True), validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
company_name_default()

	

	
consolidation = Attribute(name='consolidation', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
delete(cancel=False)

	

	
event_position = Attribute(name='event_position', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
exists

	

	
filter = Attribute(name='filter', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
filter_owner = Attribute(name='filter_owner', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
filter_show_costs = Attribute(name='filter_show_costs', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
filter_tag_cat = Attribute(name='filter_tag_cat', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
filter_tag_value = Attribute(name='filter_tag_value', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
formatting = Attribute(name='formatting', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
interval = Attribute(name='interval', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
interval_end = Attribute(name='interval_end', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
interval_size = Attribute(name='interval_size', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
is_candu = Attribute(name='is_candu', default=False, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
menu_name = Attribute(name='menu_name', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
queue(wait_for_finish=False)

	

	
report_fields = Attribute(name='report_fields', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
saved_reports

	

	
show_event_count = Attribute(name='show_event_count', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
show_event_unit = Attribute(name='show_event_unit', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
sort = Attribute(name='sort', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
styling = Attribute(name='styling', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
subtype = Attribute(name='subtype', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
sum_other = Attribute(name='sum_other', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
summary = Attribute(name='summary', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
timeline = Attribute(name='timeline', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
title = Attribute(name='title', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
top_values = Attribute(name='top_values', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
type = Attribute(name='type', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
update(updates)

	

	
class cfme.intelligence.reports.reports.ReportAddView(*args, **kwargs)

	Bases: cfme.intelligence.reports.reports.CustomReportFormCommon

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.intelligence.reports.reports.ReportDetails(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ReportDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.intelligence.reports.reports.ReportDetailsView(*args, **kwargs)

	Bases: cfme.intelligence.reports.CloudIntelReportsView

	
is_displayed

	

	
paginator

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters

	version_dict – Dictionary of version_introduced: item

	
reload_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
report_info

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
saved_reports

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.reports.ReportEdit(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ReportEditView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.intelligence.reports.reports.ReportEditView(*args, **kwargs)

	Bases: cfme.intelligence.reports.reports.CustomReportFormCommon

	
is_displayed

	

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.reports.ReportsAll(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AllReportsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.intelligence.reports.reports.ReportsCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

	
ENTITY

	alias of Report

	
create(**values)

	

	
class cfme.intelligence.reports.reports.ReportsNew(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ReportAddView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.intelligence.reports.reports.SavedReport(parent, run_datetime, queued_datetime, candu=False)

	Bases: cfme.utils.update.Updateable, cfme.modeling.base.BaseEntity

Custom Saved Report. Enables us to retrieve data from the table.

	Parameters

	
	run_datetime – Datetime of “Run At” of the report. That’s what queue() returns.

	queued_datetime – Datetime of “Queued At” of the report.

	candu – If it is a C&U report, in that case it uses a different table.

	
candu = Attribute(name='candu', default=False, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
data

	Retrieves data from the saved report.

Returns: SavedReportData.

	
datetime_in_tree

	

	
delete(cancel=False)

	

	
download(extension)

	

	
exists

	

	
parent_obj

	

	
queued_datetime = Attribute(name='queued_datetime', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
queued_datetime_in_title

	

	
report

	

	
run_datetime = Attribute(name='run_datetime', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
class cfme.intelligence.reports.reports.SavedReportData(headers, body)

	Bases: cfme.utils.pretty.Pretty

This class stores data retrieved from saved report.

	Parameters

	
	headers – Tuple with header columns.

	body – List of tuples with body rows.

	
find_cell(column, value, cell)

	

	
find_row(column, value)

	

	
pretty_attrs = ['headers', 'body']

	

	
rows

	

	
class cfme.intelligence.reports.reports.SavedReportDetails(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of SavedReportDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.intelligence.reports.reports.SavedReportDetailsView(*args, **kwargs)

	Bases: cfme.intelligence.reports.CloudIntelReportsView

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
paginator

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
view_selector

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.reports.SavedReportsCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

	
ENTITY

	alias of SavedReport

	
all()

	

cfme.intelligence.reports.saved module

	
class cfme.intelligence.reports.saved.AllSavedReportsView(*args, **kwargs)

	Bases: cfme.intelligence.reports.CloudIntelReportsView

	
is_displayed

	

	
paginator

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters

	version_dict – Dictionary of version_introduced: item

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.saved.CustomReportAll(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of AllSavedReportsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.intelligence.reports.saved.SavedReport(parent, name, run_at_datetime, queued_datetime_in_title)

	Bases: cfme.modeling.base.BaseEntity

	
delete(cancel=False)

	

	
name = Attribute(name='name', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
queued_datetime_in_title = Attribute(name='queued_datetime_in_title', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
run_at_datetime = Attribute(name='run_at_datetime', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
class cfme.intelligence.reports.saved.SavedReportDetailsView(*args, **kwargs)

	Bases: cfme.intelligence.reports.reports.SavedReportDetailsView

	
is_displayed

	

	
class cfme.intelligence.reports.saved.SavedReportView(*args, **kwargs)

	Bases: cfme.intelligence.reports.saved.AllSavedReportsView

	
is_displayed

	

	
class cfme.intelligence.reports.saved.SavedReportsCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

	
ENTITY

	alias of SavedReport

	
class cfme.intelligence.reports.saved.ScheduleDetails(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of SavedReportDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

cfme.intelligence.reports.schedules module

Module handling schedules

	
class cfme.intelligence.reports.schedules.EditScheduleView(*args, **kwargs)

	Bases: cfme.intelligence.reports.schedules.SchedulesFormCommon

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
save_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.schedules.NewScheduleView(*args, **kwargs)

	Bases: cfme.intelligence.reports.schedules.SchedulesFormCommon

	
add_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
is_displayed

	

	
class cfme.intelligence.reports.schedules.Schedule(parent, name, description, filter, active=None, timer=None, emails=None, email_options=None)

	Bases: cfme.utils.update.Updateable, cfme.utils.pretty.Pretty, cfme.modeling.base.BaseEntity

Represents a schedule in Cloud Intel/Reports/Schedules.

	Parameters

	
	name – Schedule name.

	description – Schedule description.

	filter – 3-tuple with filter selection (see the UI).

	active – Whether is this schedule active.

	run – Specifies how often this schedule runs. It can be either string “Once”, or a tuple,
which maps to the two selects in UI (“Hourly”, “Every hour”)…

	time_zone – Specify time zone.

	start_date – Specify the start date.

	start_time – Specify the start time either as a string (“0:15”) or tuple (“0”, “15”)

	send_email – If specifies, turns on e-mail sending. Can be string, or list or set.

	
active = Attribute(name='active', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
delete(cancel=False)

	

	
description = Attribute(name='description', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
email_options = Attribute(name='email_options', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
emails = Attribute(name='emails', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
enabled

	

	
exists

	

	
filter = Attribute(name='filter', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
name = Attribute(name='name', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
pretty_attrs = ['name', 'filter']

	

	
queue()

	Queue this schedule.

	
timer = Attribute(name='timer', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
update(updates)

	

	
class cfme.intelligence.reports.schedules.ScheduleAll(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of SchedulesAllView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.intelligence.reports.schedules.ScheduleCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

	
ENTITY

	alias of Schedule

	
create(name=None, description=None, filter=None, active=None, timer=None, emails=None, email_options=None)

	

	
delete_schedules(*schedules, **kwargs)

	Select and delete specified schedules from VMDB.

	Parameters

	
	*schedules – Schedules to delete. Can be objects or strings.

	cancel – (kwarg) Whether to cancel the deletion (Default: False)

Raises: NameError when some of the schedules were not found.

	
disable_schedules(*schedules)

	Select and disable specified schedules.

	Parameters

	*schedules – Schedules to disable. Can be objects or strings.

Raises: NameError when some of the schedules were not found.

	
enable_schedules(*schedules)

	Select and enable specified schedules.

	Parameters

	*schedules – Schedules to enable. Can be objects or strings.

Raises: NameError when some of the schedules were not found.

	
queue_schedules(*schedules)

	Select and queue specified schedules.

	Parameters

	*schedules – Schedules to queue. Can be objects or strings.

Raises: NameError when some of the schedules were not found.

	
class cfme.intelligence.reports.schedules.ScheduleDetails(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ScheduleDetailsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.intelligence.reports.schedules.ScheduleDetailsView(*args, **kwargs)

	Bases: cfme.intelligence.reports.CloudIntelReportsView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.schedules.ScheduleEdit(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of EditScheduleView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.intelligence.reports.schedules.ScheduleNew(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of NewScheduleView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.intelligence.reports.schedules.SchedulesAllView(*args, **kwargs)

	Bases: cfme.intelligence.reports.CloudIntelReportsView

	
is_displayed

	

	
paginator

	A class that implements the version picking functionality.

Basic usage is a descriptor in which you place instances of VersionPick in a view.
Whenever is this instance accessed from an instance, it automatically picks the correct variant
based on product_version defined in the widgetastic.browser.Browser.

You can also use this separately using the pick() method.

Example:

class MyView(View):
 something_version_dependent = VersionPick({
 '1.0.0': Foo('bar'),
 '2.5.0': Bar('baz'),
 })

This sample will resolve the correct (Foo or Bar) kind of item and returns it.

	Parameters

	version_dict – Dictionary of version_introduced: item

	
schedules_table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.intelligence.reports.schedules.SchedulesFormCommon(*args, **kwargs)

	Bases: cfme.intelligence.reports.CloudIntelReportsView

	
active

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
cancel_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
description

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
emails

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
emails_send

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
filter1

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
filter2

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
filter3

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
flash

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
hour

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
minute

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
name

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
run

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
send_csv

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
send_if_empty

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
send_pdf

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
send_txt

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
starting_date

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
time_zone

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

cfme.intelligence.rss module

	
class cfme.intelligence.rss.RSSView(*args, **kwargs)

	Bases: cfme.base.login.BaseLoggedInPage

	
is_displayed

	

	
table

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

cfme.markers package

Subpackages

	cfme.markers.env_markers package
	Submodules
	cfme.markers.env_markers.provider module

	Module contents

Submodules

	cfme.markers.composite module

	cfme.markers.crud module

	cfme.markers.env module

	cfme.markers.fixtureconf module

	cfme.markers.manual module

	cfme.markers.meta module

	cfme.markers.polarion module

	cfme.markers.requires module

	cfme.markers.rhv module

	cfme.markers.sauce module

	cfme.markers.skipper module

	cfme.markers.smoke module

	cfme.markers.stream_excluder module

	cfme.markers.uncollect module
	uncollect

	uncollectif

	cfme.markers.uses module

Module contents

cfme.markers.env_markers package

Submodules

	cfme.markers.env_markers.provider module

Module contents

cfme.markers.env_markers.provider module

cfme.markers.composite module

	
cfme.markers.composite.pytest_addoption(parser)

	Adds options for the composite uncollection system

	
cfme.markers.composite.pytest_collection_modifyitems(session, config, items)

	

cfme.markers.crud module

crud: Marker for marking the test as a CRUD test (crud)

Useful for eg. running only crud tests.
Tests will be marked automatically if:

	their name starts with crud_

	their name ends with _crud

	their name contains _crud_

	
cfme.markers.crud.pytest_configure(config)

	

	
cfme.markers.crud.pytest_itemcollected(item)

	

cfme.markers.env module

cfme.markers.fixtureconf module

fixtureconf: Marker for passing args and kwargs to test fixtures

Positional and keyword arguments to this marker will be stored on test items
in the _fixtureconf attribute (dict). kwargs will be stored as-is, the args
tuple will be packed into the dict under the ‘args’ key.

Use the “fixtureconf” fixture in tests to easily access the fixtureconf dict

	
cfme.markers.fixtureconf.pytest_configure(config)

	

	
cfme.markers.fixtureconf.pytest_runtest_setup(item)

	

cfme.markers.manual module

manual: Marker for marking tests asmanual tests.

	
cfme.markers.manual.pytest_addoption(parser)

	Adds options for the composite uncollection system

	
cfme.markers.manual.pytest_collection_modifyitems(session, config, items)

	

	
cfme.markers.manual.pytest_configure(config)

	

cfme.markers.meta module

meta(**metadata): Marker for metadata addition.

To add metadata to a test simply pass the kwargs as plugins wish.

You can write your own plugins. They generally live in metaplugins/ directory but you can
define them pretty much everywhere py.test loads modules. Plugin has a name and a set
of callbacks that are called when certain combination of keys is present in the metadata.

To define plugin, do like this:

@plugin("plugin_name")
def someaction(plugin_name):
 print(plugin_name) # Will contain value of `plugin_name` key of metadict

This is the simplest usage, where it is supposed that the plugin checks only one key with the
same name s the plugin’s name. I won’t use this one in the latter examples, I will use the
more verbose one.

@plugin("plugin_name", keys=["plugin_name", "another_key"])
def someaction(plugin_name, another_key):
 print(plugin_name) # Will contain value of `plugin_name` key of metadict
 print(another_key) # Similarly this one

This one reacts when the two keys are present. You can make even more complex setups:

@plugin("plugin_name", keys=["plugin_name"])
@plugin("plugin_name", ["plugin_name", "another_key"]) # You don't have to write keys=
def someaction(plugin_name, another_key=None):
 print(plugin_name) # Will contain value of `plugin_name` key of metadict
 print(another_key) # Similarly this one if specified, otherwise None

This created a nonrequired parameter for the action.

You can specify as many actions as you wish per plugin. The only thing that limits you is the
correct action choice. First, all the actions are filtered by present keys in metadata. Then
after this selection, only the action with the most matched keywords is called. Bear this
in your mind. If this is not enough in the future, it can be extended if you wish.

It has a command-line option that allows you to disable certain plugins. Just specify
--disablemetaplugins a,b,c where a, b and c are the plugins that should be disabled

	
class cfme.markers.meta.Plugin(name, metas, function, kwargs)

	Bases: tuple

	
function

	Alias for field number 2

	
kwargs

	Alias for field number 3

	
metas

	Alias for field number 1

	
name

	Alias for field number 0

	
class cfme.markers.meta.PluginContainer

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
AFTER_RUN = 'after_run'

	

	
BEFORE_RUN = 'before_run'

	

	
DEFAULT = 'setup'

	

	
SETUP = 'setup'

	

	
TEARDOWN = 'teardown'

	

	
cfme.markers.meta.meta(request)

	

	
cfme.markers.meta.pytest_addoption(parser)

	

	
cfme.markers.meta.pytest_collection_modifyitems(session, config, items)

	

	
cfme.markers.meta.pytest_configure(config)

	

	
cfme.markers.meta.pytest_pycollect_makeitem(collector, name, obj)

	

	
cfme.markers.meta.pytest_runtest_call(item)

	

	
cfme.markers.meta.pytest_runtest_setup(item)

	

	
cfme.markers.meta.pytest_runtest_teardown(item)

	

	
cfme.markers.meta.run_plugins(item, when)

	

cfme.markers.polarion module

polarion(*tcid): Marker for marking tests as automation for polarion test cases.

	
class cfme.markers.polarion.ReportPolarionToJunitPlugin(xml, node_map)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
node_map = Attribute(name='node_map', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
pytest_runtest_logreport(report)

	Adds the supplied test case id to the xunit file as a property

	
xml = Attribute(name='xml', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
cfme.markers.polarion.extract_polarion_ids(item)

	Extracts Polarion TC IDs from the test item. Returns None if no marker present.

	
cfme.markers.polarion.pytest_collection_modifyitems(config, items)

	

	
cfme.markers.polarion.pytest_configure(config)

	

cfme.markers.requires module

requires_test(test_name_or_nodeid): Mark a test as requiring another test

If another test is required to have run and passed before a suite of tests has
any hope of succeeding, such as a smoke test, apply this mark to those tests.

It takes a test name as the only positional argument. In the event that the
test name is ambiguous, a full py.test nodeid can be used. A test’s nodeid can
be found by inspecting the request.node.nodeid attribute inside the required
test item.

	
cfme.markers.requires.pytest_configure(config)

	

	
cfme.markers.requires.pytest_runtest_setup(item)

	

cfme.markers.rhv module

This marker is used for purposes of RHV - CFME integration.

Tests can be marked like this:

@pytest.mark.rhv2
def test_something():
 assert True

Usage on CLI:

pytest -m 'rhv1' # Run only tier 1
pytest -m 'rhv1 or rhv2 or rhv3' # Run all the tiers
pytest -m 'not rhv3' # Run all test methods except for RHV tier 3
pytest -m 'not rhv1 and not rhv2 and not rhv3' # Run everything that is not marked with rhv1-3

To test this module:

pytest -p pytester markers/rhv.py

	
cfme.markers.rhv.pytest_configure(config)

	

	
cfme.markers.rhv.test_rhv_markers(testdir)

	

cfme.markers.sauce module

sauce: Mark a test to run on sauce

Mark a single test to run on sauce.

	
cfme.markers.sauce.pytest_addoption(parser)

	

	
cfme.markers.sauce.pytest_configure(config)

	

cfme.markers.skipper module

skipper: Autmatically skip tests with certain marks as defined in this module

This doesn’t provide any special markers, but it does add behavor to marks defined in
skip_marks.

	
cfme.markers.skipper.pytest_addoption(parser)

	

	
cfme.markers.skipper.pytest_collection_modifyitems(items)

	

	
cfme.markers.skipper.pytest_configure(config)

	

	
cfme.markers.skipper.skip_marks = [('long_running', '--long-running'), ('perf', '--perf')]

	List of (mark, commandline flag) tuples. When the given mark is used on a test, it will
be skipped unless the commandline flag is used. If the mark is already found in py.test’s
parsed mark expression, no changes will be made for that mark.

cfme.markers.smoke module

smoke: Mark a test as a smoke test to be run as early as possible

Mark a single test as a smoke test, moving it to the beginning of a test run.

The –halt-on-smoke-test-failure command-line argument will halt after running the smoke tests
if any smoke tests fail.

This mark must be used with caution, as marked tests must be able to run out of order,
and in isolation.

Furthermore, smoke tests are an excellent target for the requires_test mark
since they’re run first.

	
class cfme.markers.smoke.SmokeTests(reporter)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
complete = False

	

	
failed_tests = 0

	

	
halt_on_fail = False

	

	
pytest_runtest_logreport(report)

	

	
pytest_runtest_teardown(item, nextitem)

	

	
reported = False

	

	
run_tests = 0

	

	
start_time = 0.0

	

	
cfme.markers.smoke.pytest_addoption(parser)

	

	
cfme.markers.smoke.pytest_collection_modifyitems(session, config, items)

	

	
cfme.markers.smoke.pytest_configure(config)

	

	
cfme.markers.smoke.reporter(config)

	

cfme.markers.stream_excluder module

ignore_stream(*streams): Marker for uncollecting the tests based on appliance stream.

Streams are the first two fields from version of the appliance (5.0, 5.1, …), the nightly upstream
is represented as upstream. If you want to ensure, that the test shall not be collected because it
is not supposed to run on 5.0 and 5.1 streams, just put those streams in the parameters and that
is enough.

It also provides a facility to check the appliance’s version/stream for smoke testing.

	
cfme.markers.stream_excluder.get_streams_id(appliance)

	

	
cfme.markers.stream_excluder.pytest_addoption(parser)

	

	
cfme.markers.stream_excluder.pytest_configure(config)

	

	
cfme.markers.stream_excluder.pytest_itemcollected(item)

	

	
cfme.markers.stream_excluder.pytest_sessionstart(session)

	

cfme.markers.uncollect module

uncollect

Used internally to mark a test to be “uncollected”

This mark should be used at any point before or during test collection to
dynamically flag a test to be removed from the list of collected tests.

py.test adds marks to test items a few different ways. When marking in a py.test
hook that takes an Item or Node (Item
is a subclass of Node), use item.add_marker('uncollect') or
item.add_marker(pytest.mark.uncollect)

When dealing with the test function directly, using the mark decorator is preferred.
In this case, either decorate a test function directly (and have a good argument ready
for adding a test that won’t run…), e.g. @pytest.mark.uncollect before the test
def, or instantiate the mark decorator and use it to wrap a test function, e.g.
pytest.mark.uncollect()(test_function)

uncollectif

The uncollectif marker is very special and can cause harm to innocent kittens if used
incorrectly. The uncollectif marker enables the ability to uncollect a specific test
if a certain condition is evaluated to True. The following is an example:

@pytest.mark.uncollectif(lambda appliance: appliance.version < '5.3')

In this case, when pytest runs the modify items hook, it will evaluate the lambda function
and if it results in True, then the test will be uncollected. Fixtures that are
generated by testgen, such as provider_key, provider_data etc, are also usable inside
the collectif marker, assuming the fixture name is also a prerequisite for the test
itself. For example:: python

@pytest.mark.uncollectif(lambda provider_type: provider_type != 'virtualcenter')
def test_delete_all_snapshots(test_vm, provider_key, provider_type):
 pass

Here, the fixture provider_type is special as it comes from testgen and is passed to the
lambda for comparison.

Note

Be aware, that this cannot be used for any other fixture types. Doing so will break
pytest and may invalidate your puppies.

	
cfme.markers.uncollect.get_uncollect_function(marker_or_markdecorator)

	

	
cfme.markers.uncollect.pytest_collection_modifyitems(session, config, items)

	

	
cfme.markers.uncollect.uncollectif(item)

	Evaluates if an item should be uncollected

Tests markers against a supplied lambda from the markers object to determine
if the item should be uncollected or not.

cfme.markers.uses module

uses_*: Provides a set of fixtures used to mark tests for filtering on the command-line.

Tests using these fixtures directly or indirectly can be filtered using py.test’s
-k filter argument. For example, run tests that use the ssh client:

py.test -k uses_ssh

Additionally, tests using one of the fixtures listed in appliance_marks will be marked
with is_appliance, for easily filtering out appliance tests, e.g:

py.test -k 'not is_appliance'

All fixtures created by this module will have the uses_ prefix.

Note

is_appliance is a mark that will be dynamically set based on fixtures used,
but is not a fixture itself.

	
cfme.markers.uses.is_appliance()

	Fixture which marks a test with the is_appliance mark

	
cfme.markers.uses.pytest_itemcollected(item)

	pytest hook that actually does the marking

See: http://pytest.org/latest/plugins.html#_pytest.hookspec.pytest_collection_modifyitems

	
cfme.markers.uses.uses_cloud_providers(uses_providers)

	Fixture which marks a test with the uses_cloud_providers and uses_providers marks

	
cfme.markers.uses.uses_db(is_appliance)

	fixture that marks tests with a uses_db and a is_appliance mark

	
cfme.markers.uses.uses_event_listener()

	Fixture which marks a test with the uses_event_listener mark

	
cfme.markers.uses.uses_infra_providers(uses_providers)

	Fixture which marks a test with the uses_infra_providers and uses_providers marks

	
cfme.markers.uses.uses_providers()

	Fixture which marks a test with the uses_providers mark

	
cfme.markers.uses.uses_pxe()

	Fixture which marks a test with the uses_pxe mark

	
cfme.markers.uses.uses_ssh(is_appliance)

	fixture that marks tests with a uses_ssh and a is_appliance mark

cfme.metaplugins package

Submodules

	cfme.metaplugins.blockers module

	cfme.metaplugins.server_roles module

Module contents

cfme.metaplugins.blockers module

A generalized framowork for handling test blockers.

Currently handling Bugzilla, GitHub and JIRA issues. For extensions, see this file and
cfme.utils.blockers.

If you want to mark test with blockers, use meta mark blockers and specify a list of the
blockers. The blockers can be directly the objects of cfme.utils.blockers.Blocker
subclasses, but you can use just plain strings that will get resolved into the objects when
required.

Example comes:

@pytest.mark.meta(
 blockers=[
 BZ(123456), # Will get resolved to BZ obviously
 GH(1234), # Will get resolved to GH if you have default repo set
 GH("owner/repo:issue"), # Otherwise you need to use this syntax
 # Generic blocker writing - (<engine_name>#<blocker_spec>)
 # These work for any engine that is in :py:mod:`utils.blockers`
 "BZ#123456", # Will resolve to BZ
 "GH#123", # Will resolve to GH (needs default repo specified)
 "GH#owner/repo:123", # Will resolve to GH
 # Shortcut writing
 123456, # Will resolve to BZ
 'FOO-42', # Will resolve to JIRA
]
)

Íf you want to unskip, then you have to use the full object (BZ()) and pass it a kwarg called
unblock. When the function in unblock resolves to a truthy value, the test won’t be skipped.
If the blocker does not block, the unblock is not called. There is also a custom_action that
will get called if the blocker blocks. if the action does nothing, then it continues with next
actions etc., until it gets to the point that it skips the test because there are blockers.

	
cfme.metaplugins.blockers.kwargify(f)

	Convert function having only positional args to a function taking dictionary.

If you pass False or None, a function which always returns False is returned.
If you pass True, a function which always returns True is returned.

	
cfme.metaplugins.blockers.resolve_blockers(item, blockers)

	

cfme.metaplugins.server_roles module

Set server roles based on a list of roles attached to the test using metadata plugin.

If you want to specify certain roles that have to be set,
you can use this type of decoration:

@pytest.mark.meta(server_roles="+automate")
def test_appliance_roles():
 assert foo

This takes the current list from cfme_data.yaml and modifies
it by the server_roles keyword. If prefixed with + or nothing, it adds,
if prefixed with -, it removes the role. It can be combined either
in string and in list, so these lines are functionally equivalent:

"+automate -foo bar" # (add automate and bar, remove foo)
["+automate", "-foo", "bar"]

If you specify the server_roles as None, then all roles
are flushed and the list contains only user_interface role.

Roles can be pulled from the cfme_data fixture using yaml selectors,
which will do a ‘set’ with the list of roles found at the target path:

@pytest.mark.meta(server_roles=('level1', 'sublevel2'), server_roles_mode='cfmedata')
def test_appliance_roles():
 assert len(get_server_roles()) == 3

Which corresponds to this yaml layout:

level1:
 sublevel2:
 - database_operations
 - user_interface
 - web_services

To ensure the appliance has the default roles:

@pytest.mark.fixtureconf(server_roles="default")
def test_appliance_roles():
 do(test)

For a list of server role names currently exposed in the CFME interface,
see keys of cfme.configure.configuration.server_roles.

	
cfme.metaplugins.server_roles.add_server_roles(server_roles, server_roles_mode='add')

	

cfme.modeling package

Subpackages

	cfme.modeling.tests package
	Submodules
	cfme.modeling.tests.test_collections module

	Module contents

Submodules

	cfme.modeling.base module

Module contents

cfme.modeling.tests package

Submodules

	cfme.modeling.tests.test_collections module

Module contents

cfme.modeling.tests.test_collections module

	
class cfme.modeling.tests.test_collections.MyCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

	
ENTITY

	alias of MyEntity

	
class cfme.modeling.tests.test_collections.MyEntity(parent, name)

	Bases: cfme.modeling.base.BaseEntity

	
name = Attribute(name='name', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
class cfme.modeling.tests.test_collections.MyEntityWithDeclared(parent)

	Bases: cfme.modeling.base.BaseEntity

	
collections

	

	
class cfme.modeling.tests.test_collections.MyNewCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

	
ENTITY

	alias of MyNewEntity

	
class cfme.modeling.tests.test_collections.MyNewEntity(parent, name)

	Bases: cfme.modeling.base.BaseEntity

	
name = Attribute(name='name', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
cfme.modeling.tests.test_collections.dummy_appliance()

	

	
cfme.modeling.tests.test_collections.test_appliance_collection(dummy_appliance)

	

	
cfme.modeling.tests.test_collections.test_appliance_collection_chain_filter(dummy_appliance)

	

	
cfme.modeling.tests.test_collections.test_appliance_collection_object_filter(dummy_appliance)

	

	
cfme.modeling.tests.test_collections.test_appliance_collections_dir(dummy_appliance)

	

	
cfme.modeling.tests.test_collections.test_appliance_collections_instantiate(dummy_appliance)

	

	
cfme.modeling.tests.test_collections.test_declared_entity_collections(dummy_appliance)

	

	
cfme.modeling.tests.test_collections.test_object_collections(dummy_appliance)

	

	
cfme.modeling.tests.test_collections.test_object_collections_parent_filter(dummy_appliance)

	

	
cfme.modeling.tests.test_collections.test_parent_relationship(dummy_appliance)

	

	
cfme.modeling.tests.test_collections.test_parent_walker(dummy_appliance)

	

cfme.modeling.base module

	
class cfme.modeling.base.BaseCollection(parent, filters=NOTHING)

	Bases: cfme.utils.appliance.NavigatableMixin

Class for helping create consistent Collections

The BaseCollection class is responsible for ensuring two things:

	That the API consistently has the first argument passed to it

	That that first argument is an appliance instance

This class works in tandem with the entrypoint loader which ensures that the correct
argument names have been used.

	
ENTITY = None

	

	
appliance

	

	
filter(filter)

	

	
filters = Attribute(name='filters', default=Factory(factory=<type 'dict'>, takes_self=False), validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
classmethod for_appliance(appliance, *k, **kw)

	

	
classmethod for_entity(obj, *k, **kw)

	

	
classmethod for_entity_with_filter(obj, filt, *k, **kw)

	

	
instantiate(*args, **kwargs)

	

	
parent = Attribute(name='parent', default=NOTHING, validator=None, repr=False, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
class cfme.modeling.base.BaseEntity(parent)

	Bases: cfme.utils.appliance.NavigatableMixin

Class for helping create consistent entitys

The BaseEntity class is responsible for ensuring two things:

	That the API consistently has the first argument passed to it

	That that first argument is a collection instance

This class works in tandem with the entrypoint loader which ensures that the correct
argument names have been used.

	
appliance

	

	
collections

	

	
classmethod from_collection(collection, *k, **kw)

	

	
parent = Attribute(name='parent', default=NOTHING, validator=None, repr=False, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
class cfme.modeling.base.CollectionProperty(type_or_get_type)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
type_or_get_type = Attribute(name='type_or_get_type', default=NOTHING, validator=<instance_of validator for type (<class '_abcoll.Callable'>, <type 'type'>)>, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
class cfme.modeling.base.EntityCollections(parent, availiable_collections, filters=NOTHING)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Caches instances of collection objects for use by the collections accessor

The appliance object has a collections attribute. This attribute is an instance
of this class. It is initialized with an appliance object and locally stores a cache
of all known good collections.

	
classmethod declared(**spec)

	returns a cached property named collections for use in entities

	
classmethod for_appliance(appliance)

	

	
classmethod for_entity(entity, collections)

	

	
cfme.modeling.base.load_appliance_collections()

	

	
cfme.modeling.base.parent_of_type(obj, klass)

	

cfme.networks package

Subpackages

	cfme.networks.provider package
	Submodules
	cfme.networks.provider.nuage module

	Module contents

Submodules

	cfme.networks.balancer module

	cfme.networks.cloud_network module

	cfme.networks.floating_ips module

	cfme.networks.network_port module

	cfme.networks.network_router module

	cfme.networks.security_group module

	cfme.networks.subnet module

	cfme.networks.topology module

	cfme.networks.views module

Module contents

cfme.networks.provider package

Submodules

	cfme.networks.provider.nuage module

Module contents

cfme.networks.provider.nuage module

cfme.networks.balancer module

cfme.networks.cloud_network module

cfme.networks.floating_ips module

cfme.networks.network_port module

cfme.networks.network_router module

cfme.networks.security_group module

cfme.networks.subnet module

cfme.networks.topology module

cfme.networks.views module

cfme.optimize package

Submodules

	cfme.optimize.bottlenecks module

	cfme.optimize.utilization module

Module contents

	
class cfme.optimize.Bottlenecks(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of BottlenecksView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.optimize.BottlenecksView(*args, **kwargs)

	Bases: cfme.base.login.BaseLoggedInPage

	
bottlenecks

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
in_explorer(*args, **kwargs)

	

cfme.optimize.bottlenecks module

	
class cfme.optimize.bottlenecks.All(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of BottlenecksTabsView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
resetter()

	Set values to default

	
class cfme.optimize.bottlenecks.Bottlenecks(appliance=None)

	Bases: cfme.utils.update.Updateable, cfme.utils.pretty.Pretty, cfme.utils.appliance.Navigatable

	
class cfme.optimize.bottlenecks.BottlenecksTabsView(*args, **kwargs)

	Bases: cfme.optimize.BottlenecksView

	
is_displayed

	

	
report

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
summary

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

cfme.optimize.utilization module

	
class cfme.optimize.utilization.All(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.optimize.utilization.Utilization(appliance=None)

	Bases: cfme.utils.appliance.Navigatable

cfme.physical package

Subpackages

	cfme.physical.provider package
	Submodules
	cfme.physical.provider.lenovo module

	Module contents

Submodules

	cfme.physical.physical_server module

Module contents

cfme.physical.provider package

Submodules

	cfme.physical.provider.lenovo module

Module contents

cfme.physical.provider.lenovo module

cfme.physical.physical_server module

cfme.rest package

Submodules

	cfme.rest.gen_data module

Module contents

cfme.rest.gen_data module

cfme.scripting package

Subpackages

	cfme.scripting.tests package
	Submodules
	cfme.scripting.tests.test_quickstart module

	Module contents

Submodules

	cfme.scripting.appliance module

	cfme.scripting.conf module

	cfme.scripting.disable_bytecode module

	cfme.scripting.ipyshell module

	cfme.scripting.link_config module

	cfme.scripting.miq module

	cfme.scripting.quickstart module

	cfme.scripting.runtest module

	cfme.scripting.setup_env module

	cfme.scripting.sprout module

Module contents

cfme.scripting.tests package

Submodules

	cfme.scripting.tests.test_quickstart module

Module contents

cfme.scripting.tests.test_quickstart module

	
cfme.scripting.tests.test_quickstart.check_docker()

	

	
cfme.scripting.tests.test_quickstart.root_volume()

	

	
cfme.scripting.tests.test_quickstart.test_quickstart_run(image, python, root_volume, yamls_volume, check_docker)

	

	
cfme.scripting.tests.test_quickstart.test_quickstart_version_changed(old, new, expected_changes)

	

	
cfme.scripting.tests.test_quickstart.yamls_volume()

	

cfme.scripting.appliance module

Script to encrypt config files.

Usage:

scripts/encrypt_conf.py confname1 confname2 ... confnameN
scripts/encrypt_conf.py credentials

	
cfme.scripting.appliance.fn(method, *args, **kwargs)

	Helper to access the right properties

	
cfme.scripting.appliance.get_appliance(appliance_ip)

	Checks an appliance is not None and if so, loads the appropriate things

cfme.scripting.conf module

Script to encrypt config files.

Usage:

scripts/encrypt_conf.py confname1 confname2 ... confnameN
scripts/encrypt_conf.py credentials

cfme.scripting.disable_bytecode module

	
cfme.scripting.disable_bytecode.ensure_file_contains(target, content)

	

cfme.scripting.ipyshell module

cfme.scripting.link_config module

cfme.scripting.miq module

cfme.scripting.quickstart module

cfme.scripting.runtest module

cfme.scripting.setup_env module

	
class cfme.scripting.setup_env.TimedCommand(command, timeout)

	Bases: tuple

	
command

	Alias for field number 0

	
timeout

	Alias for field number 1

	
cfme.scripting.setup_env.provision_appliances(count, cfme_version, provider_type, provider, lease_time)

	

	
cfme.scripting.setup_env.tot_time(string)

	Takes the lease string and converts it to minutes to pass to sprout

cfme.scripting.sprout module

	
cfme.scripting.sprout.populate_config_from_appliances(appliance_data)

	populates env.local.yaml with the appliances just obtained

	Parameters

	appliance_data – the data of the appliances as taken from sprout

cfme.services package

Subpackages

	cfme.services.catalogs package
	Subpackages
	cfme.services.catalogs.catalog_items package
	Submodules
	cfme.services.catalogs.catalog_items.ansible_catalog_items module

	cfme.services.catalogs.catalog_items.catalog_bundles module

	Module contents

	Submodules
	cfme.services.catalogs.catalog module

	cfme.services.catalogs.orchestration_template module

	Module contents

	cfme.services.dashboard package
	Submodules
	cfme.services.dashboard.ssui module

	Module contents

	cfme.services.myservice package
	Submodules
	cfme.services.myservice.ssui module

	cfme.services.myservice.ui module

	Module contents

	cfme.services.service_catalogs package
	Submodules
	cfme.services.service_catalogs.ssui module

	cfme.services.service_catalogs.ui module

	Module contents

Submodules

	cfme.services.requests module

	cfme.services.workloads module

Module contents

cfme.services.catalogs package

Subpackages

	cfme.services.catalogs.catalog_items package
	Submodules
	cfme.services.catalogs.catalog_items.ansible_catalog_items module

	cfme.services.catalogs.catalog_items.catalog_bundles module

	Module contents

Submodules

	cfme.services.catalogs.catalog module

	cfme.services.catalogs.orchestration_template module

Module contents

	
class cfme.services.catalogs.ServicesCatalog(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ServicesCatalogView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step()

	

	
class cfme.services.catalogs.ServicesCatalogView(*args, **kwargs)

	Bases: cfme.base.login.BaseLoggedInPage

	
catalog_items

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
catalogs

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
configuration

	

	
in_explorer

	

	
is_displayed

	

	
orchestration_templates

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	

	
service_catalogs

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

cfme.services.catalogs.catalog_items package

Submodules

	cfme.services.catalogs.catalog_items.ansible_catalog_items module

	cfme.services.catalogs.catalog_items.catalog_bundles module

Module contents

cfme.services.catalogs.catalog_items.ansible_catalog_items module

cfme.services.catalogs.catalog_items.catalog_bundles module

cfme.services.catalogs.catalog module

cfme.services.catalogs.orchestration_template module

cfme.services.dashboard package

Submodules

	cfme.services.dashboard.ssui module

Module contents

	
class cfme.services.dashboard.Dashboard(appliance)

	Bases: cfme.utils.appliance.Navigatable, sentaku.modeling.ElementMixin

Dashboard main class for SSUI.

	
approved_requests

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
current_services

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
denied_requests

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
monthly_charges

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
num_of_rows

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
pending_requests

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
results

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
retired_services

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
retiring_soon

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
total_requests

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

	
total_services

	descriptor for implementing context sensitive methods
and registration of their implementations

class Example(Element):
 action = ContextualMethod()
 @action.implemented_for("db")
 def action(self):
 pass

 @action.implemented_for("test")
 def action(self):
 pass

cfme.services.dashboard.ssui module

	
class cfme.services.dashboard.ssui.CurrentServices(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ssui.SSUINavigateStep

	
VIEW

	alias of MyServicesView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)

	

	
class cfme.services.dashboard.ssui.DashboardAll(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ssui.SSUINavigateStep

	
VIEW

	alias of DashboardView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step(*args, **kwargs)

	

	
class cfme.services.dashboard.ssui.DashboardView(*args, **kwargs)

	Bases: cfme.base.ssui.SSUIBaseLoggedInPage

	
aggregate_card

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
dashboard_card

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
in_dashboard

	

	
is_displayed

	

	
class cfme.services.dashboard.ssui.MyServiceForm(*args, **kwargs)

	Bases: cfme.base.ssui.SSUIBaseLoggedInPage

	
service

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.dashboard.ssui.MyServicesView(*args, **kwargs)

	Bases: cfme.services.dashboard.ssui.MyServiceForm

	
in_myservices

	

	
is_displayed

	

	
paginator

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
results

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.dashboard.ssui.RetiredServices(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ssui.SSUINavigateStep

	
VIEW

	alias of MyServicesView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)

	

	
class cfme.services.dashboard.ssui.RetiringSoon(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ssui.SSUINavigateStep

	
VIEW

	alias of MyServicesView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)

	

	
class cfme.services.dashboard.ssui.TotalServices(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ssui.SSUINavigateStep

	
VIEW

	alias of MyServicesView

	
prerequisite

	This is a helper descriptor for navigation destinations which are linked to the same class.

For instance, imagine you have an object that has a ‘ViewAll’, destination that needs to
be visited before you can click on ‘New’. In this instance, you would need to make the
‘New’ destination use ‘ViewAll’ as a prerequisite. As this would need no other special
input, we can use NavigateToSibling as a helper. This will set prerequisite to be a
callable that will navigate to the prerequisite step.

	
step(*args, **kwargs)

	

	
cfme.services.dashboard.ssui.approved_requests(self)

	Approved Request cannot be clicked so this method just
returns the total number of requests displayed on dashboard.

	
cfme.services.dashboard.ssui.current_services(self)

	Returns the count of active services displayed on dashboard

	
cfme.services.dashboard.ssui.denied_requests(self)

	Denied Request cannot be clicked so this method just
returns the total number of requests displayed on dashboard.

	
cfme.services.dashboard.ssui.monthly_charges(self)

	Returns the chargeback data displayed on dashboard

	
cfme.services.dashboard.ssui.num_of_rows(self)

	Returns the number of rows/services displayed
in paginator

	
cfme.services.dashboard.ssui.pending_requests(self)

	Pending Request cannot be clicked so this method just
returns the total number of requests displayed on dashboard.

	
cfme.services.dashboard.ssui.results(self)

	Returns the count of services displayed at the top of page

	
cfme.services.dashboard.ssui.retired_services(self)

	Returns the count of retired services displayed on dashboard

	
cfme.services.dashboard.ssui.retiring_soon(self)

	Returns the count of retiring soon services displayed on dashboard

	
cfme.services.dashboard.ssui.total_requests(self)

	Total Request cannot be clicked so this method just
returns the total number of requests displayed on dashboard.

	
cfme.services.dashboard.ssui.total_services(self)

	Returns the total services(Integer) displayed on dashboard

cfme.services.myservice package

Submodules

	cfme.services.myservice.ssui module

	cfme.services.myservice.ui module

Module contents

cfme.services.myservice.ssui module

cfme.services.myservice.ui module

cfme.services.service_catalogs package

Submodules

	cfme.services.service_catalogs.ssui module

	cfme.services.service_catalogs.ui module

Module contents

cfme.services.service_catalogs.ssui module

cfme.services.service_catalogs.ui module

cfme.services.requests module

cfme.services.workloads module

A model of Workloads page in CFME

	
class cfme.services.workloads.AllTemplates(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of WorkloadsTemplate

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step(*args, **kwargs)

	

	
class cfme.services.workloads.AllVMs(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of WorkloadsVM

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step(*args, **kwargs)

	

	
class cfme.services.workloads.BaseWorkloads(appliance)

	Bases: cfme.utils.appliance.NavigatableMixin

	
class cfme.services.workloads.TemplatesImages(appliance)

	Bases: cfme.services.workloads.BaseWorkloads

This is fake class mainly needed for navmazing navigation

	
class cfme.services.workloads.VmsInstances(appliance)

	Bases: cfme.services.workloads.BaseWorkloads

This is fake class mainly needed for navmazing navigation

	
class cfme.services.workloads.WorkloadsDefaultView(*args, **kwargs)

	Bases: cfme.services.workloads.WorkloadsView

	
is_displayed

	

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.workloads.WorkloadsTemplate(*args, **kwargs)

	Bases: cfme.services.workloads.WorkloadsDefaultView

	
is_displayed

	

	
class cfme.services.workloads.WorkloadsToolbar(*args, **kwargs)

	Bases: widgetastic.widget.View

Toolbar on the workloads page

	
configuration

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
download

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
history

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
lifecycle

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
policy

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reload

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
view_selector

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.services.workloads.WorkloadsVM(*args, **kwargs)

	Bases: cfme.services.workloads.WorkloadsDefaultView

	
is_displayed

	

	
class cfme.services.workloads.WorkloadsView(*args, **kwargs)

	Bases: cfme.base.login.BaseLoggedInPage

	
in_workloads

	

	
search

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
templates

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
toolbar

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
vms

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

cfme.storage package

Submodules

	cfme.storage.manager module

	cfme.storage.object_store_container module

	cfme.storage.object_store_object module

	cfme.storage.volume module

	cfme.storage.volume_backup module

	cfme.storage.volume_snapshot module

Module contents

cfme.storage.manager module

cfme.storage.object_store_container module

cfme.storage.object_store_object module

cfme.storage.volume module

cfme.storage.volume_backup module

cfme.storage.volume_snapshot module

cfme.test_framework package

Subpackages

	cfme.test_framework.sprout package
	Submodules
	cfme.test_framework.sprout.client module

	cfme.test_framework.sprout.plugin module

	Module contents

Submodules

	cfme.test_framework.appliance module

	cfme.test_framework.appliance_log_collector module

	cfme.test_framework.appliance_police module

	cfme.test_framework.browser_isolation module

	cfme.test_framework.config module

	cfme.test_framework.pytest_plugin module

Module contents

cfme.test_framework.sprout package

Submodules

	cfme.test_framework.sprout.client module

	cfme.test_framework.sprout.plugin module

Module contents

cfme.test_framework.sprout.client module

	
class cfme.test_framework.sprout.client.APIMethodCall(client, method_name)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
exception cfme.test_framework.sprout.client.AuthException

	Bases: cfme.test_framework.sprout.client.SproutException

	
class cfme.test_framework.sprout.client.SproutClient(proto='http', host='localhost', port=8000, entry='appliances/api', auth=None)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
api_entry

	

	
call_method(name, *args, **kwargs)

	

	
destroy_pool(pool_id)

	

	
classmethod from_config(**kwargs)

	

	
provision_appliances(count=1, preconfigured=False, version=None, stream=None, provider=None, provider_type=None, lease_time=120, ram=None, cpu=None)

	

	
exception cfme.test_framework.sprout.client.SproutException

	Bases: exceptions.Exception [https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

cfme.test_framework.sprout.plugin module

	
class cfme.test_framework.sprout.plugin.NewHooks

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
pytest_miq_node_shutdown(config, nodeinfo)

	

	
class cfme.test_framework.sprout.plugin.ShutdownPlugin

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
pytest_miq_node_shutdown(config, nodeinfo)

	

	
class cfme.test_framework.sprout.plugin.SproutManager(client=NOTHING)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
check_fullfilled()

	

	
clean_jenkins_job(jenkins_job)

	

	
client = Attribute(name='client', default=Factory(factory=<bound method type.from_config of <class 'cfme.test_framework.sprout.client.SproutClient'>>, takes_self=False), validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
destroy_pool()

	

	
lease_time = Attribute(name='lease_time', default=None, validator=None, repr=False, cmp=True, hash=None, init=False, convert=None, metadata=mappingproxy({}))

	

	
ping_pool()

	

	
pool = Attribute(name='pool', default=None, validator=None, repr=True, cmp=True, hash=None, init=False, convert=None, metadata=mappingproxy({}))

	

	
request_appliances(provision_request)

	

	
request_check()

	

	
request_pool(provision_request)

	

	
reset_timer(timeout=None)

	

	
timer = Attribute(name='timer', default=None, validator=None, repr=False, cmp=True, hash=None, init=False, convert=None, metadata=mappingproxy({}))

	

	
class cfme.test_framework.sprout.plugin.SproutProvisioningRequest(group, count, version, provider, provider_type, template_type, preconfigured, date, lease_time, desc, provision_timeout, cpu, ram)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

data holder for provisioning metadata

	
count = Attribute(name='count', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
cpu = Attribute(name='cpu', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
date = Attribute(name='date', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
desc = Attribute(name='desc', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
classmethod from_config(config)

	

	
group = Attribute(name='group', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
lease_time = Attribute(name='lease_time', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
preconfigured = Attribute(name='preconfigured', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
provider = Attribute(name='provider', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
provider_type = Attribute(name='provider_type', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
provision_timeout = Attribute(name='provision_timeout', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
ram = Attribute(name='ram', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
template_type = Attribute(name='template_type', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
version = Attribute(name='version', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
cfme.test_framework.sprout.plugin.dump_pool_info(log, pool_data)

	

	
cfme.test_framework.sprout.plugin.mangle_in_sprout_appliances(config)

	this helper function resets the appliances option of the config and mangles in
the sprout ones

its a hopefully temporary hack until we make a correctly ordered hook for obtaining appliances

	
cfme.test_framework.sprout.plugin.pytest_addhooks(pluginmanager)

	

	
cfme.test_framework.sprout.plugin.pytest_addoption(parser)

	

cfme.test_framework.appliance module

	
class cfme.test_framework.appliance.ApplianceHolderPlugin(held_appliance, appliances=NOTHING)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
appliance()

	

	
appliances = Attribute(name='appliances', default=Factory(factory=<type 'list'>, takes_self=False), validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
held_appliance = Attribute(name='held_appliance', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
pytest_sessionstart()

	

	
cfme.test_framework.appliance.appliances_from_cli(cli_appliances)

	

	
cfme.test_framework.appliance.pytest_addoption(parser)

	

	
cfme.test_framework.appliance.pytest_configure(config)

	

	
cfme.test_framework.appliance.pytest_unconfigure()

	

cfme.test_framework.appliance_log_collector module

Plugin for collection of appliance logs

Options in env.yaml will define what files to collect, will default to the set below

Log files will be tarred and written to log_path

	
cfme.test_framework.appliance_log_collector.pytest_addoption(parser)

	

	
cfme.test_framework.appliance_log_collector.pytest_unconfigure(config)

	

cfme.test_framework.appliance_police module

	
exception cfme.test_framework.appliance_police.AppliancePoliceException(message, port)

	Bases: exceptions.Exception [https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

	
message = Attribute(name='message', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
port = Attribute(name='port', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
cfme.test_framework.appliance_police.appliance_police(appliance)

	

cfme.test_framework.browser_isolation module

Plugin enabling us to isolate browser sessions per test.

If active, then when each test ends, the browser gets killed. That ensures that whatever way the
browser session could be tainted after a test, the next test should not be affected.

	
cfme.test_framework.browser_isolation.pytest_addoption(parser)

	

	
cfme.test_framework.browser_isolation.pytest_runtest_teardown(item, nextitem)

	

cfme.test_framework.config module

classes to manage the cfme test framework configuration

	
class cfme.test_framework.config.Configuration

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

holds the current configuration

	
configure(config_dir, crypt_key_file=None)

	do the defered initial loading of the configuration

	Parameters

	
	config_dir – path to the folder with configuration files

	crypt_key_file – optional name of a file holding the key for encrypted
configuration files

	Raises

	AssertionError if called more than once

if the utils.conf api is removed, the loading can be transformed to eager loading

	
get_config(name)

	returns a yaycl config object

	Parameters

	name – name of the configuration object

	
class cfme.test_framework.config.DeprecatedConfigWrapper(configuration, warn=False)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

a wrapper that provides the old :code:utils.conf api

	
configuration = Attribute(name='configuration', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
runtime

	

cfme.test_framework.pytest_plugin module

cfme main plugin

this loads all of the elemental cfme plugins and prepares configuration

	
cfme.test_framework.pytest_plugin.pytest_addoption(parser)

	

	
cfme.test_framework.pytest_plugin.pytest_collection_finish(session)

	

	
cfme.test_framework.pytest_plugin.pytest_configure(config)

	

cfme.utils package

Subpackages

	cfme.utils.appliance package
	Subpackages
	cfme.utils.appliance.implementations package
	Submodules
	cfme.utils.appliance.implementations.rest module

	cfme.utils.appliance.implementations.ssui module

	cfme.utils.appliance.implementations.ui module

	Module contents

	Submodules
	cfme.utils.appliance.db module

	cfme.utils.appliance.plugin module

	cfme.utils.appliance.services module

	Module contents

	cfme.utils.auth package
	Module contents

	cfme.utils.dockerbot package
	Subpackages
	cfme.utils.dockerbot.pytestbase package
	Submodules
	cfme.utils.dockerbot.pytestbase.check_provisioned module

	cfme.utils.dockerbot.pytestbase.get_keys module

	cfme.utils.dockerbot.pytestbase.post_result module

	cfme.utils.dockerbot.pytestbase.verify_commit module

	Module contents

	Submodules
	cfme.utils.dockerbot.build_container module

	cfme.utils.dockerbot.check_prs module

	cfme.utils.dockerbot.dockerbot module

	cfme.utils.dockerbot.sel_container module

	Module contents

	cfme.utils.mgmt_system package
	Module contents

	cfme.utils.template package
	Submodules
	cfme.utils.template.base module

	cfme.utils.template.ec2 module

	cfme.utils.template.gce module

	cfme.utils.template.openshift module

	cfme.utils.template.openstack module

	cfme.utils.template.rhevm module

	cfme.utils.template.scvmm module

	cfme.utils.template.template_upload module

	cfme.utils.template.virtualcenter module

	Module contents

Submodules

	cfme.utils.ansible module

	cfme.utils.apidoc module

	cfme.utils.blockers module

	cfme.utils.browser module

	cfme.utils.bz module

	cfme.utils.category module

	cfme.utils.conf module

	cfme.utils.datafile module

	cfme.utils.db module

	cfme.utils.deprecation module

	cfme.utils.events module

	cfme.utils.events_db module

	cfme.utils.ftp module

	cfme.utils.generators module

	cfme.utils.grafana module

	cfme.utils.hosts module

	cfme.utils.ipmi module

	cfme.utils.log module
	Example Usage

	Log Message Source

	Configuration

	Message Format

	Members

	cfme.utils.log_validator module

	cfme.utils.net module

	cfme.utils.ocp_cli module

	cfme.utils.path module

	cfme.utils.perf module

	cfme.utils.perf_message_stats module

	cfme.utils.ports module

	cfme.utils.pretty module

	cfme.utils.providers module

	cfme.utils.pytest_shortcuts module

	cfme.utils.quote module

	cfme.utils.release module

	cfme.utils.repo_gen module

	cfme.utils.rest module

	cfme.utils.smem_memory_monitor module

	cfme.utils.smtp_collector_client module

	cfme.utils.soft_get module

	cfme.utils.ssh module

	cfme.utils.stats module

	cfme.utils.testgen module

	cfme.utils.timeutil module

	cfme.utils.tracer module

	cfme.utils.trackerbot module

	cfme.utils.units module

	cfme.utils.update module

	cfme.utils.varmeth module

	cfme.utils.version module

	cfme.utils.video module

	cfme.utils.virtual_machines module

	cfme.utils.wait module

	cfme.utils.workloads module

Module contents

	
class cfme.utils.FakeObject(**kwargs)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
class cfme.utils.InstanceClassMethod(instance_or_class_method)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Decorator-descriptor that enables you to use any method both as class and instance one

Usage:

class SomeClass(object):
 @InstanceClassMethod
 def a_method(self):
 the_instance_variant()

 @a_method.classmethod
 def a_method(cls):
 the_class_variant()

i = SomeClass()
i.a_method()
SomeClass.a_method()
Both are possible

If you don’t pass classmethod the “instance” method, the one that was passed first will
be called for both kinds of invocation.

	
classmethod(class_method)

	

	
class cfme.utils.ParamClassName(instance_attr, class_attr='__name__')

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

ParamClassName is a Descriptor to help when using classes and instances as parameters

Note: This descriptor is a hack until collections are implemented everywhere

Usage:

class Provider(object):
 _param_name = ParamClassName('name')

 def __init__(self, name):
 self.name = name

When accessing the _param_name on the class object it will return the __name__ of the
class by default. When accessing the _param_name on an instance of the class, it will return
the attribute that is passed in.

	
cfme.utils.at_exit(f, *args, **kwargs)

	Diaper-protected atexit handler registering. Same syntax as atexit.register()

	
cfme.utils.attributize_string(text)

	Converts a string to a lowercase string containing only letters, digits and underscores.

Usable for eg. generating object key names.
The underscore is always one character long if it is present.

	
cfme.utils.castmap(t, i, *args, **kwargs)

	Works like the map() but is made specially to map classes on iterables.

This function only applies the t to the item of i if it is not of that type.

	Parameters

	
	t – The class that you want all theitems in the list to be type of.

	i – Iterable with items to be cast.

	Returns

	A list.

	
cfme.utils.classproperty(f)

	Enables properties for whole classes:

Usage:

>>> class Foo(object):
... @classproperty
... def bar(cls):
... return "bar"
...
>>> print(Foo.bar)
baz

	
cfme.utils.clear_property_cache(obj, *names)

	clear a cached property regardess of if it was cached priority

	
class cfme.utils.deferred_verpick(version_dict)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

descriptor that version-picks on Access

Useful for verpicked constants in classes

	
pick(appliance_version)

	

	
cfme.utils.fakeobject_or_object(obj, attr, default=None)

	

	
cfme.utils.icastmap(t, i, *args, **kwargs)

	Works like the map() but is made specially to map classes on iterables. A generator version.

This function only applies the t to the item of i if it is not of that type.

	Parameters

	
	t – The class that you want all the yielded items to be type of.

	i – Iterable with items to be cast.

	Returns

	A generator.

	
cfme.utils.iterate_pairs(iterable)

	Iterates over iterable, always taking two items at time.

Eg. [1, 2, 3, 4, 5, 6] will yield (1, 2), then (3, 4) …

Must have even number of items.

	Parameters

	iterable – An iterable with even number of items to be iterated over.

	
cfme.utils.normalize_space(text)

	Works in accordance with the XPath’s normalize-space() operator.

Description [https://developer.mozilla.org/en-US/docs/Web/XPath/Functions/normalize-space]:

The normalize-space function strips leading and trailing white-space from a string,
replaces sequences of whitespace characters by a single space, and returns the resulting
string.

	
cfme.utils.normalize_text(text)

	Converts a string to a lowercase string containing only letters, digits and spaces.

The space is always one character long if it is present.

	
cfme.utils.process_pytest_path(path)

	

	
cfme.utils.process_shell_output(value)

	This function allows you to unify the behaviour when you putput some values to stdout.

You can check the code of the function how exactly does it behave for the particular types of
variables. If no output is expected, it returns None.

	Parameters

	value – Value to be outputted.

	Returns

	A tuple consisting of returncode and the output to be printed.

	
cfme.utils.read_env(file)

	Given a py.path.Local file name, return a dict of exported shell vars and their
values.

	Parameters

	file – A py.path.Local instance.

Note

This will only include shell variables that are exported from the file being parsed

	Returns

	A dict [https://docs.python.org/2.7/library/stdtypes.html#dict] of key/value pairs. If the file does not exist or bash could not
parse the file, this dict will be empty.

	
cfme.utils.safe_string(o)

	This will make string out of ANYTHING without having to worry about the stupid Unicode errors

This function tries to make str/unicode out of o unless it already is one of those and then
it processes it so in the end there is a harmless ascii string.

	Parameters

	o – Anything.

	
cfme.utils.tries(num_tries, exceptions, f, *args, **kwargs)

	Tries to call the function multiple times if specific exceptions occur.

	Parameters

	
	num_tries – How many times to try if exception is raised

	exceptions – Tuple (or just single one) of exceptions that should be treated as repeat.

	f – Callable to be called.

	*args – Arguments to be passed through to the callable

	**kwargs – Keyword arguments to be passed through to the callable

	Returns

	What f returns.

	Raises

	What f raises if the try count is exceeded.

cfme.utils.appliance package

Subpackages

	cfme.utils.appliance.implementations package
	Submodules
	cfme.utils.appliance.implementations.rest module

	cfme.utils.appliance.implementations.ssui module

	cfme.utils.appliance.implementations.ui module

	Module contents

Submodules

	cfme.utils.appliance.db module

	cfme.utils.appliance.plugin module

	cfme.utils.appliance.services module

Module contents

	
class cfme.utils.appliance.Appliance(hostname, ui_protocol='https', ui_port=None, browser_steal=False, project=None, container=None, openshift_creds=None, db_host=None, db_port=None, ssh_port=None, is_dev=False)

	Bases: cfme.utils.appliance.IPAppliance

Appliance represents an already provisioned cfme appliance vm

DO NOT INSTANTIATE DIRECTLY - USE :py:meth:`from_provider`

	
add_rhev_direct_lun_disk(log_callback=None)

	

	
configure(*args, **kwargs)

	

	
configure_fleecing(*args, **kwargs)

	

	
destroy()

	Destroys the VM this appliance is running as

	
does_vm_exist()

	

	
classmethod from_provider(provider_key, vm_name, name=None, **kwargs)

	Constructor of this Appliance.

Retrieves the IP address of the appliance from the provider and then instantiates it,
adding some extra parameters that are required by this class.

	Parameters

	
	provider_name – Name of the provider this appliance is running under

	vm_name – Name of the VM this appliance is running as

	browser_steal – Setting of the browser_steal attribute.

	
ipapp

	

	
is_on_rhev

	

	
is_on_vsphere

	

	
is_running

	

	
remove_rhev_direct_lun_disk(*args, **kwargs)

	

	
rename(new_name)

	Changes appliance name

	Parameters

	new_name – Name to set

Note

Database must be up and running and evm service must be (re)started afterwards
for the name change to take effect.

	
start()

	Starts the VM this appliance is running as

	
stop()

	Stops the VM this appliance is running as

	
templatize(seal=True)

	Marks the appliance as a template. Destroys the original VM in the process.

By default it runs the sealing process. If you have done it differently, you can opt out.

	Parameters

	seal – Whether to run the sealing process (making the VM ‘universal’).

	
class cfme.utils.appliance.ApplianceConsole(appliance)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

ApplianceConsole is used for navigating and running appliance_console commands against an
appliance.

	
run_commands(commands, autoreturn=True, timeout=10, channel=None)

	

	
timezone_check(timezone)

	

	
class cfme.utils.appliance.ApplianceConsoleCli(appliance)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
configure_appliance_dedicated_db(username, password, dbname, dbdisk)

	

	
configure_appliance_dedicated_ha_primary(username, password, reptype, primhost, node, dbname)

	

	
configure_appliance_dedicated_ha_standby(username, password, reptype, primhost, standhost, node, dbname, dbdisk)

	

	
configure_appliance_external_create(region, dbhostname, username, password, dbname, fetch_key, sshlogin, sshpass)

	

	
configure_appliance_external_join(dbhostname, username, password, dbname, fetch_key, sshlogin, sshpass)

	

	
configure_appliance_internal(region, dbhostname, username, password, dbname, dbdisk)

	

	
configure_appliance_internal_fetch_key(region, dbhostname, username, password, dbname, dbdisk, fetch_key, sshlogin, sshpass)

	

	
configure_ipa(ipaserver, ipaprincipal, ipapassword, ipadomain=None, iparealm=None)

	

	
set_hostname(hostname)

	

	
uninstall_ipa_client()

	

	
exception cfme.utils.appliance.ApplianceException

	Bases: exceptions.Exception [https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

	
class cfme.utils.appliance.ApplianceStack

	Bases: werkzeug.local.LocalStack

	
pop()

	

	
push(obj)

	

	
exception cfme.utils.appliance.ApplianceSummoningWarning

	Bases: exceptions.Warning [https://docs.python.org/2.7/library/exceptions.html#exceptions.Warning]

to ease filtering/erroring on magical appliance creation based on script vs code

	
class cfme.utils.appliance.DummyAppliance(version=Version('5.8.0'), collections=NOTHING)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

a dummy with minimal attribute set

	
browser_steal = False

	

	
build = 'missing :)'

	

	
collections = Attribute(name='collections', default=Factory(factory=<function collections_for_appliance>, takes_self=True), validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
classmethod from_config(pytest_config)

	

	
hostname = 'DummyApplianceHostname'

	

	
is_dev = False

	

	
is_downstream = True

	

	
is_pod = False

	

	
managed_known_providers = []

	

	
set_session_timeout(*k)

	

	
version = Attribute(name='version', default=Version('5.8.0'), validator=None, repr=True, cmp=True, hash=None, init=True, convert=<function _version_for_version_or_stream>, metadata=mappingproxy({}))

	

	
class cfme.utils.appliance.IPAppliance(hostname, ui_protocol='https', ui_port=None, browser_steal=False, project=None, container=None, openshift_creds=None, db_host=None, db_port=None, ssh_port=None, is_dev=False)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

IPAppliance represents an already provisioned cfme appliance whos provider is unknown
but who has an IP address. This has a lot of core functionality that Appliance uses, since
it knows both the provider, vm_name and can there for derive the IP address.

	Parameters

	
	hostname – The IP address or host name of the provider

	ui_protocol – The protocol used in the URL

	ui_port – The port where the UI runs.

	browser_steal – If True then then current browser is killed and the new appliance
is used to generate a new session.

	container – If the appliance is running as a container or as a pod, specifies its name.

	project – openshift’s project where the appliance is deployed

	openshift_creds – If the appliance runs as a project on openshift, provides credentials for
the openshift host so the framework can interact with the project.

	db_host – If the database is located somewhere else than on the appliance itself, specify
the host here.

	db_port – Database port.

	ssh_port – SSH port.

	
CONFIG_MAPPING = {'ssh_port': 'ssh_port', 'openshift_creds': 'openshift_creds', 'ui_protocol': 'ui_protocol', 'db_port': 'db_port', 'is_dev': 'is_dev', 'pod': 'container', 'container': 'container', 'ui_port': 'ui_port', 'hostname': 'hostname', 'project': 'project', 'db_host': 'db_host', 'browser_steal': 'browser_steal'}

	

	
CONFIG_NONGLOBAL = set(['hostname'])

	

	
CONF_FILES = {'downstream_templates': '/opt/rh/cfme-appliance/TEMPLATE', 'httpd_remote_user': '/etc/httpd/conf.d/manageiq-remote-user.conf', 'sssd': '/etc/sssd/sssd.conf', 'upstream_templates': '/var/www/miq/system/TEMPLATE', 'openldap': '/etc/openldap/ldap.conf', 'pam_httpd_auth': '/etc/pam.d/httpd-auth', 'httpd_ext_auth': '/etc/httpd/conf.d/manageiq-external-auth.conf'}

	

	
PROTOCOL_PORT_MAPPING = {'http': 80, 'https': 443}

	

	
add_pglogical_replication_subscription(host)

	Add a pglogical replication subscription without using the Web UI.

	
add_product_repo(repo_url, **kwargs)

	
	This method ensures that when we add a new repo URL, there will be no other version

	of such product present in the yum.repos.d. You can specify conf options in kwargs. They
will be applied only to newly created repo file.

	Returns

	The repo id.

	
advanced_settings

	Get settings from the base api/settings endpoint for appliance

	
appliance

	

	
as_json

	Dumps the arguments that can create this appliance as a JSON. None values are ignored.

	
build

	

	
build_date

	

	
build_datetime

	

	
check_domain_enabled(domain)

	

	
clean_appliance()

	

	
clone_domain(*args, **kwargs)

	

	
company_name

	

	
configure(*args, **kwargs)

	

	
configure_freeipa(*args, **kwargs)

	

	
configure_gce(log_callback=None)

	

	
configure_openldap(*args, **kwargs)

	

	
configure_rhos_db_disk()

	

	
configure_vm_console_cert(*args, **kwargs)

	

	
coverage

	

	
db

	

	
default_zone

	

	
delete_all_providers()

	

	
deploy_merkyl(*args, **kwargs)

	

	
diagnose_evm_failure()

	Go through various EVM processes, trying to figure out what fails

Returns: A string describing the error, or None if no errors occurred.

This is intended to be run after an appliance is configured but failed for some reason,
such as in the template tester.

	
disable_embedded_ansible_role()

	disables embbeded ansible role

	
disable_freeipa(*args, **kwargs)

	

	
disable_openldap(*args, **kwargs)

	

	
enable_disable_repo(repo_id, enable)

	

	
enable_embedded_ansible_role()

	Enables embbeded ansible role

This is necessary because server_roles does not wait long enough

	
event_listener()

	Returns an instance of the event listening class pointed to this appliance.

	
evm_id

	

	
evmserverd

	

	
find_product_repos()

	Returns a dictionary of products, where the keys are names of product (repos) and values
are dictionaries where keys are the versions and values the names of the repositories.

	
fix_ntp_clock(*args, **kwargs)

	

	
fqdn

	fqdn from appliance_console
This should likely be ‘hostname’ as that is what its called on the appliance
Currently hostname attribute holds IP addr

	
classmethod from_json(json_string)

	

	
classmethod from_url(url, **kwargs)

	Create an appliance instance from a URL.

Supported format using a simple regexp expression:
(https?://)?hostname_or_ip(:port)?/?

	Parameters

	
	url – URL to be parsed from

	**kwargs – For setting and overriding the params parsed from the URL

	Returns

	A IPAppliance instance.

	
get_disabled_regions(provider=None)

	Fetch appliance advanced config, get disabled regions for given provider’s type

Only relevant for cloud providers azure and ec2 at the moment

	Parameters

	provider – A BaseProvider object with settings_key attribute

	Returns

	Dict of ems_<provider> keys and values of disabled_regions map
when provider given: disabled_regions list from config
when no matching config found: None

	Return type

	Default

	
get_host_address

	

	
get_repofile_list()

	Returns list of repofiles present at the appliance.

Ignores certain files, like redhat.repo.

	
guid

	

	
has_cli

	

	
has_netapp()

	

	
host_id(hostname)

	

	
httpd

	

	
install_netapp_sdk(*args, **kwargs)

	

	
install_vddk(*args, **kwargs)

	

	
is_downstream

	

	
is_embedded_ansible_role_enabled

	

	
is_embedded_ansible_running

	

	
is_evm_service_running(*args, **kwargs)

	

	
is_idle

	Return appliance idle state measured by last production.log activity.
It runs one liner script, which first gathers current date on appliance and then gathers
date of last entry in production.log(which has to be parsed) with /api calls filtered
(These calls occur every minute.)
Then it deducts that last time in log from current date and if it is lower than idle_time it
returns False else True.

Args:

	Returns

	True if appliance is idling for longer or equal to idle_time seconds.
False if appliance is not idling for longer or equal to idle_time seconds.

	
is_miqqe_patch_candidate

	

	
is_nginx_running

	

	
is_rabbitmq_running

	

	
is_registration_complete(used_repo_or_channel)

	Checks if an appliance has the correct repos enabled with RHSM or SAT6

	
is_ssh_running

	

	
is_storage_enabled

	

	
is_supervisord_running

	

	
is_web_ui_running(unsure=False)

	Triple checks if web UI is up and running

	Parameters

	unsure – Variable to return when not sure if web UI is running or not
(default False)

	
log

	

	
managed_known_providers

	Returns a set of provider crud objects of known providers managed by this appliance

Note

Recognized by name only.

	
managed_provider_names

	Returns a list of names for all providers configured on the appliance

Note

Unlike managed_known_providers, this will also return names of providers that were
not recognized, but are present.

	
miqqe_patch_applied

	

	
miqqe_version

	Returns version of applied JS patch or None if not present

	
new_rest_api_instance(entry_point=None, auth=None, logger='default', verify_ssl=False)

	Returns new REST API instance.

	
os_version

	

	
patch_with_miqqe(*args, **kwargs)

	

	
precompile_assets(*args, **kwargs)

	

	
product_name

	

	
product_url_regexp = <_sre.SRE_Pattern object at 0x3220250>

	

	
read_repos()

	Reads repofiles so it gives you mapping of id and url.

	
reboot(*args, **kwargs)

	

	
reset_automate_model()

	

	
rest_api

	

	
rest_logger

	

	
restart_evm_service(*args, **kwargs)

	

	
seal_for_templatizing()

	Prepares the VM to be “generalized” for saving as a template.

	
server

	

	
server_id()

	

	
server_region_string()

	

	
server_roles

	Return a dictionary of server roles from database

	
set_cap_and_util_all_via_rails()

	Turns on Collect for All Clusters and Collect for all Datastores without using Web UI.

	
set_cfme_server_relationship(vm_name, server_id=1)

	Set MiqServer record to the id of a VM by name, effectively setting the CFME Server
Relationship without using the Web UI.

	
set_disabled_regions(provider, *regions)

	Modify config to set disabled regions to given regions for the given provider’s type

Only relevant for cloud providers azure and ec2 at the moment

Does NOT APPEND to the list of disabled regions, SETS it

	Parameters

	
	provider – A BaseProvider object with settings_key attribute

	*regions – none, one or many region names, on None enables all regions for provider type

	Raises

	
	AssertionError - when the disabled regions don’t match after setting

	ApplianceException - when there’s a KeyError modifying the yaml

	
set_full_refresh_threshold(threshold=100)

	

	
set_pglogical_replication(replication_type=':none')

	Set pglogical replication type (:none, :remote, :global) without using the Web UI.

	
set_rubyrep_replication(host, port=5432, database='vmdb_production', username='root', password=None)

	Sets up rubyrep replication via advanced configuration settings yaml.

	
set_session_timeout(timeout=86400, quiet=True)

	Sets the timeout of UI timeout.

	Parameters

	
	timeout – Timeout in seconds

	quiet – Whether to ignore any errors

	
ssh_client

	Creates an ssh client connected to this appliance

Returns: A configured :py:class:utils.ssh.SSHClient instance.

Usage:

with appliance.ssh_client as ssh:
 result = ssh.run_command('...')

Note

The credentials default to those found under ssh key in credentials.yaml.

	
ssh_client_with_privatekey()

	

	
sssd

	

	
start_evm_service(*args, **kwargs)

	

	
stop_evm_service(*args, **kwargs)

	

	
swap

	Retrieves the value of swap for the appliance. Might raise an exception if SSH fails.

	Returns

	An integer value of swap in the VM in megabytes. If None is returned, it means it
was not possible to parse the command output.

	Raises

	paramiko.ssh_exception.SSHException or socket.error [https://docs.python.org/2.7/library/socket.html#socket.error]

	
uninstall_vddk(*args, **kwargs)

	

	
unpartitioned_disks

	Returns a list of disk devices that are not mounted.

	
unregister()

	unregisters appliance from RHSM/SAT6

	
update_advanced_settings(settings_dict)

	PATCH settings from the master server’s api/server/:id/settings endpoint

Uses REST API for CFME 5.9+, uses rails console on lower versions

Will automatically update existing settings dictionary with settings_dict

	Parameters

	data_dict – dictionary of the changes to be made to the yaml configuration
JSON dumps data_dict to pass as raw hash data to rest_api session

	Raises

	ApplianceException when server_id isn’t set

	
update_guid(*args, **kwargs)

	

	
update_rhel(*args, **kwargs)

	

	
update_server_roles(changed_roles)

	

	
url

	Returns a proper URL of the appliance.

If the ports do not correspond the protocols’ default port numbers, then the ports are
explicitly specified as well.

	
url_path(path)

	generates URL with an additional path. Useful for generating REST or SSUI URLs.

	
use_dev_branch(*args, **kwargs)

	

	
user

	

	
utc_time()

	

	
version

	

	
wait_for_embedded_ansible(timeout=900)

	Waits for embedded ansible to be ready

	Parameters

	timeout – Number of seconds to wait until timeout (default 900)

	
wait_for_evm_service(*args, **kwargs)

	

	
wait_for_host_address()

	

	
wait_for_miq_server_workers_started(evm_tail=None, poll_interval=5)

	Waits for the CFME’s workers to be started by tailing evm.log for:
‘INFO – : MIQ(MiqServer#wait_for_started_workers) All workers have been started’

	
wait_for_ssh(timeout=600)

	Waits for appliance SSH connection to be ready

	Parameters

	timeout – Number of seconds to wait until timeout (default 600)

	
wait_for_web_ui(*args, **kwargs)

	

	
workaround_missing_gemfile(*args, **kwargs)

	

	
write_repofile(repo_id, repo_url, **kwargs)

	Wrapper around writing a repofile. You can specify conf options in kwargs.

	
class cfme.utils.appliance.MiqApi(entry_point, auth, logger=None, verify_ssl=True, ca_bundle_path=None)

	Bases: manageiq_client.api.ManageIQClient

	
get_entity_by_href(href)

	Parses the collections

	
class cfme.utils.appliance.MiqImplementationContext(implementations, implementation_chooser=NOTHING, strict_calls=False)

	Bases: sentaku.context.ImplementationContext

Our context for Sentaku

	
config = <dectate.app.Config object>

	

	
dectate = <dectate.config.Configurable object>

	

	
class cfme.utils.appliance.Navigatable(*args, **kwargs)

	Bases: cfme.utils.appliance.NavigatableMixin

	
appliance = IPAppliance.from_json('{"container": null, "ui_port": 443, "ssh_port": 22, "openshift_creds": {}, "ui_protocol": "https", "hostname": "10.11.12.13", "db_port": 5432, "project": null, "is_dev": false, "db_host": null, "browser_steal": false}')

	

	
exception cfme.utils.appliance.NavigatableDeprecationWarning

	Bases: exceptions.DeprecationWarning [https://docs.python.org/2.7/library/exceptions.html#exceptions.DeprecationWarning]

	
class cfme.utils.appliance.NavigatableMixin

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

NavigatableMixin ensures that an object can navigate properly

The NavigatableMixin object ensures that a Collection/Entity object inside the
framework has access to be able to create a Widgetastic View, and that it
has access to the browser.

	Note: The browser access will have to change once proliferation of the Sentaku

	system becomes common place

	
browser

	

	
create_view(view_class, o=None, override=None)

	

	
cfme.utils.appliance.collections_for_appliance(appliance)

	

	
cfme.utils.appliance.find_appliance(obj, require=True)

	

	
cfme.utils.appliance.get_or_create_current_appliance()

	

	
cfme.utils.appliance.load_appliances(appliance_list, global_kwargs)

	Instantiate a list of appliances from configuration data.

	Parameters

	
	appliance_list – List of dictionaries that contain parameters for IPAppliance

	global_kwargs – Arguments that will be defined for each appliances. Appliance can override.

	Result:

	List of IPAppliance

	
cfme.utils.appliance.load_appliances_from_config(config)

	Instantiate IPAppliance objects based on data in appliances section of config.

The config contains some global values and appliances key which contains a list of dicts
that have the same keys as IPAppliance.CONFIG_MAPPING’s keys.

The global values in the root of the dict have lesser priority than the values in appliance
definitions themselves

	Parameters

	config – A dictionary with the configuration

	
cfme.utils.appliance.provision_appliance(version=None, vm_name_prefix='cfme', template=None, provider_name=None, vm_name=None)

	Provisions fresh, unconfigured appliance of a specific version

Note

Version must be mapped to template name under appliance_provisioning > versions
in cfme_data.yaml.
If no matching template for given version is found, and trackerbot is set up,
the latest available template of the same stream will be used.
E.g.: if there is no template for 5.5.5.1 but there is 5.5.5.3, it will be used instead.
If both template name and version are specified, template name takes priority.

	Parameters

	
	version – version of appliance to provision

	vm_name_prefix – name prefix to use when deploying the appliance vm

Returns: Unconfigured appliance; instance of Appliance

Usage:

my_appliance = provision_appliance('5.5.1.8', 'my_tests')
my_appliance.fix_ntp_clock()
...other configuration...
my_appliance.db.enable_internal()
my_appliance.wait_for_web_ui()
or
my_appliance = provision_appliance('5.5.1.8', 'my_tests')
my_appliance.configure()

cfme.utils.appliance.implementations package

Submodules

	cfme.utils.appliance.implementations.rest module

	cfme.utils.appliance.implementations.ssui module

	cfme.utils.appliance.implementations.ui module

Module contents

	
class cfme.utils.appliance.implementations.Implementation(owner)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

UI implementation using the normal ux

	
appliance

	

	
create_view(view_class, additional_context=None)

	Method that is used to instantiate a Widgetastic View.

Views may define LOCATION on them, that implies a force_navigate() call with
LOCATION as parameter.

	Parameters

	
	view_class – A view class, subclass of widgetastic.widget.View

	additional_context – Additional informations passed to the view (user name, VM name, …)
which is also passed to the force_navigate() in case when navigation is
requested.

	Returns

	An instance of the view_class

	
open_browser(url_key=None)

	

	
quit_browser()

	

cfme.utils.appliance.implementations.rest module

	
class cfme.utils.appliance.implementations.rest.ViaREST(owner)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
appliance

	

	
name = 'REST'

	

cfme.utils.appliance.implementations.ssui module

	
class cfme.utils.appliance.implementations.ssui.MiqSSUIBrowser(selenium, endpoint, extra_objects=None)

	Bases: widgetastic.browser.Browser

	
appliance

	

	
create_view(*args, **kwargs)

	

	
product_version

	

	
class cfme.utils.appliance.implementations.ssui.MiqSSUIBrowserPlugin(browser)

	Bases: widgetastic.browser.DefaultPlugin

	
ENSURE_PAGE_SAFE = "function checkProgressBar(){try{return $('#ngProgress').attr('style').indexOf('width: 0%')>-1;}catch(err){return false;}}\nfunction checkJquery(){if(typeof $=='undefined'){return true;}else{return!($.active>0);}}\nreturn checkProgressBar()&&checkJquery();"

	

	
after_keyboard_input(element, keyboard_input)

	

	
ensure_page_safe(timeout='20s')

	

	
class cfme.utils.appliance.implementations.ssui.SSUINavigateStep(obj, navigate_obj)

	Bases: navmazing.NavigateStep

	
VIEW = None

	

	
am_i_here()

	

	
appliance

	

	
construct_message(here, resetter, view, duration, waited)

	

	
create_view(*args, **kwargs)

	

	
do_nav(_tries=0, *args, **kwargs)

	Describes how the navigation should take place.

	
go(_tries=0, *args, **kwargs)

	

	
log_message(msg, level='debug')

	

	
pre_navigate(*args, **kwargs)

	

	
view

	

	
class cfme.utils.appliance.implementations.ssui.ViaSSUI(owner)

	Bases: cfme.utils.appliance.implementations.Implementation

	
name = 'SSUI'

	

	
widgetastic

	This gives us a widgetastic browser.

cfme.utils.appliance.implementations.ui module

	
class cfme.utils.appliance.implementations.ui.CFMENavigateStep(obj, navigate_obj)

	Bases: navmazing.NavigateStep

	
VIEW = None

	

	
am_i_here()

	

	
appliance

	

	
check_for_badness(fn, _tries, nav_args, *args, **kwargs)

	

	
construct_message(here, resetter, view, duration, waited)

	

	
create_view(*args, **kwargs)

	

	
go(_tries=0, *args, **kwargs)

	

	
log_message(msg, level='debug')

	

	
post_navigate(*args, **kwargs)

	

	
pre_badness_check(_tries, *args, **go_kwargs)

	

	
pre_navigate(*args, **kwargs)

	

	
resetter(*args, **kwargs)

	

	
view

	

	
class cfme.utils.appliance.implementations.ui.ErrorView(*args, **kwargs)

	Bases: widgetastic.widget.View

	
body

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
error_text

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
get_rails_error(*args, **kwargs)

	Gets the displayed error messages

	
title

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.utils.appliance.implementations.ui.MiqBrowser(selenium, endpoint, extra_objects=None)

	Bases: widgetastic.browser.Browser

	
appliance

	

	
create_view(*args, **kwargs)

	

	
product_version

	

	
class cfme.utils.appliance.implementations.ui.MiqBrowserPlugin(browser)

	Bases: widgetastic.browser.DefaultPlugin

	
DEFAULT_WAIT = 0.8

	

	
ENSURE_PAGE_SAFE = 'try{var eventNotificationsService=angular.element(\'#notification-app\').injector().get(\'eventNotifications\');eventNotificationsService.clearAll(ManageIQ.angular.eventNotificationsData.state.groups[0]);eventNotificationsService.clearAll(ManageIQ.angular.eventNotificationsData.state.groups[1]);}catch(err){}\nfunction isHidden(el){if(el===null)return true;return el.offsetParent===null;}\nfunction isDataLoading(){try{return window.ManageIQ.gtl.loading;}catch(err){return false;};}\ntry{angular.element(\'error-modal\').hide();}catch(err){}\ntry{return!(ManageIQ.qe.anythingInFlight()||isDataLoading());}catch(err){return(((typeof $==="undefined")?true:$.active<1)&&(!((!isHidden(document.getElementById("spinner_div")))&&isHidden(document.getElementById("lightbox_div"))))&&document.readyState=="complete"&&((typeof checkMiqQE==="undefined")?true:checkMiqQE(\'autofocus\')<1)&&((typeof checkMiqQE==="undefined")?true:checkMiqQE(\'debounce\')<1)&&((typeof checkAllMiqQE==="undefined")?true:checkAllMiqQE()<1)&&!isDataLoading());}'

	

	
OBSERVED_FIELD_MARKERS = ('data-miq_observe', 'data-miq_observe_date', 'data-miq_observe_checkbox')

	

	
after_keyboard_input(element, keyboard_input)

	

	
before_keyboard_input(element, keyboard_input)

	

	
ensure_page_safe(timeout='20s')

	

	
make_document_focused()

	

	
class cfme.utils.appliance.implementations.ui.ViaUI(owner)

	Bases: cfme.utils.appliance.implementations.Implementation

UI implementation using the normal ux

	
name = 'UI'

	

	
widgetastic

	This gives us a widgetastic browser.

	
cfme.utils.appliance.implementations.ui.can_skip_badness_test(fn)

	Decorator for setting a noop

cfme.utils.appliance.db module

	
class cfme.utils.appliance.db.ApplianceDB(appliance, ssh_client=None)

	Bases: cfme.utils.appliance.plugin.AppliancePlugin

Holder for appliance DB related methods and functions

	
address

	

	
automate_reset()

	

	
backup(database_path='/tmp/evm_db.backup')

	Backup VMDB database
Changed from Rake task due to a bug in 5.9

	
client

	

	
create()

	Creates new vmdb_production database

Note: EVM service has to be stopped for this to work.

	
drop()

	Drops the vmdb_production database

Note: EVM service has to be stopped for this to work.

	
enable_external(db_address, region=0, db_name=None, db_username=None, db_password=None)

	Enables external database

	Parameters

	
	db_address – Address of the external database

	region – Number of region to join

	db_name – Name of the external DB

	db_username – Username to access the external DB

	db_password – Password to access the external DB

Returns a tuple of (exitstatus, script_output) for reporting, if desired

	
enable_internal(region=0, key_address=None, db_password=None, ssh_password=None, db_disk=None)

	Enables internal database

	Parameters

	
	region – Region number of the CFME appliance.

	key_address – Address of CFME appliance where key can be fetched.

	db_disk – Path of the db disk for –dbdisk appliance_console_cli. If not specified it
tries to load it from the appliance.

Note

If key_address is None, a new encryption key is generated for the appliance.

	
extend_partition()

	Extends the /var partition with DB while shrinking the unused /repo partition

	
fix_auth_dbyml()

	

	
fix_auth_key()

	

	
has_database

	Does database have a database defined

	
has_tables

	Does database have tables defined

	
is_dedicated_active

	

	
is_enabled

	Is database enabled

	
is_internal

	Is database internal

	
is_online

	Is database online

	
is_partition_extended

	

	
is_ready

	Is database ready

	
loosen_pgssl(with_ssl=False)

	Loosens postgres connections

	
migrate()

	migrates a given database and updates REGION/GUID files

	
postgres_version = 'rh-postgresql95'

	

	
reset_user_pass()

	

	
restart_db_service()

	restarts the postgresql service via systemctl

	
restore(database_path='/tmp/evm_db.backup')

	Restore VMDB database

	
service_name = 'rh-postgresql95-postgresql'

	

	
setup(**kwargs)

	Configure database

On downstream appliances, invokes the internal database setup.
On all appliances waits for database to be ready.

	
ssh_client

	

	
start_db_service()

	Starts the postgresql service via systemctl

	
stop_db_service()

	Starts the postgresql service via systemctl

	
wait_for(timeout=600)

	Waits for appliance database to be ready

	Parameters

	timeout – Number of seconds to wait until timeout (default 180)

	
exception cfme.utils.appliance.db.ApplianceDBException

	Bases: cfme.utils.appliance.plugin.AppliancePluginException

Basic Exception for Appliance DB object

cfme.utils.appliance.plugin module

	
class cfme.utils.appliance.plugin.AppliancePlugin(appliance)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Base class for all appliance plugins.

Usage:

.. code-block:: python

 class IPAppliance(object):
 # ...

 foo = FooPlugin.declare(parameter='value')

Instance of such plugin is then created upon first access.

	
appliance = Attribute(name='appliance', default=NOTHING, validator=None, repr=False, cmp=True, hash=None, init=True, convert=<built-in function proxy>, metadata=mappingproxy({}))

	

	
classmethod declare(**kwargs)

	

	
logger

	

	
class cfme.utils.appliance.plugin.AppliancePluginDescriptor(cls, args, kwargs)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
args

	

	
cache

	

	
cls

	

	
kwargs

	

	
exception cfme.utils.appliance.plugin.AppliancePluginException

	Bases: exceptions.Exception [https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

Base class for all custom exceptions raised from plugins.

cfme.utils.appliance.services module

	
exception cfme.utils.appliance.services.SystemdException

	Bases: cfme.utils.appliance.plugin.AppliancePluginException

	
class cfme.utils.appliance.services.SystemdService(appliance, unit_name)

	Bases: cfme.utils.appliance.plugin.AppliancePlugin

	
enable()

	

	
restart()

	

	
running

	

	
start()

	

	
stop()

	

	
unit_name = Attribute(name='unit_name', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
wait_for_running(timeout=600)

	

cfme.utils.auth package

Module contents

	
class cfme.utils.auth.ActiveDirectoryAuthProvider(key, host1, bind_password, host2=None, host3=None, ports=None, user_types=None, domain_prefix=None, base_dn=None, bind_dn=None, get_groups=False, get_roles=False, follow_referrals=False, domain_name=None, cert_filename=None, cert_filepath=None, ipaddress=None, ldap_conf=None, sssd_conf=None)

	Bases: cfme.utils.auth.MIQAuthProvider

openldap auth provider, WITH SSL

	
auth_type = 'ad'

	

	
view_class

	alias of LdapAuthenticationView

	
class cfme.utils.auth.AmazonAuthProvider(key, username, password, get_groups=False)

	Bases: cfme.utils.auth.BaseAuthProvider

AWS IAM auth provider

	
as_fill_value(**kwargs)

	Amazon auth only has 3 UI values

	
auth_type = 'amazon'

	

	
get_groups = Attribute(name='get_groups', default=False, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
password = Attribute(name='password', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
username = Attribute(name='username', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
view_class

	alias of AmazonAuthenticationView

	
class cfme.utils.auth.BaseAuthProvider(key)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Base class for authentication provider objects

	
as_fill_external_value()

	openLDAP and FreeIPA providers can be configured for external auth
Same view for all auth provider types

	
as_fill_value(user_type=None, auth_mode=None)

	Basic implementation matches instance attributes to view form attributes

	
auth_type = None

	

	
data

	

	
classmethod from_config(prov_config, prov_key)

	Returns an object using the passed yaml config
Sets defaults for yaml configured objects separate from attr.ib definitions

	
key = Attribute(name='key', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
user_data

	Pull users from auth_data if provider key is in items providers list

	
view_class = None

	

	
class cfme.utils.auth.FreeIPAAuthProvider(key, host1, bind_password, host2=None, host3=None, ports=None, user_types=None, domain_prefix=None, base_dn=None, bind_dn=None, get_groups=False, get_roles=False, follow_referrals=False, domain_name=None, cert_filename=None, cert_filepath=None, ipaddress=None, ldap_conf=None, sssd_conf=None, ipaprincipal=None, iparealm=None, ipadomain=None)

	Bases: cfme.utils.auth.MIQAuthProvider

freeipa can be used with ldap auth config or external

For ldap config:

	3 hosts can be configured

	bind_dn is used for admin user validation

	ipa realm and ipadomain are not part of config

	user_type will use the cfme.utils.auth.USER_TYPES dict

For external config:

	1 host is configured as –ipaserver

	realm and domain are optional params

	all user type, suffix, base/bind_dn, get_groups/roles/referrals args are not used

	
as_external_value()

	return a dictionary that can be used with appliance_console_cli.configure_ipa

	
auth_type = 'freeipa'

	

	
ipadomain = Attribute(name='ipadomain', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
ipaprincipal = Attribute(name='ipaprincipal', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
iparealm = Attribute(name='iparealm', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
view_class

	alias of LdapAuthenticationView

	
class cfme.utils.auth.MIQAuthProvider(key, host1, bind_password, host2=None, host3=None, ports=None, user_types=None, domain_prefix=None, base_dn=None, bind_dn=None, get_groups=False, get_roles=False, follow_referrals=False, domain_name=None, cert_filename=None, cert_filepath=None, ipaddress=None, ldap_conf=None, sssd_conf=None)

	Bases: cfme.utils.auth.BaseAuthProvider

base class for miq auth providers (ldap/ldaps modes in UI)
Intended to be used for freeipa, AD, openldap and openldaps type providers

	
as_fill_value(user_type='upn', auth_mode='ldap')

	miqldap config can have multiple settings per-provider based on user_type and
auth_mode

	Parameters

	
	user_type – key for USER_TYPES, used to lookup user_suffix

	auth_mode – key for AUTH_MODES, used to lookup port

	
base_dn = Attribute(name='base_dn', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
bind_dn = Attribute(name='bind_dn', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
bind_password = Attribute(name='bind_password', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
cert_filename = Attribute(name='cert_filename', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
cert_filepath = Attribute(name='cert_filepath', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
domain_name = Attribute(name='domain_name', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
domain_prefix = Attribute(name='domain_prefix', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
follow_referrals = Attribute(name='follow_referrals', default=False, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
get_groups = Attribute(name='get_groups', default=False, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
get_roles = Attribute(name='get_roles', default=False, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
host1 = Attribute(name='host1', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
host2 = Attribute(name='host2', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
host3 = Attribute(name='host3', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
ipaddress = Attribute(name='ipaddress', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
ldap_conf = Attribute(name='ldap_conf', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
ports = Attribute(name='ports', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
sssd_conf = Attribute(name='sssd_conf', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
user_types = Attribute(name='user_types', default=None, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
class cfme.utils.auth.OpenLDAPAuthProvider(key, host1, bind_password, host2=None, host3=None, ports=None, user_types=None, domain_prefix=None, base_dn=None, bind_dn=None, get_groups=False, get_roles=False, follow_referrals=False, domain_name=None, cert_filename=None, cert_filepath=None, ipaddress=None, ldap_conf=None, sssd_conf=None)

	Bases: cfme.utils.auth.MIQAuthProvider

openldap auth provider, NO SSL No attributes beyond MIQAuthProvider

	
auth_type = 'openldap'

	

	
view_class

	alias of LdapAuthenticationView

	
class cfme.utils.auth.OpenLDAPSAuthProvider(key, host1, bind_password, host2=None, host3=None, ports=None, user_types=None, domain_prefix=None, base_dn=None, bind_dn=None, get_groups=False, get_roles=False, follow_referrals=False, domain_name=None, cert_filename=None, cert_filepath=None, ipaddress=None, ldap_conf=None, sssd_conf=None)

	Bases: cfme.utils.auth.MIQAuthProvider

openldap auth provider, WITH SSL

	
auth_type = 'openldaps'

	

	
view_class

	alias of LdapsAuthenticationView

	
cfme.utils.auth.auth_class_from_type(auth_prov_type)

	Using the registered auth provider classes, fetch a class by its type key

	Parameters

	auth_prov_type – string key matching a registered type in entry_points

	Raises

	UnknownProviderType when the given type isn’t registered in entry_points

	
cfme.utils.auth.auth_provider_types()

	Fetch the registered classes from entry_points manageiq.auth_provider_categories

	
cfme.utils.auth.get_auth_crud(auth_prov_key)

	Get a BaseAuthProvider derived class with the auth_data.yaml configuration for the key

	Parameters

	auth_prov_key – string key matching one in conf/auth_data.yaml ‘auth_providers’ dict

	Raises

	ValueError if the yaml type for given key doesn’t match auth_type on fetched class

cfme.utils.dockerbot package

Subpackages

	cfme.utils.dockerbot.pytestbase package
	Submodules
	cfme.utils.dockerbot.pytestbase.check_provisioned module

	cfme.utils.dockerbot.pytestbase.get_keys module

	cfme.utils.dockerbot.pytestbase.post_result module

	cfme.utils.dockerbot.pytestbase.verify_commit module

	Module contents

Submodules

	cfme.utils.dockerbot.build_container module

	cfme.utils.dockerbot.check_prs module

	cfme.utils.dockerbot.dockerbot module

	cfme.utils.dockerbot.sel_container module

Module contents

cfme.utils.dockerbot.pytestbase package

Submodules

	cfme.utils.dockerbot.pytestbase.check_provisioned module

	cfme.utils.dockerbot.pytestbase.get_keys module

	cfme.utils.dockerbot.pytestbase.post_result module

	cfme.utils.dockerbot.pytestbase.verify_commit module

Module contents

cfme.utils.dockerbot.pytestbase.check_provisioned module

	
cfme.utils.dockerbot.pytestbase.check_provisioned.main()

	

cfme.utils.dockerbot.pytestbase.get_keys module

	
cfme.utils.dockerbot.pytestbase.get_keys.main()

	

cfme.utils.dockerbot.pytestbase.post_result module

cfme.utils.dockerbot.pytestbase.verify_commit module

	
cfme.utils.dockerbot.pytestbase.verify_commit.main()

	

cfme.utils.dockerbot.build_container module

	
cfme.utils.dockerbot.build_container.main()

	

cfme.utils.dockerbot.check_prs module

cfme.utils.dockerbot.dockerbot module

	
class cfme.utils.dockerbot.dockerbot.DockerBot(**args)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
cache_files()

	

	
check_arg(name, default)

	

	
create_log_path()

	

	
create_pytest_bindings()

	

	
create_pytest_command()

	

	
create_pytest_envvars()

	

	
display_banner()

	

	
enc_key()

	

	
find_files_by_pr(pr=None)

	

	
get_base_branch(pr)

	

	
get_dev_branch(pr=None)

	

	
get_pr_metadata(pr=None)

	

	
handle_output()

	

	
handle_pr()

	

	
handle_watch()

	

	
process_appliance()

	

	
validate_args()

	

	
class cfme.utils.dockerbot.dockerbot.DockerInstance

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
kill()

	

	
process_bindings(bindings)

	

	
remove()

	

	
stop()

	

	
wait()

	

	
class cfme.utils.dockerbot.dockerbot.PytestDocker(name, bindings, env, log_path, links, pytest_con, artifactor_dir, dry_run=False)

	Bases: cfme.utils.dockerbot.dockerbot.DockerInstance

	
run()

	

	
class cfme.utils.dockerbot.dockerbot.SeleniumDocker(bindings, image, dry_run=False)

	Bases: cfme.utils.dockerbot.dockerbot.DockerInstance

	
run()

	

cfme.utils.dockerbot.sel_container module

	
cfme.utils.dockerbot.sel_container.vnc_ready(addr, port)

	Checks if VNC port is open and ready

cfme.utils.mgmt_system package

Module contents

cfme.utils.template package

Submodules

	cfme.utils.template.base module

	cfme.utils.template.ec2 module

	cfme.utils.template.gce module

	cfme.utils.template.openshift module

	cfme.utils.template.openstack module

	cfme.utils.template.rhevm module

	cfme.utils.template.scvmm module

	cfme.utils.template.template_upload module

	cfme.utils.template.virtualcenter module

Module contents

cfme.utils.template.base module

cfme.utils.template.ec2 module

cfme.utils.template.gce module

cfme.utils.template.openshift module

cfme.utils.template.openstack module

cfme.utils.template.rhevm module

cfme.utils.template.scvmm module

cfme.utils.template.template_upload module

cfme.utils.template.virtualcenter module

cfme.utils.ansible module

cfme.utils.apidoc module

Sphinx plugin for automatically generating (and optionally cleaning) project api documentation

To enable the optional cleaning, set clean_autogenerated_docs to True in docs/conf.py

	
cfme.utils.apidoc.modules_to_document = ['cfme', 'fixtures']

	List of modules/packages to document, paths relative to the project root.

	
cfme.utils.apidoc.purge_module_apidoc(sphinx, exception)

	

	
cfme.utils.apidoc.setup(sphinx)

	Main sphinx entry point, calls sphinx-apidoc

cfme.utils.blockers module

	
class cfme.utils.blockers.BZ(bug_id, **kwargs)

	Bases: cfme.utils.blockers.Blocker

	
blocks

	

	
bugzilla

	classmethod(function) -> method

Convert a function to be a class method.

A class method receives the class as implicit first argument,
just like an instance method receives the instance.
To declare a class method, use this idiom:

	class C:

	def f(cls, arg1, arg2, …): …
f = classmethod(f)

It can be called either on the class (e.g. C.f()) or on an instance
(e.g. C().f()). The instance is ignored except for its class.
If a class method is called for a derived class, the derived class
object is passed as the implied first argument.

Class methods are different than C++ or Java static methods.
If you want those, see the staticmethod builtin.

	
bugzilla_bug

	

	
data

	

	
get_bug_url()

	

	
url

	

	
class cfme.utils.blockers.Blocker(**kwargs)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Base class for all blockers

REQUIRED THING! Any subclass’ constructors must accept kwargs and after POPping the values
required for the blocker’s operation, call to ``super` with **kwargs must be done!
Failing to do this will render some of the functionality disabled ;).

	
classmethod all_blocker_engines()

	Return mapping of name:class of all the blocker engines in this module.

Having this as a separate function will later enable to scatter the engines across modules
in case of extraction into a separate library.

	
blocks = False

	

	
kwargs = {}

	

	
classmethod parse(blocker, **kwargs)

	Create a blocker object from some representation

	
url

	

	
class cfme.utils.blockers.GH(description, **kwargs)

	Bases: cfme.utils.blockers.Blocker

	
DEFAULT_REPOSITORY = 'foo/bar'

	

	
blocks

	

	
data

	

	
github = <github.MainClass.Github object>

	

	
repo

	

	
url

	

	
class cfme.utils.blockers.JIRA(jira_id, **kwargs)

	Bases: cfme.utils.blockers.Blocker

	
blocks

	

	
jira = None

	

	
url

	

cfme.utils.browser module

Core functionality for starting, restarting, and stopping a selenium browser.

	
class cfme.utils.browser.BrowserFactory(webdriver_class, browser_kwargs)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
close(browser)

	

	
create(url_key)

	

	
processed_browser_args()

	

	
class cfme.utils.browser.BrowserManager(browser_factory)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
add_cleanup(callback)

	

	
coerce_url_key(key)

	

	
ensure_open(url_key=None)

	

	
classmethod from_conf(browser_conf)

	

	
open_fresh(url_key=None)

	

	
quit()

	

	
start(url_key=None)

	

	
cfme.utils.browser.ScreenShot

	alias of screenshot

	
class cfme.utils.browser.Wharf(wharf_url)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
checkin()

	

	
checkout()

	

	
docker_id = None

	

	
class cfme.utils.browser.WharfFactory(webdriver_class, browser_kwargs, wharf)

	Bases: cfme.utils.browser.BrowserFactory

	
close(browser)

	

	
create(url_key)

	

	
processed_browser_args()

	

	
class cfme.utils.browser.WithZoom(level)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

This class is a decorator that used to wrap function with zoom level.
this class perform zoom by <level>, call the target function and exit
by zooming back to the original zoom level.

	Parameters

	level (*) – int, the zooming value (i.e. -2 -> 2 clicks out; 3 -> 3 clicks in)

	
cfme.utils.browser.browser()

	callable that will always return the current browser instance

If None, no browser is running.

	Returns

	The current browser instance.

	
cfme.utils.browser.ensure_browser_open(url_key=None)

	Ensures that there is a browser instance currently open

Will reuse an existing browser or start a new one as-needed

	Returns

	The current browser instance.

	
cfme.utils.browser.quit()

	Close the current browser

Will silently fail if the current browser can’t be closed for any reason.

Note

If a browser can’t be closed, it’s usually because it has already been closed elsewhere.

	
cfme.utils.browser.start(url_key=None)

	Starts a new web browser

If a previous browser was open, it will be closed before starting the new browser

Args:

	
cfme.utils.browser.take_screenshot()

	

cfme.utils.bz module

	
class cfme.utils.bz.BugWrapper(bugzilla, bug)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
bugzilla

	

	
can_test_on_upstream

	

	
copies

	Returns list of copies of this bug.

	
copy_of

	Returns either id of the bug this is copy of, or None, if it is not a copy.

	
is_opened

	

	
loose

	

	
product

	

	
qa_whiteboard

	Returns a set of QA Whiteboard markers.

It relies on the fact, that our QA Whiteboard uses format foo:bar:baz.

Should be able to handle cases like ‘foo::bar’, or ‘abc:’.

	
release_flag

	

	
upstream_bug

	

	
zstream

	

	
class cfme.utils.bz.Bugzilla(**kwargs)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
bug_count

	

	
bugs

	

	
bugzilla

	

	
default_product

	

	
classmethod from_config()

	

	
get_bug(id)

	

	
get_bug_variants(id)

	

	
loose

	

	
open_states

	

	
product(product)

	

	
products(*names)

	

	
resolve_blocker(blocker, version=None, ignore_bugs=None, force_block_streams=None)

	

	
upstream_version

	

	
class cfme.utils.bz.Product(data)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
default_release

	

	
latest_version

	

	
milestones

	

	
name

	

	
releases

	

	
versions

	

	
cfme.utils.bz.check_fixed_in(fixed_in, version_series)

	

cfme.utils.category module

Module used for handling categories of let’s say form values and for categorizing them.

	
class cfme.utils.category.CategoryBase(value)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Base class for categories

	Parameters

	value – Value to be categorized.

	
cfme.utils.category.categorize(iterable, cat)

	Function taking iterable of values and a dictionary of rules to categorize the values.

Keys of the dictionary are callables, taking one parameter - the current iterable item. If the
call on it returns positive, then the value part of dictionary is taken (assumed callable)
and it is called with the current item.

	Parameters

	
	iterable – Iterable to categorize.

	cat – Category specification dictionary

cfme.utils.conf module

a wrapper that provides the old :code:utils.conf api

cfme.utils.datafile module

datafile functions, to help reliably datafiles from the data directory.

	
cfme.utils.datafile.data_path_for_filename(filename, base_path, testmod_path=None)

	Returns the data path for a given file name

	
cfme.utils.datafile.load_data_file(filename, replacements=None)

	Opens the given filename, returning a file object

	Parameters

	
	filename – If a base_path string is passed, filename will be loaded from there

	replacements – If a replacements mapping is passed, the loaded file is assumed to
be a template [http://docs.python.org/2/library/string.html#template-strings].
In this case the replacements mapping will be used in that template’s subsitute method.

Returns: A file object.

cfme.utils.db module

	
class cfme.utils.db.Db(hostname=None, credentials=None, port=None)

	Bases: _abcoll.Mapping

Helper class for interacting with a CFME database using SQLAlchemy

	Parameters

	
	hostname – base url to be used (default is from current_appliance)

	credentials – name of credentials to use from utils.conf.credentials
(default database)

Provides convient attributes to common sqlalchemy objects related to this DB,
as well as a Mapping interface to access and reflect database tables. Where possible,
attributes are cached.

Db objects support getting tables by name via the mapping interface:

table = db['table_name']

Usage:

Usually used to query the DB for info, here's a common query
for vm in db.session.query(db['vms']).all():
 print(vm.name)
 print(vm.guid)

List comprehension to get all templates
[(vm.name, vm.guid) for vm in session.query(db['vms']).all() if vm.template is True]

Use the transaction manager for write operations:
with db.transaction:
 db.session.query(db['vms']).all().delete()

Note

Creating a table object requires a call to the database so that SQLAlchemy can do
reflection to determine the table’s structure (columns, keys, indices, etc). On
a latent connection, this can be extremely slow, which will affect methods that return
tables, like the mapping interface or values().

	
copy()

	Copy this database instance, keeping the same credentials and hostname

	
db_url

	The connection URL for this database, including credentials

	
engine

	The Engine [http://docs.sqlalchemy.org/en/latest/core/connections.html#sqlalchemy.engine.Engine] for this database

It uses pessimistic disconnection handling, checking that the database is still
connected before executing commands.

	
get(table_name, default=None)

	table getter

	Parameters

	
	table_name – Name of the table to get

	default – Default value to return if table_name is not found.

Returns: a table if table_name exists, otherwise ‘None’ or the passed-in default

	
items()

	Iterator of (table_name, table) pairs

	
keys()

	Iterator of table names in this db

	
metadata

	MetaData [http://docs.sqlalchemy.org/en/latest/core/metadata.html#sqlalchemy.schema.MetaData] for this database

This can be used for introspection of reflected items.

Note

Tables that haven’t been reflected won’t show up in metadata. To reflect a table,
use reflect_table().

	
reflect_table(table_name)

	Populate metadata with information on a table

	Parameters

	table_name – The name of a table to reflect

	
session

	Returns a Session [http://docs.sqlalchemy.org/en/latest/orm/session_api.html#sqlalchemy.orm.session.Session]

This is used for database queries. For writing to the database, start a
transaction().

Note

This attribute is cached. In cases where a new session needs to be explicitly created,
use sessionmaker().

	
sessionmaker

	A sessionmaker [http://docs.sqlalchemy.org/en/latest/orm/session_api.html#sqlalchemy.orm.session.sessionmaker]

Used to make new sessions with this database, as needed.

	
table_base

	Base class for all tables returned by this database

This base class is created using
declarative_base.

	
table_names

	A sorted list of table names available in this database.

	
transaction

	Context manager for simple transaction management

Sessions understand the concept of transactions, and provider context managers to
handle conditionally committing or rolling back transactions as needed.

Note

Sessions automatically commit transactions by default. For predictable results when
writing to the database, use the transaction manager.

Usage:

with db.transaction:
 db.session.do_something()

	
values()

	Iterator of tables in this db

	
cfme.utils.db.database_on_server(*args, **kwds)

	

	
cfme.utils.db.ping_connection(dbapi_connection, connection_record, connection_proxy)

	ping_connection event hook, used to reconnect db sessions that time out

Note

See also: Connection Invalidation [http://docs.sqlalchemy.org/en/latest/core/pooling.html#pool-connection-invalidation]

cfme.utils.deprecation module

cfme.utils.events module

Library for event testing.

	
class cfme.utils.events.Event(appliance, *args)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Event represents either event received by REST API or an expected event.

	Variables

	TARGET_TYPES – Mapping of object types to REST API collections.

	
TARGET_TYPES = {'Host': 'hosts', 'Service': 'services', 'VmOrTemplate': 'vms'}

	

	
add_attrs(*attrs)

	Adds an EventAttr to event.

	
build_from_entity(event_entity)

	Builds Event object from event Entity

	
matches(evt)

	Compares common attributes of expected event and passed event.

	
process_id()

	Resolves target_id by target_type and target name.

	
class cfme.utils.events.EventAttr(attr_type=None, cmp_func=None, **attrs)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

EventAttr helps to compare event attributes with specific method.

Contains one event attribute and the method for comparing it.

	
match(attr)

	Compares current attribute with passed attribute.

	
class cfme.utils.events.RestEventListener(appliance)

	Bases: threading.Thread [https://docs.python.org/2.7/library/threading.html#threading.Thread]

EventListener accepts “expected” events, listens to db events and compares matched events
with expected events. Runs callback function if expected events have it.

	Variables

	FILTER_ATTRS – List of filters used in REST API call

	
FILTER_ATTRS = ['event_type', 'target_type', 'target_id', 'source']

	

	
check_expected_events()

	Checks that all expected events has arrived.

	
get_next_portion(evt)

	Returns list with one or more events matched with expected event.

Returns None if there is no matched events.

	
got_events

	Returns dict with expected events and all the events matched to expected ones.

	
listen_to(*evts, **kwargs)

	Adds expected events to EventListener

May accept one or many events.
Callback function will is called when expected event has arrived in event_streams.
Callback will receive expected event and got event as params.

	Parameters

	
	evts – list of events which EventListener should listen to

	callback – callback function that will be called if event is received

	first_event – EventListener will skip processing event if it has been occurred once.

By default EventListener collects and receives all matching events.

	
new_event(*attrs, **kwattrs)

	This method simplifies “expected” event creation.

Usage:

listener = appliance.event_listener()
evt = listener.new_event(target_type='VmOrTemplate',
 target_name='my_lovely_vm',
 event_type='vm_create')
listener.listen_to(evt)

	
process_events()

	Processes all new events and compares them with expected events.

Processed events are ignored next time.

	
reset_events()

	

	
run()

	Overrides ThreadEvent run to continuously process events

	
set_last_record()

	Sets last_processed_id to the latest event.

	
start()

	

	
started

	

	
stop()

	

cfme.utils.events_db module

Library for event testing.

	
class cfme.utils.events_db.DbEventListener(appliance)

	Bases: threading.Thread [https://docs.python.org/2.7/library/threading.html#threading.Thread]

accepts “expected” events, listens to db events and compares showed up events with expected
events. Runs callback function if expected events have it.

	
check_expected_events()

	

	
get_next_portion()

	

	
got_events

	returns dict with expected events and all the events matched to expected ones

	
listen_to(*evts, **kwargs)

	accepts one or many events
callback function will be called when event arrived in event_streams.
callback will receive expected event and got event as params.

	Parameters

	
	evts – list of events which EventListener should listen to

	callback – callback function that will be called if event is received

	first_event – EventListener waits for only first event of such type.
it ignores such event in future if first matching event is found.

By default EventListener collects and receives all matching events.

	
new_event(*attrs, **kwattrs)

	this method just simplifies “expected” event creation.
.. rubric:: Usage:

listener = appliance.event_listener()
evt = listener.new_event(target_type='VmOrTemplate',
 target_name='my_lovely_vm',
 event_type='vm_create')
listener.listen_to(evt)

	
process_events()

	processes all new db events and compares them with expected events.
processed events are ignored next time

	
reset_events()

	

	
reset_matches()

	

	
run()

	

	
set_last_record(evt=None)

	

	
start()

	

	
started

	

	
stop()

	

	
class cfme.utils.events_db.Event(event_tool, *args)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

represents either db event received by CFME and stored in event_streams or an expected event

	
add_attrs(*attrs)

	event consists of attributes like event_type, etc.
this method allows to add an attribute to event

	
build_from_raw_event(evt)

	helper method which takes raw event from event_streams and prepares event object

	
matches(evt)

	compares current event with passed event.

	
class cfme.utils.events_db.EventAttr(attr_type=None, cmp_func=None, **attrs)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

contains one event attribute and the method for comparing it.

	
match(attr)

	compares current attribute with passed attribute

	
class cfme.utils.events_db.EventTool(appliance)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

EventTool serves as a wrapper to getting the events from the database.
:var OBJECT_TABLE: Mapping of object types to tables and column names.

	
OBJECT_TABLE = {'Host': ('hosts', 'name', 'id'), 'Service': ('services', 'name', 'id'), 'VmOrTemplate': ('vms', 'name', 'id')}

	

	
all_event_types

	Returns a list of all possible events that can be used.
:returns: A list of str [https://docs.python.org/2.7/library/functions.html#str].

	
ensure_event_happens(*args, **kwds)

	Context manager usable for one-off checking of the events.

See also: query_miq_events()

	Parameters

	
	target_type – What kind of object is the target of the event (MiqServer, VmOrTemplate)

	target_id – What is the ID of the object (or name, see process_id()).

	event_type – Type of the event. Ideally one of the all_event_types() but other
kinds of events exist too.

	
event_streams

	event_streams table.

	
event_streams_attributes

	event_streams columns and python’s column types

	
miq_event_definitions

	miq_event_definitions table.

	
process_id(target_type, target_name)

	Resolves id, let it be a string or an id.
In case the target_type is defined in the OBJECT_TABLE, you can pass a
string with object’s name, otherwise a numeric id to the table is required.
:param target_type: What kind of object is the target of the event (MiqServer, VmOrTemplate…)
:param target_name: An id or a name of the object.

	Returns

	int [https://docs.python.org/2.7/library/functions.html#int] with id of the object in the database.

	
query(*args, **kwargs)

	Wrapper for the SQLAlchemy query method.

	
query_miq_events(target_type=None, target_id=None, event_type=None, since=None, until=None, from_id=None)

	Checks whether an event occured.

	Parameters

	
	target_type – What kind of object is the target of the event (MiqServer, VmOrTemplate)

	target_id – What is the ID of the object (or name, see process_id()).

	event_type – Type of the event. Ideally one of the all_event_types() but other
kinds of events exist too.

	since – Since when you want to check it. UTC

	until – Until what time you want to check it.

cfme.utils.ftp module

FTP manipulation library

@author: Milan Falešník <mfalesni@redhat.com>

	
class cfme.utils.ftp.FTPClient(host, login, password, upload_dir='/')

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

FTP Client encapsulation

This class provides basic encapsulation around ftplib’s FTP class.
It wraps some methods and allows to easily delete whole directory or walk
through the directory tree.

Usage:

>>> from utils.ftp import FTPClient
>>> ftp = FTPClient("host", "user", "password")
>>> only_files_with_EVM_in_name = ftp.filesystem.search("EVM", directories=False)
>>> only_files_by_regexp = ftp.filesystem.search(re.compile("regexp"), directories=False)
>>> some_directory = ftp.filesystem.cd("a/b/c") # cd's to this directory
>>> root = some_directory.cd("/")

Always going through filesystem property is a bit slow as it parses the structure on each use.
If you are sure that the structure will remain intact between uses, you can do as follows
to save the time:

>>> fs = ftp.filesystem

Let’s download some files:

>>> for f in ftp.filesystem.search("IMPORTANT_FILE", directories=False):
... f.download() # To pickup its original name
... f.download("custom_name")

We finished the testing, so we don’t need the content of the directory:

>>> ftp.recursively_delete()

And it’s gone.

	
cdup()

	Goes one level up in directory hierarchy (cd ..)

	
close()

	Finish work and close connection

	
connect()

	

	
cwd(d)

	Enter a directory

	Parameters

	d – Directory name

	Returns

	Success of the action

	
dele(f)

	Remove a file

	Parameters

	f – File name

	Returns

	Success of the action

	
filesystem

	Returns the object structure of the filesystem

	Returns

	Root directory

	
ls()

	Lists the content of a directory.

	Returns

	List of all items in current directory
Return format is [(is_dir?, “name”, remote_time), …]

	
mkd(d)

	Create a directory

	Parameters

	d – Directory name

	Returns

	Success of the action

	
pwd()

	Get current directory

	Returns

	Current directory

	Raises

	AssertionError – PWD command fails

	
recursively_delete(d=None)

	Recursively deletes content of pwd

WARNING: Destructive!

	Parameters

	
	d – Directory to enter (None for not entering - root directory)

	d – str or None

	Raises

	AssertionError – When some of the FTP commands fail.

	
retrbinary(f, callback)

	Download file

You need to specify the callback function, which accepts one parameter
(data), to be processed.

	Parameters

	
	f – Requested file name

	callback – Callable with one parameter accepting the data

	
rmd(d)

	Remove a directory

	Parameters

	d – Directory name

	Returns

	Success of the action

	
storbinary(f, file_obj)

	Store file

You need to specify the file object.

	Parameters

	
	f – Requested file name

	file_obj – File object to be stored

	
tree(d=None)

	Walks the tree recursively and creates a tree

Base structure is a list. List contains directory content and the type decides whether
it’s a directory or a file:
- tuple: it’s a file, therefore it represents file’s name and time
- dict: it’s a directory. Then the dict structure is as follows:

dir: directory name
content: list of directory content (recurse)

	Parameters

	d – Directory to enter(None for no entering - root directory)

	Returns

	Directory structure in lists nad dicts.

	Raises

	AssertionError – When some of the FTP commands fail.

	
update_time_difference()

	Determine the time difference between the FTP server and this computer.

This is done by uploading a fake file, reading its time and deleting it.
Then the self.dt variable captures the time you need to ADD to the remote
time or SUBTRACT from local time.

The FTPFile object carries this automatically as it has .local_time property
which adds the client’s .dt to its time.

	
class cfme.utils.ftp.FTPDirectory(client, name, items, parent_dir=None, time=None)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

FTP FS Directory encapsulation

This class represents one directory.
Contains pointers to all child directories (self.directories)
and also all files in current directory (self.files)

	
cd(path)

	Change to a directory

Changes directory to a path specified by parameter path. There are three special cases:
/ - climbs by self.parent_dir up in the hierarchy until it reaches root element.
. - does nothing
.. - climbs one level up in hierarchy, if present, otherwise does the same as preceeding.

	Parameters

	path – Path to change

	
path

	Returns – whole path for this directory

	
search(by, files=True, directories=True)

	Recursive search by string or regexp.

Searches throughout all the filesystem structure from top till the bottom until
it finds required files or dirctories.
You can specify either plain string or regexp. String search does classic in,
regexp matching is done by exact matching (by.match).

	Parameters

	
	by – Search string or regexp

	files – Whether look for files

	directories – Whether look for directories

	Returns

	List of all objects found in FS

	
exception cfme.utils.ftp.FTPException

	Bases: exceptions.Exception [https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

	
class cfme.utils.ftp.FTPFile(client, name, parent_dir, time)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

FTP FS File encapsulation

This class represents one file in the FS hierarchy.
It encapsulates mainly its position in FS and adds the possibility
of downloading the file.

	
download(target=None)

	Download file into this machine

Wrapper around self.retr function. It downloads the file from remote filesystem
into local filesystem. Name is either preserved original, or can be changed.

	Parameters

	target – Target file name (None to preserver the original)

	
local_time

	Returns – time modified to match local computer’s time zone

	
path

	Returns – whole path for this file

	
retr(callback)

	Retrieve file

Wrapper around ftplib.FTP.retrbinary().
This function cd’s to the directory where this file is present, then calls the
FTP’s retrbinary() function with provided callable and then cd’s back where it started
to keep it consistent.

	Parameters

	callback – Any callable that accepts one parameter as the data

	Raises

	
	AssertionError – When any of the CWD or CDUP commands fail.

	ftplib.error_perm [https://docs.python.org/2.7/library/ftplib.html#ftplib.error_perm] – When retrbinary call of ftplib fails

cfme.utils.generators module

	
cfme.utils.generators.random_vm_name(context=None, max_length=15)

	Generates a valid VM name that should be valid for any provider we use.

	Constraints:

	
	Maximum string length 15 characters (by default)

	Only [a-z0-9-]

	Parameters

	context – If you want to provide some custom string after test- instead of vm.
It is recommended to use a maximum of 5 characters with the default 15 character limit.
Longer strings will be truncated

	Returns

	A valid randomized VM name.

cfme.utils.grafana module

Wrap interactions with Grafana or logging Grafana URLs.

	
cfme.utils.grafana.get_scenario_dashboard_urls(scenario, from_ts, to_ts, output_to_log=True)

	Builds a dictionary of URLs to Grafana Dashboards of relevant appliances for a single
workload’s scenario. It accounts for when a replication_master appliance is under test too.

cfme.utils.hosts module

cfme.utils.ipmi module

	
class cfme.utils.ipmi.IPMI(hostname, username, password, interface_type='lan', timeout=30)

	Utility to access IPMI via CLI.

The IPMI utility uses the ipmitool package to access the remote management
card of a server.

	Parameters

	
	hostname – The hostname of the remote management console.

	username – The username for the remote management console.

	password – The password tied to the username.

	interface_type – A string giving the interface_type to pass to the CLI.

	timeout – The number of seconds to wait before giving up on a command.

Returns: A IPMI instnace.

	
is_power_on()

	Checks if the power is on.

Returns: True if power is on, False if not.

	
power_off()

	Turns the power off.

Returns: True if power is off, False if not.

	
power_on()

	Turns the power on.

Returns: True if power is on, False if not.

	
power_reset()

	Turns the power off.

Returns: True if power reset initiated, False if not.

	
exception cfme.utils.ipmi.IPMIException

	Bases: exceptions.Exception [https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

Raised during _run_ipmi() if the error code is non zero.

cfme.utils.log module

Logging framework

This module creates the cfme logger, for use throughout the project. This logger only captures log
messages explicitly sent to it, not logs emitted by other components (such as selenium). To capture
those, consider using the pytest-capturelog plugin.

Example Usage

from utils.log import logger

logger.debug('debug log message')
logger.info('info log message')
logger.warning('warning log message')
logger.error('error log message')
logger.critical('critical log message')

The above will result in the following output in cfme_tests/logs/cfme.log:

1970-01-01 00:00:00,000 [D] debug log message (filename.py:3)
1970-01-01 00:00:00,000 [I] info log message (filename.py:4)
1970-01-01 00:00:00,000 [W] warning log message (filename.py:5)
1970-01-01 00:00:00,000 [E] error log message (filename.py:6)
1970-01-01 00:00:00,000 [C] fatal log message (filename.py:7)

Additionally, if log_error_to_console is True (see below), the following will be
written to stderr:

[E] error (filename.py:6)
[C] fatal (filename.py:7)

Log Message Source

We have added a custom log record attribute that can be used in log messages: %(source)s This
attribute is included in the default ‘cfme’ logger configuration.

This attribute will be generated by default and include the filename and line number from where the
log message was emitted. It will attempt to convert file paths to be relative to cfme_tests, but use
the absolute file path if a relative path can’t be determined.

When writting generic logging facilities, it is sometimes helpful to override
those source locations to make the resultant log message more useful. To do so, pass the extra
source_file (str) and source_lineno (int) to the log emission:

logger.info('info log message', extra={'source_file': 'somefilename.py', 'source_lineno': 7})

If source_lineno is None and source_file is included, the line number will be omitted.
This is useful in cases where the line number can’t be determined or isn’t necessary.

Configuration

in env.yaml
logging:
 # Can be one of DEBUG, INFO, WARNING, ERROR, CRITICAL
 level: INFO
 # Maximum logfile size, in bytes, before starting a new logfile
 # Set to 0 to disable log rotation
 max_logfile_size: 0
 # Maximimum backup copies to make of rotated log files (e.g. cfme.log.1, cfme.log.2, ...)
 # Set to 0 to keep no backups
 max_logfile_backups: 0
 # If True, messages of level ERROR and CRITICAL are also written to stderr
 errors_to_console: False
 # Default file format
 file_format: "%(asctime)-15s [%(levelname).1s] %(message)s (%(source)s)"
 # Default format to console if errors_to_console is True
 stream_format: "[%(levelname)s] %(message)s (%(source)s)"

Additionally, individual logger configurations can be overridden by defining nested configuration
values using the logger name as the configuration key. Note that the name of the logger objects
exposed by this module don’t obviously line up with their key in cfme_data. The ‘name’ attribute
of loggers can be inspected to get this value:

>>> utils.log.logger.name
'cfme'
>>> utils.log.perflog.logger.name
'perf'

Here’s an example of those names being used in env.local.yaml to configure loggers
individually:

logging:
 cfme:
 # set the cfme log level to debug
 level: DEBUG
 perf:
 # make the perflog a little more "to the point"
 file_format: "%(message)s"

Notes:

	The cfme and perf loggers are guaranteed to exist when using this module.

	The name of a logger is used to generate its filename, and will usually not have the word
“log” in it.

	perflog’s logger name is perf for this reason, resulting in log/perf.log
instead of log/perflog.log.

	Similarly, logger’s‘ name is cfme, to prevent having log/logger.log.

Warning

Creating a logger with the same name as one of the default configuration keys,
e.g. create_logger('level') will cause a rift in space-time (or a ValueError).

Do not attempt.

Message Format

year-month-day hour:minute:second,millisecond [Level] message text (file:linenumber)

[Level]:

One letter in square brackets, where [I] corresponds to INFO, [D] corresponds to
DEBUG, and so on.

(file:linenumber):

The relative location from which this log message was emitted. Paths outside

Members

	
class cfme.utils.log.ArtifactorHandler(level=0)

	Bases: logging.Handler

Logger handler that hands messages off to the artifactor

	
artifactor = None

	

	
createLock()

	

	
emit(record)

	

	
slaveid = None

	

	
class cfme.utils.log.NamedLoggerAdapter(logger, extra)

	Bases: cfme.utils.log.TraceLoggerAdapter

An adapter that injects a name into log messages

	
process(message, kwargs)

	

	
class cfme.utils.log.Perflog(perflog_name='perf')

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Performance logger, useful for timing arbitrary events by name

Logged events will be written to log/perf.log by default, unless
a different log file name is passed to the Perflog initializer.

Usage:

from cfme.utils.log import perflog
perflog.start('event_name')
do stuff
seconds_taken = perflog.stop('event_name')
seconds_taken is also written to perf.log for later analysis

	
start(event_name)

	Start tracking the named event

Will reset the start time if the event is already being tracked

	
stop(event_name)

	Stop tracking the named event

	Returns

	A float value of the time passed since start was last called, in seconds,
or None if start was never called.

	
tracking_events = {}

	

	
class cfme.utils.log.PrefixAddingLoggerFilter(prefix=None)

	Bases: logging.Filter [https://docs.python.org/2.7/library/logging.html#logging.Filter]

	
filter(record)

	

	
class cfme.utils.log.TraceLogger(name, level=0)

	Bases: logging.Logger [https://docs.python.org/2.7/library/logging.html#logging.Logger]

A trace-loglevel-aware Logger [https://docs.python.org/2.7/library/logging.html#logging.Logger]

	
trace(msg, *args, **kwargs)

	Log ‘msg % args’ with severity ‘TRACE’.

	
class cfme.utils.log.TraceLoggerAdapter(logger, extra)

	Bases: logging.LoggerAdapter [https://docs.python.org/2.7/library/logging.html#logging.LoggerAdapter]

A trace-loglevel-aware LoggerAdapter [https://docs.python.org/2.7/library/logging.html#logging.LoggerAdapter]

	
trace(msg, *args, **kwargs)

	Delegate a trace call to the underlying logger, after adding
contextual information from this adapter instance.

	
class cfme.utils.log.WarningsDeduplicationFilter

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

this filter is needed since something in the codebase causes the warnings
once filter to be reset, so we need to deduplicate on our own

there is no indicative codepath that is clearly at fault
so this low implementation cost solution was choosen to deduplicate off-band

	
filter(record)

	

	
class cfme.utils.log.WarningsRelpathFilter(name='')

	Bases: logging.Filter [https://docs.python.org/2.7/library/logging.html#logging.Filter]

filter to modify warnings messages, to use relative paths in the project

	
filter(record)

	

	
cfme.utils.log.add_stdout_handler(logger)

	Look for a stdout handler in the logger, add one if not present

	
cfme.utils.log.console_handler(level)

	

	
cfme.utils.log.create_sublogger(logger_sub_name)

	

	
cfme.utils.log.format_marker(mstring, mark='-')

	Creates a marker in log files using a string and leader mark.

This function uses the constant MARKER_LEN to determine the length of the marker,
and then centers the message string between padding made up of leader_mark characters.

	Parameters

	
	mstring – The message string to be placed in the marker.

	leader_mark – The marker character to use for leading and trailing.

Returns: The formatted marker string.

	Note: If the message string is too long to fit one character of leader/trailer and

	a space, then the message is returned as is.

	
class cfme.utils.log.logger_wrap(*args, **kwargs)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Sets up the logger by default, used as a decorator in utils.appliance

If the logger doesn’t exist, sets up a sensible alternative

	
cfme.utils.log.make_file_handler(filename, root='/home/docs/checkouts/readthedocs.org/user_builds/cfme-tests/checkouts/17.27.0/log', level=None, **kw)

	

	
cfme.utils.log.nth_frame_info(n)

	Inspect the stack to determine the filename and lineno of the code running at the “n”th frame

	Parameters

	n – Number of the stack frame to inspect

Raises IndexError if the stack doesn’t contain the nth frame (the caller should know this)

Returns a frameinfo namedtuple as described in inspect [https://docs.python.org/2.7/library/inspect.html#inspect.getframeinfo]

	
cfme.utils.log.setup_for_worker(workername, loggers=('cfme', 'py.warnings'))

	

	
cfme.utils.log.setup_logger(logger)

	

cfme.utils.log_validator module

	
class cfme.utils.log_validator.LogValidator(remote_filename, **kwargs)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Log content validator class provides methods
to fix the log content before test is started,
and validate the content of log during test execution,
according to predefined patterns.
Predefined patterns are:

	Logs which should be skipped. Skip further checks on particular line if matched

	Logs which should cause failure of test.

	Logs which are expected to be matched, otherwise fail.

The priority of patterns to be checked are defined in above order.
Skipping patterns have priority over other ones,
to be possible to skip particular ERROR log,
but fail for wider range of other ERRORs.

	Parameters

	
	remote_filename – path to the remote log file

	skip_patterns – array of skip regex patterns

	failure_patterns – array of failure regex patterns

	matched_patterns – array of expected regex patterns to be matched

Usage:

.. code-block:: python
 evm_tail = LogValidator('/var/www/miq/vmdb/log/evm.log',
 skip_patterns=['PARTICULAR_ERROR'],
 failure_patterns=['.*ERROR.*'],
 matched_patterns=['PARTICULAR_INFO'])
 evm_tail.fix_before_start()
 evm_tail.validate_logs()

	
fix_before_start()

	

	
validate_logs()

	

cfme.utils.net module

	
cfme.utils.net.ip_echo_socket(port=32123)

	A simple socket server, for use with my_ip_address()

	
cfme.utils.net.is_pingable(ip_addr)

	verifies the specified ip_address is reachable or not.

	Parameters

	ip_addr – ip_address to verify the PING.

returns: return True is ip_address is pinging else returns False.

	
cfme.utils.net.my_ip_address(http=False)

	Get the ip address of the host running tests using the service listed in cfme_data[‘ip_echo’]

The ip echo endpoint is expected to write the ip address to the socket and close the
connection. See a working example of this in ip_echo_socket().

	
cfme.utils.net.net_check(port, addr=None, force=False)

	Checks the availablility of a port

	
cfme.utils.net.net_check_remote(port, addr=None, machine_addr=None, ssh_creds=None, force=False)

	Checks the availability of a port from outside using another machine (over SSH)

	
cfme.utils.net.random_port(tcp=True)

	Get a random port number for making a socket

	Parameters

	tcp – Return a TCP port number if True, UDP if False

This may not be reliable at all due to an inherent race condition. This works
by creating a socket on an ephemeral port, inspecting it to see what port was used,
closing it, and returning that port number. In the time between closing the socket
and opening a new one, it’s possible for the OS to reopen that port for another purpose.

In practical testing, this race condition did not result in a failure to (re)open the
returned port number, making this solution squarely “good enough for now”.

	
cfme.utils.net.resolve_hostname(hostname, force=False)

	Cached DNS resolver. If the hostname does not resolve to an IP, returns None.

	
cfme.utils.net.resolve_ips(host_iterable, force_dns=False)

	Takes list of hostnames, ips and another things. If the item is not an IP, it will be tried
to be converted to an IP. If that succeeds, it is appended to the set together with original
hostname. If it can’t be resolved, just the original hostname is appended.

cfme.utils.ocp_cli module

	
class cfme.utils.ocp_cli.OcpCli(provider)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

This class provides CLI functionality for Openshift provider.

	
close()

	

	
run_command(*args, **kwargs)

	

cfme.utils.path module

Project path helpers

Contains py.path.local [http://pylib.readthedocs.org/en/latest/path.html] objects for accessing common project locations.

Paths rendered below will be different in your local environment.

	
cfme.utils.path.conf_path = local('/home/docs/checkouts/readthedocs.org/user_builds/cfme-tests/checkouts/17.27.0/conf')

	conf yaml storage, cfme_tests/conf/

	
cfme.utils.path.data_path = local('/home/docs/checkouts/readthedocs.org/user_builds/cfme-tests/checkouts/17.27.0/data')

	datafile storage, cfme_tests/data/

	
cfme.utils.path.docs_path = local('/home/docs/checkouts/readthedocs.org/user_builds/cfme-tests/checkouts/17.27.0/docs')

	doc root, where these file came from! cfme_tests/docs/

	
cfme.utils.path.get_rel_path(absolute_path_str)

	Get a relative path for object in the project root

	Parameters

	absolute_path_str – An absolute path to a file anywhere under project_path

Note

This will be a no-op for files that are not in project_path

	
cfme.utils.path.log_path = local('/home/docs/checkouts/readthedocs.org/user_builds/cfme-tests/checkouts/17.27.0/log')

	log storage, cfme_tests/log/

	
cfme.utils.path.orchestration_path = local('/home/docs/checkouts/readthedocs.org/user_builds/cfme-tests/checkouts/17.27.0/data/orchestration')

	orchestration datafile storage, cfme_tests/data/orchestration

	
cfme.utils.path.patches_path = local('/home/docs/checkouts/readthedocs.org/user_builds/cfme-tests/checkouts/17.27.0/data/patches')

	patch files (diffs)

	
cfme.utils.path.project_path = local('/home/docs/checkouts/readthedocs.org/user_builds/cfme-tests/checkouts/17.27.0')

	The project root, cfme_tests/

	
cfme.utils.path.resources_path = local('/home/docs/checkouts/readthedocs.org/user_builds/cfme-tests/checkouts/17.27.0/data/resources')

	resource files root directory, cfme_tests/data/resources

	
cfme.utils.path.results_path = local('/home/docs/checkouts/readthedocs.org/user_builds/cfme-tests/checkouts/17.27.0/results')

	results path for performance tests, cfme_tests/results/

	
cfme.utils.path.scripts_data_path = local('/home/docs/checkouts/readthedocs.org/user_builds/cfme-tests/checkouts/17.27.0/scripts/data')

	interactive scripts’ data, cfme_tests/scripts/data

	
cfme.utils.path.scripts_path = local('/home/docs/checkouts/readthedocs.org/user_builds/cfme-tests/checkouts/17.27.0/scripts')

	interactive scripts, cfme_tests/scripts/

	
cfme.utils.path.template_path = local('/home/docs/checkouts/readthedocs.org/user_builds/cfme-tests/checkouts/17.27.0/data/templates')

	jinja2 templates, use with jinja2.FileSystemLoader

cfme.utils.perf module

Functions that performance tests use.

	
cfme.utils.perf.collect_log(ssh_client, log_prefix, local_file_name, strip_whitespace=False)

	Collects all of the logs associated with a single log prefix (ex. evm or top_output) and
combines to single gzip log file. The log file is then scp-ed back to the host.

	
cfme.utils.perf.convert_top_mem_to_mib(top_mem)

	Takes a top memory unit from top_output.log and converts it to MiB

	
cfme.utils.perf.generate_statistics(the_list, decimals=2)

	Returns comma seperated statistics over a list of numbers.

	Returns: list of samples(runs), minimum, average, median, maximum,

	stddev, 90th(percentile),
99th(percentile)

	
cfme.utils.perf.get_worker_pid(worker_type)

	Obtains the pid of the first worker with the worker_type specified

	
cfme.utils.perf.set_rails_loglevel(level, validate_against_worker='MiqUiWorker')

	Sets the logging level for level_rails and detects when change occured.

cfme.utils.perf_message_stats module

Functions for performance analysis/charting of the backend messages and top_output from an
appliance.

	
class cfme.utils.perf_message_stats.MiqMsgBucket

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
class cfme.utils.perf_message_stats.MiqMsgLists

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
class cfme.utils.perf_message_stats.MiqMsgStat

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
class cfme.utils.perf_message_stats.MiqWorker

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
cfme.utils.perf_message_stats.evm_to_messages(evm_file, filters)

	

	
cfme.utils.perf_message_stats.evm_to_workers(evm_file)

	

	
cfme.utils.perf_message_stats.generate_appliance_charts(top_appliance, charts_dir, start_index, end_index)

	

	
cfme.utils.perf_message_stats.generate_hourly_charts_and_csvs(hourly_buckets, charts_dir)

	

	
cfme.utils.perf_message_stats.generate_raw_data_csv(rawdata_dict, csv_file_name)

	

	
cfme.utils.perf_message_stats.generate_total_time_charts(msg_cmds, charts_dir)

	

	
cfme.utils.perf_message_stats.generate_worker_charts(workers, top_workers, charts_dir)

	

	
cfme.utils.perf_message_stats.get_first_miqtop(top_log_file)

	

	
cfme.utils.perf_message_stats.get_msg_args(log_line)

	

	
cfme.utils.perf_message_stats.get_msg_cmd(log_line)

	

	
cfme.utils.perf_message_stats.get_msg_del(log_line)

	

	
cfme.utils.perf_message_stats.get_msg_deq(log_line)

	

	
cfme.utils.perf_message_stats.get_msg_id(log_line)

	

	
cfme.utils.perf_message_stats.get_msg_timestamp_pid(log_line)

	

	
cfme.utils.perf_message_stats.hour_bucket_init(init)

	

	
cfme.utils.perf_message_stats.line_chart_render(title, xtitle, ytitle, x_labels, lines, fname, stacked=False)

	

	
cfme.utils.perf_message_stats.messages_to_hourly_buckets(messages, test_start, test_end)

	

	
cfme.utils.perf_message_stats.messages_to_statistics_csv(messages, statistics_file_name)

	

	
cfme.utils.perf_message_stats.perf_process_evm(evm_file, top_file)

	

	
cfme.utils.perf_message_stats.provision_hour_buckets(test_start, test_end, init=True)

	

	
cfme.utils.perf_message_stats.split_appliance_charts(top_appliance, charts_dir)

	

	
cfme.utils.perf_message_stats.top_to_appliance(top_file)

	

	
cfme.utils.perf_message_stats.top_to_workers(workers, top_file)

	

cfme.utils.ports module

cfme.utils.pretty module

	
class cfme.utils.pretty.Pretty

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

A mixin that prints repr as <MyClass field1=…, field2=…>. The
fields that will be printed should be stored in the class’s
pretty_attrs attribute (none by default).

	
pretty_attrs = []

	

	
cfme.utils.pretty.attr_repr(o, attr)

	Return the string repr of the attribute attr on the object o

	
cfme.utils.pretty.pr_obj(attrs)

	

	
cfme.utils.pretty.pretty_repr(attrs, o)

	

cfme.utils.providers module

cfme.utils.pytest_shortcuts module

	
cfme.utils.pytest_shortcuts.extract_fixtures_values(item)

	Extracts names and values of all the fixtures that the test has.

	Parameters

	item – py.test test item

	Returns

	dict [https://docs.python.org/2.7/library/stdtypes.html#dict] with fixtures and their values.

	
cfme.utils.pytest_shortcuts.fixture_filter(metafunc, argnames, argvalues)

	Filter fixtures based on fixturenames in
the function represented by metafunc

	
cfme.utils.pytest_shortcuts.trim_items(iterable, keep_index)

	

cfme.utils.quote module

	
cfme.utils.quote.quote(*args)

	Combine the arguments into a single string and escape any and
all shell special characters or (reserved) words. The shortest
possible string (correctly quoted suited to pass to a bash shell)
is returned.

cfme.utils.release module

	
cfme.utils.release.clean_commit(commit_msg)

	

cfme.utils.repo_gen module

	
cfme.utils.repo_gen.build_file(urls)

	Builds a update.repo file based on the urls given

	
cfme.utils.repo_gen.process_url(url)

	Pulls urls from a network file

cfme.utils.rest module

Helper functions for tests using REST API.

	
cfme.utils.rest.assert_response(rest_obj, success=None, http_status=None, results_num=None, task_wait=600)

	Asserts that the response HTTP status code and content is as expected.

If specific http_status is not given, we simply check that the status was a
successful response code via requests.Response.__bool__()

If response status code is ‘204’, ensures there is no content.

Example of verifying a success response:

assert_response(appliance)

Example of verifying a failure response:

with error.expected('ActiveRecord::RecordNotFound'):
 collection.action.delete(some_stuff)
assert_response(appliance, http_status=404)

Note: For below args, ‘results’ refers to rest_obj.last_response.json()[‘results’]

	Parameters

	
	-- instance of cfme.utils.Appliance (rest_obj) – or cfme.utils.appliance.MiqApi

	-- if defined, checks each result in results to ensure that result['success'] (success) – is equal to the value defined here

	http_status (int [https://docs.python.org/2.7/library/functions.html#int] or tuple of int) – we simply verify that the response was a success

	results_num (int [https://docs.python.org/2.7/library/functions.html#int]) –

	task_wait (int [https://docs.python.org/2.7/library/functions.html#int]) – the API to ensure that task has moved to ‘finished’ and wait ‘task_wait’ seconds for
that state change to occur

	
cfme.utils.rest.create_resource(rest_api, col_name, col_data, col_action='create', substr_search=False)

	Creates new resource in collection.

	
cfme.utils.rest.delete_resources_from_collection(resources, collection=None, not_found=None, num_sec=10, delay=2, check_response=True)

	Checks that delete from collection works as expected.

	
cfme.utils.rest.delete_resources_from_detail(resources, method='POST', num_sec=10, delay=2, check_response=True)

	Checks that delete from detail works as expected.

	
cfme.utils.rest.get_vms_in_service(service)

	Gets list of vm entities associated with the service.

	
cfme.utils.rest.query_resource_attributes(resource, soft_assert=None)

	Checks that all available attributes/subcollections are really accessible.

cfme.utils.smem_memory_monitor module

Monitor Memory on a CFME/Miq appliance and builds report&graphs displaying usage per process.

	
class cfme.utils.smem_memory_monitor.SmemMemoryMonitor(ssh_client, scenario_data)

	Bases: threading.Thread [https://docs.python.org/2.7/library/threading.html#threading.Thread]

	
create_process_result(process_results, starttime, process_pid, process_name, memory_by_pid)

	

	
get_appliance_memory(appliance_results, plottime)

	

	
get_evm_workers()

	

	
get_miq_server_id()

	

	
get_pids_memory()

	

	
run()

	

	
cfme.utils.smem_memory_monitor.add_workload_quantifiers(quantifiers, scenario_data)

	

	
cfme.utils.smem_memory_monitor.compile_per_process_results(procs_to_compile, process_results, ts_end)

	

	
cfme.utils.smem_memory_monitor.create_dict(attr_dict)

	

	
cfme.utils.smem_memory_monitor.create_report(scenario_data, appliance_results, process_results, use_slab, grafana_urls)

	

	
cfme.utils.smem_memory_monitor.generate_raw_data_csv(directory, appliance_results, process_results)

	

	
cfme.utils.smem_memory_monitor.generate_summary_csv(file_name, appliance_results, process_results, provider_names, version_string)

	

	
cfme.utils.smem_memory_monitor.generate_summary_html(directory, version_string, appliance_results, process_results, scenario_data, provider_names, grafana_urls)

	

	
cfme.utils.smem_memory_monitor.generate_workload_html(directory, ver, scenario_data, provider_names, grafana_urls)

	

	
cfme.utils.smem_memory_monitor.get_scenario_html(scenario_data)

	

	
cfme.utils.smem_memory_monitor.graph_all_miq_workers(graph_file_path, process_results, provider_names)

	

	
cfme.utils.smem_memory_monitor.graph_appliance_measurements(graphs_path, ver, appliance_results, use_slab, provider_names)

	

	
cfme.utils.smem_memory_monitor.graph_individual_process_measurements(graph_file_path, process_results, provider_names)

	

	
cfme.utils.smem_memory_monitor.graph_same_miq_workers(graph_file_path, process_results, provider_names)

	

	
cfme.utils.smem_memory_monitor.install_smem(ssh_client)

	

	
cfme.utils.smem_memory_monitor.summary_csv_measurement_dump(csv_file, process_results, measurement)

	

cfme.utils.smtp_collector_client module

	
class cfme.utils.smtp_collector_client.SMTPCollectorClient(host='localhost', port=1026)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Client for smtp_collector.py script

	Parameters

	
	host – Host where collector runs (Default: localhost)

	port – Port where the collector query interface listens (Default: 1026)

	
clear_database()

	Clear the database in collector

Returns: bool [https://docs.python.org/2.7/library/functions.html#bool]

	
get_emails(**filter)

	Get emails. Eventually apply filtering on SQLite level

Time variables can be passed as instances of utils.timeutil.parsetime. That
carries out the necessary conversion automatically.

_like args - see SQLite’s LIKE operator syntax

	Keywords:

	from_address: E-mail matches.
to_address: E-mail matches.
subject: Subject matches exactly.
subject_like: Subject is LIKE.
time_from: E-mails arrived since this time.
time_to: E-mail arrived before this time.
text: Text matches exactly.
text_like: Text is LIKE.

Returns: List of dicts with e-mails matching the criteria.

	
get_html_report()

	

	
set_test_name(test_name)

	Set the test name for folder name in the collector.

	Parameters

	test_name – Name to set

Returns: bool [https://docs.python.org/2.7/library/functions.html#bool] with result.

cfme.utils.soft_get module

	
exception cfme.utils.soft_get.MultipleResultsException

	Bases: exceptions.Exception [https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

	
cfme.utils.soft_get.soft_get(obj, field_base_name, dict_=False, case_sensitive=False, best_match=True, dont_include=None)

	This function used for cases that we want to get some attribute that we
either know only few parts of its name or want to prevent from case issues.

Example

Imagine you have a relationships table and you want to get ‘image’ field.
Since sometimes the exact name of the field is changing among versions, pages, etc.
it could be appear as ‘Images’, ‘Image’, ‘Container Images’, Containers Images’, etc.
Since we don’t care for the exact name and know that ‘image’ is a unique in the table,
we can use this function to prevent from this complexity.

	Parameters

	
	obj (*) – The object which we want to get the attribute

	field_base_name (*) – The base name, a string that we know
for sure that is a sub-string of the target field

	dict (*) – Whether this is a dict AND we want to perform the same functionality on its keys

	case_sensitive (*) – Whether the search is a sensitive case.

	best_match (*) –
	If True: in case that it found more than 1 match field,

	it will take the closest one

	If False: in case that it found more than 1 match field,

	it will raise an error

	dont_include (*) – Strings that should not be a part of the field.
Used to prevent cases like: soft_get(obj, ‘image’) -> obj.image_registry

	Returns

	The value of the target attribute

cfme.utils.ssh module

	
class cfme.utils.ssh.SSHClient(stream_output=False, **connect_kwargs)

	Bases: paramiko.client.SSHClient

paramiko.SSHClient wrapper

Allows copying/overriding and use as a context manager
Constructor kwargs are handed directly to paramiko.SSHClient.connect()

	Parameters

	
	container – If specified, then it is assumed that the VM hosts a container of CFME. The
param then contains the name of the container.

	project – openshift’s project which holds CFME pods

	is_pod – If specified and True, then it is assumed that the target is a podified openshift
app and container then specifies the name of the pod to interact with.

	stdout – If specified, overrides the system stdout file for streaming output.

	stderr – If specified, overrides the system stderr file for streaming output.

	
appliance_has_netapp()

	

	
client_address()

	

	
close()

	

	
connect(hostname=None, **kwargs)

	

	
connected

	

	
cpu_spike(seconds=60, cpus=2, **kwargs)

	Creates a CPU spike of specific length and processes.

	Parameters

	
	seconds – How long the spike should last.

	cpus – How many processes to use.

	Returns

	See SSHClient.run_command()

	
get_build_date()

	

	
get_build_datetime()

	

	
get_file(remote_file, local_path='', **kwargs)

	

	
get_transport(*args, **kwargs)

	

	
is_appliance_downstream()

	

	
is_container

	

	
open_sftp(*args, **kwargs)

	

	
patch_file(local_path, remote_path, md5=None)

	Patches a single file on the appliance

	Parameters

	
	local_path – Path to patch (diff) file

	remote_path – Path to file to be patched (on the appliance)

	md5 – MD5 checksum of the original file to check if it has changed

	Returns

	True if changes were applied, False if patching was not necessary

Note

If there is a .bak file present and the file-to-be-patched was
not patched by the current patch-file, it will be used to restore it first.
Recompiling assets and restarting appropriate services might be required.

	
put_file(local_file, remote_file='.', **kwargs)

	

	
run_command(command, timeout=1200.0, reraise=False, ensure_host=False, ensure_user=False, container=None)

	Run a command over SSH.

	Parameters

	
	command – The command. Supports taking dicts as version picking.

	timeout – Timeout after which the command execution fails.

	reraise – Does not muffle the paramiko exceptions in the log.

	ensure_host – Ensure that the command is run on the machine with the IP given, not any
container or such that we might be using by default.

	ensure_user – Ensure that the command is run as the user we logged in, so in case we are
not root, setting this to True will prevent from running sudo.

	container – allows to temporarily override default container

	Returns

	A SSHResult instance.

	
run_rails_command(command, timeout=1200.0, **kwargs)

	

	
run_rails_console(command, sandbox=False, timeout=1200.0)

	Runs Ruby inside of rails console. stderr is thrown away right now but could prove useful
for future performance analysis of the queries rails runs. The command is encapsulated by
double quotes. Sandbox rolls back all changes made to the database if used.

	
run_rake_command(command, timeout=1200.0, disable_db_check=False, **kwargs)

	

	
status

	Parses the output of the systemctl status evmserverd.

	Returns

	A dictionary containing servers and workers, both lists. Each of the lists
contains dictionaries, one per line. You can refer inside the dictionary using the
headers.

	
uptime()

	

	
username

	

	
vmdb_version

	

	
class cfme.utils.ssh.SSHResult(command, rc, output)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Allows rich comparison for more convenient testing.

Given you have result which is an instance of SSHResult, you can do as follows

assert result # If $?=0, then the result evaluates to a truthy value and passes the assert
assert result == 'installed' # direct matching of the output value
assert 'something' in result # like before but uses the ``in`` matching for a partial match
assert result == 5 # assert that the $?=5 (you can use <, >, ...)

Therefore this class can act like 3 kinds of values

	Like a string (with the output of the command) when compared with or cast to one

	Like a number (with the return code) when compared with or cast to one

	Like a bool, giving truthy value if the return code was zero. That is related to the
preceeding bullet.

But it still subclasses the original class therefore all old behaviour is kept. But you don’t
have to expand the tuple or pull the value out if you are checking only one of them.

	
command = Attribute(name='command', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
failed

	

	
output = Attribute(name='output', default=NOTHING, validator=None, repr=False, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
rc = Attribute(name='rc', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
success

	

	
class cfme.utils.ssh.SSHTail(remote_filename, **connect_kwargs)

	Bases: cfme.utils.ssh.SSHClient

	
lines_as_list()

	Return lines as list

	
raw_lines()

	

	
raw_string()

	

	
set_initial_file_end()

	

	
cfme.utils.ssh.keygen()

	Generate temporary ssh keypair for appliance SSH auth

Intended not only to simplify ssh access to appliances, but also to simplify
SSH access from one appliance to another in multi-appliance setups

cfme.utils.stats module

	
cfme.utils.stats.tol_check(ref, compare, min_error=0.05, low_val_correction=3.0)

	Tolerance check

The tolerance check is very simple. In essence it checks to ensure
that the compare value is within min_error percentage of the ref value.
However there are special conditions.

If the ref value is zero == the compare value we will alwys return True to avoid
calculation overhead.

If the ref value is zero we check if the compare value is below the low_val_correction
threshold.

The low value correction is also used if ref is small. In this case, if one minus the
difference of the ref and low value correction / reference value yields greater error
correction, then this is used.

For example, if the reference was 1 and the compare was 2, with a min_error set to the
default, the tolerance check would return False. At low values this is probably undesirable
and so, the low_val_correction allows for a greater amount of error at low values.
As an example, with the lvc set to 3, the allowe error would be much higher, allowing the
tolerance check to pass.

The lvc will only take effect if the error it produces is greater than the min_error.

	Parameters

	
	ref – The reference value

	compare – The comparison value

	min_error – The minimum allowed error

	low_val_correction – A correction value for lower values

cfme.utils.testgen module

cfme.utils.timeutil module

This module should contain all things associated with time or date that can be shared.

	
cfme.utils.timeutil.nice_seconds(t_s)

	Return nicer representation of seconds

	
class cfme.utils.timeutil.parsetime

	Bases: datetime.datetime [https://docs.python.org/2.7/library/datetime.html#datetime.datetime]

Modified class with loaders for our datetime formats.

	
american_date_only_format = '%m/%d/%y'

	

	
american_minutes = '%m/%d/%y %H:%M'

	

	
american_minutes_with_utc = '%m/%d/%y %H:%M UTC'

	

	
american_with_utc_format = '%m/%d/%y %H:%M:%S UTC'

	

	
classmethod from_american_date_only(time_string)

	Convert the string representation of the time into parsetime()

CFME’s format here is ‘mm/dd/yy’

	Parameters

	time_string – String with time to parse

Returns: :py:class`utils.timeutil.datetime()` object

	
classmethod from_american_minutes(time_string)

	Convert the string representation of the time into parsetime()

CFME’s format here is ‘mm/dd/yy hh:mm’

	Parameters

	time_string – String with time to parse

Returns: :py:class`utils.timeutil.datetime()` object

	
classmethod from_american_minutes_with_utc(time_string)

	Convert the string representation of the time into parsetime()

CFME’s format here is ‘mm/dd/yy hh:mm UTC’

	Parameters

	time_string – String with time to parse

Returns: :py:class`utils.timeutil.datetime()` object

	
classmethod from_american_with_utc(time_string)

	Convert the string representation of the time into parsetime()

CFME’s format here is ‘mm/dd/yy hh:mm:ss UTC’

	Parameters

	time_string – String with time to parse

Returns: :py:class`utils.timeutil.datetime()` object

	
classmethod from_iso_date(time_string)

	Convert the string representation of the time into parsetime()

Format here is ‘YYYY-MM-DD’

	Parameters

	time_string – String with time to parse

Returns: :py:class`utils.timeutil.datetime()` object

	
classmethod from_iso_with_utc(time_string)

	Convert the string representation of the time into parsetime()

CFME’s format here is ‘mm-dd-yy hh:mm:ss UTC’

	Parameters

	time_string – String with time to parse

Returns: :py:class`utils.timeutil.datetime()` object

	
classmethod from_long_date_format(time_string)

	Convert the string representation of the time into parsetime()

Format here is ‘%B %d, %Y %H:%M’.

	Parameters

	time_string – String with time to parse

Returns: :py:class`utils.timeutil.datetime()` object

	
classmethod from_request_format(time_string)

	Convert the string representation of the time into parsetime()

Format here is ‘YYYY-MM-DD-HH-MM-SS’. Used for transmitting data over http

	Parameters

	time_string – String with time to parse

Returns: :py:class`utils.timeutil.datetime()` object

	
classmethod from_saved_report_title_format(time_string)

	Convert the string representation of the time into parsetime()

Format here is ‘%a, %d %b %Y %H:%M:%S +0000’.

	Parameters

	time_string – String with time to parse

Returns: :py:class`utils.timeutil.datetime()` object

	
iso_date_only_format = '%Y-%m-%d'

	

	
iso_with_utc_format = '%Y-%m-%d %H:%M:%S UTC'

	

	
long_date_format = '%B %d, %Y %H:%M'

	

	
request_format = '%Y-%m-%d-%H-%M-%S'

	

	
saved_report_title_format = '%a, %d %b %Y %H:%M:%S +0000'

	

	
to_american_date_only()

	Convert the this object to string representation in american date only format.

CFME’s format here is ‘mm/dd/yy’

Returns: :py:class`str` object

	
to_american_minutes()

	Convert the this object to string representation in american with just minutes.

CFME’s format here is ‘mm/dd/yy hh:mm’

Returns: :py:class`str` object

	
to_american_minutes_with_utc()

	Convert the this object to string representation in american with just minutes.

CFME’s format here is ‘mm/dd/yy hh:mm’

Returns: :py:class`str` object

	
to_american_with_utc()

	Convert the this object to string representation in american with UTC.

CFME’s format here is ‘mm/dd/yy hh:mm:ss UTC’

Returns: :py:class`str` object

	
to_iso_date()

	Convert the this object to string representation in ISO format.

Format here is ‘YYYY-MM-DD’

Returns: :py:class`str` object

	
to_iso_with_utc()

	Convert the this object to string representation in american with UTC.

CFME’s format here is ‘mm-dd-yy hh:mm:ss UTC’

Returns: :py:class`str` object

	
to_long_date_format()

	Convert the this object to string representation in http request.

Format here is ‘%B %d, %Y %H:%M’

Returns: :py:class`str` object

	
to_request_format()

	Convert the this object to string representation in http request.

Format here is ‘YYYY-MM-DD-HH-MM-SS’

Returns: :py:class`str` object

	
to_saved_report_title_format()

	Convert the this object to string representation in Saved Report title.

Format here is ‘%a, %d %b %Y %H:%M:%S +0000’

Returns: :py:class`str` object

cfme.utils.tracer module

To use the function tracer, simply import the trace object and wrap a function with it

from utils.tracer import trace:

@trace(scope=3)
def func():
 print("something")

	
class cfme.utils.tracer.FileStore

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
cfme.utils.tracer.trace(scope=1, file_name_limit=None)

	Very simple tracer for functions and tests

The tracer module is a very simple tracer that prints out lines of code as they are
executed. It is useful when debugging tests so that you can actually see the lines of
code being executed and hence determine where blocks are happening. This is not a
substitute for good logging but a simple enhancement.

	Parameters

	scope – This determines the depth of nested functions to go down, defaults to 1

cfme.utils.trackerbot module

cfme.utils.units module

	
class cfme.utils.units.Unit(number, prefix, unit_type)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

This class serves for simple comparison of numbers that have units.

Imagine you pull a text value from the UI. 2 GB. By doing Unit.parse('2 GB') you get an
instance of Unit, which is comparable.

You can compare two Unit instances or you can compare Unit with
int [https://docs.python.org/2.7/library/functions.html#int], float [https://docs.python.org/2.7/library/functions.html#float] or any str [https://docs.python.org/2.7/library/functions.html#str] as long as it can go through the
Unit.parse().

If you compare Unit only (or a string that gets subsequently parsed), it also takes
the kind of the unit it is, you cannot compare bytes with hertzes. It then calculates the
absolute value in the base units and that gets compared.

If you compare with a number, it does it like it was the number of the same unit. So eg.
doing:

Unit.parse('2 GB') == 2 *1024 * 1024 * 1024 `` is True

	
absolute

	

	
number

	

	
classmethod parse(s)

	

	
prefix

	

	
unit_type

	

	
cfme.utils.units.parse_number(str_)

	parsing only the numbers in the string

cfme.utils.update module

	
class cfme.utils.update.Updateable

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

A mixin that helps make an object easily updateable. Two Updateables
are equal if all their public fields are equal.

	
cfme.utils.update.all_public_fields_equal(a, b)

	

	
cfme.utils.update.public_fields(o)

	Returns: a dict of fields whose name don’t start with underscore.

	
cfme.utils.update.update(*args, **kwds)

	Update an object and then sync it with an external application.

It will copy the object into whatever is named in the ‘as’
clause, run the ‘with’ code block (which presumably alters the
object). Then the update() method on the original object will be
called with a dict containing only changed fields, and kwargs
passed to this function.

If an exception is thrown by update(), the original object will be restored,
otherwise the updated object will be returned.

Usage:

with update(myrecord):
 myrecord.lastname = 'Smith'

	
cfme.utils.update.updates(old, new)

	Return a dict of fields that are different between old and new.

cfme.utils.varmeth module

Method variant decorator. You specify the desired method variant by a kwarg.

from cfme.utils.varmeth import variable

class SomeClass(object):
 secret = 42

 @variable
 def mymethod(self):
 print("I am default!")

 @mymethod.variant("foo", "foo_too")
 def i_foo(self):
 print("I foo!")

 @mymethod.variant("bar")
 def in_bar(self):
 print("In bar!")

 @variable(alias="foo")
 def myfoo(self):
 print("foo!")

s = SomeClass()
s.mymethod() # => I am default!
s.mymethod(method="moo") # => I am default!
s.mymethod(method="foo") # => I foo!
s.mymethod(method="foo_too") # => I foo!
s.mymethod(method="bar") # => In bar!
s.mymethod(method="baz") # => AttributeError
s.myfoo() # => foo!
s.myfoo(method="foo") # => foo!

	Original idea:

	Pete Savage

	Implementation:

	Milan Falešník

	
class cfme.utils.varmeth.variable(*args, **kwargs)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Create a new variable method.

	
variant(*names)

	Register a new variant of a method under a name.

cfme.utils.version module

	
cfme.utils.version.appliance_build_date()

	

	
cfme.utils.version.appliance_build_datetime()

	

	
cfme.utils.version.appliance_has_netapp()

	

	
cfme.utils.version.appliance_is_downstream()

	

	
cfme.utils.version.current_version()

	A lazy cached method to return the appliance version.

Do not catch errors, since generally we cannot proceed with
testing, without knowing the server version.

	
cfme.utils.version.get_stream(ver)

	Return a stream name for given Version obj or version string

	
cfme.utils.version.parsedate(o)

	

	
cfme.utils.version.pick(v_dict, active_version=None)

	Collapses an ambiguous series of objects bound to specific versions
by interrogating the CFME Version and returning the correct item.

cfme.utils.video module

Video recording library

Configuration for this module + fixture:
.. code-block:: yaml

	logging:

	
	video:

	enabled: True
dir: video
display: “:99”
quality: 10

	
class cfme.utils.video.Recorder(filename, display=None, quality=None)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Recorder class

Usage:

with Recorder(filename):
 # do something

or
r = Recorder(filename)
r.start()
do something
r.stop()

The first way is preferred, obviously

	
start()

	

	
stop()

	

	
cfme.utils.video.process_running(pid)

	Check whether specified process is running

cfme.utils.virtual_machines module

cfme.utils.wait module

cfme.utils.workloads module

Functions for workloads.

	
cfme.utils.workloads.get_capacity_and_utilization_replication_scenarios()

	

	
cfme.utils.workloads.get_capacity_and_utilization_scenarios()

	

	
cfme.utils.workloads.get_idle_scenarios()

	

	
cfme.utils.workloads.get_memory_leak_scenarios()

	

	
cfme.utils.workloads.get_provisioning_scenarios()

	

	
cfme.utils.workloads.get_refresh_providers_scenarios()

	

	
cfme.utils.workloads.get_refresh_vms_scenarios()

	

	
cfme.utils.workloads.get_smartstate_analysis_scenarios()

	

	
cfme.utils.workloads.get_ui_single_page_scenarios()

	

cfme.dashboard module

	
class cfme.dashboard.Dashboard(parent, name)

	Bases: cfme.modeling.base.BaseEntity

	
dashboard_view

	Returns a view pointed at a particular dashboard.

	
drag_and_drop(dragged_widget_or_name, dropped_widget_or_name)

	Drags and drops widgets onto each other.

	
name = Attribute(name='name', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
class cfme.dashboard.DashboardCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

Represents the Dashboard page and can jump around various dashboards present.

	
ENTITY

	alias of Dashboard

	
all()

	

	
close_zoom()

	Closes any zoomed widget.

	
default

	Returns an instance of the Default Dashboard

	
refresh()

	Refreshes the dashboard view by forcibly clicking the navigation again.

	
zoomed_name

	Grabs the name of the currently zoomed widget.

	
class cfme.dashboard.DashboardDetails(obj, navigate_obj)

	Bases: cfme.utils.appliance.implementations.ui.CFMENavigateStep

	
VIEW

	alias of ParticularDashboardView

	
prerequisite

	This is a helper descriptor for destinations which are linked to an attribute of the object.

For instance, imagine you have an object that has an attribute(parent) which has a ‘ViewAll’,
destination that needs to be visited before you can click on ‘New’. In this instance,
you would need to make the ‘New’ destination use ‘ViewAll’ as a prerequisite. As this
would need no other special input, we can use NavigateToAttribute as a helper, supplying
only the name of the attribute which stores the object to be used in the navigation,
and the destination name. This will set prerequisite to be a callable that will navigate
to the prerequisite step.

	
step()

	

	
class cfme.dashboard.DashboardView(*args, **kwargs)

	Bases: cfme.base.login.BaseLoggedInPage

View that represents the Intelligence/Dashboard.

	
add_widget

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
dashboards

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
ensure_zoom_closed(*args, **kwargs)

	

	
is_displayed

	

	
reset_button

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
reset_widgets(*args, **kwargs)

	Clicks the reset button to reset widgets and handles the alert.

	
zoomed

	This class handles instantiating and caching of the widgets on view.

It stores the class and the parameters it should be instantiated with. Once it is accessed from
the instance of the class where it was defined on, it passes the instance to the widget class
followed by args and then kwargs.

It also acts as a counter, so you can then order the widgets by their “creation” stamp.

	
class cfme.dashboard.DashboardWidget(parent, name)

	Bases: cfme.modeling.base.BaseEntity

Represents a single UI dashboard widget.

	Parameters

	
	name – Name of the widget as displayed in the title.

	widget_collection – The widget collection linked to a dashboard

	
blank

	Returns whether the widget has not been generated before.

	
can_zoom

	Returns whether this widget can be zoomed.

	
close_zoom()

	Close zoom. Works theoretically for any widget, it is just exposed here.

	
content_type

	Returns the type of content of this widget

	
contents

	Returns the WT widget with contents of this dashboard widget.

	
dashboard

	

	
footer

	Return parsed footer value

	
is_zoomed

	Returns whether this widget is zoomed now.

	
last_in_column

	Returns whether this widget is the last in its column

	
minimize()

	Minimize this widget.

	
minimized

	Returns whether the widget is minimized or not.

	
name = Attribute(name='name', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
remove()

	Remove this widget.

	
restore()

	Maximize this widget.

	
time_next

	Returns a datetime when the widget will be updated.

	
time_updated

	Returns a datetime when the widget was last updated.

	
widget_view

	Returns a view of the particular widget.

	
zoom()

	Zoom this widget in.

	
class cfme.dashboard.DashboardWidgetCollection(parent, filters=NOTHING)

	Bases: cfme.modeling.base.BaseCollection

	
ENTITY

	alias of DashboardWidget

	
all(content_type=None)

	

	
dashboard_view

	

	
reset(cancel=False)

	Clicks the Reset widgets button.

	
class cfme.dashboard.Kebab(*args, **kwargs)

	Bases: widgetastic.widget.Widget

The so-called “kebab” widget of Patternfly.

<http://www.patternfly.org/pattern-library/widgets/#kebabs>

	Parameters

	button_id – id of the button tag inside the kebab. If not specified, first kebab available
will be used

	
BUTTON = './button'

	

	
ITEM = './ul/li/a[normalize-space(.)={}]'

	

	
ITEMS = './ul/li/a'

	

	
ROOT

	

	
UL = './ul[contains(@class, "dropdown-menu")]'

	

	
close(*args, **kwargs)

	Close the kebab

	
is_opened

	Returns opened state of the kebab.

	
items

	Lists all items in the kebab.

	Returns

	list of str [https://docs.python.org/2.7/library/functions.html#str]

	
open(*args, **kwargs)

	Open the kebab

	
select(*args, **kwargs)

	Select a specific item from the kebab.

	Parameters

	
	item – Item to be selected.

	close – Whether to close the kebab after selection. If the item is a link, you may want
to set this to False

	
class cfme.dashboard.ParticularDashboardView(*args, **kwargs)

	Bases: cfme.dashboard.DashboardView

	
is_displayed

	

cfme.exceptions module

Provides custom exceptions for the cfme module.

	
exception cfme.exceptions.AccordionItemNotFound

	Bases: cfme.exceptions.CFMEException

Raised when it’s not possible to locate and accordion item.

	
exception cfme.exceptions.AddProviderError

	Bases: cfme.exceptions.CFMEException

	
exception cfme.exceptions.ApplianceVersionException(msg, version)

	Bases: cfme.exceptions.CFMEException

Raised when functionality is not supported on this version of the appliance

	
exception cfme.exceptions.AuthModeUnknown

	Bases: cfme.exceptions.CFMEException

Raised if an invalid authenctication mode is passed to
cfme.configure.configuration.ServerAuthentication.configure_auth()

	
exception cfme.exceptions.AutomateImportError

	Bases: cfme.exceptions.CFMEException

Raised by scripts dealing with Automate when importing automate XML fails

	
exception cfme.exceptions.AvailabilityZoneNotFound

	Bases: cfme.exceptions.CFMEException

Raised if a specific Cloud Availability Zone cannot be found.

	
exception cfme.exceptions.BackupNotFoundError

	Bases: cfme.exceptions.CFMEException

Raised when volume backup not found

	
exception cfme.exceptions.BugException(bug_no, operation)

	Bases: cfme.exceptions.CFMEException

Raised by methods inside the framework that are broken due to a bug

	
exception cfme.exceptions.CFMEException

	Bases: exceptions.Exception [https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

Base class for exceptions in the CFME tree

Used to easily catch errors of our own making, versus errors from external libraries.

	
exception cfme.exceptions.CFMEExceptionOccured

	Bases: cfme.exceptions.CFMEException

Raised by when there is a Rails exception currently on page.

	
exception cfme.exceptions.CUCommandException

	Bases: cfme.exceptions.CFMEException

Raised when one of the commands run to set up a CU VM fails

	
exception cfme.exceptions.CandidateNotFound(d)

	Bases: cfme.exceptions.CFMEException

Raised if there is no candidate found whilst trying to traverse a tree

	
message

	

	
exception cfme.exceptions.CannotContinueWithNavigation

	Bases: cfme.exceptions.CFMEException

Used when it is not possible to continue with navigation.

Raising it will recycle the browser, therefore refresh the session. If you pass a string to
the constructor, it will be written to the log.

	
exception cfme.exceptions.CannotScrollException

	Bases: cfme.exceptions.CFMEException

Raised when even during the heaviest workarounds for scrolling failure comes.

	
exception cfme.exceptions.ChargebackRateNotFound

	Bases: cfme.exceptions.CFMEException

Raised when a given chargeback (compute or storage) rate is not found during navigation

	
exception cfme.exceptions.ClusterNotFound

	Bases: cfme.exceptions.CFMEException

Raised if a cluster is not found

	
exception cfme.exceptions.ConsoleNotSupported(product_name, version)

	Bases: cfme.exceptions.CFMEException

Raised by functions in cfme.configure.configuration when an invalid
console type is given

	
exception cfme.exceptions.ConsoleTypeNotSupported(console_type)

	Bases: cfme.exceptions.CFMEException

Raised by functions in cfme.configure.configuration when an invalid
console type is given

	
exception cfme.exceptions.DestinationNotFound

	Bases: cfme.exceptions.CFMEException

Raised during navigation where the navigator destination is not found

	
exception cfme.exceptions.ElementOrBlockNotFound

	Bases: cfme.exceptions.CFMEException

Raised if an Element or a Block is not found whilst locating

	
exception cfme.exceptions.FlavorNotFound

	Bases: cfme.exceptions.CFMEException

Raised if a specific cloud flavor cannot be found in the UI

	
exception cfme.exceptions.HostNotFound

	Bases: cfme.exceptions.CFMEException

Raised if a specific host cannot be found in UI.

	
exception cfme.exceptions.HostStatsNotContains

	Bases: cfme.exceptions.CFMEException

Raised if the hosts information does not contain the specified key whilst running
cfme.cloud.provider.Provider.do_stats_match().

	
exception cfme.exceptions.ImageNotFound

	Bases: cfme.exceptions.VmOrInstanceNotFound

Raised if a specific image cannot be found

	
exception cfme.exceptions.InstanceNotFound

	Bases: cfme.exceptions.VmOrInstanceNotFound

Raised if a specific instance cannot be found.

	
exception cfme.exceptions.ItemNotFound

	Bases: cfme.exceptions.CFMEException

Raised when an item is not found in general.

	
exception cfme.exceptions.KeyPairNotFound

	Bases: cfme.exceptions.CFMEException

Raised if a specific cloud key pair cannot be found in the UI

	
exception cfme.exceptions.LabelNotFoundException

	Bases: exceptions.Exception [https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

Raises when failed to remove label from object via cli

	
exception cfme.exceptions.ManyEntitiesFound

	Bases: cfme.exceptions.CFMEException

Raised when one or no items were expected but several/many items were obtained instead.

	
exception cfme.exceptions.MenuItemNotFound

	Bases: cfme.exceptions.CFMEException

Raised during navigation of certain menu item was not found.

	
exception cfme.exceptions.NavigationError(page_name)

	Bases: cfme.exceptions.CFMEException

Raised when pytest_selenium.go_to function is unable to navigate to the requested page.

	
exception cfme.exceptions.NodeNotFound

	Bases: cfme.exceptions.CFMEException

Raised if a specific container node cannot be found in the UI

	
exception cfme.exceptions.OptionNotAvailable

	Bases: cfme.exceptions.CFMEException

Raised if a specified option is not available.

	
exception cfme.exceptions.ProviderHasNoKey

	Bases: cfme.exceptions.CFMEException

Raised if the cfme.cloud.provider.Provider.mgmt() method is called
but the Provider instance has no key.

	
exception cfme.exceptions.ProviderHasNoProperty

	Bases: cfme.exceptions.CFMEException

Raised if the provider does not have the property requested whilst running
cfme.cloud.provider.Provider.do_stats_match().

	
exception cfme.exceptions.RBACOperationBlocked

	Bases: cfme.exceptions.CFMEException

Raised when a Role Based Access Control operation is blocked from execution due to invalid
permissions. Also thrown when trying to perform actions CRUD operations on roles/groups/users
that are CFME defaults

	
exception cfme.exceptions.RequestException

	Bases: cfme.exceptions.CFMEException

Raised if a request was not found or multiple rows matched during _request functions in
cfme.services.requests

	
exception cfme.exceptions.ResourcePoolNotFound

	Bases: cfme.exceptions.CFMEException

Raised if a specific cloud key pair cannot be found in the UI

	
exception cfme.exceptions.RoleNotFound

	Bases: cfme.exceptions.CFMEException

Raised when Deployment role not found

	
exception cfme.exceptions.ScheduleNotFound

	Bases: cfme.exceptions.CFMEException

Raised if a schedule was not found in
cfme.configure.configuration.Schedule.delete_by_name()

	
exception cfme.exceptions.SecurityGroupsNotFound

	Bases: cfme.exceptions.CFMEException

Raised if a specific cloud Security Groups cannot be found in the UI

	
exception cfme.exceptions.SnapshotNotFoundError

	Bases: cfme.exceptions.CFMEException

Raised when volume snapshot not found

	
exception cfme.exceptions.StackNotFound

	Bases: cfme.exceptions.CFMEException

Raised if a specific stack cannot be found.

	
exception cfme.exceptions.StatsDoNotMatch

	Bases: cfme.exceptions.CFMEException

Raised if the stats retrieved from CFME do not match those retrieved by wrapanapi

	
exception cfme.exceptions.StorageManagerNotFound

	Bases: cfme.exceptions.CFMEException

Raised when a Storage Manager is not found

	
exception cfme.exceptions.TaskFailedException(task_name, message)

	Bases: cfme.exceptions.CFMEException

Raised by functions in cfme/configure/tasks when task is finished
with some error message

	
exception cfme.exceptions.TemplateNotFound

	Bases: cfme.exceptions.CFMEException

Raised if a specific Template cannot be found.

	
exception cfme.exceptions.TenantNotFound

	Bases: cfme.exceptions.CFMEException

Raised if a specific tenant cannot be found

	
exception cfme.exceptions.ToolbarOptionGreyedOrUnavailable

	Bases: cfme.exceptions.CFMEException

Raised when toolbar wants to click item that is greyed or unavailable

	
exception cfme.exceptions.UnknownProviderType

	Bases: cfme.exceptions.CFMEException

Raised when the passed provider or provider type is not known or usable in given context
e.g. when getting a provider from yaml and the provider type doesn’t match any of known types
or when an infra provider is passed to the cloud’s instance_factory method

	
exception cfme.exceptions.VmNotFound

	Bases: cfme.exceptions.VmOrInstanceNotFound

Raised if a specific VM cannot be found.

	
exception cfme.exceptions.VmNotFoundViaIP

	Bases: cfme.exceptions.CFMEException

Raised if a specific VM cannot be found.

	
exception cfme.exceptions.VmOrInstanceNotFound

	Bases: cfme.exceptions.CFMEException

	
exception cfme.exceptions.VolumeNotFoundError

	Bases: cfme.exceptions.CFMEException

Raised if a specific cloud volume cannot be found in the UI

	
exception cfme.exceptions.ZoneNotFound

	Bases: cfme.exceptions.CFMEException

Raised when a specific Zone cannot be found in the method
cfme.configure.configuration.

cfme.js module

cfme.provisioning module

cfme.roles module

cfme.test_requirements module

Test requirements mapping

This module contains predefined pytest markers for CFME product requirements.

Please import the module instead of elements:

from cfme import test_requirements

pytestmark = [test_requirements.alert]

@test_requirments.quota
def test_quota_alert():
 pass

fixtures package

Subpackages

	fixtures.parallelizer package
	Submodules
	fixtures.parallelizer.hooks module

	fixtures.parallelizer.parallelizer_tester module

	fixtures.parallelizer.remote module

	Module contents
	The Workflow

Submodules

	fixtures.appliance module

	fixtures.appliance_update module

	fixtures.artifactor_plugin module

	fixtures.blockers module

	fixtures.browser module

	fixtures.cfme_data module

	fixtures.customer_db_migrate module

	fixtures.datafile module

	fixtures.dev_branch module

	fixtures.disable_forgery_protection module

	fixtures.events module

	fixtures.fixtureconf module

	fixtures.log module

	fixtures.maximized module

	fixtures.merkyl module

	fixtures.nelson module

	fixtures.node_annotate module

	fixtures.page_screenshots module

	fixtures.perf module

	fixtures.portset module

	fixtures.prov_filter module

	fixtures.provider module

	fixtures.pytest_store module

	fixtures.qa_contact module

	fixtures.randomness module

	fixtures.rbac module

	fixtures.sauce module

	fixtures.screenshots module

	fixtures.skip_not_implemented module

	fixtures.soft_assert module
	Functionality Overview

	fixtures.ssh_client module

	fixtures.templateloader module

	fixtures.terminalreporter module

	fixtures.ui_coverage module
	Usage

	General Notes

	Workflow Overview

Module contents

fixtures.parallelizer package

Submodules

	fixtures.parallelizer.hooks module

	fixtures.parallelizer.parallelizer_tester module

	fixtures.parallelizer.remote module

Module contents

Parallel testing, supporting arbitrary collection ordering

The Workflow

	Master py.test process starts up, inspects config to decide how many slave to start, if at all

	py.test config.option.appliances and the related –appliance cmdline flag are used to count
the number of needed slaves

	Slaves are started

	Master runs collection, blocks until slaves report their collections

	Slaves each run collection and submit them to the master, then block inside their runtest loop,
waiting for tests to run

	Master diffs slave collections against its own; the test ids are verified to match
across all nodes

	Master enters main runtest loop, uses a generator to build lists of test groups which are then
sent to slaves, one group at a time

	For each phase of each test, the slave serializes test reports, which are then unserialized on
the master and handed to the normal pytest reporting hooks, which is able to deal with test
reports arriving out of order

	Before running the last test in a group, the slave will request more tests from the master

	If more tests are received, they are run

	If no tests are received, the slave will shut down after running its final test

	After all slaves are shut down, the master will do its end-of-session reporting as usual, and
shut down

	
class fixtures.parallelizer.Outcome(word, markup)

	Bases: tuple

	
markup

	Alias for field number 1

	
word

	Alias for field number 0

	
class fixtures.parallelizer.ParallelSession(config, appliances)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
ack(slave, event_name)

	Acknowledge a slave’s message

	
get(slave)

	

	
interrupt(slave, **kwargs)

	Nicely ask a slave to terminate

	
kill(slave, **kwargs)

	Rudely kill a slave

	
monitor_shutdown(slave)

	

	
print_message(message, prefix='master', **markup)

	Print a message from a node to the py.test console

	Parameters

	
	message – The message to print

	**markup – If set, overrides the default markup when printing the message

	
pytest_runtestloop()

	pytest runtest loop

	Disable the master terminal reporter hooks, so we can add our own handlers
that include the slaveid in the output

	Send tests to slaves when they ask

	Log the starting of tests and test results, including slave id

	Handle clean slave shutdown when they finish their runtest loops

	Restore the master terminal reporter after testing so we get the final report

	
pytest_sessionstart(session)

	pytest sessionstart hook

	sets up distributed terminal reporter

	sets up zmp ipc socket for the slaves to use

	writes pytest options and args to slave_config.yaml

	starts the slaves

	register atexit kill hooks to destroy slaves at the end if things go terribly wrong

	
recv()

	

	
send(slave, event_data)

	Send data to slave.

event_data will be serialized as JSON, and so must be JSON serializable

	
send_tests(slave)

	Send a slave a group of tests

	
class fixtures.parallelizer.SlaveDetail(appliance, id=NOTHING, tests=NOTHING, process=None, provider_allocation=NOTHING)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
appliance = Attribute(name='appliance', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
forbid_restart = Attribute(name='forbid_restart', default=False, validator=None, repr=True, cmp=True, hash=None, init=False, convert=None, metadata=mappingproxy({}))

	

	
id = Attribute(name='id', default=Factory(factory=<function <lambda>>, takes_self=False), validator=None, repr=True, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
poll()

	

	
process = Attribute(name='process', default=None, validator=None, repr=False, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
provider_allocation = Attribute(name='provider_allocation', default=Factory(factory=<type 'list'>, takes_self=False), validator=None, repr=False, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
slaveid_generator = <generator object <genexpr>>

	

	
start()

	

	
tests = Attribute(name='tests', default=Factory(factory=<type 'set'>, takes_self=False), validator=None, repr=False, cmp=True, hash=None, init=True, convert=None, metadata=mappingproxy({}))

	

	
class fixtures.parallelizer.TerminalDistReporter(config, terminal)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Terminal Reporter for Distributed Testing

trdist reporter exists to make sure we get good distributed logging during the runtest loop,
which means the normal terminal reporter should be disabled during the loop

This class is where we make sure the terminal reporter is made aware of whatever state it
needs to report properly once we turn it back on after the runtest loop

It has special versions of pytest reporting hooks that, where possible, try to include a
slave ID. These hooks are called in ParallelSession’s runtestloop hook.

	
runtest_logreport(slaveid, report)

	

	
runtest_logstart(slaveid, nodeid, location)

	

	
fixtures.parallelizer.handle_end_session(signal, frame)

	

	
fixtures.parallelizer.pytest_addhooks(pluginmanager)

	

	
fixtures.parallelizer.pytest_configure(config)

	Configures the parallel session, then fires pytest_parallel_configured.

	
fixtures.parallelizer.report_collection_diff(slaveid, from_collection, to_collection)

	Report differences, if any exist, between master and a slave collection

Raises RuntimeError if collections differ

Note

This function will sort functions before comparing them.

	
fixtures.parallelizer.unserialize_report(reportdict)

	Generate a TestReport [https://docs.pytest.org/en/latest/reference.html#_pytest.runner.TestReport] from a serialized report

fixtures.parallelizer.hooks module

parallelizer hooks

Custom hooks to help keep runtime ordering straight with regard to the parallelizer’s state

	
fixtures.parallelizer.hooks.pytest_parallel_configured(parallel_session)

	called after the parallel session is configured

This is always called, whether running parallel or not.

If running standalone, parallel_session will be None.

fixtures.parallelizer.parallelizer_tester module

parallelizer tester

Useful to make sure tests are being parallelized properly, and then reported correctly.

This file is named specially to prevent being picked up by py.test’s default collector, and should
not be run during a normal test run.

	
fixtures.parallelizer.parallelizer_tester.setup_fail()

	

	
fixtures.parallelizer.parallelizer_tester.teardown_fail()

	

	
fixtures.parallelizer.parallelizer_tester.test_fails()

	

	
fixtures.parallelizer.parallelizer_tester.test_fails_setup(setup_fail)

	

	
fixtures.parallelizer.parallelizer_tester.test_fails_teardown(teardown_fail)

	

	
fixtures.parallelizer.parallelizer_tester.test_passes()

	

	
fixtures.parallelizer.parallelizer_tester.test_skipped()

	

	
fixtures.parallelizer.parallelizer_tester.test_xfails()

	

	
fixtures.parallelizer.parallelizer_tester.test_xpasses()

	

	
fixtures.parallelizer.parallelizer_tester.the_param()

	

	
fixtures.parallelizer.parallelizer_tester.wait()

	

fixtures.parallelizer.remote module

	
class fixtures.parallelizer.remote.SlaveManager(config, slaveid, appliance_config, zmq_endpoint)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

SlaveManager which coordinates with the master process for parallel testing

	
handle_quit()

	

	
message(message, **kwargs)

	Send a message to the master, which should get printed to the console

	
pytest_collection_finish(session)

	pytest collection hook

	Sends collected tests to the master for comparison

	
pytest_internalerror(excrepr)

	pytest internal error hook

	logs full traceback

	reports short traceback to the py.test console

	
pytest_runtest_logreport(report)

	pytest runtest logreport hook

	sends serialized log reports to the master

	
pytest_runtest_logstart(nodeid, location)

	pytest runtest logstart hook

	sends logstart notice to the master

	
pytest_runtestloop(session)

	pytest runtest loop

	iterates over and runs tests in the order received from the master

	
pytest_sessionfinish()

	

	
send_event(name, **kwargs)

	

	
shutdown()

	

	
fixtures.parallelizer.remote.serialize_report(rep)

	Get a TestReport [https://docs.pytest.org/en/latest/reference.html#_pytest.runner.TestReport] ready to send to the master

fixtures.appliance module

This module contains fixtures to use when you need a temporary appliance for testing.

In cases where you cannot run a certain test againts the primary appliance because of the test’s
destructive potential (which could render all subsequent testing useless), you want to use
a temporary appliance parallel to the primary one.

For tests where all you need is a single preconfigured appliance to run a database restore on for
example, you will want to use the temp_appliance_preconfig() fixture.

For tests that require multiple unconfigured appliances (e.g. replication testing), there is
temp_appliances_unconfig().

	
fixtures.appliance.temp_appliance_preconfig(temp_appliance_preconfig_modscope)

	

	
fixtures.appliance.temp_appliance_preconfig_clsscope()

	

	
fixtures.appliance.temp_appliance_preconfig_funcscope()

	

	
fixtures.appliance.temp_appliance_preconfig_funcscope_upgrade(appliance)

	

	
fixtures.appliance.temp_appliance_preconfig_modscope()

	

	
fixtures.appliance.temp_appliance_unconfig(temp_appliance_unconfig_modscope)

	

	
fixtures.appliance.temp_appliance_unconfig_clsscope()

	

	
fixtures.appliance.temp_appliance_unconfig_funcscope()

	

	
fixtures.appliance.temp_appliance_unconfig_funcscope_rhevm()

	

	
fixtures.appliance.temp_appliance_unconfig_modscope()

	

	
fixtures.appliance.temp_appliances(*args, **kwds)

	Provisions one or more appliances for testing

	Parameters

	
	count – Number of appliances

	preconfigured – True if the appliance should be already configured, False otherwise

	lease_time – Lease time in minutes (3 hours by default)

	
fixtures.appliance.temp_appliances_unconfig(temp_appliances_unconfig_modscope)

	

	
fixtures.appliance.temp_appliances_unconfig_clsscope()

	

	
fixtures.appliance.temp_appliances_unconfig_funcscope()

	

	
fixtures.appliance.temp_appliances_unconfig_modscope()

	

	
fixtures.appliance.temp_appliances_unconfig_modscope_rhevm()

	

fixtures.appliance_update module

This module allows you to update an appliance with latest RHEL.

It has two uses:
1) If only --update-appliance is specified, it will use the YAML url.
2) If you also specify one or more --update-url, it will use them instead.

	
fixtures.appliance_update.pytest_addoption(parser)

	

	
fixtures.appliance_update.pytest_sessionstart(session)

	

fixtures.artifactor_plugin module

An example config:

artifactor:
 log_dir: /home/test/workspace/cfme_tests/artiout
 per_run: test #test, run, None
 reuse_dir: True
 squash_exceptions: False
 threaded: False
 server_address: 127.0.0.1
 server_port: 21212
 server_enabled: True
 plugins:

log_dir is the destination for all artifacts

per_run denotes if the test artifacts should be group by run, test, or None

reuse_dir if this is False and Artifactor comes across a dir that has
already been used, it will die

	
class fixtures.artifactor_plugin.DummyClient

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
fire_hook(*args, **kwargs)

	

	
task_status()

	

	
terminate()

	

	
fixtures.artifactor_plugin.fire_art_hook(config, hook, **hook_args)

	

	
fixtures.artifactor_plugin.fire_art_test_hook(node, hook, **hook_args)

	

	
fixtures.artifactor_plugin.get_client(art_config, pytest_config)

	

	
fixtures.artifactor_plugin.get_name(obj)

	

	
fixtures.artifactor_plugin.get_test_idents(item)

	

	
fixtures.artifactor_plugin.merkyl_setup(request, appliance)

	

	
fixtures.artifactor_plugin.pytest_addoption(parser)

	

	
fixtures.artifactor_plugin.pytest_configure(config)

	

	
fixtures.artifactor_plugin.pytest_runtest_logreport(report)

	

	
fixtures.artifactor_plugin.pytest_runtest_protocol(item)

	

	
fixtures.artifactor_plugin.pytest_runtest_teardown(item, nextitem)

	

	
fixtures.artifactor_plugin.pytest_unconfigure(config)

	

	
fixtures.artifactor_plugin.shutdown(config)

	

	
fixtures.artifactor_plugin.spawn_server(config, art_client)

	

fixtures.blockers module

Collection of fixtures for simplified work with blockers.

You can use the blocker() fixture to retrieve any blocker
using blocker syntax (as described in cfme.metaplugins.blockers).
The bug() fixture is specific for bugzilla,
it accepts number argument and spits out the BUGZILLA BUG!
(a utils.bz.BugWrapper, not a utils.blockers.BZ!).
The blockers() retrieves list of all blockers
as specified in the meta marker.
All of them are converted to the utils.blockers.Blocker instances

	
fixtures.blockers.blocker(uses_blockers)

	Return any blocker that matches the expression.

	Returns

	Instance of utils.blockers.Blocker

	
fixtures.blockers.blockers(uses_blockers, meta)

	Returns list of all assigned blockers.

	Returns

	List of utils.blockers.Blocker instances.

	
fixtures.blockers.bug(blocker)

	Return bugzilla bug by its id.

	Returns

	Instance of utils.bz.BugWrapper or NoneType if the bug is closed.

	
fixtures.blockers.pytest_addoption(parser)

	

	
fixtures.blockers.pytest_collection_modifyitems(session, config, items)

	

fixtures.browser module

	
fixtures.browser.browser(appliance)

	

	
fixtures.browser.pytest_exception_interact(node, call, report)

	

	
fixtures.browser.pytest_runtest_setup(item)

	

	
fixtures.browser.pytest_sessionfinish(session, exitstatus)

	

fixtures.cfme_data module

	
fixtures.cfme_data.cfme_data(request)

	

fixtures.customer_db_migrate module

	
fixtures.customer_db_migrate.customer_db_migrate(temp_appliance_preconfig)

	

fixtures.datafile module

	
fixtures.datafile.datafile(filename, replacements)

	datafile fixture, with templating support

	Parameters

	
	filename – filename to load from the data dir

	replacements – template replacements

Returns: Path to the loaded datafile

Usage:

Given a filename, it will attempt to open the given file from the
test's corresponding data dir. For example, this:

 datafile('testfile') # in tests/subdir/test_module_name.py

Would return a file object representing this file:

 /path/to/cfme_tests/data/subdir/test_module_name/testfile

Given a filename with a leading slash, it will attempt to load the file
relative to the root of the data dir. For example, this:

 datafile('/common/testfile') # in tests/subdir/test_module_name.py

Would return a file object representing this file:

 /path/to/cfme_tests/data/common/testfile

Note that the test module name is not used with the leading slash.

Templates:

This fixture can also handle template replacements. If the datafile
being loaded is a python template, the dictionary of replacements
can be passed as the ‘replacements’ keyword argument. In this case,
the returned data file will be a NamedTemporaryFile prepopulated
with the interpolated result from combining the template with
the replacements mapping.

	http://docs.python.org/2/library/string.html#template-strings

	http://docs.python.org/2/library/tempfile.html#tempfile.NamedTemporaryFile

	
fixtures.datafile.pytest_addoption(parser)

	

	
fixtures.datafile.pytest_sessionfinish(session, exitstatus)

	

fixtures.dev_branch module

	
fixtures.dev_branch.pytest_addoption(parser)

	

	
fixtures.dev_branch.pytest_sessionstart(session)

	

fixtures.disable_forgery_protection module

	
fixtures.disable_forgery_protection.disable_forgery_protection()

	

fixtures.events module

Event testing fixture.

The idea of this fixture is to pass some “expected” events to
utils.events.EventListener and check whether all expected events are received
at the test end.

register_event fixture accepts attributes for one expected event

simple example:

register_event(target_type='VmOrTemplate', target_name=vm_crud.name, event_type='vm_create')

more complex example:

def add_cmp(_, y):
 data = yaml.load(y)
 return data['resourceId'].endswith(nsg_name) and data['status']['value'] == 'Accepted' and data['subStatus']['value'] == 'Created'

fd_add_attr = {'full_data': 'will be ignored',
 'cmp_func': add_cmp}

add network security group event
register_event(fd_add_attr, source='AZURE',
 event_type='networkSecurityGroups_write_EndRequest')

def rm_cmp(_, y):
 data = yaml.load(y)
 return data['resourceId'].endswith(nsg_name) and data['status']['value'] == 'Succeeded' and len(data['subStatus']['value']) == 0

fd_rm_attr = {'full_data': 'will be ignored',
 'cmp_func': rm_cmp}

remove network security group event
register_event(fd_rm_attr, source=provider.type.upper(),
 event_type='networkSecurityGroups_delete_EndRequest')

Expected events are defined by set of event attributes which should match to the same event
attributes in event_streams db table except one fake attribute - target_name which is resolved into
certain object’s id.

Default match algorithm is ==. Event also accepts match function in order to change default
match type.

	
fixtures.events.pytest_runtest_call(item)

	

	
fixtures.events.register_event(list of event attributes)

	Event registration fixture.

This fixture is used to notify the testing system that some event
should have occurred during execution of the test case using it.
It does not register anything by itself.

	Parameters

	
	attribute 1 (event) –

	.. –

	attribute N (event) –

Returns: None

Usage:

def test_something(foo, bar, register_event, appliance):
 register_event(target_type = 'VmOrTemplate', target_name = vm.name,
 event_type = 'vm_create')

fixtures.fixtureconf module

	
fixtures.fixtureconf.fixtureconf(request)

	Provides easy access to the fixtureconf dict in fixtures

fixtures.log module

	
fixtures.log.logger()

	

	
fixtures.log.pytest_collection_modifyitems(session, config, items)

	

	
fixtures.log.pytest_exception_interact(node, call, report)

	

	
fixtures.log.pytest_runtest_logreport(report)

	

	
fixtures.log.pytest_runtest_setup(item)

	

	
fixtures.log.pytest_sessionfinish(session, exitstatus)

	

	
fixtures.log.test_tracking = defaultdict(<type 'dict'>, {})

	A dict of tests, and their state at various test phases

fixtures.maximized module

Created on Mar 4, 2013

@author: bcrochet

	
fixtures.maximized.maximized()

	

fixtures.merkyl module

	
class fixtures.merkyl.MerkylInspector(request)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
add_log(log_name)

	Adds a log file to the merkyl process.

This function adds a log file path to the merkyl process on the
appliance. This is relevant only for the duration of the test. At
the end of the test, the file is removed from the merkyl tracker.

Note that this is a blocking call, ie, we ensure that the file
is being logged by merkyl, before we continue. This is important
and prevents the file_add operation being queued and processes
which generate log information activating before the log is being
monitored. This is achieved using the grab_result switch, but
in fact, nothing will be received.

It is worth noting that the file path must be “discoverable” by merkyl.
This may mean editing the allowed_files prior to deploying merkyl.

	Parameters

	log_name – Full path to the log file wishing to be monitored.

	
get_log(log_name)

	A simple getter for log files.

Returns the cached content of a particular log

	Parameters

	log_name – Full path to the log file wishing to be received.

	
search_log(needle, log_name)

	A simple search, test if needle is in cached log_contents.

Does a simple search of needle in contents. Note that this does not
trawl the previous contents of the file, but only looks at the log
information which has been gathered since merkyl was tracking the file.

	
fixtures.merkyl.merkyl_inspector(request)

	Provides a MerkylInspector instance.

This fixture is used to gain access to a relevant MerkylInspector instance.

Example usage is below:

def test_test(merkyl_inspector):
 merkyl_inspector.add_log('/path/to/log/file')
 # Do something
 if merkyl_inspector.search_log('needle', '/path/to/log/file'):
 print(merkyl_inspector.get_log('/path/to/log/file'))

fixtures.nelson module

	
class fixtures.nelson.GoogleDocstring(*args, **kwargs)

	Bases: sphinx.ext.napoleon.docstring.GoogleDocstring

Custom version of napoleon’s GoogleDocstring that adds some special cases

	
fixtures.nelson.get_meta(obj)

	

	
fixtures.nelson.pytest_collection_modifyitems(items)

	

	
fixtures.nelson.pytest_pycollect_makeitem(collector, name, obj)

	pytest hook that adds docstring metadata (if found) to a test’s meta mark

	
fixtures.nelson.setup(app)

	Sphinx extension setup function.

See also

http://sphinx-doc.org/extensions.html

	
fixtures.nelson.stripper(docstring)

	Slightly smarter dedent [https://docs.python.org/2.7/library/textwrap.html#textwrap.dedent]

It strips a docstring’s first line indentation and dedents the rest

fixtures.node_annotate module

	
class fixtures.node_annotate.MarkFromMap(mark_map)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
classmethod from_parsed_list(parsed, key, map_value)

	

	
pytest_itemcollected(item)

	

	
fixtures.node_annotate.generate_nodeid(mapping)

	

	
fixtures.node_annotate.parse(path)

	

	
fixtures.node_annotate.pytest_addoption(parser)

	

	
fixtures.node_annotate.pytest_collection_modifyitems(config, items)

	

	
fixtures.node_annotate.pytest_configure(config)

	

	
fixtures.node_annotate.requirement_matches(item, requirements)

	

	
fixtures.node_annotate.tier_matches(item, tiers)

	

fixtures.page_screenshots module

	
fixtures.page_screenshots.pytest_addoption(parser)

	

fixtures.perf module

Fixtures specifically for performance tests.

	
fixtures.perf.cfme_log_level_rails_debug()

	

	
fixtures.perf.ui_worker_pid()

	

fixtures.portset module

	
fixtures.portset.pytest_addoption(parser)

	

	
fixtures.portset.pytest_configure(config)

	

fixtures.prov_filter module

fixtures.provider module

fixtures.pytest_store module

Storage for pytest objects during test runs

The objects in the module will change during the course of a test run,
so they have been stashed into the ‘store’ namespace

Usage:

as pytest.store
import pytest
pytest.store.config, pytest.store.pluginmanager, pytest.store.session

imported directly (store is pytest.store)
from fixtures.pytest_store import store
store.config, store.pluginmanager, store.session

The availability of these objects varies during a test run, but
all should be available in the collection and testing phases of a test run.

	
class fixtures.pytest_store.FlexibleTerminalReporter(config=None, file=None)

	Bases: _pytest.terminal.TerminalReporter

A TerminalReporter stand-in that pretends to work even without a py.test config.

	
class fixtures.pytest_store.Store

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

pytest object store

If a property isn’t available for any reason (including being accessed outside of a pytest run),
it will be None.

	
capturemanager

	

	
config = None

	The py.test config instance, None if not in py.test

	
current_appliance

	

	
fixturemanager

	

	
has_config

	

	
in_pytest_session

	

	
my_ip_address

	

	
parallel_session

	

	
parallelizer_role = None

	Parallelizer role, None if not running a parallelized session

	
pluginmanager

	

	
session = None

	The current py.test session, None if not in a py.test session

	
slave_manager

	

	
slaveid

	

	
ssh_clients_to_close = None

	hack variable until we get a more sustainable solution

	
terminaldistreporter

	

	
terminalreporter

	

	
write_line(line, **kwargs)

	

	
fixtures.pytest_store.pytest_namespace()

	

	
fixtures.pytest_store.pytest_plugin_registered(manager)

	

	
fixtures.pytest_store.pytest_sessionstart(session)

	

	
fixtures.pytest_store.write_line(line, **kwargs)

	A write-line helper that should always write a line to the terminal

It knows all of py.tests dirty tricks, including ones that we made, and works around them.

	Parameters

	**kwargs – Normal kwargs for pytest line formatting, stripped from slave messages

fixtures.qa_contact module

	
fixtures.qa_contact.dig_code(node)

	

	
fixtures.qa_contact.pytest_runtest_teardown(item, nextitem)

	

fixtures.randomness module

	
fixtures.randomness.random_string()

	Generate a random string for use in tests

	
fixtures.randomness.random_uuid_as_string()

	Creates a random uuid and returns is as a string

fixtures.rbac module

fixtures.sauce module

	
fixtures.sauce.pytest_runtest_teardown(item, nextitem)

	

fixtures.screenshots module

Taking screenshots inside tests!

If you want to take a screenshot inside your test, just do it like this:

def test_my_test(take_screenshot):
 # do something
 take_screenshot("Particular name for the screenshot")
 # do something else

	
fixtures.screenshots.take_screenshot(request)

	

fixtures.skip_not_implemented module

	
fixtures.skip_not_implemented.pytest_runtest_call(item)

	Pytest hook ensuring that failures caused by NotImplementedError show up as skips instead

	
fixtures.skip_not_implemented.pytest_runtest_setup(item)

	Pytest hook ensuring that failures caused by NotImplementedError show up as skips instead

fixtures.soft_assert module

Soft assert context manager and assert function

A “soft assert” is an assertion that, if it fails, does not fail the entire test.
Soft assertions can be mixed with normal assertions as needed, and will be automatically
collected/reported after a test runs.

Functionality Overview

	If soft_assert() is used by a test, that test’s call phase is wrapped in
a context manager. Entering that context sets up a thread-local store for failed assertions.

	Inside the test, soft_assert() is a function with access to the thread-local store
of failed assertions, allowing it to store failed assertions during a test run.

	After a test runs, the context manager wrapping the test’s call phase exits, which inspects the
thread-local store of failed assertions, raising a
custom AssertionError if any are found.

No effort is made to clear the thread-local store; rather it’s explicitly overwritten with an empty
list by the context manager. Because the store is a list, failed assertions
will be reported in the order that they failed.

	
exception fixtures.soft_assert.SoftAssertionError(failed_assertions)

	Bases: exceptions.AssertionError [https://docs.python.org/2.7/library/exceptions.html#exceptions.AssertionError]

exception class containing failed assertions

Functions like AssertionError [https://docs.python.org/2.7/library/exceptions.html#exceptions.AssertionError], but
also stores the failed soft exceptions that it represents in order to properly
display them when cast as str

	Parameters

	
	failed_assertions – List of collected assertion failure messages

	where – Where the SoftAssert context was entered, can be omitted

	
failed_assertions

	failed_assertions handed to the initializer,
useful in cases where inspecting the failed soft assertions is desired.

	
fixtures.soft_assert.handle_assert_artifacts(request, fail_message=None)

	

	
fixtures.soft_assert.pytest_runtest_call(item)

	pytest hook to handle soft_assert() fixture usage

	
fixtures.soft_assert.pytest_runtest_protocol(item, nextitem)

	

	
fixtures.soft_assert.soft_assert(request)

	soft assert fixture, used to defer AssertionError to the end of a test run

Usage:

contents of test_soft_assert.py, for example
def test_uses_soft_assert(soft_assert):
 soft_assert(True)
 soft_assert(False, 'failure message')

 # soft_assert.catch_assert will intercept AssertionError
 # and turn it into a soft assert
 with soft_assert.catch_assert():
 assert None

 # Soft asserts can be cleared at any point within a test:
 soft_assert.clear_asserts()

 # If more in-depth interaction is desired with the caught_asserts, the list of failure
 # messages can be retrieved. This will return the directly mutable caught_asserts list:
 caught_asserts = soft_assert.caught_asserts()

The test above will report two soft assertion failures, with the following message:

SoftAssertionError:
failure message (test_soft_assert.py:3)
soft_assert(None) (test_soft_assert.py:8)

fixtures.ssh_client module

	
fixtures.ssh_client.pytest_sessionfinish(session, exitstatus)

	Loop through the appliance stack and close ssh connections

fixtures.templateloader module

fixtures.terminalreporter module

	
fixtures.terminalreporter.disable()

	

	
fixtures.terminalreporter.enable()

	

	
fixtures.terminalreporter.reporter(config=None)

	Return a py.test terminal reporter that will write to the console no matter what

Only useful when trying to write to the console before or during a
pytest_configure [https://docs.pytest.org/en/latest/reference.html#_pytest.hookspec.pytest_configure] hook.

fixtures.ui_coverage module

UI Coverage for a CFME/MIQ Appliance

Usage

py.test --ui-coverage

General Notes

simplecov can merge test results, but doesn’t appear to like working in a
multi-process environment. Specifically, it clobbers its own results when running
simultaneously in multiple processes. To solve this, each process records its
output to its own directory (configured in coverage_hook). You end up with a
directory structure like this:

coverage- |-$ip1- . |-$pid1- . . |-.resultset.json (coverage statistics)
 . . |-.last_run.json (overall coverage percentage)
 . .
 . |-$pidN
 .
 |-$ipN

Note the .resultset.json format is documented in the ruby Coverage libraries docs:

http://ruby-doc.org/stdlib-2.1.0/libdoc/coverage/rdoc/Coverage.html

All of the individual process’ results are then manually merged (coverage_merger) into one
big json result, and handed back to simplecov which generates the compiled html
(for humans) report.

Workflow Overview

Pre-testing (pytest_configure hook):

	Add Gemfile.dev.rb to the rails root, then run bundler to install simplecov
and its dependencies.

	Patch application with manageiq-17302 patch so that coverage_hook will be loaded
by the application. Eventually this will be in CFME and we won’t have to do this.

	Install coverage hook (copy coverage_hook to config/).

	Restart EVM to start running coverage on the appliance processes.

Post-testing (pytest_unconfigure hook):

	Stop EVM, but nicely this time so the coverage atexit hooks run:
systemctl stop evmserverd

	Pull the coverage dir back for parsing and archiving

Post-testing (e.g. ci environment): * This is changing *

	Use the generated rcov report with the ruby stats plugin to get a coverage graph

	Zip up and archive the entire coverage dir for review

	
class fixtures.ui_coverage.CoverageManager(ipappliance)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
collect()

	

	
collection_appliance

	

	
install()

	

	
merge()

	

	
print_message(message)

	

	
class fixtures.ui_coverage.UiCoveragePlugin

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

	
pytest_collection_finish()

	

	
pytest_configure(config)

	

	
pytest_sessionfinish(exitstatus)

	

	
pytest_sessionstart(session)

	

	
fixtures.ui_coverage.appliance_coverage_root = local('/var/www/miq/vmdb/coverage')

	coverage root, should match what’s in the coverage hook and merger scripts

	
fixtures.ui_coverage.clean_coverage_dir()

	

	
fixtures.ui_coverage.manager()

	

	
fixtures.ui_coverage.pytest_addoption(parser)

	

	
fixtures.ui_coverage.pytest_cmdline_main(config)

	

	
fixtures.ui_coverage.rails_root = local('/var/www/miq/vmdb')

	Corresponds to Rails.root in the rails env

 Python Module Index

 c |
 f

 		 	

 		
 c	

 	[image: -]
 	
 cfme	

 	
 	
 cfme.ansible	

 	
 	
 cfme.ansible.credentials	

 	
 	
 cfme.ansible.playbooks	

 	
 	
 cfme.ansible.repositories	

 	
 	
 cfme.automate	

 	
 	
 cfme.automate.buttons	

 	
 	
 cfme.automate.dialog_box	

 	
 	
 cfme.automate.dialog_collection_pick	

 	
 	
 cfme.automate.dialog_element	

 	
 	
 cfme.automate.dialog_tab	

 	
 	
 cfme.automate.dialogs	

 	
 	
 cfme.automate.dialogs.dialog_box	

 	
 	
 cfme.automate.dialogs.dialog_element	

 	
 	
 cfme.automate.dialogs.dialog_tab	

 	
 	
 cfme.automate.dialogs.service_dialogs	

 	
 	
 cfme.automate.explorer	

 	
 	
 cfme.automate.explorer.common	

 	
 	
 cfme.automate.explorer.domain	

 	
 	
 cfme.automate.explorer.instance	

 	
 	
 cfme.automate.explorer.klass	

 	
 	
 cfme.automate.explorer.method	

 	
 	
 cfme.automate.explorer.namespace	

 	
 	
 cfme.automate.import_export	

 	
 	
 cfme.automate.provisioning_dialogs	

 	
 	
 cfme.automate.service_dialogs	

 	
 	
 cfme.automate.simulation	

 	
 	
 cfme.base	

 	
 	
 cfme.base.credential	

 	
 	
 cfme.base.login	

 	
 	
 cfme.base.rest	

 	
 	
 cfme.base.ssui	

 	
 	
 cfme.base.ui	

 	
 	
 cfme.cloud	

 	
 	
 cfme.cloud.security_groups	

 	
 	
 cfme.configure	

 	
 	
 cfme.configure.about	

 	
 	
 cfme.configure.configuration	

 	
 	
 cfme.configure.configuration.analysis_profile	

 	
 	
 cfme.configure.configuration.diagnostics_settings	

 	
 	
 cfme.configure.configuration.region_settings	

 	
 	
 cfme.configure.configuration.server_settings	

 	
 	
 cfme.configure.configuration.system_schedules	

 	
 	
 cfme.configure.documentation	

 	
 	
 cfme.configure.settings	

 	
 	
 cfme.configure.tasks	

 	
 	
 cfme.containers	

 	
 	
 cfme.containers.overview	

 	
 	
 cfme.control	

 	
 	
 cfme.control.explorer	

 	
 	
 cfme.control.explorer.actions	

 	
 	
 cfme.control.explorer.alert_profiles	

 	
 	
 cfme.control.explorer.alerts	

 	
 	
 cfme.control.explorer.conditions	

 	
 	
 cfme.control.explorer.policies	

 	
 	
 cfme.control.explorer.policy_profiles	

 	
 	
 cfme.control.import_export	

 	
 	
 cfme.control.log	

 	
 	
 cfme.control.simulation	

 	
 	
 cfme.dashboard	

 	
 	
 cfme.exceptions	

 	
 	
 cfme.fixtures	

 	
 	
 cfme.fixtures.authentication	

 	
 	
 cfme.fixtures.base	

 	
 	
 cfme.fixtures.candu	

 	
 	
 cfme.fixtures.cli	

 	
 	
 cfme.fixtures.model_collections	

 	
 	
 cfme.fixtures.pxe	

 	
 	
 cfme.fixtures.rdb	

 	
 	
 cfme.fixtures.smtp	

 	
 	
 cfme.fixtures.tag	

 	
 	
 cfme.fixtures.tccheck	

 	
 	
 cfme.fixtures.version_info	

 	
 	
 cfme.fixtures.video	

 	
 	
 cfme.fixtures.vm_console	

 	
 	
 cfme.fixtures.vporizer	

 	
 	
 cfme.fixtures.widgets	

 	
 	
 cfme.fixtures.xunit_tools	

 	
 	
 cfme.generic_objects	

 	
 	
 cfme.generic_objects.definition	

 	
 	
 cfme.generic_objects.definition.associations	

 	
 	
 cfme.generic_objects.definition.rest	

 	
 	
 cfme.generic_objects.instance	

 	
 	
 cfme.generic_objects.instance.rest	

 	
 	
 cfme.infrastructure	

 	
 	
 cfme.infrastructure.networking	

 	
 	
 cfme.infrastructure.pxe	

 	
 	
 cfme.intelligence	

 	
 	
 cfme.intelligence.chargeback	

 	
 	
 cfme.intelligence.chargeback.assignments	

 	
 	
 cfme.intelligence.chargeback.rates	

 	
 	
 cfme.intelligence.reports	

 	
 	
 cfme.intelligence.reports.dashboards	

 	
 	
 cfme.intelligence.reports.import_export	

 	
 	
 cfme.intelligence.reports.menus	

 	
 	
 cfme.intelligence.reports.reports	

 	
 	
 cfme.intelligence.reports.saved	

 	
 	
 cfme.intelligence.reports.schedules	

 	
 	
 cfme.intelligence.reports.widgets	

 	
 	
 cfme.intelligence.reports.widgets.chart_widgets	

 	
 	
 cfme.intelligence.reports.widgets.menu_widgets	

 	
 	
 cfme.intelligence.reports.widgets.report_widgets	

 	
 	
 cfme.intelligence.reports.widgets.rss_widgets	

 	
 	
 cfme.intelligence.rss	

 	
 	
 cfme.js	

 	
 	
 cfme.markers	

 	
 	
 cfme.markers.composite	

 	
 	
 cfme.markers.crud	

 	
 	
 cfme.markers.env_markers	

 	
 	
 cfme.markers.fixtureconf	

 	
 	
 cfme.markers.manual	

 	
 	
 cfme.markers.meta	

 	
 	
 cfme.markers.polarion	

 	
 	
 cfme.markers.requires	

 	
 	
 cfme.markers.rhv	

 	
 	
 cfme.markers.sauce	

 	
 	
 cfme.markers.skipper	

 	
 	
 cfme.markers.smoke	

 	
 	
 cfme.markers.stream_excluder	

 	
 	
 cfme.markers.uncollect	

 	
 	
 cfme.markers.uses	

 	
 	
 cfme.metaplugins	

 	
 	
 cfme.metaplugins.blockers	

 	
 	
 cfme.metaplugins.server_roles	

 	
 	
 cfme.modeling	

 	
 	
 cfme.modeling.base	

 	
 	
 cfme.modeling.tests	

 	
 	
 cfme.modeling.tests.test_collections	

 	
 	
 cfme.networks	

 	
 	
 cfme.optimize	

 	
 	
 cfme.optimize.bottlenecks	

 	
 	
 cfme.optimize.utilization	

 	
 	
 cfme.physical	

 	
 	
 cfme.rest	

 	
 	
 cfme.roles	

 	
 	
 cfme.scripting	

 	
 	
 cfme.scripting.appliance	

 	
 	
 cfme.scripting.conf	

 	
 	
 cfme.scripting.disable_bytecode	

 	
 	
 cfme.scripting.ipyshell	

 	
 	
 cfme.scripting.link_config	

 	
 	
 cfme.scripting.miq	

 	
 	
 cfme.scripting.setup_env	

 	
 	
 cfme.scripting.sprout	

 	
 	
 cfme.scripting.tests	

 	
 	
 cfme.scripting.tests.test_quickstart	

 	
 	
 cfme.services	

 	
 	
 cfme.services.catalogs	

 	
 	
 cfme.services.dashboard	

 	
 	
 cfme.services.dashboard.ssui	

 	
 	
 cfme.services.workloads	

 	
 	
 cfme.storage	

 	
 	
 cfme.test_framework	

 	
 	
 cfme.test_framework.appliance	

 	
 	
 cfme.test_framework.appliance_log_collector	

 	
 	
 cfme.test_framework.appliance_police	

 	
 	
 cfme.test_framework.browser_isolation	

 	
 	
 cfme.test_framework.config	

 	
 	
 cfme.test_framework.pytest_plugin	

 	
 	
 cfme.test_framework.sprout	

 	
 	
 cfme.test_framework.sprout.client	

 	
 	
 cfme.test_framework.sprout.plugin	

 	
 	
 cfme.test_requirements	

 	
 	
 cfme.utils	

 	
 	
 cfme.utils.apidoc	

 	
 	
 cfme.utils.appliance	

 	
 	
 cfme.utils.appliance.db	

 	
 	
 cfme.utils.appliance.implementations	

 	
 	
 cfme.utils.appliance.implementations.rest	

 	
 	
 cfme.utils.appliance.implementations.ssui	

 	
 	
 cfme.utils.appliance.implementations.ui	

 	
 	
 cfme.utils.appliance.plugin	

 	
 	
 cfme.utils.appliance.services	

 	
 	
 cfme.utils.auth	

 	
 	
 cfme.utils.blockers	

 	
 	
 cfme.utils.browser	

 	
 	
 cfme.utils.bz	

 	
 	
 cfme.utils.category	

 	
 	
 cfme.utils.conf	

 	
 	
 cfme.utils.datafile	

 	
 	
 cfme.utils.db	

 	
 	
 cfme.utils.deprecation	

 	
 	
 cfme.utils.dockerbot	

 	
 	
 cfme.utils.dockerbot.build_container	

 	
 	
 cfme.utils.dockerbot.dockerbot	

 	
 	
 cfme.utils.dockerbot.pytestbase	

 	
 	
 cfme.utils.dockerbot.pytestbase.check_provisioned	

 	
 	
 cfme.utils.dockerbot.pytestbase.get_keys	

 	
 	
 cfme.utils.dockerbot.pytestbase.verify_commit	

 	
 	
 cfme.utils.dockerbot.sel_container	

 	
 	
 cfme.utils.events	

 	
 	
 cfme.utils.events_db	

 	
 	
 cfme.utils.ftp	

 	
 	
 cfme.utils.generators	

 	
 	
 cfme.utils.grafana	

 	
 	
 cfme.utils.ipmi	

 	
 	
 cfme.utils.log	

 	
 	
 cfme.utils.log_validator	

 	
 	
 cfme.utils.mgmt_system	

 	
 	
 cfme.utils.net	

 	
 	
 cfme.utils.ocp_cli	

 	
 	
 cfme.utils.path	

 	
 	
 cfme.utils.perf	

 	
 	
 cfme.utils.perf_message_stats	

 	
 	
 cfme.utils.ports	

 	
 	
 cfme.utils.pretty	

 	
 	
 cfme.utils.pytest_shortcuts	

 	
 	
 cfme.utils.quote	

 	
 	
 cfme.utils.release	

 	
 	
 cfme.utils.repo_gen	

 	
 	
 cfme.utils.rest	

 	
 	
 cfme.utils.smem_memory_monitor	

 	
 	
 cfme.utils.smtp_collector_client	

 	
 	
 cfme.utils.soft_get	

 	
 	
 cfme.utils.ssh	

 	
 	
 cfme.utils.stats	

 	
 	
 cfme.utils.template	

 	
 	
 cfme.utils.timeutil	

 	
 	
 cfme.utils.tracer	

 	
 	
 cfme.utils.units	

 	
 	
 cfme.utils.update	

 	
 	
 cfme.utils.varmeth	

 	
 	
 cfme.utils.version	

 	
 	
 cfme.utils.video	

 	
 	
 cfme.utils.wait	

 	
 	
 cfme.utils.workloads	

 		 	

 		
 f	

 	[image: -]
 	
 fixtures	

 	
 	
 fixtures.appliance	

 	
 	
 fixtures.appliance_update	

 	
 	
 fixtures.artifactor_plugin	

 	
 	
 fixtures.blockers	

 	
 	
 fixtures.browser	

 	
 	
 fixtures.cfme_data	

 	
 	
 fixtures.customer_db_migrate	

 	
 	
 fixtures.datafile	

 	
 	
 fixtures.dev_branch	

 	
 	
 fixtures.disable_forgery_protection	

 	
 	
 fixtures.events	

 	
 	
 fixtures.fixtureconf	

 	
 	
 fixtures.log	

 	
 	
 fixtures.maximized	

 	
 	
 fixtures.merkyl	

 	
 	
 fixtures.nelson	

 	
 	
 fixtures.node_annotate	

 	
 	
 fixtures.page_screenshots	

 	
 	
 fixtures.parallelizer	

 	
 	
 fixtures.parallelizer.hooks	

 	
 	
 fixtures.parallelizer.parallelizer_tester	

 	
 	
 fixtures.parallelizer.remote	

 	
 	
 fixtures.perf	

 	
 	
 fixtures.portset	

 	
 	
 fixtures.pytest_store	

 	
 	
 fixtures.qa_contact	

 	
 	
 fixtures.randomness	

 	
 	
 fixtures.sauce	

 	
 	
 fixtures.screenshots	

 	
 	
 fixtures.skip_not_implemented	

 	
 	
 fixtures.soft_assert	

 	
 	
 fixtures.ssh_client	

 	
 	
 fixtures.terminalreporter	

 	
 	
 fixtures.ui_coverage	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

A

 	
 	About (class in cfme.base.ui)

 	AboutView (class in cfme.configure.about)

 	absolute (cfme.utils.units.Unit attribute)

 	accept_button (cfme.configure.configuration.region_settings.ReplicationGlobalAddView attribute)

 	access_key (cfme.configure.configuration.server_settings.AmazonAuthenticationView attribute)

 	access_url (cfme.infrastructure.pxe.PXEServerForm attribute)

 	AccordionItemNotFound

 	accordions (cfme.base.ui.ConfigurationView attribute)

 	ack() (fixtures.parallelizer.ParallelSession method)

 	action (cfme.configure.configuration.system_schedules.ScheduleDetailsView attribute)

 	Action (class in cfme.control.explorer.actions)

 	action_dropdown (cfme.configure.configuration.region_settings.ReplicationGlobalAddView attribute)

 	action_type (cfme.configure.configuration.system_schedules.ScheduleAddEditEntities attribute)

 	(cfme.configure.configuration.system_schedules.SystemSchedule attribute)

 	(cfme.control.explorer.actions.Action attribute)

 	(cfme.control.explorer.actions.ActionFormCommon attribute)

 	action_values (cfme.control.explorer.actions.Action attribute)

 	ActionCollection (class in cfme.control.explorer.actions)

 	ActionDetails (class in cfme.control.explorer.actions)

 	ActionDetailsView (class in cfme.control.explorer.actions)

 	ActionEdit (class in cfme.control.explorer.actions)

 	ActionFormCommon (class in cfme.control.explorer.actions)

 	ActionNew (class in cfme.control.explorer.actions)

 	actions (cfme.control.explorer.ControlExplorerView attribute)

 	ActionsAll (class in cfme.control.explorer.actions)

 	ActionsAllView (class in cfme.control.explorer.actions)

 	ActionsCell (class in cfme.automate.explorer.method)

 	active (cfme.configure.configuration.system_schedules.ScheduleAddEditEntities attribute)

 	(cfme.configure.configuration.system_schedules.ScheduleDetailsView attribute)

 	(cfme.configure.configuration.system_schedules.SystemSchedule attribute)

 	(cfme.control.explorer.alerts.Alert attribute)

 	(cfme.control.explorer.alerts.AlertFormCommon attribute)

 	(cfme.control.explorer.policies.BasePolicy attribute)

 	(cfme.control.explorer.policies.PolicyFormCommon attribute)

 	(cfme.intelligence.reports.schedules.Schedule attribute)

 	(cfme.intelligence.reports.schedules.SchedulesFormCommon attribute)

 	(cfme.intelligence.reports.widgets.BaseDashboardReportWidget attribute)

 	(cfme.intelligence.reports.widgets.BaseDashboardWidgetFormCommon attribute)

 	ActiveDirectoryAuthProvider (class in cfme.utils.auth)

 	add (cfme.cloud.security_groups.SecurityGroupAddForm attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileAddView attribute)

 	(cfme.infrastructure.pxe.PXECustomizationTemplateAddView attribute)

 	(cfme.infrastructure.pxe.PXECustomizationTemplateCopyView attribute)

 	(cfme.infrastructure.pxe.PXEDatastoreAddView attribute)

 	(cfme.infrastructure.pxe.PXEServerAddView attribute)

 	(cfme.infrastructure.pxe.PXESystemImageTypeAddView attribute)

 	Add (class in cfme.ansible.credentials)

 	(class in cfme.ansible.repositories)

 	(class in cfme.automate.dialog_box)

 	(class in cfme.automate.dialog_element)

 	(class in cfme.automate.dialog_tab)

 	(class in cfme.automate.dialogs.dialog_box)

 	(class in cfme.automate.dialogs.dialog_element)

 	(class in cfme.automate.dialogs.dialog_tab)

 	(class in cfme.automate.dialogs.service_dialogs)

 	(class in cfme.automate.explorer.domain)

 	(class in cfme.automate.explorer.instance)

 	(class in cfme.automate.explorer.klass)

 	(class in cfme.automate.explorer.method)

 	(class in cfme.automate.explorer.namespace)

 	(class in cfme.automate.provisioning_dialogs)

 	(class in cfme.automate.service_dialogs)

 	(class in cfme.cloud.security_groups)

 	add_another_element() (cfme.automate.dialog_element.Element method)

 	(cfme.automate.dialogs.dialog_element.Element method)

 	add_attrs() (cfme.utils.events.Event method)

 	(cfme.utils.events_db.Event method)

 	add_button (cfme.ansible.credentials.CredentialAddView attribute)

 	(cfme.ansible.repositories.RepositoryAddView attribute)

 	(cfme.automate.AddDialogView attribute)

 	(cfme.automate.buttons.NewButtonGroupView attribute)

 	(cfme.automate.buttons.NewButtonView attribute)

 	(cfme.automate.dialog_element.AddElementView attribute)

 	(cfme.automate.explorer.domain.DomainAddView attribute)

 	(cfme.automate.explorer.instance.InstanceAddView attribute)

 	(cfme.automate.explorer.klass.ClassAddView attribute)

 	(cfme.automate.explorer.method.MethodAddView attribute)

 	(cfme.automate.explorer.method.PlaybookInputParameters attribute)

 	(cfme.automate.explorer.namespace.NamespaceAddView attribute)

 	(cfme.base.ui.ZoneAddView attribute)

 	(cfme.configure.configuration.region_settings.CompanyCategoriesAllView attribute)

 	(cfme.configure.configuration.region_settings.CompanyTagsAllView attribute)

 	(cfme.configure.configuration.region_settings.MapTagsAddView attribute)

 	(cfme.configure.configuration.region_settings.MapTagsAllView attribute)

 	(cfme.configure.configuration.system_schedules.ScheduleAddView attribute)

 	(cfme.control.explorer.actions.NewActionView attribute)

 	(cfme.control.explorer.alert_profiles.NewAlertProfileView attribute)

 	(cfme.control.explorer.alerts.NewAlertView attribute)

 	(cfme.control.explorer.conditions.NewConditionView attribute)

 	(cfme.control.explorer.policies.NewPolicyView attribute)

 	(cfme.control.explorer.policy_profiles.NewPolicyProfileView attribute)

 	(cfme.intelligence.chargeback.rates.AddComputeChargebackView attribute)

 	(cfme.intelligence.reports.dashboards.NewDashboardView attribute)

 	(cfme.intelligence.reports.reports.ReportAddView attribute)

 	(cfme.intelligence.reports.schedules.NewScheduleView attribute)

 	(cfme.intelligence.reports.widgets.BaseNewDashboardWidgetView attribute)

 	add_cleanup() (cfme.utils.browser.BrowserManager method)

 	add_entry_button (cfme.automate.dialog_element.ElementForm attribute)

 	add_field() (cfme.automate.explorer.klass.ClassSchema method)

 	add_fields() (cfme.automate.explorer.klass.ClassSchema method)

 	add_folder() (cfme.intelligence.reports.menus.ReportMenu method)

 	add_input (cfme.automate.explorer.method.Inputs attribute)

 	add_log() (fixtures.merkyl.MerkylInspector method)

 	add_pglogical_replication_subscription() (cfme.utils.appliance.IPAppliance method)

 	add_product_repo() (cfme.utils.appliance.IPAppliance method)

 	add_rhev_direct_lun_disk() (cfme.utils.appliance.Appliance method)

 	add_section (cfme.automate.dialogs.AddTabView attribute)

 	(cfme.automate.dialogs.dialog_element.AddElementView attribute)

 	add_server_roles() (in module cfme.metaplugins.server_roles)

 	add_stdout_handler() (in module cfme.utils.log)

 	add_subfolder() (cfme.intelligence.reports.menus.ReportMenu method)

 	add_subscription (cfme.configure.configuration.region_settings.ReplicationGlobalView attribute)

 	add_tab() (cfme.automate.dialog_tab.TabCollection method)

 	add_widget (cfme.dashboard.DashboardView attribute)

 	add_workload_quantifiers() (in module cfme.utils.smem_memory_monitor)

 	AddBoxView (class in cfme.automate)

 	(class in cfme.automate.dialogs)

 	AddComputeChargebackView (class in cfme.intelligence.chargeback.rates)

 	AddDialogView (class in cfme.automate)

 	(class in cfme.automate.dialogs)

 	AddElementView (class in cfme.automate.dialog_element)

 	(class in cfme.automate.dialogs.dialog_element)

 	AddProviderError

 	address (cfme.base.Server attribute)

 	(cfme.utils.appliance.db.ApplianceDB attribute)

 	address() (in module cfme.base.ssui)

 	(in module cfme.base.ui)

 	AddStorageChargebackView (class in cfme.intelligence.chargeback.rates)

 	AddTabView (class in cfme.automate)

 	(class in cfme.automate.dialogs)

 	advanced (cfme.automate.buttons.ButtonFormCommon attribute)

 	(cfme.automate.dialogs.dialog_element.ElementForm attribute)

 	(cfme.base.ui.ServerView attribute)

 	Advanced (class in cfme.base.ui)

 	advanced_settings (cfme.base.Region attribute)

 	(cfme.base.Server attribute)

 	(cfme.base.Zone attribute)

 	(cfme.utils.appliance.IPAppliance attribute)

 	after_keyboard_input() (cfme.utils.appliance.implementations.ssui.MiqSSUIBrowserPlugin method)

 	(cfme.utils.appliance.implementations.ui.MiqBrowserPlugin method)

 	AFTER_RUN (cfme.markers.meta.PluginContainer attribute)

 	aggregate_card (cfme.services.dashboard.ssui.DashboardView attribute)

 	Alert (class in cfme.control.explorer.alerts)

 	alert_profiles (cfme.control.explorer.ControlExplorerView attribute)

 	AlertCollection (class in cfme.control.explorer.alerts)

 	AlertCopy (class in cfme.control.explorer.alerts)

 	AlertDetails (class in cfme.control.explorer.alerts)

 	AlertDetailsView (class in cfme.control.explorer.alerts)

 	AlertEdit (class in cfme.control.explorer.alerts)

 	AlertFormCommon (class in cfme.control.explorer.alerts)

 	AlertNew (class in cfme.control.explorer.alerts)

 	AlertProfileCollection (class in cfme.control.explorer.alert_profiles)

 	AlertProfileDetails (class in cfme.control.explorer.alert_profiles)

 	AlertProfileDetailsView (class in cfme.control.explorer.alert_profiles)

 	AlertProfileEdit (class in cfme.control.explorer.alert_profiles)

 	AlertProfileEditAssignments (class in cfme.control.explorer.alert_profiles)

 	AlertProfileFormCommon (class in cfme.control.explorer.alert_profiles)

 	AlertProfileNew (class in cfme.control.explorer.alert_profiles)

 	AlertProfilesAll (class in cfme.control.explorer.alert_profiles)

 	AlertProfilesAllView (class in cfme.control.explorer.alert_profiles)

 	AlertProfilesEditAssignmentsView (class in cfme.control.explorer.alert_profiles)

 	alerts (cfme.control.explorer.alert_profiles.AlertProfileFormCommon attribute)

 	(cfme.control.explorer.ControlExplorerView attribute)

 	(cfme.control.explorer.alert_profiles.BaseAlertProfile attribute)

 	alerts_to_evaluate (cfme.control.explorer.actions.Action attribute)

 	(cfme.control.explorer.actions.ActionFormCommon attribute)

 	AlertsAll (class in cfme.control.explorer.alerts)

 	AlertsAllView (class in cfme.control.explorer.alerts)

 	All (class in cfme.automate.dialogs.service_dialogs)

 	(class in cfme.automate.explorer.domain)

 	(class in cfme.automate.provisioning_dialogs)

 	(class in cfme.automate.service_dialogs)

 	(class in cfme.containers.overview)

 	(class in cfme.infrastructure.networking)

 	(class in cfme.optimize.bottlenecks)

 	(class in cfme.optimize.utilization)

 	all() (cfme.ansible.playbooks.PlaybooksCollection method)

 	(cfme.ansible.repositories.RepositoryCollection method)

 	(cfme.automate.explorer.domain.DomainCollection method)

 	(cfme.base.RegionCollection method)

 	(cfme.base.ServerCollection method)

 	(cfme.base.ZoneCollection method)

 	(cfme.control.explorer.conditions.ConditionCollection method)

 	(cfme.control.explorer.policies.PolicyCollection method)

 	(cfme.dashboard.DashboardCollection method)

 	(cfme.dashboard.DashboardWidgetCollection method)

 	(cfme.intelligence.reports.reports.SavedReportsCollection method)

 	all_blocker_engines() (cfme.utils.blockers.Blocker class method)

 	all_clusters_cb (cfme.configure.configuration.region_settings.CANDUCollectionView attribute)

 	all_datastores_cb (cfme.configure.configuration.region_settings.CANDUCollectionView attribute)

 	all_event_types (cfme.utils.events_db.EventTool attribute)

 	all_policy_profile_names (cfme.control.explorer.policy_profiles.PolicyProfileCollection attribute)

 	all_public_fields_equal() (in module cfme.utils.update)

 	all_tasks_match_status() (in module cfme.configure.tasks)

 	all_vars (cfme.automate.explorer.method.PlaybookInputParameters attribute)

 	
 	AllConditions (class in cfme.control.explorer.conditions)

 	AllCustomReportsView (class in cfme.intelligence.reports.reports)

 	AllDashboardWidgetsView (class in cfme.intelligence.reports.widgets)

 	AllDiagnosticWorkers (class in cfme.configure.configuration.diagnostics_settings)

 	AllOtherTasks (class in cfme.configure.tasks)

 	ALLOWED_TYPES (cfme.automate.provisioning_dialogs.ProvisioningDialogsCollection attribute)

 	AllReportsView (class in cfme.intelligence.reports.reports)

 	AllSavedReportsView (class in cfme.intelligence.reports.saved)

 	AllTasks (class in cfme.configure.tasks)

 	AllTemplates (class in cfme.services.workloads)

 	AllVMs (class in cfme.services.workloads)

 	am_i_here() (cfme.base.ui.Advanced method)

 	(cfme.base.ui.AuditLog method)

 	(cfme.base.ui.CFMELog method)

 	(cfme.base.ui.CustomLogos method)

 	(cfme.base.ui.DiagnosticsDetails method)

 	(cfme.base.ui.DiagnosticsWorkers method)

 	(cfme.base.ui.HelpMenu method)

 	(cfme.base.ui.Import method)

 	(cfme.base.ui.ImportTags method)

 	(cfme.base.ui.ProductionLog method)

 	(cfme.base.ui.RegionDiagnosticsDatabase method)

 	(cfme.base.ui.RegionDiagnosticsOrphanedData method)

 	(cfme.base.ui.RegionDiagnosticsReplication method)

 	(cfme.base.ui.RegionDiagnosticsRolesByServers method)

 	(cfme.base.ui.RegionDiagnosticsServers method)

 	(cfme.base.ui.RegionDiagnosticsServersByRoles method)

 	(cfme.base.ui.RegionDiagnosticsZones method)

 	(cfme.base.ui.ServerDetails method)

 	(cfme.base.ui.ServerDiagnosticsCollectLogs method)

 	(cfme.base.ui.Timelines method)

 	(cfme.base.ui.Utilization method)

 	(cfme.base.ui.Workers method)

 	(cfme.configure.tasks.AllOtherTasks method)

 	(cfme.configure.tasks.AllTasks method)

 	(cfme.configure.tasks.MyOtherTasks method)

 	(cfme.configure.tasks.MyTasks method)

 	(cfme.utils.appliance.implementations.ssui.SSUINavigateStep method)

 	(cfme.utils.appliance.implementations.ui.CFMENavigateStep method)

 	amazon_auth_provider() (in module cfme.fixtures.authentication)

 	AmazonAuthenticationView (class in cfme.configure.configuration.server_settings)

 	AmazonAuthProvider (class in cfme.utils.auth)

 	american_date_only_format (cfme.utils.timeutil.parsetime attribute)

 	american_minutes (cfme.utils.timeutil.parsetime attribute)

 	american_minutes_with_utc (cfme.utils.timeutil.parsetime attribute)

 	american_with_utc_format (cfme.utils.timeutil.parsetime attribute)

 	analysis_profile (cfme.control.explorer.actions.ActionDetailsView attribute)

 	(cfme.control.explorer.actions.ActionFormCommon attribute)

 	(cfme.control.explorer.policies.PolicyDetailsView attribute)

 	AnalysisProfile (class in cfme.configure.configuration.analysis_profile)

 	AnalysisProfileAdd (class in cfme.configure.configuration.analysis_profile)

 	AnalysisProfileAddHost (cfme.configure.configuration.analysis_profile.AnalysisProfileAddView attribute)

 	AnalysisProfileAddView (class in cfme.configure.configuration.analysis_profile)

 	AnalysisProfileAddVm (cfme.configure.configuration.analysis_profile.AnalysisProfileAddView attribute)

 	AnalysisProfileAll (class in cfme.configure.configuration.analysis_profile)

 	AnalysisProfileAllView (class in cfme.configure.configuration.analysis_profile)

 	AnalysisProfileBaseAddForm (class in cfme.configure.configuration.analysis_profile)

 	AnalysisProfileCopy (class in cfme.configure.configuration.analysis_profile)

 	AnalysisProfileCopyView (class in cfme.configure.configuration.analysis_profile)

 	AnalysisProfileDetails (class in cfme.configure.configuration.analysis_profile)

 	AnalysisProfileDetailsEntities (class in cfme.configure.configuration.analysis_profile)

 	AnalysisProfileDetailsView (class in cfme.configure.configuration.analysis_profile)

 	AnalysisProfileEdit (class in cfme.configure.configuration.analysis_profile)

 	AnalysisProfileEditView (class in cfme.configure.configuration.analysis_profile)

 	AnalysisProfileEntities (class in cfme.configure.configuration.analysis_profile)

 	AnalysisProfileToolbar (class in cfme.configure.configuration.analysis_profile)

 	AnsibleCredentials (class in cfme.ansible.credentials)

 	AnsiblePlaybookButton (class in cfme.automate.buttons)

 	AnsiblePlaybooks (class in cfme.ansible.playbooks)

 	AnsibleRepositories (class in cfme.ansible.repositories)

 	api_entry (cfme.test_framework.sprout.client.SproutClient attribute)

 	APIMethodCall (class in cfme.test_framework.sprout.client)

 	app_creds() (in module cfme.fixtures.cli)

 	app_creds_modscope() (in module cfme.fixtures.cli)

 	appliance (cfme.modeling.base.BaseCollection attribute)

 	(cfme.modeling.base.BaseEntity attribute)

 	(cfme.utils.appliance.IPAppliance attribute)

 	(cfme.utils.appliance.Navigatable attribute)

 	(cfme.utils.appliance.implementations.Implementation attribute)

 	(cfme.utils.appliance.implementations.rest.ViaREST attribute)

 	(cfme.utils.appliance.implementations.ssui.MiqSSUIBrowser attribute)

 	(cfme.utils.appliance.implementations.ssui.SSUINavigateStep attribute)

 	(cfme.utils.appliance.implementations.ui.CFMENavigateStep attribute)

 	(cfme.utils.appliance.implementations.ui.MiqBrowser attribute)

 	(cfme.utils.appliance.plugin.AppliancePlugin attribute)

 	Appliance (class in cfme.utils.appliance)

 	appliance (fixtures.parallelizer.SlaveDetail attribute)

 	appliance() (cfme.test_framework.appliance.ApplianceHolderPlugin method)

 	appliance_build_date() (in module cfme.utils.version)

 	appliance_build_datetime() (in module cfme.utils.version)

 	appliance_coverage_root (in module fixtures.ui_coverage)

 	appliance_has_netapp() (cfme.utils.ssh.SSHClient method)

 	(in module cfme.utils.version)

 	appliance_is_downstream() (in module cfme.utils.version)

 	appliance_police() (in module cfme.test_framework.appliance_police)

 	appliance_with_preset_time() (in module cfme.fixtures.cli)

 	ApplianceConsole (class in cfme.utils.appliance)

 	ApplianceConsoleCli (class in cfme.utils.appliance)

 	ApplianceDB (class in cfme.utils.appliance.db)

 	ApplianceDBException

 	ApplianceException

 	ApplianceHolderPlugin (class in cfme.test_framework.appliance)

 	AppliancePlugin (class in cfme.utils.appliance.plugin)

 	AppliancePluginDescriptor (class in cfme.utils.appliance.plugin)

 	AppliancePluginException

 	AppliancePoliceException

 	appliances (cfme.test_framework.appliance.ApplianceHolderPlugin attribute)

 	appliances_from_cli() (in module cfme.test_framework.appliance)

 	ApplianceStack (class in cfme.utils.appliance)

 	ApplianceSummoningWarning

 	ApplianceVersionException

 	apply_btn (cfme.automate.dialog_element.ElementForm attribute)

 	apply_cfme_update (cfme.configure.configuration.region_settings.RedHatUpdatesView attribute)

 	approved_requests (cfme.services.dashboard.Dashboard attribute)

 	approved_requests() (in module cfme.services.dashboard.ssui)

 	are_all_tasks_match_status() (in module cfme.configure.tasks)

 	args (cfme.utils.appliance.plugin.AppliancePluginDescriptor attribute)

 	artifactor (cfme.utils.log.ArtifactorHandler attribute)

 	ArtifactorHandler (class in cfme.utils.log)

 	as_external_value() (cfme.utils.auth.FreeIPAAuthProvider method)

 	as_fill_external_value() (cfme.utils.auth.BaseAuthProvider method)

 	as_fill_value (cfme.ansible.repositories.Repository attribute)

 	as_fill_value() (cfme.automate.dialogs.service_dialogs.Dialog method)

 	(cfme.automate.explorer.domain.Domain method)

 	(cfme.automate.service_dialogs.Dialog method)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfile method)

 	(cfme.utils.auth.AmazonAuthProvider method)

 	(cfme.utils.auth.BaseAuthProvider method)

 	(cfme.utils.auth.MIQAuthProvider method)

 	as_json (cfme.utils.appliance.IPAppliance attribute)

 	assert_response() (in module cfme.utils.rest)

 	Assign (class in cfme.intelligence.chargeback.assignments)

 	assign_actions_to_event() (cfme.control.explorer.policies.BasePolicy method)

 	assign_conditions() (cfme.control.explorer.policies.BasePolicy method)

 	assign_events() (cfme.control.explorer.policies.BasePolicy method)

 	assign_to (cfme.control.explorer.alert_profiles.AlertProfilesEditAssignmentsView attribute)

 	(cfme.intelligence.chargeback.assignments.AssignmentsView attribute)

 	assign_to() (cfme.control.explorer.alert_profiles.BaseAlertProfile method)

 	AssignAll (class in cfme.intelligence.chargeback.assignments)

 	AssignCompute (class in cfme.intelligence.chargeback.assignments)

 	assigned_actions_to_event() (cfme.control.explorer.policies.BasePolicy method)

 	assigned_events (cfme.control.explorer.policies.BasePolicy attribute)

 	assignments (cfme.intelligence.chargeback.ChargebackView attribute)

 	AssignmentsAllView (class in cfme.intelligence.chargeback.assignments)

 	AssignmentsView (class in cfme.intelligence.chargeback.assignments)

 	AssignStorage (class in cfme.intelligence.chargeback.assignments)

 	associations (cfme.generic_objects.definition.GenericObjectDefinition attribute)

 	(cfme.generic_objects.instance.GenericObjectInstance attribute)

 	at_exit() (in module cfme.utils)

 	attr_repr() (in module cfme.utils.pretty)

 	attributes (cfme.automate.buttons.AnsiblePlaybookButton attribute)

 	(cfme.automate.buttons.DefaultButton attribute)

 	(cfme.generic_objects.definition.GenericObjectDefinition attribute)

 	(cfme.generic_objects.instance.GenericObjectInstance attribute)

 	attributize_string() (in module cfme.utils)

 	auditlog (cfme.base.ui.ServerDiagnosticsView attribute)

 	AuditLog (class in cfme.base.ui)

 	auth_class_from_type() (in module cfme.utils.auth)

 	auth_mode (cfme.configure.configuration.server_settings.AuthenticationSetting attribute)

 	auth_provider() (in module cfme.fixtures.authentication)

 	auth_provider_types() (in module cfme.utils.auth)

 	auth_settings (cfme.configure.configuration.server_settings.AuthenticationSetting attribute)

 	auth_type (cfme.utils.auth.ActiveDirectoryAuthProvider attribute)

 	(cfme.utils.auth.AmazonAuthProvider attribute)

 	(cfme.utils.auth.BaseAuthProvider attribute)

 	(cfme.utils.auth.FreeIPAAuthProvider attribute)

 	(cfme.utils.auth.OpenLDAPAuthProvider attribute)

 	(cfme.utils.auth.OpenLDAPSAuthProvider attribute)

 	auth_user_data() (in module cfme.fixtures.authentication)

 	authentication (cfme.base.Server attribute)

 	(cfme.base.ui.ServerView attribute)

 	Authentication (class in cfme.base.ui)

 	AuthenticationSetting (class in cfme.configure.configuration.server_settings)

 	AuthException

 	AuthModeUnknown

 	automate_menu_name() (in module cfme.base.ui)

 	automate_reset() (cfme.utils.appliance.db.ApplianceDB method)

 	AutomateCustomization (class in cfme.automate)

 	AutomateCustomizationView (class in cfme.automate)

 	(class in cfme.automate.dialogs)

 	AutomateExplorer (class in cfme.automate.explorer)

 	AutomateExplorerView (class in cfme.automate.explorer)

 	AutomateGitRepository (class in cfme.automate.import_export)

 	AutomateImportError

 	AutomateImportExport (class in cfme.base.ui)

 	AutomateImportExportBaseView (class in cfme.base.ui)

 	AutomateImportExportView (class in cfme.base.ui)

 	AutomateRadioGroup (class in cfme.automate.buttons)

 	AutomateSimulation (class in cfme.base.ui)

 	AutomateSimulationView (class in cfme.base.ui)

 	automation (cfme.configure.documentation.LinksView attribute)

 	AvailabilityZoneNotFound

 	available_update_version (cfme.configure.configuration.region_settings.RedHatUpdatesView attribute)

 	avp (cfme.base.ui.AutomateSimulationView attribute)

 	AzureCredential (class in cfme.base.credential)

B

 	
 	back (cfme.base.ui.LoginPage attribute)

 	backup() (cfme.utils.appliance.db.ApplianceDB method)

 	backup_type (cfme.configure.configuration.system_schedules.DatabaseBackupEntities attribute)

 	(cfme.configure.configuration.system_schedules.SystemSchedule attribute)

 	BackupNotFoundError

 	band_units (cfme.intelligence.reports.reports.Report attribute)

 	base_dn (cfme.configure.configuration.server_settings.LdapAuthenticationView attribute)

 	(cfme.utils.auth.MIQAuthProvider attribute)

 	base_report_on (cfme.intelligence.reports.reports.CustomReportFormCommon attribute)

 	(cfme.intelligence.reports.reports.Report attribute)

 	base_timeline_on (cfme.intelligence.reports.reports.Report attribute)

 	BaseAlertProfile (class in cfme.control.explorer.alert_profiles)

 	BaseAuthProvider (class in cfme.utils.auth)

 	BaseButton (class in cfme.automate.buttons)

 	BaseCollection (class in cfme.modeling.base)

 	BaseCondition (class in cfme.control.explorer.conditions)

 	based_on (cfme.control.explorer.alert_profiles.AlertProfilesEditAssignmentsView attribute)

 	(cfme.control.explorer.alerts.Alert attribute)

 	(cfme.control.explorer.alerts.AlertFormCommon attribute)

 	BaseDashboardReportWidget (class in cfme.intelligence.reports.widgets)

 	BaseDashboardWidgetDetailsStep (class in cfme.intelligence.reports.widgets)

 	BaseDashboardWidgetFormCommon (class in cfme.intelligence.reports.widgets)

 	BaseEditDashboardWidgetStep (class in cfme.intelligence.reports.widgets)

 	BaseEditDashboardWidgetView (class in cfme.intelligence.reports.widgets)

 	BaseEntity (class in cfme.modeling.base)

 	BaseLoggedInPage (class in cfme.base.login)

 	BaseNewDashboardWidgetStep (class in cfme.intelligence.reports.widgets)

 	BaseNewDashboardWidgetView (class in cfme.intelligence.reports.widgets)

 	BasePolicy (class in cfme.control.explorer.policies)

 	BaseWorkloads (class in cfme.services.workloads)

 	basic_info (cfme.automate.provisioning_dialogs.ProvDiagDetailsEntities attribute)

 	basic_information (cfme.configure.configuration.server_settings.ServerInformationView attribute)

 	(cfme.intelligence.reports.dashboards.DashboardFormCommon attribute)

 	basic_information_values (cfme.configure.configuration.server_settings.ServerInformation attribute)

 	before_fill() (cfme.ansible.credentials.CredentialEditView method)

 	(cfme.automate.dialogs.dialog_element.AddElementView method)

 	(cfme.automate.explorer.method.MethodEditView method)

 	before_keyboard_input() (cfme.utils.appliance.implementations.ui.MiqBrowserPlugin method)

 	BEFORE_RUN (cfme.markers.meta.PluginContainer attribute)

 	bind_dn (cfme.configure.configuration.server_settings.LdapAuthenticationView attribute)

 	(cfme.utils.auth.MIQAuthProvider attribute)

 	bind_password (cfme.configure.configuration.server_settings.LdapAuthenticationView attribute)

 	(cfme.utils.auth.MIQAuthProvider attribute)

 	blank (cfme.dashboard.DashboardWidget attribute)

 	Blocker (class in cfme.utils.blockers)

 	blocker() (in module fixtures.blockers)

 	blockers() (in module fixtures.blockers)

 	blocks (cfme.utils.blockers.Blocker attribute)

 	(cfme.utils.blockers.BZ attribute)

 	(cfme.utils.blockers.GH attribute)

 	(cfme.utils.blockers.JIRA attribute)

 	body (cfme.utils.appliance.implementations.ui.ErrorView attribute)

 	bottlenecks (cfme.optimize.BottlenecksView attribute)

 	Bottlenecks (class in cfme.optimize)

 	(class in cfme.optimize.bottlenecks)

 	BottlenecksTabsView (class in cfme.optimize.bottlenecks)

 	BottlenecksView (class in cfme.optimize)

 	box (cfme.automate.dialogs.AddTabView attribute)

 	Box (class in cfme.automate.dialog_box)

 	(class in cfme.automate.dialogs.dialog_box)

 	box_desc (cfme.automate.BoxForm attribute)

 	(cfme.automate.dialog_box.Box attribute)

 	(cfme.automate.dialogs.BoxForm attribute)

 	(cfme.automate.dialogs.dialog_box.Box attribute)

 	
 	box_label (cfme.automate.BoxForm attribute)

 	(cfme.automate.dialog_box.Box attribute)

 	(cfme.automate.dialogs.BoxForm attribute)

 	(cfme.automate.dialogs.dialog_box.Box attribute)

 	BoxCollection (class in cfme.automate.dialog_box)

 	(class in cfme.automate.dialogs.dialog_box)

 	boxes (cfme.automate.dialog_tab.Tab attribute)

 	(cfme.automate.dialogs.dialog_tab.Tab attribute)

 	BoxForm (class in cfme.automate)

 	(class in cfme.automate.dialogs)

 	branch (cfme.automate.import_export.GitImportSelectorView attribute)

 	breadcrumb (cfme.ansible.playbooks.PlaybookDetailsView attribute)

 	(cfme.cloud.security_groups.SecurityGroupAddEntities attribute)

 	(cfme.cloud.security_groups.SecurityGroupDetailsEntities attribute)

 	(cfme.configure.settings.MySettingsEntities attribute)

 	(cfme.configure.settings.TimeProfileEntities attribute)

 	browser (cfme.utils.appliance.NavigatableMixin attribute)

 	browser() (in module cfme.utils.browser)

 	(in module fixtures.browser)

 	browser_steal (cfme.utils.appliance.DummyAppliance attribute)

 	BrowserFactory (class in cfme.utils.browser)

 	BrowserManager (class in cfme.utils.browser)

 	bt_tree (cfme.automate.dialog_element.ElementForm attribute)

 	bug() (in module fixtures.blockers)

 	bug_count (cfme.utils.bz.Bugzilla attribute)

 	BugException

 	bugs (cfme.utils.bz.Bugzilla attribute)

 	BugWrapper (class in cfme.utils.bz)

 	bugzilla (cfme.utils.blockers.BZ attribute)

 	(cfme.utils.bz.BugWrapper attribute)

 	(cfme.utils.bz.Bugzilla attribute)

 	Bugzilla (class in cfme.utils.bz)

 	bugzilla_bug (cfme.utils.blockers.BZ attribute)

 	build (cfme.utils.appliance.DummyAppliance attribute)

 	(cfme.utils.appliance.IPAppliance attribute)

 	build_date (cfme.utils.appliance.IPAppliance attribute)

 	build_datetime (cfme.utils.appliance.IPAppliance attribute)

 	build_file() (in module cfme.utils.repo_gen)

 	build_from_entity() (cfme.utils.events.Event method)

 	build_from_raw_event() (cfme.utils.events_db.Event method)

 	BUTTON (cfme.automate.buttons.AutomateRadioGroup attribute)

 	(cfme.dashboard.Kebab attribute)

 	button_type (cfme.automate.buttons.ButtonDetailView attribute)

 	ButtonAll (class in cfme.automate.buttons)

 	ButtonCollection (class in cfme.automate.buttons)

 	ButtonDetails (class in cfme.automate.buttons)

 	ButtonDetailView (class in cfme.automate.buttons)

 	ButtonEdit (class in cfme.automate.buttons)

 	ButtonFormCommon (class in cfme.automate.buttons)

 	ButtonGroup (class in cfme.automate.buttons)

 	ButtonGroupAll (class in cfme.automate.buttons)

 	ButtonGroupCollection (class in cfme.automate.buttons)

 	ButtonGroupDetails (class in cfme.automate.buttons)

 	ButtonGroupDetailView (class in cfme.automate.buttons)

 	ButtonGroupEdit (class in cfme.automate.buttons)

 	ButtonGroupFormCommon (class in cfme.automate.buttons)

 	ButtonGroupNew (class in cfme.automate.buttons)

 	ButtonGroupObjectType (class in cfme.automate.buttons)

 	ButtonGroupObjectTypeView (class in cfme.automate.buttons)

 	ButtonNew (class in cfme.automate.buttons)

 	buttons (cfme.automate.AutomateCustomizationView attribute)

 	(cfme.automate.buttons.ButtonGroup attribute)

 	ButtonsAllView (class in cfme.automate.buttons)

 	BZ (class in cfme.utils.blockers)

C

 	
 	cache (cfme.utils.appliance.plugin.AppliancePluginDescriptor attribute)

 	cache_files() (cfme.utils.dockerbot.dockerbot.DockerBot method)

 	call_method() (cfme.test_framework.sprout.client.SproutClient method)

 	can_skip_badness_test() (in module cfme.utils.appliance.implementations.ui)

 	can_test_on_upstream (cfme.utils.bz.BugWrapper attribute)

 	can_zoom (cfme.dashboard.DashboardWidget attribute)

 	cancel (cfme.automate.dialogs.DialogForm attribute)

 	(cfme.automate.import_export.GitImportSelectorView attribute)

 	(cfme.automate.provisioning_dialogs.ProvDiagForm attribute)

 	(cfme.base.ui.RegionChangeNameView attribute)

 	(cfme.cloud.security_groups.SecurityGroupAddForm attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileAddView attribute)

 	(cfme.configure.settings.TimeProfileForm attribute)

 	(cfme.infrastructure.pxe.PXECustomizationTemplateAddView attribute)

 	(cfme.infrastructure.pxe.PXECustomizationTemplateCopyView attribute)

 	(cfme.infrastructure.pxe.PXECustomizationTemplateEditView attribute)

 	(cfme.infrastructure.pxe.PXEDatastoreAddView attribute)

 	(cfme.infrastructure.pxe.PXEDatastoreEditView attribute)

 	(cfme.infrastructure.pxe.PXEImageEditView attribute)

 	(cfme.infrastructure.pxe.PXEServerAddView attribute)

 	(cfme.infrastructure.pxe.PXEServerEditView attribute)

 	(cfme.infrastructure.pxe.PXESystemImageTypeAddView attribute)

 	(cfme.infrastructure.pxe.PXESystemImageTypeEditView attribute)

 	cancel_after (cfme.intelligence.reports.reports.CustomReportFormCommon attribute)

 	(cfme.intelligence.reports.reports.Report attribute)

 	cancel_btn (cfme.automate.DialogForm attribute)

 	(cfme.automate.service_dialogs.Dialog attribute)

 	cancel_button (cfme.ansible.credentials.CredentialFormView attribute)

 	(cfme.ansible.repositories.RepositoryFormView attribute)

 	(cfme.automate.buttons.ButtonFormCommon attribute)

 	(cfme.automate.buttons.ButtonGroupFormCommon attribute)

 	(cfme.automate.dialogs.BoxForm attribute)

 	(cfme.automate.dialogs.EditDialogView attribute)

 	(cfme.automate.dialogs.TabForm attribute)

 	(cfme.automate.dialogs.dialog_element.ElementForm attribute)

 	(cfme.automate.explorer.common.CopyViewBase attribute)

 	(cfme.automate.explorer.domain.DomainForm attribute)

 	(cfme.automate.explorer.domain.DomainPriorityView attribute)

 	(cfme.automate.explorer.instance.InstanceAddView attribute)

 	(cfme.automate.explorer.instance.InstanceEditView attribute)

 	(cfme.automate.explorer.klass.ClassForm attribute)

 	(cfme.automate.explorer.method.MethodAddView attribute)

 	(cfme.automate.explorer.method.MethodEditView attribute)

 	(cfme.automate.explorer.namespace.NamespaceForm attribute)

 	(cfme.base.ui.ZoneForm attribute)

 	(cfme.configure.configuration.diagnostics_settings.ServerCollectLogsEditView attribute)

 	(cfme.configure.configuration.region_settings.CompanyCategoriesAddView attribute)

 	(cfme.configure.configuration.region_settings.CompanyTagsAllView attribute)

 	(cfme.configure.configuration.region_settings.MapTagsAddView attribute)

 	(cfme.configure.configuration.region_settings.RedHatUpdatesEditView attribute)

 	(cfme.configure.configuration.system_schedules.ScheduleAddEditEntities attribute)

 	(cfme.control.explorer.actions.ActionFormCommon attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfileFormCommon attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfilesEditAssignmentsView attribute)

 	(cfme.control.explorer.alerts.AlertFormCommon attribute)

 	(cfme.control.explorer.conditions.ConditionFormCommon attribute)

 	(cfme.control.explorer.policies.EditEventView attribute)

 	(cfme.control.explorer.policies.EditPolicyConditionAssignments attribute)

 	(cfme.control.explorer.policies.EditPolicyEventAssignments attribute)

 	(cfme.control.explorer.policies.PolicyFormCommon attribute)

 	(cfme.control.explorer.policy_profiles.PolicyProfileFormCommon attribute)

 	(cfme.intelligence.chargeback.rates.AddComputeChargebackView attribute)

 	(cfme.intelligence.reports.dashboards.DashboardFormCommon attribute)

 	(cfme.intelligence.reports.import_export.ImportExportWidgetsCommitView attribute)

 	(cfme.intelligence.reports.menus.EditReportMenusView attribute)

 	(cfme.intelligence.reports.reports.CustomReportFormCommon attribute)

 	(cfme.intelligence.reports.schedules.SchedulesFormCommon attribute)

 	(cfme.intelligence.reports.widgets.BaseDashboardWidgetFormCommon attribute)

 	CandidateNotFound

 	candu (cfme.intelligence.reports.reports.SavedReport attribute)

 	candu_collection (cfme.base.ui.RegionView attribute)

 	CANDUCollection (class in cfme.configure.configuration.region_settings)

 	CANDUCollectionDetails (class in cfme.configure.configuration.region_settings)

 	CANDUCollectionView (class in cfme.configure.configuration.region_settings)

 	CANDUCredential (class in cfme.base.credential)

 	candugapcollection (cfme.base.ui.ZoneDiagnosticsView attribute)

 	CannotContinueWithNavigation

 	CannotScrollException

 	capture_candu (cfme.configure.configuration.region_settings.CompanyCategoriesAddView attribute)

 	capturemanager (fixtures.pytest_store.Store attribute)

 	castmap() (in module cfme.utils)

 	catalog_items (cfme.services.catalogs.ServicesCatalogView attribute)

 	catalogs (cfme.services.catalogs.ServicesCatalogView attribute)

 	categorize() (in module cfme.utils.category)

 	category (cfme.configure.configuration.region_settings.MapTagsAddView attribute)

 	Category (class in cfme.configure.configuration.region_settings)

 	category() (in module cfme.fixtures.tag)

 	category_dropdown (cfme.configure.configuration.region_settings.CompanyTagsAllView attribute)

 	CategoryAdd (class in cfme.configure.configuration.region_settings)

 	CategoryAll (class in cfme.configure.configuration.region_settings)

 	CategoryBase (class in cfme.utils.category)

 	CategoryEdit (class in cfme.configure.configuration.region_settings)

 	cd() (cfme.utils.ftp.FTPDirectory method)

 	cdup() (cfme.utils.ftp.FTPClient method)

 	cert_filename (cfme.utils.auth.MIQAuthProvider attribute)

 	cert_filepath (cfme.utils.auth.MIQAuthProvider attribute)

 	cfme (module)

 	cfme.ansible (module)

 	cfme.ansible.credentials (module)

 	cfme.ansible.playbooks (module)

 	cfme.ansible.repositories (module)

 	cfme.automate (module)

 	cfme.automate.buttons (module)

 	cfme.automate.dialog_box (module)

 	cfme.automate.dialog_collection_pick (module)

 	cfme.automate.dialog_element (module)

 	cfme.automate.dialog_tab (module)

 	cfme.automate.dialogs (module)

 	cfme.automate.dialogs.dialog_box (module)

 	cfme.automate.dialogs.dialog_element (module)

 	cfme.automate.dialogs.dialog_tab (module)

 	cfme.automate.dialogs.service_dialogs (module)

 	cfme.automate.explorer (module)

 	cfme.automate.explorer.common (module)

 	cfme.automate.explorer.domain (module)

 	cfme.automate.explorer.instance (module)

 	cfme.automate.explorer.klass (module)

 	cfme.automate.explorer.method (module)

 	cfme.automate.explorer.namespace (module)

 	cfme.automate.import_export (module)

 	cfme.automate.provisioning_dialogs (module)

 	cfme.automate.service_dialogs (module)

 	cfme.automate.simulation (module)

 	cfme.base (module)

 	cfme.base.credential (module)

 	cfme.base.login (module)

 	cfme.base.rest (module)

 	cfme.base.ssui (module)

 	cfme.base.ui (module)

 	cfme.cloud (module)

 	cfme.cloud.security_groups (module)

 	cfme.configure (module)

 	cfme.configure.about (module)

 	cfme.configure.configuration (module)

 	cfme.configure.configuration.analysis_profile (module)

 	cfme.configure.configuration.diagnostics_settings (module)

 	cfme.configure.configuration.region_settings (module)

 	cfme.configure.configuration.server_settings (module)

 	cfme.configure.configuration.system_schedules (module)

 	cfme.configure.documentation (module)

 	cfme.configure.settings (module)

 	cfme.configure.tasks (module)

 	cfme.containers (module)

 	cfme.containers.overview (module)

 	cfme.control (module)

 	cfme.control.explorer (module)

 	cfme.control.explorer.actions (module)

 	cfme.control.explorer.alert_profiles (module)

 	cfme.control.explorer.alerts (module)

 	cfme.control.explorer.conditions (module)

 	cfme.control.explorer.policies (module)

 	cfme.control.explorer.policy_profiles (module)

 	cfme.control.import_export (module)

 	cfme.control.log (module)

 	cfme.control.simulation (module)

 	cfme.dashboard (module)

 	cfme.exceptions (module)

 	cfme.fixtures (module)

 	cfme.fixtures.authentication (module)

 	cfme.fixtures.base (module)

 	cfme.fixtures.candu (module)

 	cfme.fixtures.cli (module)

 	cfme.fixtures.model_collections (module)

 	cfme.fixtures.pxe (module)

 	cfme.fixtures.rdb (module)

 	cfme.fixtures.smtp (module)

 	cfme.fixtures.tag (module)

 	cfme.fixtures.tccheck (module)

 	cfme.fixtures.version_info (module)

 	cfme.fixtures.video (module)

 	cfme.fixtures.vm_console (module)

 	cfme.fixtures.vporizer (module)

 	cfme.fixtures.widgets (module)

 	cfme.fixtures.xunit_tools (module)

 	cfme.generic_objects (module)

 	cfme.generic_objects.definition (module)

 	cfme.generic_objects.definition.associations (module)

 	cfme.generic_objects.definition.rest (module)

 	cfme.generic_objects.instance (module)

 	cfme.generic_objects.instance.rest (module)

 	cfme.infrastructure (module)

 	cfme.infrastructure.networking (module)

 	cfme.infrastructure.pxe (module)

 	cfme.intelligence (module)

 	cfme.intelligence.chargeback (module)

 	cfme.intelligence.chargeback.assignments (module)

 	cfme.intelligence.chargeback.rates (module)

 	cfme.intelligence.reports (module)

 	cfme.intelligence.reports.dashboards (module)

 	cfme.intelligence.reports.import_export (module)

 	cfme.intelligence.reports.menus (module)

 	cfme.intelligence.reports.reports (module)

 	cfme.intelligence.reports.saved (module)

 	cfme.intelligence.reports.schedules (module)

 	cfme.intelligence.reports.widgets (module)

 	cfme.intelligence.reports.widgets.chart_widgets (module)

 	cfme.intelligence.reports.widgets.menu_widgets (module)

 	cfme.intelligence.reports.widgets.report_widgets (module)

 	cfme.intelligence.reports.widgets.rss_widgets (module)

 	cfme.intelligence.rss (module)

 	cfme.js (module)

 	cfme.markers (module)

 	cfme.markers.composite (module)

 	cfme.markers.crud (module)

 	cfme.markers.env_markers (module)

 	cfme.markers.fixtureconf (module)

 	cfme.markers.manual (module)

 	cfme.markers.meta (module)

 	cfme.markers.polarion (module)

 	cfme.markers.requires (module)

 	cfme.markers.rhv (module)

 	cfme.markers.sauce (module)

 	cfme.markers.skipper (module)

 	cfme.markers.smoke (module)

 	cfme.markers.stream_excluder (module)

 	cfme.markers.uncollect (module)

 	cfme.markers.uses (module)

 	cfme.metaplugins (module)

 	cfme.metaplugins.blockers (module)

 	cfme.metaplugins.server_roles (module)

 	cfme.modeling (module)

 	cfme.modeling.base (module)

 	cfme.modeling.tests (module)

 	cfme.modeling.tests.test_collections (module)

 	cfme.networks (module)

 	cfme.optimize (module)

 	cfme.optimize.bottlenecks (module)

 	cfme.optimize.utilization (module)

 	cfme.physical (module)

 	cfme.rest (module)

 	cfme.roles (module)

 	cfme.scripting (module)

 	cfme.scripting.appliance (module)

 	cfme.scripting.conf (module)

 	cfme.scripting.disable_bytecode (module)

 	cfme.scripting.ipyshell (module)

 	cfme.scripting.link_config (module)

 	cfme.scripting.miq (module)

 	cfme.scripting.setup_env (module)

 	cfme.scripting.sprout (module)

 	cfme.scripting.tests (module)

 	cfme.scripting.tests.test_quickstart (module)

 	cfme.services (module)

 	cfme.services.catalogs (module)

 	cfme.services.dashboard (module)

 	cfme.services.dashboard.ssui (module)

 	cfme.services.workloads (module)

 	cfme.storage (module)

 	cfme.test_framework (module)

 	cfme.test_framework.appliance (module)

 	cfme.test_framework.appliance_log_collector (module)

 	cfme.test_framework.appliance_police (module)

 	cfme.test_framework.browser_isolation (module)

 	cfme.test_framework.config (module)

 	cfme.test_framework.pytest_plugin (module)

 	cfme.test_framework.sprout (module)

 	cfme.test_framework.sprout.client (module)

 	cfme.test_framework.sprout.plugin (module)

 	cfme.test_requirements (module), [1]

 	cfme.utils (module)

 	cfme.utils.apidoc (module)

 	cfme.utils.appliance (module)

 	cfme.utils.appliance.db (module)

 	cfme.utils.appliance.implementations (module)

 	cfme.utils.appliance.implementations.rest (module)

 	cfme.utils.appliance.implementations.ssui (module)

 	cfme.utils.appliance.implementations.ui (module)

 	cfme.utils.appliance.plugin (module)

 	cfme.utils.appliance.services (module)

 	cfme.utils.auth (module)

 	cfme.utils.blockers (module)

 	cfme.utils.browser (module)

 	cfme.utils.bz (module)

 	cfme.utils.category (module)

 	cfme.utils.conf (module)

 	cfme.utils.datafile (module)

 	cfme.utils.db (module)

 	cfme.utils.deprecation (module)

 	cfme.utils.dockerbot (module)

 	cfme.utils.dockerbot.build_container (module)

 	cfme.utils.dockerbot.dockerbot (module)

 	cfme.utils.dockerbot.pytestbase (module)

 	cfme.utils.dockerbot.pytestbase.check_provisioned (module)

 	cfme.utils.dockerbot.pytestbase.get_keys (module)

 	cfme.utils.dockerbot.pytestbase.verify_commit (module)

 	cfme.utils.dockerbot.sel_container (module)

 	cfme.utils.events (module)

 	cfme.utils.events_db (module)

 	cfme.utils.ftp (module)

 	cfme.utils.generators (module)

 	cfme.utils.grafana (module)

 	cfme.utils.ipmi (module)

 	cfme.utils.log (module)

 	cfme.utils.log_validator (module)

 	cfme.utils.mgmt_system (module)

 	cfme.utils.net (module)

 	cfme.utils.ocp_cli (module)

 	cfme.utils.path (module)

 	cfme.utils.perf (module)

 	cfme.utils.perf_message_stats (module)

 	cfme.utils.ports (module)

 	cfme.utils.pretty (module)

 	cfme.utils.pytest_shortcuts (module)

 	cfme.utils.quote (module)

 	cfme.utils.release (module)

 	cfme.utils.repo_gen (module)

 	cfme.utils.rest (module)

 	cfme.utils.smem_memory_monitor (module)

 	cfme.utils.smtp_collector_client (module)

 	cfme.utils.soft_get (module)

 	cfme.utils.ssh (module)

 	cfme.utils.stats (module)

 	cfme.utils.template (module)

 	cfme.utils.timeutil (module)

 	cfme.utils.tracer (module)

 	cfme.utils.units (module)

 	cfme.utils.update (module)

 	cfme.utils.varmeth (module)

 	cfme.utils.version (module)

 	cfme.utils.video (module)

 	cfme.utils.wait (module)

 	cfme.utils.workloads (module)

 	cfme_data() (in module fixtures.cfme_data)

 	cfme_log_level_rails_debug() (in module fixtures.perf)

 	CFMEException

 	CFMEExceptionOccured

 	cfmelog (cfme.base.ui.ServerDiagnosticsView attribute)

 	CFMELog (class in cfme.base.ui)

 	CFMENavigateStep (class in cfme.utils.appliance.implementations.ui)

 	change_password (cfme.base.ui.LoginPage attribute)

 	ChangeRegionName (class in cfme.base.ui)

 	Chargeback (class in cfme.base.ui)

 	ChargebackRateNotFound

 	ChargebackView (class in cfme.intelligence.chargeback)

 	CHART (cfme.intelligence.reports.widgets.DashboardReportWidgetsCollection attribute)

 	chart_type (cfme.intelligence.reports.reports.Report attribute)

 	charts (cfme.intelligence.reports.reports.CustomReportFormCommon attribute)

 	(cfme.intelligence.reports.reports.Report attribute)

 	ChartWidget (class in cfme.intelligence.reports.widgets.chart_widgets)

 	ChartWidgetFormCommon (class in cfme.intelligence.reports.widgets.chart_widgets)

 	check_arg() (cfme.utils.dockerbot.dockerbot.DockerBot method)

 	check_docker() (in module cfme.scripting.tests.test_quickstart)

 	check_domain_enabled() (cfme.utils.appliance.IPAppliance method)

 	check_expected_events() (cfme.utils.events.RestEventListener method)

 	(cfme.utils.events_db.DbEventListener method)

 	check_fixed_in() (in module cfme.utils.bz)

 	check_for_badness() (cfme.utils.appliance.implementations.ui.CFMENavigateStep method)

 	check_for_updates (cfme.configure.configuration.region_settings.RedHatUpdatesView attribute)

 	check_fullfilled() (cfme.test_framework.sprout.plugin.SproutManager method)

 	check_item_visibility() (in module cfme.fixtures.tag)

 	check_requirement() (in module cfme.fixtures.tccheck)

 	check_status() (cfme.intelligence.reports.widgets.BaseDashboardReportWidget method)

 	check_tasks_have_no_errors() (in module cfme.configure.tasks)

 	check_tier() (in module cfme.fixtures.tccheck)

 	check_tree_path() (in module cfme.automate.explorer)

 	check_updates() (cfme.configure.configuration.region_settings.RedHatUpdates method)

 	check_workers_finished() (cfme.configure.configuration.diagnostics_settings.DiagnosticWorker method)

 	checked_updates() (cfme.configure.configuration.region_settings.RedHatUpdates method)

 	checkin() (cfme.utils.browser.Wharf method)

 	checkout() (cfme.utils.browser.Wharf method)

 	child_widget_accessed() (cfme.automate.explorer.method.Inputs method)

 	choose_type (cfme.automate.dialog_element.ElementForm attribute)

 	Class (class in cfme.automate.explorer.klass)

 	
 	ClassAddView (class in cfme.automate.explorer.klass)

 	ClassCollection (class in cfme.automate.explorer.klass)

 	ClassCopyView (class in cfme.automate.explorer.klass)

 	ClassDetailsView (class in cfme.automate.explorer.klass)

 	ClassEditView (class in cfme.automate.explorer.klass)

 	classes (cfme.automate.explorer.namespace.Namespace attribute)

 	ClassForm (class in cfme.automate.explorer.klass)

 	classmethod() (cfme.utils.InstanceClassMethod method)

 	classproperty() (in module cfme.utils)

 	ClassSchema (class in cfme.automate.explorer.klass)

 	ClassSchemaEditView (class in cfme.automate.explorer.klass)

 	clean (cfme.ansible.repositories.Repository attribute)

 	(cfme.ansible.repositories.RepositoryFormView attribute)

 	clean_appliance() (cfme.utils.appliance.IPAppliance method)

 	clean_commit() (in module cfme.utils.release)

 	clean_coverage_dir() (in module fixtures.ui_coverage)

 	clean_jenkins_job() (cfme.test_framework.sprout.plugin.SproutManager method)

 	clear() (cfme.configure.configuration.diagnostics_settings.CollectLogsBase method)

 	clear_database() (cfme.utils.smtp_collector_client.SMTPCollectorClient method)

 	clear_property_cache() (in module cfme.utils)

 	client (cfme.test_framework.sprout.plugin.SproutManager attribute)

 	(cfme.utils.appliance.db.ApplianceDB attribute)

 	client_address() (cfme.utils.ssh.SSHClient method)

 	client_connections (cfme.base.ui.ServerDatabaseView attribute)

 	clone_domain() (cfme.utils.appliance.IPAppliance method)

 	close() (cfme.dashboard.Kebab method)

 	(cfme.utils.browser.BrowserFactory method)

 	(cfme.utils.browser.WharfFactory method)

 	(cfme.utils.ftp.FTPClient method)

 	(cfme.utils.ocp_cli.OcpCli method)

 	(cfme.utils.ssh.SSHClient method)

 	close_zoom() (cfme.dashboard.DashboardCollection method)

 	(cfme.dashboard.DashboardWidget method)

 	cloud_provider_quad (cfme.configure.settings.Visual attribute)

 	cloud_tenant (cfme.cloud.security_groups.SecurityGroupAddForm attribute)

 	CloudIntelReports (class in cfme.intelligence.reports)

 	CloudIntelReportsView (class in cfme.intelligence.reports)

 	clouds (cfme.configure.settings.DefaultViewsForm attribute)

 	cls (cfme.utils.appliance.plugin.AppliancePluginDescriptor attribute)

 	CLUSTER (cfme.automate.buttons.ButtonGroupCollection attribute)

 	ClusterAlertProfile (class in cfme.control.explorer.alert_profiles)

 	ClusterNotFound

 	coerce_url_key() (cfme.utils.browser.BrowserManager method)

 	collect (cfme.configure.configuration.diagnostics_settings.ServerCollectLogsToolbar attribute)

 	(cfme.configure.configuration.diagnostics_settings.ZoneCollectLogToolbar attribute)

 	collect() (fixtures.ui_coverage.CoverageManager method)

 	collect_all() (cfme.configure.configuration.diagnostics_settings.CollectLogsBase method)

 	collect_current() (cfme.configure.configuration.diagnostics_settings.CollectLogsBase method)

 	collect_log() (in module cfme.utils.perf)

 	collect_logs (cfme.base.Server attribute)

 	(cfme.base.Zone attribute)

 	collection_appliance (fixtures.ui_coverage.CoverageManager attribute)

 	CollectionProperty (class in cfme.modeling.base)

 	collections (cfme.modeling.base.BaseEntity attribute)

 	(cfme.modeling.tests.test_collections.MyEntityWithDeclared attribute)

 	(cfme.utils.appliance.DummyAppliance attribute)

 	collections_for_appliance() (in module cfme.utils.appliance)

 	collectlogs (cfme.base.ui.ServerDiagnosticsView attribute)

 	(cfme.base.ui.ZoneDiagnosticsView attribute)

 	CollectLogsBase (class in cfme.configure.configuration.diagnostics_settings)

 	CollectLogsBasicEntities (class in cfme.configure.configuration.diagnostics_settings)

 	CollectLogsCredsEntities (class in cfme.configure.configuration.diagnostics_settings)

 	column1 (cfme.intelligence.reports.widgets.report_widgets.ReportWidget attribute)

 	(cfme.intelligence.reports.widgets.report_widgets.ReportWidgetFormCommon attribute)

 	column2 (cfme.intelligence.reports.widgets.report_widgets.ReportWidget attribute)

 	(cfme.intelligence.reports.widgets.report_widgets.ReportWidgetFormCommon attribute)

 	column3 (cfme.intelligence.reports.widgets.report_widgets.ReportWidget attribute)

 	(cfme.intelligence.reports.widgets.report_widgets.ReportWidgetFormCommon attribute)

 	column4 (cfme.intelligence.reports.widgets.report_widgets.ReportWidget attribute)

 	(cfme.intelligence.reports.widgets.report_widgets.ReportWidgetFormCommon attribute)

 	columns (cfme.intelligence.reports.widgets.report_widgets.ReportWidget attribute)

 	command (cfme.fixtures.cli.TimedCommand attribute)

 	(cfme.scripting.setup_env.TimedCommand attribute)

 	(cfme.utils.ssh.SSHResult attribute)

 	commit_button (cfme.control.import_export.ControlImportExportView attribute)

 	(cfme.intelligence.reports.import_export.ImportExportWidgetsCommitView attribute)

 	(cfme.intelligence.reports.menus.EditReportMenusView attribute)

 	company_categories (cfme.base.ui.RegionView attribute)

 	(cfme.base.ui.TagsView attribute)

 	company_name (cfme.intelligence.reports.reports.Report attribute)

 	(cfme.utils.appliance.IPAppliance attribute)

 	company_name_default() (cfme.intelligence.reports.reports.Report method)

 	company_tags (cfme.base.ui.RegionView attribute)

 	(cfme.base.ui.TagsView attribute)

 	CompanyCategories (class in cfme.base.ui)

 	CompanyCategoriesAddView (class in cfme.configure.configuration.region_settings)

 	CompanyCategoriesAllView (class in cfme.configure.configuration.region_settings)

 	CompanyCategoriesEditView (class in cfme.configure.configuration.region_settings)

 	CompanyTags (class in cfme.base.ui)

 	CompanyTagsAddView (class in cfme.configure.configuration.region_settings)

 	CompanyTagsAllView (class in cfme.configure.configuration.region_settings)

 	CompanyTagsEditView (class in cfme.configure.configuration.region_settings)

 	compile_per_process_results() (in module cfme.utils.smem_memory_monitor)

 	complete (cfme.markers.smoke.SmokeTests attribute)

 	component (cfme.automate.dialogs.AddBoxView attribute)

 	(cfme.automate.dialogs.dialog_element.AddElementView attribute)

 	computeassign() (cfme.intelligence.chargeback.assignments.Assign method)

 	ComputeRate (class in cfme.intelligence.chargeback.rates)

 	ComputeRateAll (class in cfme.intelligence.chargeback.rates)

 	ComputeRateCopy (class in cfme.intelligence.chargeback.rates)

 	ComputeRateDetails (class in cfme.intelligence.chargeback.rates)

 	ComputeRateEdit (class in cfme.intelligence.chargeback.rates)

 	ComputeRateNew (class in cfme.intelligence.chargeback.rates)

 	ConditionCollection (class in cfme.control.explorer.conditions)

 	ConditionDetails (class in cfme.control.explorer.conditions)

 	ConditionDetailsView (class in cfme.control.explorer.conditions)

 	(class in cfme.control.explorer.policies)

 	ConditionEdit (class in cfme.control.explorer.conditions)

 	ConditionFormCommon (class in cfme.control.explorer.conditions)

 	ConditionNew (class in cfme.control.explorer.conditions)

 	ConditionPolicyDetailsView (class in cfme.control.explorer.conditions)

 	conditions (cfme.control.explorer.ControlExplorerView attribute)

 	(cfme.control.explorer.policies.EditPolicyConditionAssignments attribute)

 	ConditionsAllView (class in cfme.control.explorer.conditions)

 	CONF_FILES (cfme.utils.appliance.IPAppliance attribute)

 	conf_path (in module cfme.utils.path)

 	config (cfme.utils.appliance.MiqImplementationContext attribute)

 	(fixtures.pytest_store.Store attribute)

 	CONFIG_MAPPING (cfme.utils.appliance.IPAppliance attribute)

 	CONFIG_NONGLOBAL (cfme.utils.appliance.IPAppliance attribute)

 	configuration (cfme.ansible.credentials.CredentialsListView attribute)

 	(cfme.ansible.repositories.RepositoryAllView attribute)

 	(cfme.automate.AutomateCustomizationView attribute)

 	(cfme.automate.dialogs.AutomateCustomizationView attribute)

 	(cfme.automate.explorer.AutomateExplorerView attribute)

 	(cfme.automate.provisioning_dialogs.ProvDiagAllToolbar attribute)

 	(cfme.base.ui.ServerDiagnosticsView attribute)

 	(cfme.base.ui.ZoneDetailsView attribute)

 	(cfme.base.ui.ZoneListView attribute)

 	(cfme.cloud.security_groups.SecurityGroupDetailsToolbar attribute)

 	(cfme.cloud.security_groups.SecurityGroupToolbar attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileToolbar attribute)

 	(cfme.configure.configuration.diagnostics_settings.DiagnosticServerWorkersToolbar attribute)

 	(cfme.configure.configuration.diagnostics_settings.ZoneCollectLogToolbar attribute)

 	(cfme.configure.configuration.system_schedules.ScheduleToolbar attribute)

 	(cfme.configure.settings.MySettingsView attribute)

 	(cfme.configure.settings.TimeProfileView attribute)

 	(cfme.configure.settings.TimeProfilesView attribute)

 	(cfme.control.explorer.ControlExplorerView attribute)

 	(cfme.control.explorer.policies.EventDetailsToolbar attribute)

 	(cfme.infrastructure.pxe.PXEToolBar attribute)

 	(cfme.intelligence.reports.CloudIntelReportsView attribute)

 	(cfme.services.catalogs.ServicesCatalogView attribute)

 	(cfme.services.workloads.WorkloadsToolbar attribute)

 	(cfme.test_framework.config.DeprecatedConfigWrapper attribute)

 	Configuration (class in cfme.base.ui)

 	(class in cfme.test_framework.config)

 	ConfigurationView (class in cfme.base.ui)

 	configure() (cfme.configure.configuration.server_settings.AuthenticationSetting method)

 	(cfme.test_framework.config.Configuration method)

 	(cfme.utils.appliance.Appliance method)

 	(cfme.utils.appliance.IPAppliance method)

 	configure_appliance_dedicated_db() (cfme.utils.appliance.ApplianceConsoleCli method)

 	configure_appliance_dedicated_ha_primary() (cfme.utils.appliance.ApplianceConsoleCli method)

 	configure_appliance_dedicated_ha_standby() (cfme.utils.appliance.ApplianceConsoleCli method)

 	configure_appliance_external_create() (cfme.utils.appliance.ApplianceConsoleCli method)

 	configure_appliance_external_join() (cfme.utils.appliance.ApplianceConsoleCli method)

 	configure_appliance_internal() (cfme.utils.appliance.ApplianceConsoleCli method)

 	configure_appliance_internal_fetch_key() (cfme.utils.appliance.ApplianceConsoleCli method)

 	configure_auth() (in module cfme.fixtures.authentication)

 	configure_console_vnc() (in module cfme.fixtures.vm_console)

 	configure_console_webmks() (in module cfme.fixtures.vm_console)

 	configure_fleecing() (cfme.utils.appliance.Appliance method)

 	configure_freeipa() (cfme.utils.appliance.IPAppliance method)

 	configure_gce() (cfme.utils.appliance.IPAppliance method)

 	configure_ipa() (cfme.utils.appliance.ApplianceConsoleCli method)

 	configure_openldap() (cfme.utils.appliance.IPAppliance method)

 	configure_rhos_db_disk() (cfme.utils.appliance.IPAppliance method)

 	configure_vm_console_cert() (cfme.utils.appliance.IPAppliance method)

 	configure_websocket() (in module cfme.fixtures.vm_console)

 	configured_appliance() (in module cfme.fixtures.cli)

 	confirm_password (cfme.configure.configuration.diagnostics_settings.CollectLogsCredsEntities attribute)

 	(cfme.infrastructure.pxe.PXEServerForm attribute)

 	connect() (cfme.utils.ftp.FTPClient method)

 	(cfme.utils.ssh.SSHClient method)

 	connected (cfme.utils.ssh.SSHClient attribute)

 	console_handler() (in module cfme.utils.log)

 	CONSOLE_TYPES (cfme.configure.configuration.server_settings.ServerInformation attribute)

 	ConsoleNotSupported

 	ConsoleTypeNotSupported

 	consolidation (cfme.intelligence.reports.reports.CustomReportFormCommon attribute)

 	(cfme.intelligence.reports.reports.Report attribute)

 	construct_message() (cfme.utils.appliance.implementations.ssui.SSUINavigateStep method)

 	(cfme.utils.appliance.implementations.ui.CFMENavigateStep method)

 	CONTAINERIMAGE_CONTROL_POLICY (cfme.control.explorer.policies.PolicyCollection attribute)

 	ContainerImageCompliancePolicy (class in cfme.control.explorer.policies)

 	ContainerImageCondition (class in cfme.control.explorer.conditions)

 	ContainerImageControlPolicy (class in cfme.control.explorer.policies)

 	CONTAINERNODE_COMPLIANCE_POLICY (cfme.control.explorer.policies.PolicyCollection attribute)

 	CONTAINERNODE_CONTROL_POLICY (cfme.control.explorer.policies.PolicyCollection attribute)

 	ContainerNodeCompliancePolicy (class in cfme.control.explorer.policies)

 	ContainerNodeCondition (class in cfme.control.explorer.conditions)

 	ContainerNodeControlPolicy (class in cfme.control.explorer.policies)

 	containers (cfme.configure.settings.DefaultViewsForm attribute)

 	(cfme.containers.overview.ContainersOverviewView attribute)

 	ContainersOverview (class in cfme.containers.overview)

 	ContainersOverviewView (class in cfme.containers.overview)

 	content (cfme.automate.provisioning_dialogs.ProvDiagDetailsEntities attribute)

 	(cfme.automate.provisioning_dialogs.ProvDiagForm attribute)

 	(cfme.automate.provisioning_dialogs.ProvisioningDialog attribute)

 	content_type (cfme.dashboard.DashboardWidget attribute)

 	contents (cfme.dashboard.DashboardWidget attribute)

 	ControlExplorer (class in cfme.control.explorer)

 	ControlExplorerView (class in cfme.control.explorer)

 	ControlImportExport (class in cfme.control.import_export)

 	ControlImportExportView (class in cfme.control.import_export)

 	ControlLog (class in cfme.control.log)

 	ControlLogView (class in cfme.control.log)

 	ControlSimulation (class in cfme.control.simulation)

 	ControlSimulationView (class in cfme.control.simulation)

 	convert_top_mem_to_mib() (in module cfme.utils.perf)

 	Copiable (class in cfme.automate.explorer.common)

 	copies (cfme.utils.bz.BugWrapper attribute)

 	Copy (class in cfme.automate.explorer.instance)

 	(class in cfme.automate.explorer.klass)

 	(class in cfme.automate.explorer.method)

 	copy() (cfme.configure.configuration.analysis_profile.AnalysisProfile method)

 	(cfme.configure.settings.TimeProfile method)

 	(cfme.control.explorer.alerts.Alert method)

 	(cfme.control.explorer.policies.BasePolicy method)

 	(cfme.infrastructure.pxe.CustomizationTemplate method)

 	(cfme.intelligence.chargeback.rates.ComputeRate method)

 	(cfme.utils.db.Db method)

 	copy_button (cfme.automate.explorer.common.CopyViewBase attribute)

 	copy_of (cfme.utils.bz.BugWrapper attribute)

 	copy_to() (cfme.automate.explorer.common.Copiable method)

 	CopyViewBase (class in cfme.automate.explorer.common)

 	count (cfme.test_framework.sprout.plugin.SproutProvisioningRequest attribute)

 	coverage (cfme.utils.appliance.IPAppliance attribute)

 	CoverageManager (class in fixtures.ui_coverage)

 	cpu (cfme.test_framework.sprout.plugin.SproutProvisioningRequest attribute)

 	cpu_number (cfme.control.explorer.actions.ActionFormCommon attribute)

 	cpu_spike() (cfme.utils.ssh.SSHClient method)

 	cpu_usagemhz_rate_average (cfme.fixtures.vporizer.vpor_data_instance attribute)

 	create (cfme.base.ZoneCollection attribute)

 	(cfme.generic_objects.definition.GenericObjectDefinitionCollection attribute)

 	(cfme.generic_objects.instance.GenericObjectInstanceCollection attribute)

 	create() (cfme.ansible.credentials.CredentialsCollection method)

 	(cfme.ansible.repositories.RepositoryCollection method)

 	(cfme.automate.buttons.ButtonCollection method)

 	(cfme.automate.buttons.ButtonGroupCollection method)

 	(cfme.automate.dialog_box.BoxCollection method)

 	(cfme.automate.dialog_element.ElementCollection method)

 	(cfme.automate.dialog_tab.TabCollection method)

 	(cfme.automate.dialogs.dialog_box.BoxCollection method)

 	(cfme.automate.dialogs.dialog_element.ElementCollection method)

 	(cfme.automate.dialogs.dialog_tab.TabCollection method)

 	(cfme.automate.dialogs.service_dialogs.DialogCollection method)

 	(cfme.automate.explorer.domain.DomainCollection method)

 	(cfme.automate.explorer.instance.InstanceCollection method)

 	(cfme.automate.explorer.klass.ClassCollection method)

 	(cfme.automate.explorer.method.MethodCollection method)

 	(cfme.automate.explorer.namespace.NamespaceCollection method)

 	(cfme.automate.provisioning_dialogs.ProvisioningDialogsCollection method)

 	(cfme.automate.service_dialogs.DialogCollection method)

 	(cfme.cloud.security_groups.SecurityGroupCollection method)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfile method)

 	(cfme.configure.configuration.region_settings.Category method)

 	(cfme.configure.configuration.region_settings.MapTags method)

 	(cfme.configure.configuration.region_settings.Tag method)

 	(cfme.configure.configuration.system_schedules.SystemSchedulesCollection method)

 	(cfme.configure.settings.TimeProfileCollection method)

 	(cfme.control.explorer.actions.ActionCollection method)

 	(cfme.control.explorer.alert_profiles.AlertProfileCollection method)

 	(cfme.control.explorer.alerts.AlertCollection method)

 	(cfme.control.explorer.conditions.ConditionCollection method)

 	(cfme.control.explorer.policies.PolicyCollection method)

 	(cfme.control.explorer.policy_profiles.PolicyProfileCollection method)

 	(cfme.infrastructure.pxe.CustomizationTemplateCollection method)

 	(cfme.infrastructure.pxe.ISODatastore method)

 	(cfme.infrastructure.pxe.PXEServer method)

 	(cfme.infrastructure.pxe.SystemImageTypeCollection method)

 	(cfme.intelligence.chargeback.rates.ComputeRate method)

 	(cfme.intelligence.reports.dashboards.DashboardsCollection method)

 	(cfme.intelligence.reports.reports.ReportsCollection method)

 	(cfme.intelligence.reports.schedules.ScheduleCollection method)

 	(cfme.intelligence.reports.widgets.DashboardReportWidgetsCollection method)

 	(cfme.utils.appliance.db.ApplianceDB method)

 	(cfme.utils.browser.BrowserFactory method)

 	(cfme.utils.browser.WharfFactory method)

 	(in module cfme.base.ui)

 	(in module cfme.generic_objects.definition.rest)

 	(in module cfme.generic_objects.instance.rest)

 	create_dict() (in module cfme.utils.smem_memory_monitor)

 	CREATE_LOC (cfme.configure.configuration.analysis_profile.AnalysisProfile attribute)

 	create_log_path() (cfme.utils.dockerbot.dockerbot.DockerBot method)

 	create_process_result() (cfme.utils.smem_memory_monitor.SmemMemoryMonitor method)

 	create_pytest_bindings() (cfme.utils.dockerbot.dockerbot.DockerBot method)

 	create_pytest_command() (cfme.utils.dockerbot.dockerbot.DockerBot method)

 	create_pytest_envvars() (cfme.utils.dockerbot.dockerbot.DockerBot method)

 	create_report() (in module cfme.utils.smem_memory_monitor)

 	create_resource() (in module cfme.utils.rest)

 	create_sublogger() (in module cfme.utils.log)

 	create_tab (cfme.automate.dialogs.AddDialogView attribute)

 	create_view() (cfme.utils.appliance.implementations.Implementation method)

 	(cfme.utils.appliance.NavigatableMixin method)

 	(cfme.utils.appliance.implementations.ssui.MiqSSUIBrowser method)

 	(cfme.utils.appliance.implementations.ssui.SSUINavigateStep method)

 	(cfme.utils.appliance.implementations.ui.CFMENavigateStep method)

 	(cfme.utils.appliance.implementations.ui.MiqBrowser method)

 	created_on (cfme.automate.explorer.method.MethodDetailsView attribute)

 	createLock() (cfme.utils.log.ArtifactorHandler method)

 	Credential (class in cfme.ansible.credentials)

 	(class in cfme.base.credential)

 	credential_form (cfme.ansible.credentials.CredentialFormView attribute)

 	credential_type (cfme.ansible.credentials.CredentialAddView attribute)

 	(cfme.ansible.credentials.CredentialEditView attribute)

 	CredentialAddView (class in cfme.ansible.credentials)

 	CredentialDetailsView (class in cfme.ansible.credentials)

 	CredentialEditView (class in cfme.ansible.credentials)

 	CredentialFormAmazonView (cfme.ansible.credentials.CredentialFormView attribute)

 	CredentialFormDefaultView (cfme.ansible.credentials.CredentialFormView attribute)

 	CredentialFormGCEView (cfme.ansible.credentials.CredentialFormView attribute)

 	CredentialFormMachineView (cfme.ansible.credentials.CredentialFormView attribute)

 	CredentialFormOpenStackView (cfme.ansible.credentials.CredentialFormView attribute)

 	CredentialFormRHVView (cfme.ansible.credentials.CredentialFormView attribute)

 	CredentialFormScmView (cfme.ansible.credentials.CredentialFormView attribute)

 	CredentialFormVaultView (cfme.ansible.credentials.CredentialFormView attribute)

 	CredentialFormView (class in cfme.ansible.credentials)

 	CredentialFormVMwareView (cfme.ansible.credentials.CredentialFormView attribute)

 	credentials (cfme.ansible.credentials.CredentialsListView attribute)

 	CredentialsBaseView (class in cfme.ansible.credentials)

 	CredentialsCollection (class in cfme.ansible.credentials)

 	CredentialsListView (class in cfme.ansible.credentials)

 	CSRF_TOKEN (cfme.base.login.BaseLoggedInPage attribute)

 	csrf_token (cfme.base.login.BaseLoggedInPage attribute)

 	CUCommandException

 	currency (cfme.intelligence.chargeback.rates.AddComputeChargebackView attribute)

 	current_appliance (fixtures.pytest_store.Store attribute)

 	current_full_name (cfme.base.Server attribute)

 	current_full_name() (in module cfme.base.ui)

 	current_fullname (cfme.base.login.BaseLoggedInPage attribute)

 	(cfme.base.ssui.SSUIBaseLoggedInPage attribute)

 	(cfme.base.ui.LoginPage attribute)

 	current_group_name (cfme.base.Server attribute)

 	current_group_name() (in module cfme.base.ui)

 	current_groupname (cfme.base.login.BaseLoggedInPage attribute)

 	(cfme.base.ui.LoginPage attribute)

 	current_services (cfme.services.dashboard.Dashboard attribute)

 	current_services() (in module cfme.services.dashboard.ssui)

 	current_username (cfme.base.login.BaseLoggedInPage attribute)

 	(cfme.base.Server attribute)

 	(cfme.base.ssui.SSUIBaseLoggedInPage attribute)

 	(cfme.base.ui.LoginPage attribute)

 	current_version() (in module cfme.utils.version)

 	CurrentServices (class in cfme.services.dashboard.ssui)

 	custom_support_url (cfme.configure.configuration.server_settings.ServerInformationView attribute)

 	custom_support_url_values (cfme.configure.configuration.server_settings.ServerInformation attribute)

 	customer_db_migrate() (in module fixtures.customer_db_migrate)

 	customer_portal (cfme.configure.documentation.LinksView attribute)

 	customization_dir (cfme.infrastructure.pxe.PXEServerForm attribute)

 	CustomizationTemplate (class in cfme.infrastructure.pxe)

 	CustomizationTemplateAdd (class in cfme.infrastructure.pxe)

 	CustomizationTemplateAll (class in cfme.infrastructure.pxe)

 	CustomizationTemplateCollection (class in cfme.infrastructure.pxe)

 	CustomizationTemplateCopy (class in cfme.infrastructure.pxe)

 	CustomizationTemplateDetails (class in cfme.infrastructure.pxe)

 	CustomizationTemplateEdit (class in cfme.infrastructure.pxe)

 	customlogos (cfme.base.ui.ServerView attribute)

 	CustomLogos (class in cfme.base.ui)

 	CustomReportAll (class in cfme.intelligence.reports.saved)

 	CustomReportFormCommon (class in cfme.intelligence.reports.reports)

 	cwd() (cfme.utils.ftp.FTPClient method)

D

 	
 	dashboard (cfme.dashboard.DashboardWidget attribute)

 	Dashboard (class in cfme.base.ui)

 	(class in cfme.dashboard)

 	(class in cfme.intelligence.reports.dashboards)

 	(class in cfme.services.dashboard)

 	dashboard_card (cfme.services.dashboard.ssui.DashboardView attribute)

 	dashboard_view (cfme.dashboard.Dashboard attribute)

 	(cfme.dashboard.DashboardWidgetCollection attribute)

 	dashboard_widgets (cfme.intelligence.reports.CloudIntelReportsView attribute)

 	DashboardAll (class in cfme.services.dashboard.ssui)

 	DashboardAllGroupsView (class in cfme.intelligence.reports.dashboards)

 	DashboardCollection (class in cfme.dashboard)

 	DashboardDetails (class in cfme.dashboard)

 	(class in cfme.intelligence.reports.dashboards)

 	DashboardDetailsView (class in cfme.intelligence.reports.dashboards)

 	DashboardEdit (class in cfme.intelligence.reports.dashboards)

 	DashboardFormCommon (class in cfme.intelligence.reports.dashboards)

 	DashboardNew (class in cfme.intelligence.reports.dashboards)

 	DashboardReportWidgetsCollection (class in cfme.intelligence.reports.widgets)

 	dashboards (cfme.dashboard.DashboardView attribute)

 	(cfme.intelligence.reports.CloudIntelReportsView attribute)

 	dashboards() (in module cfme.fixtures.model_collections)

 	DashboardsCollection (class in cfme.intelligence.reports.dashboards)

 	DashboardView (class in cfme.dashboard)

 	(class in cfme.services.dashboard.ssui)

 	DashboardWidget (class in cfme.dashboard)

 	DashboardWidgetCollection (class in cfme.dashboard)

 	DashboardWidgetDetailsView (class in cfme.intelligence.reports.widgets)

 	DashboardWidgetsView (class in cfme.intelligence.reports.widgets)

 	data (cfme.automate.explorer.method.MethodAddView attribute)

 	(cfme.automate.explorer.method.MethodEditView attribute)

 	(cfme.intelligence.reports.reports.SavedReport attribute)

 	(cfme.utils.auth.BaseAuthProvider attribute)

 	(cfme.utils.blockers.BZ attribute)

 	(cfme.utils.blockers.GH attribute)

 	data_path (in module cfme.utils.path)

 	data_path_for_filename() (in module cfme.utils.datafile)

 	data_type (cfme.automate.explorer.method.Inputs attribute)

 	database (cfme.base.ui.RegionDiagnosticsView attribute)

 	(cfme.configure.configuration.region_settings.ReplicationGlobalAddView attribute)

 	Database (class in cfme.base.ui)

 	database_backup (cfme.configure.configuration.system_schedules.ScheduleAddEditEntities attribute)

 	database_on_server() (in module cfme.utils.db)

 	DatabaseAuthenticationView (class in cfme.configure.configuration.server_settings)

 	DatabaseBackupEntities (class in cfme.configure.configuration.system_schedules)

 	DatabaseClientConnections (class in cfme.base.ui)

 	DatabaseClientConnectionsView (class in cfme.base.ui)

 	DatabaseIndexes (class in cfme.base.ui)

 	DatabaseIndexesView (class in cfme.base.ui)

 	DatabaseSettings (class in cfme.base.ui)

 	DatabaseSettingsView (class in cfme.base.ui)

 	DatabaseSummary (class in cfme.base.ui)

 	DatabaseSummaryView (class in cfme.base.ui)

 	DatabaseTables (class in cfme.base.ui)

 	DatabaseTablesView (class in cfme.base.ui)

 	DatabaseUtilization (class in cfme.base.ui)

 	DatabaseUtilizationView (class in cfme.base.ui)

 	datafile() (in module fixtures.datafile)

 	DATASTORE (cfme.automate.buttons.ButtonGroupCollection attribute)

 	datastore (cfme.automate.explorer.AutomateExplorerView attribute)

 	datastore_quad (cfme.configure.settings.Visual attribute)

 	DatastoreAlertProfile (class in cfme.control.explorer.alert_profiles)

 	datastores (cfme.infrastructure.pxe.PXESideBar attribute)

 	date (cfme.test_framework.sprout.plugin.SproutProvisioningRequest attribute)

 	datetime_in_tree (cfme.intelligence.reports.reports.SavedReport attribute)

 	days (cfme.configure.settings.TimeProfile attribute)

 	(cfme.configure.settings.TimeProfileForm attribute)

 	db (cfme.utils.appliance.IPAppliance attribute)

 	Db (class in cfme.utils.db)

 	db_backup_settings_type (cfme.base.ui.RegionDiagnosticsDatabaseView attribute)

 	db_id (cfme.automate.explorer.domain.Domain attribute)

 	(cfme.automate.explorer.instance.Instance attribute)

 	(cfme.automate.explorer.klass.Class attribute)

 	(cfme.automate.explorer.method.Method attribute)

 	(cfme.automate.explorer.namespace.Namespace attribute)

 	db_object (cfme.ansible.repositories.Repository attribute)

 	(cfme.automate.explorer.domain.Domain attribute)

 	(cfme.automate.explorer.instance.Instance attribute)

 	(cfme.automate.explorer.klass.Class attribute)

 	(cfme.automate.explorer.method.Method attribute)

 	(cfme.automate.explorer.namespace.Namespace attribute)

 	db_url (cfme.utils.db.Db attribute)

 	DbEventListener (class in cfme.utils.events_db)

 	dd (cfme.automate.dialogs.AddBoxView attribute)

 	declare() (cfme.utils.appliance.plugin.AppliancePlugin class method)

 	declared() (cfme.modeling.base.EntityCollections class method)

 	dectate (cfme.utils.appliance.MiqImplementationContext attribute)

 	dedicated_db_appliance() (in module cfme.fixtures.cli)

 	default (cfme.dashboard.DashboardCollection attribute)

 	DEFAULT (cfme.markers.meta.PluginContainer attribute)

 	default_button (cfme.intelligence.reports.menus.EditReportMenusView attribute)

 	default_filters (cfme.configure.settings.MySettings attribute)

 	default_for_windows (cfme.infrastructure.pxe.PXEImageEditView attribute)

 	default_items_per_page (cfme.configure.settings.VisualForm attribute)

 	default_product (cfme.utils.bz.Bugzilla attribute)

 	default_release (cfme.utils.bz.Product attribute)

 	DEFAULT_REPOSITORY (cfme.utils.blockers.GH attribute)

 	default_text_box (cfme.automate.dialog_element.ElementForm attribute)

 	default_value (cfme.automate.dialog_element.ElementForm attribute)

 	(cfme.automate.explorer.method.Inputs attribute)

 	(cfme.automate.explorer.method.PlaybookInputParameters attribute)

 	default_views (cfme.configure.settings.MySettings attribute)

 	DEFAULT_WAIT (cfme.utils.appliance.implementations.ui.MiqBrowserPlugin attribute)

 	default_zone (cfme.utils.appliance.IPAppliance attribute)

 	DefaultButton (class in cfme.automate.buttons)

 	DefaultDashboard (class in cfme.intelligence.reports.dashboards)

 	DefaultDashboardDetails (class in cfme.intelligence.reports.dashboards)

 	DefaultDashboardDetailsView (class in cfme.intelligence.reports.dashboards)

 	DefaultDashboardEdit (class in cfme.intelligence.reports.dashboards)

 	DefaultFilters (class in cfme.configure.settings)

 	DefaultFiltersForm (class in cfme.configure.settings)

 	DefaultFiltersStep (class in cfme.configure.settings)

 	DefaultViews (class in cfme.configure.settings)

 	DefaultViewsForm (class in cfme.configure.settings)

 	DefaultViewsStep (class in cfme.configure.settings)

 	deferred_verpick (class in cfme.utils)

 	definition (cfme.generic_objects.instance.GenericObjectInstance attribute)

 	dele() (cfme.utils.ftp.FTPClient method)

 	delete (cfme.automate.explorer.method.ActionsCell attribute)

 	(cfme.base.Zone attribute)

 	(cfme.configure.tasks.TasksView attribute)

 	(cfme.generic_objects.definition.GenericObjectDefinition attribute)

 	(cfme.generic_objects.instance.GenericObjectInstance attribute)

 	delete() (cfme.ansible.credentials.Credential method)

 	(cfme.ansible.repositories.Repository method)

 	(cfme.ansible.repositories.RepositoryCollection method)

 	(cfme.automate.buttons.BaseButton method)

 	(cfme.automate.buttons.ButtonGroup method)

 	(cfme.automate.dialogs.service_dialogs.Dialog method)

 	(cfme.automate.explorer.domain.Domain method)

 	(cfme.automate.explorer.domain.DomainCollection method)

 	(cfme.automate.explorer.instance.Instance method)

 	(cfme.automate.explorer.instance.InstanceCollection method)

 	(cfme.automate.explorer.klass.Class method)

 	(cfme.automate.explorer.klass.ClassCollection method)

 	(cfme.automate.explorer.method.Method method)

 	(cfme.automate.explorer.method.MethodCollection method)

 	(cfme.automate.explorer.namespace.Namespace method)

 	(cfme.automate.explorer.namespace.NamespaceCollection method)

 	(cfme.automate.provisioning_dialogs.ProvisioningDialog method)

 	(cfme.automate.service_dialogs.Dialog method)

 	(cfme.cloud.security_groups.SecurityGroup method)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfile method)

 	(cfme.configure.configuration.region_settings.Category method)

 	(cfme.configure.configuration.region_settings.MapTags method)

 	(cfme.configure.configuration.region_settings.Tag method)

 	(cfme.configure.configuration.system_schedules.SystemSchedule method)

 	(cfme.configure.settings.TimeProfileCollection method)

 	(cfme.control.explorer.actions.Action method)

 	(cfme.control.explorer.alert_profiles.BaseAlertProfile method)

 	(cfme.control.explorer.alerts.Alert method)

 	(cfme.control.explorer.conditions.BaseCondition method)

 	(cfme.control.explorer.policies.BasePolicy method)

 	(cfme.control.explorer.policies.PolicyCollection method)

 	(cfme.control.explorer.policy_profiles.PolicyProfile method)

 	(cfme.infrastructure.pxe.CustomizationTemplateCollection method)

 	(cfme.infrastructure.pxe.ISODatastore method)

 	(cfme.infrastructure.pxe.PXEServer method)

 	(cfme.infrastructure.pxe.SystemImageType method)

 	(cfme.infrastructure.pxe.SystemImageTypeCollection method)

 	(cfme.intelligence.chargeback.rates.ComputeRate method)

 	(cfme.intelligence.reports.dashboards.Dashboard method)

 	(cfme.intelligence.reports.reports.Report method)

 	(cfme.intelligence.reports.reports.SavedReport method)

 	(cfme.intelligence.reports.saved.SavedReport method)

 	(cfme.intelligence.reports.schedules.Schedule method)

 	(cfme.intelligence.reports.widgets.BaseDashboardReportWidget method)

 	(in module cfme.base.ui)

 	(in module cfme.generic_objects.definition.rest)

 	(in module cfme.generic_objects.instance.rest)

 	delete_all_providers() (cfme.utils.appliance.IPAppliance method)

 	delete_all_tasks() (in module cfme.configure.tasks)

 	delete_field() (cfme.automate.explorer.klass.ClassSchema method)

 	delete_fields() (cfme.automate.explorer.klass.ClassSchema method)

 	delete_if_exists() (cfme.automate.buttons.BaseButton method)

 	(cfme.automate.buttons.ButtonGroup method)

 	(cfme.automate.dialogs.service_dialogs.Dialog method)

 	(cfme.automate.explorer.domain.Domain method)

 	(cfme.automate.explorer.instance.Instance method)

 	(cfme.automate.explorer.klass.Class method)

 	(cfme.automate.explorer.method.Method method)

 	(cfme.automate.explorer.namespace.Namespace method)

 	(cfme.automate.service_dialogs.Dialog method)

 	(cfme.control.explorer.actions.Action method)

 	delete_on_update (cfme.ansible.repositories.Repository attribute)

 	(cfme.ansible.repositories.RepositoryFormView attribute)

 	delete_resources_from_collection() (in module cfme.utils.rest)

 	delete_resources_from_detail() (in module cfme.utils.rest)

 	delete_schedules() (cfme.intelligence.reports.schedules.ScheduleCollection method)

 	denied_requests (cfme.services.dashboard.Dashboard attribute)

 	
 	denied_requests() (in module cfme.services.dashboard.ssui)

 	deploy_merkyl() (cfme.utils.appliance.IPAppliance method)

 	depot_creds (cfme.configure.configuration.diagnostics_settings.ServerCollectLogsEditView attribute)

 	depot_info (cfme.configure.configuration.diagnostics_settings.ServerCollectLogsEditView attribute)

 	depot_name (cfme.configure.configuration.diagnostics_settings.CollectLogsBasicEntities attribute)

 	(cfme.configure.configuration.system_schedules.DatabaseBackupEntities attribute)

 	(cfme.configure.configuration.system_schedules.SystemSchedule attribute)

 	depot_type (cfme.configure.configuration.diagnostics_settings.ServerCollectLogsEditView attribute)

 	(cfme.infrastructure.pxe.PXEServerForm attribute)

 	DeprecatedConfigWrapper (class in cfme.test_framework.config)

 	derived_memory_used (cfme.fixtures.vporizer.vpor_data_instance attribute)

 	desc (cfme.test_framework.sprout.plugin.SproutProvisioningRequest attribute)

 	description (cfme.ansible.repositories.Repository attribute)

 	(cfme.ansible.repositories.RepositoryFormView attribute)

 	(cfme.automate.DialogForm attribute)

 	(cfme.automate.dialogs.DialogForm attribute)

 	(cfme.automate.dialogs.service_dialogs.Dialog attribute)

 	(cfme.automate.explorer.domain.DomainForm attribute)

 	(cfme.automate.explorer.instance.Instance attribute)

 	(cfme.automate.explorer.instance.InstanceAddView attribute)

 	(cfme.automate.explorer.instance.InstanceEditView attribute)

 	(cfme.automate.explorer.klass.Class attribute)

 	(cfme.automate.explorer.klass.ClassForm attribute)

 	(cfme.automate.explorer.namespace.Namespace attribute)

 	(cfme.automate.explorer.namespace.NamespaceForm attribute)

 	(cfme.automate.provisioning_dialogs.ProvDiagForm attribute)

 	(cfme.automate.provisioning_dialogs.ProvisioningDialog attribute)

 	(cfme.automate.service_dialogs.Dialog attribute)

 	(cfme.base.Zone attribute)

 	(cfme.base.ui.ZoneForm attribute)

 	(cfme.cloud.security_groups.SecurityGroup attribute)

 	(cfme.cloud.security_groups.SecurityGroupAddForm attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileBaseAddForm attribute)

 	(cfme.configure.configuration.diagnostics_settings.DiagnosticWorker attribute)

 	(cfme.configure.configuration.system_schedules.ScheduleAddEditEntities attribute)

 	(cfme.configure.configuration.system_schedules.ScheduleDetailsView attribute)

 	(cfme.configure.configuration.system_schedules.SystemSchedule attribute)

 	(cfme.configure.settings.TimeProfile attribute)

 	(cfme.configure.settings.TimeProfileForm attribute)

 	(cfme.control.explorer.actions.Action attribute)

 	(cfme.control.explorer.actions.ActionFormCommon attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfileFormCommon attribute)

 	(cfme.control.explorer.alert_profiles.BaseAlertProfile attribute)

 	(cfme.control.explorer.alerts.Alert attribute)

 	(cfme.control.explorer.alerts.AlertFormCommon attribute)

 	(cfme.control.explorer.conditions.BaseCondition attribute)

 	(cfme.control.explorer.conditions.ConditionFormCommon attribute)

 	(cfme.control.explorer.policies.BasePolicy attribute)

 	(cfme.control.explorer.policies.PolicyFormCommon attribute)

 	(cfme.control.explorer.policy_profiles.PolicyProfile attribute)

 	(cfme.control.explorer.policy_profiles.PolicyProfileFormCommon attribute)

 	(cfme.generic_objects.definition.GenericObjectDefinition attribute)

 	(cfme.infrastructure.pxe.CustomizationTemplate attribute)

 	(cfme.infrastructure.pxe.PXECustomizationTemplateForm attribute)

 	(cfme.intelligence.chargeback.rates.AddComputeChargebackView attribute)

 	(cfme.intelligence.reports.schedules.Schedule attribute)

 	(cfme.intelligence.reports.schedules.SchedulesFormCommon attribute)

 	(cfme.intelligence.reports.widgets.BaseDashboardReportWidget attribute)

 	(cfme.intelligence.reports.widgets.BaseDashboardWidgetFormCommon attribute)

 	DestinationNotFound

 	destroy() (cfme.utils.appliance.Appliance method)

 	destroy_pool() (cfme.test_framework.sprout.client.SproutClient method)

 	(cfme.test_framework.sprout.plugin.SproutManager method)

 	details (cfme.base.ui.LoginPage attribute)

 	(cfme.base.ui.RegionView attribute)

 	Details (class in cfme.ansible.credentials)

 	(class in cfme.ansible.playbooks)

 	(class in cfme.ansible.repositories)

 	(class in cfme.automate.dialogs.service_dialogs)

 	(class in cfme.automate.explorer.domain)

 	(class in cfme.automate.explorer.instance)

 	(class in cfme.automate.explorer.klass)

 	(class in cfme.automate.explorer.method)

 	(class in cfme.automate.explorer.namespace)

 	(class in cfme.automate.provisioning_dialogs)

 	(class in cfme.automate.service_dialogs)

 	(class in cfme.base.ui)

 	(class in cfme.cloud.security_groups)

 	(class in cfme.configure.configuration.region_settings)

 	DetailsDialogView (class in cfme.automate.dialog_element)

 	(class in cfme.automate.dialogs.dialog_element)

 	(class in cfme.automate.dialogs.service_dialogs)

 	(class in cfme.automate.service_dialogs)

 	DetailsTabView (class in cfme.automate.dialog_tab)

 	(class in cfme.automate.dialogs.dialog_tab)

 	diag_type (cfme.automate.provisioning_dialogs.ProvDiagForm attribute)

 	(cfme.automate.provisioning_dialogs.ProvisioningDialog attribute)

 	diagnose_evm_failure() (cfme.utils.appliance.IPAppliance method)

 	Diagnostics (class in cfme.base.ui)

 	DiagnosticsCollectLogs (class in cfme.configure.configuration.diagnostics_settings)

 	DiagnosticsCollectLogsEdit (class in cfme.configure.configuration.diagnostics_settings)

 	DiagnosticsCollectLogsEditSlave (class in cfme.configure.configuration.diagnostics_settings)

 	DiagnosticsCollectLogsSlave (class in cfme.configure.configuration.diagnostics_settings)

 	DiagnosticsDetails (class in cfme.base.ui)

 	DiagnosticServerWorkersToolbar (class in cfme.configure.configuration.diagnostics_settings)

 	DiagnosticServerWorkersView (class in cfme.configure.configuration.diagnostics_settings)

 	DiagnosticsSummary (class in cfme.configure.configuration.diagnostics_settings)

 	DiagnosticsWorkers (class in cfme.base.ui)

 	DiagnosticWorker (class in cfme.configure.configuration.diagnostics_settings)

 	DiagnosticWorkersCollection (class in cfme.configure.configuration.diagnostics_settings)

 	dialog (cfme.automate.buttons.ButtonDetailView attribute)

 	(cfme.automate.buttons.DefaultButton attribute)

 	(cfme.automate.dialog_element.Element attribute)

 	(cfme.automate.dialog_tab.Tab attribute)

 	(cfme.automate.dialogs.dialog_element.Element attribute)

 	(cfme.automate.dialogs.dialog_tab.Tab attribute)

 	(cfme.automate.dialogs.service_dialogs.Dialog attribute)

 	(cfme.automate.service_dialogs.Dialog attribute)

 	Dialog (class in cfme.automate.dialogs.service_dialogs)

 	(class in cfme.automate.service_dialogs)

 	DialogCollection (class in cfme.automate.dialogs.service_dialogs)

 	(class in cfme.automate.service_dialogs)

 	DialogForm (class in cfme.automate)

 	(class in cfme.automate.dialogs)

 	DialogsView (class in cfme.automate.dialogs.dialog_element)

 	(class in cfme.automate.dialogs.service_dialogs)

 	(class in cfme.automate.service_dialogs)

 	dig_code() (in module fixtures.qa_contact)

 	disable() (cfme.configure.configuration.system_schedules.SystemSchedule method)

 	(in module fixtures.terminalreporter)

 	disable_all() (cfme.configure.configuration.region_settings.CANDUCollection method)

 	disable_embedded_ansible_role() (cfme.utils.appliance.IPAppliance method)

 	disable_forgery_protection() (in module fixtures.disable_forgery_protection)

 	disable_freeipa() (cfme.utils.appliance.IPAppliance method)

 	disable_openldap() (cfme.utils.appliance.IPAppliance method)

 	disable_schedules() (cfme.intelligence.reports.schedules.ScheduleCollection method)

 	disable_server_roles() (cfme.configure.configuration.server_settings.ServerInformation method)

 	discard_button (cfme.intelligence.reports.menus.EditReportMenusView attribute)

 	display (cfme.automate.buttons.ButtonGroupFormCommon attribute)

 	display_banner() (cfme.utils.dockerbot.dockerbot.DockerBot method)

 	display_name (cfme.automate.explorer.instance.Instance attribute)

 	(cfme.automate.explorer.instance.InstanceAddView attribute)

 	(cfme.automate.explorer.instance.InstanceEditView attribute)

 	(cfme.automate.explorer.klass.Class attribute)

 	(cfme.automate.explorer.klass.ClassForm attribute)

 	(cfme.automate.explorer.method.Method attribute)

 	(cfme.automate.explorer.method.MethodDetailsView attribute)

 	(cfme.configure.configuration.region_settings.CompanyCategoriesAddView attribute)

 	display_settings (cfme.configure.settings.VisualForm attribute)

 	do_c() (cfme.fixtures.rdb.Rdb method)

 	do_cont() (cfme.fixtures.rdb.Rdb method)

 	do_continue() (cfme.fixtures.rdb.Rdb method)

 	do_nav() (cfme.utils.appliance.implementations.ssui.SSUINavigateStep method)

 	docker_id (cfme.utils.browser.Wharf attribute)

 	docker_labels (cfme.intelligence.chargeback.assignments.AssignmentsView attribute)

 	DockerBot (class in cfme.utils.dockerbot.dockerbot)

 	DockerInstance (class in cfme.utils.dockerbot.dockerbot)

 	docs_path (in module cfme.utils.path)

 	Documentation (class in cfme.base.ui)

 	DocView (class in cfme.configure.documentation)

 	does_vm_exist() (cfme.utils.appliance.Appliance method)

 	domain (cfme.automate.explorer.domain.Domain attribute)

 	(cfme.automate.explorer.instance.Instance attribute)

 	(cfme.automate.explorer.klass.Class attribute)

 	(cfme.automate.explorer.method.Method attribute)

 	(cfme.automate.explorer.namespace.Namespace attribute)

 	Domain (class in cfme.automate.explorer.domain)

 	domain_name (cfme.utils.auth.MIQAuthProvider attribute)

 	domain_prefix (cfme.configure.configuration.server_settings.LdapAuthenticationView attribute)

 	(cfme.utils.auth.MIQAuthProvider attribute)

 	domain_switcher (cfme.base.ssui.SSUIBaseLoggedInPage attribute)

 	DomainAddView (class in cfme.automate.explorer.domain)

 	DomainCollection (class in cfme.automate.explorer.domain)

 	DomainDetailsView (class in cfme.automate.explorer.domain)

 	DomainEditView (class in cfme.automate.explorer.domain)

 	DomainForm (class in cfme.automate.explorer.domain)

 	DomainListView (class in cfme.automate.explorer.domain)

 	DomainPriorityView (class in cfme.automate.explorer.domain)

 	domains (cfme.automate.explorer.domain.DomainListView attribute)

 	(cfme.automate.explorer.domain.DomainPriorityView attribute)

 	download (cfme.ansible.playbooks.PlaybooksToolbar attribute)

 	(cfme.cloud.security_groups.SecurityGroupDetailsToolbar attribute)

 	(cfme.cloud.security_groups.SecurityGroupToolbar attribute)

 	(cfme.intelligence.reports.reports.SavedReportDetailsView attribute)

 	(cfme.services.workloads.WorkloadsToolbar attribute)

 	download() (cfme.intelligence.reports.reports.SavedReport method)

 	(cfme.utils.ftp.FTPFile method)

 	download_button (cfme.ansible.playbooks.PlaybookDetailsView attribute)

 	(cfme.control.log.ControlLogView attribute)

 	drag_and_drop() (cfme.dashboard.Dashboard method)

 	dragndrop (cfme.automate.dialog_element.EditElementView attribute)

 	(cfme.automate.dialogs.dialog_element.EditElementView attribute)

 	driving_event (cfme.control.explorer.alerts.Alert attribute)

 	(cfme.control.explorer.alerts.AlertFormCommon attribute)

 	drop() (cfme.utils.appliance.db.ApplianceDB method)

 	dummy_appliance() (in module cfme.modeling.tests.test_collections)

 	DummyAppliance (class in cfme.utils.appliance)

 	DummyClient (class in fixtures.artifactor_plugin)

 	dump_pool_info() (in module cfme.test_framework.sprout.plugin)

 	dynamic_chkbox (cfme.automate.dialog_element.ElementForm attribute)

 	dynamic_tree (cfme.automate.dialog_element.ElementForm attribute)

E

 	
 	edit (cfme.automate.explorer.method.ActionsCell attribute)

 	(cfme.configure.configuration.diagnostics_settings.ServerCollectLogsToolbar attribute)

 	(cfme.configure.configuration.diagnostics_settings.ZoneCollectLogToolbar attribute)

 	Edit (class in cfme.ansible.credentials)

 	(class in cfme.ansible.repositories)

 	(class in cfme.automate.dialog_element)

 	(class in cfme.automate.dialogs.dialog_element)

 	(class in cfme.automate.dialogs.service_dialogs)

 	(class in cfme.automate.explorer.domain)

 	(class in cfme.automate.explorer.instance)

 	(class in cfme.automate.explorer.klass)

 	(class in cfme.automate.explorer.method)

 	(class in cfme.automate.explorer.namespace)

 	(class in cfme.automate.provisioning_dialogs)

 	(class in cfme.automate.service_dialogs)

 	(class in cfme.configure.configuration.region_settings)

 	edit_box (cfme.automate.dialogs.AddBoxView attribute)

 	edit_icon (cfme.automate.dialogs.dialog_element.AddElementView attribute)

 	edit_registration (cfme.configure.configuration.region_settings.RedHatUpdatesView attribute)

 	edit_report_menus (cfme.intelligence.reports.CloudIntelReportsView attribute)

 	edit_tab (cfme.automate.dialogs.AddTabView attribute)

 	EditActionView (class in cfme.control.explorer.actions)

 	EditAlertProfileView (class in cfme.control.explorer.alert_profiles)

 	EditAlertView (class in cfme.control.explorer.alerts)

 	EditBoxView (class in cfme.automate.dialog_box)

 	(class in cfme.automate.dialogs.dialog_box)

 	EditButtonGroupView (class in cfme.automate.buttons)

 	EditButtonView (class in cfme.automate.buttons)

 	EditChartWidget (class in cfme.intelligence.reports.widgets.chart_widgets)

 	EditChartWidgetView (class in cfme.intelligence.reports.widgets.chart_widgets)

 	EditComputeChargebackView (class in cfme.intelligence.chargeback.rates)

 	EditConditionView (class in cfme.control.explorer.conditions)

 	EditDashboardView (class in cfme.intelligence.reports.dashboards)

 	EditDefaultDashboardView (class in cfme.intelligence.reports.dashboards)

 	EditDialogView (class in cfme.automate)

 	(class in cfme.automate.dialogs)

 	EditElementView (class in cfme.automate.dialog_element)

 	(class in cfme.automate.dialogs.dialog_element)

 	EditEventView (class in cfme.control.explorer.policies)

 	EditMenuWidget (class in cfme.intelligence.reports.widgets.menu_widgets)

 	EditMenuWidgetView (class in cfme.intelligence.reports.widgets.menu_widgets)

 	EditPolicyConditionAssignments (class in cfme.control.explorer.policies)

 	EditPolicyEventAssignments (class in cfme.control.explorer.policies)

 	EditPolicyProfileView (class in cfme.control.explorer.policy_profiles)

 	EditPolicyView (class in cfme.control.explorer.policies)

 	EditReportMenus (class in cfme.intelligence.reports.menus)

 	EditReportMenusView (class in cfme.intelligence.reports.menus)

 	EditReportWidget (class in cfme.intelligence.reports.widgets.report_widgets)

 	EditReportWidgetView (class in cfme.intelligence.reports.widgets.report_widgets)

 	EditRSSWidget (class in cfme.intelligence.reports.widgets.rss_widgets)

 	EditRSSWidgetView (class in cfme.intelligence.reports.widgets.rss_widgets)

 	EditScheduleView (class in cfme.intelligence.reports.schedules)

 	EditSchema (class in cfme.automate.explorer.klass)

 	EditStorageChargebackView (class in cfme.intelligence.chargeback.rates)

 	EditTabView (class in cfme.automate.dialog_tab)

 	(class in cfme.automate.dialogs.dialog_tab)

 	ele_cancel_button (cfme.automate.dialogs.dialog_element.ElementForm attribute)

 	ele_desc (cfme.automate.dialog_element.ElementForm attribute)

 	ele_label (cfme.automate.dialog_element.ElementForm attribute)

 	ele_name (cfme.automate.dialog_element.ElementForm attribute)

 	ele_save_button (cfme.automate.dialogs.dialog_element.ElementForm attribute)

 	element (cfme.automate.dialogs.dialog_element.AddElementView attribute)

 	(cfme.automate.dialogs.dialog_element.EditElementView attribute)

 	Element (class in cfme.automate.dialog_element)

 	(class in cfme.automate.dialogs.dialog_element)

 	element_data (cfme.automate.dialog_element.Element attribute)

 	(cfme.automate.dialogs.dialog_element.Element attribute)

 	element_information (cfme.automate.dialogs.dialog_element.ElementForm attribute)

 	element_loc() (cfme.automate.dialog_element.Element method)

 	(cfme.automate.dialogs.dialog_element.Element method)

 	element_tree (cfme.automate.dialog_element.ElementForm attribute)

 	(cfme.automate.EditDialogView attribute)

 	ElementCollection (class in cfme.automate.dialog_element)

 	(class in cfme.automate.dialogs.dialog_element)

 	ElementForm (class in cfme.automate.dialog_element)

 	(class in cfme.automate.dialogs.dialog_element)

 	ElementOrBlockNotFound

 	elements (cfme.automate.dialog_box.Box attribute)

 	(cfme.automate.dialogs.dialog_box.Box attribute)

 	email_options (cfme.intelligence.reports.schedules.Schedule attribute)

 	email_recipient (cfme.control.explorer.actions.ActionFormCommon attribute)

 	email_sender (cfme.control.explorer.actions.ActionFormCommon attribute)

 	emails (cfme.control.explorer.alerts.Alert attribute)

 	(cfme.control.explorer.alerts.AlertFormCommon attribute)

 	(cfme.intelligence.reports.schedules.Schedule attribute)

 	(cfme.intelligence.reports.schedules.SchedulesFormCommon attribute)

 	emails_send (cfme.control.explorer.alerts.AlertFormCommon attribute)

 	(cfme.intelligence.reports.schedules.SchedulesFormCommon attribute)

 	emit() (cfme.utils.log.ArtifactorHandler method)

 	enable() (cfme.configure.configuration.system_schedules.SystemSchedule method)

 	(cfme.utils.appliance.services.SystemdService method)

 	(in module fixtures.terminalreporter)

 	enable_all() (cfme.configure.configuration.region_settings.CANDUCollection method)

 	enable_candu() (in module cfme.fixtures.candu)

 	enable_disable_repo() (cfme.utils.appliance.IPAppliance method)

 	enable_embedded_ansible_role() (cfme.utils.appliance.IPAppliance method)

 	enable_external() (cfme.utils.appliance.db.ApplianceDB method)

 	enable_internal() (cfme.utils.appliance.db.ApplianceDB method)

 	enable_saml (cfme.configure.configuration.server_settings.ExternalAuthenticationView attribute)

 	enable_schedules() (cfme.intelligence.reports.schedules.ScheduleCollection method)

 	enable_server_roles() (cfme.configure.configuration.server_settings.ServerInformation method)

 	enable_sso (cfme.configure.configuration.server_settings.ExternalAuthenticationView attribute)

 	enabled (cfme.automate.explorer.domain.Domain attribute)

 	(cfme.automate.explorer.domain.DomainForm attribute)

 	(cfme.intelligence.reports.schedules.Schedule attribute)

 	enc_key() (cfme.utils.dockerbot.dockerbot.DockerBot method)

 	engine (cfme.utils.db.Db attribute)

 	ensure_browser_open() (in module cfme.utils.browser)

 	ensure_event_happens() (cfme.utils.events_db.EventTool method)

 	ensure_file_contains() (in module cfme.scripting.disable_bytecode)

 	ensure_open() (cfme.utils.browser.BrowserManager method)

 	ENSURE_PAGE_SAFE (cfme.utils.appliance.implementations.ssui.MiqSSUIBrowserPlugin attribute)

 	(cfme.utils.appliance.implementations.ui.MiqBrowserPlugin attribute)

 	ensure_page_safe() (cfme.utils.appliance.implementations.ssui.MiqSSUIBrowserPlugin method)

 	(cfme.utils.appliance.implementations.ui.MiqBrowserPlugin method)

 	ensure_resolvable_hostname() (in module cfme.fixtures.authentication)

 	ensure_websocket_role_disabled() (in module cfme.fixtures.base)

 	ensure_zoom_closed() (cfme.dashboard.DashboardView method)

 	entities (cfme.ansible.credentials.CredentialDetailsView attribute)

 	(cfme.ansible.playbooks.PlaybookDetailsView attribute)

 	(cfme.ansible.playbooks.PlaybooksView attribute)

 	(cfme.ansible.repositories.RepositoryAllView attribute)

 	(cfme.ansible.repositories.RepositoryDetailsView attribute)

 	(cfme.automate.provisioning_dialogs.ProvDiagAllView attribute)

 	(cfme.automate.provisioning_dialogs.ProvDiagDetailsView attribute)

 	(cfme.cloud.security_groups.SecurityGroupAddView attribute)

 	(cfme.cloud.security_groups.SecurityGroupAllView attribute)

 	(cfme.cloud.security_groups.SecurityGroupDetailsView attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileAllView attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileDetailsView attribute)

 	(cfme.configure.settings.MySettingsView attribute)

 	(cfme.configure.settings.TimeProfileView attribute)

 	(cfme.control.explorer.policy_profiles.PolicyProfilesAllView attribute)

 	(cfme.infrastructure.networking.InfraNetworkingAllView attribute)

 	(cfme.infrastructure.pxe.PXECustomizationTemplateDetailsView attribute)

 	(cfme.infrastructure.pxe.PXECustomizationTemplatesView attribute)

 	(cfme.infrastructure.pxe.PXEDatastoreDetailsView attribute)

 	(cfme.infrastructure.pxe.PXEMainView attribute)

 	(cfme.infrastructure.pxe.PXEServerDetailsView attribute)

 	(cfme.infrastructure.pxe.PXESystemImageTypeDetailsView attribute)

 	
 	ENTITY (cfme.ansible.credentials.CredentialsCollection attribute)

 	(cfme.ansible.playbooks.PlaybooksCollection attribute)

 	(cfme.ansible.repositories.RepositoryCollection attribute)

 	(cfme.automate.buttons.ButtonCollection attribute)

 	(cfme.automate.buttons.ButtonGroupCollection attribute)

 	(cfme.automate.dialog_box.BoxCollection attribute)

 	(cfme.automate.dialog_element.ElementCollection attribute)

 	(cfme.automate.dialog_tab.TabCollection attribute)

 	(cfme.automate.dialogs.dialog_box.BoxCollection attribute)

 	(cfme.automate.dialogs.dialog_element.ElementCollection attribute)

 	(cfme.automate.dialogs.dialog_tab.TabCollection attribute)

 	(cfme.automate.dialogs.service_dialogs.DialogCollection attribute)

 	(cfme.automate.explorer.domain.DomainCollection attribute)

 	(cfme.automate.explorer.instance.InstanceCollection attribute)

 	(cfme.automate.explorer.klass.ClassCollection attribute)

 	(cfme.automate.explorer.method.MethodCollection attribute)

 	(cfme.automate.explorer.namespace.NamespaceCollection attribute)

 	(cfme.automate.provisioning_dialogs.ProvisioningDialogsCollection attribute)

 	(cfme.automate.service_dialogs.DialogCollection attribute)

 	(cfme.base.RegionCollection attribute)

 	(cfme.base.ServerCollection attribute)

 	(cfme.base.ZoneCollection attribute)

 	(cfme.cloud.security_groups.SecurityGroupCollection attribute)

 	(cfme.configure.configuration.diagnostics_settings.DiagnosticWorkersCollection attribute)

 	(cfme.configure.configuration.system_schedules.SystemSchedulesCollection attribute)

 	(cfme.configure.settings.TimeProfileCollection attribute)

 	(cfme.control.explorer.actions.ActionCollection attribute)

 	(cfme.control.explorer.alerts.AlertCollection attribute)

 	(cfme.control.explorer.conditions.ConditionCollection attribute)

 	(cfme.control.explorer.policies.PolicyCollection attribute)

 	(cfme.control.explorer.policy_profiles.PolicyProfileCollection attribute)

 	(cfme.dashboard.DashboardCollection attribute)

 	(cfme.dashboard.DashboardWidgetCollection attribute)

 	(cfme.generic_objects.definition.GenericObjectDefinitionCollection attribute)

 	(cfme.generic_objects.instance.GenericObjectInstanceCollection attribute)

 	(cfme.infrastructure.networking.InfraNetworkingCollection attribute)

 	(cfme.infrastructure.pxe.CustomizationTemplateCollection attribute)

 	(cfme.infrastructure.pxe.SystemImageTypeCollection attribute)

 	(cfme.intelligence.reports.dashboards.DashboardsCollection attribute)

 	(cfme.intelligence.reports.reports.ReportsCollection attribute)

 	(cfme.intelligence.reports.reports.SavedReportsCollection attribute)

 	(cfme.intelligence.reports.saved.SavedReportsCollection attribute)

 	(cfme.intelligence.reports.schedules.ScheduleCollection attribute)

 	(cfme.intelligence.reports.widgets.DashboardReportWidgetsCollection attribute)

 	(cfme.modeling.base.BaseCollection attribute)

 	(cfme.modeling.tests.test_collections.MyCollection attribute)

 	(cfme.modeling.tests.test_collections.MyNewCollection attribute)

 	entity_class (cfme.ansible.playbooks.PlaybookEntitiesView attribute)

 	EntityCollections (class in cfme.modeling.base)

 	entry_description (cfme.automate.dialog_element.ElementForm attribute)

 	entry_table (cfme.automate.dialog_element.ElementForm attribute)

 	entry_value (cfme.automate.dialog_element.ElementForm attribute)

 	error_text (cfme.utils.appliance.implementations.ui.ErrorView attribute)

 	ErrorView (class in cfme.utils.appliance.implementations.ui)

 	escalate_privilege (cfme.automate.explorer.method.MethodAddView attribute)

 	(cfme.automate.explorer.method.MethodEditView attribute)

 	evaluate (cfme.control.explorer.alerts.Alert attribute)

 	(cfme.control.explorer.alerts.AlertFormCommon attribute)

 	Event (class in cfme.utils.events)

 	(class in cfme.utils.events_db)

 	event_listener() (cfme.utils.appliance.IPAppliance method)

 	event_position (cfme.intelligence.reports.reports.Report attribute)

 	event_selection (cfme.control.simulation.ControlSimulationView attribute)

 	event_streams (cfme.utils.events_db.EventTool attribute)

 	event_streams_attributes (cfme.utils.events_db.EventTool attribute)

 	EventAttr (class in cfme.utils.events)

 	(class in cfme.utils.events_db)

 	EventDetailsToolbar (class in cfme.control.explorer.policies)

 	EventDetailsView (class in cfme.control.explorer.policies)

 	events (cfme.configure.configuration.analysis_profile.AnalysisProfileBaseAddForm attribute)

 	(cfme.control.explorer.ControlExplorerView attribute)

 	(cfme.control.explorer.policies.EditPolicyEventAssignments attribute)

 	EventsCredential (class in cfme.base.credential)

 	EventTool (class in cfme.utils.events_db)

 	every (cfme.intelligence.reports.widgets.chart_widgets.ChartWidgetFormCommon attribute)

 	(cfme.intelligence.reports.widgets.report_widgets.ReportWidgetFormCommon attribute)

 	(cfme.intelligence.reports.widgets.rss_widgets.RSSWidgetFormCommon attribute)

 	evm_id (cfme.utils.appliance.IPAppliance attribute)

 	evm_to_messages() (in module cfme.utils.perf_message_stats)

 	evm_to_workers() (in module cfme.utils.perf_message_stats)

 	evmserverd (cfme.utils.appliance.IPAppliance attribute)

 	execute_methods (cfme.base.ui.AutomateSimulationView attribute)

 	exists (cfme.ansible.credentials.Credential attribute)

 	(cfme.ansible.playbooks.Playbook attribute)

 	(cfme.ansible.repositories.Repository attribute)

 	(cfme.automate.buttons.BaseButton attribute)

 	(cfme.automate.buttons.ButtonGroup attribute)

 	(cfme.automate.dialogs.service_dialogs.Dialog attribute)

 	(cfme.automate.explorer.domain.Domain attribute)

 	(cfme.automate.explorer.instance.Instance attribute)

 	(cfme.automate.explorer.klass.Class attribute)

 	(cfme.automate.explorer.method.Method attribute)

 	(cfme.automate.explorer.namespace.Namespace attribute)

 	(cfme.automate.provisioning_dialogs.ProvisioningDialog attribute)

 	(cfme.automate.service_dialogs.Dialog attribute)

 	(cfme.base.Zone attribute)

 	(cfme.cloud.security_groups.SecurityGroup attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfile attribute)

 	(cfme.configure.configuration.system_schedules.SystemSchedule attribute)

 	(cfme.control.explorer.actions.Action attribute)

 	(cfme.control.explorer.alert_profiles.BaseAlertProfile attribute)

 	(cfme.control.explorer.alerts.Alert attribute)

 	(cfme.control.explorer.conditions.BaseCondition attribute)

 	(cfme.control.explorer.policies.BasePolicy attribute)

 	(cfme.control.explorer.policy_profiles.PolicyProfile attribute)

 	(cfme.generic_objects.definition.GenericObjectDefinition attribute)

 	(cfme.generic_objects.instance.GenericObjectInstance attribute)

 	(cfme.intelligence.chargeback.rates.ComputeRate attribute)

 	(cfme.intelligence.reports.reports.Report attribute)

 	(cfme.intelligence.reports.reports.SavedReport attribute)

 	(cfme.intelligence.reports.schedules.Schedule attribute)

 	exists() (cfme.infrastructure.pxe.CustomizationTemplate method)

 	(cfme.infrastructure.pxe.ISODatastore method)

 	(cfme.infrastructure.pxe.PXEServer method)

 	(in module cfme.base.ui)

 	(in module cfme.generic_objects.definition.rest)

 	(in module cfme.generic_objects.instance.rest)

 	exists_ui (cfme.infrastructure.pxe.CustomizationTemplate attribute)

 	(cfme.infrastructure.pxe.ISODatastore attribute)

 	(cfme.infrastructure.pxe.PXEServer attribute)

 	export (cfme.control.import_export.ControlImportExportView attribute)

 	export_all (cfme.base.ui.AutomateImportExportView attribute)

 	export_button (cfme.control.import_export.ControlImportExportView attribute)

 	(cfme.intelligence.reports.import_export.ImportExportCommonForm attribute)

 	expression (cfme.control.explorer.conditions.BaseCondition attribute)

 	(cfme.control.explorer.conditions.ConditionDetailsView attribute)

 	(cfme.control.explorer.conditions.ConditionFormCommon attribute)

 	Expression (class in cfme.control.explorer.conditions)

 	extend_partition() (cfme.utils.appliance.db.ApplianceDB method)

 	external (cfme.intelligence.reports.widgets.rss_widgets.RSSFeedWidget attribute)

 	(cfme.intelligence.reports.widgets.rss_widgets.RSSWidgetFormCommon attribute)

 	ExternalAuthenticationView (class in cfme.configure.configuration.server_settings)

 	extract_fixtures_values() (in module cfme.utils.pytest_shortcuts)

 	extract_polarion_ids() (in module cfme.markers.polarion)

F

 	
 	failed (cfme.utils.ssh.SSHResult attribute)

 	failed_assertions (fixtures.soft_assert.SoftAssertionError attribute)

 	failed_tests (cfme.markers.smoke.SmokeTests attribute)

 	FakeObject (class in cfme.utils)

 	fakeobject_or_object() (in module cfme.utils)

 	false_actions (cfme.control.explorer.policies.EditEventView attribute)

 	(cfme.control.explorer.policies.EventDetailsView attribute)

 	feed (cfme.intelligence.reports.widgets.rss_widgets.RSSFeedWidget attribute)

 	field_category (cfme.automate.dialog_element.ElementForm attribute)

 	field_entry_point (cfme.automate.dialog_element.ElementForm attribute)

 	FIELD_NAMES (cfme.automate.explorer.klass.ClassSchema attribute)

 	field_past_dates (cfme.automate.dialog_element.ElementForm attribute)

 	field_required (cfme.automate.dialog_element.ElementForm attribute)

 	field_show_refresh_button (cfme.automate.dialog_element.ElementForm attribute)

 	FIELD_VALUE (cfme.control.explorer.conditions.BaseCondition attribute)

 	(cfme.control.explorer.conditions.ContainerImageCondition attribute)

 	(cfme.control.explorer.conditions.ContainerNodeCondition attribute)

 	(cfme.control.explorer.conditions.HostCondition attribute)

 	(cfme.control.explorer.conditions.PodCondition attribute)

 	(cfme.control.explorer.conditions.ProviderCondition attribute)

 	(cfme.control.explorer.conditions.ReplicatorCondition attribute)

 	(cfme.control.explorer.conditions.VMCondition attribute)

 	fields (cfme.automate.explorer.instance.InstanceAddView attribute)

 	(cfme.automate.explorer.instance.InstanceEditView attribute)

 	(cfme.intelligence.chargeback.rates.AddComputeChargebackView attribute)

 	filename (cfme.infrastructure.pxe.PXEServerForm attribute)

 	files (cfme.configure.configuration.analysis_profile.AnalysisProfileBaseAddForm attribute)

 	FileStore (class in cfme.utils.tracer)

 	filesystem (cfme.utils.ftp.FTPClient attribute)

 	fill() (cfme.automate.explorer.method.Inputs method)

 	(cfme.automate.explorer.method.PlaybookInputParameters method)

 	fill_dict (cfme.intelligence.reports.widgets.chart_widgets.ChartWidget attribute)

 	(cfme.intelligence.reports.widgets.menu_widgets.MenuWidget attribute)

 	(cfme.intelligence.reports.widgets.report_widgets.ReportWidget attribute)

 	(cfme.intelligence.reports.widgets.rss_widgets.RSSFeedWidget attribute)

 	fill_values_branch_select() (cfme.automate.import_export.AutomateGitRepository method)

 	fill_values_repo_add (cfme.automate.import_export.AutomateGitRepository attribute)

 	filter (cfme.configure.configuration.system_schedules.ScheduleDetailsView attribute)

 	(cfme.intelligence.reports.reports.CustomReportFormCommon attribute)

 	(cfme.intelligence.reports.reports.Report attribute)

 	(cfme.intelligence.reports.schedules.Schedule attribute)

 	(cfme.intelligence.reports.widgets.chart_widgets.ChartWidget attribute)

 	(cfme.intelligence.reports.widgets.chart_widgets.ChartWidgetFormCommon attribute)

 	(cfme.intelligence.reports.widgets.report_widgets.ReportWidget attribute)

 	(cfme.intelligence.reports.widgets.report_widgets.ReportWidgetFormCommon attribute)

 	filter() (cfme.modeling.base.BaseCollection method)

 	(cfme.utils.log.PrefixAddingLoggerFilter method)

 	(cfme.utils.log.WarningsDeduplicationFilter method)

 	(cfme.utils.log.WarningsRelpathFilter method)

 	filter1 (cfme.intelligence.reports.schedules.SchedulesFormCommon attribute)

 	filter2 (cfme.intelligence.reports.schedules.SchedulesFormCommon attribute)

 	filter3 (cfme.intelligence.reports.schedules.SchedulesFormCommon attribute)

 	FILTER_ATTRS (cfme.utils.events.RestEventListener attribute)

 	filter_level1 (cfme.configure.configuration.system_schedules.ItemsAnalysisEntities attribute)

 	(cfme.configure.configuration.system_schedules.SystemSchedule attribute)

 	filter_level2 (cfme.configure.configuration.system_schedules.ItemsAnalysisEntities attribute)

 	(cfme.configure.configuration.system_schedules.SystemSchedule attribute)

 	filter_owner (cfme.intelligence.reports.reports.Report attribute)

 	filter_show_costs (cfme.intelligence.reports.reports.Report attribute)

 	filter_tag_cat (cfme.intelligence.reports.reports.Report attribute)

 	filter_tag_value (cfme.intelligence.reports.reports.Report attribute)

 	filters (cfme.modeling.base.BaseCollection attribute)

 	find_appliance() (in module cfme.utils.appliance)

 	find_cell() (cfme.intelligence.reports.reports.SavedReportData method)

 	find_files_by_pr() (cfme.utils.dockerbot.dockerbot.DockerBot method)

 	find_nth_pos() (in module cfme.fixtures.version_info)

 	find_product_repos() (cfme.utils.appliance.IPAppliance method)

 	find_row() (cfme.intelligence.reports.reports.SavedReportData method)

 	finish_add_input (cfme.automate.explorer.method.Inputs attribute)

 	fire_art_hook() (in module fixtures.artifactor_plugin)

 	fire_art_test_hook() (in module fixtures.artifactor_plugin)

 	fire_hook() (fixtures.artifactor_plugin.DummyClient method)

 	firewall_rules (cfme.cloud.security_groups.SecurityGroupDetailsEntities attribute)

 	fix_auth_dbyml() (cfme.utils.appliance.db.ApplianceDB method)

 	fix_auth_key() (cfme.utils.appliance.db.ApplianceDB method)

 	fix_before_start() (cfme.utils.log_validator.LogValidator method)

 	fix_merkyl_workaround() (in module cfme.fixtures.base)

 	fix_missing_hostname() (in module cfme.fixtures.base)

 	fix_ntp_clock() (cfme.utils.appliance.IPAppliance method)

 	fixture_filter() (in module cfme.utils.pytest_shortcuts)

 	fixtureconf() (in module fixtures.fixtureconf)

 	fixturemanager (fixtures.pytest_store.Store attribute)

 	fixtures (module)

 	fixtures.appliance (module)

 	fixtures.appliance_update (module)

 	fixtures.artifactor_plugin (module)

 	fixtures.blockers (module)

 	fixtures.browser (module)

 	fixtures.cfme_data (module)

 	fixtures.customer_db_migrate (module)

 	fixtures.datafile (module)

 	
 	fixtures.dev_branch (module)

 	fixtures.disable_forgery_protection (module)

 	fixtures.events (module)

 	fixtures.fixtureconf (module)

 	fixtures.log (module)

 	fixtures.maximized (module)

 	fixtures.merkyl (module)

 	fixtures.nelson (module)

 	fixtures.node_annotate (module)

 	fixtures.page_screenshots (module)

 	fixtures.parallelizer (module)

 	fixtures.parallelizer.hooks (module)

 	fixtures.parallelizer.parallelizer_tester (module)

 	fixtures.parallelizer.remote (module)

 	fixtures.perf (module)

 	fixtures.portset (module)

 	fixtures.pytest_store (module)

 	fixtures.qa_contact (module)

 	fixtures.randomness (module)

 	fixtures.sauce (module)

 	fixtures.screenshots (module)

 	fixtures.skip_not_implemented (module)

 	fixtures.soft_assert (module)

 	fixtures.ssh_client (module)

 	fixtures.terminalreporter (module)

 	fixtures.ui_coverage (module)

 	flash (cfme.base.login.BaseLoggedInPage attribute)

 	(cfme.base.ssui.LoginPage attribute)

 	(cfme.base.ssui.SSUIBaseLoggedInPage attribute)

 	(cfme.base.ui.AutomateImportExportBaseView attribute)

 	(cfme.base.ui.LoginPage attribute)

 	(cfme.configure.configuration.server_settings.ServerAuthenticationView attribute)

 	(cfme.configure.configuration.server_settings.ServerInformationView attribute)

 	(cfme.intelligence.reports.schedules.SchedulesFormCommon attribute)

 	FlavorNotFound

 	FlexibleTerminalReporter (class in fixtures.pytest_store)

 	fn() (in module cfme.scripting.appliance)

 	follow_referrals (cfme.configure.configuration.server_settings.LdapAuthenticationView attribute)

 	(cfme.utils.auth.MIQAuthProvider attribute)

 	footer (cfme.dashboard.DashboardWidget attribute)

 	for_appliance() (cfme.modeling.base.BaseCollection class method)

 	(cfme.modeling.base.EntityCollections class method)

 	for_entity() (cfme.modeling.base.BaseCollection class method)

 	(cfme.modeling.base.EntityCollections class method)

 	for_entity_with_filter() (cfme.modeling.base.BaseCollection class method)

 	forbid_restart (fixtures.parallelizer.SlaveDetail attribute)

 	form (cfme.automate.provisioning_dialogs.ProvDiagAddView attribute)

 	(cfme.automate.provisioning_dialogs.ProvDiagEditView attribute)

 	(cfme.cloud.security_groups.SecurityGroupAddView attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileAddView attribute)

 	(cfme.configure.configuration.server_settings.ServerAuthenticationView attribute)

 	(cfme.configure.settings.TimeProfileAddView attribute)

 	(cfme.configure.settings.TimeProfileEditView attribute)

 	form_fill_args() (cfme.configure.configuration.analysis_profile.AnalysisProfile method)

 	format_marker() (in module cfme.utils.log)

 	formatting (cfme.intelligence.reports.reports.CustomReportFormCommon attribute)

 	(cfme.intelligence.reports.reports.Report attribute)

 	fqdn (cfme.automate.explorer.klass.Class attribute)

 	(cfme.automate.explorer.method.MethodDetailsView attribute)

 	(cfme.utils.appliance.IPAppliance attribute)

 	fqdn_appliance() (in module cfme.fixtures.cli)

 	FreeIPAAuthProvider (class in cfme.utils.auth)

 	from_american_date_only() (cfme.utils.timeutil.parsetime class method)

 	from_american_minutes() (cfme.utils.timeutil.parsetime class method)

 	from_american_minutes_with_utc() (cfme.utils.timeutil.parsetime class method)

 	from_american_with_utc() (cfme.utils.timeutil.parsetime class method)

 	from_collection() (cfme.modeling.base.BaseEntity class method)

 	from_conf() (cfme.utils.browser.BrowserManager class method)

 	from_config() (cfme.base.credential.FromConfigMixin class method)

 	(cfme.base.credential.ServiceAccountCredential class method)

 	(cfme.test_framework.sprout.client.SproutClient class method)

 	(cfme.test_framework.sprout.plugin.SproutProvisioningRequest class method)

 	(cfme.utils.appliance.DummyAppliance class method)

 	(cfme.utils.auth.BaseAuthProvider class method)

 	(cfme.utils.bz.Bugzilla class method)

 	from_db() (cfme.automate.import_export.AutomateGitRepository class method)

 	from_iso_date() (cfme.utils.timeutil.parsetime class method)

 	from_iso_with_utc() (cfme.utils.timeutil.parsetime class method)

 	from_json() (cfme.utils.appliance.IPAppliance class method)

 	from_long_date_format() (cfme.utils.timeutil.parsetime class method)

 	from_parsed_list() (fixtures.node_annotate.MarkFromMap class method)

 	from_plaintext() (cfme.base.credential.FromConfigMixin class method)

 	from_provider() (cfme.utils.appliance.Appliance class method)

 	from_request_format() (cfme.utils.timeutil.parsetime class method)

 	from_saved_report_title_format() (cfme.utils.timeutil.parsetime class method)

 	from_url() (cfme.utils.appliance.IPAppliance class method)

 	FromConfigMixin (class in cfme.base.credential)

 	FTPClient (class in cfme.utils.ftp)

 	FTPDirectory (class in cfme.utils.ftp)

 	FTPException

 	FTPFile (class in cfme.utils.ftp)

 	function (cfme.markers.meta.Plugin attribute)

G

 	
 	gen_duplicates_log() (in module cfme.fixtures.xunit_tools)

 	gen_vpor_values() (in module cfme.fixtures.vporizer)

 	general (cfme.configure.documentation.LinksView attribute)

 	(cfme.configure.settings.DefaultViewsForm attribute)

 	generate() (cfme.intelligence.reports.widgets.BaseDashboardReportWidget method)

 	generate_appliance_charts() (in module cfme.utils.perf_message_stats)

 	generate_gems_file() (in module cfme.fixtures.version_info)

 	generate_hourly_charts_and_csvs() (in module cfme.utils.perf_message_stats)

 	generate_nodeid() (in module fixtures.node_annotate)

 	generate_processes_file() (in module cfme.fixtures.version_info)

 	generate_raw_data_csv() (in module cfme.utils.perf_message_stats)

 	(in module cfme.utils.smem_memory_monitor)

 	generate_rpms_file() (in module cfme.fixtures.version_info)

 	generate_statistics() (in module cfme.utils.perf)

 	generate_summary_csv() (in module cfme.utils.smem_memory_monitor)

 	generate_summary_html() (in module cfme.utils.smem_memory_monitor)

 	generate_system_file() (in module cfme.fixtures.version_info)

 	generate_total_time_charts() (in module cfme.utils.perf_message_stats)

 	generate_updown() (in module cfme.automate.explorer.domain)

 	generate_version_files() (in module cfme.fixtures.version_info)

 	generate_worker_charts() (in module cfme.utils.perf_message_stats)

 	generate_workload_html() (in module cfme.utils.smem_memory_monitor)

 	GenericObjectDefinition (class in cfme.generic_objects.definition)

 	GenericObjectDefinitionCollection (class in cfme.generic_objects.definition)

 	GenericObjectInstance (class in cfme.generic_objects.instance)

 	GenericObjectInstanceCollection (class in cfme.generic_objects.instance)

 	get() (cfme.utils.db.Db method)

 	(fixtures.parallelizer.ParallelSession method)

 	get_all_pids() (cfme.configure.configuration.diagnostics_settings.DiagnosticWorkersCollection method)

 	get_all_worker_pids() (cfme.configure.configuration.diagnostics_settings.DiagnosticWorker method)

 	get_appliance() (in module cfme.scripting.appliance)

 	get_appliance_memory() (cfme.utils.smem_memory_monitor.SmemMemoryMonitor method)

 	get_appliance_rows() (cfme.configure.configuration.region_settings.RedHatUpdates method)

 	get_auth_crud() (in module cfme.utils.auth)

 	get_available_version() (cfme.configure.configuration.region_settings.RedHatUpdates method)

 	get_base_branch() (cfme.utils.dockerbot.dockerbot.DockerBot method)

 	get_bug() (cfme.utils.bz.Bugzilla method)

 	get_bug_url() (cfme.utils.blockers.BZ method)

 	get_bug_variants() (cfme.utils.bz.Bugzilla method)

 	get_build_date() (cfme.utils.ssh.SSHClient method)

 	get_build_datetime() (cfme.utils.ssh.SSHClient method)

 	get_capacity_and_utilization_replication_scenarios() (in module cfme.utils.workloads)

 	get_capacity_and_utilization_scenarios() (in module cfme.utils.workloads)

 	get_client() (in module fixtures.artifactor_plugin)

 	get_config() (cfme.test_framework.config.Configuration method)

 	get_default_view() (cfme.configure.settings.DefaultViews method)

 	get_detail() (in module cfme.configure.about)

 	get_dev_branch() (cfme.utils.dockerbot.dockerbot.DockerBot method)

 	get_disabled_regions() (cfme.utils.appliance.IPAppliance method)

 	get_emails() (cfme.utils.smtp_collector_client.SMTPCollectorClient method)

 	get_entity_by_href() (cfme.utils.appliance.MiqApi method)

 	get_evm_workers() (cfme.utils.smem_memory_monitor.SmemMemoryMonitor method)

 	get_file() (cfme.utils.ssh.SSHClient method)

 	get_first_miqtop() (in module cfme.utils.perf_message_stats)

 	get_folders() (cfme.intelligence.reports.menus.ReportMenu method)

 	get_gem_versions() (in module cfme.fixtures.version_info)

 	get_global_replication_backlog() (cfme.configure.configuration.region_settings.Replication method)

 	get_groups (cfme.configure.configuration.server_settings.AmazonAuthenticationView attribute)

 	(cfme.configure.configuration.server_settings.ExternalAuthenticationView attribute)

 	(cfme.configure.configuration.server_settings.LdapAuthenticationView attribute)

 	(cfme.utils.auth.AmazonAuthProvider attribute)

 	(cfme.utils.auth.MIQAuthProvider attribute)

 	get_host_address (cfme.utils.appliance.IPAppliance attribute)

 	get_html_report() (cfme.utils.smtp_collector_client.SMTPCollectorClient method)

 	get_idle_scenarios() (in module cfme.utils.workloads)

 	get_log() (fixtures.merkyl.MerkylInspector method)

 	get_master() (cfme.base.ServerCollection method)

 	get_memory_leak_scenarios() (in module cfme.utils.workloads)

 	get_meta() (in module fixtures.nelson)

 	get_miq_server_id() (cfme.utils.smem_memory_monitor.SmemMemoryMonitor method)

 	get_msg_args() (in module cfme.utils.perf_message_stats)

 	get_msg_cmd() (in module cfme.utils.perf_message_stats)

 	get_msg_del() (in module cfme.utils.perf_message_stats)

 	
 	get_msg_deq() (in module cfme.utils.perf_message_stats)

 	get_msg_id() (in module cfme.utils.perf_message_stats)

 	get_msg_timestamp_pid() (in module cfme.utils.perf_message_stats)

 	get_name() (in module fixtures.artifactor_plugin)

 	get_next_portion() (cfme.utils.events.RestEventListener method)

 	(cfme.utils.events_db.DbEventListener method)

 	get_or_create_current_appliance() (in module cfme.utils.appliance)

 	get_path_and_file_name() (in module cfme.fixtures.video)

 	get_pids_memory() (cfme.utils.smem_memory_monitor.SmemMemoryMonitor method)

 	get_polarion_name() (in module cfme.fixtures.xunit_tools)

 	get_pr_metadata() (cfme.utils.dockerbot.dockerbot.DockerBot method)

 	get_process_versions() (in module cfme.fixtures.version_info)

 	get_provisioning_scenarios() (in module cfme.utils.workloads)

 	get_pxe_image_type() (cfme.infrastructure.pxe.PXEServer method)

 	get_pxe_image_type_ui (cfme.infrastructure.pxe.PXEServer attribute)

 	get_pxe_server_from_config() (in module cfme.infrastructure.pxe)

 	get_rails_error() (cfme.utils.appliance.implementations.ui.ErrorView method)

 	get_refresh_providers_scenarios() (in module cfme.utils.workloads)

 	get_refresh_vms_scenarios() (in module cfme.utils.workloads)

 	get_rel_path() (in module cfme.utils.path)

 	get_replication_status() (cfme.configure.configuration.region_settings.Replication method)

 	get_repofile_list() (cfme.utils.appliance.IPAppliance method)

 	get_repository_names() (cfme.configure.configuration.region_settings.RedHatUpdates method)

 	get_rest_resource() (in module cfme.generic_objects.definition.associations)

 	get_roles (cfme.configure.configuration.server_settings.LdapAuthenticationView attribute)

 	(cfme.utils.auth.MIQAuthProvider attribute)

 	get_rpm_versions() (in module cfme.fixtures.version_info)

 	get_scenario_dashboard_urls() (in module cfme.utils.grafana)

 	get_scenario_html() (in module cfme.utils.smem_memory_monitor)

 	get_smartstate_analysis_scenarios() (in module cfme.utils.workloads)

 	get_stream() (in module cfme.utils.version)

 	get_streams_id() (in module cfme.markers.stream_excluder)

 	get_subfolders() (cfme.intelligence.reports.menus.ReportMenu method)

 	get_system_versions() (in module cfme.fixtures.version_info)

 	get_template_from_config() (in module cfme.infrastructure.pxe)

 	get_test_idents() (in module fixtures.artifactor_plugin)

 	get_testcase_data() (in module cfme.fixtures.xunit_tools)

 	get_testresult_data() (in module cfme.fixtures.xunit_tools)

 	get_transport() (cfme.utils.ssh.SSHClient method)

 	get_ui_single_page_scenarios() (in module cfme.utils.workloads)

 	get_uncollect_function() (in module cfme.markers.uncollect)

 	get_vms_in_service() (in module cfme.utils.rest)

 	get_worker_pid() (in module cfme.utils.perf)

 	GH (class in cfme.utils.blockers)

 	git_checkout_type (cfme.automate.explorer.domain.Domain attribute)

 	git_checkout_value (cfme.automate.explorer.domain.Domain attribute)

 	git_repository (cfme.automate.explorer.domain.Domain attribute)

 	github (cfme.utils.blockers.GH attribute)

 	GitImportSelectorView (class in cfme.automate.import_export)

 	go() (cfme.utils.appliance.implementations.ssui.SSUINavigateStep method)

 	(cfme.utils.appliance.implementations.ui.CFMENavigateStep method)

 	go_to_group() (cfme.intelligence.reports.menus.ReportMenu method)

 	GoogleDocstring (class in fixtures.nelson)

 	got_events (cfme.utils.events.RestEventListener attribute)

 	(cfme.utils.events_db.DbEventListener attribute)

 	graph_all_miq_workers() (in module cfme.utils.smem_memory_monitor)

 	graph_appliance_measurements() (in module cfme.utils.smem_memory_monitor)

 	graph_individual_process_measurements() (in module cfme.utils.smem_memory_monitor)

 	graph_same_miq_workers() (in module cfme.utils.smem_memory_monitor)

 	grid_entity (cfme.ansible.playbooks.PlaybookEntity attribute)

 	grid_tile_icons (cfme.configure.settings.VisualForm attribute)

 	grid_view_entities (cfme.configure.settings.Visual attribute)

 	grid_view_limit (cfme.configure.settings.Visual attribute)

 	group (cfme.automate.buttons.AnsiblePlaybookButton attribute)

 	(cfme.automate.buttons.DefaultButton attribute)

 	(cfme.intelligence.reports.dashboards.Dashboard attribute)

 	(cfme.test_framework.sprout.plugin.SproutProvisioningRequest attribute)

 	group_list_locator (cfme.base.login.BaseLoggedInPage attribute)

 	group_names (cfme.base.login.BaseLoggedInPage attribute)

 	(cfme.base.Server attribute)

 	group_names() (in module cfme.base.ui)

 	group_with_tag() (in module cfme.fixtures.tag)

 	guid (cfme.utils.appliance.IPAppliance attribute)

H

 	
 	halt_on_fail (cfme.markers.smoke.SmokeTests attribute)

 	handle_assert_artifacts() (in module fixtures.soft_assert)

 	handle_end_session() (in module fixtures.parallelizer)

 	handle_output() (cfme.utils.dockerbot.dockerbot.DockerBot method)

 	handle_pr() (cfme.utils.dockerbot.dockerbot.DockerBot method)

 	handle_quit() (fixtures.parallelizer.remote.SlaveManager method)

 	handle_watch() (cfme.utils.dockerbot.dockerbot.DockerBot method)

 	hardware_reconfigured_parameters (cfme.control.explorer.alerts.AlertDetailsView attribute)

 	has_cli (cfme.utils.appliance.IPAppliance attribute)

 	has_config (fixtures.pytest_store.Store attribute)

 	has_database (cfme.utils.appliance.db.ApplianceDB attribute)

 	has_netapp() (cfme.utils.appliance.IPAppliance method)

 	has_tables (cfme.utils.appliance.db.ApplianceDB attribute)

 	header (cfme.control.explorer.alert_profiles.AlertProfilesEditAssignmentsView attribute)

 	held_appliance (cfme.test_framework.appliance.ApplianceHolderPlugin attribute)

 	help (cfme.base.login.BaseLoggedInPage attribute)

 	(cfme.base.ssui.SSUIBaseLoggedInPage attribute)

 	help_block (cfme.configure.settings.TimeProfileForm attribute)

 	(cfme.configure.settings.TimeProfilesView attribute)

 	help_menu (cfme.base.ui.RegionView attribute)

 	HelpMenu (class in cfme.base.ui)

 	HelpMenuView (class in cfme.base.ui)

 	hide_update_password() (cfme.base.ui.LoginPage method)

 	history (cfme.services.workloads.WorkloadsToolbar attribute)

 	HOST (cfme.automate.buttons.ButtonGroupCollection attribute)

 	host (cfme.configure.configuration.region_settings.ReplicationGlobalAddView attribute)

 	host1 (cfme.configure.configuration.server_settings.LdapAuthenticationView attribute)

 	(cfme.utils.auth.MIQAuthProvider attribute)

 	host2 (cfme.configure.configuration.server_settings.LdapAuthenticationView attribute)

 	(cfme.utils.auth.MIQAuthProvider attribute)

 	
 	host3 (cfme.configure.configuration.server_settings.LdapAuthenticationView attribute)

 	(cfme.utils.auth.MIQAuthProvider attribute)

 	HOST_COMPLIANCE_POLICY (cfme.control.explorer.policies.PolicyCollection attribute)

 	HOST_CONTROL_POLICY (cfme.control.explorer.policies.PolicyCollection attribute)

 	host_id() (cfme.utils.appliance.IPAppliance method)

 	HOST_OR_NODE (cfme.infrastructure.pxe.SystemImageType attribute)

 	HOST_PROVISION (cfme.automate.provisioning_dialogs.ProvisioningDialogsCollection attribute)

 	host_quad (cfme.configure.settings.Visual attribute)

 	HOST_TYPE (cfme.configure.configuration.analysis_profile.AnalysisProfile attribute)

 	HostAlertProfile (class in cfme.control.explorer.alert_profiles)

 	HostCompliancePolicy (class in cfme.control.explorer.policies)

 	HostCondition (class in cfme.control.explorer.conditions)

 	HostControlPolicy (class in cfme.control.explorer.policies)

 	hostname (cfme.utils.appliance.DummyAppliance attribute)

 	HostNotFound

 	hosts (cfme.automate.buttons.AnsiblePlaybookButton attribute)

 	(cfme.automate.explorer.method.MethodAddView attribute)

 	(cfme.automate.explorer.method.MethodEditView attribute)

 	HostStatsNotContains

 	hour (cfme.intelligence.reports.schedules.SchedulesFormCommon attribute)

 	hour_bucket_init() (in module cfme.utils.perf_message_stats)

 	hours (cfme.configure.settings.TimeProfile attribute)

 	(cfme.configure.settings.TimeProfileForm attribute)

 	hours_timeout (cfme.configure.configuration.server_settings.ServerAuthenticationView attribute)

 	hover (cfme.automate.buttons.AnsiblePlaybookButton attribute)

 	(cfme.automate.buttons.ButtonDetailView attribute)

 	(cfme.automate.buttons.ButtonGroup attribute)

 	(cfme.automate.buttons.ButtonGroupDetailView attribute)

 	(cfme.automate.buttons.ButtonGroupFormCommon attribute)

 	(cfme.automate.buttons.DefaultButton attribute)

 	httpd (cfme.utils.appliance.IPAppliance attribute)

I

 	
 	icastmap() (in module cfme.utils)

 	ICON_NAME (cfme.automate.explorer.instance.Instance attribute)

 	id (cfme.base.Zone attribute)

 	(fixtures.parallelizer.SlaveDetail attribute)

 	image (cfme.automate.buttons.AnsiblePlaybookButton attribute)

 	(cfme.automate.buttons.ButtonGroup attribute)

 	(cfme.automate.buttons.ButtonGroupFormCommon attribute)

 	(cfme.automate.buttons.DefaultButton attribute)

 	image_type (cfme.infrastructure.pxe.CustomizationTemplate attribute)

 	(cfme.infrastructure.pxe.PXECustomizationTemplateForm attribute)

 	image_types (cfme.infrastructure.pxe.PXESideBar attribute)

 	ImageNotFound

 	images (cfme.containers.overview.ContainersOverviewView attribute)

 	Implementation (class in cfme.utils.appliance.implementations)

 	Import (class in cfme.base.ui)

 	import_domain_from() (cfme.automate.import_export.AutomateGitRepository method)

 	import_export (cfme.automate.AutomateCustomizationView attribute)

 	(cfme.intelligence.reports.CloudIntelReportsView attribute)

 	import_file (cfme.base.ui.AutomateImportExportView attribute)

 	import_file() (in module cfme.control.import_export)

 	import_git (cfme.base.ui.AutomateImportExportView attribute)

 	import_tags (cfme.base.ui.RegionView attribute)

 	(cfme.base.ui.TagsView attribute)

 	ImportExportCommonForm (class in cfme.intelligence.reports.import_export)

 	ImportExportCustomReports (class in cfme.intelligence.reports.import_export)

 	ImportExportCustomReportsView (class in cfme.intelligence.reports.import_export)

 	ImportExportWidgets (class in cfme.intelligence.reports.import_export)

 	ImportExportWidgetsCommitView (class in cfme.intelligence.reports.import_export)

 	ImportExportWidgetsView (class in cfme.intelligence.reports.import_export)

 	imports (cfme.base.ui.RegionView attribute)

 	(cfme.base.ui.TagsView attribute)

 	ImportTags (class in cfme.base.ui)

 	ImportVariable (class in cfme.base.ui)

 	in_ansible_credentials (cfme.ansible.credentials.CredentialsBaseView attribute)

 	in_ansible_playbooks (cfme.ansible.playbooks.PlaybookBaseView attribute)

 	in_ansible_repositories (cfme.ansible.repositories.RepositoryBaseView attribute)

 	in_chargeback (cfme.intelligence.chargeback.ChargebackView attribute)

 	in_configuration (cfme.base.ui.ConfigurationView attribute)

 	in_control_explorer (cfme.control.explorer.ControlExplorerView attribute)

 	in_customization (cfme.automate.AutomateCustomizationView attribute)

 	(cfme.automate.dialogs.AutomateCustomizationView attribute)

 	(cfme.automate.provisioning_dialogs.ProvDiagView attribute)

 	in_dashboard (cfme.services.dashboard.ssui.DashboardView attribute)

 	in_dashboard_widgets (cfme.intelligence.reports.widgets.DashboardWidgetsView attribute)

 	in_explorer (cfme.automate.explorer.AutomateExplorerView attribute)

 	(cfme.services.catalogs.ServicesCatalogView attribute)

 	in_explorer() (cfme.optimize.BottlenecksView method)

 	in_import_export (cfme.base.ui.AutomateImportExportBaseView attribute)

 	in_infra_networking (cfme.infrastructure.networking.InfraNetworkingView attribute)

 	in_intel_reports (cfme.intelligence.reports.CloudIntelReportsView attribute)

 	in_myservices (cfme.services.dashboard.ssui.MyServicesView attribute)

 	in_pytest_session (fixtures.pytest_store.Store attribute)

 	in_rates (cfme.intelligence.chargeback.rates.RatesView attribute)

 	in_region (cfme.configure.configuration.region_settings.ReplicationView attribute)

 	in_security_groups (cfme.cloud.security_groups.SecurityGroupView attribute)

 	in_server_collect_logs (cfme.configure.configuration.diagnostics_settings.ServerCollectLogsView attribute)

 	in_workloads (cfme.services.workloads.WorkloadsView attribute)

 	indexes (cfme.base.ui.ServerDatabaseView attribute)

 	INDIRECT (cfme.automate.explorer.method.Inputs attribute)

 	info (cfme.control.explorer.alerts.AlertDetailsView attribute)

 	info_description (cfme.configure.configuration.analysis_profile.AnalysisProfileDetailsEntities attribute)

 	info_name (cfme.configure.configuration.analysis_profile.AnalysisProfileDetailsEntities attribute)

 	info_type (cfme.configure.configuration.analysis_profile.AnalysisProfileDetailsEntities attribute)

 	infra_provider_quad (cfme.configure.settings.Visual attribute)

 	InfraNetworking (class in cfme.infrastructure.networking)

 	InfraNetworkingAllView (class in cfme.infrastructure.networking)

 	InfraNetworkingCollection (class in cfme.infrastructure.networking)

 	InfraNetworkingEntities (class in cfme.infrastructure.networking)

 	InfraNetworkingToolbar (class in cfme.infrastructure.networking)

 	InfraNetworkingView (class in cfme.infrastructure.networking)

 	infrastructure (cfme.configure.settings.DefaultViewsForm attribute)

 	inline_display_name (cfme.automate.explorer.method.MethodAddView attribute)

 	(cfme.automate.explorer.method.MethodEditView attribute)

 	inline_name (cfme.automate.explorer.method.MethodAddView attribute)

 	(cfme.automate.explorer.method.MethodEditView attribute)

 	input (cfme.ansible.credentials.CredentialEditView attribute)

 	input_name (cfme.automate.explorer.method.PlaybookInputParameters attribute)

 	InputButton (class in cfme.control.import_export)

 	(class in cfme.intelligence.reports.import_export)

 	inputs (cfme.automate.explorer.method.Inputs attribute)

 	(cfme.automate.explorer.method.MethodAddView attribute)

 	(cfme.automate.explorer.method.MethodDetailsView attribute)

 	(cfme.automate.explorer.method.MethodEditView attribute)

 	Inputs (class in cfme.automate.explorer.method)

 	install() (fixtures.ui_coverage.CoverageManager method)

 	install_netapp_sdk() (cfme.utils.appliance.IPAppliance method)

 	install_smem() (in module cfme.utils.smem_memory_monitor)

 	install_vddk() (cfme.utils.appliance.IPAppliance method)

 	instance (cfme.base.ui.AutomateSimulationView attribute)

 	Instance (class in cfme.automate.explorer.instance)

 	InstanceAddView (class in cfme.automate.explorer.instance)

 	InstanceClassMethod (class in cfme.utils)

 	InstanceCollection (class in cfme.automate.explorer.instance)

 	InstanceCopyView (class in cfme.automate.explorer.instance)

 	InstanceDetailsView (class in cfme.automate.explorer.instance)

 	InstanceEditView (class in cfme.automate.explorer.instance)

 	InstanceNotFound

 	instances (cfme.automate.explorer.klass.Class attribute)

 	(cfme.automate.explorer.klass.ClassDetailsView attribute)

 	instantiate() (cfme.automate.buttons.ButtonCollection method)

 	(cfme.automate.buttons.ButtonGroupCollection method)

 	(cfme.control.explorer.alert_profiles.AlertProfileCollection method)

 	(cfme.control.explorer.policies.PolicyCollection method)

 	(cfme.intelligence.reports.widgets.DashboardReportWidgetsCollection method)

 	(cfme.modeling.base.BaseCollection method)

 	IntelChargeback (class in cfme.intelligence.chargeback)

 	interaction() (cfme.fixtures.rdb.Rdb method)

 	interrupt() (fixtures.parallelizer.ParallelSession method)

 	interval (cfme.intelligence.reports.reports.Report attribute)

 	interval_end (cfme.intelligence.reports.reports.Report attribute)

 	interval_size (cfme.intelligence.reports.reports.Report attribute)

 	inventory (cfme.automate.buttons.AnsiblePlaybookButton attribute)

 	(cfme.configure.documentation.LinksView attribute)

 	(cfme.control.explorer.actions.RunAnsiblePlaybookFromView attribute)

 	ip_echo_socket() (in module cfme.utils.net)

 	ipa_crud() (in module cfme.fixtures.cli)

 	ipaddress (cfme.utils.auth.MIQAuthProvider attribute)

 	ipadomain (cfme.utils.auth.FreeIPAAuthProvider attribute)

 	ipapp (cfme.utils.appliance.Appliance attribute)

 	IPAppliance (class in cfme.utils.appliance)

 	ipaprincipal (cfme.utils.auth.FreeIPAAuthProvider attribute)

 	iparealm (cfme.utils.auth.FreeIPAAuthProvider attribute)

 	IPMI (class in cfme.utils.ipmi)

 	IPMIException

 	is_analysis_finished() (in module cfme.configure.tasks)

 	is_appliance() (in module cfme.markers.uses)

 	is_appliance_downstream() (cfme.utils.ssh.SSHClient method)

 	is_candu (cfme.intelligence.reports.reports.Report attribute)

 	is_cleared (cfme.configure.configuration.diagnostics_settings.CollectLogsBase attribute)

 	is_cluster_analysis_finished() (in module cfme.configure.tasks)

 	is_condition_assigned() (cfme.control.explorer.policies.BasePolicy method)

 	is_container (cfme.utils.ssh.SSHClient attribute)

 	is_datastore_analysis_finished() (in module cfme.configure.tasks)

 	is_dedicated_active (cfme.utils.appliance.db.ApplianceDB attribute)

 	is_dev (cfme.utils.appliance.DummyAppliance attribute)

 	is_displayed (cfme.ansible.credentials.CredentialAddView attribute)

 	(cfme.ansible.credentials.CredentialDetailsView attribute)

 	(cfme.ansible.credentials.CredentialEditView attribute)

 	(cfme.ansible.credentials.CredentialsListView attribute)

 	(cfme.ansible.playbooks.PlaybookDetailsView attribute)

 	(cfme.ansible.playbooks.PlaybooksView attribute)

 	(cfme.ansible.repositories.RepositoryAddView attribute)

 	(cfme.ansible.repositories.RepositoryAllView attribute)

 	(cfme.ansible.repositories.RepositoryDetailsView attribute)

 	(cfme.ansible.repositories.RepositoryEditView attribute)

 	(cfme.automate.AddBoxView attribute)

 	(cfme.automate.AddDialogView attribute)

 	(cfme.automate.AddTabView attribute)

 	(cfme.automate.AutomateCustomizationView attribute)

 	(cfme.automate.EditDialogView attribute)

 	(cfme.automate.buttons.ButtonDetailView attribute)

 	(cfme.automate.buttons.ButtonGroupDetailView attribute)

 	(cfme.automate.buttons.ButtonGroupObjectTypeView attribute)

 	(cfme.automate.buttons.ButtonsAllView attribute)

 	(cfme.automate.buttons.EditButtonGroupView attribute)

 	(cfme.automate.buttons.EditButtonView attribute)

 	(cfme.automate.buttons.NewButtonGroupView attribute)

 	(cfme.automate.buttons.NewButtonView attribute)

 	(cfme.automate.dialog_box.EditBoxView attribute)

 	(cfme.automate.dialog_element.AddElementView attribute)

 	(cfme.automate.dialog_element.DetailsDialogView attribute)

 	(cfme.automate.dialog_element.EditElementView attribute)

 	(cfme.automate.dialog_tab.DetailsTabView attribute)

 	(cfme.automate.dialog_tab.EditTabView attribute)

 	(cfme.automate.dialogs.AddBoxView attribute)

 	(cfme.automate.dialogs.AddDialogView attribute)

 	(cfme.automate.dialogs.AddTabView attribute)

 	(cfme.automate.dialogs.AutomateCustomizationView attribute)

 	(cfme.automate.dialogs.EditDialogView attribute)

 	(cfme.automate.dialogs.dialog_box.EditBoxView attribute)

 	(cfme.automate.dialogs.dialog_element.AddElementView attribute)

 	(cfme.automate.dialogs.dialog_element.DetailsDialogView attribute)

 	(cfme.automate.dialogs.dialog_element.DialogsView attribute)

 	(cfme.automate.dialogs.dialog_element.EditElementView attribute)

 	(cfme.automate.dialogs.dialog_tab.DetailsTabView attribute)

 	(cfme.automate.dialogs.dialog_tab.EditTabView attribute)

 	(cfme.automate.dialogs.service_dialogs.DetailsDialogView attribute)

 	(cfme.automate.dialogs.service_dialogs.DialogsView attribute)

 	(cfme.automate.explorer.AutomateExplorerView attribute)

 	(cfme.automate.explorer.domain.DomainAddView attribute)

 	(cfme.automate.explorer.domain.DomainDetailsView attribute)

 	(cfme.automate.explorer.domain.DomainEditView attribute)

 	(cfme.automate.explorer.domain.DomainListView attribute)

 	(cfme.automate.explorer.domain.DomainPriorityView attribute)

 	(cfme.automate.explorer.instance.InstanceAddView attribute)

 	(cfme.automate.explorer.instance.InstanceCopyView attribute)

 	(cfme.automate.explorer.instance.InstanceDetailsView attribute)

 	(cfme.automate.explorer.instance.InstanceEditView attribute)

 	(cfme.automate.explorer.klass.ClassAddView attribute)

 	(cfme.automate.explorer.klass.ClassCopyView attribute)

 	(cfme.automate.explorer.klass.ClassDetailsView attribute)

 	(cfme.automate.explorer.klass.ClassEditView attribute)

 	(cfme.automate.explorer.klass.ClassSchemaEditView attribute)

 	(cfme.automate.explorer.method.MethodAddView attribute)

 	(cfme.automate.explorer.method.MethodCopyView attribute)

 	(cfme.automate.explorer.method.MethodDetailsView attribute)

 	(cfme.automate.explorer.method.MethodEditView attribute)

 	(cfme.automate.explorer.namespace.NamespaceAddView attribute)

 	(cfme.automate.explorer.namespace.NamespaceDetailsView attribute)

 	(cfme.automate.explorer.namespace.NamespaceEditView attribute)

 	(cfme.automate.import_export.GitImportSelectorView attribute)

 	(cfme.automate.provisioning_dialogs.ProvDiagAddView attribute)

 	(cfme.automate.provisioning_dialogs.ProvDiagAllView attribute)

 	(cfme.automate.provisioning_dialogs.ProvDiagDetailsView attribute)

 	(cfme.automate.provisioning_dialogs.ProvDiagEditView attribute)

 	(cfme.automate.service_dialogs.DetailsDialogView attribute)

 	(cfme.automate.service_dialogs.DialogsView attribute)

 	(cfme.base.login.BaseLoggedInPage attribute)

 	(cfme.base.ssui.SSUIBaseLoggedInPage attribute)

 	(cfme.base.ui.AutomateImportExportBaseView attribute)

 	(cfme.base.ui.AutomateImportExportView attribute)

 	(cfme.base.ui.AutomateSimulationView attribute)

 	(cfme.base.ui.ConfigurationView attribute)

 	(cfme.base.ui.DatabaseClientConnectionsView attribute)

 	(cfme.base.ui.DatabaseIndexesView attribute)

 	(cfme.base.ui.DatabaseSettingsView attribute)

 	(cfme.base.ui.DatabaseSummaryView attribute)

 	(cfme.base.ui.DatabaseTablesView attribute)

 	(cfme.base.ui.DatabaseUtilizationView attribute)

 	(cfme.base.ui.HelpMenuView attribute)

 	(cfme.base.ui.LoginPage attribute)

 	(cfme.base.ui.RegionChangeNameView attribute)

 	(cfme.base.ui.RegionDiagnosticsDatabaseView attribute)

 	(cfme.base.ui.RegionDiagnosticsView attribute)

 	(cfme.base.ui.RegionView attribute)

 	(cfme.base.ui.ServerDatabaseView attribute)

 	(cfme.base.ui.ServerDiagnosticsCollectLogsView attribute)

 	(cfme.base.ui.ServerDiagnosticsView attribute)

 	(cfme.base.ui.ServerView attribute)

 	(cfme.base.ui.ZoneAddView attribute)

 	(cfme.base.ui.ZoneCollectLogsView attribute)

 	(cfme.base.ui.ZoneDetailsView attribute)

 	(cfme.base.ui.ZoneDiagnosticsView attribute)

 	(cfme.base.ui.ZoneEditView attribute)

 	(cfme.base.ui.ZoneListView attribute)

 	(cfme.base.ui.ZoneSmartProxyAffinityView attribute)

 	(cfme.cloud.security_groups.SecurityGroupAddView attribute)

 	(cfme.cloud.security_groups.SecurityGroupAllView attribute)

 	(cfme.cloud.security_groups.SecurityGroupDetailsView attribute)

 	(cfme.configure.about.AboutView attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileAddView attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileAllView attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileDetailsView attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileEditView attribute)

 	(cfme.configure.configuration.diagnostics_settings.DiagnosticServerWorkersView attribute)

 	(cfme.configure.configuration.diagnostics_settings.ServerCollectLogsEditView attribute)

 	(cfme.configure.configuration.diagnostics_settings.ServerCollectLogsView attribute)

 	(cfme.configure.configuration.diagnostics_settings.ZoneDiagnosticsCollectLogsView attribute)

 	(cfme.configure.configuration.region_settings.CANDUCollectionView attribute)

 	(cfme.configure.configuration.region_settings.CompanyCategoriesAddView attribute)

 	(cfme.configure.configuration.region_settings.CompanyCategoriesAllView attribute)

 	(cfme.configure.configuration.region_settings.CompanyCategoriesEditView attribute)

 	(cfme.configure.configuration.region_settings.CompanyTagsAddView attribute)

 	(cfme.configure.configuration.region_settings.CompanyTagsAllView attribute)

 	(cfme.configure.configuration.region_settings.MapTagsAddView attribute)

 	(cfme.configure.configuration.region_settings.MapTagsAllView attribute)

 	(cfme.configure.configuration.region_settings.RedHatUpdatesEditView attribute)

 	(cfme.configure.configuration.region_settings.RedHatUpdatesView attribute)

 	(cfme.configure.configuration.region_settings.ReplicationGlobalAddView attribute)

 	(cfme.configure.configuration.region_settings.ReplicationGlobalView attribute)

 	(cfme.configure.configuration.region_settings.ReplicationView attribute)

 	(cfme.configure.configuration.server_settings.ServerAuthenticationView attribute)

 	(cfme.configure.configuration.server_settings.ServerInformationView attribute)

 	(cfme.configure.configuration.system_schedules.ScheduleAddView attribute)

 	(cfme.configure.configuration.system_schedules.ScheduleAllView attribute)

 	(cfme.configure.configuration.system_schedules.ScheduleDetailsView attribute)

 	(cfme.configure.configuration.system_schedules.ScheduleEditView attribute)

 	(cfme.configure.documentation.DocView attribute)

 	(cfme.configure.settings.MySettingsView attribute)

 	(cfme.configure.settings.TimeProfileAddView attribute)

 	(cfme.configure.settings.TimeProfileEditView attribute)

 	(cfme.configure.tasks.TasksView attribute)

 	(cfme.containers.overview.ContainersOverviewView attribute)

 	(cfme.control.explorer.ControlExplorerView attribute)

 	(cfme.control.explorer.actions.ActionDetailsView attribute)

 	(cfme.control.explorer.actions.ActionsAllView attribute)

 	(cfme.control.explorer.actions.EditActionView attribute)

 	(cfme.control.explorer.actions.NewActionView attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfileDetailsView attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfilesAllView attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfilesEditAssignmentsView attribute)

 	(cfme.control.explorer.alert_profiles.EditAlertProfileView attribute)

 	(cfme.control.explorer.alert_profiles.NewAlertProfileView attribute)

 	(cfme.control.explorer.alerts.AlertDetailsView attribute)

 	(cfme.control.explorer.alerts.AlertsAllView attribute)

 	(cfme.control.explorer.alerts.EditAlertView attribute)

 	(cfme.control.explorer.alerts.NewAlertView attribute)

 	(cfme.control.explorer.conditions.ConditionDetailsView attribute)

 	(cfme.control.explorer.conditions.ConditionPolicyDetailsView attribute)

 	(cfme.control.explorer.conditions.ConditionsAllView attribute)

 	(cfme.control.explorer.conditions.EditConditionView attribute)

 	(cfme.control.explorer.conditions.NewConditionView attribute)

 	(cfme.control.explorer.policies.ConditionDetailsView attribute)

 	(cfme.control.explorer.policies.EditEventView attribute)

 	(cfme.control.explorer.policies.EditPolicyConditionAssignments attribute)

 	(cfme.control.explorer.policies.EditPolicyEventAssignments attribute)

 	(cfme.control.explorer.policies.EditPolicyView attribute)

 	(cfme.control.explorer.policies.EventDetailsView attribute)

 	(cfme.control.explorer.policies.NewPolicyView attribute)

 	(cfme.control.explorer.policies.PoliciesAllView attribute)

 	(cfme.control.explorer.policies.PolicyDetailsView attribute)

 	(cfme.control.explorer.policy_profiles.EditPolicyProfileView attribute)

 	(cfme.control.explorer.policy_profiles.NewPolicyProfileView attribute)

 	(cfme.control.explorer.policy_profiles.PolicyProfileDetailsView attribute)

 	(cfme.control.explorer.policy_profiles.PolicyProfilesAllView attribute)

 	(cfme.control.import_export.ControlImportExportView attribute)

 	(cfme.control.log.ControlLogView attribute)

 	(cfme.control.simulation.ControlSimulationView attribute)

 	(cfme.dashboard.DashboardView attribute)

 	(cfme.dashboard.ParticularDashboardView attribute)

 	(cfme.infrastructure.networking.InfraNetworkingAllView attribute)

 	(cfme.infrastructure.pxe.PXECustomizationTemplateDetailsView attribute)

 	(cfme.infrastructure.pxe.PXECustomizationTemplateForm attribute)

 	(cfme.infrastructure.pxe.PXECustomizationTemplatesView attribute)

 	(cfme.infrastructure.pxe.PXEDatastoreDetailsView attribute)

 	(cfme.infrastructure.pxe.PXEDatastoreForm attribute)

 	(cfme.infrastructure.pxe.PXEDatastoresView attribute)

 	(cfme.infrastructure.pxe.PXEImageEditView attribute)

 	(cfme.infrastructure.pxe.PXEMainView attribute)

 	(cfme.infrastructure.pxe.PXEServerDetailsView attribute)

 	(cfme.infrastructure.pxe.PXEServerForm attribute)

 	(cfme.infrastructure.pxe.PXEServersView attribute)

 	(cfme.infrastructure.pxe.PXESystemImageTypeDetailsView attribute)

 	(cfme.infrastructure.pxe.PXESystemImageTypeForm attribute)

 	(cfme.infrastructure.pxe.PXESystemImageTypesView attribute)

 	(cfme.intelligence.chargeback.ChargebackView attribute)

 	(cfme.intelligence.chargeback.assignments.AssignmentsAllView attribute)

 	(cfme.intelligence.chargeback.assignments.AssignmentsView attribute)

 	(cfme.intelligence.chargeback.rates.AddComputeChargebackView attribute)

 	(cfme.intelligence.chargeback.rates.EditComputeChargebackView attribute)

 	(cfme.intelligence.chargeback.rates.EditStorageChargebackView attribute)

 	(cfme.intelligence.chargeback.rates.RatesDetailView attribute)

 	(cfme.intelligence.chargeback.rates.RatesView attribute)

 	(cfme.intelligence.reports.CloudIntelReportsView attribute)

 	(cfme.intelligence.reports.dashboards.DashboardAllGroupsView attribute)

 	(cfme.intelligence.reports.dashboards.DashboardDetailsView attribute)

 	(cfme.intelligence.reports.dashboards.DefaultDashboardDetailsView attribute)

 	(cfme.intelligence.reports.dashboards.EditDashboardView attribute)

 	(cfme.intelligence.reports.dashboards.EditDefaultDashboardView attribute)

 	(cfme.intelligence.reports.dashboards.NewDashboardView attribute)

 	(cfme.intelligence.reports.import_export.ImportExportCustomReportsView attribute)

 	(cfme.intelligence.reports.import_export.ImportExportWidgetsCommitView attribute)

 	(cfme.intelligence.reports.import_export.ImportExportWidgetsView attribute)

 	(cfme.intelligence.reports.menus.EditReportMenusView attribute)

 	(cfme.intelligence.reports.reports.AllCustomReportsView attribute)

 	(cfme.intelligence.reports.reports.AllReportsView attribute)

 	(cfme.intelligence.reports.reports.ReportAddView attribute)

 	(cfme.intelligence.reports.reports.ReportDetailsView attribute)

 	(cfme.intelligence.reports.reports.ReportEditView attribute)

 	(cfme.intelligence.reports.reports.SavedReportDetailsView attribute)

 	(cfme.intelligence.reports.saved.AllSavedReportsView attribute)

 	(cfme.intelligence.reports.saved.SavedReportDetailsView attribute)

 	(cfme.intelligence.reports.saved.SavedReportView attribute)

 	(cfme.intelligence.reports.schedules.EditScheduleView attribute)

 	(cfme.intelligence.reports.schedules.NewScheduleView attribute)

 	(cfme.intelligence.reports.schedules.ScheduleDetailsView attribute)

 	(cfme.intelligence.reports.schedules.SchedulesAllView attribute)

 	(cfme.intelligence.reports.widgets.AllDashboardWidgetsView attribute)

 	(cfme.intelligence.reports.widgets.BaseEditDashboardWidgetView attribute)

 	(cfme.intelligence.reports.widgets.BaseNewDashboardWidgetView attribute)

 	(cfme.intelligence.reports.widgets.DashboardWidgetDetailsView attribute)

 	(cfme.intelligence.reports.widgets.DashboardWidgetsView attribute)

 	(cfme.intelligence.rss.RSSView attribute)

 	(cfme.optimize.bottlenecks.BottlenecksTabsView attribute)

 	(cfme.services.catalogs.ServicesCatalogView attribute)

 	(cfme.services.dashboard.ssui.DashboardView attribute)

 	(cfme.services.dashboard.ssui.MyServicesView attribute)

 	(cfme.services.workloads.WorkloadsDefaultView attribute)

 	(cfme.services.workloads.WorkloadsTemplate attribute)

 	(cfme.services.workloads.WorkloadsVM attribute)

 	
 	is_downstream (cfme.utils.appliance.DummyAppliance attribute)

 	(cfme.utils.appliance.IPAppliance attribute)

 	is_embedded_ansible_role_enabled (cfme.utils.appliance.IPAppliance attribute)

 	is_embedded_ansible_running (cfme.utils.appliance.IPAppliance attribute)

 	is_enabled (cfme.utils.appliance.db.ApplianceDB attribute)

 	is_event_assigned() (cfme.control.explorer.policies.BasePolicy method)

 	is_evm_service_running() (cfme.utils.appliance.IPAppliance method)

 	is_host_analysis_finished() (in module cfme.configure.tasks)

 	is_idle (cfme.utils.appliance.IPAppliance attribute)

 	is_imported() (in module cfme.control.import_export)

 	is_internal (cfme.utils.appliance.db.ApplianceDB attribute)

 	is_miqqe_patch_candidate (cfme.utils.appliance.IPAppliance attribute)

 	is_nginx_running (cfme.utils.appliance.IPAppliance attribute)

 	is_on_rhev (cfme.utils.appliance.Appliance attribute)

 	is_on_vsphere (cfme.utils.appliance.Appliance attribute)

 	is_online (cfme.utils.appliance.db.ApplianceDB attribute)

 	is_opened (cfme.automate.explorer.method.Inputs attribute)

 	(cfme.dashboard.Kebab attribute)

 	(cfme.utils.bz.BugWrapper attribute)

 	is_partition_extended (cfme.utils.appliance.db.ApplianceDB attribute)

 	is_pingable() (in module cfme.utils.net)

 	is_pod (cfme.utils.appliance.DummyAppliance attribute)

 	is_power_on() (cfme.utils.ipmi.IPMI method)

 	is_rabbitmq_running (cfme.utils.appliance.IPAppliance attribute)

 	is_ready (cfme.utils.appliance.db.ApplianceDB attribute)

 	is_registered() (cfme.configure.configuration.region_settings.RedHatUpdates method)

 	is_registering() (cfme.configure.configuration.region_settings.RedHatUpdates method)

 	is_registration_complete() (cfme.utils.appliance.IPAppliance method)

 	is_running (cfme.utils.appliance.Appliance attribute)

 	is_ssh_running (cfme.utils.appliance.IPAppliance attribute)

 	is_storage_enabled (cfme.utils.appliance.IPAppliance attribute)

 	is_subscribed() (cfme.configure.configuration.region_settings.RedHatUpdates method)

 	is_supervisord_running (cfme.utils.appliance.IPAppliance attribute)

 	is_vm_analysis_finished() (in module cfme.configure.tasks)

 	is_web_ui_running() (cfme.utils.appliance.IPAppliance method)

 	is_zoomed (cfme.dashboard.DashboardWidget attribute)

 	iso_date_only_format (cfme.utils.timeutil.parsetime attribute)

 	iso_with_utc_format (cfme.utils.timeutil.parsetime attribute)

 	ISODatastore (class in cfme.infrastructure.pxe)

 	ISODatastoreAdd (class in cfme.infrastructure.pxe)

 	ISODatastoreAll (class in cfme.infrastructure.pxe)

 	ISODatastoreDetails (class in cfme.infrastructure.pxe)

 	ITEM (cfme.dashboard.Kebab attribute)

 	ITEM_TITLE_LOCATOR (cfme.intelligence.reports.dashboards.DashboardDetailsView attribute)

 	ItemNotFound

 	ITEMS (cfme.dashboard.Kebab attribute)

 	items (cfme.dashboard.Kebab attribute)

 	items() (cfme.utils.db.Db method)

 	items_analysis (cfme.configure.configuration.system_schedules.ScheduleAddEditEntities attribute)

 	items_for_export (cfme.intelligence.reports.import_export.ImportExportCommonForm attribute)

 	ItemsAnalysisEntities (class in cfme.configure.configuration.system_schedules)

 	iterate_pairs() (in module cfme.utils)

J

 	
 	jira (cfme.utils.blockers.JIRA attribute)

 	
 	JIRA (class in cfme.utils.blockers)

K

 	
 	Kebab (class in cfme.dashboard)

 	key (cfme.utils.auth.BaseAuthProvider attribute)

 	keygen() (in module cfme.utils.ssh)

 	KeyPairNotFound

 	keys() (cfme.utils.db.Db method)

 	kill() (cfme.utils.dockerbot.dockerbot.DockerInstance method)

 	(fixtures.parallelizer.ParallelSession method)

 	
 	klass (cfme.automate.explorer.instance.Instance attribute)

 	(cfme.automate.explorer.method.Method attribute)

 	kwargify() (in module cfme.metaplugins.blockers)

 	kwargs (cfme.markers.meta.Plugin attribute)

 	(cfme.utils.appliance.plugin.AppliancePluginDescriptor attribute)

 	(cfme.utils.blockers.Blocker attribute)

L

 	
 	label (cfme.automate.DialogForm attribute)

 	(cfme.automate.dialogs.DialogForm attribute)

 	(cfme.automate.dialogs.dialog_element.EditElementView attribute)

 	(cfme.automate.dialogs.service_dialogs.Dialog attribute)

 	(cfme.automate.service_dialogs.Dialog attribute)

 	LabelNotFoundException

 	LABELS (cfme.automate.buttons.AutomateRadioGroup attribute)

 	last_collection (cfme.configure.configuration.diagnostics_settings.CollectLogsBase attribute)

 	last_in_column (cfme.dashboard.DashboardWidget attribute)

 	last_log_collection (cfme.configure.configuration.diagnostics_settings.ServerCollectLogsView attribute)

 	(cfme.configure.configuration.diagnostics_settings.ZoneDiagnosticsCollectLogsView attribute)

 	last_log_message (cfme.configure.configuration.diagnostics_settings.ServerCollectLogsView attribute)

 	last_message (cfme.configure.configuration.diagnostics_settings.ServerCollectLog attribute)

 	(cfme.configure.configuration.diagnostics_settings.ZoneCollectLog attribute)

 	last_run_date (cfme.configure.configuration.system_schedules.SystemSchedule attribute)

 	last_run_time (cfme.configure.configuration.system_schedules.ScheduleDetailsView attribute)

 	latest_version (cfme.utils.bz.Product attribute)

 	ldap_conf (cfme.utils.auth.MIQAuthProvider attribute)

 	LdapAuthenticationView (class in cfme.configure.configuration.server_settings)

 	LdapsAuthenticationView (class in cfme.configure.configuration.server_settings)

 	lease_time (cfme.test_framework.sprout.plugin.SproutManager attribute)

 	(cfme.test_framework.sprout.plugin.SproutProvisioningRequest attribute)

 	lifecycle (cfme.services.workloads.WorkloadsToolbar attribute)

 	line_chart_render() (in module cfme.utils.perf_message_stats)

 	lines_as_list() (cfme.utils.ssh.SSHTail method)

 	links (cfme.configure.documentation.DocView attribute)

 	LinksView (class in cfme.configure.documentation)

 	list_entity (cfme.ansible.playbooks.PlaybookEntity attribute)

 	list_view_entities (cfme.configure.settings.Visual attribute)

 	list_view_limit (cfme.configure.settings.Visual attribute)

 	listen_to() (cfme.utils.events.RestEventListener method)

 	(cfme.utils.events_db.DbEventListener method)

 	load_appliance_collections() (in module cfme.modeling.base)

 	load_appliances() (in module cfme.utils.appliance)

 	load_appliances_from_config() (in module cfme.utils.appliance)

 	load_available_requirements() (in module cfme.fixtures.tccheck)

 	load_data_file() (in module cfme.utils.datafile)

 	local_time (cfme.utils.ftp.FTPFile attribute)

 	location (cfme.automate.explorer.method.MethodAddView attribute)

 	(cfme.automate.explorer.method.MethodDetailsView attribute)

 	lock() (cfme.automate.explorer.domain.Domain method)

 	locked (cfme.automate.explorer.domain.Domain attribute)

 	(cfme.intelligence.reports.dashboards.Dashboard attribute)

 	(cfme.intelligence.reports.dashboards.DashboardFormCommon attribute)

 	log (cfme.utils.appliance.IPAppliance attribute)

 	log_depot_uri (cfme.configure.configuration.diagnostics_settings.ServerCollectLogsView attribute)

 	(cfme.configure.configuration.diagnostics_settings.ZoneDiagnosticsCollectLogsView attribute)

 	log_in() (cfme.base.ssui.LoginPage method)

 	(cfme.base.ui.LoginPage method)

 	
 	log_message() (cfme.utils.appliance.implementations.ssui.SSUINavigateStep method)

 	(cfme.utils.appliance.implementations.ui.CFMENavigateStep method)

 	log_path (in module cfme.utils.path)

 	logged_in (cfme.base.login.BaseLoggedInPage attribute)

 	(cfme.base.Server attribute)

 	(cfme.base.ssui.SSUIBaseLoggedInPage attribute)

 	(cfme.base.ui.LoginPage attribute)

 	logged_in() (in module cfme.base.ui)

 	logged_in_as_current_user (cfme.base.login.BaseLoggedInPage attribute)

 	(cfme.base.ssui.SSUIBaseLoggedInPage attribute)

 	(cfme.base.ui.LoginPage attribute)

 	logged_in_as_user() (cfme.base.login.BaseLoggedInPage method)

 	(cfme.base.ssui.SSUIBaseLoggedInPage method)

 	(cfme.base.ui.LoginPage method)

 	logged_out (cfme.base.login.BaseLoggedInPage attribute)

 	(cfme.base.ssui.SSUIBaseLoggedInPage attribute)

 	(cfme.base.ui.LoginPage attribute)

 	LoggedIn (class in cfme.base.ssui)

 	(class in cfme.base.ui)

 	logger (cfme.utils.appliance.plugin.AppliancePlugin attribute)

 	logger() (in module fixtures.log)

 	logger_wrap (class in cfme.utils.log)

 	logging_form (cfme.configure.configuration.server_settings.ServerInformationView attribute)

 	logging_values (cfme.configure.configuration.server_settings.ServerInformation attribute)

 	login (cfme.base.Server attribute)

 	(cfme.base.ssui.LoginPage attribute)

 	(cfme.base.ui.LoginPage attribute)

 	login() (in module cfme.base.ssui)

 	(in module cfme.base.ui)

 	login_admin (cfme.base.Server attribute)

 	login_admin() (cfme.base.ui.LoginPage method)

 	(in module cfme.base.ssui)

 	(in module cfme.base.ui)

 	login_page (cfme.configure.settings.Visual attribute)

 	LoginPage (class in cfme.base.ssui)

 	(class in cfme.base.ui)

 	LoginScreen (class in cfme.base.ssui)

 	(class in cfme.base.ui)

 	logout (cfme.base.Server attribute)

 	logout() (cfme.base.login.BaseLoggedInPage method)

 	(cfme.base.ssui.SSUIBaseLoggedInPage method)

 	(in module cfme.base.ui)

 	LogValidator (class in cfme.utils.log_validator)

 	long_date_format (cfme.utils.timeutil.parsetime attribute)

 	long_description (cfme.configure.configuration.region_settings.CompanyCategoriesAddView attribute)

 	look_up (cfme.configure.settings.DefaultViews attribute)

 	loose (cfme.utils.bz.BugWrapper attribute)

 	(cfme.utils.bz.Bugzilla attribute)

 	loosen_pgssl() (cfme.utils.appliance.db.ApplianceDB method)

 	ls() (cfme.utils.ftp.FTPClient method)

M

 	
 	machine_credential (cfme.automate.explorer.method.MethodAddView attribute)

 	(cfme.automate.explorer.method.MethodEditView attribute)

 	main() (in module cfme.utils.dockerbot.build_container)

 	(in module cfme.utils.dockerbot.pytestbase.check_provisioned)

 	(in module cfme.utils.dockerbot.pytestbase.get_keys)

 	(in module cfme.utils.dockerbot.pytestbase.verify_commit)

 	make_document_focused() (cfme.utils.appliance.implementations.ui.MiqBrowserPlugin method)

 	make_file_handler() (in module cfme.utils.log)

 	manage_folder() (cfme.intelligence.reports.menus.ReportMenu method)

 	manage_subfolder() (cfme.intelligence.reports.menus.ReportMenu method)

 	managed_known_providers (cfme.utils.appliance.DummyAppliance attribute)

 	(cfme.utils.appliance.IPAppliance attribute)

 	managed_provider_names (cfme.utils.appliance.IPAppliance attribute)

 	manager (cfme.intelligence.reports.menus.EditReportMenusView attribute)

 	manager() (in module fixtures.ui_coverage)

 	mangle_in_sprout_appliances() (in module cfme.test_framework.sprout.plugin)

 	ManyEntitiesFound

 	map_tags (cfme.base.ui.RegionView attribute)

 	(cfme.base.ui.TagsView attribute)

 	MapTags (class in cfme.base.ui)

 	(class in cfme.configure.configuration.region_settings)

 	MapTagsAdd (class in cfme.configure.configuration.region_settings)

 	MapTagsAddView (class in cfme.configure.configuration.region_settings)

 	MapTagsAll (class in cfme.configure.configuration.region_settings)

 	MapTagsAllView (class in cfme.configure.configuration.region_settings)

 	MapTagsEdit (class in cfme.configure.configuration.region_settings)

 	MapTagsEditView (class in cfme.configure.configuration.region_settings)

 	MarkFromMap (class in fixtures.node_annotate)

 	markup (fixtures.parallelizer.Outcome attribute)

 	match() (cfme.utils.events.EventAttr method)

 	(cfme.utils.events_db.EventAttr method)

 	matches() (cfme.utils.events.Event method)

 	(cfme.utils.events_db.Event method)

 	max_cpu_usage_rate_average (cfme.fixtures.vporizer.vpor_data_instance attribute)

 	max_mem_usage_absolute_average (cfme.fixtures.vporizer.vpor_data_instance attribute)

 	max_scans (cfme.base.ui.ZoneForm attribute)

 	(cfme.base.Zone attribute)

 	max_ttl (cfme.automate.explorer.method.MethodAddView attribute)

 	(cfme.automate.explorer.method.MethodEditView attribute)

 	maximized() (in module fixtures.maximized)

 	memory_amount (cfme.control.explorer.actions.ActionFormCommon attribute)

 	MENU (cfme.intelligence.reports.widgets.DashboardReportWidgetsCollection attribute)

 	menu_name (cfme.intelligence.reports.reports.CustomReportFormCommon attribute)

 	(cfme.intelligence.reports.reports.Report attribute)

 	menu_shortcuts (cfme.intelligence.reports.widgets.menu_widgets.MenuWidgetFormCommon attribute)

 	MenuItemNotFound

 	MenuWidget (class in cfme.intelligence.reports.widgets.menu_widgets)

 	MenuWidgetFormCommon (class in cfme.intelligence.reports.widgets.menu_widgets)

 	merge() (fixtures.ui_coverage.CoverageManager method)

 	merkyl_inspector() (in module fixtures.merkyl)

 	merkyl_setup() (in module fixtures.artifactor_plugin)

 	MerkylInspector (class in fixtures.merkyl)

 	message (cfme.automate.buttons.ButtonDetailView attribute)

 	(cfme.base.ui.AutomateSimulationView attribute)

 	(cfme.exceptions.CandidateNotFound attribute)

 	(cfme.test_framework.appliance_police.AppliancePoliceException attribute)

 	message() (fixtures.parallelizer.remote.SlaveManager method)

 	messages_to_hourly_buckets() (in module cfme.utils.perf_message_stats)

 	messages_to_statistics_csv() (in module cfme.utils.perf_message_stats)

 	meta() (in module cfme.markers.meta)

 	
 	metadata (cfme.utils.db.Db attribute)

 	metas (cfme.markers.meta.Plugin attribute)

 	Method (class in cfme.automate.explorer.method)

 	MethodAddView (class in cfme.automate.explorer.method)

 	MethodCollection (class in cfme.automate.explorer.method)

 	MethodCopyView (class in cfme.automate.explorer.method)

 	MethodDetailsView (class in cfme.automate.explorer.method)

 	MethodEditView (class in cfme.automate.explorer.method)

 	methods (cfme.automate.explorer.klass.Class attribute)

 	(cfme.automate.explorer.klass.ClassDetailsView attribute)

 	(cfme.generic_objects.definition.GenericObjectDefinition attribute)

 	mgmt_event (cfme.control.explorer.alerts.Alert attribute)

 	(cfme.control.explorer.alerts.AlertFormCommon attribute)

 	mgmt_event_send (cfme.control.explorer.alerts.AlertFormCommon attribute)

 	migrate() (cfme.utils.appliance.db.ApplianceDB method)

 	milestones (cfme.utils.bz.Product attribute)

 	minimize() (cfme.dashboard.DashboardWidget method)

 	minimized (cfme.dashboard.DashboardWidget attribute)

 	minute (cfme.intelligence.reports.schedules.SchedulesFormCommon attribute)

 	minutes_timeout (cfme.configure.configuration.server_settings.ServerAuthenticationView attribute)

 	miq_event_definitions (cfme.utils.events_db.EventTool attribute)

 	MiqApi (class in cfme.utils.appliance)

 	MIQAuthProvider (class in cfme.utils.auth)

 	MiqBrowser (class in cfme.utils.appliance.implementations.ui)

 	MiqBrowserPlugin (class in cfme.utils.appliance.implementations.ui)

 	MiqImplementationContext (class in cfme.utils.appliance)

 	MiqMsgBucket (class in cfme.utils.perf_message_stats)

 	MiqMsgLists (class in cfme.utils.perf_message_stats)

 	MiqMsgStat (class in cfme.utils.perf_message_stats)

 	miqqe_patch_applied (cfme.utils.appliance.IPAppliance attribute)

 	miqqe_version (cfme.utils.appliance.IPAppliance attribute)

 	MiqSSUIBrowser (class in cfme.utils.appliance.implementations.ssui)

 	MiqSSUIBrowserPlugin (class in cfme.utils.appliance.implementations.ssui)

 	MiqWorker (class in cfme.utils.perf_message_stats)

 	mkd() (cfme.utils.ftp.FTPClient method)

 	modal (cfme.configure.about.AboutView attribute)

 	modules_to_document (in module cfme.utils.apidoc)

 	monitor_shutdown() (fixtures.parallelizer.ParallelSession method)

 	monitoring (cfme.configure.documentation.LinksView attribute)

 	monthly_charges (cfme.services.dashboard.Dashboard attribute)

 	monthly_charges() (in module cfme.services.dashboard.ssui)

 	move_from_button (cfme.intelligence.reports.ReportsMultiBoxSelect attribute)

 	move_into_button (cfme.intelligence.reports.ReportsMultiBoxSelect attribute)

 	MultipleResultsException

 	my_ip_address (fixtures.pytest_store.Store attribute)

 	my_ip_address() (in module cfme.utils.net)

 	MyCollection (class in cfme.modeling.tests.test_collections)

 	mycompany_title (cfme.intelligence.reports.CloudIntelReportsView attribute)

 	MyEntity (class in cfme.modeling.tests.test_collections)

 	MyEntityWithDeclared (class in cfme.modeling.tests.test_collections)

 	MyNewCollection (class in cfme.modeling.tests.test_collections)

 	MyNewEntity (class in cfme.modeling.tests.test_collections)

 	MyOtherTasks (class in cfme.configure.tasks)

 	MyServiceForm (class in cfme.services.dashboard.ssui)

 	MyServicesView (class in cfme.services.dashboard.ssui)

 	MySettings (class in cfme.configure.settings)

 	MySettingsEntities (class in cfme.configure.settings)

 	MySettingsStep (class in cfme.configure.settings)

 	MySettingsView (class in cfme.configure.settings)

 	MyTasks (class in cfme.configure.tasks)

N

 	
 	name (cfme.ansible.credentials.CredentialFormView attribute)

 	(cfme.ansible.playbooks.Playbook attribute)

 	(cfme.ansible.repositories.Repository attribute)

 	(cfme.ansible.repositories.RepositoryFormView attribute)

 	(cfme.automate.explorer.domain.DomainForm attribute)

 	(cfme.automate.explorer.instance.InstanceAddView attribute)

 	(cfme.automate.explorer.instance.InstanceEditView attribute)

 	(cfme.automate.explorer.klass.ClassForm attribute)

 	(cfme.automate.explorer.method.Inputs attribute)

 	(cfme.automate.explorer.method.MethodDetailsView attribute)

 	(cfme.automate.explorer.namespace.NamespaceForm attribute)

 	(cfme.automate.provisioning_dialogs.ProvDiagForm attribute)

 	(cfme.automate.provisioning_dialogs.ProvisioningDialog attribute)

 	(cfme.base.Server attribute)

 	(cfme.base.Zone attribute)

 	(cfme.base.ui.ZoneForm attribute)

 	(cfme.cloud.security_groups.SecurityGroup attribute)

 	(cfme.cloud.security_groups.SecurityGroupAddForm attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileBaseAddForm attribute)

 	(cfme.configure.configuration.diagnostics_settings.DiagnosticWorker attribute)

 	(cfme.configure.configuration.region_settings.CompanyCategoriesAddView attribute)

 	(cfme.configure.configuration.system_schedules.ScheduleAddEditEntities attribute)

 	(cfme.configure.configuration.system_schedules.SystemSchedule attribute)

 	(cfme.dashboard.Dashboard attribute)

 	(cfme.dashboard.DashboardWidget attribute)

 	(cfme.generic_objects.definition.GenericObjectDefinition attribute)

 	(cfme.generic_objects.instance.GenericObjectInstance attribute)

 	(cfme.infrastructure.pxe.CustomizationTemplate attribute)

 	(cfme.infrastructure.pxe.PXECustomizationTemplateForm attribute)

 	(cfme.infrastructure.pxe.PXEServerForm attribute)

 	(cfme.infrastructure.pxe.PXESystemImageTypeForm attribute)

 	(cfme.infrastructure.pxe.SystemImageType attribute)

 	(cfme.intelligence.reports.dashboards.Dashboard attribute)

 	(cfme.intelligence.reports.dashboards.DashboardDetailsView attribute)

 	(cfme.intelligence.reports.dashboards.DashboardFormCommon attribute)

 	(cfme.intelligence.reports.dashboards.DefaultDashboard attribute)

 	(cfme.intelligence.reports.saved.SavedReport attribute)

 	(cfme.intelligence.reports.schedules.Schedule attribute)

 	(cfme.intelligence.reports.schedules.SchedulesFormCommon attribute)

 	(cfme.markers.meta.Plugin attribute)

 	(cfme.modeling.tests.test_collections.MyEntity attribute)

 	(cfme.modeling.tests.test_collections.MyNewEntity attribute)

 	(cfme.utils.appliance.implementations.rest.ViaREST attribute)

 	(cfme.utils.appliance.implementations.ssui.ViaSSUI attribute)

 	(cfme.utils.appliance.implementations.ui.ViaUI attribute)

 	(cfme.utils.bz.Product attribute)

 	name_for_policy_profile (cfme.control.explorer.policies.BasePolicy attribute)

 	NamedLoggerAdapter (class in cfme.utils.log)

 	namespace (cfme.automate.explorer.common.CopyViewBase attribute)

 	(cfme.automate.explorer.instance.Instance attribute)

 	(cfme.automate.explorer.klass.Class attribute)

 	(cfme.automate.explorer.method.Method attribute)

 	Namespace (class in cfme.automate.explorer.namespace)

 	NamespaceAddView (class in cfme.automate.explorer.namespace)

 	NamespaceCollection (class in cfme.automate.explorer.namespace)

 	NamespaceDetailsView (class in cfme.automate.explorer.namespace)

 	NamespaceEditView (class in cfme.automate.explorer.namespace)

 	NamespaceForm (class in cfme.automate.explorer.namespace)

 	namespaces (cfme.automate.explorer.domain.Domain attribute)

 	(cfme.automate.explorer.domain.DomainDetailsView attribute)

 	(cfme.automate.explorer.namespace.Namespace attribute)

 	(cfme.automate.explorer.namespace.NamespaceDetailsView attribute)

 	Navigatable (class in cfme.utils.appliance)

 	NavigatableDeprecationWarning

 	
 	NavigatableMixin (class in cfme.utils.appliance)

 	navigation (cfme.base.login.BaseLoggedInPage attribute)

 	(cfme.base.ssui.SSUIBaseLoggedInPage attribute)

 	NavigationError

 	net_check() (in module cfme.utils.net)

 	net_check_remote() (in module cfme.utils.net)

 	network_manager (cfme.cloud.security_groups.SecurityGroupAddForm attribute)

 	new_box (cfme.automate.dialogs.AddBoxView attribute)

 	new_credential() (in module cfme.fixtures.tag)

 	new_event() (cfme.utils.events.RestEventListener method)

 	(cfme.utils.events_db.DbEventListener method)

 	new_name (cfme.automate.explorer.common.CopyViewBase attribute)

 	new_password (cfme.base.ui.LoginPage attribute)

 	new_rest_api_instance() (cfme.utils.appliance.IPAppliance method)

 	new_tab (cfme.automate.dialogs.AddTabView attribute)

 	NewActionView (class in cfme.control.explorer.actions)

 	NewAlertProfileView (class in cfme.control.explorer.alert_profiles)

 	NewAlertView (class in cfme.control.explorer.alerts)

 	NewButtonGroupView (class in cfme.automate.buttons)

 	NewButtonView (class in cfme.automate.buttons)

 	NewChartWidget (class in cfme.intelligence.reports.widgets.chart_widgets)

 	NewChartWidgetView (class in cfme.intelligence.reports.widgets.chart_widgets)

 	NewConditionView (class in cfme.control.explorer.conditions)

 	NewDashboardView (class in cfme.intelligence.reports.dashboards)

 	NewHooks (class in cfme.test_framework.sprout.plugin)

 	NewMenuWidget (class in cfme.intelligence.reports.widgets.menu_widgets)

 	NewMenuWidgetView (class in cfme.intelligence.reports.widgets.menu_widgets)

 	NewPolicyProfileView (class in cfme.control.explorer.policy_profiles)

 	NewPolicyView (class in cfme.control.explorer.policies)

 	NewReportWidget (class in cfme.intelligence.reports.widgets.report_widgets)

 	NewReportWidgetView (class in cfme.intelligence.reports.widgets.report_widgets)

 	NewRSSWidget (class in cfme.intelligence.reports.widgets.rss_widgets)

 	NewRSSWidgetView (class in cfme.intelligence.reports.widgets.rss_widgets)

 	NewScheduleView (class in cfme.intelligence.reports.schedules)

 	next_run_date (cfme.configure.configuration.system_schedules.SystemSchedule attribute)

 	next_run_time (cfme.configure.configuration.system_schedules.ScheduleDetailsView attribute)

 	nice_seconds() (in module cfme.utils.timeutil)

 	node_map (cfme.markers.polarion.ReportPolarionToJunitPlugin attribute)

 	NodeAlertProfile (class in cfme.control.explorer.alert_profiles)

 	NodeNotFound

 	nodes (cfme.containers.overview.ContainersOverviewView attribute)

 	normalize_space() (in module cfme.utils)

 	normalize_text() (in module cfme.utils)

 	notes (cfme.control.explorer.alert_profiles.AlertProfileFormCommon attribute)

 	(cfme.control.explorer.alert_profiles.BaseAlertProfile attribute)

 	(cfme.control.explorer.conditions.BaseCondition attribute)

 	(cfme.control.explorer.conditions.ConditionFormCommon attribute)

 	(cfme.control.explorer.policies.BasePolicy attribute)

 	(cfme.control.explorer.policies.PolicyFormCommon attribute)

 	(cfme.control.explorer.policy_profiles.PolicyProfile attribute)

 	(cfme.control.explorer.policy_profiles.PolicyProfileFormCommon attribute)

 	notification_frequency (cfme.control.explorer.alerts.Alert attribute)

 	(cfme.control.explorer.alerts.AlertFormCommon attribute)

 	nth_frame_info() (in module cfme.utils.log)

 	ntp_server_1 (cfme.base.ui.ZoneForm attribute)

 	ntp_server_2 (cfme.base.ui.ZoneForm attribute)

 	ntp_server_3 (cfme.base.ui.ZoneForm attribute)

 	ntp_servers (cfme.base.Zone attribute)

 	(cfme.configure.configuration.server_settings.ServerInformationView attribute)

 	ntp_servers_fields_keys (cfme.configure.configuration.server_settings.ServerInformation attribute)

 	ntp_servers_values (cfme.configure.configuration.server_settings.ServerInformation attribute)

 	num_of_rows (cfme.services.dashboard.Dashboard attribute)

 	num_of_rows() (in module cfme.services.dashboard.ssui)

 	number (cfme.base.Region attribute)

 	(cfme.utils.units.Unit attribute)

O

 	
 	OBJECT_TABLE (cfme.utils.events_db.EventTool attribute)

 	objects() (in module cfme.fixtures.model_collections)

 	OBSERVED_FIELD_MARKERS (cfme.utils.appliance.implementations.ui.MiqBrowserPlugin attribute)

 	OcpCli (class in cfme.utils.ocp_cli)

 	open() (cfme.dashboard.Kebab method)

 	open_browser() (cfme.utils.appliance.implementations.Implementation method)

 	open_fresh() (cfme.utils.browser.BrowserManager method)

 	open_sftp() (cfme.utils.ssh.SSHClient method)

 	open_states (cfme.utils.bz.Bugzilla attribute)

 	open_url (cfme.automate.buttons.AnsiblePlaybookButton attribute)

 	(cfme.automate.buttons.DefaultButton attribute)

 	OpenLDAPAuthProvider (class in cfme.utils.auth)

 	
 	OpenLDAPSAuthProvider (class in cfme.utils.auth)

 	OptionNotAvailable

 	options (cfme.automate.buttons.ButtonFormCommon attribute)

 	(cfme.automate.dialogs.dialog_element.ElementForm attribute)

 	orchestration_path (in module cfme.utils.path)

 	orchestration_templates (cfme.services.catalogs.ServicesCatalogView attribute)

 	orphaneddata (cfme.base.ui.RegionDiagnosticsView attribute)

 	os_version (cfme.utils.appliance.IPAppliance attribute)

 	Outcome (class in fixtures.parallelizer)

 	output (cfme.utils.ssh.SSHResult attribute)

 	override_existing (cfme.automate.explorer.common.CopyViewBase attribute)

 	override_source (cfme.automate.explorer.common.CopyViewBase attribute)

 	overwrite (cfme.intelligence.reports.import_export.ImportExportCustomReportsView attribute)

P

 	
 	paginator (cfme.ansible.playbooks.PlaybooksView attribute)

 	(cfme.ansible.repositories.RepositoryAllView attribute)

 	(cfme.automate.dialogs.service_dialogs.DialogsView attribute)

 	(cfme.automate.provisioning_dialogs.ProvDiagAllEntities attribute)

 	(cfme.automate.service_dialogs.DialogsView attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileAllView attribute)

 	(cfme.configure.configuration.system_schedules.ScheduleAllView attribute)

 	(cfme.infrastructure.networking.InfraNetworkingAllView attribute)

 	(cfme.intelligence.reports.reports.ReportDetailsView attribute)

 	(cfme.intelligence.reports.reports.SavedReportDetailsView attribute)

 	(cfme.intelligence.reports.saved.AllSavedReportsView attribute)

 	(cfme.intelligence.reports.schedules.SchedulesAllView attribute)

 	(cfme.services.dashboard.ssui.MyServicesView attribute)

 	parallel_session (fixtures.pytest_store.Store attribute)

 	parallelizer_role (fixtures.pytest_store.Store attribute)

 	ParallelSession (class in fixtures.parallelizer)

 	ParamClassName (class in cfme.utils)

 	parent (cfme.modeling.base.BaseCollection attribute)

 	(cfme.modeling.base.BaseEntity attribute)

 	parent_obj (cfme.automate.explorer.instance.Instance attribute)

 	(cfme.automate.explorer.klass.Class attribute)

 	(cfme.automate.explorer.method.Method attribute)

 	(cfme.automate.explorer.namespace.Namespace attribute)

 	(cfme.intelligence.reports.reports.SavedReport attribute)

 	parent_of_type() (in module cfme.modeling.base)

 	parent_type (cfme.control.explorer.actions.ActionFormCommon attribute)

 	parse() (cfme.utils.blockers.Blocker class method)

 	(cfme.utils.units.Unit class method)

 	(in module fixtures.node_annotate)

 	parse_number() (in module cfme.utils.units)

 	parsedate() (in module cfme.utils.version)

 	parsetime (class in cfme.utils.timeutil)

 	ParticularDashboardView (class in cfme.dashboard)

 	password (cfme.base.ssui.LoginPage attribute)

 	(cfme.base.ui.LoginPage attribute)

 	(cfme.base.ui.ZoneForm attribute)

 	(cfme.configure.configuration.diagnostics_settings.CollectLogsCredsEntities attribute)

 	(cfme.configure.configuration.region_settings.RedHatUpdatesEditView attribute)

 	(cfme.configure.configuration.region_settings.ReplicationGlobalAddView attribute)

 	(cfme.infrastructure.pxe.PXEServerForm attribute)

 	(cfme.utils.auth.AmazonAuthProvider attribute)

 	password_verify (cfme.configure.configuration.region_settings.RedHatUpdatesEditView attribute)

 	patch_file() (cfme.utils.ssh.SSHClient method)

 	patch_with_miqqe() (cfme.utils.appliance.IPAppliance method)

 	patches_path (in module cfme.utils.path)

 	path (cfme.utils.ftp.FTPDirectory attribute)

 	(cfme.utils.ftp.FTPFile attribute)

 	pending_requests (cfme.services.dashboard.Dashboard attribute)

 	pending_requests() (in module cfme.services.dashboard.ssui)

 	perf_process_evm() (in module cfme.utils.perf_message_stats)

 	Perflog (class in cfme.utils.log)

 	PHYSICAL_INFRASTRUCTURE_COMPLIANCE_POLICY (cfme.control.explorer.policies.PolicyCollection attribute)

 	PHYSICAL_INFRASTRUCTURE_CONTROL_POLICY (cfme.control.explorer.policies.PolicyCollection attribute)

 	PhysicalInfrastructureCompliancePolicy (class in cfme.control.explorer.policies)

 	PhysicalInfrastructureControlPolicy (class in cfme.control.explorer.policies)

 	pick() (cfme.utils.deferred_verpick method)

 	(in module cfme.utils.version)

 	ping_connection() (in module cfme.utils.db)

 	ping_pool() (cfme.test_framework.sprout.plugin.SproutManager method)

 	platform_updates_available() (cfme.configure.configuration.region_settings.RedHatUpdates method)

 	playbook (cfme.automate.explorer.method.MethodAddView attribute)

 	(cfme.automate.explorer.method.MethodEditView attribute)

 	Playbook (class in cfme.ansible.playbooks)

 	playbook_cat_item (cfme.automate.buttons.AnsiblePlaybookButton attribute)

 	(cfme.automate.buttons.ButtonDetailView attribute)

 	playbook_catalog_item (cfme.control.explorer.actions.RunAnsiblePlaybookFromView attribute)

 	playbook_display_name (cfme.automate.explorer.method.MethodAddView attribute)

 	(cfme.automate.explorer.method.MethodEditView attribute)

 	playbook_input_parameters (cfme.automate.explorer.method.MethodAddView attribute)

 	(cfme.automate.explorer.method.MethodEditView attribute)

 	playbook_name (cfme.automate.explorer.method.MethodAddView attribute)

 	(cfme.automate.explorer.method.MethodEditView attribute)

 	PlaybookBaseView (class in cfme.ansible.playbooks)

 	PlaybookBootstrapSelect (class in cfme.automate.explorer.method)

 	PlaybookDetailsEntities (class in cfme.ansible.playbooks)

 	PlaybookDetailsView (class in cfme.ansible.playbooks)

 	PlaybookEntitiesView (class in cfme.ansible.playbooks)

 	PlaybookEntity (class in cfme.ansible.playbooks)

 	PlaybookGridIconEntity (class in cfme.ansible.playbooks)

 	PlaybookInputParameters (class in cfme.automate.explorer.method)

 	PlaybookListEntity (class in cfme.ansible.playbooks)

 	playbooks (cfme.ansible.repositories.Repository attribute)

 	PlaybooksCollection (class in cfme.ansible.playbooks)

 	PlaybooksToolbar (class in cfme.ansible.playbooks)

 	PlaybooksView (class in cfme.ansible.playbooks)

 	PlaybookTileIconEntity (class in cfme.ansible.playbooks)

 	Plugin (class in cfme.markers.meta)

 	PluginContainer (class in cfme.markers.meta)

 	pluginmanager (fixtures.pytest_store.Store attribute)

 	plus_btn (cfme.automate.AddBoxView attribute)

 	(cfme.automate.AddDialogView attribute)

 	(cfme.automate.AddTabView attribute)

 	(cfme.automate.DialogForm attribute)

 	POD_COMPLIANCE_POLICY (cfme.control.explorer.policies.PolicyCollection attribute)

 	POD_CONTROL_POLICY (cfme.control.explorer.policies.PolicyCollection attribute)

 	PodCompliancePolicy (class in cfme.control.explorer.policies)

 	PodCondition (class in cfme.control.explorer.conditions)

 	PodControlPolicy (class in cfme.control.explorer.policies)

 	pods (cfme.containers.overview.ContainersOverviewView attribute)

 	policies (cfme.configure.documentation.LinksView attribute)

 	(cfme.control.explorer.ControlExplorerView attribute)

 	(cfme.control.explorer.policy_profiles.PolicyProfile attribute)

 	(cfme.control.explorer.policy_profiles.PolicyProfileFormCommon attribute)

 	PoliciesAllView (class in cfme.control.explorer.policies)

 	policy (cfme.cloud.security_groups.SecurityGroupDetailsToolbar attribute)

 	(cfme.cloud.security_groups.SecurityGroupToolbar attribute)

 	(cfme.infrastructure.networking.InfraNetworkingToolbar attribute)

 	(cfme.services.catalogs.ServicesCatalogView attribute)

 	(cfme.services.workloads.WorkloadsToolbar attribute)

 	policy_profiles (cfme.control.explorer.ControlExplorerView attribute)

 	(cfme.control.import_export.ControlImportExportView attribute)

 	PolicyAll (class in cfme.control.explorer.policies)

 	PolicyCollection (class in cfme.control.explorer.policies)

 	PolicyConditionDetails (class in cfme.control.explorer.conditions)

 	PolicyDetails (class in cfme.control.explorer.policies)

 	PolicyDetailsView (class in cfme.control.explorer.policies)

 	PolicyEdit (class in cfme.control.explorer.policies)

 	PolicyEventDetails (class in cfme.control.explorer.policies)

 	PolicyFormCommon (class in cfme.control.explorer.policies)

 	PolicyNew (class in cfme.control.explorer.policies)

 	PolicyProfile (class in cfme.control.explorer.policy_profiles)

 	PolicyProfileAll (class in cfme.control.explorer.policy_profiles)

 	PolicyProfileCollection (class in cfme.control.explorer.policy_profiles)

 	PolicyProfileDetails (class in cfme.control.explorer.policy_profiles)

 	PolicyProfileDetailsView (class in cfme.control.explorer.policy_profiles)

 	PolicyProfileEdit (class in cfme.control.explorer.policy_profiles)

 	PolicyProfileFormCommon (class in cfme.control.explorer.policy_profiles)

 	PolicyProfileNew (class in cfme.control.explorer.policy_profiles)

 	PolicyProfilesAllView (class in cfme.control.explorer.policy_profiles)

 	poll() (fixtures.parallelizer.SlaveDetail method)

 	pool (cfme.test_framework.sprout.plugin.SproutManager attribute)

 	pop() (cfme.utils.appliance.ApplianceStack method)

 	populate_config_from_appliances() (in module cfme.scripting.sprout)

 	port (cfme.configure.configuration.region_settings.ReplicationGlobalAddView attribute)

 	(cfme.configure.configuration.server_settings.LdapAuthenticationView attribute)

 	(cfme.test_framework.appliance_police.AppliancePoliceException attribute)

 	ports (cfme.utils.auth.MIQAuthProvider attribute)

 	post_navigate() (cfme.utils.appliance.implementations.ui.CFMENavigateStep method)

 	postgres_version (cfme.utils.appliance.db.ApplianceDB attribute)

 	power_off() (cfme.utils.ipmi.IPMI method)

 	power_on() (cfme.utils.ipmi.IPMI method)

 	power_reset() (cfme.utils.ipmi.IPMI method)

 	pr_obj() (in module cfme.utils.pretty)

 	pre_badness_check() (cfme.utils.appliance.implementations.ui.CFMENavigateStep method)

 	pre_navigate() (cfme.utils.appliance.implementations.ssui.SSUINavigateStep method)

 	(cfme.utils.appliance.implementations.ui.CFMENavigateStep method)

 	precompile_assets() (cfme.utils.appliance.IPAppliance method)

 	preconfigured (cfme.test_framework.sprout.plugin.SproutProvisioningRequest attribute)

 	prefix (cfme.utils.units.Unit attribute)

 	PrefixAddingLoggerFilter (class in cfme.utils.log)

 	prerequisite (cfme.ansible.credentials.Add attribute)

 	(cfme.ansible.credentials.AnsibleCredentials attribute)

 	(cfme.ansible.credentials.Details attribute)

 	(cfme.ansible.credentials.Edit attribute)

 	(cfme.ansible.playbooks.AnsiblePlaybooks attribute)

 	(cfme.ansible.playbooks.Details attribute)

 	(cfme.ansible.repositories.Add attribute)

 	(cfme.ansible.repositories.AnsibleRepositories attribute)

 	(cfme.ansible.repositories.Details attribute)

 	(cfme.ansible.repositories.Edit attribute)

 	(cfme.automate.AutomateCustomization attribute)

 	(cfme.automate.buttons.ButtonAll attribute)

 	(cfme.automate.buttons.ButtonDetails attribute)

 	(cfme.automate.buttons.ButtonEdit attribute)

 	(cfme.automate.buttons.ButtonGroupAll attribute)

 	(cfme.automate.buttons.ButtonGroupDetails attribute)

 	(cfme.automate.buttons.ButtonGroupEdit attribute)

 	(cfme.automate.buttons.ButtonGroupNew attribute)

 	(cfme.automate.buttons.ButtonGroupObjectType attribute)

 	(cfme.automate.buttons.ButtonNew attribute)

 	(cfme.automate.dialog_box.Add attribute)

 	(cfme.automate.dialog_element.Add attribute)

 	(cfme.automate.dialog_element.Edit attribute)

 	(cfme.automate.dialog_tab.Add attribute)

 	(cfme.automate.dialogs.dialog_box.Add attribute)

 	(cfme.automate.dialogs.dialog_element.Add attribute)

 	(cfme.automate.dialogs.dialog_element.Edit attribute)

 	(cfme.automate.dialogs.dialog_tab.Add attribute)

 	(cfme.automate.dialogs.service_dialogs.Add attribute)

 	(cfme.automate.dialogs.service_dialogs.All attribute)

 	(cfme.automate.dialogs.service_dialogs.Details attribute)

 	(cfme.automate.dialogs.service_dialogs.Edit attribute)

 	(cfme.automate.explorer.AutomateExplorer attribute)

 	(cfme.automate.explorer.domain.Add attribute)

 	(cfme.automate.explorer.domain.All attribute)

 	(cfme.automate.explorer.domain.Details attribute)

 	(cfme.automate.explorer.domain.Edit attribute)

 	(cfme.automate.explorer.domain.Priority attribute)

 	(cfme.automate.explorer.instance.Add attribute)

 	(cfme.automate.explorer.instance.Copy attribute)

 	(cfme.automate.explorer.instance.Details attribute)

 	(cfme.automate.explorer.instance.Edit attribute)

 	(cfme.automate.explorer.klass.Add attribute)

 	(cfme.automate.explorer.klass.Copy attribute)

 	(cfme.automate.explorer.klass.Details attribute)

 	(cfme.automate.explorer.klass.Edit attribute)

 	(cfme.automate.explorer.klass.EditSchema attribute)

 	(cfme.automate.explorer.method.Add attribute)

 	(cfme.automate.explorer.method.Copy attribute)

 	(cfme.automate.explorer.method.Details attribute)

 	(cfme.automate.explorer.method.Edit attribute)

 	(cfme.automate.explorer.namespace.Add attribute)

 	(cfme.automate.explorer.namespace.Details attribute)

 	(cfme.automate.explorer.namespace.Edit attribute)

 	(cfme.automate.provisioning_dialogs.Add attribute)

 	(cfme.automate.provisioning_dialogs.All attribute)

 	(cfme.automate.provisioning_dialogs.Details attribute)

 	(cfme.automate.provisioning_dialogs.Edit attribute)

 	(cfme.automate.service_dialogs.Add attribute)

 	(cfme.automate.service_dialogs.All attribute)

 	(cfme.automate.service_dialogs.Details attribute)

 	(cfme.automate.service_dialogs.Edit attribute)

 	(cfme.base.ssui.LoggedIn attribute)

 	(cfme.base.ui.About attribute)

 	(cfme.base.ui.Advanced attribute)

 	(cfme.base.ui.AuditLog attribute)

 	(cfme.base.ui.Authentication attribute)

 	(cfme.base.ui.AutomateImportExport attribute)

 	(cfme.base.ui.AutomateSimulation attribute)

 	(cfme.base.ui.CFMELog attribute)

 	(cfme.base.ui.ChangeRegionName attribute)

 	(cfme.base.ui.Chargeback attribute)

 	(cfme.base.ui.Configuration attribute)

 	(cfme.base.ui.CustomLogos attribute)

 	(cfme.base.ui.Dashboard attribute)

 	(cfme.base.ui.Database attribute)

 	(cfme.base.ui.DatabaseClientConnections attribute)

 	(cfme.base.ui.DatabaseIndexes attribute)

 	(cfme.base.ui.DatabaseSettings attribute)

 	(cfme.base.ui.DatabaseSummary attribute)

 	(cfme.base.ui.DatabaseTables attribute)

 	(cfme.base.ui.DatabaseUtilization attribute)

 	(cfme.base.ui.Details attribute)

 	(cfme.base.ui.Diagnostics attribute)

 	(cfme.base.ui.DiagnosticsDetails attribute)

 	(cfme.base.ui.DiagnosticsWorkers attribute)

 	(cfme.base.ui.Documentation attribute)

 	(cfme.base.ui.HelpMenu attribute)

 	(cfme.base.ui.Import attribute)

 	(cfme.base.ui.ImportTags attribute)

 	(cfme.base.ui.LoggedIn attribute)

 	(cfme.base.ui.ProductionLog attribute)

 	(cfme.base.ui.RSS attribute)

 	(cfme.base.ui.RegionDetails attribute)

 	(cfme.base.ui.RegionDiagnostics attribute)

 	(cfme.base.ui.RegionDiagnosticsDatabase attribute)

 	(cfme.base.ui.RegionDiagnosticsOrphanedData attribute)

 	(cfme.base.ui.RegionDiagnosticsReplication attribute)

 	(cfme.base.ui.RegionDiagnosticsRolesByServers attribute)

 	(cfme.base.ui.RegionDiagnosticsServers attribute)

 	(cfme.base.ui.RegionDiagnosticsServersByRoles attribute)

 	(cfme.base.ui.RegionDiagnosticsZones attribute)

 	(cfme.base.ui.RegionZones attribute)

 	(cfme.base.ui.ServerDetails attribute)

 	(cfme.base.ui.ServerDiagnosticsCollectLogs attribute)

 	(cfme.base.ui.SmartProxyAffinity attribute)

 	(cfme.base.ui.Tasks attribute)

 	(cfme.base.ui.Timelines attribute)

 	(cfme.base.ui.Utilization attribute)

 	(cfme.base.ui.Workers attribute)

 	(cfme.base.ui.ZoneAdd attribute)

 	(cfme.base.ui.ZoneCANDUGapCollection attribute)

 	(cfme.base.ui.ZoneCollectLogs attribute)

 	(cfme.base.ui.ZoneDetails attribute)

 	(cfme.base.ui.ZoneDiagnostics attribute)

 	(cfme.base.ui.ZoneDiagnosticsRolesByServers attribute)

 	(cfme.base.ui.ZoneDiagnosticsServers attribute)

 	(cfme.base.ui.ZoneDiagnosticsServersByRoles attribute)

 	(cfme.base.ui.ZoneEdit attribute)

 	(cfme.cloud.security_groups.Add attribute)

 	(cfme.cloud.security_groups.Details attribute)

 	(cfme.cloud.security_groups.SecurityGroupAll attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileAdd attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileAll attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileCopy attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileDetails attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileEdit attribute)

 	(cfme.configure.configuration.diagnostics_settings.AllDiagnosticWorkers attribute)

 	(cfme.configure.configuration.diagnostics_settings.DiagnosticsCollectLogs attribute)

 	(cfme.configure.configuration.diagnostics_settings.DiagnosticsCollectLogsEdit attribute)

 	(cfme.configure.configuration.diagnostics_settings.DiagnosticsCollectLogsEditSlave attribute)

 	(cfme.configure.configuration.diagnostics_settings.DiagnosticsCollectLogsSlave attribute)

 	(cfme.configure.configuration.diagnostics_settings.DiagnosticsSummary attribute)

 	(cfme.configure.configuration.diagnostics_settings.ZoneDiagnosticsCollectLogs attribute)

 	(cfme.configure.configuration.region_settings.CANDUCollectionDetails attribute)

 	(cfme.configure.configuration.region_settings.CategoryAdd attribute)

 	(cfme.configure.configuration.region_settings.CategoryAll attribute)

 	(cfme.configure.configuration.region_settings.CategoryEdit attribute)

 	(cfme.configure.configuration.region_settings.Details attribute)

 	(cfme.configure.configuration.region_settings.Edit attribute)

 	(cfme.configure.configuration.region_settings.MapTagsAdd attribute)

 	(cfme.configure.configuration.region_settings.MapTagsAll attribute)

 	(cfme.configure.configuration.region_settings.MapTagsEdit attribute)

 	(cfme.configure.configuration.region_settings.ReplicationDetails attribute)

 	(cfme.configure.configuration.region_settings.ReplicationGlobalAdd attribute)

 	(cfme.configure.configuration.region_settings.ReplicationGlobalSetup attribute)

 	(cfme.configure.configuration.region_settings.ReplicationRemoteAdd attribute)

 	(cfme.configure.configuration.region_settings.TagsAdd attribute)

 	(cfme.configure.configuration.region_settings.TagsAll attribute)

 	(cfme.configure.configuration.region_settings.TagsEdit attribute)

 	(cfme.configure.configuration.system_schedules.ScheduleAdd attribute)

 	(cfme.configure.configuration.system_schedules.ScheduleAll attribute)

 	(cfme.configure.configuration.system_schedules.ScheduleDetails attribute)

 	(cfme.configure.configuration.system_schedules.ScheduleEdit attribute)

 	(cfme.configure.settings.DefaultFiltersStep attribute)

 	(cfme.configure.settings.DefaultViewsStep attribute)

 	(cfme.configure.settings.MySettingsStep attribute)

 	(cfme.configure.settings.TimeProfileAdd attribute)

 	(cfme.configure.settings.TimeProfileCollectionAll attribute)

 	(cfme.configure.settings.TimeProfileCopy attribute)

 	(cfme.configure.settings.TimeProfileEdit attribute)

 	(cfme.configure.settings.VisualStep attribute)

 	(cfme.configure.tasks.AllOtherTasks attribute)

 	(cfme.configure.tasks.AllTasks attribute)

 	(cfme.configure.tasks.MyOtherTasks attribute)

 	(cfme.configure.tasks.MyTasks attribute)

 	(cfme.containers.overview.All attribute)

 	(cfme.control.explorer.ControlExplorer attribute)

 	(cfme.control.explorer.actions.ActionDetails attribute)

 	(cfme.control.explorer.actions.ActionEdit attribute)

 	(cfme.control.explorer.actions.ActionNew attribute)

 	(cfme.control.explorer.actions.ActionsAll attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfileDetails attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfileEdit attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfileEditAssignments attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfileNew attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfilesAll attribute)

 	(cfme.control.explorer.alerts.AlertCopy attribute)

 	(cfme.control.explorer.alerts.AlertDetails attribute)

 	(cfme.control.explorer.alerts.AlertEdit attribute)

 	(cfme.control.explorer.alerts.AlertNew attribute)

 	(cfme.control.explorer.alerts.AlertsAll attribute)

 	(cfme.control.explorer.conditions.AllConditions attribute)

 	(cfme.control.explorer.conditions.ConditionDetails attribute)

 	(cfme.control.explorer.conditions.ConditionEdit attribute)

 	(cfme.control.explorer.conditions.ConditionNew attribute)

 	(cfme.control.explorer.conditions.PolicyConditionDetails attribute)

 	(cfme.control.explorer.policies.PolicyAll attribute)

 	(cfme.control.explorer.policies.PolicyDetails attribute)

 	(cfme.control.explorer.policies.PolicyEdit attribute)

 	(cfme.control.explorer.policies.PolicyEventDetails attribute)

 	(cfme.control.explorer.policies.PolicyNew attribute)

 	(cfme.control.explorer.policy_profiles.PolicyProfileAll attribute)

 	(cfme.control.explorer.policy_profiles.PolicyProfileDetails attribute)

 	(cfme.control.explorer.policy_profiles.PolicyProfileEdit attribute)

 	(cfme.control.explorer.policy_profiles.PolicyProfileNew attribute)

 	(cfme.control.import_export.ControlImportExport attribute)

 	(cfme.control.log.ControlLog attribute)

 	(cfme.control.simulation.ControlSimulation attribute)

 	(cfme.dashboard.DashboardDetails attribute)

 	(cfme.infrastructure.networking.All attribute)

 	(cfme.infrastructure.pxe.CustomizationTemplateAdd attribute)

 	(cfme.infrastructure.pxe.CustomizationTemplateAll attribute)

 	(cfme.infrastructure.pxe.CustomizationTemplateCopy attribute)

 	(cfme.infrastructure.pxe.CustomizationTemplateDetails attribute)

 	(cfme.infrastructure.pxe.CustomizationTemplateEdit attribute)

 	(cfme.infrastructure.pxe.ISODatastoreAdd attribute)

 	(cfme.infrastructure.pxe.ISODatastoreAll attribute)

 	(cfme.infrastructure.pxe.ISODatastoreDetails attribute)

 	(cfme.infrastructure.pxe.PXEMainPage attribute)

 	(cfme.infrastructure.pxe.PXEServerAdd attribute)

 	(cfme.infrastructure.pxe.PXEServerAll attribute)

 	(cfme.infrastructure.pxe.PXEServerDetails attribute)

 	(cfme.infrastructure.pxe.PXEServerEdit attribute)

 	(cfme.infrastructure.pxe.SystemImageTypeAdd attribute)

 	(cfme.infrastructure.pxe.SystemImageTypeAll attribute)

 	(cfme.infrastructure.pxe.SystemImageTypeDetails attribute)

 	(cfme.infrastructure.pxe.SystemImageTypeEdit attribute)

 	(cfme.intelligence.chargeback.IntelChargeback attribute)

 	(cfme.intelligence.chargeback.assignments.AssignAll attribute)

 	(cfme.intelligence.chargeback.assignments.AssignCompute attribute)

 	(cfme.intelligence.chargeback.assignments.AssignStorage attribute)

 	(cfme.intelligence.chargeback.rates.ComputeRateAll attribute)

 	(cfme.intelligence.chargeback.rates.ComputeRateCopy attribute)

 	(cfme.intelligence.chargeback.rates.ComputeRateDetails attribute)

 	(cfme.intelligence.chargeback.rates.ComputeRateEdit attribute)

 	(cfme.intelligence.chargeback.rates.ComputeRateNew attribute)

 	(cfme.intelligence.chargeback.rates.StorageRateAll attribute)

 	(cfme.intelligence.chargeback.rates.StorageRateDetails attribute)

 	(cfme.intelligence.chargeback.rates.StorageRateEdit attribute)

 	(cfme.intelligence.chargeback.rates.StorageRateNew attribute)

 	(cfme.intelligence.reports.CloudIntelReports attribute)

 	(cfme.intelligence.reports.dashboards.DashboardDetails attribute)

 	(cfme.intelligence.reports.dashboards.DashboardEdit attribute)

 	(cfme.intelligence.reports.dashboards.DashboardNew attribute)

 	(cfme.intelligence.reports.dashboards.DefaultDashboardDetails attribute)

 	(cfme.intelligence.reports.dashboards.DefaultDashboardEdit attribute)

 	(cfme.intelligence.reports.import_export.ImportExportCustomReports attribute)

 	(cfme.intelligence.reports.import_export.ImportExportWidgets attribute)

 	(cfme.intelligence.reports.menus.EditReportMenus attribute)

 	(cfme.intelligence.reports.reports.ReportDetails attribute)

 	(cfme.intelligence.reports.reports.ReportEdit attribute)

 	(cfme.intelligence.reports.reports.ReportsAll attribute)

 	(cfme.intelligence.reports.reports.ReportsNew attribute)

 	(cfme.intelligence.reports.reports.SavedReportDetails attribute)

 	(cfme.intelligence.reports.saved.CustomReportAll attribute)

 	(cfme.intelligence.reports.saved.ScheduleDetails attribute)

 	(cfme.intelligence.reports.schedules.ScheduleAll attribute)

 	(cfme.intelligence.reports.schedules.ScheduleDetails attribute)

 	(cfme.intelligence.reports.schedules.ScheduleEdit attribute)

 	(cfme.intelligence.reports.schedules.ScheduleNew attribute)

 	(cfme.intelligence.reports.widgets.BaseDashboardWidgetDetailsStep attribute)

 	(cfme.intelligence.reports.widgets.BaseEditDashboardWidgetStep attribute)

 	(cfme.intelligence.reports.widgets.BaseNewDashboardWidgetStep attribute)

 	(cfme.optimize.Bottlenecks attribute)

 	(cfme.optimize.bottlenecks.All attribute)

 	(cfme.optimize.utilization.All attribute)

 	(cfme.services.catalogs.ServicesCatalog attribute)

 	(cfme.services.dashboard.ssui.CurrentServices attribute)

 	(cfme.services.dashboard.ssui.DashboardAll attribute)

 	(cfme.services.dashboard.ssui.RetiredServices attribute)

 	(cfme.services.dashboard.ssui.RetiringSoon attribute)

 	(cfme.services.dashboard.ssui.TotalServices attribute)

 	(cfme.services.workloads.AllTemplates attribute)

 	(cfme.services.workloads.AllVMs attribute)

 	
 	prerequisite() (cfme.base.ssui.LoginScreen method)

 	(cfme.base.ui.LoginScreen method)

 	PRETTY (cfme.control.explorer.conditions.BaseCondition attribute)

 	(cfme.control.explorer.conditions.ContainerImageCondition attribute)

 	(cfme.control.explorer.conditions.ContainerNodeCondition attribute)

 	(cfme.control.explorer.conditions.HostCondition attribute)

 	(cfme.control.explorer.conditions.PodCondition attribute)

 	(cfme.control.explorer.conditions.ProviderCondition attribute)

 	(cfme.control.explorer.conditions.ReplicatorCondition attribute)

 	(cfme.control.explorer.conditions.VMCondition attribute)

 	(cfme.control.explorer.policies.BasePolicy attribute)

 	(cfme.control.explorer.policies.ContainerImageCompliancePolicy attribute)

 	(cfme.control.explorer.policies.ContainerImageControlPolicy attribute)

 	(cfme.control.explorer.policies.ContainerNodeCompliancePolicy attribute)

 	(cfme.control.explorer.policies.ContainerNodeControlPolicy attribute)

 	(cfme.control.explorer.policies.HostCompliancePolicy attribute)

 	(cfme.control.explorer.policies.HostControlPolicy attribute)

 	(cfme.control.explorer.policies.PhysicalInfrastructureCompliancePolicy attribute)

 	(cfme.control.explorer.policies.PhysicalInfrastructureControlPolicy attribute)

 	(cfme.control.explorer.policies.PodCompliancePolicy attribute)

 	(cfme.control.explorer.policies.PodControlPolicy attribute)

 	(cfme.control.explorer.policies.ProviderCompliancePolicy attribute)

 	(cfme.control.explorer.policies.ProviderControlPolicy attribute)

 	(cfme.control.explorer.policies.ReplicatorCompliancePolicy attribute)

 	(cfme.control.explorer.policies.ReplicatorControlPolicy attribute)

 	(cfme.control.explorer.policies.VMCompliancePolicy attribute)

 	(cfme.control.explorer.policies.VMControlPolicy attribute)

 	Pretty (class in cfme.utils.pretty)

 	pretty_attrs (cfme.automate.provisioning_dialogs.ProvisioningDialog attribute)

 	(cfme.base.Zone attribute)

 	(cfme.base.credential.Credential attribute)

 	(cfme.base.credential.ServiceAccountCredential attribute)

 	(cfme.base.credential.TokenCredential attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfile attribute)

 	(cfme.configure.configuration.region_settings.Category attribute)

 	(cfme.configure.configuration.region_settings.MapTags attribute)

 	(cfme.configure.configuration.region_settings.RedHatUpdates attribute)

 	(cfme.configure.configuration.region_settings.Tag attribute)

 	(cfme.configure.configuration.server_settings.AuthenticationSetting attribute)

 	(cfme.configure.configuration.server_settings.ServerInformation attribute)

 	(cfme.configure.settings.DefaultFilters attribute)

 	(cfme.control.explorer.alert_profiles.BaseAlertProfile attribute)

 	(cfme.control.explorer.alerts.Alert attribute)

 	(cfme.infrastructure.pxe.CustomizationTemplate attribute)

 	(cfme.infrastructure.pxe.ISODatastore attribute)

 	(cfme.infrastructure.pxe.PXEServer attribute)

 	(cfme.infrastructure.pxe.SystemImageType attribute)

 	(cfme.intelligence.chargeback.rates.ComputeRate attribute)

 	(cfme.intelligence.chargeback.rates.StorageRate attribute)

 	(cfme.intelligence.reports.dashboards.Dashboard attribute)

 	(cfme.intelligence.reports.dashboards.DefaultDashboard attribute)

 	(cfme.intelligence.reports.reports.SavedReportData attribute)

 	(cfme.intelligence.reports.schedules.Schedule attribute)

 	(cfme.intelligence.reports.widgets.BaseDashboardReportWidget attribute)

 	(cfme.intelligence.reports.widgets.chart_widgets.ChartWidget attribute)

 	(cfme.intelligence.reports.widgets.menu_widgets.MenuWidget attribute)

 	(cfme.intelligence.reports.widgets.report_widgets.ReportWidget attribute)

 	(cfme.intelligence.reports.widgets.rss_widgets.RSSFeedWidget attribute)

 	(cfme.utils.pretty.Pretty attribute)

 	pretty_repr() (in module cfme.utils.pretty)

 	print_message() (fixtures.parallelizer.ParallelSession method)

 	(fixtures.ui_coverage.CoverageManager method)

 	Priority (class in cfme.automate.explorer.domain)

 	process (fixtures.parallelizer.SlaveDetail attribute)

 	process() (cfme.utils.log.NamedLoggerAdapter method)

 	process_appliance() (cfme.utils.dockerbot.dockerbot.DockerBot method)

 	process_bindings() (cfme.utils.dockerbot.dockerbot.DockerInstance method)

 	process_events() (cfme.utils.events.RestEventListener method)

 	(cfme.utils.events_db.DbEventListener method)

 	process_id() (cfme.utils.events.Event method)

 	(cfme.utils.events_db.EventTool method)

 	process_pytest_path() (in module cfme.utils)

 	process_running() (in module cfme.utils.video)

 	process_shell_output() (in module cfme.utils)

 	process_url() (in module cfme.utils.repo_gen)

 	processed_browser_args() (cfme.utils.browser.BrowserFactory method)

 	(cfme.utils.browser.WharfFactory method)

 	product (cfme.utils.bz.BugWrapper attribute)

 	Product (class in cfme.utils.bz)

 	product() (cfme.utils.bz.Bugzilla method)

 	product_name (cfme.utils.appliance.IPAppliance attribute)

 	product_url_regexp (cfme.utils.appliance.IPAppliance attribute)

 	product_version (cfme.utils.appliance.implementations.ssui.MiqSSUIBrowser attribute)

 	(cfme.utils.appliance.implementations.ui.MiqBrowser attribute)

 	productionlog (cfme.base.ui.ServerDiagnosticsView attribute)

 	ProductionLog (class in cfme.base.ui)

 	products() (cfme.utils.bz.Bugzilla method)

 	profile_type (cfme.configure.configuration.analysis_profile.AnalysisProfileAddView attribute)

 	project_path (in module cfme.utils.path)

 	projects (cfme.containers.overview.ContainersOverviewView attribute)

 	properties (cfme.ansible.playbooks.PlaybookDetailsEntities attribute)

 	(cfme.automate.explorer.klass.ClassDetailsView attribute)

 	(cfme.cloud.security_groups.SecurityGroupDetailsAccordion attribute)

 	(cfme.cloud.security_groups.SecurityGroupDetailsEntities attribute)

 	PROTOCOL_PORT_MAPPING (cfme.utils.appliance.IPAppliance attribute)

 	ProvDiagAddView (class in cfme.automate.provisioning_dialogs)

 	ProvDiagAllEntities (class in cfme.automate.provisioning_dialogs)

 	ProvDiagAllToolbar (class in cfme.automate.provisioning_dialogs)

 	ProvDiagAllView (class in cfme.automate.provisioning_dialogs)

 	ProvDiagDetailsEntities (class in cfme.automate.provisioning_dialogs)

 	ProvDiagDetailsView (class in cfme.automate.provisioning_dialogs)

 	ProvDiagEditView (class in cfme.automate.provisioning_dialogs)

 	ProvDiagForm (class in cfme.automate.provisioning_dialogs)

 	ProvDiagView (class in cfme.automate.provisioning_dialogs)

 	PROVIDER (cfme.automate.buttons.ButtonGroupCollection attribute)

 	provider (cfme.cloud.security_groups.SecurityGroup attribute)

 	(cfme.infrastructure.pxe.PXEDatastoreForm attribute)

 	(cfme.test_framework.sprout.plugin.SproutProvisioningRequest attribute)

 	provider_allocation (fixtures.parallelizer.SlaveDetail attribute)

 	PROVIDER_COMPLIANCE_POLICY (cfme.control.explorer.policies.PolicyCollection attribute)

 	PROVIDER_CONTROL_POLICY (cfme.control.explorer.policies.PolicyCollection attribute)

 	provider_type (cfme.test_framework.sprout.plugin.SproutProvisioningRequest attribute)

 	ProviderAlertProfile (class in cfme.control.explorer.alert_profiles)

 	ProviderCompliancePolicy (class in cfme.control.explorer.policies)

 	ProviderCondition (class in cfme.control.explorer.conditions)

 	ProviderControlPolicy (class in cfme.control.explorer.policies)

 	ProviderHasNoKey

 	ProviderHasNoProperty

 	providers (cfme.configure.documentation.LinksView attribute)

 	(cfme.containers.overview.ContainersOverviewView attribute)

 	provision_appliance() (in module cfme.utils.appliance)

 	provision_appliances() (cfme.test_framework.sprout.client.SproutClient method)

 	(in module cfme.scripting.setup_env)

 	provision_hour_buckets() (in module cfme.utils.perf_message_stats)

 	provision_timeout (cfme.test_framework.sprout.plugin.SproutProvisioningRequest attribute)

 	provision_type (cfme.infrastructure.pxe.SystemImageType attribute)

 	provisioning_dialogs (cfme.automate.AutomateCustomizationView attribute)

 	provisioning_type (cfme.automate.explorer.method.PlaybookInputParameters attribute)

 	ProvisioningDialog (class in cfme.automate.provisioning_dialogs)

 	ProvisioningDialogsCollection (class in cfme.automate.provisioning_dialogs)

 	proxy_password (cfme.configure.configuration.region_settings.RedHatUpdatesEditView attribute)

 	proxy_password_verify (cfme.configure.configuration.region_settings.RedHatUpdatesEditView attribute)

 	proxy_url (cfme.configure.configuration.region_settings.RedHatUpdatesEditView attribute)

 	proxy_username (cfme.configure.configuration.region_settings.RedHatUpdatesEditView attribute)

 	public_fields() (in module cfme.utils.update)

 	pure_tree_path (cfme.automate.explorer.klass.Class attribute)

 	purge_module_apidoc() (in module cfme.utils.apidoc)

 	push() (cfme.utils.appliance.ApplianceStack method)

 	put_file() (cfme.utils.ssh.SSHClient method)

 	pwd() (cfme.utils.ftp.FTPClient method)

 	pxe_dir (cfme.infrastructure.pxe.PXEServerForm attribute)

 	pxe_server_crud() (in module cfme.fixtures.pxe)

 	PXECustomizationTemplateAddView (class in cfme.infrastructure.pxe)

 	PXECustomizationTemplateCopyView (class in cfme.infrastructure.pxe)

 	PXECustomizationTemplateDetailsView (class in cfme.infrastructure.pxe)

 	PXECustomizationTemplateEditView (class in cfme.infrastructure.pxe)

 	PXECustomizationTemplateForm (class in cfme.infrastructure.pxe)

 	PXECustomizationTemplatesView (class in cfme.infrastructure.pxe)

 	PXEDatastoreAddView (class in cfme.infrastructure.pxe)

 	PXEDatastoreDetailsView (class in cfme.infrastructure.pxe)

 	PXEDatastoreEditView (class in cfme.infrastructure.pxe)

 	PXEDatastoreForm (class in cfme.infrastructure.pxe)

 	PXEDatastoresView (class in cfme.infrastructure.pxe)

 	PXEDetailsToolBar (class in cfme.infrastructure.pxe)

 	PXEImageEditView (class in cfme.infrastructure.pxe)

 	PXEMainPage (class in cfme.infrastructure.pxe)

 	PXEMainView (class in cfme.infrastructure.pxe)

 	PXEServer (class in cfme.infrastructure.pxe)

 	PXEServerAdd (class in cfme.infrastructure.pxe)

 	PXEServerAddView (class in cfme.infrastructure.pxe)

 	PXEServerAll (class in cfme.infrastructure.pxe)

 	PXEServerDetails (class in cfme.infrastructure.pxe)

 	PXEServerDetailsView (class in cfme.infrastructure.pxe)

 	PXEServerEdit (class in cfme.infrastructure.pxe)

 	PXEServerEditView (class in cfme.infrastructure.pxe)

 	PXEServerForm (class in cfme.infrastructure.pxe)

 	PXEServersView (class in cfme.infrastructure.pxe)

 	PXESideBar (class in cfme.infrastructure.pxe)

 	PXESystemImageTypeAddView (class in cfme.infrastructure.pxe)

 	PXESystemImageTypeDetailsView (class in cfme.infrastructure.pxe)

 	PXESystemImageTypeEditView (class in cfme.infrastructure.pxe)

 	PXESystemImageTypeForm (class in cfme.infrastructure.pxe)

 	PXESystemImageTypesView (class in cfme.infrastructure.pxe)

 	PXEToolBar (class in cfme.infrastructure.pxe)

 	pytest_addhooks() (in module cfme.test_framework.sprout.plugin)

 	(in module fixtures.parallelizer)

 	pytest_addoption() (in module cfme.fixtures.tccheck)

 	(in module cfme.fixtures.xunit_tools)

 	(in module cfme.markers.composite)

 	(in module cfme.markers.manual)

 	(in module cfme.markers.meta)

 	(in module cfme.markers.sauce)

 	(in module cfme.markers.skipper)

 	(in module cfme.markers.smoke)

 	(in module cfme.markers.stream_excluder)

 	(in module cfme.test_framework.appliance)

 	(in module cfme.test_framework.appliance_log_collector)

 	(in module cfme.test_framework.browser_isolation)

 	(in module cfme.test_framework.pytest_plugin)

 	(in module cfme.test_framework.sprout.plugin)

 	(in module fixtures.appliance_update)

 	(in module fixtures.artifactor_plugin)

 	(in module fixtures.blockers)

 	(in module fixtures.datafile)

 	(in module fixtures.dev_branch)

 	(in module fixtures.node_annotate)

 	(in module fixtures.page_screenshots)

 	(in module fixtures.portset)

 	(in module fixtures.ui_coverage)

 	pytest_cmdline_main() (in module fixtures.ui_coverage)

 	pytest_collection_finish() (fixtures.parallelizer.remote.SlaveManager method)

 	(fixtures.ui_coverage.UiCoveragePlugin method)

 	(in module cfme.test_framework.pytest_plugin)

 	pytest_collection_modifyitems() (in module cfme.fixtures.xunit_tools)

 	(in module cfme.markers.composite)

 	(in module cfme.markers.manual)

 	(in module cfme.markers.meta)

 	(in module cfme.markers.polarion)

 	(in module cfme.markers.skipper)

 	(in module cfme.markers.smoke)

 	(in module cfme.markers.uncollect)

 	(in module fixtures.blockers)

 	(in module fixtures.log)

 	(in module fixtures.nelson)

 	(in module fixtures.node_annotate)

 	pytest_configure() (fixtures.ui_coverage.UiCoveragePlugin method)

 	(in module cfme.markers.crud)

 	(in module cfme.markers.fixtureconf)

 	(in module cfme.markers.manual)

 	(in module cfme.markers.meta)

 	(in module cfme.markers.polarion)

 	(in module cfme.markers.requires)

 	(in module cfme.markers.rhv)

 	(in module cfme.markers.sauce)

 	(in module cfme.markers.skipper)

 	(in module cfme.markers.smoke)

 	(in module cfme.markers.stream_excluder)

 	(in module cfme.test_framework.appliance)

 	(in module cfme.test_framework.pytest_plugin)

 	(in module fixtures.artifactor_plugin)

 	(in module fixtures.node_annotate)

 	(in module fixtures.parallelizer)

 	(in module fixtures.portset)

 	pytest_exception_interact() (in module fixtures.browser)

 	(in module fixtures.log)

 	pytest_internalerror() (fixtures.parallelizer.remote.SlaveManager method)

 	(in module cfme.fixtures.rdb)

 	pytest_itemcollected() (fixtures.node_annotate.MarkFromMap method)

 	(in module cfme.markers.crud)

 	(in module cfme.markers.stream_excluder)

 	(in module cfme.markers.uses)

 	pytest_miq_node_shutdown() (cfme.test_framework.sprout.plugin.NewHooks method)

 	(cfme.test_framework.sprout.plugin.ShutdownPlugin method)

 	pytest_namespace() (in module fixtures.pytest_store)

 	pytest_parallel_configured() (in module fixtures.parallelizer.hooks)

 	pytest_plugin_registered() (in module fixtures.pytest_store)

 	pytest_pycollect_makeitem() (in module cfme.markers.meta)

 	(in module fixtures.nelson)

 	pytest_report_collectionfinish() (in module cfme.fixtures.tccheck)

 	pytest_runtest_call() (in module cfme.fixtures.smtp)

 	(in module cfme.markers.meta)

 	(in module fixtures.events)

 	(in module fixtures.skip_not_implemented)

 	(in module fixtures.soft_assert)

 	pytest_runtest_logreport() (cfme.markers.polarion.ReportPolarionToJunitPlugin method)

 	(cfme.markers.smoke.SmokeTests method)

 	(fixtures.parallelizer.remote.SlaveManager method)

 	(in module fixtures.artifactor_plugin)

 	(in module fixtures.log)

 	pytest_runtest_logstart() (fixtures.parallelizer.remote.SlaveManager method)

 	pytest_runtest_protocol() (in module fixtures.artifactor_plugin)

 	(in module fixtures.soft_assert)

 	pytest_runtest_setup() (in module cfme.fixtures.video)

 	(in module cfme.markers.fixtureconf)

 	(in module cfme.markers.meta)

 	(in module cfme.markers.requires)

 	(in module fixtures.browser)

 	(in module fixtures.log)

 	(in module fixtures.skip_not_implemented)

 	pytest_runtest_teardown() (cfme.markers.smoke.SmokeTests method)

 	(in module cfme.fixtures.video)

 	(in module cfme.markers.meta)

 	(in module cfme.test_framework.browser_isolation)

 	(in module fixtures.artifactor_plugin)

 	(in module fixtures.qa_contact)

 	(in module fixtures.sauce)

 	pytest_runtestloop() (fixtures.parallelizer.ParallelSession method)

 	(fixtures.parallelizer.remote.SlaveManager method)

 	pytest_sessionfinish() (fixtures.parallelizer.remote.SlaveManager method)

 	(fixtures.ui_coverage.UiCoveragePlugin method)

 	(in module fixtures.browser)

 	(in module fixtures.datafile)

 	(in module fixtures.log)

 	(in module fixtures.ssh_client)

 	pytest_sessionstart() (cfme.test_framework.appliance.ApplianceHolderPlugin method)

 	(fixtures.parallelizer.ParallelSession method)

 	(fixtures.ui_coverage.UiCoveragePlugin method)

 	(in module cfme.markers.stream_excluder)

 	(in module fixtures.appliance_update)

 	(in module fixtures.dev_branch)

 	(in module fixtures.pytest_store)

 	pytest_unconfigure() (in module cfme.fixtures.video)

 	(in module cfme.test_framework.appliance)

 	(in module cfme.test_framework.appliance_log_collector)

 	(in module fixtures.artifactor_plugin)

 	PytestDocker (class in cfme.utils.dockerbot.dockerbot)

Q

 	
 	qa_whiteboard (cfme.utils.bz.BugWrapper attribute)

 	query() (cfme.utils.events_db.EventTool method)

 	query_miq_events() (cfme.utils.events_db.EventTool method)

 	query_resource_attributes() (in module cfme.utils.rest)

 	queue() (cfme.intelligence.reports.reports.Report method)

 	(cfme.intelligence.reports.schedules.Schedule method)

 	queue_schedules() (cfme.intelligence.reports.schedules.ScheduleCollection method)

 	
 	queued_datetime (cfme.intelligence.reports.reports.SavedReport attribute)

 	queued_datetime_in_title (cfme.intelligence.reports.reports.SavedReport attribute)

 	(cfme.intelligence.reports.saved.SavedReport attribute)

 	quit() (cfme.utils.browser.BrowserManager method)

 	(in module cfme.utils.browser)

 	quit_browser() (cfme.utils.appliance.implementations.Implementation method)

 	quote() (in module cfme.utils.quote)

R

 	
 	rails_root (in module fixtures.ui_coverage)

 	ram (cfme.test_framework.sprout.plugin.SproutProvisioningRequest attribute)

 	random() (in module cfme.fixtures.vporizer)

 	random_port() (in module cfme.utils.net)

 	random_string() (in module fixtures.randomness)

 	random_uuid_as_string() (in module fixtures.randomness)

 	random_vm_name() (in module cfme.utils.generators)

 	RATE_TYPE (cfme.intelligence.chargeback.rates.ComputeRate attribute)

 	(cfme.intelligence.chargeback.rates.StorageRate attribute)

 	rates (cfme.intelligence.chargeback.ChargebackView attribute)

 	RatesDetailView (class in cfme.intelligence.chargeback.rates)

 	RatesView (class in cfme.intelligence.chargeback.rates)

 	raw_lines() (cfme.utils.ssh.SSHTail method)

 	raw_string() (cfme.utils.ssh.SSHTail method)

 	RBACOperationBlocked

 	rc (cfme.utils.ssh.SSHResult attribute)

 	Rdb (class in cfme.fixtures.rdb)

 	rdb_catch() (in module cfme.fixtures.rdb)

 	rdb_handle_signal() (in module cfme.fixtures.rdb)

 	read() (cfme.automate.explorer.method.Inputs method)

 	(cfme.automate.explorer.method.PlaybookInputParameters method)

 	(cfme.control.explorer.conditions.Expression method)

 	read_env() (in module cfme.utils)

 	read_expression() (cfme.control.explorer.conditions.BaseCondition method)

 	read_repos() (cfme.utils.appliance.IPAppliance method)

 	read_scope() (cfme.control.explorer.conditions.BaseCondition method)

 	reboot() (cfme.utils.appliance.IPAppliance method)

 	Recorder (class in cfme.utils.video)

 	recursively_delete() (cfme.utils.ftp.FTPClient method)

 	recv() (fixtures.parallelizer.ParallelSession method)

 	redhat_updates (cfme.base.ui.RegionView attribute)

 	RedHatUpdates (class in cfme.configure.configuration.region_settings)

 	RedHatUpdatesEditView (class in cfme.configure.configuration.region_settings)

 	RedHatUpdatesView (class in cfme.configure.configuration.region_settings)

 	reflect_table() (cfme.utils.db.Db method)

 	refresh (cfme.configure.configuration.region_settings.RedHatUpdatesView attribute)

 	refresh() (cfme.ansible.repositories.Repository method)

 	(cfme.cloud.security_groups.SecurityGroup method)

 	(cfme.configure.configuration.region_settings.RedHatUpdates method)

 	(cfme.dashboard.DashboardCollection method)

 	(cfme.infrastructure.pxe.ISODatastore method)

 	(cfme.infrastructure.pxe.PXEServer method)

 	(cfme.intelligence.reports.widgets.BaseDashboardReportWidget method)

 	refresh_button (cfme.control.log.ControlLogView attribute)

 	region (cfme.base.Zone attribute)

 	(cfme.base.ZoneCollection attribute)

 	Region (class in cfme.base)

 	region_description (cfme.base.ui.RegionChangeNameView attribute)

 	RegionChangeNameView (class in cfme.base.ui)

 	RegionCollection (class in cfme.base)

 	RegionDetails (class in cfme.base.ui)

 	RegionDiagnostics (class in cfme.base.ui)

 	RegionDiagnosticsDatabase (class in cfme.base.ui)

 	RegionDiagnosticsDatabaseView (class in cfme.base.ui)

 	RegionDiagnosticsOrphanedData (class in cfme.base.ui)

 	RegionDiagnosticsReplication (class in cfme.base.ui)

 	RegionDiagnosticsRolesByServers (class in cfme.base.ui)

 	RegionDiagnosticsServers (class in cfme.base.ui)

 	RegionDiagnosticsServersByRoles (class in cfme.base.ui)

 	RegionDiagnosticsView (class in cfme.base.ui)

 	RegionDiagnosticsZones (class in cfme.base.ui)

 	RegionView (class in cfme.base.ui)

 	RegionZones (class in cfme.base.ui)

 	register (cfme.configure.configuration.region_settings.RedHatUpdatesView attribute)

 	register_appliances() (cfme.configure.configuration.region_settings.RedHatUpdates method)

 	register_event() (in module fixtures.events)

 	register_to (cfme.configure.configuration.region_settings.RedHatUpdatesEditView attribute)

 	registries (cfme.containers.overview.ContainersOverviewView attribute)

 	relationships (cfme.ansible.playbooks.PlaybookDetailsEntities attribute)

 	(cfme.cloud.security_groups.SecurityGroupDetailsAccordion attribute)

 	(cfme.cloud.security_groups.SecurityGroupDetailsEntities attribute)

 	release_flag (cfme.utils.bz.BugWrapper attribute)

 	releases (cfme.utils.bz.Product attribute)

 	reload (cfme.configure.tasks.TasksView attribute)

 	(cfme.infrastructure.pxe.PXEDetailsToolBar attribute)

 	(cfme.services.workloads.WorkloadsToolbar attribute)

 	reload_button (cfme.configure.configuration.diagnostics_settings.DiagnosticServerWorkersToolbar attribute)

 	(cfme.intelligence.reports.reports.ReportDetailsView attribute)

 	(cfme.intelligence.reports.widgets.DashboardWidgetDetailsView attribute)

 	reload_worker() (cfme.configure.configuration.diagnostics_settings.DiagnosticWorker method)

 	reload_workers_page() (cfme.configure.configuration.diagnostics_settings.DiagnosticWorkersCollection method)

 	remove() (cfme.dashboard.DashboardWidget method)

 	(cfme.utils.dockerbot.dockerbot.DockerInstance method)

 	remove_all_pxe_servers() (in module cfme.infrastructure.pxe)

 	remove_rhev_direct_lun_disk() (cfme.utils.appliance.Appliance method)

 	remove_tag (cfme.control.explorer.actions.ActionFormCommon attribute)

 	rename() (cfme.utils.appliance.Appliance method)

 	rename_properties() (cfme.base.credential.FromConfigMixin static method)

 	reorder_elements() (cfme.automate.dialog_element.Element method)

 	(cfme.automate.dialogs.dialog_element.Element method)

 	repfilter (cfme.intelligence.reports.widgets.report_widgets.ReportWidget attribute)

 	(cfme.intelligence.reports.widgets.report_widgets.ReportWidgetFormCommon attribute)

 	replication (cfme.base.Region attribute)

 	(cfme.base.ui.RegionDiagnosticsView attribute)

 	(cfme.base.ui.RegionView attribute)

 	Replication (class in cfme.configure.configuration.region_settings)

 	replication_type (cfme.configure.configuration.region_settings.ReplicationView attribute)

 	ReplicationDetails (class in cfme.configure.configuration.region_settings)

 	ReplicationGlobalAdd (class in cfme.configure.configuration.region_settings)

 	ReplicationGlobalAddView (class in cfme.configure.configuration.region_settings)

 	ReplicationGlobalSetup (class in cfme.configure.configuration.region_settings)

 	ReplicationGlobalView (class in cfme.configure.configuration.region_settings)

 	ReplicationRemoteAdd (class in cfme.configure.configuration.region_settings)

 	ReplicationRemoteView (class in cfme.configure.configuration.region_settings)

 	ReplicationView (class in cfme.configure.configuration.region_settings)

 	REPLICATOR_COMPLIANCE_POLICY (cfme.control.explorer.policies.PolicyCollection attribute)

 	REPLICATOR_CONTROL_POLICY (cfme.control.explorer.policies.PolicyCollection attribute)

 	ReplicatorCompliancePolicy (class in cfme.control.explorer.policies)

 	ReplicatorCondition (class in cfme.control.explorer.conditions)

 	ReplicatorControlPolicy (class in cfme.control.explorer.policies)

 	repo (cfme.utils.blockers.GH attribute)

 	repo_default_name (cfme.configure.configuration.region_settings.RedHatUpdatesEditView attribute)

 	repo_name (cfme.configure.configuration.region_settings.RedHatUpdatesEditView attribute)

 	report (cfme.intelligence.reports.reports.SavedReport attribute)

 	REPORT (cfme.intelligence.reports.widgets.DashboardReportWidgetsCollection attribute)

 	report (cfme.optimize.bottlenecks.BottlenecksTabsView attribute)

 	Report (class in cfme.intelligence.reports.reports)

 	report_collection_diff() (in module fixtures.parallelizer)

 	report_fields (cfme.intelligence.reports.reports.CustomReportFormCommon attribute)

 	(cfme.intelligence.reports.reports.Report attribute)

 	report_info (cfme.intelligence.reports.reports.ReportDetailsView attribute)

 	report_select (cfme.intelligence.reports.menus.EditReportMenusView attribute)

 	report_title (cfme.intelligence.reports.reports.CustomReportFormCommon attribute)

 	report_view_entities (cfme.configure.settings.Visual attribute)

 	report_view_limit (cfme.configure.settings.Visual attribute)

 	ReportAddView (class in cfme.intelligence.reports.reports)

 	ReportDetails (class in cfme.intelligence.reports.reports)

 	ReportDetailsView (class in cfme.intelligence.reports.reports)

 	reported (cfme.markers.smoke.SmokeTests attribute)

 	ReportEdit (class in cfme.intelligence.reports.reports)

 	ReportEditView (class in cfme.intelligence.reports.reports)

 	reporter() (in module cfme.markers.smoke)

 	(in module fixtures.terminalreporter)

 	ReportMenu (class in cfme.intelligence.reports.menus)

 	ReportPolarionToJunitPlugin (class in cfme.markers.polarion)

 	reports (cfme.intelligence.chargeback.ChargebackView attribute)

 	(cfme.intelligence.reports.CloudIntelReportsView attribute)

 	reports_table (cfme.intelligence.reports.reports.AllReportsView attribute)

 	reports_tree (cfme.intelligence.reports.menus.EditReportMenusView attribute)

 	ReportsAll (class in cfme.intelligence.reports.reports)

 	ReportsCollection (class in cfme.intelligence.reports.reports)

 	ReportsMultiBoxSelect (class in cfme.intelligence.reports)

 	ReportsNew (class in cfme.intelligence.reports.reports)

 	ReportWidget (class in cfme.intelligence.reports.widgets.report_widgets)

 	ReportWidgetFormCommon (class in cfme.intelligence.reports.widgets.report_widgets)

 	repository (cfme.ansible.playbooks.Playbook attribute)

 	(cfme.automate.explorer.method.MethodAddView attribute)

 	(cfme.automate.explorer.method.MethodEditView attribute)

 	Repository (class in cfme.ansible.repositories)

 	repository_names_info (cfme.configure.configuration.region_settings.RedHatUpdatesView attribute)

 	RepositoryAddView (class in cfme.ansible.repositories)

 	RepositoryAllView (class in cfme.ansible.repositories)

 	RepositoryBaseView (class in cfme.ansible.repositories)

 	RepositoryCollection (class in cfme.ansible.repositories)

 	RepositoryDetailsView (class in cfme.ansible.repositories)

 	RepositoryEditView (class in cfme.ansible.repositories)

 	
 	RepositoryFormView (class in cfme.ansible.repositories)

 	request (cfme.automate.buttons.AnsiblePlaybookButton attribute)

 	(cfme.automate.buttons.ButtonDetailView attribute)

 	(cfme.automate.buttons.DefaultButton attribute)

 	(cfme.base.ui.AutomateSimulationView attribute)

 	request_appliances() (cfme.test_framework.sprout.plugin.SproutManager method)

 	request_check() (cfme.test_framework.sprout.plugin.SproutManager method)

 	request_format (cfme.utils.timeutil.parsetime attribute)

 	request_pool() (cfme.test_framework.sprout.plugin.SproutManager method)

 	RequestException

 	requirement_matches() (in module fixtures.node_annotate)

 	reset (cfme.base.ui.RegionChangeNameView attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileEditView attribute)

 	(cfme.configure.configuration.server_settings.ServerAuthenticationView attribute)

 	(cfme.configure.configuration.server_settings.ServerInformationView attribute)

 	(cfme.configure.settings.VisualForm attribute)

 	(cfme.infrastructure.pxe.PXECustomizationTemplateEditView attribute)

 	(cfme.infrastructure.pxe.PXEDatastoreEditView attribute)

 	(cfme.infrastructure.pxe.PXEImageEditView attribute)

 	(cfme.infrastructure.pxe.PXEServerEditView attribute)

 	(cfme.infrastructure.pxe.PXESystemImageTypeEditView attribute)

 	reset() (cfme.dashboard.DashboardWidgetCollection method)

 	reset_all (cfme.base.ui.AutomateImportExportView attribute)

 	reset_automate_model() (cfme.utils.appliance.IPAppliance method)

 	reset_button (cfme.ansible.credentials.CredentialEditView attribute)

 	(cfme.ansible.repositories.RepositoryEditView attribute)

 	(cfme.automate.EditDialogView attribute)

 	(cfme.automate.buttons.EditButtonGroupView attribute)

 	(cfme.automate.buttons.EditButtonView attribute)

 	(cfme.automate.dialog_element.EditElementView attribute)

 	(cfme.automate.explorer.common.CopyViewBase attribute)

 	(cfme.automate.explorer.domain.DomainPriorityView attribute)

 	(cfme.automate.explorer.method.MethodEditView attribute)

 	(cfme.configure.configuration.diagnostics_settings.ServerCollectLogsEditView attribute)

 	(cfme.configure.configuration.region_settings.CANDUCollectionView attribute)

 	(cfme.configure.configuration.region_settings.CompanyCategoriesEditView attribute)

 	(cfme.configure.configuration.region_settings.CompanyTagsEditView attribute)

 	(cfme.configure.configuration.region_settings.MapTagsEditView attribute)

 	(cfme.configure.configuration.region_settings.RedHatUpdatesEditView attribute)

 	(cfme.configure.configuration.region_settings.ReplicationView attribute)

 	(cfme.configure.configuration.system_schedules.ScheduleEditView attribute)

 	(cfme.control.explorer.actions.EditActionView attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfilesEditAssignmentsView attribute)

 	(cfme.control.explorer.alerts.EditAlertView attribute)

 	(cfme.control.explorer.conditions.EditConditionView attribute)

 	(cfme.control.explorer.policies.EditEventView attribute)

 	(cfme.control.explorer.policies.EditPolicyView attribute)

 	(cfme.control.simulation.ControlSimulationView attribute)

 	(cfme.dashboard.DashboardView attribute)

 	(cfme.intelligence.chargeback.assignments.AssignmentsView attribute)

 	(cfme.intelligence.chargeback.rates.EditComputeChargebackView attribute)

 	(cfme.intelligence.reports.dashboards.EditDashboardView attribute)

 	(cfme.intelligence.reports.menus.EditReportMenusView attribute)

 	(cfme.intelligence.reports.schedules.EditScheduleView attribute)

 	(cfme.intelligence.reports.widgets.BaseEditDashboardWidgetView attribute)

 	reset_events() (cfme.utils.events.RestEventListener method)

 	(cfme.utils.events_db.DbEventListener method)

 	reset_matches() (cfme.utils.events_db.DbEventListener method)

 	reset_timer() (cfme.test_framework.sprout.plugin.SproutManager method)

 	reset_to_default() (cfme.intelligence.reports.menus.ReportMenu method)

 	reset_user_pass() (cfme.utils.appliance.db.ApplianceDB method)

 	reset_widgets() (cfme.dashboard.DashboardView method)

 	resetter() (cfme.configure.settings.DefaultFiltersStep method)

 	(cfme.configure.settings.DefaultViewsStep method)

 	(cfme.configure.settings.TimeProfileCollectionAll method)

 	(cfme.configure.settings.VisualStep method)

 	(cfme.containers.overview.All method)

 	(cfme.infrastructure.networking.All method)

 	(cfme.optimize.bottlenecks.All method)

 	(cfme.utils.appliance.implementations.ui.CFMENavigateStep method)

 	resolve_blocker() (cfme.utils.bz.Bugzilla method)

 	resolve_blockers() (in module cfme.metaplugins.blockers)

 	resolve_hostname() (in module cfme.utils.net)

 	resolve_ips() (in module cfme.utils.net)

 	resource_entity (cfme.configure.configuration.region_settings.MapTagsAddView attribute)

 	resource_id (cfme.fixtures.vporizer.vpor_data_instance attribute)

 	resource_label (cfme.configure.configuration.region_settings.MapTagsAddView attribute)

 	resource_name (cfme.fixtures.vporizer.vpor_data_instance attribute)

 	resource_type (cfme.fixtures.vporizer.vpor_data_instance attribute)

 	ResourcePoolNotFound

 	resources_path (in module cfme.utils.path)

 	rest (cfme.configure.documentation.LinksView attribute)

 	rest_api (cfme.utils.appliance.IPAppliance attribute)

 	rest_logger (cfme.utils.appliance.IPAppliance attribute)

 	rest_response (cfme.generic_objects.definition.GenericObjectDefinition attribute)

 	(cfme.generic_objects.instance.GenericObjectInstance attribute)

 	restart() (cfme.utils.appliance.services.SystemdService method)

 	restart_db_service() (cfme.utils.appliance.db.ApplianceDB method)

 	restart_evm_service() (cfme.utils.appliance.IPAppliance method)

 	RestEventListener (class in cfme.utils.events)

 	restore() (cfme.dashboard.DashboardWidget method)

 	(cfme.utils.appliance.db.ApplianceDB method)

 	restore_hostname() (in module cfme.fixtures.cli)

 	result_tree (cfme.base.ui.AutomateSimulationView attribute)

 	results (cfme.services.dashboard.Dashboard attribute)

 	(cfme.services.dashboard.ssui.MyServicesView attribute)

 	results() (in module cfme.services.dashboard.ssui)

 	results_path (in module cfme.utils.path)

 	retired_services (cfme.services.dashboard.Dashboard attribute)

 	retired_services() (in module cfme.services.dashboard.ssui)

 	RetiredServices (class in cfme.services.dashboard.ssui)

 	retiring_soon (cfme.services.dashboard.Dashboard attribute)

 	retiring_soon() (in module cfme.services.dashboard.ssui)

 	RetiringSoon (class in cfme.services.dashboard.ssui)

 	retr() (cfme.utils.ftp.FTPFile method)

 	retrbinary() (cfme.utils.ftp.FTPClient method)

 	rhn_default_url (cfme.configure.configuration.region_settings.RedHatUpdatesEditView attribute)

 	rmd() (cfme.utils.ftp.FTPClient method)

 	role() (in module cfme.fixtures.tag)

 	RoleNotFound

 	rolesbyservers (cfme.base.ui.RegionDiagnosticsView attribute)

 	(cfme.base.ui.ZoneDiagnosticsView attribute)

 	ROOT (cfme.automate.explorer.method.Inputs attribute)

 	(cfme.automate.explorer.method.PlaybookBootstrapSelect attribute)

 	(cfme.control.explorer.conditions.Expression attribute)

 	(cfme.dashboard.Kebab attribute)

 	root_volume() (in module cfme.scripting.tests.test_quickstart)

 	routes (cfme.containers.overview.ContainersOverviewView attribute)

 	row_count (cfme.intelligence.reports.widgets.report_widgets.ReportWidgetFormCommon attribute)

 	rows (cfme.intelligence.reports.reports.SavedReportData attribute)

 	(cfme.intelligence.reports.widgets.report_widgets.ReportWidget attribute)

 	(cfme.intelligence.reports.widgets.rss_widgets.RSSFeedWidget attribute)

 	(cfme.intelligence.reports.widgets.rss_widgets.RSSWidgetFormCommon attribute)

 	RSS (cfme.intelligence.reports.widgets.DashboardReportWidgetsCollection attribute)

 	(class in cfme.base.ui)

 	RSSFeedWidget (class in cfme.intelligence.reports.widgets.rss_widgets)

 	RSSView (class in cfme.intelligence.rss)

 	RSSWidgetFormCommon (class in cfme.intelligence.reports.widgets.rss_widgets)

 	run (cfme.intelligence.reports.schedules.SchedulesFormCommon attribute)

 	(cfme.intelligence.reports.widgets.chart_widgets.ChartWidgetFormCommon attribute)

 	(cfme.intelligence.reports.widgets.report_widgets.ReportWidgetFormCommon attribute)

 	(cfme.intelligence.reports.widgets.rss_widgets.RSSWidgetFormCommon attribute)

 	run() (cfme.utils.dockerbot.dockerbot.PytestDocker method)

 	(cfme.utils.dockerbot.dockerbot.SeleniumDocker method)

 	(cfme.utils.events.RestEventListener method)

 	(cfme.utils.events_db.DbEventListener method)

 	(cfme.utils.smem_memory_monitor.SmemMemoryMonitor method)

 	run_ansible_playbook (cfme.control.explorer.actions.ActionFormCommon attribute)

 	run_at (cfme.configure.configuration.system_schedules.ScheduleDetailsView attribute)

 	run_at_datetime (cfme.intelligence.reports.saved.SavedReport attribute)

 	run_command() (cfme.utils.ocp_cli.OcpCli method)

 	(cfme.utils.ssh.SSHClient method)

 	run_commands() (cfme.utils.appliance.ApplianceConsole method)

 	run_datetime (cfme.intelligence.reports.reports.SavedReport attribute)

 	run_every (cfme.configure.configuration.system_schedules.SystemSchedule attribute)

 	run_plugins() (in module cfme.markers.meta)

 	run_rails_command() (cfme.utils.ssh.SSHClient method)

 	run_rails_console() (cfme.utils.ssh.SSHClient method)

 	run_rake_command() (cfme.utils.ssh.SSHClient method)

 	run_tests (cfme.markers.smoke.SmokeTests attribute)

 	run_type (cfme.configure.configuration.system_schedules.ScheduleAddEditEntities attribute)

 	(cfme.configure.configuration.system_schedules.SystemSchedule attribute)

 	RunAnsiblePlaybookFromView (class in cfme.control.explorer.actions)

 	running (cfme.utils.appliance.services.SystemdService attribute)

 	runtest_logreport() (fixtures.parallelizer.TerminalDistReporter method)

 	runtest_logstart() (fixtures.parallelizer.TerminalDistReporter method)

 	runtime (cfme.test_framework.config.DeprecatedConfigWrapper attribute)

S

 	
 	safe_string() (in module cfme.utils)

 	samba_confirm_password (cfme.configure.configuration.system_schedules.SambaProtocolEntities attribute)

 	samba_password (cfme.configure.configuration.system_schedules.SambaProtocolEntities attribute)

 	(cfme.configure.configuration.system_schedules.SystemSchedule attribute)

 	samba_protocol (cfme.configure.configuration.system_schedules.DatabaseBackupEntities attribute)

 	samba_username (cfme.configure.configuration.system_schedules.SambaProtocolEntities attribute)

 	(cfme.configure.configuration.system_schedules.SystemSchedule attribute)

 	SambaProtocolEntities (class in cfme.configure.configuration.system_schedules)

 	sample_dashboard (cfme.intelligence.reports.dashboards.DashboardFormCommon attribute)

 	SAMPLE_DASHBOARD_ROOT (cfme.intelligence.reports.dashboards.DashboardDetailsView attribute)

 	save (cfme.automate.dialogs.DialogForm attribute)

 	(cfme.base.ui.RegionChangeNameView attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileEditView attribute)

 	(cfme.configure.configuration.server_settings.ServerAuthenticationView attribute)

 	(cfme.configure.configuration.server_settings.ServerInformationView attribute)

 	(cfme.configure.settings.DefaultFiltersForm attribute)

 	(cfme.configure.settings.DefaultViewsForm attribute)

 	(cfme.configure.settings.VisualForm attribute)

 	(cfme.infrastructure.pxe.PXECustomizationTemplateEditView attribute)

 	(cfme.infrastructure.pxe.PXEDatastoreEditView attribute)

 	(cfme.infrastructure.pxe.PXEImageEditView attribute)

 	(cfme.infrastructure.pxe.PXEServerEditView attribute)

 	(cfme.infrastructure.pxe.PXESystemImageTypeEditView attribute)

 	save_button (cfme.ansible.credentials.CredentialEditView attribute)

 	(cfme.ansible.repositories.RepositoryEditView attribute)

 	(cfme.automate.EditDialogView attribute)

 	(cfme.automate.buttons.EditButtonGroupView attribute)

 	(cfme.automate.buttons.EditButtonView attribute)

 	(cfme.automate.dialog_element.EditElementView attribute)

 	(cfme.automate.dialogs.BoxForm attribute)

 	(cfme.automate.dialogs.EditDialogView attribute)

 	(cfme.automate.dialogs.TabForm attribute)

 	(cfme.automate.dialogs.dialog_element.ElementForm attribute)

 	(cfme.automate.explorer.domain.DomainEditView attribute)

 	(cfme.automate.explorer.domain.DomainPriorityView attribute)

 	(cfme.automate.explorer.instance.InstanceEditView attribute)

 	(cfme.automate.explorer.klass.ClassEditView attribute)

 	(cfme.automate.explorer.method.MethodEditView attribute)

 	(cfme.automate.explorer.namespace.NamespaceEditView attribute)

 	(cfme.base.ui.ZoneEditView attribute)

 	(cfme.configure.configuration.diagnostics_settings.ServerCollectLogsEditView attribute)

 	(cfme.configure.configuration.region_settings.CANDUCollectionView attribute)

 	(cfme.configure.configuration.region_settings.CompanyCategoriesEditView attribute)

 	(cfme.configure.configuration.region_settings.CompanyTagsEditView attribute)

 	(cfme.configure.configuration.region_settings.MapTagsEditView attribute)

 	(cfme.configure.configuration.region_settings.RedHatUpdatesEditView attribute)

 	(cfme.configure.configuration.region_settings.ReplicationView attribute)

 	(cfme.configure.configuration.system_schedules.ScheduleEditView attribute)

 	(cfme.control.explorer.actions.EditActionView attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfilesEditAssignmentsView attribute)

 	(cfme.control.explorer.alert_profiles.EditAlertProfileView attribute)

 	(cfme.control.explorer.alerts.EditAlertView attribute)

 	(cfme.control.explorer.conditions.EditConditionView attribute)

 	(cfme.control.explorer.policies.EditEventView attribute)

 	(cfme.control.explorer.policies.EditPolicyConditionAssignments attribute)

 	(cfme.control.explorer.policies.EditPolicyEventAssignments attribute)

 	(cfme.control.explorer.policies.EditPolicyView attribute)

 	(cfme.control.explorer.policy_profiles.EditPolicyProfileView attribute)

 	(cfme.intelligence.chargeback.assignments.AssignmentsView attribute)

 	(cfme.intelligence.chargeback.rates.EditComputeChargebackView attribute)

 	(cfme.intelligence.reports.dashboards.EditDashboardView attribute)

 	(cfme.intelligence.reports.menus.EditReportMenusView attribute)

 	(cfme.intelligence.reports.reports.ReportEditView attribute)

 	(cfme.intelligence.reports.schedules.EditScheduleView attribute)

 	(cfme.intelligence.reports.widgets.BaseEditDashboardWidgetView attribute)

 	saved_report_title_format (cfme.utils.timeutil.parsetime attribute)

 	saved_reports (cfme.intelligence.reports.CloudIntelReportsView attribute)

 	(cfme.intelligence.reports.reports.Report attribute)

 	(cfme.intelligence.reports.reports.ReportDetailsView attribute)

 	SavedReport (class in cfme.intelligence.reports.reports)

 	(class in cfme.intelligence.reports.saved)

 	SavedReportData (class in cfme.intelligence.reports.reports)

 	SavedReportDetails (class in cfme.intelligence.reports.reports)

 	SavedReportDetailsView (class in cfme.intelligence.reports.reports)

 	(class in cfme.intelligence.reports.saved)

 	SavedReportsCollection (class in cfme.intelligence.reports.reports)

 	(class in cfme.intelligence.reports.saved)

 	SavedReportView (class in cfme.intelligence.reports.saved)

 	Schedule (class in cfme.intelligence.reports.schedules)

 	ScheduleAdd (class in cfme.configure.configuration.system_schedules)

 	ScheduleAddEditEntities (class in cfme.configure.configuration.system_schedules)

 	ScheduleAddView (class in cfme.configure.configuration.system_schedules)

 	ScheduleAll (class in cfme.configure.configuration.system_schedules)

 	(class in cfme.intelligence.reports.schedules)

 	ScheduleAllView (class in cfme.configure.configuration.system_schedules)

 	ScheduleCollection (class in cfme.intelligence.reports.schedules)

 	ScheduleDetails (class in cfme.configure.configuration.system_schedules)

 	(class in cfme.intelligence.reports.saved)

 	(class in cfme.intelligence.reports.schedules)

 	ScheduleDetailsView (class in cfme.configure.configuration.system_schedules)

 	(class in cfme.intelligence.reports.schedules)

 	ScheduleEdit (class in cfme.configure.configuration.system_schedules)

 	(class in cfme.intelligence.reports.schedules)

 	ScheduleEditView (class in cfme.configure.configuration.system_schedules)

 	ScheduleNew (class in cfme.intelligence.reports.schedules)

 	ScheduleNotFound

 	schedules (cfme.intelligence.reports.CloudIntelReportsView attribute)

 	schedules_table (cfme.intelligence.reports.schedules.SchedulesAllView attribute)

 	SchedulesAllView (class in cfme.intelligence.reports.schedules)

 	SchedulesFormCommon (class in cfme.intelligence.reports.schedules)

 	ScheduleToolbar (class in cfme.configure.configuration.system_schedules)

 	schema (cfme.automate.explorer.klass.Class attribute)

 	(cfme.automate.explorer.klass.ClassDetailsView attribute)

 	(cfme.automate.explorer.klass.ClassSchemaEditView attribute)

 	schema_field_names (cfme.automate.explorer.klass.ClassSchema attribute)

 	scm_branch (cfme.ansible.repositories.Repository attribute)

 	(cfme.ansible.repositories.RepositoryFormView attribute)

 	scm_credentials (cfme.ansible.repositories.Repository attribute)

 	(cfme.ansible.repositories.RepositoryFormView attribute)

 	scope (cfme.configure.settings.TimeProfile attribute)

 	(cfme.configure.settings.TimeProfileForm attribute)

 	(cfme.control.explorer.conditions.BaseCondition attribute)

 	(cfme.control.explorer.conditions.ConditionDetailsView attribute)

 	(cfme.control.explorer.conditions.ConditionFormCommon attribute)

 	(cfme.control.explorer.policies.BasePolicy attribute)

 	(cfme.control.explorer.policies.PolicyFormCommon attribute)

 	ScreenShot (in module cfme.utils.browser)

 	script (cfme.automate.explorer.method.MethodAddView attribute)

 	(cfme.automate.explorer.method.MethodEditView attribute)

 	(cfme.infrastructure.pxe.PXECustomizationTemplateForm attribute)

 	script_data (cfme.infrastructure.pxe.CustomizationTemplate attribute)

 	script_type (cfme.infrastructure.pxe.CustomizationTemplate attribute)

 	scripting (cfme.configure.documentation.LinksView attribute)

 	scripts_data_path (in module cfme.utils.path)

 	scripts_path (in module cfme.utils.path)

 	seal_for_templatizing() (cfme.utils.appliance.IPAppliance method)

 	search (cfme.services.workloads.WorkloadsView attribute)

 	search() (cfme.utils.ftp.FTPDirectory method)

 	search_log() (fixtures.merkyl.MerkylInspector method)

 	secret_key (cfme.configure.configuration.server_settings.AmazonAuthenticationView attribute)

 	SecurityGroup (class in cfme.cloud.security_groups)

 	SecurityGroupAddEntities (class in cfme.cloud.security_groups)

 	SecurityGroupAddForm (class in cfme.cloud.security_groups)

 	SecurityGroupAddView (class in cfme.cloud.security_groups)

 	SecurityGroupAll (class in cfme.cloud.security_groups)

 	SecurityGroupAllView (class in cfme.cloud.security_groups)

 	SecurityGroupCollection (class in cfme.cloud.security_groups)

 	SecurityGroupDetailsAccordion (class in cfme.cloud.security_groups)

 	SecurityGroupDetailsEntities (class in cfme.cloud.security_groups)

 	SecurityGroupDetailsToolbar (class in cfme.cloud.security_groups)

 	SecurityGroupDetailsView (class in cfme.cloud.security_groups)

 	SecurityGroupsNotFound

 	SecurityGroupToolbar (class in cfme.cloud.security_groups)

 	SecurityGroupView (class in cfme.cloud.security_groups)

 	select() (cfme.automate.buttons.AutomateRadioGroup method)

 	(cfme.configure.configuration.system_schedules.SystemSchedule method)

 	(cfme.dashboard.Kebab method)

 	select_appliances() (cfme.configure.configuration.region_settings.RedHatUpdates method)

 	selected (cfme.automate.buttons.AutomateRadioGroup attribute)

 	selected_items (cfme.intelligence.reports.dashboards.DashboardDetailsView attribute)

 	selections (cfme.control.explorer.alert_profiles.AlertProfilesEditAssignmentsView attribute)

 	(cfme.intelligence.chargeback.assignments.AssignmentsView attribute)

 	SeleniumDocker (class in cfme.utils.dockerbot.dockerbot)

 	send() (fixtures.parallelizer.ParallelSession method)

 	send_breakpoint_email() (in module cfme.fixtures.rdb)

 	send_csv (cfme.intelligence.reports.schedules.SchedulesFormCommon attribute)

 	send_event() (fixtures.parallelizer.remote.SlaveManager method)

 	send_if_empty (cfme.intelligence.reports.schedules.SchedulesFormCommon attribute)

 	send_pdf (cfme.intelligence.reports.schedules.SchedulesFormCommon attribute)

 	send_test_email() (cfme.configure.configuration.server_settings.ServerInformation method)

 	send_tests() (fixtures.parallelizer.ParallelSession method)

 	send_txt (cfme.intelligence.reports.schedules.SchedulesFormCommon attribute)

 	serialize_report() (in module fixtures.parallelizer.remote)

 	server (cfme.base.ui.ServerView attribute)

 	(cfme.utils.appliance.IPAppliance attribute)

 	Server (class in cfme.base)

 	server_id() (cfme.utils.appliance.IPAppliance method)

 	server_region_string() (cfme.utils.appliance.IPAppliance method)

 	SERVER_ROLES (cfme.configure.configuration.server_settings.ServerInformation attribute)

 	server_roles (cfme.configure.configuration.server_settings.ServerInformationView attribute)

 	(cfme.utils.appliance.IPAppliance attribute)

 	server_roles_db (cfme.configure.configuration.server_settings.ServerInformation attribute)

 	server_roles_ui (cfme.configure.configuration.server_settings.ServerInformation attribute)

 	ServerAlertProfile (class in cfme.control.explorer.alert_profiles)

 	ServerAuthenticationView (class in cfme.configure.configuration.server_settings)

 	ServerCollection (class in cfme.base)

 	ServerCollectLog (class in cfme.configure.configuration.diagnostics_settings)

 	ServerCollectLogsEditView (class in cfme.configure.configuration.diagnostics_settings)

 	ServerCollectLogsToolbar (class in cfme.configure.configuration.diagnostics_settings)

 	ServerCollectLogsView (class in cfme.configure.configuration.diagnostics_settings)

 	ServerDatabaseView (class in cfme.base.ui)

 	ServerDetails (class in cfme.base.ui)

 	ServerDiagnosticsCollectLogs (class in cfme.base.ui)

 	ServerDiagnosticsCollectLogsView (class in cfme.base.ui)

 	ServerDiagnosticsView (class in cfme.base.ui)

 	ServerInformation (class in cfme.configure.configuration.server_settings)

 	ServerInformationView (class in cfme.configure.configuration.server_settings)

 	servers (cfme.base.ui.RegionDiagnosticsView attribute)

 	(cfme.base.ui.ZoneDiagnosticsView attribute)

 	(cfme.infrastructure.pxe.PXESideBar attribute)

 	serversbyroles (cfme.base.ui.RegionDiagnosticsView attribute)

 	(cfme.base.ui.ZoneDiagnosticsView attribute)

 	ServerView (class in cfme.base.ui)

 	SERVICE (cfme.automate.buttons.ButtonGroupCollection attribute)

 	service (cfme.services.dashboard.ssui.MyServiceForm attribute)

 	service_catalogs (cfme.services.catalogs.ServicesCatalogView attribute)

 	service_dialogs (cfme.automate.AutomateCustomizationView attribute)

 	(cfme.automate.dialogs.AutomateCustomizationView attribute)

 	service_name (cfme.utils.appliance.db.ApplianceDB attribute)

 	service_types (cfme.configure.configuration.region_settings.RedHatUpdates attribute)

 	ServiceAccountCredential (class in cfme.base.credential)

 	services (cfme.configure.settings.DefaultViewsForm attribute)

 	(cfme.containers.overview.ContainersOverviewView attribute)

 	ServicesCatalog (class in cfme.services.catalogs)

 	ServicesCatalogView (class in cfme.services.catalogs)

 	session (cfme.utils.db.Db attribute)

 	(fixtures.pytest_store.Store attribute)

 	sessionmaker (cfme.utils.db.Db attribute)

 	set_cap_and_util_all_via_rails() (cfme.utils.appliance.IPAppliance method)

 	set_cfme_server_relationship() (cfme.utils.appliance.IPAppliance method)

 	set_default_view() (cfme.configure.settings.DefaultViews method)

 	set_default_view_switch_off() (cfme.configure.settings.DefaultViews method)

 	set_default_view_switch_on() (cfme.configure.settings.DefaultViews method)

 	set_disabled_regions() (cfme.utils.appliance.IPAppliance method)

 	set_element_type() (cfme.automate.dialog_element.ElementCollection method)

 	(cfme.automate.dialogs.dialog_element.ElementCollection method)

 	set_full_refresh_threshold() (cfme.utils.appliance.IPAppliance method)

 	set_hostname() (cfme.utils.appliance.ApplianceConsoleCli method)

 	set_initial_file_end() (cfme.utils.ssh.SSHTail method)

 	set_iso_image_type() (cfme.infrastructure.pxe.ISODatastore method)

 	set_last_record() (cfme.utils.events.RestEventListener method)

 	(cfme.utils.events_db.DbEventListener method)

 	set_order() (cfme.automate.explorer.domain.DomainCollection method)

 	set_pglogical_replication() (cfme.utils.appliance.IPAppliance method)

 	set_pxe_image_type() (cfme.infrastructure.pxe.PXEServer method)

 	set_rails_loglevel() (in module cfme.utils.perf)

 	set_replication() (cfme.configure.configuration.region_settings.Replication method)

 	set_rubyrep_replication() (cfme.utils.appliance.IPAppliance method)

 	set_session_timeout() (cfme.configure.configuration.server_settings.AuthenticationSetting method)

 	(cfme.utils.appliance.DummyAppliance method)

 	(cfme.utils.appliance.IPAppliance method)

 	set_test_name() (cfme.utils.smtp_collector_client.SMTPCollectorClient method)

 	set_trace() (cfme.fixtures.rdb.Rdb method)

 	settings (cfme.base.login.BaseLoggedInPage attribute)

 	(cfme.base.Server attribute)

 	(cfme.base.ssui.SSUIBaseLoggedInPage attribute)

 	(cfme.base.ui.ServerDatabaseView attribute)

 	settings_string (cfme.base.Region attribute)

 	SETUP (cfme.markers.meta.PluginContainer attribute)

 	setup() (cfme.utils.appliance.db.ApplianceDB method)

 	(in module cfme.utils.apidoc)

 	(in module fixtures.nelson)

 	setup_aws_auth_provider() (in module cfme.fixtures.authentication)

 	setup_fail() (in module fixtures.parallelizer.parallelizer_tester)

 	setup_for_worker() (in module cfme.utils.log)

 	setup_logger() (in module cfme.utils.log)

 	severity (cfme.control.explorer.alerts.Alert attribute)

 	(cfme.control.explorer.alerts.AlertFormCommon attribute)

 	shopping_cart (cfme.base.ssui.SSUIBaseLoggedInPage attribute)

 	shortcuts (cfme.intelligence.reports.widgets.menu_widgets.MenuWidget attribute)

 	show (cfme.automate.buttons.ButtonDetailView attribute)

 	show_event_count (cfme.intelligence.reports.reports.Report attribute)

 	show_event_unit (cfme.intelligence.reports.reports.Report attribute)

 	show_in_console (cfme.configure.configuration.region_settings.CompanyCategoriesAddView attribute)

 	show_update_password() (cfme.base.ui.LoginPage method)

 	shutdown() (fixtures.parallelizer.remote.SlaveManager method)

 	(in module fixtures.artifactor_plugin)

 	ShutdownPlugin (class in cfme.test_framework.sprout.plugin)

 	sid (cfme.base.Server attribute)

 	sidebar (cfme.automate.provisioning_dialogs.ProvDiagView attribute)

 	(cfme.cloud.security_groups.SecurityGroupDetailsView attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileAllView attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileDetailsView attribute)

 	(cfme.infrastructure.pxe.PXEMainView attribute)

 	simulate() (in module cfme.automate.simulation)

 	single_value (cfme.configure.configuration.region_settings.CompanyCategoriesAddView attribute)

 	skip_marks (in module cfme.markers.skipper)

 	slave_manager (fixtures.pytest_store.Store attribute)

 	slave_servers (cfme.base.Server attribute)

 	SlaveDetail (class in fixtures.parallelizer)

 	slaveid (cfme.utils.log.ArtifactorHandler attribute)

 	(fixtures.pytest_store.Store attribute)

 	slaveid_generator (fixtures.parallelizer.SlaveDetail attribute)

 	SlaveManager (class in fixtures.parallelizer.remote)

 	smart_management (cfme.ansible.playbooks.PlaybookDetailsEntities attribute)

 	(cfme.cloud.security_groups.SecurityGroupDetailsEntities attribute)

 	smart_proxy_affinity (cfme.base.ui.ZoneView attribute)

 	smartproxy_ip (cfme.base.ui.ZoneForm attribute)

 	(cfme.base.Zone attribute)

 	SmartProxyAffinity (class in cfme.base.ui)

 	SmemMemoryMonitor (class in cfme.utils.smem_memory_monitor)

 	SmokeTests (class in cfme.markers.smoke)

 	smtp_server (cfme.configure.configuration.server_settings.ServerInformationView attribute)

 	smtp_server_values (cfme.configure.configuration.server_settings.ServerInformation attribute)

 	smtp_test() (in module cfme.fixtures.smtp)

 	SMTPCollectorClient (class in cfme.utils.smtp_collector_client)

 	snapshot_age (cfme.control.explorer.actions.ActionFormCommon attribute)

 	snapshot_name (cfme.control.explorer.actions.ActionFormCommon attribute)

 	SnapshotNotFoundError

 	snmp_trap (cfme.control.explorer.alerts.Alert attribute)

 	(cfme.control.explorer.alerts.AlertFormCommon attribute)

 	snmp_trap_send (cfme.control.explorer.alerts.AlertFormCommon attribute)

 	soft_assert() (in module fixtures.soft_assert)

 	soft_get() (in module cfme.utils.soft_get)

 	SoftAssertionError

 	sort (cfme.intelligence.reports.reports.Report attribute)

 	spawn_server() (in module fixtures.artifactor_plugin)

 	split_appliance_charts() (in module cfme.utils.perf_message_stats)

 	SproutClient (class in cfme.test_framework.sprout.client)

 	SproutException

 	SproutManager (class in cfme.test_framework.sprout.plugin)

 	SproutProvisioningRequest (class in cfme.test_framework.sprout.plugin)

 	ssh_client (cfme.utils.appliance.db.ApplianceDB attribute)

 	(cfme.utils.appliance.IPAppliance attribute)

 	ssh_client_with_privatekey() (cfme.utils.appliance.IPAppliance method)

 	ssh_clients_to_close (fixtures.pytest_store.Store attribute)

 	SSHClient (class in cfme.utils.ssh)

 	SSHCredential (class in cfme.base.credential)

 	SSHResult (class in cfme.utils.ssh)

 	SSHTail (class in cfme.utils.ssh)

 	sssd (cfme.utils.appliance.IPAppliance attribute)

 	sssd_conf (cfme.utils.auth.MIQAuthProvider attribute)

 	SSUIBaseLoggedInPage (class in cfme.base.ssui)

 	SSUINavigateStep (class in cfme.utils.appliance.implementations.ssui)

 	StackNotFound

 	start() (cfme.utils.appliance.Appliance method)

 	(cfme.utils.appliance.services.SystemdService method)

 	(cfme.utils.browser.BrowserManager method)

 	(cfme.utils.events.RestEventListener method)

 	(cfme.utils.events_db.DbEventListener method)

 	(cfme.utils.log.Perflog method)

 	(cfme.utils.video.Recorder method)

 	(fixtures.parallelizer.SlaveDetail method)

 	(in module cfme.utils.browser)

 	start_date (cfme.configure.configuration.system_schedules.ScheduleAddEditEntities attribute)

 	(cfme.configure.configuration.system_schedules.SystemSchedule attribute)

 	start_db_service() (cfme.utils.appliance.db.ApplianceDB method)

 	start_evm_service() (cfme.utils.appliance.IPAppliance method)

 	start_hour (cfme.configure.configuration.system_schedules.ScheduleAddEditEntities attribute)

 	(cfme.configure.configuration.system_schedules.SystemSchedule attribute)

 	start_minute (cfme.configure.configuration.system_schedules.ScheduleAddEditEntities attribute)

 	(cfme.configure.configuration.system_schedules.SystemSchedule attribute)

 	start_page (cfme.configure.settings.VisualForm attribute)

 	start_time (cfme.markers.smoke.SmokeTests attribute)

 	started (cfme.utils.events.RestEventListener attribute)

 	(cfme.utils.events_db.DbEventListener attribute)

 	starting_date (cfme.intelligence.reports.schedules.SchedulesFormCommon attribute)

 	(cfme.intelligence.reports.widgets.chart_widgets.ChartWidgetFormCommon attribute)

 	(cfme.intelligence.reports.widgets.report_widgets.ReportWidgetFormCommon attribute)

 	(cfme.intelligence.reports.widgets.rss_widgets.RSSWidgetFormCommon attribute)

 	
 	starting_hour (cfme.intelligence.reports.widgets.chart_widgets.ChartWidgetFormCommon attribute)

 	(cfme.intelligence.reports.widgets.report_widgets.ReportWidgetFormCommon attribute)

 	(cfme.intelligence.reports.widgets.rss_widgets.RSSWidgetFormCommon attribute)

 	starting_minute (cfme.intelligence.reports.widgets.chart_widgets.ChartWidgetFormCommon attribute)

 	(cfme.intelligence.reports.widgets.report_widgets.ReportWidgetFormCommon attribute)

 	(cfme.intelligence.reports.widgets.rss_widgets.RSSWidgetFormCommon attribute)

 	StatsDoNotMatch

 	status (cfme.utils.ssh.SSHClient attribute)

 	status_info (cfme.intelligence.reports.widgets.DashboardWidgetDetailsView attribute)

 	step() (cfme.ansible.credentials.Add method)

 	(cfme.ansible.credentials.AnsibleCredentials method)

 	(cfme.ansible.credentials.Details method)

 	(cfme.ansible.credentials.Edit method)

 	(cfme.ansible.playbooks.AnsiblePlaybooks method)

 	(cfme.ansible.playbooks.Details method)

 	(cfme.ansible.repositories.Add method)

 	(cfme.ansible.repositories.AnsibleRepositories method)

 	(cfme.ansible.repositories.Details method)

 	(cfme.ansible.repositories.Edit method)

 	(cfme.automate.AutomateCustomization method)

 	(cfme.automate.buttons.ButtonAll method)

 	(cfme.automate.buttons.ButtonDetails method)

 	(cfme.automate.buttons.ButtonEdit method)

 	(cfme.automate.buttons.ButtonGroupAll method)

 	(cfme.automate.buttons.ButtonGroupDetails method)

 	(cfme.automate.buttons.ButtonGroupEdit method)

 	(cfme.automate.buttons.ButtonGroupNew method)

 	(cfme.automate.buttons.ButtonGroupObjectType method)

 	(cfme.automate.buttons.ButtonNew method)

 	(cfme.automate.dialog_box.Add method)

 	(cfme.automate.dialog_element.Add method)

 	(cfme.automate.dialog_element.Edit method)

 	(cfme.automate.dialog_tab.Add method)

 	(cfme.automate.dialogs.dialog_box.Add method)

 	(cfme.automate.dialogs.dialog_element.Add method)

 	(cfme.automate.dialogs.dialog_element.Edit method)

 	(cfme.automate.dialogs.dialog_tab.Add method)

 	(cfme.automate.dialogs.service_dialogs.Add method)

 	(cfme.automate.dialogs.service_dialogs.All method)

 	(cfme.automate.dialogs.service_dialogs.Details method)

 	(cfme.automate.dialogs.service_dialogs.Edit method)

 	(cfme.automate.explorer.AutomateExplorer method)

 	(cfme.automate.explorer.domain.Add method)

 	(cfme.automate.explorer.domain.All method)

 	(cfme.automate.explorer.domain.Details method)

 	(cfme.automate.explorer.domain.Edit method)

 	(cfme.automate.explorer.domain.Priority method)

 	(cfme.automate.explorer.instance.Add method)

 	(cfme.automate.explorer.instance.Copy method)

 	(cfme.automate.explorer.instance.Details method)

 	(cfme.automate.explorer.instance.Edit method)

 	(cfme.automate.explorer.klass.Add method)

 	(cfme.automate.explorer.klass.Copy method)

 	(cfme.automate.explorer.klass.Details method)

 	(cfme.automate.explorer.klass.Edit method)

 	(cfme.automate.explorer.klass.EditSchema method)

 	(cfme.automate.explorer.method.Add method)

 	(cfme.automate.explorer.method.Copy method)

 	(cfme.automate.explorer.method.Details method)

 	(cfme.automate.explorer.method.Edit method)

 	(cfme.automate.explorer.namespace.Add method)

 	(cfme.automate.explorer.namespace.Details method)

 	(cfme.automate.explorer.namespace.Edit method)

 	(cfme.automate.provisioning_dialogs.Add method)

 	(cfme.automate.provisioning_dialogs.All method)

 	(cfme.automate.provisioning_dialogs.Details method)

 	(cfme.automate.provisioning_dialogs.Edit method)

 	(cfme.automate.service_dialogs.Add method)

 	(cfme.automate.service_dialogs.All method)

 	(cfme.automate.service_dialogs.Details method)

 	(cfme.automate.service_dialogs.Edit method)

 	(cfme.base.ssui.LoggedIn method)

 	(cfme.base.ssui.LoginScreen method)

 	(cfme.base.ui.About method)

 	(cfme.base.ui.Advanced method)

 	(cfme.base.ui.AuditLog method)

 	(cfme.base.ui.Authentication method)

 	(cfme.base.ui.AutomateImportExport method)

 	(cfme.base.ui.AutomateSimulation method)

 	(cfme.base.ui.CFMELog method)

 	(cfme.base.ui.ChangeRegionName method)

 	(cfme.base.ui.Chargeback method)

 	(cfme.base.ui.Configuration method)

 	(cfme.base.ui.CustomLogos method)

 	(cfme.base.ui.Dashboard method)

 	(cfme.base.ui.Database method)

 	(cfme.base.ui.DatabaseClientConnections method)

 	(cfme.base.ui.DatabaseIndexes method)

 	(cfme.base.ui.DatabaseSettings method)

 	(cfme.base.ui.DatabaseSummary method)

 	(cfme.base.ui.DatabaseTables method)

 	(cfme.base.ui.DatabaseUtilization method)

 	(cfme.base.ui.Details method)

 	(cfme.base.ui.Diagnostics method)

 	(cfme.base.ui.DiagnosticsDetails method)

 	(cfme.base.ui.DiagnosticsWorkers method)

 	(cfme.base.ui.Documentation method)

 	(cfme.base.ui.HelpMenu method)

 	(cfme.base.ui.Import method)

 	(cfme.base.ui.ImportTags method)

 	(cfme.base.ui.LoggedIn method)

 	(cfme.base.ui.LoginScreen method)

 	(cfme.base.ui.ProductionLog method)

 	(cfme.base.ui.RSS method)

 	(cfme.base.ui.RegionDetails method)

 	(cfme.base.ui.RegionDiagnostics method)

 	(cfme.base.ui.RegionDiagnosticsDatabase method)

 	(cfme.base.ui.RegionDiagnosticsOrphanedData method)

 	(cfme.base.ui.RegionDiagnosticsReplication method)

 	(cfme.base.ui.RegionDiagnosticsRolesByServers method)

 	(cfme.base.ui.RegionDiagnosticsServers method)

 	(cfme.base.ui.RegionDiagnosticsServersByRoles method)

 	(cfme.base.ui.RegionDiagnosticsZones method)

 	(cfme.base.ui.RegionZones method)

 	(cfme.base.ui.ServerDetails method)

 	(cfme.base.ui.ServerDiagnosticsCollectLogs method)

 	(cfme.base.ui.SmartProxyAffinity method)

 	(cfme.base.ui.Tasks method)

 	(cfme.base.ui.Timelines method)

 	(cfme.base.ui.Utilization method)

 	(cfme.base.ui.Workers method)

 	(cfme.base.ui.ZoneAdd method)

 	(cfme.base.ui.ZoneCANDUGapCollection method)

 	(cfme.base.ui.ZoneCollectLogs method)

 	(cfme.base.ui.ZoneDetails method)

 	(cfme.base.ui.ZoneDiagnostics method)

 	(cfme.base.ui.ZoneDiagnosticsRolesByServers method)

 	(cfme.base.ui.ZoneDiagnosticsServers method)

 	(cfme.base.ui.ZoneDiagnosticsServersByRoles method)

 	(cfme.base.ui.ZoneEdit method)

 	(cfme.cloud.security_groups.Add method)

 	(cfme.cloud.security_groups.Details method)

 	(cfme.cloud.security_groups.SecurityGroupAll method)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileAdd method)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileAll method)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileCopy method)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileDetails method)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileEdit method)

 	(cfme.configure.configuration.diagnostics_settings.AllDiagnosticWorkers method)

 	(cfme.configure.configuration.diagnostics_settings.DiagnosticsCollectLogs method)

 	(cfme.configure.configuration.diagnostics_settings.DiagnosticsCollectLogsEdit method)

 	(cfme.configure.configuration.diagnostics_settings.DiagnosticsCollectLogsEditSlave method)

 	(cfme.configure.configuration.diagnostics_settings.DiagnosticsCollectLogsSlave method)

 	(cfme.configure.configuration.diagnostics_settings.DiagnosticsSummary method)

 	(cfme.configure.configuration.diagnostics_settings.ZoneDiagnosticsCollectLogs method)

 	(cfme.configure.configuration.region_settings.CANDUCollectionDetails method)

 	(cfme.configure.configuration.region_settings.CategoryAdd method)

 	(cfme.configure.configuration.region_settings.CategoryAll method)

 	(cfme.configure.configuration.region_settings.CategoryEdit method)

 	(cfme.configure.configuration.region_settings.Details method)

 	(cfme.configure.configuration.region_settings.Edit method)

 	(cfme.configure.configuration.region_settings.MapTagsAdd method)

 	(cfme.configure.configuration.region_settings.MapTagsAll method)

 	(cfme.configure.configuration.region_settings.MapTagsEdit method)

 	(cfme.configure.configuration.region_settings.ReplicationDetails method)

 	(cfme.configure.configuration.region_settings.ReplicationGlobalAdd method)

 	(cfme.configure.configuration.region_settings.ReplicationGlobalSetup method)

 	(cfme.configure.configuration.region_settings.ReplicationRemoteAdd method)

 	(cfme.configure.configuration.region_settings.TagsAdd method)

 	(cfme.configure.configuration.region_settings.TagsAll method)

 	(cfme.configure.configuration.region_settings.TagsEdit method)

 	(cfme.configure.configuration.system_schedules.ScheduleAdd method)

 	(cfme.configure.configuration.system_schedules.ScheduleAll method)

 	(cfme.configure.configuration.system_schedules.ScheduleDetails method)

 	(cfme.configure.configuration.system_schedules.ScheduleEdit method)

 	(cfme.configure.settings.DefaultFiltersStep method)

 	(cfme.configure.settings.DefaultViewsStep method)

 	(cfme.configure.settings.MySettingsStep method)

 	(cfme.configure.settings.TimeProfileAdd method)

 	(cfme.configure.settings.TimeProfileCollectionAll method)

 	(cfme.configure.settings.TimeProfileCopy method)

 	(cfme.configure.settings.TimeProfileEdit method)

 	(cfme.configure.settings.VisualStep method)

 	(cfme.configure.tasks.AllOtherTasks method)

 	(cfme.configure.tasks.AllTasks method)

 	(cfme.configure.tasks.MyOtherTasks method)

 	(cfme.configure.tasks.MyTasks method)

 	(cfme.containers.overview.All method)

 	(cfme.control.explorer.ControlExplorer method)

 	(cfme.control.explorer.actions.ActionDetails method)

 	(cfme.control.explorer.actions.ActionEdit method)

 	(cfme.control.explorer.actions.ActionNew method)

 	(cfme.control.explorer.actions.ActionsAll method)

 	(cfme.control.explorer.alert_profiles.AlertProfileDetails method)

 	(cfme.control.explorer.alert_profiles.AlertProfileEdit method)

 	(cfme.control.explorer.alert_profiles.AlertProfileEditAssignments method)

 	(cfme.control.explorer.alert_profiles.AlertProfileNew method)

 	(cfme.control.explorer.alert_profiles.AlertProfilesAll method)

 	(cfme.control.explorer.alerts.AlertCopy method)

 	(cfme.control.explorer.alerts.AlertDetails method)

 	(cfme.control.explorer.alerts.AlertEdit method)

 	(cfme.control.explorer.alerts.AlertNew method)

 	(cfme.control.explorer.alerts.AlertsAll method)

 	(cfme.control.explorer.conditions.AllConditions method)

 	(cfme.control.explorer.conditions.ConditionDetails method)

 	(cfme.control.explorer.conditions.ConditionEdit method)

 	(cfme.control.explorer.conditions.ConditionNew method)

 	(cfme.control.explorer.conditions.PolicyConditionDetails method)

 	(cfme.control.explorer.policies.PolicyAll method)

 	(cfme.control.explorer.policies.PolicyDetails method)

 	(cfme.control.explorer.policies.PolicyEdit method)

 	(cfme.control.explorer.policies.PolicyEventDetails method)

 	(cfme.control.explorer.policies.PolicyNew method)

 	(cfme.control.explorer.policy_profiles.PolicyProfileAll method)

 	(cfme.control.explorer.policy_profiles.PolicyProfileDetails method)

 	(cfme.control.explorer.policy_profiles.PolicyProfileEdit method)

 	(cfme.control.explorer.policy_profiles.PolicyProfileNew method)

 	(cfme.control.import_export.ControlImportExport method)

 	(cfme.control.log.ControlLog method)

 	(cfme.control.simulation.ControlSimulation method)

 	(cfme.dashboard.DashboardDetails method)

 	(cfme.infrastructure.networking.All method)

 	(cfme.infrastructure.pxe.CustomizationTemplateAdd method)

 	(cfme.infrastructure.pxe.CustomizationTemplateAll method)

 	(cfme.infrastructure.pxe.CustomizationTemplateCopy method)

 	(cfme.infrastructure.pxe.CustomizationTemplateDetails method)

 	(cfme.infrastructure.pxe.CustomizationTemplateEdit method)

 	(cfme.infrastructure.pxe.ISODatastoreAdd method)

 	(cfme.infrastructure.pxe.ISODatastoreAll method)

 	(cfme.infrastructure.pxe.ISODatastoreDetails method)

 	(cfme.infrastructure.pxe.PXEMainPage method)

 	(cfme.infrastructure.pxe.PXEServerAdd method)

 	(cfme.infrastructure.pxe.PXEServerAll method)

 	(cfme.infrastructure.pxe.PXEServerDetails method)

 	(cfme.infrastructure.pxe.PXEServerEdit method)

 	(cfme.infrastructure.pxe.SystemImageTypeAdd method)

 	(cfme.infrastructure.pxe.SystemImageTypeAll method)

 	(cfme.infrastructure.pxe.SystemImageTypeDetails method)

 	(cfme.infrastructure.pxe.SystemImageTypeEdit method)

 	(cfme.intelligence.chargeback.IntelChargeback method)

 	(cfme.intelligence.chargeback.assignments.AssignAll method)

 	(cfme.intelligence.chargeback.assignments.AssignCompute method)

 	(cfme.intelligence.chargeback.assignments.AssignStorage method)

 	(cfme.intelligence.chargeback.rates.ComputeRateAll method)

 	(cfme.intelligence.chargeback.rates.ComputeRateCopy method)

 	(cfme.intelligence.chargeback.rates.ComputeRateDetails method)

 	(cfme.intelligence.chargeback.rates.ComputeRateEdit method)

 	(cfme.intelligence.chargeback.rates.ComputeRateNew method)

 	(cfme.intelligence.chargeback.rates.StorageRateAll method)

 	(cfme.intelligence.chargeback.rates.StorageRateDetails method)

 	(cfme.intelligence.chargeback.rates.StorageRateEdit method)

 	(cfme.intelligence.chargeback.rates.StorageRateNew method)

 	(cfme.intelligence.reports.CloudIntelReports method)

 	(cfme.intelligence.reports.dashboards.DashboardDetails method)

 	(cfme.intelligence.reports.dashboards.DashboardEdit method)

 	(cfme.intelligence.reports.dashboards.DashboardNew method)

 	(cfme.intelligence.reports.dashboards.DefaultDashboardDetails method)

 	(cfme.intelligence.reports.dashboards.DefaultDashboardEdit method)

 	(cfme.intelligence.reports.import_export.ImportExportCustomReports method)

 	(cfme.intelligence.reports.import_export.ImportExportWidgets method)

 	(cfme.intelligence.reports.menus.EditReportMenus method)

 	(cfme.intelligence.reports.reports.ReportDetails method)

 	(cfme.intelligence.reports.reports.ReportEdit method)

 	(cfme.intelligence.reports.reports.ReportsAll method)

 	(cfme.intelligence.reports.reports.ReportsNew method)

 	(cfme.intelligence.reports.reports.SavedReportDetails method)

 	(cfme.intelligence.reports.saved.CustomReportAll method)

 	(cfme.intelligence.reports.saved.ScheduleDetails method)

 	(cfme.intelligence.reports.schedules.ScheduleAll method)

 	(cfme.intelligence.reports.schedules.ScheduleDetails method)

 	(cfme.intelligence.reports.schedules.ScheduleEdit method)

 	(cfme.intelligence.reports.schedules.ScheduleNew method)

 	(cfme.intelligence.reports.widgets.BaseDashboardWidgetDetailsStep method)

 	(cfme.intelligence.reports.widgets.BaseEditDashboardWidgetStep method)

 	(cfme.intelligence.reports.widgets.BaseNewDashboardWidgetStep method)

 	(cfme.optimize.Bottlenecks method)

 	(cfme.optimize.utilization.All method)

 	(cfme.services.catalogs.ServicesCatalog method)

 	(cfme.services.dashboard.ssui.CurrentServices method)

 	(cfme.services.dashboard.ssui.DashboardAll method)

 	(cfme.services.dashboard.ssui.RetiredServices method)

 	(cfme.services.dashboard.ssui.RetiringSoon method)

 	(cfme.services.dashboard.ssui.TotalServices method)

 	(cfme.services.workloads.AllTemplates method)

 	(cfme.services.workloads.AllVMs method)

 	stop() (cfme.utils.appliance.Appliance method)

 	(cfme.utils.appliance.services.SystemdService method)

 	(cfme.utils.dockerbot.dockerbot.DockerInstance method)

 	(cfme.utils.events.RestEventListener method)

 	(cfme.utils.events_db.DbEventListener method)

 	(cfme.utils.log.Perflog method)

 	(cfme.utils.video.Recorder method)

 	stop_db_service() (cfme.utils.appliance.db.ApplianceDB method)

 	stop_evm_service() (cfme.utils.appliance.IPAppliance method)

 	stop_recording() (in module cfme.fixtures.video)

 	storageassign() (cfme.intelligence.chargeback.assignments.Assign method)

 	StorageManagerNotFound

 	StorageRate (class in cfme.intelligence.chargeback.rates)

 	StorageRateAll (class in cfme.intelligence.chargeback.rates)

 	StorageRateDetails (class in cfme.intelligence.chargeback.rates)

 	StorageRateEdit (class in cfme.intelligence.chargeback.rates)

 	StorageRateNew (class in cfme.intelligence.chargeback.rates)

 	storbinary() (cfme.utils.ftp.FTPClient method)

 	Store (class in fixtures.pytest_store)

 	stripper() (in module fixtures.nelson)

 	styling (cfme.intelligence.reports.reports.CustomReportFormCommon attribute)

 	(cfme.intelligence.reports.reports.Report attribute)

 	subfilter (cfme.intelligence.reports.widgets.report_widgets.ReportWidget attribute)

 	(cfme.intelligence.reports.widgets.report_widgets.ReportWidgetFormCommon attribute)

 	submit (cfme.automate.import_export.GitImportSelectorView attribute)

 	submit_btn (cfme.automate.DialogForm attribute)

 	(cfme.automate.service_dialogs.Dialog attribute)

 	submit_button (cfme.base.ui.AutomateSimulationView attribute)

 	(cfme.control.simulation.ControlSimulationView attribute)

 	submit_db_garbage_collection_button (cfme.base.ui.RegionDiagnosticsDatabaseView attribute)

 	submit_login() (cfme.base.ssui.LoginPage method)

 	(cfme.base.ui.LoginPage method)

 	subscription_table (cfme.configure.configuration.region_settings.ReplicationGlobalView attribute)

 	subtitle (cfme.control.log.ControlLogView attribute)

 	(cfme.intelligence.reports.import_export.ImportExportCommonForm attribute)

 	subtype (cfme.intelligence.reports.reports.Report attribute)

 	success (cfme.utils.ssh.SSHResult attribute)

 	sum_other (cfme.intelligence.reports.reports.Report attribute)

 	summary (cfme.base.ui.DatabaseSummaryView attribute)

 	(cfme.base.ui.ServerDatabaseView attribute)

 	(cfme.base.ui.ServerDiagnosticsView attribute)

 	(cfme.intelligence.reports.reports.CustomReportFormCommon attribute)

 	(cfme.intelligence.reports.reports.Report attribute)

 	(cfme.optimize.bottlenecks.BottlenecksTabsView attribute)

 	summary_csv_measurement_dump() (in module cfme.utils.smem_memory_monitor)

 	supposed_title (cfme.control.explorer.policies.EditPolicyConditionAssignments attribute)

 	(cfme.control.explorer.policies.EditPolicyEventAssignments attribute)

 	swap (cfme.utils.appliance.IPAppliance attribute)

 	system (cfme.automate.buttons.AnsiblePlaybookButton attribute)

 	(cfme.automate.buttons.ButtonDetailView attribute)

 	(cfme.automate.buttons.DefaultButton attribute)

 	SYSTEM_PROVISION (cfme.automate.provisioning_dialogs.ProvisioningDialogsCollection attribute)

 	SystemdException

 	SystemdService (class in cfme.utils.appliance.services)

 	SystemImageType (class in cfme.infrastructure.pxe)

 	SystemImageTypeAdd (class in cfme.infrastructure.pxe)

 	SystemImageTypeAll (class in cfme.infrastructure.pxe)

 	SystemImageTypeCollection (class in cfme.infrastructure.pxe)

 	SystemImageTypeDetails (class in cfme.infrastructure.pxe)

 	SystemImageTypeEdit (class in cfme.infrastructure.pxe)

 	SystemSchedule (class in cfme.configure.configuration.system_schedules)

 	SystemSchedulesCollection (class in cfme.configure.configuration.system_schedules)

T

 	
 	tab (cfme.automate.dialog_box.Box attribute)

 	(cfme.automate.dialogs.dialog_box.Box attribute)

 	Tab (class in cfme.automate.dialog_tab)

 	(class in cfme.automate.dialogs.dialog_tab)

 	tab_desc (cfme.automate.dialog_tab.Tab attribute)

 	(cfme.automate.TabForm attribute)

 	(cfme.automate.dialogs.TabForm attribute)

 	(cfme.automate.dialogs.dialog_tab.Tab attribute)

 	tab_label (cfme.automate.dialog_tab.Tab attribute)

 	(cfme.automate.TabForm attribute)

 	(cfme.automate.dialogs.TabForm attribute)

 	(cfme.automate.dialogs.dialog_tab.Tab attribute)

 	TAB_NAME (cfme.base.ui.CompanyCategories attribute)

 	(cfme.base.ui.CompanyTags attribute)

 	(cfme.base.ui.ImportVariable attribute)

 	(cfme.base.ui.MapTags attribute)

 	(cfme.base.ui.TagsView attribute)

 	tab_title (cfme.intelligence.reports.dashboards.DashboardDetailsView attribute)

 	(cfme.intelligence.reports.dashboards.DashboardFormCommon attribute)

 	TabCollection (class in cfme.automate.dialog_tab)

 	(class in cfme.automate.dialogs.dialog_tab)

 	TabForm (class in cfme.automate)

 	(class in cfme.automate.dialogs)

 	table (cfme.automate.dialogs.service_dialogs.DialogsView attribute)

 	(cfme.automate.explorer.instance.InstanceDetailsView attribute)

 	(cfme.automate.provisioning_dialogs.ProvDiagAllEntities attribute)

 	(cfme.automate.service_dialogs.DialogsView attribute)

 	(cfme.base.ui.ZoneListView attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileDetailsEntities attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileEntities attribute)

 	(cfme.configure.configuration.region_settings.CompanyCategoriesAllView attribute)

 	(cfme.configure.configuration.region_settings.CompanyTagsAllView attribute)

 	(cfme.configure.configuration.region_settings.MapTagsAllView attribute)

 	(cfme.configure.configuration.system_schedules.ScheduleAllView attribute)

 	(cfme.configure.settings.MySettingsEntities attribute)

 	(cfme.configure.settings.TimeProfileEntities attribute)

 	(cfme.configure.settings.TimeProfilesView attribute)

 	(cfme.infrastructure.pxe.PXECustomizationTemplatesView attribute)

 	(cfme.intelligence.chargeback.rates.RatesView attribute)

 	(cfme.intelligence.reports.import_export.ImportExportWidgetsCommitView attribute)

 	(cfme.intelligence.reports.reports.SavedReportDetailsView attribute)

 	(cfme.intelligence.reports.saved.AllSavedReportsView attribute)

 	(cfme.intelligence.rss.RSSView attribute)

 	table_base (cfme.utils.db.Db attribute)

 	table_display_name (cfme.automate.explorer.domain.Domain attribute)

 	table_names (cfme.utils.db.Db attribute)

 	tables (cfme.base.ui.ServerDatabaseView attribute)

 	tabs (cfme.automate.dialogs.service_dialogs.Dialog attribute)

 	(cfme.automate.service_dialogs.Dialog attribute)

 	(cfme.configure.settings.MySettingsView attribute)

 	(cfme.configure.tasks.TasksView attribute)

 	tag (cfme.automate.import_export.GitImportSelectorView attribute)

 	(cfme.control.explorer.actions.ActionFormCommon attribute)

 	Tag (class in cfme.configure.configuration.region_settings)

 	tag() (in module cfme.fixtures.tag)

 	tag_category (cfme.control.explorer.alert_profiles.AlertProfilesEditAssignmentsView attribute)

 	(cfme.intelligence.chargeback.assignments.AssignmentsView attribute)

 	tag_description (cfme.configure.configuration.region_settings.CompanyTagsAddView attribute)

 	tag_name (cfme.configure.configuration.region_settings.CompanyTagsAddView attribute)

 	tags (cfme.base.ui.RegionView attribute)

 	TagsAdd (class in cfme.configure.configuration.region_settings)

 	TagsAll (class in cfme.configure.configuration.region_settings)

 	TagsEdit (class in cfme.configure.configuration.region_settings)

 	TagsView (class in cfme.base.ui)

 	take_screenshot() (in module cfme.utils.browser)

 	(in module fixtures.screenshots)

 	target (cfme.automate.buttons.ButtonDetailView attribute)

 	target_object (cfme.base.ui.AutomateSimulationView attribute)

 	target_type (cfme.base.ui.AutomateSimulationView attribute)

 	TARGET_TYPES (cfme.utils.events.Event attribute)

 	task_status() (fixtures.artifactor_plugin.DummyClient method)

 	TaskFailedException

 	Tasks (class in cfme.base.ui)

 	(class in cfme.configure.tasks)

 	TasksView (class in cfme.configure.tasks)

 	TEARDOWN (cfme.markers.meta.PluginContainer attribute)

 	teardown_fail() (in module fixtures.parallelizer.parallelizer_tester)

 	temp_appliance_preconfig() (in module fixtures.appliance)

 	temp_appliance_preconfig_clsscope() (in module fixtures.appliance)

 	temp_appliance_preconfig_funcscope() (in module fixtures.appliance)

 	temp_appliance_preconfig_funcscope_upgrade() (in module fixtures.appliance)

 	temp_appliance_preconfig_modscope() (in module fixtures.appliance)

 	temp_appliance_unconfig() (in module fixtures.appliance)

 	temp_appliance_unconfig_clsscope() (in module fixtures.appliance)

 	temp_appliance_unconfig_funcscope() (in module fixtures.appliance)

 	temp_appliance_unconfig_funcscope_rhevm() (in module fixtures.appliance)

 	temp_appliance_unconfig_modscope() (in module fixtures.appliance)

 	temp_appliances() (in module fixtures.appliance)

 	temp_appliances_unconfig() (in module fixtures.appliance)

 	temp_appliances_unconfig_clsscope() (in module fixtures.appliance)

 	temp_appliances_unconfig_funcscope() (in module fixtures.appliance)

 	temp_appliances_unconfig_modscope() (in module fixtures.appliance)

 	temp_appliances_unconfig_modscope_rhevm() (in module fixtures.appliance)

 	TEMPLATE (cfme.automate.buttons.ButtonGroupCollection attribute)

 	template_path (in module cfme.utils.path)

 	template_quad (cfme.configure.settings.Visual attribute)

 	template_type (cfme.test_framework.sprout.plugin.SproutProvisioningRequest attribute)

 	TemplateNotFound

 	templates (cfme.infrastructure.pxe.PXESideBar attribute)

 	(cfme.services.workloads.WorkloadsView attribute)

 	TemplatesImages (class in cfme.services.workloads)

 	templatize() (cfme.utils.appliance.Appliance method)

 	TenantNotFound

 	TerminalDistReporter (class in fixtures.parallelizer)

 	terminaldistreporter (fixtures.pytest_store.Store attribute)

 	terminalreporter (fixtures.pytest_store.Store attribute)

 	terminate() (fixtures.artifactor_plugin.DummyClient method)

 	test_appliance_collection() (in module cfme.modeling.tests.test_collections)

 	test_appliance_collection_chain_filter() (in module cfme.modeling.tests.test_collections)

 	test_appliance_collection_object_filter() (in module cfme.modeling.tests.test_collections)

 	test_appliance_collections_dir() (in module cfme.modeling.tests.test_collections)

 	test_appliance_collections_instantiate() (in module cfme.modeling.tests.test_collections)

 	test_declared_entity_collections() (in module cfme.modeling.tests.test_collections)

 	test_fails() (in module fixtures.parallelizer.parallelizer_tester)

 	test_fails_setup() (in module fixtures.parallelizer.parallelizer_tester)

 	test_fails_teardown() (in module fixtures.parallelizer.parallelizer_tester)

 	test_object_collections() (in module cfme.modeling.tests.test_collections)

 	test_object_collections_parent_filter() (in module cfme.modeling.tests.test_collections)

 	test_parent_relationship() (in module cfme.modeling.tests.test_collections)

 	test_parent_walker() (in module cfme.modeling.tests.test_collections)

 	test_passes() (in module fixtures.parallelizer.parallelizer_tester)

 	test_quickstart_run() (in module cfme.scripting.tests.test_quickstart)

 	test_quickstart_version_changed() (in module cfme.scripting.tests.test_quickstart)

 	test_rhv_markers() (in module cfme.markers.rhv)

 	test_skipped() (in module fixtures.parallelizer.parallelizer_tester)

 	test_tracking (in module fixtures.log)

 	test_xfails() (in module fixtures.parallelizer.parallelizer_tester)

 	test_xpasses() (in module fixtures.parallelizer.parallelizer_tester)

 	testcase_record() (in module cfme.fixtures.xunit_tools)

 	testcases_gen() (in module cfme.fixtures.xunit_tools)

 	testresult_record() (in module cfme.fixtures.xunit_tools)

 	testrun_gen() (in module cfme.fixtures.xunit_tools)

 	tests (fixtures.parallelizer.SlaveDetail attribute)

 	text (cfme.automate.buttons.AnsiblePlaybookButton attribute)

 	(cfme.automate.buttons.ButtonDetailView attribute)

 	(cfme.automate.buttons.ButtonGroup attribute)

 	(cfme.automate.buttons.ButtonGroupDetailView attribute)

 	(cfme.automate.buttons.ButtonGroupFormCommon attribute)

 	(cfme.automate.buttons.DefaultButton attribute)

 	(cfme.control.explorer.conditions.Expression attribute)

 	text_area (cfme.automate.dialog_element.ElementForm attribute)

 	text_list (cfme.control.explorer.conditions.Expression attribute)

 	the_param() (in module fixtures.parallelizer.parallelizer_tester)

 	tier_matches() (in module fixtures.node_annotate)

 	tile_entity (cfme.ansible.playbooks.PlaybookEntity attribute)

 	tile_view_entities (cfme.configure.settings.Visual attribute)

 	tile_view_limit (cfme.configure.settings.Visual attribute)

 	time_next (cfme.dashboard.DashboardWidget attribute)

 	time_profiles (cfme.configure.settings.MySettings attribute)

 	time_updated (cfme.dashboard.DashboardWidget attribute)

 	time_zone (cfme.configure.configuration.system_schedules.ScheduleAddEditEntities attribute)

 	(cfme.configure.configuration.system_schedules.SystemSchedule attribute)

 	(cfme.intelligence.reports.schedules.SchedulesFormCommon attribute)

 	(cfme.intelligence.reports.widgets.chart_widgets.ChartWidgetFormCommon attribute)

 	(cfme.intelligence.reports.widgets.report_widgets.ReportWidgetFormCommon attribute)

 	(cfme.intelligence.reports.widgets.rss_widgets.RSSWidgetFormCommon attribute)

 	TimedCommand (class in cfme.fixtures.cli)

 	(class in cfme.scripting.setup_env)

 	timeline (cfme.intelligence.reports.reports.CustomReportFormCommon attribute)

 	(cfme.intelligence.reports.reports.Report attribute)

 	timeline_event (cfme.control.explorer.alerts.Alert attribute)

 	(cfme.control.explorer.alerts.AlertFormCommon attribute)

 	timelines (cfme.base.ui.ServerDiagnosticsView attribute)

 	Timelines (class in cfme.base.ui)

 	timeout (cfme.fixtures.cli.TimedCommand attribute)

 	(cfme.scripting.setup_env.TimedCommand attribute)

 	TimeProfile (class in cfme.configure.settings)

 	TimeProfileAdd (class in cfme.configure.settings)

 	TimeProfileAddView (class in cfme.configure.settings)

 	TimeProfileCollection (class in cfme.configure.settings)

 	TimeProfileCollectionAll (class in cfme.configure.settings)

 	TimeProfileCopy (class in cfme.configure.settings)

 	TimeProfileEdit (class in cfme.configure.settings)

 	TimeProfileEditView (class in cfme.configure.settings)

 	TimeProfileEntities (class in cfme.configure.settings)

 	TimeProfileForm (class in cfme.configure.settings)

 	TimeProfiles (class in cfme.configure.settings)

 	TimeProfilesView (class in cfme.configure.settings)

 	TimeProfileView (class in cfme.configure.settings)

 	timer (cfme.intelligence.reports.schedules.Schedule attribute)

 	(cfme.intelligence.reports.widgets.chart_widgets.ChartWidget attribute)

 	(cfme.intelligence.reports.widgets.report_widgets.ReportWidget attribute)

 	(cfme.intelligence.reports.widgets.rss_widgets.RSSFeedWidget attribute)

 	(cfme.test_framework.sprout.plugin.SproutManager attribute)

 	timezone (cfme.configure.settings.TimeProfile attribute)

 	(cfme.configure.settings.TimeProfileForm attribute)

 	(cfme.configure.settings.Visual attribute)

 	timezone_check() (cfme.utils.appliance.ApplianceConsole method)

 	title (cfme.ansible.credentials.CredentialsBaseView attribute)

 	(cfme.ansible.playbooks.PlaybookBaseView attribute)

 	(cfme.ansible.repositories.RepositoryBaseView attribute)

 	(cfme.automate.DialogForm attribute)

 	(cfme.automate.buttons.ButtonDetailView attribute)

 	(cfme.automate.buttons.ButtonGroupDetailView attribute)

 	(cfme.automate.buttons.ButtonGroupObjectTypeView attribute)

 	(cfme.automate.buttons.ButtonsAllView attribute)

 	(cfme.automate.buttons.EditButtonGroupView attribute)

 	(cfme.automate.buttons.EditButtonView attribute)

 	(cfme.automate.buttons.NewButtonGroupView attribute)

 	(cfme.automate.buttons.NewButtonView attribute)

 	(cfme.automate.dialog_element.DetailsDialogView attribute)

 	(cfme.automate.dialog_tab.DetailsTabView attribute)

 	(cfme.automate.dialogs.DialogForm attribute)

 	(cfme.automate.dialogs.dialog_element.DetailsDialogView attribute)

 	(cfme.automate.dialogs.dialog_element.DialogsView attribute)

 	(cfme.automate.dialogs.dialog_tab.DetailsTabView attribute)

 	(cfme.automate.dialogs.service_dialogs.DetailsDialogView attribute)

 	(cfme.automate.dialogs.service_dialogs.DialogsView attribute)

 	(cfme.automate.explorer.common.CopyViewBase attribute)

 	(cfme.automate.explorer.domain.DomainDetailsView attribute)

 	(cfme.automate.explorer.domain.DomainForm attribute)

 	(cfme.automate.explorer.domain.DomainListView attribute)

 	(cfme.automate.explorer.domain.DomainPriorityView attribute)

 	(cfme.automate.explorer.instance.InstanceAddView attribute)

 	(cfme.automate.explorer.instance.InstanceDetailsView attribute)

 	(cfme.automate.explorer.instance.InstanceEditView attribute)

 	(cfme.automate.explorer.klass.ClassDetailsView attribute)

 	(cfme.automate.explorer.klass.ClassForm attribute)

 	(cfme.automate.explorer.method.MethodAddView attribute)

 	(cfme.automate.explorer.method.MethodDetailsView attribute)

 	(cfme.automate.explorer.method.MethodEditView attribute)

 	(cfme.automate.explorer.namespace.NamespaceDetailsView attribute)

 	(cfme.automate.explorer.namespace.NamespaceForm attribute)

 	(cfme.automate.provisioning_dialogs.ProvDiagAddView attribute)

 	(cfme.automate.provisioning_dialogs.ProvDiagAllEntities attribute)

 	(cfme.automate.provisioning_dialogs.ProvDiagDetailsEntities attribute)

 	(cfme.automate.provisioning_dialogs.ProvDiagEditView attribute)

 	(cfme.automate.service_dialogs.DetailsDialogView attribute)

 	(cfme.automate.service_dialogs.DialogsView attribute)

 	(cfme.base.ui.AutomateImportExportBaseView attribute)

 	(cfme.base.ui.ConfigurationView attribute)

 	(cfme.cloud.security_groups.SecurityGroupAddEntities attribute)

 	(cfme.cloud.security_groups.SecurityGroupDetailsEntities attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileAddView attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileDetailsEntities attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileEntities attribute)

 	(cfme.configure.configuration.region_settings.RedHatUpdatesEditView attribute)

 	(cfme.configure.configuration.region_settings.RedHatUpdatesView attribute)

 	(cfme.configure.configuration.server_settings.ServerAuthenticationView attribute)

 	(cfme.configure.configuration.server_settings.ServerInformationView attribute)

 	(cfme.configure.documentation.DocView attribute)

 	(cfme.configure.settings.MySettingsEntities attribute)

 	(cfme.configure.settings.TimeProfileEntities attribute)

 	(cfme.control.explorer.actions.ActionDetailsView attribute)

 	(cfme.control.explorer.actions.ActionsAllView attribute)

 	(cfme.control.explorer.actions.EditActionView attribute)

 	(cfme.control.explorer.actions.NewActionView attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfileDetailsView attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfileFormCommon attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfilesAllView attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfilesEditAssignmentsView attribute)

 	(cfme.control.explorer.alerts.AlertDetailsView attribute)

 	(cfme.control.explorer.alerts.AlertsAllView attribute)

 	(cfme.control.explorer.alerts.EditAlertView attribute)

 	(cfme.control.explorer.alerts.NewAlertView attribute)

 	(cfme.control.explorer.conditions.ConditionDetailsView attribute)

 	(cfme.control.explorer.conditions.ConditionFormCommon attribute)

 	(cfme.control.explorer.conditions.ConditionPolicyDetailsView attribute)

 	(cfme.control.explorer.conditions.ConditionsAllView attribute)

 	(cfme.control.explorer.conditions.EditConditionView attribute)

 	(cfme.control.explorer.policies.ConditionDetailsView attribute)

 	(cfme.control.explorer.policies.EditEventView attribute)

 	(cfme.control.explorer.policies.EditPolicyConditionAssignments attribute)

 	(cfme.control.explorer.policies.EditPolicyEventAssignments attribute)

 	(cfme.control.explorer.policies.EditPolicyView attribute)

 	(cfme.control.explorer.policies.EventDetailsView attribute)

 	(cfme.control.explorer.policies.NewPolicyView attribute)

 	(cfme.control.explorer.policies.PoliciesAllView attribute)

 	(cfme.control.explorer.policies.PolicyDetailsView attribute)

 	(cfme.control.explorer.policy_profiles.PolicyProfileDetailsView attribute)

 	(cfme.control.explorer.policy_profiles.PolicyProfileFormCommon attribute)

 	(cfme.control.explorer.policy_profiles.PolicyProfilesAllView attribute)

 	(cfme.control.log.ControlLogView attribute)

 	(cfme.infrastructure.networking.InfraNetworkingEntities attribute)

 	(cfme.infrastructure.pxe.PXECustomizationTemplateForm attribute)

 	(cfme.infrastructure.pxe.PXEDatastoreForm attribute)

 	(cfme.infrastructure.pxe.PXEImageEditView attribute)

 	(cfme.infrastructure.pxe.PXEMainView attribute)

 	(cfme.infrastructure.pxe.PXEServerForm attribute)

 	(cfme.infrastructure.pxe.PXESystemImageTypeForm attribute)

 	(cfme.intelligence.chargeback.assignments.AssignmentsAllView attribute)

 	(cfme.intelligence.chargeback.assignments.AssignmentsView attribute)

 	(cfme.intelligence.chargeback.rates.AddComputeChargebackView attribute)

 	(cfme.intelligence.chargeback.rates.RatesView attribute)

 	(cfme.intelligence.reports.dashboards.Dashboard attribute)

 	(cfme.intelligence.reports.dashboards.DashboardAllGroupsView attribute)

 	(cfme.intelligence.reports.dashboards.DashboardDetailsView attribute)

 	(cfme.intelligence.reports.dashboards.DashboardFormCommon attribute)

 	(cfme.intelligence.reports.import_export.ImportExportCommonForm attribute)

 	(cfme.intelligence.reports.import_export.ImportExportWidgetsCommitView attribute)

 	(cfme.intelligence.reports.menus.EditReportMenusView attribute)

 	(cfme.intelligence.reports.reports.AllCustomReportsView attribute)

 	(cfme.intelligence.reports.reports.AllReportsView attribute)

 	(cfme.intelligence.reports.reports.CustomReportFormCommon attribute)

 	(cfme.intelligence.reports.reports.Report attribute)

 	(cfme.intelligence.reports.reports.ReportDetailsView attribute)

 	(cfme.intelligence.reports.reports.SavedReportDetailsView attribute)

 	(cfme.intelligence.reports.saved.AllSavedReportsView attribute)

 	(cfme.intelligence.reports.schedules.ScheduleDetailsView attribute)

 	(cfme.intelligence.reports.schedules.SchedulesAllView attribute)

 	(cfme.intelligence.reports.schedules.SchedulesFormCommon attribute)

 	(cfme.intelligence.reports.widgets.AllDashboardWidgetsView attribute)

 	
 	TITLE (cfme.intelligence.reports.widgets.BaseDashboardReportWidget attribute)

 	title (cfme.intelligence.reports.widgets.BaseDashboardReportWidget attribute)

 	(cfme.intelligence.reports.widgets.BaseDashboardWidgetFormCommon attribute)

 	TITLE (cfme.intelligence.reports.widgets.chart_widgets.ChartWidget attribute)

 	title (cfme.intelligence.reports.widgets.DashboardWidgetDetailsView attribute)

 	TITLE (cfme.intelligence.reports.widgets.menu_widgets.MenuWidget attribute)

 	(cfme.intelligence.reports.widgets.report_widgets.ReportWidget attribute)

 	(cfme.intelligence.reports.widgets.rss_widgets.RSSFeedWidget attribute)

 	title (cfme.optimize.bottlenecks.BottlenecksTabsView attribute)

 	(cfme.services.dashboard.ssui.MyServicesView attribute)

 	(cfme.services.workloads.WorkloadsDefaultView attribute)

 	(cfme.utils.appliance.implementations.ui.ErrorView attribute)

 	to_american_date_only() (cfme.utils.timeutil.parsetime method)

 	to_american_minutes() (cfme.utils.timeutil.parsetime method)

 	to_american_minutes_with_utc() (cfme.utils.timeutil.parsetime method)

 	to_american_with_utc() (cfme.utils.timeutil.parsetime method)

 	to_domain_select (cfme.automate.explorer.common.CopyViewBase attribute)

 	to_domain_text (cfme.automate.explorer.common.CopyViewBase attribute)

 	to_iso_date() (cfme.utils.timeutil.parsetime method)

 	to_iso_with_utc() (cfme.utils.timeutil.parsetime method)

 	to_long_date_format() (cfme.utils.timeutil.parsetime method)

 	to_request_format() (cfme.utils.timeutil.parsetime method)

 	to_saved_report_title_format() (cfme.utils.timeutil.parsetime method)

 	TokenCredential (class in cfme.base.credential)

 	tol_check() (in module cfme.utils.stats)

 	toolbar (cfme.ansible.credentials.CredentialDetailsView attribute)

 	(cfme.ansible.playbooks.PlaybooksView attribute)

 	(cfme.ansible.repositories.RepositoryDetailsView attribute)

 	(cfme.automate.provisioning_dialogs.ProvDiagAllView attribute)

 	(cfme.automate.provisioning_dialogs.ProvDiagDetailsView attribute)

 	(cfme.cloud.security_groups.SecurityGroupAllView attribute)

 	(cfme.cloud.security_groups.SecurityGroupDetailsView attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileAllView attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileDetailsView attribute)

 	(cfme.configure.configuration.diagnostics_settings.DiagnosticServerWorkersView attribute)

 	(cfme.configure.configuration.diagnostics_settings.ServerCollectLogsView attribute)

 	(cfme.configure.configuration.diagnostics_settings.ZoneDiagnosticsCollectLogsView attribute)

 	(cfme.configure.configuration.system_schedules.ScheduleAllView attribute)

 	(cfme.configure.configuration.system_schedules.ScheduleDetailsView attribute)

 	(cfme.control.explorer.policies.EventDetailsView attribute)

 	(cfme.infrastructure.networking.InfraNetworkingAllView attribute)

 	(cfme.infrastructure.pxe.PXECustomizationTemplateCopyView attribute)

 	(cfme.infrastructure.pxe.PXECustomizationTemplateDetailsView attribute)

 	(cfme.infrastructure.pxe.PXEDatastoreDetailsView attribute)

 	(cfme.infrastructure.pxe.PXEMainView attribute)

 	(cfme.infrastructure.pxe.PXEServerDetailsView attribute)

 	(cfme.infrastructure.pxe.PXESystemImageTypeDetailsView attribute)

 	(cfme.intelligence.chargeback.rates.RatesView attribute)

 	(cfme.services.catalogs.ServicesCatalogView attribute)

 	(cfme.services.workloads.WorkloadsView attribute)

 	ToolbarOptionGreyedOrUnavailable

 	top_to_appliance() (in module cfme.utils.perf_message_stats)

 	top_to_workers() (in module cfme.utils.perf_message_stats)

 	top_values (cfme.intelligence.reports.reports.Report attribute)

 	topology_default_items (cfme.configure.settings.VisualForm attribute)

 	tot_time() (in module cfme.scripting.setup_env)

 	total_requests (cfme.services.dashboard.Dashboard attribute)

 	total_requests() (in module cfme.services.dashboard.ssui)

 	total_services (cfme.services.dashboard.Dashboard attribute)

 	total_services() (in module cfme.services.dashboard.ssui)

 	TotalServices (class in cfme.services.dashboard.ssui)

 	trace() (cfme.utils.log.TraceLogger method)

 	(cfme.utils.log.TraceLoggerAdapter method)

 	(in module cfme.utils.tracer)

 	TraceLogger (class in cfme.utils.log)

 	TraceLoggerAdapter (class in cfme.utils.log)

 	tracking_events (cfme.utils.log.Perflog attribute)

 	transaction (cfme.utils.db.Db attribute)

 	tree (cfme.configure.settings.DefaultFiltersForm attribute)

 	tree() (cfme.utils.ftp.FTPClient method)

 	tree_display_name (cfme.automate.explorer.domain.Domain attribute)

 	TREE_NODE (cfme.control.explorer.conditions.BaseCondition attribute)

 	(cfme.control.explorer.conditions.ContainerImageCondition attribute)

 	(cfme.control.explorer.conditions.ContainerNodeCondition attribute)

 	(cfme.control.explorer.conditions.HostCondition attribute)

 	(cfme.control.explorer.conditions.PodCondition attribute)

 	(cfme.control.explorer.conditions.ProviderCondition attribute)

 	(cfme.control.explorer.conditions.ReplicatorCondition attribute)

 	(cfme.control.explorer.conditions.VMCondition attribute)

 	(cfme.control.explorer.policies.BasePolicy attribute)

 	(cfme.control.explorer.policies.ContainerImageCompliancePolicy attribute)

 	(cfme.control.explorer.policies.ContainerImageControlPolicy attribute)

 	(cfme.control.explorer.policies.ContainerNodeCompliancePolicy attribute)

 	(cfme.control.explorer.policies.ContainerNodeControlPolicy attribute)

 	(cfme.control.explorer.policies.HostCompliancePolicy attribute)

 	(cfme.control.explorer.policies.HostControlPolicy attribute)

 	(cfme.control.explorer.policies.PhysicalInfrastructureCompliancePolicy attribute)

 	(cfme.control.explorer.policies.PhysicalInfrastructureControlPolicy attribute)

 	(cfme.control.explorer.policies.PodCompliancePolicy attribute)

 	(cfme.control.explorer.policies.PodControlPolicy attribute)

 	(cfme.control.explorer.policies.ProviderCompliancePolicy attribute)

 	(cfme.control.explorer.policies.ProviderControlPolicy attribute)

 	(cfme.control.explorer.policies.ReplicatorCompliancePolicy attribute)

 	(cfme.control.explorer.policies.ReplicatorControlPolicy attribute)

 	(cfme.control.explorer.policies.VMCompliancePolicy attribute)

 	(cfme.control.explorer.policies.VMControlPolicy attribute)

 	tree_path (cfme.automate.dialog_box.Box attribute)

 	(cfme.automate.dialog_box.BoxCollection attribute)

 	(cfme.automate.dialog_element.Element attribute)

 	(cfme.automate.dialog_element.ElementCollection attribute)

 	(cfme.automate.dialog_tab.Tab attribute)

 	(cfme.automate.dialog_tab.TabCollection attribute)

 	(cfme.automate.dialogs.dialog_box.Box attribute)

 	(cfme.automate.dialogs.dialog_box.BoxCollection attribute)

 	(cfme.automate.dialogs.dialog_element.Element attribute)

 	(cfme.automate.dialogs.dialog_element.ElementCollection attribute)

 	(cfme.automate.dialogs.dialog_tab.Tab attribute)

 	(cfme.automate.dialogs.dialog_tab.TabCollection attribute)

 	(cfme.automate.dialogs.service_dialogs.Dialog attribute)

 	(cfme.automate.dialogs.service_dialogs.DialogCollection attribute)

 	(cfme.automate.explorer.domain.Domain attribute)

 	(cfme.automate.explorer.domain.DomainCollection attribute)

 	(cfme.automate.explorer.instance.Instance attribute)

 	(cfme.automate.explorer.instance.InstanceCollection attribute)

 	(cfme.automate.explorer.klass.Class attribute)

 	(cfme.automate.explorer.klass.ClassCollection attribute)

 	(cfme.automate.explorer.method.Method attribute)

 	(cfme.automate.explorer.method.MethodCollection attribute)

 	(cfme.automate.explorer.namespace.Namespace attribute)

 	(cfme.automate.explorer.namespace.NamespaceCollection attribute)

 	(cfme.automate.service_dialogs.Dialog attribute)

 	(cfme.automate.service_dialogs.DialogCollection attribute)

 	tree_path_name_only (cfme.automate.explorer.instance.Instance attribute)

 	(cfme.automate.explorer.klass.Class attribute)

 	(cfme.automate.explorer.method.Method attribute)

 	tries() (in module cfme.utils)

 	trim_items() (in module cfme.utils.pytest_shortcuts)

 	true_actions (cfme.control.explorer.policies.EditEventView attribute)

 	(cfme.control.explorer.policies.EventDetailsView attribute)

 	type (cfme.automate.buttons.ButtonDetailView attribute)

 	(cfme.automate.buttons.ButtonGroup attribute)

 	(cfme.automate.import_export.GitImportSelectorView attribute)

 	(cfme.control.explorer.actions.ActionDetailsView attribute)

 	TYPE (cfme.control.explorer.alert_profiles.BaseAlertProfile attribute)

 	(cfme.control.explorer.alert_profiles.ClusterAlertProfile attribute)

 	(cfme.control.explorer.alert_profiles.DatastoreAlertProfile attribute)

 	(cfme.control.explorer.alert_profiles.HostAlertProfile attribute)

 	(cfme.control.explorer.alert_profiles.NodeAlertProfile attribute)

 	(cfme.control.explorer.alert_profiles.ProviderAlertProfile attribute)

 	(cfme.control.explorer.alert_profiles.ServerAlertProfile attribute)

 	(cfme.control.explorer.alert_profiles.VMInstanceAlertProfile attribute)

 	(cfme.control.explorer.policies.BasePolicy attribute)

 	(cfme.control.explorer.policies.ContainerImageCompliancePolicy attribute)

 	(cfme.control.explorer.policies.ContainerImageControlPolicy attribute)

 	(cfme.control.explorer.policies.ContainerNodeCompliancePolicy attribute)

 	(cfme.control.explorer.policies.ContainerNodeControlPolicy attribute)

 	(cfme.control.explorer.policies.HostCompliancePolicy attribute)

 	(cfme.control.explorer.policies.HostControlPolicy attribute)

 	(cfme.control.explorer.policies.PhysicalInfrastructureCompliancePolicy attribute)

 	(cfme.control.explorer.policies.PhysicalInfrastructureControlPolicy attribute)

 	(cfme.control.explorer.policies.PodCompliancePolicy attribute)

 	(cfme.control.explorer.policies.PodControlPolicy attribute)

 	type (cfme.control.explorer.policies.PolicyDetailsView attribute)

 	TYPE (cfme.control.explorer.policies.ProviderCompliancePolicy attribute)

 	(cfme.control.explorer.policies.ProviderControlPolicy attribute)

 	(cfme.control.explorer.policies.ReplicatorCompliancePolicy attribute)

 	(cfme.control.explorer.policies.ReplicatorControlPolicy attribute)

 	(cfme.control.explorer.policies.VMCompliancePolicy attribute)

 	(cfme.control.explorer.policies.VMControlPolicy attribute)

 	type (cfme.infrastructure.pxe.PXECustomizationTemplateForm attribute)

 	(cfme.infrastructure.pxe.PXEImageEditView attribute)

 	(cfme.infrastructure.pxe.PXESystemImageTypeForm attribute)

 	(cfme.intelligence.reports.reports.Report attribute)

 	TYPE (cfme.intelligence.reports.widgets.BaseDashboardReportWidget attribute)

 	(cfme.intelligence.reports.widgets.chart_widgets.ChartWidget attribute)

 	(cfme.intelligence.reports.widgets.menu_widgets.MenuWidget attribute)

 	(cfme.intelligence.reports.widgets.report_widgets.ReportWidget attribute)

 	(cfme.intelligence.reports.widgets.rss_widgets.RSSFeedWidget attribute)

 	type (cfme.intelligence.reports.widgets.rss_widgets.RSSFeedWidget attribute)

 	(cfme.intelligence.reports.widgets.rss_widgets.RSSWidgetFormCommon attribute)

 	type_or_get_type (cfme.modeling.base.CollectionProperty attribute)

U

 	
 	ui_worker_pid() (in module fixtures.perf)

 	UiCoveragePlugin (class in fixtures.ui_coverage)

 	UL (cfme.dashboard.Kebab attribute)

 	uncollectif() (in module cfme.markers.uncollect)

 	unconfigured_appliance() (in module cfme.fixtures.cli)

 	unconfigured_appliance_secondary() (in module cfme.fixtures.cli)

 	unconfigured_appliances() (in module cfme.fixtures.cli)

 	unexpected_error (cfme.base.login.BaseLoggedInPage attribute)

 	uninstall_ipa_client() (cfme.utils.appliance.ApplianceConsoleCli method)

 	uninstall_vddk() (cfme.utils.appliance.IPAppliance method)

 	Unit (class in cfme.utils.units)

 	unit_name (cfme.utils.appliance.services.SystemdService attribute)

 	unit_type (cfme.utils.units.Unit attribute)

 	UnknownProviderType

 	unlock() (cfme.automate.explorer.domain.Domain method)

 	unpartitioned_disks (cfme.utils.appliance.IPAppliance attribute)

 	unregister() (cfme.utils.appliance.IPAppliance method)

 	unserialize_report() (in module fixtures.parallelizer)

 	update (cfme.base.Zone attribute)

 	(cfme.generic_objects.definition.GenericObjectDefinition attribute)

 	(cfme.generic_objects.instance.GenericObjectInstance attribute)

 	update() (cfme.ansible.credentials.Credential method)

 	(cfme.ansible.repositories.Repository method)

 	(cfme.automate.buttons.BaseButton method)

 	(cfme.automate.buttons.ButtonGroup method)

 	(cfme.automate.dialogs.service_dialogs.Dialog method)

 	(cfme.automate.explorer.domain.Domain method)

 	(cfme.automate.explorer.instance.Instance method)

 	(cfme.automate.explorer.klass.Class method)

 	(cfme.automate.explorer.method.Method method)

 	(cfme.automate.explorer.namespace.Namespace method)

 	(cfme.automate.provisioning_dialogs.ProvisioningDialog method)

 	(cfme.automate.service_dialogs.Dialog method)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfile method)

 	(cfme.configure.configuration.diagnostics_settings.CollectLogsBase method)

 	(cfme.configure.configuration.region_settings.Category method)

 	(cfme.configure.configuration.region_settings.MapTags method)

 	(cfme.configure.configuration.region_settings.Tag method)

 	(cfme.configure.configuration.system_schedules.SystemSchedule method)

 	(cfme.configure.settings.DefaultFilters method)

 	(cfme.configure.settings.TimeProfile method)

 	(cfme.control.explorer.actions.Action method)

 	(cfme.control.explorer.alert_profiles.BaseAlertProfile method)

 	(cfme.control.explorer.alerts.Alert method)

 	(cfme.control.explorer.conditions.BaseCondition method)

 	(cfme.control.explorer.policies.BasePolicy method)

 	(cfme.control.explorer.policy_profiles.PolicyProfile method)

 	(cfme.infrastructure.pxe.CustomizationTemplate method)

 	(cfme.infrastructure.pxe.PXEServer method)

 	(cfme.infrastructure.pxe.SystemImageType method)

 	(cfme.intelligence.chargeback.rates.ComputeRate method)

 	(cfme.intelligence.reports.dashboards.Dashboard method)

 	(cfme.intelligence.reports.dashboards.DefaultDashboard method)

 	(cfme.intelligence.reports.reports.Report method)

 	(cfme.intelligence.reports.schedules.Schedule method)

 	(cfme.intelligence.reports.widgets.BaseDashboardReportWidget method)

 	(in module cfme.base.ui)

 	(in module cfme.generic_objects.definition.rest)

 	(in module cfme.generic_objects.instance.rest)

 	(in module cfme.utils.update)

 	update_advanced_settings() (cfme.base.Region method)

 	(cfme.base.Server method)

 	(cfme.base.Zone method)

 	(cfme.utils.appliance.IPAppliance method)

 	update_appliances() (cfme.configure.configuration.region_settings.RedHatUpdates method)

 	update_basic_information() (cfme.configure.configuration.server_settings.ServerInformation method)

 	update_custom_support_url() (cfme.configure.configuration.server_settings.ServerInformation method)

 	update_guid() (cfme.utils.appliance.IPAppliance method)

 	
 	update_logging_form() (cfme.configure.configuration.server_settings.ServerInformation method)

 	update_ntp_servers() (cfme.configure.configuration.server_settings.ServerInformation method)

 	update_on_launch (cfme.ansible.repositories.Repository attribute)

 	(cfme.ansible.repositories.RepositoryFormView attribute)

 	update_password (cfme.base.Server attribute)

 	update_password() (cfme.base.ui.LoginPage method)

 	update_registration() (cfme.configure.configuration.region_settings.RedHatUpdates method)

 	update_rhel() (cfme.utils.appliance.IPAppliance method)

 	update_server_roles() (cfme.utils.appliance.IPAppliance method)

 	update_server_roles_db() (cfme.configure.configuration.server_settings.ServerInformation method)

 	update_server_roles_ui() (cfme.configure.configuration.server_settings.ServerInformation method)

 	update_smtp_server() (cfme.configure.configuration.server_settings.ServerInformation method)

 	update_time_difference() (cfme.utils.ftp.FTPClient method)

 	update_vmware_console() (cfme.configure.configuration.server_settings.ServerInformation method)

 	update_web_services() (cfme.configure.configuration.server_settings.ServerInformation method)

 	Updateable (class in cfme.utils.update)

 	updates() (in module cfme.utils.update)

 	updates_table (cfme.configure.configuration.region_settings.RedHatUpdatesView attribute)

 	upload_button (cfme.control.import_export.ControlImportExportView attribute)

 	(cfme.intelligence.reports.import_export.ImportExportCommonForm attribute)

 	upload_file (cfme.control.import_export.ControlImportExportView attribute)

 	(cfme.intelligence.reports.import_export.ImportExportCommonForm attribute)

 	upstream_bug (cfme.utils.bz.BugWrapper attribute)

 	upstream_version (cfme.utils.bz.Bugzilla attribute)

 	uptime() (cfme.utils.ssh.SSHClient method)

 	uri (cfme.configure.configuration.diagnostics_settings.CollectLogsBasicEntities attribute)

 	(cfme.configure.configuration.system_schedules.DatabaseBackupEntities attribute)

 	(cfme.configure.configuration.system_schedules.SystemSchedule attribute)

 	(cfme.infrastructure.pxe.PXEServerForm attribute)

 	url (cfme.ansible.repositories.Repository attribute)

 	(cfme.ansible.repositories.RepositoryFormView attribute)

 	(cfme.configure.configuration.region_settings.RedHatUpdatesEditView attribute)

 	(cfme.intelligence.reports.widgets.rss_widgets.RSSWidgetFormCommon attribute)

 	(cfme.utils.appliance.IPAppliance attribute)

 	(cfme.utils.blockers.BZ attribute)

 	(cfme.utils.blockers.Blocker attribute)

 	(cfme.utils.blockers.GH attribute)

 	(cfme.utils.blockers.JIRA attribute)

 	url_path() (cfme.utils.appliance.IPAppliance method)

 	use_dev_branch() (cfme.utils.appliance.IPAppliance method)

 	use_proxy (cfme.configure.configuration.region_settings.RedHatUpdatesEditView attribute)

 	user (cfme.base.Zone attribute)

 	(cfme.utils.appliance.IPAppliance attribute)

 	user_data (cfme.utils.auth.BaseAuthProvider attribute)

 	user_restricted() (in module cfme.fixtures.tag)

 	user_suffix (cfme.configure.configuration.server_settings.LdapAuthenticationView attribute)

 	user_type (cfme.configure.configuration.server_settings.LdapAuthenticationView attribute)

 	user_types (cfme.utils.auth.MIQAuthProvider attribute)

 	username (cfme.base.ssui.LoginPage attribute)

 	(cfme.base.ui.LoginPage attribute)

 	(cfme.base.ui.ZoneForm attribute)

 	(cfme.configure.configuration.diagnostics_settings.CollectLogsCredsEntities attribute)

 	(cfme.configure.configuration.region_settings.RedHatUpdatesEditView attribute)

 	(cfme.configure.configuration.region_settings.ReplicationGlobalAddView attribute)

 	(cfme.infrastructure.pxe.PXEServerForm attribute)

 	(cfme.utils.auth.AmazonAuthProvider attribute)

 	(cfme.utils.ssh.SSHClient attribute)

 	uses_cloud_providers() (in module cfme.markers.uses)

 	uses_db() (in module cfme.markers.uses)

 	uses_event_listener() (in module cfme.markers.uses)

 	uses_infra_providers() (in module cfme.markers.uses)

 	uses_providers() (in module cfme.markers.uses)

 	uses_pxe() (in module cfme.markers.uses)

 	uses_ssh() (in module cfme.markers.uses)

 	utc_time() (cfme.utils.appliance.IPAppliance method)

 	utilization (cfme.base.ui.ServerDatabaseView attribute)

 	(cfme.base.ui.ServerDiagnosticsView attribute)

 	Utilization (class in cfme.base.ui)

 	(class in cfme.optimize.utilization)

V

 	
 	validate (cfme.configure.configuration.server_settings.AmazonAuthenticationView attribute)

 	(cfme.configure.configuration.server_settings.LdapAuthenticationView attribute)

 	(cfme.infrastructure.pxe.PXEServerForm attribute)

 	validate_args() (cfme.utils.dockerbot.dockerbot.DockerBot method)

 	validate_button (cfme.automate.explorer.method.MethodAddView attribute)

 	(cfme.automate.explorer.method.MethodEditView attribute)

 	(cfme.configure.configuration.diagnostics_settings.CollectLogsCredsEntities attribute)

 	(cfme.configure.configuration.region_settings.RedHatUpdatesEditView attribute)

 	validate_logs() (cfme.utils.log_validator.LogValidator method)

 	values() (cfme.utils.db.Db method)

 	variable (class in cfme.utils.varmeth)

 	variables_table (cfme.automate.explorer.method.PlaybookInputParameters attribute)

 	variant() (cfme.utils.varmeth.variable method)

 	vcenter_attr_name (cfme.control.explorer.actions.ActionFormCommon attribute)

 	vcenter_attr_value (cfme.control.explorer.actions.ActionFormCommon attribute)

 	verbosity (cfme.automate.explorer.method.MethodAddView attribute)

 	(cfme.automate.explorer.method.MethodEditView attribute)

 	verify (cfme.base.ui.ZoneForm attribute)

 	verify_password (cfme.base.ui.LoginPage attribute)

 	version (cfme.test_framework.sprout.plugin.SproutProvisioningRequest attribute)

 	(cfme.utils.appliance.DummyAppliance attribute)

 	(cfme.utils.appliance.IPAppliance attribute)

 	versions (cfme.utils.bz.Product attribute)

 	versions_match() (cfme.configure.configuration.region_settings.RedHatUpdates method)

 	ViaREST (class in cfme.utils.appliance.implementations.rest)

 	ViaSSUI (class in cfme.utils.appliance.implementations.ssui)

 	ViaUI (class in cfme.utils.appliance.implementations.ui)

 	VIEW (cfme.ansible.credentials.Add attribute)

 	(cfme.ansible.credentials.AnsibleCredentials attribute)

 	(cfme.ansible.credentials.Details attribute)

 	(cfme.ansible.credentials.Edit attribute)

 	(cfme.ansible.playbooks.AnsiblePlaybooks attribute)

 	(cfme.ansible.playbooks.Details attribute)

 	(cfme.ansible.repositories.Add attribute)

 	(cfme.ansible.repositories.AnsibleRepositories attribute)

 	(cfme.ansible.repositories.Details attribute)

 	(cfme.ansible.repositories.Edit attribute)

 	(cfme.automate.AutomateCustomization attribute)

 	(cfme.automate.buttons.ButtonAll attribute)

 	(cfme.automate.buttons.ButtonDetails attribute)

 	(cfme.automate.buttons.ButtonEdit attribute)

 	(cfme.automate.buttons.ButtonGroupAll attribute)

 	(cfme.automate.buttons.ButtonGroupDetails attribute)

 	(cfme.automate.buttons.ButtonGroupEdit attribute)

 	(cfme.automate.buttons.ButtonGroupNew attribute)

 	(cfme.automate.buttons.ButtonGroupObjectType attribute)

 	(cfme.automate.buttons.ButtonNew attribute)

 	(cfme.automate.dialog_box.Add attribute)

 	(cfme.automate.dialog_element.Add attribute)

 	(cfme.automate.dialog_element.Edit attribute)

 	(cfme.automate.dialog_tab.Add attribute)

 	(cfme.automate.dialogs.dialog_box.Add attribute)

 	(cfme.automate.dialogs.dialog_element.Add attribute)

 	(cfme.automate.dialogs.dialog_element.Edit attribute)

 	(cfme.automate.dialogs.dialog_tab.Add attribute)

 	(cfme.automate.dialogs.service_dialogs.Add attribute)

 	(cfme.automate.dialogs.service_dialogs.All attribute)

 	(cfme.automate.dialogs.service_dialogs.Details attribute)

 	(cfme.automate.dialogs.service_dialogs.Edit attribute)

 	(cfme.automate.explorer.AutomateExplorer attribute)

 	(cfme.automate.explorer.domain.Add attribute)

 	(cfme.automate.explorer.domain.All attribute)

 	(cfme.automate.explorer.domain.Details attribute)

 	(cfme.automate.explorer.domain.Edit attribute)

 	(cfme.automate.explorer.domain.Priority attribute)

 	(cfme.automate.explorer.instance.Add attribute)

 	(cfme.automate.explorer.instance.Copy attribute)

 	(cfme.automate.explorer.instance.Details attribute)

 	(cfme.automate.explorer.instance.Edit attribute)

 	(cfme.automate.explorer.klass.Add attribute)

 	(cfme.automate.explorer.klass.Copy attribute)

 	(cfme.automate.explorer.klass.Details attribute)

 	(cfme.automate.explorer.klass.Edit attribute)

 	(cfme.automate.explorer.klass.EditSchema attribute)

 	(cfme.automate.explorer.method.Add attribute)

 	(cfme.automate.explorer.method.Copy attribute)

 	(cfme.automate.explorer.method.Details attribute)

 	(cfme.automate.explorer.method.Edit attribute)

 	(cfme.automate.explorer.namespace.Add attribute)

 	(cfme.automate.explorer.namespace.Details attribute)

 	(cfme.automate.explorer.namespace.Edit attribute)

 	(cfme.automate.provisioning_dialogs.Add attribute)

 	(cfme.automate.provisioning_dialogs.All attribute)

 	(cfme.automate.provisioning_dialogs.Details attribute)

 	(cfme.automate.provisioning_dialogs.Edit attribute)

 	(cfme.automate.service_dialogs.Add attribute)

 	(cfme.automate.service_dialogs.All attribute)

 	(cfme.automate.service_dialogs.Details attribute)

 	(cfme.automate.service_dialogs.Edit attribute)

 	(cfme.base.ssui.LoggedIn attribute)

 	(cfme.base.ssui.LoginScreen attribute)

 	(cfme.base.ui.About attribute)

 	(cfme.base.ui.Advanced attribute)

 	(cfme.base.ui.AuditLog attribute)

 	(cfme.base.ui.Authentication attribute)

 	(cfme.base.ui.AutomateImportExport attribute)

 	(cfme.base.ui.AutomateSimulation attribute)

 	(cfme.base.ui.CFMELog attribute)

 	(cfme.base.ui.ChangeRegionName attribute)

 	(cfme.base.ui.Chargeback attribute)

 	(cfme.base.ui.Configuration attribute)

 	(cfme.base.ui.CustomLogos attribute)

 	(cfme.base.ui.Dashboard attribute)

 	(cfme.base.ui.Database attribute)

 	(cfme.base.ui.DatabaseClientConnections attribute)

 	(cfme.base.ui.DatabaseIndexes attribute)

 	(cfme.base.ui.DatabaseSettings attribute)

 	(cfme.base.ui.DatabaseSummary attribute)

 	(cfme.base.ui.DatabaseTables attribute)

 	(cfme.base.ui.DatabaseUtilization attribute)

 	(cfme.base.ui.Details attribute)

 	(cfme.base.ui.Diagnostics attribute)

 	(cfme.base.ui.DiagnosticsDetails attribute)

 	(cfme.base.ui.DiagnosticsWorkers attribute)

 	(cfme.base.ui.Documentation attribute)

 	(cfme.base.ui.HelpMenu attribute)

 	(cfme.base.ui.Import attribute)

 	(cfme.base.ui.ImportTags attribute)

 	(cfme.base.ui.LoggedIn attribute)

 	(cfme.base.ui.LoginScreen attribute)

 	(cfme.base.ui.ProductionLog attribute)

 	(cfme.base.ui.RSS attribute)

 	(cfme.base.ui.RegionDetails attribute)

 	(cfme.base.ui.RegionDiagnostics attribute)

 	(cfme.base.ui.RegionDiagnosticsDatabase attribute)

 	(cfme.base.ui.RegionDiagnosticsOrphanedData attribute)

 	(cfme.base.ui.RegionDiagnosticsReplication attribute)

 	(cfme.base.ui.RegionDiagnosticsRolesByServers attribute)

 	(cfme.base.ui.RegionDiagnosticsServers attribute)

 	(cfme.base.ui.RegionDiagnosticsServersByRoles attribute)

 	(cfme.base.ui.RegionDiagnosticsZones attribute)

 	(cfme.base.ui.RegionZones attribute)

 	(cfme.base.ui.ServerDetails attribute)

 	(cfme.base.ui.ServerDiagnosticsCollectLogs attribute)

 	(cfme.base.ui.SmartProxyAffinity attribute)

 	(cfme.base.ui.Tasks attribute)

 	(cfme.base.ui.Timelines attribute)

 	(cfme.base.ui.Utilization attribute)

 	(cfme.base.ui.Workers attribute)

 	(cfme.base.ui.ZoneAdd attribute)

 	(cfme.base.ui.ZoneCANDUGapCollection attribute)

 	(cfme.base.ui.ZoneCollectLogs attribute)

 	(cfme.base.ui.ZoneDetails attribute)

 	(cfme.base.ui.ZoneDiagnostics attribute)

 	(cfme.base.ui.ZoneDiagnosticsRolesByServers attribute)

 	(cfme.base.ui.ZoneDiagnosticsServers attribute)

 	(cfme.base.ui.ZoneDiagnosticsServersByRoles attribute)

 	(cfme.base.ui.ZoneEdit attribute)

 	(cfme.cloud.security_groups.Add attribute)

 	(cfme.cloud.security_groups.Details attribute)

 	(cfme.cloud.security_groups.SecurityGroupAll attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileAdd attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileAll attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileCopy attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileDetails attribute)

 	(cfme.configure.configuration.analysis_profile.AnalysisProfileEdit attribute)

 	(cfme.configure.configuration.diagnostics_settings.AllDiagnosticWorkers attribute)

 	(cfme.configure.configuration.diagnostics_settings.DiagnosticsCollectLogs attribute)

 	(cfme.configure.configuration.diagnostics_settings.DiagnosticsCollectLogsEdit attribute)

 	(cfme.configure.configuration.diagnostics_settings.DiagnosticsCollectLogsEditSlave attribute)

 	(cfme.configure.configuration.diagnostics_settings.DiagnosticsCollectLogsSlave attribute)

 	(cfme.configure.configuration.diagnostics_settings.DiagnosticsSummary attribute)

 	(cfme.configure.configuration.diagnostics_settings.ZoneDiagnosticsCollectLogs attribute)

 	(cfme.configure.configuration.region_settings.CANDUCollectionDetails attribute)

 	(cfme.configure.configuration.region_settings.CategoryAdd attribute)

 	(cfme.configure.configuration.region_settings.CategoryAll attribute)

 	(cfme.configure.configuration.region_settings.CategoryEdit attribute)

 	(cfme.configure.configuration.region_settings.Details attribute)

 	(cfme.configure.configuration.region_settings.Edit attribute)

 	(cfme.configure.configuration.region_settings.MapTagsAdd attribute)

 	(cfme.configure.configuration.region_settings.MapTagsAll attribute)

 	(cfme.configure.configuration.region_settings.MapTagsEdit attribute)

 	(cfme.configure.configuration.region_settings.ReplicationDetails attribute)

 	(cfme.configure.configuration.region_settings.ReplicationGlobalAdd attribute)

 	(cfme.configure.configuration.region_settings.ReplicationGlobalSetup attribute)

 	(cfme.configure.configuration.region_settings.ReplicationRemoteAdd attribute)

 	(cfme.configure.configuration.region_settings.TagsAdd attribute)

 	(cfme.configure.configuration.region_settings.TagsAll attribute)

 	(cfme.configure.configuration.region_settings.TagsEdit attribute)

 	(cfme.configure.configuration.system_schedules.ScheduleAdd attribute)

 	(cfme.configure.configuration.system_schedules.ScheduleAll attribute)

 	(cfme.configure.configuration.system_schedules.ScheduleDetails attribute)

 	(cfme.configure.configuration.system_schedules.ScheduleEdit attribute)

 	(cfme.configure.settings.DefaultFiltersStep attribute)

 	(cfme.configure.settings.DefaultViewsStep attribute)

 	(cfme.configure.settings.MySettingsStep attribute)

 	(cfme.configure.settings.TimeProfileAdd attribute)

 	(cfme.configure.settings.TimeProfileCollectionAll attribute)

 	(cfme.configure.settings.TimeProfileCopy attribute)

 	(cfme.configure.settings.TimeProfileEdit attribute)

 	(cfme.configure.settings.VisualStep attribute)

 	(cfme.configure.tasks.AllOtherTasks attribute)

 	(cfme.configure.tasks.AllTasks attribute)

 	(cfme.configure.tasks.MyOtherTasks attribute)

 	(cfme.configure.tasks.MyTasks attribute)

 	(cfme.containers.overview.All attribute)

 	(cfme.control.explorer.ControlExplorer attribute)

 	(cfme.control.explorer.actions.ActionDetails attribute)

 	(cfme.control.explorer.actions.ActionEdit attribute)

 	(cfme.control.explorer.actions.ActionNew attribute)

 	(cfme.control.explorer.actions.ActionsAll attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfileDetails attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfileEdit attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfileEditAssignments attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfileNew attribute)

 	(cfme.control.explorer.alert_profiles.AlertProfilesAll attribute)

 	(cfme.control.explorer.alerts.AlertCopy attribute)

 	(cfme.control.explorer.alerts.AlertDetails attribute)

 	(cfme.control.explorer.alerts.AlertEdit attribute)

 	(cfme.control.explorer.alerts.AlertNew attribute)

 	(cfme.control.explorer.alerts.AlertsAll attribute)

 	(cfme.control.explorer.conditions.AllConditions attribute)

 	(cfme.control.explorer.conditions.ConditionDetails attribute)

 	(cfme.control.explorer.conditions.ConditionEdit attribute)

 	(cfme.control.explorer.conditions.ConditionNew attribute)

 	(cfme.control.explorer.conditions.PolicyConditionDetails attribute)

 	(cfme.control.explorer.policies.PolicyAll attribute)

 	(cfme.control.explorer.policies.PolicyDetails attribute)

 	(cfme.control.explorer.policies.PolicyEdit attribute)

 	(cfme.control.explorer.policies.PolicyEventDetails attribute)

 	(cfme.control.explorer.policies.PolicyNew attribute)

 	(cfme.control.explorer.policy_profiles.PolicyProfileAll attribute)

 	(cfme.control.explorer.policy_profiles.PolicyProfileDetails attribute)

 	(cfme.control.explorer.policy_profiles.PolicyProfileEdit attribute)

 	(cfme.control.explorer.policy_profiles.PolicyProfileNew attribute)

 	(cfme.control.import_export.ControlImportExport attribute)

 	(cfme.control.log.ControlLog attribute)

 	(cfme.control.simulation.ControlSimulation attribute)

 	(cfme.dashboard.DashboardDetails attribute)

 	(cfme.infrastructure.networking.All attribute)

 	(cfme.infrastructure.pxe.CustomizationTemplateAdd attribute)

 	(cfme.infrastructure.pxe.CustomizationTemplateAll attribute)

 	(cfme.infrastructure.pxe.CustomizationTemplateCopy attribute)

 	(cfme.infrastructure.pxe.CustomizationTemplateDetails attribute)

 	(cfme.infrastructure.pxe.CustomizationTemplateEdit attribute)

 	(cfme.infrastructure.pxe.ISODatastoreAdd attribute)

 	(cfme.infrastructure.pxe.ISODatastoreAll attribute)

 	(cfme.infrastructure.pxe.ISODatastoreDetails attribute)

 	(cfme.infrastructure.pxe.PXEServerAdd attribute)

 	(cfme.infrastructure.pxe.PXEServerAll attribute)

 	(cfme.infrastructure.pxe.PXEServerDetails attribute)

 	(cfme.infrastructure.pxe.PXEServerEdit attribute)

 	(cfme.infrastructure.pxe.SystemImageTypeAdd attribute)

 	(cfme.infrastructure.pxe.SystemImageTypeAll attribute)

 	(cfme.infrastructure.pxe.SystemImageTypeDetails attribute)

 	(cfme.infrastructure.pxe.SystemImageTypeEdit attribute)

 	(cfme.intelligence.chargeback.IntelChargeback attribute)

 	(cfme.intelligence.chargeback.assignments.AssignAll attribute)

 	(cfme.intelligence.chargeback.assignments.AssignCompute attribute)

 	(cfme.intelligence.chargeback.assignments.AssignStorage attribute)

 	(cfme.intelligence.chargeback.rates.ComputeRateAll attribute)

 	(cfme.intelligence.chargeback.rates.ComputeRateCopy attribute)

 	(cfme.intelligence.chargeback.rates.ComputeRateDetails attribute)

 	(cfme.intelligence.chargeback.rates.ComputeRateEdit attribute)

 	(cfme.intelligence.chargeback.rates.ComputeRateNew attribute)

 	(cfme.intelligence.chargeback.rates.StorageRateAll attribute)

 	(cfme.intelligence.chargeback.rates.StorageRateDetails attribute)

 	(cfme.intelligence.chargeback.rates.StorageRateEdit attribute)

 	(cfme.intelligence.chargeback.rates.StorageRateNew attribute)

 	(cfme.intelligence.reports.CloudIntelReports attribute)

 	(cfme.intelligence.reports.dashboards.DashboardDetails attribute)

 	(cfme.intelligence.reports.dashboards.DashboardEdit attribute)

 	(cfme.intelligence.reports.dashboards.DashboardNew attribute)

 	(cfme.intelligence.reports.dashboards.DefaultDashboardDetails attribute)

 	(cfme.intelligence.reports.dashboards.DefaultDashboardEdit attribute)

 	(cfme.intelligence.reports.import_export.ImportExportCustomReports attribute)

 	(cfme.intelligence.reports.import_export.ImportExportWidgets attribute)

 	(cfme.intelligence.reports.menus.EditReportMenus attribute)

 	(cfme.intelligence.reports.reports.ReportDetails attribute)

 	(cfme.intelligence.reports.reports.ReportEdit attribute)

 	(cfme.intelligence.reports.reports.ReportsAll attribute)

 	(cfme.intelligence.reports.reports.ReportsNew attribute)

 	(cfme.intelligence.reports.reports.SavedReportDetails attribute)

 	(cfme.intelligence.reports.saved.CustomReportAll attribute)

 	(cfme.intelligence.reports.saved.ScheduleDetails attribute)

 	(cfme.intelligence.reports.schedules.ScheduleAll attribute)

 	(cfme.intelligence.reports.schedules.ScheduleDetails attribute)

 	(cfme.intelligence.reports.schedules.ScheduleEdit attribute)

 	(cfme.intelligence.reports.schedules.ScheduleNew attribute)

 	(cfme.intelligence.reports.widgets.BaseDashboardWidgetDetailsStep attribute)

 	(cfme.intelligence.reports.widgets.BaseEditDashboardWidgetStep attribute)

 	(cfme.intelligence.reports.widgets.BaseNewDashboardWidgetStep attribute)

 	(cfme.intelligence.reports.widgets.chart_widgets.EditChartWidget attribute)

 	(cfme.intelligence.reports.widgets.chart_widgets.NewChartWidget attribute)

 	(cfme.intelligence.reports.widgets.menu_widgets.EditMenuWidget attribute)

 	(cfme.intelligence.reports.widgets.menu_widgets.NewMenuWidget attribute)

 	(cfme.intelligence.reports.widgets.report_widgets.EditReportWidget attribute)

 	(cfme.intelligence.reports.widgets.report_widgets.NewReportWidget attribute)

 	(cfme.intelligence.reports.widgets.rss_widgets.EditRSSWidget attribute)

 	(cfme.intelligence.reports.widgets.rss_widgets.NewRSSWidget attribute)

 	(cfme.optimize.Bottlenecks attribute)

 	(cfme.optimize.bottlenecks.All attribute)

 	(cfme.services.catalogs.ServicesCatalog attribute)

 	(cfme.services.dashboard.ssui.CurrentServices attribute)

 	(cfme.services.dashboard.ssui.DashboardAll attribute)

 	(cfme.services.dashboard.ssui.RetiredServices attribute)

 	(cfme.services.dashboard.ssui.RetiringSoon attribute)

 	(cfme.services.dashboard.ssui.TotalServices attribute)

 	(cfme.services.workloads.AllTemplates attribute)

 	(cfme.services.workloads.AllVMs attribute)

 	(cfme.utils.appliance.implementations.ssui.SSUINavigateStep attribute)

 	
 	view (cfme.utils.appliance.implementations.ssui.SSUINavigateStep attribute)

 	VIEW (cfme.utils.appliance.implementations.ui.CFMENavigateStep attribute)

 	view (cfme.utils.appliance.implementations.ui.CFMENavigateStep attribute)

 	view_class (cfme.utils.auth.ActiveDirectoryAuthProvider attribute)

 	(cfme.utils.auth.AmazonAuthProvider attribute)

 	(cfme.utils.auth.BaseAuthProvider attribute)

 	(cfme.utils.auth.FreeIPAAuthProvider attribute)

 	(cfme.utils.auth.OpenLDAPAuthProvider attribute)

 	(cfme.utils.auth.OpenLDAPSAuthProvider attribute)

 	view_selector (cfme.ansible.playbooks.PlaybooksToolbar attribute)

 	(cfme.cloud.security_groups.SecurityGroupToolbar attribute)

 	(cfme.infrastructure.networking.InfraNetworkingToolbar attribute)

 	(cfme.intelligence.reports.reports.SavedReportDetailsView attribute)

 	(cfme.services.workloads.WorkloadsToolbar attribute)

 	view_value_mapping (cfme.base.credential.Credential attribute)

 	(cfme.base.credential.SSHCredential attribute)

 	(cfme.base.credential.ServiceAccountCredential attribute)

 	(cfme.base.credential.TokenCredential attribute)

 	visibility (cfme.intelligence.reports.widgets.BaseDashboardReportWidget attribute)

 	(cfme.intelligence.reports.widgets.BaseDashboardWidgetFormCommon attribute)

 	visual (cfme.configure.settings.MySettings attribute)

 	Visual (class in cfme.configure.settings)

 	VisualForm (class in cfme.configure.settings)

 	VisualStep (class in cfme.configure.settings)

 	VM_COMPLIANCE_POLICY (cfme.control.explorer.policies.PolicyCollection attribute)

 	VM_CONTROL_POLICY (cfme.control.explorer.policies.PolicyCollection attribute)

 	vm_hosts (cfme.configure.documentation.LinksView attribute)

 	VM_INSTANCE (cfme.automate.buttons.ButtonGroupCollection attribute)

 	VM_MIGRATE (cfme.automate.provisioning_dialogs.ProvisioningDialogsCollection attribute)

 	VM_OR_INSTANCE (cfme.infrastructure.pxe.SystemImageType attribute)

 	VM_PROVISION (cfme.automate.provisioning_dialogs.ProvisioningDialogsCollection attribute)

 	vm_quad (cfme.configure.settings.Visual attribute)

 	vm_selection (cfme.control.simulation.ControlSimulationView attribute)

 	VM_TYPE (cfme.configure.configuration.analysis_profile.AnalysisProfile attribute)

 	vm_visibility (cfme.configure.settings.DefaultViewsForm attribute)

 	VMCompliancePolicy (class in cfme.control.explorer.policies)

 	VMCondition (class in cfme.control.explorer.conditions)

 	VMControlPolicy (class in cfme.control.explorer.policies)

 	vmdb_version (cfme.utils.ssh.SSHClient attribute)

 	VMInstanceAlertProfile (class in cfme.control.explorer.alert_profiles)

 	VmNotFound

 	VmNotFoundViaIP

 	VmOrInstanceNotFound

 	vms (cfme.services.workloads.WorkloadsView attribute)

 	VmsInstances (class in cfme.services.workloads)

 	vmware_console (cfme.configure.configuration.server_settings.ServerInformationView attribute)

 	vmware_console_values (cfme.configure.configuration.server_settings.ServerInformation attribute)

 	vnc_ready() (in module cfme.utils.dockerbot.sel_container)

 	VolumeNotFoundError

 	vpor_data_instance (class in cfme.fixtures.vporizer)

 	vporizer() (in module cfme.fixtures.vporizer)

W

 	
 	wait() (cfme.utils.dockerbot.dockerbot.DockerInstance method)

 	(in module fixtures.parallelizer.parallelizer_tester)

 	wait_analysis_finished_multiple_tasks() (in module cfme.configure.tasks)

 	wait_for() (cfme.utils.appliance.db.ApplianceDB method)

 	wait_for_embedded_ansible() (cfme.utils.appliance.IPAppliance method)

 	wait_for_evm_service() (cfme.utils.appliance.IPAppliance method)

 	wait_for_host_address() (cfme.utils.appliance.IPAppliance method)

 	wait_for_miq_server_workers_started() (cfme.utils.appliance.IPAppliance method)

 	wait_for_running() (cfme.utils.appliance.services.SystemdService method)

 	wait_for_ssh() (cfme.utils.appliance.IPAppliance method)

 	wait_for_web_ui() (cfme.utils.appliance.IPAppliance method)

 	wait_generated() (cfme.intelligence.reports.widgets.BaseDashboardReportWidget method)

 	WarningsDeduplicationFilter (class in cfme.utils.log)

 	WarningsRelpathFilter (class in cfme.utils.log)

 	web_services (cfme.configure.configuration.server_settings.ServerInformationView attribute)

 	web_services_values (cfme.configure.configuration.server_settings.ServerInformation attribute)

 	Wharf (class in cfme.utils.browser)

 	WharfFactory (class in cfme.utils.browser)

 	widget_picker (cfme.intelligence.reports.dashboards.DashboardFormCommon attribute)

 	widget_title (cfme.intelligence.reports.widgets.BaseDashboardWidgetFormCommon attribute)

 	widget_view (cfme.dashboard.DashboardWidget attribute)

 	
 	widgetastic (cfme.utils.appliance.implementations.ssui.ViaSSUI attribute)

 	(cfme.utils.appliance.implementations.ui.ViaUI attribute)

 	widgets (cfme.intelligence.reports.dashboards.Dashboard attribute)

 	widgets_generated() (in module cfme.fixtures.widgets)

 	windows_images_dir (cfme.infrastructure.pxe.PXEServerForm attribute)

 	without_icons() (in module cfme.automate.explorer)

 	WithZoom (class in cfme.utils.browser)

 	word (fixtures.parallelizer.Outcome attribute)

 	workaround_missing_gemfile() (cfme.utils.appliance.IPAppliance method)

 	workers (cfme.base.ui.ServerDiagnosticsView attribute)

 	(cfme.base.ui.ServerView attribute)

 	Workers (class in cfme.base.ui)

 	workers_table (cfme.configure.configuration.diagnostics_settings.DiagnosticServerWorkersView attribute)

 	WorkloadsDefaultView (class in cfme.services.workloads)

 	WorkloadsTemplate (class in cfme.services.workloads)

 	WorkloadsToolbar (class in cfme.services.workloads)

 	WorkloadsView (class in cfme.services.workloads)

 	WorkloadsVM (class in cfme.services.workloads)

 	write_line() (fixtures.pytest_store.Store method)

 	(in module fixtures.pytest_store)

 	write_repofile() (cfme.utils.appliance.IPAppliance method)

X

 	
 	xml (cfme.markers.polarion.ReportPolarionToJunitPlugin attribute)

Y

 	
 	yamls_volume() (in module cfme.scripting.tests.test_quickstart)

Z

 	
 	zone (cfme.base.Server attribute)

 	(cfme.base.ui.ZoneView attribute)

 	(cfme.configure.configuration.system_schedules.ScheduleDetailsView attribute)

 	Zone (class in cfme.base)

 	ZoneAdd (class in cfme.base.ui)

 	ZoneAddView (class in cfme.base.ui)

 	ZoneCANDUGapCollection (class in cfme.base.ui)

 	ZoneCollection (class in cfme.base)

 	ZoneCollectLog (class in cfme.configure.configuration.diagnostics_settings)

 	ZoneCollectLogs (class in cfme.base.ui)

 	ZoneCollectLogsView (class in cfme.base.ui)

 	ZoneCollectLogToolbar (class in cfme.configure.configuration.diagnostics_settings)

 	ZoneDetails (class in cfme.base.ui)

 	ZoneDetailsView (class in cfme.base.ui)

 	ZoneDiagnostics (class in cfme.base.ui)

 	ZoneDiagnosticsCollectLogs (class in cfme.configure.configuration.diagnostics_settings)

 	
 	ZoneDiagnosticsCollectLogsView (class in cfme.configure.configuration.diagnostics_settings)

 	ZoneDiagnosticsRolesByServers (class in cfme.base.ui)

 	ZoneDiagnosticsServers (class in cfme.base.ui)

 	ZoneDiagnosticsServersByRoles (class in cfme.base.ui)

 	ZoneDiagnosticsView (class in cfme.base.ui)

 	ZoneEdit (class in cfme.base.ui)

 	ZoneEditView (class in cfme.base.ui)

 	ZoneForm (class in cfme.base.ui)

 	ZoneListView (class in cfme.base.ui)

 	ZoneNotFound

 	zones (cfme.base.ui.RegionDiagnosticsView attribute)

 	ZoneSmartProxyAffinityView (class in cfme.base.ui)

 	ZoneView (class in cfme.base.ui)

 	zoom() (cfme.dashboard.DashboardWidget method)

 	zoomed (cfme.dashboard.DashboardView attribute)

 	zoomed_name (cfme.dashboard.DashboardCollection attribute)

 	zstream (cfme.utils.bz.BugWrapper attribute)

 nav.xhtml

 Table of Contents

 		
 Welcome to cfme_tests’s documentation!

 		
 Getting Started

 		
 Running Tests

 		
 Guides

 		
 Abbreviations and Naming Conventions

 		
 Browser Configuration

 		
 Designing Models

 		
 Appliances in containers

 		
 Debugging

 		
 Contributors Guide

 		
 Documenting cfme_tests

 		
 Setting up editors

 		
 Frequently Asked Questions

 		
 Selenium Gotchas

 		
 flake8

 		
 Adding a New Provider Type

 		
 Development Tips and Tricks

 		
 Marking your tests with associated product requirements

 		
 UI modeling

 		
 Libraries

 		
 High-level process description

 		
 Navmazing

 		
 Widgetastic

 		
 Sentaku

 		
 Selenium over VNC

 		
 Modules

 		
 cfme package

 		
 cfme.ansible package

 		
 cfme.automate package

 		
 cfme.base package

 		
 cfme.cloud package

 		
 cfme.common package

 		
 cfme.configure package

 		
 cfme.containers package

 		
 cfme.control package

 		
 cfme.fixtures package

 		
 cfme.generic_objects package

 		
 cfme.infrastructure package

 		
 cfme.intelligence package

 		
 cfme.markers package

 		
 cfme.metaplugins package

 		
 cfme.modeling package

 		
 cfme.networks package

 		
 cfme.optimize package

 		
 cfme.physical package

 		
 cfme.rest package

 		
 cfme.scripting package

 		
 cfme.services package

 		
 cfme.storage package

 		
 cfme.test_framework package

 		
 cfme.utils package

 		
 cfme.dashboard module

 		
 cfme.exceptions module

 		
 cfme.js module

 		
 cfme.provisioning module

 		
 cfme.roles module

 		
 cfme.test_requirements module

 		
 fixtures package

 		
 fixtures.parallelizer package

 		
 fixtures.appliance module

 		
 fixtures.appliance_update module

 		
 fixtures.artifactor_plugin module

 		
 fixtures.blockers module

 		
 fixtures.browser module

 		
 fixtures.cfme_data module

 		
 fixtures.customer_db_migrate module

 		
 fixtures.datafile module

 		
 fixtures.dev_branch module

 		
 fixtures.disable_forgery_protection module

 		
 fixtures.events module

 		
 fixtures.fixtureconf module

 		
 fixtures.log module

 		
 fixtures.maximized module

 		
 fixtures.merkyl module

 		
 fixtures.nelson module

 		
 fixtures.node_annotate module

 		
 fixtures.page_screenshots module

 		
 fixtures.perf module

 		
 fixtures.portset module

 		
 fixtures.prov_filter module

 		
 fixtures.provider module

 		
 fixtures.pytest_store module

 		
 fixtures.qa_contact module

 		
 fixtures.randomness module

 		
 fixtures.rbac module

 		
 fixtures.sauce module

 		
 fixtures.screenshots module

 		
 fixtures.skip_not_implemented module

 		
 fixtures.soft_assert module

 		
 fixtures.ssh_client module

 		
 fixtures.templateloader module

 		
 fixtures.terminalreporter module

 		
 fixtures.ui_coverage module

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/framework.png
Ul

e.g. Form

Low fevel
* CFME specific
*Fills n fields

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/plus.png

